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INTRODUCTION

The objective of this thesis is to explore Bayesian predictive inference

in statistical analysis using approximation and simulation techniques and to

implement these techniques in practice. Prediction (Latin præ-, "before,"

and dicere, "to say") in statistics is a part of inference which aims to make

statements about how things will happen in the future. It is usualy based

on experience or knowledge and on the underlying statistical model. We

can never be sure that the model is entirely appropriate. The discusion of

the model building process and the question of adequacy of assumptions

is outside the scope of the thesis. However, an introduction to statistical

modelling will be presented and in particular to parametric statistical models.

The predictive inference also depends upon which approach is selected

for this purpose. There are two main structured and distinct approaches to

inference, frequentist inference and Bayesian inference. We are interested

in the Bayesian view on the problem of prediction. This paradigm can be

seen as an extra step in the modelling world just as parametric modelling

is in the classical approach. Wishing to do predictive inference, Bayesian

theory calls for the use of posterior predictive distribution, i.e., to predict

the distribution of a new, unobserved data point. This approach uses the

entire posterior distribution of the parameter. By comparison, prediction

in frequentist statistics often means �nding an optimal point estimate of

the parameter and then plugging in this estimate into the formula for the

distribution of the predictive variable. This has the disadvantage that it does

not account for any uncertainty in the value of the parameter, and hence will

underestimate the variance of the predictive distribution.

Even if the problem under consideration involves a conjugate prior, this



does not mean that the predictive distribution will be available in closed

form. Hence analytical, stochastic or numerical approximations are usually

needed to evaluate various characteristics of predictive distributions, espe-

cially their density, quantiles, or moments. Typically, Markov Chain Monte

Carlo (MCMC) methods are used, but such methods have some disadvan-

tages. They are computationaly intensive, time consuming and produce de-

pendent samples. Moreover, MCMC methods typically require more atten-

tion from the practitioner, e.g. choice of proposal and convergence checks,

and they may have poor tail behavior, especially when the number of param-

eters is large.

Wishing to avoid the di�culties related to MCMC methods, in this the-

sis we develop an easily computable approximate method for the predictive

cumulative density function, which will be named Higher-Order Predictive

Approximation (HOPA) method. This method will allow us to approximate

the predictive distribution and related quantiles for univariate predictive ran-

dom variables. Moreover, it can be used to obtain random samples from such

variables, which can be used to approximate summary statistics, for exam-

ple predictive moments. Its main advantages, compared to standard MCMC

methods, are that it gives independent samples at a negligible computational

cost.

The development of the HOPA method consists of two main stages.

Firstly, the predictive density is approximated by Laplace's method for inte-

grals. We will select two approximations, to which we will apply the third

order approximation to the tail area. The results are approximations of the

predictive cumulative distribution function, which can be used for inference

and simulation.

The thesis incorporates two main parts: theoretical (Chapters 1-3) and

practical (Chapter 4), and it will be organized as follows. In Chapter 1 the

inference theory will be introduced, with the levels of model speci�cation.

Also, we will brie�y review frequentist and Bayesian approaches, their dif-

ferences and major concepts, especially in predictive inference, where the

predictive density function will be introduced.

Chapter 2 deals with three major techniques for integral evaluation used



to approximate predictive density functions. We will mainly focus on the

Laplace's method, which will be implemented to construct di�erent approx-

imations for the predictive density functions. We will also recall MCMC

methods such Metropolis-Hastings algorithm and Gibbs sampling, as these

methods are considered trustworthy and will allow us to make comparisons

in the examples of Chapter 4.

The development of the HOPA method from the approximations of pre-

dictive densities provided in the previous part and conditions that allow us to

implement the method, are discused in Chapter 3. Moreover, we will design

the procedures to approximate the predictive cumulative distribution func-

tion from theoretical and practical point of view, which allows us to compute

the related quantiles. Also the HOPA simulation scheme will be discussed.

As the focus of the thesis is both theoretical and practical, numerical

examples are discussed in Chapter 4 to illustrate the accuracy of the HOPA

method.



Chapter 1

STATISTICAL INFERENCE

AND PREDICTION

1.1 Introduction

The aim of this chapter is to introduce the theoretical aspects and formal-

isation of the Baysian prediction procedure and to provide notation for all

further developments. Wishing to grasp the di�erence between the Bayesian

approach and the Fisherian's approach to prediction, the latter will be also

recalled. But �rstly, the �eld of statistical inference, with the two main

approaches: classical and Bayesian ones, will be discussed.

The chapter is an analysis and a synthesis of Pace and Salvan (1997,

Capters 1-4) for frequentist approach and Box and Tiao (1992, Capters 1-4),

Barnett (1999, Chapters 1-2), Congdon (2001, Chapter 1) and Iversen (1984,

Capters 1-4) for Bayesian approach.

1.2 Theory of statistical inference

The procedure that utilises collected information to obtain a description

of a practical situation, through a probability model, is an inferential proce-

dure. The study of such procedures will be termed statistical inference.

Often the collected information consists of data that are inherently vari-
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able and from which we would like to highlight regularities or features about

the phenomenon under study. The notation for the observed data is y, often

of the form y = (y1, . . . , yn). In statistical inference, y ∈ Y can be thought as

a realization of a random vector Y ∼ p0(y) or, more generally, of a stochastic

process, where p0(y) represents the unknown probability distribution o

probability model, with respect to a suitable measure P , and where Y is

the sample space. Measure theory is not essential for the development of the

arguments in the thesis; however, the reader is assumed to be familiar with

the basic de�nitions and results (see Jacod and Protter (2003, Chapters 1-8)

). The sample space Y is the set of possible outcomes of the experiment, i.e.

the range of values of the random variable Y . We will assume that Y ⊆ IRn.

In the following, depending on the nature of the random variable Y , discrete

or continuous, p(y) will denote either the probability mass function or the

density function.

From a statistical point of view, the study of a process consists in recon-

structing the unknown p0(y) on the basis of both suitable assumptions on the

phenomenon and the observed data. It is commonly used to de�ne a statis-

tical model F as a collection of probability distribution functions p(y) from

which one assumes that a particular dataset is sampled. The assumptions

on F , which usually limitate the possible forms of p(y), facilitate the recon-

struction of the probability model. Obviously, the probability distributions

p(y) must be compatible with the observed data y, at least mathematically.

The statistical model F is then said to be correctly speci�ed if p0(y) ∈ F ,
otherwise the model is said to be misspeci�ed.

One of the problems for statistical analysis is the problem of speci�ca-

tion wich is very important, and usually impacts a lot on the inferencial

conclusions. However, the theory of statistical inference, traditionally, lacks

explicit indications on this aspects. The process of selecting on the available

information an appropriate statistical model F , where it can take a greater

or lesser degree of extension, is called model speci�cation. Widely speaking

there are three levels of speci�cation:

• parametric speci�cation, where the elements of p(y) can be indexed

by a �nite number d of parameters which form the vector of parameters
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θ, that is

F =
{
p(y; θ), θ ∈ Θ

}
, (1.1)

where Θ is the parameter space, i.e. the set of all possible combinations

of values for all the di�erent parameters which are allowable in the

particular model;

• semiparametric speci�cation, the elements of F can be identi�ed

through both a parametric and a nonparametric component and it is

noted by

F =
{
p(y; θ), θ ∈ Θ

}
,

where θ = (τ, h(·)), with τ ∈ T ⊆ IRk whereas the set of possible

speci�cations of the function h(·) cannot be indexed by a �nite number

of real parameters;

• nonparametric speci�cation, the elements of F cannot be indexed

by a �nite number of parameters, nor is inference upon �nite dimen-

sional characteristics of the distribution of Y .

In this thesis we are concerned with parametric speci�cation, which is the

most restricted level of speci�cation of a statistical model, where the proba-

bility distribution is a function of the parameters θ. A parametric statistical

model F , from the classical point of view, can be speci�ed once the triplet

(Y , p(y; θ),Θ),

has been assigned, where all the elements have just been de�ned. Often the

parameter space is a subset of d-dimensional Euclidean space, i.e. Θ ⊆ IRd.

The statement about the probability model is the fundamental assump-

tion made in this context. The knowledge of p0(y) will permit both interpre-

tation and prediction.
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1.3 Approaches to statistical inference

Seeking suitable techniques for the identi�cation of p0(y), statistical in-

vestigation takes place in a context or in a paradigm, which depends on the

approach that was taken to do inference. There are two main structured and

distinct approaches to inference, namely frequentist inference, also known as

classical, and a well-established alernative, Bayesian inference. There are

other approaches, such as �ducial inference or pure likelihood inference that

are not mentioned here. See Barnett (1999, Chapters 1-2) for a comparative

review. The choice between the two main approaches of statistical inference

depends on how we de�ne the concept of probability and on what we consider

as relevant information. These implications have a great impact on statistical

modelling and inferences.

The main characteristics of the two approaches may be summarised in

the manner indicated in Table 1.1 (see Barnett (1999, Section 1.5) ), and are

brie�y described in Sections 1.3.1 and 1.3.2 .

Table 1.1: Comparison between classical and Bayesian approaches.

Approach Probability concept Relevant information
Classical Frequency-based Sample data
Bayesian 'Degree-of-belief'; subjective. Sample data. Prior information

Possible frequency
interpretable components

1.3.1 Frequentist inference

Classical approach to inference originates in the work of R. A. Fisher, J.

Neyman, E. S. Pearson, and others. Probabilities in this approach are seen as

long-run relative frequencies or proportions and some people therefore call

them frequentist probabilities or objective probabilities. In these respects

classical statistics leans on a frequency concept of probability. This view was

�rst formulated by Venn (1886) and later led to the Neymann-Person system

of classical statistical inference.
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In the context of a parametrical statistical model, if the model is correctly

speci�ed, we have p0(y) = p(y; θ0) for a value θ0 ∈ Θ, called the true pa-

rameter value and p0(y) is named true probability distribution. The

observables are the outcomes of the experiment Y and are determined by

certain objective probabilities or joint probability distribution which can be

viewed as function of a set of unknown parameters.

Wishing to throw light on the unknown parameter θ0, the identi�cability

condition and the information are needed. The identi�cability condition

states that there is at least y ∈ Y such that p(y; θ) 6= p(y; θ′) if θ 6= θ′. And

the only source of relevant information for all the procedures of this approach

is sample data.

The main inferences about parameter are point and interval estimation,

tests of signi�cance and hypothesis testing. In this rispect, the terms esti-

mate and estimator, or more generally statistic, play a special role. The

estimator is a particular function θ̃(Y ) of the random variable Y and the

estimate is the actual value the estimator takes, θ̃(y). More formally, the

estimator is viewed as the transformed random variable with its probability

distribution that is called the sampling distribution. The sampling dis-

tribution of the estimator of θ is one of the keypoints for further steps of

classical statistical inference.

There are many practical methods that are used for constructing estima-

tors, such as maximum likelihood method, method of moments, method of

estimation by order statistics, method of minimum chi-squared, least squares.

The estimator (estimate) obtained by using maximum likelihood method is

called maximum likelihood estimator (estimate), MLE. The method

is based on a fundamental tool in statistical inference, namely the likelihood

function. If we have a parametric statistical model F for data y, we write

p(y; θ) to emphasize that the density is a function of both data and param-

eter. The likelihood function for θ based on y is de�ned to be the function

L : Θ→ IR+

L(θ) = L(θ; y) = p(y; θ) (1.2)

regarded as a function of θ for �xed y. The likelihood function expresses
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how the probability distribution, p(y; θ), for the particular data y varies as

we consider di�erent possible values for the parameter θ. It represents the

information provided by the sample that does not involve its compression into

a particular parameter-free statistic. So, the maximum likelihood estimator

is the value of θ that maximizes L(θ; y) over Θ.

Consider an experiment that yields a sequence of data y = (y1, . . . , yn).

Then the obvious form for the likelihood function is

L(θ) = p(y1; θ)p(y2|y1; θ) . . . p(yn|yn−1, yn−2, . . . , y1; θ). (1.3)

In the case of independent observations the likelihood function has the form

L(θ) =
n∏
i=1

p(yi; θ). (1.4)

In many cases, even in maximizing L(θ), it may prove more convenient

to consider the log-likelihood function, l : Θ→ IR, which is de�ned as

l(θ) = logL(θ) = log p(y; θ), (1.5)

where log(·) denotes the natural logarithm, and l(θ) = −∞ if L(θ) = 0.

Quantities obtained from the likelihood function are called likelihood

quantities. The most known among such quantities are the derivatives of the

log-likelihood function up to the second order, named score function and,

with the changed sign, the information matrix, which play a crucial role

in classical inference. Basic reviews of the wide-ranging role of the likelihood

are provided by for instance Barnard and Sprott (1983) and by Hills (1998).

1.3.2 Bayesian inference

The distinction between parameters and observables is not as clear as

commonly supposed because each quantity has a range of possible values, and

a single speci�c realized value. Bayesian inference avoids such problematic

distinction by assuming that observables y and parameters θ are generic

realisations of random variables Y and θ with joint distribution p(y, θ). The
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parametric statistical model (1.1) gives the conditional distribution of Y

given θ, and is only one of the ingredients in the Bayesian speci�ation, merely

extended by introduction of the prior distribution π(θ) for the parameters θ,

also known as the distribution of θ a priori.

Bayesian inference needs the prior information as well as the observed

sample. The prior information is modi�ed by the sample data through the

Bayes theorem to yield a combined assessment of the state of knowledge of

the practical situation. Inferential statements are expressed through poste-

rior probability distributions, and hence embody their own measure of accu-

racy. This approach cannot rest on a frequency interpretation of probability

alone; a subjective interpretation is almost inevitable, and probabilities tend

to be regarded as conditional on the observed data. The prior information

represents a personal measure of uncertainty, based on the available evi-

dence. Since our available evidence is mostly empirical both classical and

Bayesian views often come up with very similar answers for a particular

problem (Iversen (1984, pag. 8)).

The Bayes' theorem in the simplest form states as follows (see O'Hagan

(1994, Chapter 1)). If we consider two events, A and B, then

P (B|A) =
P (A,B)

P (A)
=
P (A|B)P (B)

P (A)
. (1.6)

This formula can be interpreted in the following way. If we are concerned with

event B, knowing or supposing prior probability P (B) for its occurrence, and

we observe the occurrence of event A then we can construct the posterior

probability P (B|A). The posterior probability describes how likely B is

when A is known to have occurred. The probability P (A|B) is known as the

likelihood of A given B. The theorem can be understood as a formula for

updating from prior to posterior probability multiplying the prior P (B) by

the ratio P (A|B)/P (A). A more convenient form of Bayes' theorem for our

purposes is

p(θ|y) =
p(y, θ)

p(y)
=
p(y|θ)π(θ)

p(y)
,

where π(θ) is a priori distribution for θ, p(θ|y) is the posterior distribution
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of θ given y, or the distribution of θ a posteriori, and p(y) is the marginal

density of Y . From the point of view of Probability Theory, π(θ) is the

marginal distribution of the parameter θ, p(θ|y) is the conditional probabil-

ity distribution of θ given Y = y, and p(y|θ) is the conditional probability

distribution of Y given θ. The latter, from a statistical point of view, is the

likelihood function. Using Theorem of marginal distribution (see Jacod and

Protter (2003, pag. 88) ), to cover both cases, where θ can be continuous or

discrete, we can write

p(y) =
∑
θ∈Θ

p(y|θ)π(θ)

for discrete θ, where π(θ) is a probability mass function and

p(y) =

∫
Θ

p(y|θ)π(θ)dθ

for continuous θ, where π(θ) is a density function. In practice, it is excep-

tional to be concerned with a discrete parameter, then it is more useful to

express the posterior density of θ in the form

f(θ|y) =
p(y|θ)π(θ)∫

θ
p(y|θ)π(θ)dθ

. (1.7)

This formulation can be interpreted in the same way as the version of

Bayes' theorem (1.6) for the simpler case of events. Posterior density of

parameters combines two sources of information: the prior density of θ and

the likelihood for θ given y, and it is proportional to their product. If there

are particular values of θ that are well supported by both information sources,

i.e. having high prior density and high likelihood then these values will also

have high posterior density. And viceversa, posterior density for particular

values of θ will be low if they have low prior density and low likelihood, so

that they are essential discounted by both sources of information.

Notice that p(y|θ) appears in both numerator and denominator of (1.7).

Therefore if we modify p(y|θ) by multiplying it by an arbitrary constant, then
that constant will cancel and leave the same posterior disribution. Even more

generally, we can multiply p(y|θ) by an arbitrary function of y, and still obtain
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the same posterior distribution. The implication is that if we have y and x,

data arising from two distinct experiments and the two likelihoods L(θ, y) and

L(θ, x) are identical up to multiplication by an arbitrary function of y and x,

then they contain identical information about θ and lead to identical posterior

distributions. The experiments might be very di�erent in other respects, but

those di�erences are irrelevant for inference about θ. This principle is called

Likelihood Principle. Broadly speaking, the Likelihood Principle implies that

it matters only what was observed. The Likelihood Principle also represents

a key di�erence between Bayesian and classical theory. Berger and Wolpert

(1988) provide a careful and deep analysis, and show that classical inference

does not follow the Likelihood Principle, as opposed to Bayesian inference.

1.4 Prediction

Statistical prediction consists of two experiments Y , called the informa-

tive experiment, and Z, called the future experiment. If there is some link

between these two experiments then from the information gained from the

informative experiment some reasoned statement concerning the future ex-

periment could be made. Classical and Bayesian prediction inferences deal

with problems where this link is through the parameters θ and the way in

which the outcome of the two experiments y and z are related.

1.4.1 Frequentist prediction

In the classical approach, there is no such natural route to prediction nor

interpretable formulation as in the Bayesian approach. Predictive inference

from this viewpoint represents what happens in the long run as a particu-

lar prediction procedure for repeated sample data will be used. There are

many proposals for prediction procedures in classical inference, and most of

them e�ectively assume that θ just takes a speci�c value obtained as a point

estimator.

Suppose that in the informative experiment the continuous random vari-

able Y , with sample space Y ∈ IRn, has taken the value y. Consider for Y
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the parametric statistical model with density functions that can be denoted

by
{
f(y; θ) : θ ∈ Θ ⊆ IRd

}
, where θ is unknown parameter. And we wish to

make prediction for an unobserved outcome of continuous random variable

Z (or vector) from a future experiment. Suppose, also, that the conditional

distribution of Z given Y, denoted by f(z|y; θ), is known. The simplest pro-

cedure consists of using the estimative predictive density f̂(z|y) = f(z|y; θ̂),

obtained by substituting an asymptotically e�cient estimator of θ, θ̂, such as

the maximum likelihood estimator. This procedure however takes no account

of the statistical variability of the estimator.

A number of papers aim to improve the estimative density, such as Harris

(1995), Vidoni (1995), Vidoni (1998), Komaki (1996), Barndor�-Nielsen and

Cox (1996) and Corcuera and Giummolè (1999). For instance, Vidoni (1998)

obtains an upper α-prediction limit for z, that is a value zα(y) such that,

exactly or approximately,

Pr {Z ≤ zα(Y ); θ} = 1− α ,

for all possible θ ∈ Θ, where the probability refers to joint distribution of

(Y, Z).

Other related issues of classical prediction methods have been discussed

by Guttman (1970), who compares with Bayesian methods, Butler (1986),

Bjornstad (1990) and Geisser (1993).

1.4.2 Bayesian prediction

Assume the same setting of informative and future experiments as in

Section 1.4.1, adding for the unknown parameter θ the prior density function

π(θ), continuous in Θ, and the joint density of Y and Z denoted by f(y, z|θ),
or the conditional distribution of Z given Y and θ, denoted by f(z|y; θ).

Clearly, the plausibility of z given π(θ) and y is expressed by

f(z|y) =

∫
Θ

f(z, θ|y)dθ =

∫
Θ

f(z|y; θ)f(θ|y)dθ , (1.8)
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and we term this function the predictive density function (see Aitchison and

Dunsmore (1975, p.19)) for Z = z given Y = y. The substitution in (1.8)

of the posterior density (1.7) leads to the expresion

f(z|y) =

∫
Θ
f(z, y|θ)π(θ)dθ∫

Θ
f(y|θ)π(θ)dθ

=

∫
Θ
f(z|y; θ)f(y|θ)π(θ)dθ∫

Θ
f(y|θ)π(θ)dθ

. (1.9)

An extreme version of the predictive approach is to regard parameters

as neither meaningful nor necessary. Then the predictive distribution for a

future z is obtained by

f(z|y) =
f(z, y)

f(y)
(1.10)

without reference to the parameter θ. We note that the ratio in the right-

hand side includes only the joint density of observables and unobservables

data. The method has the di�culty in de�ning these joint distributions.

Introducing parameters is a natural way of representing the distribution of

the data. All unobservable parameters are viewed as nuisance parameters,

but they are still employed in constructing the basic model.

Formula (1.10) can yield the predictive density (1.9) if the marginal den-

sity of (Y, Z), f(y, z), is obtained by joint density of (Y, Z, θ) and marginal

density of Y , f(y), is obtained by joint density of (Y, θ) through the marginal-

ization on θ. When we have f(y, z, θ) and can not de�ne f(y, θ), or for other

convinience, then the marginal density of Y can be written as

f(y) =

∫
Θ

[∫
IR

f(y, z, θ)dz

]
dθ , (1.11)

and the predictive density takes the following form

f(z|y) =

∫
Θ
f(z|y; θ)f(y|θ)π(θ)dθ∫

Θ

[∫
IR
f(y, z, θ)dz

]
dθ

=

∫
Θ
f(z, y|θ)π(θ)dθ∫

Θ

[∫
IR
f(y, z, θ)dz

]
dθ
. (1.12)

Formulas (1.9) and (1.12) will be employed further in Chapter 2.

We note that the probability distribution (1.8) is represented as a mixture

distribution. To generate a random variable Z|Y = y using such a represen-

tation, we can �rst generate a variable θ|Y = y from the mixing distribution
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and then generate Z|Y = y; θ from the selected conditional distribution. For

more details see Robert and Casella (2010, Section 2.2.3).



Chapter 2

APPROXIMATE BAYESIAN

PREDICTION

2.1 Introduction

In practice, a user of Bayesian predictive inference needs to be able to eval-

uate various characteristics of the predictive distribution, such as its density,

quantiles, mean and variance. In this chapter, the quantity of interest is the

predictive density, de�ned as a ratio of two integrals (see Section 1.4.2). The

results depend on the calculus of the nominator and denominator and this in-

volves integration over the parameters. In some examples, prior distributions

and likelihoods have convenient forms that enable the closed form compu-

tation of the predictive density. In general, however, closed form results

are not available and then analytical, stochastic or numerical approximation

methods are used.

In the following we are going to outline three major techniques for in-

tegral approximation. We will mainly focus on the Laplace's method and

its implementation for predictive density. However, MCMC methods, such

Metropolis-Hastings algorithm and Gibbs sampling, will be recalled, as we

will use these methods for comparisons in some of the examples in Chapter

4. The chapter is based on Bruijn (1961, Chapter 4), Tierney and Kadane

(1986), Robert and Casella (2010, Chapters 3-7), Pace and Salvan (1997,
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Chapter 9) and Davison (1986).

2.2 Numerical integral approximation

In numerical analysis, numerical integration constitutes a broad family of

algorithms for calculating the numerical value of a de�nite integral. Numer-

ical integration for one-dimensional integrals of the form

I =

∫ b

a

f(x)dx,

also known as quadrature, essentially approximate I by calculating f at

a number of points x1, x2, . . . , xk ∈ [a, b] called integration points and

applying some formula to the resulting values f(x1), f(x2), . . . , f(xk). The

simplest form for the one-dimensional integral is a weighted average

Î =
k∑
i=1

wif(xi).

Di�erent quadrature rules are distinguished by using di�erent sets of design

points x1, x2, . . . , xk, and/or di�erent sets of weights w1, w2, . . . , wk. Also a

large class of quadrature rules can be derived by constructing interpolating

functions which are easy to integrate. The most known os such rules is the

Gaussian quadrature.

Numerical integration over more than one dimension is sometimes de-

scribed as cubature or Cartesian product quadrature. For the computation

of integrals in multiple dimensions, one approach is to divide the multiple

integral into repeated one-dimensional integrals by appealing to Fubini's the-

orem. This approach requires the function evaluations to grow exponentially

as the number of dimensions increases. Numerical methods are known to

su�er the so-called curse of dimensionality.
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2.3 Monte Carlo integral approximation

A di�erent approach for evaluating an integral is Monte Carlo integration.

This method uses the evaluation of f(x) at random points. Suppose that a

series of points x1, x2, . . . , xk are drawn independently from a distribution

with density s(x). Now we have

I =

∫
f(x)dx =

∫
f(x)

s(x)
s(x)dx = Es

[
f(x)

s(x)

]
, (2.1)

where Es denotes expectation with respect to the distribution s. The esti-

mation of (2.1) is given by the sample mean

Î = k−1

k∑
i=1

f(xi)

s(xi)
.

From a statistical point of view Î is an unbiased estimator of the integral I

with variance

var(Î) = k−1vars

[
f(x)

s(x)

]
. (2.2)

For large k, Î is asymptotically normally distributed, by the central limit

theorem, with mean I and variance (2.2), which tends to zero as k increases.

We can estimate the variance and give a con�dence interval for the inte-

gral, based on the same sample. The possibility of assessing the accuracy

of the integration is an advantage of Monte Carlo method over quadrature

methods. Another advantage of Monte Carlo methods is that they are easy

to apply to multi-dimensional integrals, and may yield greater accuracy for

the same number of function evaluations than repeated integrations using

one-dimensional methods.

Note that the key of Monte Carlo integration is Monte Carlo methods,

wich are a broad class of computational algorithms that rely on repeated

random sampling. A large class of useful Monte Carlo methods are the so-

called Markov Chain Monte Carlo algorithms, which include the Metropolis-

Hastings algorithm and Gibbs sampling. In the following we will describe

both algorithms as they will be used in some of the examples of Chapter 4.
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Metropolis-Hastings algorithm

Suppose that we have a univariate or multivariate probability density

f(x), where very little is known about it, and we want to generate a sample

from such probability density, not necessarily i.i.d., but with property that

the marginal distribution of this sample is f(x). For this purpose the MCMC

algorithm can be used to generate correlated samples from a Markov chain

with stationary distribution f(x). The working principle of Markov chain

Monte Carlo methods is builded on a Markov kernel K, which generates such

stationary distribution by the Ergodic Theorem (see Norris (1997, Chapter

3.8)). A method for deriving the kernel K, that is universal and theoretically

valid for any density f(x), is the Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm associates to a given target density

f(x) an conditional density q(y|x). In practice, the conditional density is

chosen to be easy to simulate. From a theoretical point of view the only

requirement is that the ratio f(y)/q(y|x) should be known up to a constant

independent of x and that q(y|x) has enough dispersion to lead to an explo-

ration of the entire support of f(x). Than the algorithm produces a Markov

chain {Xt} trough the following steps:

1. given xt, generate yt from q(y|xt)
2. calculate αt = min( f(yt)

f(xt)
q(xt|yt)
q(yt|xt) , 1)

3. set Xt+1 = yt with probability αt+1 or Xt+1 = xt with probability

1− αt+1.

The distribution q(·) is called the instrumental, or proposal, distribution

and the probability αt the Metropolis-Hastings acceptance probability. An-

other concept of this algorithm is acceptance rate, which is the average of

the acceptance probabilities over iterations. This quantity allows an evalua-

tion of the performance of the algorithm. Roberts et al. (1997) recommend

the use of instrumental distributions with acceptance rates close to 1/4 for

models with high-dimensional parameters and equal to 1/2 for the models

with 1 or 2 parameters.

We can get special cases from the original algorithm such as symmet-

ric, independent and random walk cases. In the symmetric case, when
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q(x|y) = q(y|x), the acceptance probablility αt is driven by the objective ra-

tio f(yt)/f(xt) and thus even the acceptance probability is independent from

q(·). If we require the candidate to be independent of the present state of

the chain, i.e. q(y|x) = g(y), we do get the independent Metropolis-Hastings

algorithms.

The random walk Metropolis-Hastings uses the simulation of Yt according

to Yt = Xt + εt, where εt is a random perturbation with distribution g inde-

pendent of Xt. The proposal density q(yt|xt) is now of the form g(yt − xt).
If g is symmetric around zero then the Markov chain associated with q is a

random walk. But, due to acceptance step, the Metropolis-Hastings Markov

chain is not a random walk.

Gibs sampling algorithm

In statistics, Gibbs sampling or a Gibbs sampler is a Markov chain Monte

Carlo (MCMC) algorithm and, as Metropolis-Hastings algorithm, is used for

obtaining a sequence of observations which are approximated from a speci-

�ed multivariate probability distribution f(x), where x = (x1, . . . , xp). The

method can be implemented when we can simulate from the corresponding

conditional densities fi(xi|x−i), called full conditional, for i = 1, . . . , p, where

x−i is the vector x whithout the element xi. The main steps for general mul-

tistage Gibbs sampler algorithm is given by the following transition from Xt

to Xt+1:

given xt = (x1,t, . . . , xp,t), generate

1. X1,t+1 ∼ f1(x1|x2,t, . . . , xp,t) ;

2. X2,t+1 ∼ f2(x2|x1,t+1, x3,t, . . . , xp,t) ;
...

p. Xp,t+1 ∼ fp(xp|x1,t+1, x2,t+1, . . . , xp−1,t+1) .

When some of the full conditionals cannot be simulated by standard ran-

dom generators then the following Metropolis-within-Gibbs strategy can be

adopted, where, instead of simulation from full conditional, we can run one

single step of any MCMC scheme associated with the stationary distribution

of full conditional. A simple solution is for instance to use a random walk
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Metropolis algorithm.

Instead of using a joint Metropolis-Hastings algorithm, when the design

of such an algorithm on a large-dimensional target is challenging or even

impossible, we can iplement a Gibbs-like structure. The fundamental gain

in using such a structure is that it breaks down a complex model into a

large number of smaller and simpler targets, where local Metropolis-Hastings

algorithms can be designed at little cost.

Metropolis-Hastings and Gibbs algorithms, as other MCMC algorithms,

generate samples of correlated random variates. As a result, care must be

taken if independent samples are desired, typically by thinning the resulting

chain of samples by only taking every n-th value, e.g. 10-th value. In addi-

tion, samples from the beginning of the chain, the burn-in period, may not

accurately represent the desired distribution, and should be discarded.

The samples generated with the algorithms discussed above, can be used

to approximate the joint target distribution, the marginal distribution of one

of the variables, or some subset of the variables, or to compute an integral,

such as the expected value of one of the variables.

A large body of literature has been devoted to Monte Carlo methods. For

exemple Ripley (1987) provide a general overview of Monte Carlo methods.

Techniques particularly relevant for Bayesian applications are presented by

Robert and Casella (2004, Chapter 6).

2.4 Analytical approximation

Numerical integration procedures such as Gaussian quadrature can some-

times be applied, but they are typically useful only for low-dimensional inte-

grals. A powerful tool for approximate calculation of an integral is numerical

integration by Monte Carlo simulation, but this method could be computa-

tionally intensive. A method that has minimal computational requirements,

but with good accuracy is an analytical approach known as Laplace's method.
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2.4.1 Laplace's method for univariate integrals

Consider the integral

I(n) =

∫
IR

exp
{
−ng(y)

}
dy, (2.3)

where g(·) is a smooth univariate real function with a unique absolute min-

imum at ỹ, so that g′(ỹ) = 0 and g′′(ỹ) > 0. Under these assumptions, the

asymptotic behaviour of I(n) is determined by the local behaviour of g(·) in
a neighbourhood of ỹ. A Taylor expansion of g(y) around ỹ gives

g(y) = g̃ + g̃′(y − ỹ) +
g̃′′(y − ỹ)2

2
+
g̃′′′(y − ỹ)3

6
+
g̃IV (y − ỹ)4

24
+O((y − ỹ)5)

(2.4)

with g̃ = g(ỹ), g̃′′ = g′′(ỹ), g̃′′′ = g′′′(ỹ). The second summand in (2.4)

under the assumptions above equals zero. Using expansion (2.4) into (2.3)

we obtain

I(n) = e−ng̃
∫

IR

exp
{
−n(y − ỹ)2g̃′′

2

}
exp
{
−ng̃

′′′(y − ỹ)3

6
− ng̃IV (y − ỹ)4

24
+

+nO((y − ỹ)5)
}
dy.

The �rst factor of the integrand is the density of N(ỹ, (ng̃′′)−1) up to the

normalizing constant c =
√
ng̃/(2π). Changing the integration variable to

z = (y− ỹ)
√
ng̃′′ and highlighting the standard normal density function φ(·)

we have

I(n) =
e−ng̃

c

∫
IR

exp
{
− z3g̃′′′

6
√
n(g̃′′)3/2

− z4g̃IV

24n(g̃′′)2
+O(n−3/2)

}
φ(z)dz (2.5)

We note that dz = (
√
ng̃′)−1dy and z(y) is a strictly increasing function of y

and the extremes of integration do not change. If we use in (2.5) the expan-

sion of the exponential function ex = 1 + x + x2/2 + . . . and the summands

of order O(n−3/2) and smaller are neglected, we �nd that

I(n) = e−ng̃c−1

∫
IR

[
1− z3g̃′′′

6
√
n(g̃′′)3/2

− z4g̃IV

24n(g̃′′)2
+

z6(g̃′′′)2

72n(g̃′′)3
+O(n−3/2)

]
φ(z)dz.
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Recall that, if Z ∼ N(0, 1), then E[Zk] is zero if k is odd and (k − 2)!! if k

is even. Note that the summands of order O(n−1) is a product of z4, i.e. the

term of order O(n−1) remains after integral. In the end, the approximation

for integral (2.3) is

I(n) =

√
2π

n1/2

e−ng̃√
g̃′′

+O(n−1)

2.4.2 Laplace's method for multivariate integrals

If we have a smooth multivariate function g : IRp → IR, with a unique

absolute minimum at ỹ, i.e. g̃′ = ∂g(y)/∂y|y=ỹ = 0 and Hessian matrix for

g(·) function in ỹ, H̃ = ∂2g(y)/∂y∂yT |y=ỹ is positive de�ne, |H̃| > 0 then we

can use the same steps as in the univariate case. Hence,

I(n) =

∫
IRp

exp
{
−ng(y)

}
dy (2.6)

admits the asymptotic approximation of �rst order

I(n) =
(2π)p/2

np/2
e−ng̃

|H̃|1/2
+O(n−1) . (2.7)

In statistical applications it is often useful to have asymptotic approxi-

mations of integrals of the form

I(n) =

∫
IRp

b(y) exp
{
−ng(y)

}
dy, (2.8)

where b(y) is a function of order O(1) such that b̃ = b(ỹ) 6= 0 with ỹ as in the

previous multivariate case. For this integral we can obtain the approximation

I(n) =
(2π)p/2

np/2
e−ng̃ b̃

|H̃|1/2
+O(n−1) . (2.9)

by expanding both g(·) and b(·) around ỹ and taking the same line of rea-

soning as for the Laplace's approximation (2.7).

Note that the asymptotic expansions leading to (2.7) and (2.9) depend

on the smoothness of the exponent functions near their modes. Thus in
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particular the approximations does not apply in situations where the mode

does not exist, i.e. the exponent functions are not limited from above. In the

case we have an interval of integration, the method still applies provided that

the mode is an inner point of the interval of integration. For more details

see Bruijn (1961, Chapter 4) and Pace and Salvan (1997, Chapter 9). When

ỹ is an end point of the interval of integration, the formula can be suitably

modi�ed.

2.5 Laplace's method for predictive densities

The aim of this section is the approximation of the predictive density using

Laplace's approximations for the integrals in the numerator and denominator.

We start from a parametric statistical model, f(y, z; θ), with θ ∈ Θ ⊆ IRd,

where Z is a univariate or multivariate random vector with sample space

Z ⊆ IRm and Y is a random variable with sample space Y ⊆ IRn. Suppose

l(θ) denote the log-likelihood function based on data y and π(θ) = exp {ρ(θ)}
is a prior distribution for θ. Let

l̃(θ) = log {f(y|θ)π(θ)} = l(θ) + ρ(θ),

lz(θ) = log f(y, z|θ) = log {f(y|θ)f(z|y; θ)} = l(θ) + log f(z|y; θ)

and

l̃z(θ) = log {f(y, z|θ)π(θ)} = log f(y, z|θ) + ρ(θ) = l(θ) + log f(z|y; θ) + ρ(θ).

Then we can write the denominator of predictive density (1.9), the marginal

density for Y = y, in one of the following forms

f(y) =

∫
IRp

f(y|θ)π(θ)dθ =

∫
IRp

exp
{
l(θ)
}
π(θ)dθ

or

f(y) =

∫
IRp

exp
{
l(θ) + ρ(θ)

}
dθ =

∫
IRp

exp
{
l̃(θ)
}
dθ.



22 APPROXIMATE BAYESIAN PREDICTION

The �rst expression can be viewed as formula (2.8) and the second expression

can be viewed as formula (2.6). Suppose that l(θ) and l̃(θ) are unimodal and

Op(n) and are twice continuously di�erentiable functions of θ. The measure

of information in Y is n. Thus it is the size of simple random sample or

a function of the length of time a stochastic process is observed. Then the

Laplace's approximation may be applied to these expressions. If we use

formula (2.9) then the denominator may be approximated as

f(y) = (2π)p/2
exp
{
l(θ̂)
}
h(θ̂)

|j(θ̂)|1/2
+Op(n

−1) = (2π)p/2
exp
{
l̃(θ̂)
}

|j(θ̂)|1/2
+Op(n

−1),

(2.10)

where θ̂ is the solution of the equation ∂l(θ)/∂θ = 0, i.e. the maximum

likelihood estimate, and j(θ) is minus the d× d matrix of second derivatives

of l(θ) with respect to θ, i.e. the information matrix.

The second approximation for the denominator, using expression (2.7),

may be written as follows

f(y) = (2π)p/2
exp

{
l̃(θ̃)
}

|J(θ̃)|1/2
+Op(n

−1), (2.11)

where θ̃ is the solution of the equation ∂l̃(θ)/∂θ = 0, and J(θ) is minus the

d × d matrix of second derivatives of l̃(θ) with respect to θ. Thus θ̃ is the

mode of l̃(θ).

If the prior information is �at in the sense that the �rst two derivatives of

ρ(θ) are zero near the mode of the log-likelihood function l(θ) or the mode of

the log-posterior function l̃(θ), then θ̃ coincides with the maximum likelihood

estimate, θ̂, and J(θ̃) = j(θ̂).

The numerator, which is the marginal density for (Z, Y ) = (z, y), can be

written as

f(z, y) =

∫
IRp

f(z, y|θ)π(θ)dθ =

∫
IRp

exp
{
lz(θ)

}
π(θ)dθ

or

f(z, y) =

∫
IRp

exp
{
l̃z(θ)

}
dθ.
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If we suppose that lz(θ) and l̃z(θ) are Op(n), unimodal and twice continuously

di�erentiable functions of θ then we can proceed as we have done for the

denominator. Using (2.9) we have

f(z, y) = (2π)p/2
exp

{
lz

(
θ̂z(z)

)}
h
(
θ̂z(z)

)
|jz
(
θ̂z(z)

)
|1/2

+Op(n
−1)

= (2π)p/2
exp

{
l̃z

(
θ̂z(z)

)}
|jz
(
θ̂z(z)

)
|1/2

+Op(n
−1), (2.12)

where θ̂z(z), which depends on the unobserved value z of Z as well as the

observed y of Y , is the solution of the equation ∂lz(θ)/∂θ = 0 and jz(θ) is

minus the d × d matrix of second derivatives of lz(θ) with respect to θ, i.e.

the information matrix based on f(y, z|θ).
The alternative approximation may be obtained by implementing expres-

sion (2.7) and the result is

f(z, y) = (2π)p/2
exp

{
l̃z

(
θ̃z(z)

)}
|Jz
(
θ̃z(z)

)
|1/2

+Op(n
−1), (2.13)

where θ̃z(z) is the solution of the equation ∂l̃z(θ)/∂θ = 0 and also depends

on both the unobserved value z of Z as well as the observed y of Y . And

Jz(θ) is minus the d× d matrix of second derivatives of l̃z(θ) with respect to

θ, i.e. the information matrix based on f(y, z|θ)π(θ).

If the prior information is constant such that the �rst two derivatives of

ρ(θ) are zero for any θ then (2.12) and (2.13) are equal.

The substitution of expressions (2.10) and (2.12) into (1.10) yields an

approximate posterior predictive density of Z = z given Y = y of the form

f(z|y) = exp
{
l̃z

(
θ̂z(z)

)
− l̃(θ̂)

} |j(θ̂)|1/2

|jz
(
θ̂z(z)

)
|1/2

+Op(n
−1). (2.14)

We can prove that the error in the approximation of this expression is of
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order Op(n
−1) as follows. Our initial ratio is of form (A + x1)/(B + x2),

where A and B are constants, x1 and x2 are of order O(n−1). We can expand

1/(B+x2) with respect to x2 in a Taylor series around zero and the result is

1

B + x2

=
1

B
− x2

(B + x2)2
+

2x2
2

(B + x2)3
+ . . .

Multiplying this series with A + x1 and taking into consideration that x2
2 is

of order O(n−2) we obtain that the initial ratio, as was previously stated, is

of order Op(n
−1).

The second expression of the predictive probability distribution function

is given from the substitution of expressions (2.11) and (2.13) into (1.10)

f(z|y) exp
{
l̃z

(
θ̃z(z)

)
− l̃(θ̃)

} |J(θ̃)|1/2

|Jz
(
θ̃z(z)

)
|1/2

+Op(n
−1). (2.15)

As in the �rst formula, the error of the approximation is of order Op(n
−1).

In many important cases the error in (2.15) is not Op(n
−1), but Op(n

−2). See

Davison (1986) and Tierney and Kadane (1986).

Formulas (2.14) and (2.15), are asymptotically equivalent for �xed prior

information provided the �rst two derivatives of ρ(θ) are bounded in a neigh-

bourhood of the mode, which is true in almost all cases. Therefore in the

following we will use only the second approximation (2.15), since it is usually

more accurate for �nite samples.

A di�erent way to approximate the predictive density uses formula (1.12).

The denominator of this ratio, which is f(y), can be written employing l̃z as

a function of (z, θ) as follows

f(y) =

∫
Θ

[∫
IR

exp
{
l̃z(z, θ)

}
dz

]
dθ.

Using formula (2.7) the approximation of this integral becomes

f(y) = (2π)(p+1)/2
exp

{
l̃z

(
ẑ, θ̃z(ẑ)

)}
|J̃z
(
ẑ, θ̃z(ẑ)

)
|1/2

+Op(n
−1),
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where (ẑ, θ̃z(ẑ)) ∈ Z×Θ is the solution of the equation ∂l̃z(z, θ)/∂(z, θT )T =

0, and J̃z is minus the (d+m)×(d+m) symmetric matrix of second derivatives

of l̃z(z, θ) with respect to vector (z, θT )T . Note that the additional condition

of the availability of this approximation respect to approximations (2.14)

and (2.15) is that ẑ ∈ Z. Using the formula above as an approximation of

the marginal distribution of Y = y and expression (2.13) for the marginal

distribution for (Z, Y ) = (z, y), we can obtain the approximation of the

predictive density as

f(z|y) =
exp

{
l̃z

(
z, θ̃z(z)

)
− l̃z

(
ẑ, θ̃(ẑ)

)}
√

2π

|J̃z
(
ẑ, θ̃z(ẑ)

)
|1/2

|Jz
(
θ̃z(z)

)
|1/2

+Op(n
−1).

(2.16)

The order Op(n
−1) of the error in the approximation could be proved by

Taylor expansions as done previously. We note that the formula is based

only on log-posterior of y and z, l̃z, and its �rst and second order derivatives.

The matrix Jz is a d× d submatrix of the (d+m)× (d+m) matrix J̃z that

coresponds to the parameters θ.

Expressions (2.15) and (2.16) will be used in Chapter 3 as a basis for the

development of the HOPA method.



26 APPROXIMATE BAYESIAN PREDICTION



Chapter 3

HIGH-ORDER PREDICTIVE

AREA APPROXIMATION

3.1 Introduction

The previous chapter outlined some of the standard methods used to com-

pute predictive distributions for both multivariate and univariate predictive

random vectors. Here a speci�c method is developed, named Higher-Order

Predictive Area (HOPA) method, in the case of a univariate predictive ran-

dom vector. The HOPA method can be used to approximate predictive

cumulative distribution functions with related quantities and to generate

samples from such random variable, called HOPA simulation. Compared to

standard Markov Chain Monte Carlo methods, its main advantages are that

it gives independent samples at a negligible computational cost.

From the Laplace's approximations of predictive density formulas, that

were discused in Section 2.5, we can approximate the predictive cumulative

distribution function using third-order approximation to the tail area prob-

abilities. The chapter is organized as follows. Firstly, Section 3.2 reviews

the third-order approximation to the tail area (see Davison (2003, Section

11.3.1)). The HOPA method with its conditions will be discussed in Section

3.3. Finally Section 3.4 describes how HOPA method and HOPA sampling

scheme can be implemented in practice.
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3.2 Third order approximation to the tail area

We start from integral of form

In(u0) =
( n

2π

)1/2
∫ u0

−∞
a(u)e−ng(u)

{
1 +O(n−1)

}
du, (3.1)

where u is scalar, a(u) > 0. In addition, ũ is such that g(ũ) = 0 and

the second derivatives of g(u), ∂2g(u)/∂u2, evaluated at u = ũ is positive.

The �rst step in approximating the integral In is to change the variable of

integration from u to r(u) = sign(u − ũ) {2g(u)}1/2, that is r2/2 = g(u).

Then g′(u) = dg(u)/du and r(u) have the same sign, and rdr/du = g′(u), so

In(u0) =
( n

2π

)1/2
∫ r0

−∞
a(u)

r

r′(u)
e−nr

2/2
{

1 +O(n−1)
}
dr

=
( n

2π

)1/2
∫ r0

−∞
a(u)

r

g′(u)
e−nr

2/2+log b(r)
{

1 +O(n−1)
}
dr,

where the positive quantity b(r) = a(u)r/g′(u) is regarded as a function of r.

Another change of variable is performed, from r to r∗ = r − (rn)−1 log b(r),

that yields

−nr∗2 = −nr2 + 2 log b(r)− (nr)−1 log2 b(r)/r.

The Jacobian of the transformation and the third term in the right hand side

above contribute only to the error of In(u0), so

In(u0) =
( n

2π

)1/2
∫ r∗0

−∞
e−nr

∗2/2
{

1 +O(n−1)
}
dr∗,

where

r∗0 = r0 + (r0n)−1 log

(
v0

r0

)
, r0 = sign(u0 − ũ) {2g(u0)}1/2 , v0 =

g′(u)

a(u0)
.

Note that the expression under the integral is similar to the approximations

of the predictive probability distribution function given in Section 2.5. Thus
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this method can be implemeted to approximate the predictive cumulative

distribution function as will be done in the following section.

3.3 HOPA method

Consider a parametric statistical model with density f(y, z; θ), with θ ∈
Θ ⊆ IRd, where Z is a univariate random variable with sample space Z ⊆ IR

and Y is a random variable with sample space Y ⊆ IRn. Let us denote the

functions l(θ), l̃(θ), lz(θ), l̃z(θ) and its related quantities as in Section 2.5.

The basic requirements in order to develop HOPA method are the same as

those of Section 2.5, with the additional condition of the existence of the

unique posterior mode and the Hessian of l̃z(z, θ) evaluated at the full mode

is negative de�nite (see for instance Kass et al. (1990)). These assumptions

are typically satis�ed in many commonly used parametric models.

One of the approximations of the predictive density, given in Section 2.5,

is

f(z|y) ≈ exp
{
l̃z

(
θ̃z(z)

)
− l̃(θ̃)

} |J(θ̃)|1/2

|Jz
(
θ̃z(z)

)
|1/2

.

where the symbol ≈ indicates accuracy with relative error of order Op(n
−1).

Now we can multiply this formula and divide it by exp
{
l̃z

(
z̃, θ̃z(ẑ)

)}
/|J̃z(z̃, θ̃z(z̃))|1/2,

where J̃z(z, θ) = −∂2l̃z(z, θ)/∂(z, θT )T∂(z, θT ) and the vector (z̃, θ̃z(z̃)T )T is

the solution of equation ∂l̃z(z, θ)/∂(z, θT )T = 0. This yields the following

approximation

f(z|y) ≈ exp
{
l̃z

(
θ̃z(z)

)
− l̃z

(
z̃, θ̃z(ẑ)

)} |J̃z (z̃, θ̃z(z̃)
)
|1/2

|Jz
(
θ̃z(z)

)
|1/2

exp
{
l̃z

(
z̃, θ̃z(ẑ)

)}
|J(θ̃)|1/2

exp
{
l̃(θ̃)
}
|J̃z
(
z̃, θ̃z(z̃)

)
|1/2

.

If k is the last fraction from the equation above multiplied by
√

2π then we

have

f(z|y) ≈ k√
2π

exp
{
l̃z

(
θ̃z(z)

)
− l̃z

(
z̃, θ̃z(ẑ)

)} |J̃z (z̃, θ̃z(ẑ)
)
|1/2

|Jz
(
θ̃z(z)

)
|1/2

. (3.2)
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This expression has the form of the integrand from (3.1). So a third-order

approximation to the predictive tail area can be obtained from formula (3.2).

We start from

F (Z = z0|Y = y) =

∫ z0

−∞
f(z|y)dz

and

∫ z0

−∞
f(z|y)dz ≈ k√

2π

∫ z0

−∞
exp

{
l̃z

(
θ̃z(z)

)
− l̃z

(
z̃, θ̃z(ẑ)

)} |J̃z (z̃, θ̃z(ẑ)
)
|1/2

|Jz
(
θ̃z(z)

)
|1/2

dz

Changing the variable of integration from z to r(z), where r(z) = sign(z −

ẑ)

[
2
(
lz

(
θ̃z(z)

)
− l̃z

(
z̃, θ̃z(z̃)

)]1/2

, the Jacobian is−l̃′p(z)/r(z) with l̃′p(z) =

∂l̃z

(
θ̃z(z)

)
/∂z, i.e. the �rst derivative of z's pro�le function, l̃p, based on

l̃z. This gives

∫ z0

−∞
f(z|y)dz ≈ 1√

2π

∫ r(z0)

−∞
exp

{
−1

2
r2

}
r(z)

l̃′p(z)

c|J̃z
(
z̃, θ̃z(z̃)

)
|1/2

|Jz
(
θ̃z(z)

)
|1/2

dr (3.3)

The second step is another change of variable from r(z) to

r∗(z) = r(z) +
1

r(z)
log

q∗(z)

r(z)

with

q∗(z) =
l̃′z(z)|Jz

(
θ̃z(z)

)
|1/2

k|J̃z
(
z̃, θ̃z(z̃)

)
|1/2

.

The Jacobian of the transformation contributes only to the error term of

(3.3), so

F (Z = z0|Y = y) ≈ 1√
2π

∫ r∗(z0)

−∞
exp

{
−1

2
t2
}
dt = Φ (r∗(z0)) , (3.4)

where Φ(·) is the standard normal distribution function.

An alternative approximation of predictive cumulative distribution func-
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tion uses formula (2.16) for approximating the predictive density function,

and it represents the integral

F (Z = z0|Y = y) ≈
∫ z0

−∞

exp
{
l̃z

(
θ̃z(z)

)
− l̃z

(
z̃, θ̃z(ẑ)

)}
√

2π

|J̃z
(
z̃, θ̃z(ẑ)

)
|1/2

|Jz
(
θ̃z(z)

)
|1/2

dz .

Following the same line of reasoning, we change the variable of integration

from z to the same r(z) as above. It is then easily seen that

∫ z0

−∞
f(z|y)dz ≈ 1√

2π

∫ r(z0)

−∞
exp

{
−1

2
r2

}
r(z)

l̃′p(z)

|J̃z
(
z̃, θ̃z(z̃)

)
|1/2

|Jz
(
θ̃z(z)

)
|1/2

dr . (3.5)

Another change of variable is needed from r(z) to r∗∗(z), where

r∗∗(z) = r(z) +
1

r(z)
log

q∗∗(z)

r(z)

with

q∗∗(z) =
l̃′p(z)|Jz

(
θ̃z(z)

)
|1/2

|J̃z
(
z̃, θ̃z(z̃)

)
|1/2

.

As in the �rst development, the Jacobian of the transformation contributes

only to the error term of (3.5) and this implies that

F (Z = z0|Y = y) ≈ 1√
2π

∫ r∗∗(z0)

−∞
exp

{
−1

2
t2
}
dt = Φ (r∗∗(z0)) . (3.6)

Note that expressions (3.4) and (3.6) are computationally convenient since

they rely entirely on simple posterior quantities. The di�erence between the

two methods consists in q∗(z) and q∗∗(z), where kq∗(z) = q∗∗(z). These

quantities have part of r∗(z) and r∗∗(z) in the logarithm function. We can

deduse that

r∗(z) = r∗∗(z) +
log(k)

r(z)
.

We know that r(z) is a continuous monoton increasing function, with r(z̃) =
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0. If k 6= 1 then the distance between r∗(z) and r∗∗(z) goes to in�nity as

|z − z̃| → 0, and functions converge as |z − z̃| → ∞. The convergence is

faster the closer the value of k is to 1. In the case k = 1 the functions r∗(z)

and r∗∗(z) are equal.

As we see, the additional condition to implement HOPA method, as for

predictive density approximation (2.16), is the existence of the mode for

l̃z(z, θ) as an inner point of the space Z × Θ. With the notation for θ−i =

(θ1, . . . , θi−1, θi+1, . . . , θd) and its space Θ−i, in the case the dimension of

vector parameter d is greater than 1, we can say that the additional condition

holds if: 1. the pro�le of θi from l̃z, for i = 1, . . . , d, is a smooth unimodal

function, where the mode is an inner point of Θi, for every �nite and �xed

(z, θ−i) ∈ Z × Θ−i, and 2. the pro�le of z is a smooth unimodal function,

where the mode is an inner point of Z, for every �nite and �xed θ ∈ Θ and

given y.

The �rst condition is formalized by the existence of a solution for the

equation ∂lz/∂θi + ∂ρ(θ)/∂θi = 0. If we have a regular model (see, for

example Azzalini (2001, pag. 76-77) or Pace and Salvan (1997, pag. 89)) and

the ρ(θ) is a superior bounded function, then the equation has a solution, for

i = 1, . . . , d. If the prior distribution has not the required feature, then the

solution exists under mild assumptions that depend on the sample y and its

size n, because the weight of the information included in the log-likelihood

function, lz, relies on these quantities.

The second point is formalized by the existence of a solution for the

equation ∂l̃z/∂z = 0 that coincides with ∂ log f(z|y; θ)/∂z = 0. Note that if

the density f(z|y; θ) is a unimodal smooth function for every �nite and �xed

(y, θ) ∈ Y × Θ, where the mode is an inner point of Z, then the condition

holds.

As result we can say that if we have a regular model for (y, z) and the

prior distribution of the parameter π(θ) is bounded, then the additional

condition holds and we can implement the HOPA method. In the case π(θ)

is unbounded, we have to consider the size of the sample y for every speci�c

problem to check for a unique mode for l̃z, which is an inner point of Z×Θ, or

to get another reparametrization, where the new parameters have a bounded
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prior distribution.

There are a lot of situations when Z|Y = y is a random variable with

limited support and the mode, for a speci�c combination of y and θ, is the

end point of this support. For example, if we have a gamma random variable

with the shape parameter lower or equal than 1, then the mode of such

distribution equal zero, that is the end point of gamma's support. In such

problems we can transform the predictive random variable using a monotonic

function. In the case of gamma distribution it is convinient to transform the

random variable as V = log(Z). We observe that the new random variable V

has a smooth unimodal probability distribution function and we can apply

the HOPA method to predictive random variable V given Y = y. After

implementation of HOPA method or HOPA simulation for V |Y = y, we can

obtain all the quantities we need for Z|Y = y. For instance, to calculate the

quantile α for the original predictive random variable we use this formula

qz,α = exp
{
F−1
V (α)

}
.

And the cumulative distribution function of Z given Y = y can be determined

as

FZ = FV (log z0) .

Clearly, the simulated sample of V |Y = y could be transformed into a sim-

ulated sample for Z|Y = y, using the exponential function, i.e. the inverse

transformation.

3.4 Practical approach to HOPA method and

HOPA simulation scheme

From a practical point of view in order to construct an approximation of

the predictive cumulative distribution function for Z|Y = y or its inverse,

we should be able to calculate r∗(z) and r∗∗(z) for every z. These functions

are monotonical increasing in z and, typically, have a numerical disconti-

nuity at z̃. This problem is not a concern for practical purposes and there
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are techniques to avoid it. We will use numerical spline interpolation (see

Brazzale et al. (2007, Section 9.3)). This technique may exclude values of z

in a ε-neighborhood of z̃, for some small ε. As the algorithms for r∗(z) and

r∗∗(z) are equal, we will show only one of them.

Firstly, we have to �x a grid of equally spaced values z1 < z2 < . . . < zN ,

for a moderate value of N (e.g. 50-100). The extremes of the grid can be

found by solving numerically the equations r∗(z1) = −4 and r∗(zN) = 4

because Φ(−4) ≈ 0 and Φ(4) ≈ 1. Then exclude zi ∈ [z̃ ± εjp(z̃)−1/2], where

jp = −∂2l̃z(z, θ̃z(z))/∂z∂z, i.e. the �rst order derivative of the pro�le of

z, and evaluate r∗(z) over the grid of remaining z values. Finally, a spline

interpolator to (zi, r
∗(zi)), for i = 1, . . . , N and zi /∈ [z̃±εjp(z̃)−1/2], is applied.

The result from the interpolation, function r∗s(z), is an approximation of

r∗(z) and it will permit us to obtain an approximation of the cumulative

distribution function for Z = z0 given Y = y by the formula

F (Z = z0|Y = y) ≈ Φ (r∗s(z0)) . (3.7)

The inverse spline, denoted by r∗s(z)−1, is the spline interpolator applied

to (r∗(zi), zi), for j = 1, . . . , N and zi /∈ [z̃ ± εjp(z̃)−1/2], and it will allow us

to get quantiles, in particular the median. If we are concerned with quantile

of level α0, then it can be approximated by the following formula

qα0 ≈ r∗s
(
Φ−1(α0)

)−1
, (3.8)

with all the components de�ned above.

The given expressions provide accurate approximation of the predictive

distribution function and related quantiles, but it is not possible to use them

to obtain certain posterior summaries, such as posterior moments or highest

posterior density (HPD) regions. These summaries, as any other one, can

be obtained from a simulated sample of the predictive random variable. In

the following we will introduce the HOPA simulation scheme, which has an

inverse simulation approach, similar to what done in Ruli et al. (2013) for

marginal posterior distribution.
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Firstly, we should generate x = (x1, . . . , xT ) from standard normal dis-

tribution, where T is the desired numerosity, and �nd the extremes of the

grid from the equations r∗(z1) = x(1) and r
∗(zN) = x(T ). The spline interpo-

lator of (r∗(zi), zi), for i = 1, . . . , N and zi /∈ [z̃ ± εjp(z̃)−1/2], will permit us

to obtain the predicted value of every zt, corresponding to the value of xt.

Independently of the number of simulations T , the method requires only a

limited number N of function evaluations.

Also, we note that the simulation method is based on the transformation

of the normal sample x = (x1, . . . , xT ) into z = (z1, . . . , zT ) by the spline

interpolator. Since x is drawn independently, z will be a random sample as

well. The HOPA simulation scheme, as happens in every simulation method,

is subject to Monte Carlo error of order Op(T
1/2), where T is the number of

Monte Carlo trials. However, the HOPA simulation method will permit to

control the Monte Carlo error by taking T large enough, given the indepen-

dence of the simulated random variates.



36 HIGH-ORDER PREDICTIVE AREA APPROXIMATION



Chapter 4

EXAMPLES

4.1 Introduction

The aim of this chapter is to illustrate in some examples the performance

of the HOPA method based on both r∗(z) and r∗∗(z), which for convenience

we will refer to as HOPA1 and HOPA2. Also we will show the performance

of the approximations of predictive distribution function, which were used in

the development of the two mentioned HOPA methods, i.e. formulas (2.15)

and (2.16), and which for convenience will be noted f̃ ∗(z|y) and f̃ ∗∗(z|y). In

every example we will use a simulated sample of sizes ranging from 10 to 30.

Where it will be possible, we will write the exact form for predictive

density or/and predictive cumulative distribution functions, which will be

used for graphical comparisons with approximations of predictive density

and HOPA approximation of predictive cumulative distribution, respectively.

Moreover, we will also compare numerical summaries for the most important

quantities, such as quantiles of 5% and 95%, the median, the mean, the

variance and 90% HPD interval. In the examples, where it is not possible to

get the closed form of these quantities, the comparison will be done using a

MCMC simulated sample from the predictive random variable.

In Section 1.4.2 it was mentioned that the predictive probability distribu-

tion function can be represented as a mixture distribution and the simulation

from such representation could be performed in two stages: generation of a
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sample from the posterior of θ and generation of Z|Y = y; θ from the selected

conditional distributions.

Wishing to simulate a sample from posterior distribution of the param-

eters, we will use the trustworthy MCMC methods most widely implemented

in practice, the random walk Metropolis-Hastings algorithm and Gibbs within

Metropolis algorithm (see Chapter 2.3). The proposal of every parameter is

a uniform random variable of the form Unif(−δ, δ), where δ > 0 is suitably

scaled in order to have an acceptance rate of 30-40%. To rise the quality of

MCMC sample we will set the number of iterations to be 105, from which

103 initial observations will be discarded, and will check the convergence of

the chain. For every element of the remaining sample values from the �rst

step, θt, one observation for Z, given Y = y and θt, will be simulated. The

�nal step gives us a sample from predictive random variable Z|Y = y.

The required derivatives and maximizations in HOPA method will be

obtained in closed form, wherever possible, or will be computed numerically.

There are a lot of routines which perform accurate numerical derivatives. For

our purpose the numDeriv R package will be used (see Gilbert and Varadhan

(2012)). The R function, optim(), will be used to �nd the maximums of the

log-prior functions. The spline interpolation will be applied to a grid of 70

values evenly spaced with 0.1 < δ < 0.3, where δ depends on the level of

irregularity of r∗(z) and r∗∗(z) functions arround the mode z̃. All these

numerical approximations are a source of error that is probably negligible

but is however di�cult to quantify.

4.2 Normal model

4.2.1 Normal model with unknown mean

Suppose that y = (y1, . . . , yn) is an i.i.d. sample from Y ∼ N(µ, σ2
0),

where σ0 > 0 is known and µ is an unknown parameter. Let the prior distri-

bution of the parameter µ be N(a, b2), where a and b are hyperparameters.
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Then the likelihood function is

L(µ) =
1√

2πσ2
0

exp

{
− 1

2σ2
0

n∑
i=1

(yi − µ)2

}
.

Multiplying the prior density of the parameter µ,

π(µ) =
1√

2πb2
exp

{
− 1

2b2
(µ− a)2

}
,

with the likelihood function, we can obtain the posterior density of µ, which

is

π(µ|y) ∝ exp

{
− 1

2B2
(µ− A)2

}
,

where A = (b2
∑n

i=1 yi + aσ2
0)/(nb2 + σ2

0) and B =
√
σ2b2/(nb2 + σ2

0).

Hence we can see that the posterior density function of the parameter µ

is N(A,B2). Assume a new observation Z, which is independent from Y .

The predictive density function of z given y is

f(z|y) =

∫ +∞

0

f(z|µ)f(µ|y)dµ.

Using the normality of posterior distribution of mean parameter, we can show

that Z|Y = y ∼ N(A,B2 + σ2
0) and its density is

f(z|y) =
1√

2π(B2 + σ2
0)

exp

{
− (z − A)2

2(B2 + σ2
0)

}
or

f(z|y) =
1√

(B2 + σ2
0)
φ

(
z − A√
B2 + σ2

0

)
,

where φ(·) is the standard normal density function. Similarly we can write

the cumulative distribution function

F (z|y) = Φ

(
z − A√
B2 + σ2

0

)
,

where Φ(·) is the standard normal cumulative distribution function.



40 EXAMPLES

Laplace's approximation of predictive probability distribution func-

tion

With the same notation for l̃(µ) and l̃z(µ), of Section 2.5, we have

l̃(µ) = −n
2

log(2πσ2
0)− 1

2σ2
0

(
n∑
i=1

y2
i−2µnȳ+nµ2)−1

2
log(2πb2)− 1

2b2
(µ2−2aµ+a2)

and

l̃z(µ) = −n+ 1

2
log(2πσ2

0)− 1

2σ2
0

(
n∑
i=1

y2
i + z2 − 2µ(nȳ + z) + (n+ 1)µ2

)
−

−1

2
log(2πb2)− 1

2b2
(µ2 − 2aµ+ a2).

From �rst order condition of l̃(µ) and l̃z(µ) we obtain

µ̃ =
nȳb2 + aσ2

0

nb2 + σ2
0

and

µ̃z(z) =
(nȳ + z)b2 + aσ2

0

(n+ 1)b2 + σ2
0

.

The derivatives of second order for l̃(µ) and l̃z(µ) with changed sign are

J(µ) =
n

σ2
0

+
1

b2

and

Jz(µ) =
n+ 1

σ2
0

+
1

b2
.

All we need to implement the Laplace's approximation for predictive density

for z given y is to put the results into the formula

f̃ ∗(z|y) = exp
{
l̃z (µ̃z(z))− l̃(µ̃)

} |J(µ̃)|1/2

|Jz (µ̃z(z))|1/2
. (4.1)
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HOPA method for approximation of predictive cumulative distri-

bution function

To implement HOPA method we have to �nd z̃, an inner point of Z's

support, such that (z̃, µ̃z(z̃)) is the mode for l̃z(z, µ). First order condition is{
∂l̃z/∂µ = − 1

σ2
0
(−(nȳ + z) + (n+ 1)µ)− 1

b2
(µ− a) = 0

∂l̃z/∂z = − 1
σ2
0
(z − µ) = 0

and the solution of this system is{
z̃ =

b2
∑n

i=1 yi+aσ
2
0

nb2+σ2
0

= A

µ̃z(z̃) = z̃ = A

Note that the conditions to implement HOPA method hold as A is �nite,

which holds for �nite
∑n

i=1 yi. Also approximation f̃
∗∗ can be implemented.

Knowing the function µ̃z(z) we can write the pro�le function of z from l̃z

that is

l̃p(z) = − 1

2σ2
0

[
z2 − 2µ̃z(z)(nȳ + z) + (n+ 1)µ̃z(z)2

]
− 1

2b2

[
µ̃z(z)2 − 2aµ̃z(z)

]
+ ,

which has the �rst derivative equal to

l̃′p(z) = − 1

σ2
0

[
z − µ̃z(z)− (nȳ + z)µ̃′z(z) + (n+ 1)µ̃

′

z(z)µ̃′(z)
]
− 1

b2
[µ̃z(z)µ̃′z(z)− aµ̃′z(z)] ,

where µ̃′z(z) = b2/ ((n+ 1)b2 + σ2
0). The second derivative of l̃z(z, µ) with

respect to (z, µ) with changed sign, J̃z(z, µ), is the symmetric matrix(
1
σ2
0

− 1
σ2
0

− 1
σ2
0

n+1
σ2
0

+ 1
b2

)

Then we can de�ne the quantities to implement the HOPA method (see

Section 3.3).



42 EXAMPLES

Numerical illustration

The dataset is an i.i.d sample of size 10 simulated from a normal dis-

tribution, with mean equal 1 and standard deviation equal 1. We set the

hyperparameters of the prior distribution to a = 0 and b = 1. Table 4.1

contains the main summaries of predictive random variable Z|Y = y cal-

culated from exact distribution, and approximated by HOPA method and

HOPA simulation based on r∗(z) and r∗∗(z). The plots in Figure 4.1 show

the intermediate and �nal results of the implementation of HOPA methods

and the approximations of predictive distribution function.

Table 4.1: Predictive summaries of normal model using di�erent methods.

α0.05 median α0.95 mean variance HPD (90%)
Exact -1.28 0.44 2.16 0.44 1.09 [ -1.28 , 2.16 ]
HOPA1 -1.28 0.44 2.16 - - -
HOPA1 sim.(106) -1.28 0.44 2.16 0.44 1.09 [ -1.28 , 2.16 ]
HOPA2 -1.28 0.44 2.16 - - -
HOPA2 sim.(106) -1.28 0.44 2.16 0.44 1.09 [ -1.27 , 2.16 ]

4.2.2 Normal model with unknown standard deviation

Consider the same setting as in the previous example, where y = (y1, . . . , yn)

is an independent and identically normally distributed sample, but now from

Yi ∼ N(µ0, σ
2), where µ0 is known and σ2 an unknown parameter. Let the

prior distribution of the parameter σ2 be Inv−Gamma(a, b), where a is the

shape hyperparameter and b is the rate hyperparameter. We can write the

likelihood function for σ2 as

L(σ2) =
1√

2πσ2
exp

{
− 1

2σ2

n∑
i=1

(yi − µ0)2

}
.

Using the prior density of the parameter σ2,

π(σ2) =
ba

Γ(a)
(σ2)−a−1e−b/σ

2
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Figure 4.1: Normal model with unknown mean. Top-left: The predictive den-
sity functions: exact ( black-solid line), approximation f̃ ∗ (green-dashed line)
and approximation f̃ ∗∗ (red-dotted line). Top-right: r∗(z) (green-solid line)
and r∗∗(z) (red-dashed line) . Bottom-left : Spline approximations of r∗(z)
(green-solid line) and r∗∗(z) (red-dashed line) with ε∗ = ε∗∗ = 0.1. Bottom-
right: The predictive cumulative distribution functions: exact (black-solid
line), HOPA based on r∗(z) (green-dashed line) and HOPA based on r∗∗(z)
(red-dotted line).
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and the likelihood function above, we obtain that the posterior density of σ2

is

π(σ2|y) ∝ (σ2)−(n
2

+a)−1 exp

{
−b+

∑n
i=1(yi − µ0)2/2

σ2

}
.

We note that the posterior density function of the parameter σ2 is Inv −
Gamma(n/2 + a, b+

∑n
i=1(yi − µ0)2/2). Assume a new observation Z inde-

pendent from Y . Solving the integral

f(z|y) =

∫ +∞

0

f(z|σ2)f(σ2|y)dσ2 .

we can show that

f(z|y) =
Γ(n+1

2
+ a)

√
2πΓ(n

2
+ a)

(S/2 + b)n/2+a(
S+(z−µ0)2

2
+ b
)n+1

2
+a
,

where S =
∑n

i=1(yi−µ0)2. Taking in exam only the factor which contains z,

the predictive density has the following feature

f(z|y) ∝

1 +

(z−µ0)2

2b+S
n+2a

n+ 2a


(n+2a)+1

2

.

So we can say that (Z − µ0)/
√

2b+S
n+2a

has t-distribution with (n+ 2a) degrees

of freedom and the cumulative distribution function of Z given Y = y is

F (z|y) = FT(n+2a)

 z − µ0√
2b+S
n+2a

 ,

where FT(n+2a)
(·) is the cumulative distribution function of t-distribution with

(n + 2a) degrees of freedom. The random variable Z|Y = y is a general-

ized Student's t-distribution with location parameter µ0 and scale parameter√
2b+S
n+2a

.
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Laplace's approximation of predictive probability distribution func-

tion

With the same notation for l̃(σ2) and l̃z(σ
2) as in previous example, we

can write these quantities as follows

l̃(σ2) = −n
2

log(2πσ2)− S

2σ2
− (a+ 1) log(σ2)− b

σ2
− log (Γ(a)) + a log(b)

and

l̃z(σ
2) = −n+ 1

2
log(2πσ2)−S + (z − µ0)2

2σ2
−(a+1) log(σ2)− b

σ2
−log (Γ(a))+a log(b).

The modes of functions above can be �nded by the �rst order conditions of

l̃(σ2) and l̃z(σ
2) that give

σ̃2 =
S + 2b

n+ 2a+ 2

and

σ̃2
z(z) =

S + (z − µ0)2 + 2b

n+ 2a+ 3
.

The second derivatives of l̃(σ2) and l̃z(σ
2) with respect to σ2 with changed

sign are

J(σ2) =
n

2(σ2)2
− S

(σ2)3
+
a+ 1

(σ2)2
− 2b

(σ2)3

and

Jz(σ
2) =

n+ 1

2(σ2)2
− S + (z − µ0)2

(σ2)3
+
a+ 1

(σ2)2
− 2b

(σ2)3
.

The formulas above can be plugged in Laplace's approximation of predictive

density

f̃ ∗(z|y) = exp
{
l̃z
(
σ̃2
z(z)

)
− l̃(σ̃2)

} |J(σ̃2)|1/2

|Jz (σ̃2
z(z))|1/2

. (4.2)
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HOPA method for approximation of predictive cumulative distri-

bution function

We have to �nd if the additional condition holds, solving the system{
∂l̃z/∂σ

2 = −n+1
2σ2 + S+(z−µ0)2

2(σ2)2
− a+1

σ2 + b
(σ2)2

= 0

∂l̃z/∂z = − z−µ0
(σ2)2

= 0

The solution of this system for z is z̃ = µ0. We can implement both HOPA

methods and approximation f̃ ∗∗ for predictive density. The pro�le function

of z from l̃z is

l̃p(z) = l̃z
(
σ̃2
z(z)

)
,

which has the �rst derivative equal with

l̃′p(z) =

[
− n+ 1

2σ̃2
z(z)

− a+ 1

σ̃2
z(z)

+
b

(σ̃2
z(z))2

]
σ̃2′

z (z)+

+
2(z − µ0)σ̃2

z(z)− (S + (z − µ0)2)σ̃2′
z (z)

2σ̃2
z(z)

,

where σ̃2′
z (z) is the �rst derivative of σ̃2

z(z) with respect to z and it is equal

with

σ̃2′

z (z) =
z − µ0

n+1
2

+ a+ 1
.

The second derivative of l̃z(z, σ
2) with respect to (z, σ2) with changed sign,

J̃z(z, σ
2), is the symmetric matrix 2× 2(

1
σ2 − z−µ0

(σ2)2

− z−µ0
(σ2)2

Jz(σ
2)

)

Now we can calculate the needed quantities to implement HOPA methods

based on r∗(z) and r∗∗(z) such as r(z), q(z) and q(z), as given in Section 3.3.
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Numerical illustration

The dataset is an i.i.d sample of size 20 simulated from a normal distri-

bution, with mean equal 0 and standard deviation equal 1. Setting the prior

distribution of σ2 to be Inv−Gamma(1, 1), we obtain the summaries in the

Table 4.2. The plots in Figure 4.2 show the intermediate and �nal results

of the implementation of approximation of probability distribution function

and HOPA methods.

Table 4.2: Predictive summaries of normal model with unknown standard
deviation using di�erent methods.

α0.05 median α0.95 mean variance HPD (90%)
Exact -1.63 0 1.63 0 0.9 [ -1.63 , 1.63 ]
HOPA1 -1.61 0 1.61 - - -
HOPA1 sim.(106) -1.61 0 1.61 0 0.96 [ -1.6 , 1.61 ]
HOPA2 -1.61 0 1.61 - - -
HOPA2 sim.(106) -1.61 0 1.61 0 0.97 [ -1.61 , 1.61 ]

4.2.3 Normal model with unknown mean and variance

Let y = (y1, . . . , yn) be an independent and identically distributed sample

from Y ∼ N(µ, σ2), where µ and σ2 are unknown parameters. Let the prior

distribution of the vector of parameters (µ, σ2) be Normal-inverse-Gamma,

denoted as (µ, σ2) ∼ N − Γ−1(α, λ, a, b), where if σ2 is Inv − Gamma(a, b)

then µ|σ2 ∼ N(α, σ2/λ). The likelihood function for observables Y is

L(µ, σ2) =

(
1√

2πσ2

)n
exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

}
.

Multiplying the prior density of the parameters (µ, σ2),

π(µ, σ2) =

√
λ√

2πσ2

ba

Γ(a)
(σ2)−a−1exp

{
−2b+ λ(µ− α)2

2σ2

}
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Figure 4.2: Normal model with unknown standard deviation. Top-left:

The predictive density functions: exact ( black-solid line), approximation
f̃ ∗ (green-dashed line) and approximation f̃ ∗∗ (red-dotted line). Top-right:

r∗(z) (green-solid line) and r∗∗(z) (red-dashed line) . Bottom-left : Spline
approximations of r∗(z) (green-solid line) and r∗∗(z) (red-dashed line) with
ε∗ = ε∗∗ = 0.1. Bottom-right: The predictive cumulative distribution func-
tions: exact (black-solid line), HOPA based on r∗(z) (green-dashed line) and
HOPA based on r∗∗(z) (red-dotted line).
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with the likelihood function, we can obtain the posterior density of the vector

(µ, σ2), which is

π(µ, σ2|y) ∝ (σ2)
−a−n/2−1

√
σ2

exp

−2
(
b+ ns2

2
+ nλ(ȳ−α)2

2(n+λ)

)
+ (n+ λ)(µ− nȳ+λα

n+λ
)2

2σ2

 ,

where s2 is the distort sample variance of our observables y. Can be noted

that the posterior density function of the parameters (µ, σ2) is again Normal-

inverse-Gamma with updated parameters

α∗ =
nȳ + αλ

n+ λ
;λ∗ = n+ λ; a∗ = a+ n/2; b∗ = b+

ns2

2
+
nλ(ȳ − α)2

2(n+ λ)
.

Assume a new observation Z that is independent from Y . The predictive

density function of z given y can be calculated from the next integral

f(z|y) =

∫ +∞

0

∫ +∞

−∞
f(z|µ, σ2)f(µ, σ2|y)dµdσ2 ,

and can be written in closed form as following

f(z|y) =
b∗a
∗

√
2π

Γ(a∗ + 1
2
)

Γ(a∗)

√
λ∗

1 + λ∗

(
b+

λ∗

1 + λ∗
(z − α∗)2

2

)− 2a∗+1
2

.

Note that the predictive density has the next feature

f(z|y) ∝

(
1 +

(z − α∗)2

b∗(1+λ∗)
λ∗a∗

1

2a∗

)− 2a∗+1
2

.

We can deduce that the transformation (Z − α∗)/
√

b∗(1+λ∗)
λ∗a∗

is t-distributed

random variable with 2a∗ degrees of freedom and the cumulative distribution

function of Z given Y = y is

F (z|y) = FT2a∗

 (z − α∗)2√
b∗(1+λ∗)
λ∗a∗

 ,
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where FT2a∗ (·) is the cumulative distribution function of t distribution with

2a∗ degrees of freedom. The result is that the random variable Z|Y = y is a

generalized Student's t-distribution with the location parameter α∗ and the

scale parameter
√

b∗(1+λ∗)
λ∗a∗

.

Laplace's approximation of predictive probability distribution func-

tion

With the same notation for l̃(µ, σ2) and l̃z(µ, σ
2) as in previous examples,

we write

l̃(µ, σ2) = −n
2

log(2πσ2)−
∑n

i=1(yi − µ)2

2σ2
− log(2πσ2)

2
+

log(λ)

2
−

−(a+ 1) log(σ2)− 2b+ λ(µ− α)2

2σ2
− log (Γ(a)) + a log(b)

and

l̃z(µ, σ
2) = −n+ 1

2
log(2πσ2)−

∑n
i=1(yi − µ)2 + (z − µ)2

2σ2
− log(2πσ2)

2
+

+
log(λ)

2
− (a+ 1) log(σ2)− 2b+ λ(µ− α)2

2σ2
− log (Γ(a)) + a log(b).

The �rst order condition of l̃(µ, σ2) is a system of two equation, from which

we �nd the elements of the mode{
µ̃ = nȳ+λα

n+λ

σ̃2 =
∑n

i=1(yi−µ̃)2+2b+λ(µ̃−α)2

n+2a+3

From other hand, the �rst order condition of l̃z(µ, σ
2) gives the solutions{

µ̃z(z) = nȳ+z+λα
n+1+λ

σ̃2
z(z) =

∑n
i=1(yi−µ̃z(z))2+(z−µ̃z(z))2+2b+λ(µ̃z(z)−α)2

n+2a+4
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The second derivative of l̃(µ, σ2) with respect to (µ, σ2) with changed sign,

J(µ, σ2) = ∂2l̃(µ, σ2)/∂(µ, σ2)∂(µ, σ2)T , is the symmetric matrix(
n+λ
σ2

∑n
i=1(yi−µ)−λ(µ−α)

(σ2)2

− −n+2a+3
2(σ2)2

+
∑n

i=1(yi−µ)2+2b+λ(µ−α)2

(σ2)3

)

The second derivative of l̃z(µ, σ
2) with changed sign, Jz(µ, σ

2) = ∂2l̃z(µ, σ
2)/∂(µ, σ2)∂(µ, σ2)T ,

is the symmetric matrix(
n+1+λ
σ2

∑n
i=1(yi−µ)+(z−µ)−λ(µ−α)

(σ2)2

− −n+2a+4
2(σ2)2

+
∑n

i=1(yi−µ)2+(z−µ)2+2b+λ(µ−α)2

(σ2)3

)

We have all we need to implement the Laplace's approximation for predictive

density, where for the problem under consideration is

f̃ ∗(z|y) = exp
{
l̃z
(
µ̃z(z), σ̃2

z(z)
)
− l̃(µ̃, σ̃2)

} |J(µ̃, σ̃2)|1/2

|Jz (µ̃z(z), σ̃2
z(z))|1/2

.

HOPA method for approximation of predictive cumulative distri-

bution function

The system for the �rst order condition of l̃z(z, µ, σ
2) is

∂l̃z/∂z = − z−µ
σ2 = 0

∂l̃z/∂µ =
∑n

i=1(yi−µ)+(z−µ)

σ2 − λ(µ−α
σ2 = 0

∂l̃z/∂σ
2 = −n+1

2σ2 +
∑n

i=1(yi−µ)+(z−µ)2

2(σ2)2
− a+1

σ2 + 2b+λ(µ−α)2

2(σ2)2
= 0

and from which we have to �nd z̃, an inner point of Z's support, such that

(z̃, µ̃z(z̃), σ̃2
z(z̃)) is the mode for our function. The solution of the system for

z is

z̃ = µ̃ =
nȳ + λα

n+ λ
.

Note that z̃ ∈ Z and the additional condition to implement HOPA method

holds. Also we can calculate the approximation of the predictive density
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function by the formula (2.16). We can get the pro�le function of z from l̃z

l̃p(z) = l̃z
(
µ̃z(z), σ̃2

z(z)
)

which has the �rst derivative equal with

l̃′p(z) = −n+ 2a+ 4

2σ̃2
z(z)

σ̃2′

z (z)−

−
2
[
−
∑n

i=1 (yi − µ̃z(z)) µ̃
′
z(z) + (z − µ̃z(z))

(
1− µ̃′z(z)

)
+ λ (µ̃z(z)− α) µ̃

′
z(z)

]
σ̃2
z(z)

2 (σ̃2
z(z))2 −

−
[∑n

i=1 (yi − µ̃z(z))2 + (z − µ̃z(z))2 + 2b+ λ (µ̃z(z)− α)2] σ̃2′
z (z)

2 (σ̃2
z(z))2 ,

where σ̃2′
z (z) and µ̃

′
z(z) are the �rst derivatives of σ̃2

z(z) and µ̃z(z) with respect

to z and they are equal with

µ̃
′

z(z) =
1

n+ 1 + λ

σ̃2′

z (z) = 2
−
∑n

i=1 (yi − µ̃z(z)) µ̃
′
z(z) + (z − µ̃z(z))

(
1− µ̃′z(z)

)
+ λ(µ̃z(z)− α)µ̃

′
z(z)

n+ 2a+ 4
.

The second derivative of l̃z(µ, σ
2) with respect to (z, µ, σ2) with changed sign,

J̃z(z, µ, σ
2), is the symmetric matrix 3× 3

1
σ2 − 1

σ2 − z−µ
(σ2)2

− n+λ+1
σ2

∑n
i=1(yi−µ)+(z−µ)−λ(µ−α)

(σ2)2

− − −n+2a+4
2(σ2)2

+
∑n

i=1(yi−µ)2+(z−µ)2+2b+λ(µ−α)2

(σ2)3


With the quantities above we can implement the HOPA method (see

Section 3.3).

Numerical illustration

We simulate an i.i.d sample of size 30 from a normal distribution with

mean equal 0 and standard deviation equal 1. We set the joint prior distri-

bution of the mean and variance N − Γ−1(1, 1, 1, 1). Table 4.3 provides the
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main summaries of predictive random variable Z|Y = y calculated from ex-

act distribution and approximated by HOPA method and HOPA simulation

based on r∗(z) and r∗∗(z). The Figure 4.3 contains the plots to compari-

son exact and approximation results after implementation of Laplace's and

HOPA methods.

Table 4.3: Predictive summaries of normal model with unknown mean and
variance using di�erent methods.

α0.05 median α0.95 mean variance HPD (90%)
Exact -1.55 -0.01 1.54 -0.01 0.83 [ -1.55 , 1.54 ]
HOPA1 -1.55 -0.01 1.53 - - -
HOPA1 sim.(106) -1.54 0 1.54 0 0.88 [ -1.55 , 1.53 ]
HOPA2 -1.55 -0.01 1.53 - - -
HOPA2 sim.(106) -1.54 0 1.54 0 0.88 [ -1.54 , 1.54 ]

4.3 Gamma model

4.3.1 Gamma model with unknown rate parameter

Suppose that y = (y1, . . . , yn) is an i.i.d. sample from Y ∼ Gamma(α, λ),

where α is known shape parameter and λ is an unknown rate parameter. Let

the prior distribution of the parameter λ be Gamma(a, b), where a is the

shape hyperparameter and b is the rate hyperparameter. The likelihood

function based on sample y is

L(λ) =
1

Γ(α)n
λnα

(∏
yi

)α−1

e−λ
∑n

i=1 yi .

Using the prior density of the parameter λ,

π(λ) =
1

Γ(a)
baλa−1e−bλ ,

and the likelihood function, we can obtain the posterior density of λ, which

is

π(λ|y) ∝ λnα+a−1e−(b+nȳ)λ.
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Figure 4.3: Normal model with unknown mean and variance. Top-left:

The predictive density functions: exact ( black-solid line), approximation
f̃ ∗ (green-dashed line) and approximation f̃ ∗∗ (red-dotted line). Top-right:

r∗(z) (green-solid line) and r∗∗(z) (red-dashed line) . Bottom-left : Spline
approximations of r∗(z) (green-solid line) and r∗∗(z) (red-dashed line) with
ε∗ = ε∗∗ = 0.1. Bottom-right: The predictive cumulative distribution func-
tions: exact (black-solid line), HOPA based on r∗(z) (green-dashed line) and
HOPA based on r∗∗(z) (red-dotted line).
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Observe that the posterior density function of the parameter λ isGamma(nα+

a, b+nȳ). Assume a new observation Z independent from Y . We can deduce

the exact form for predictive distribution function Z|Y = y as follows

f(z|y) =
zα−1

(b+ nȳ + z)(n+1)α+a

(b+ nȳ)nα+aΓ((n+ 1)α + a)

Γ(α)Γ(nα + a)
.

Only for speci�c α we can obtain the cumulative distribution function of z

given y in closed form. One of these cases is α = 2. Under this assumption

the density function becomes

f(z|y) =
z

(b+ nȳ + z)2n+a+2

(b+ nȳ)2n+aΓ(2n+ a+ 2)

Γ(2n+ a)
.

=
z

(b+ nȳ + z)2n+a+2
(b+ nȳ)2n+a(2n+ a+ 1)(2n+ a)

and the cumulative distribution function of z given y is

F (z|y) = 1−c
[

z

(2n+ a+ 1)(b+ nȳ + z)2n+a+1
+

1

(2n+ a+ 1)(2n+ a)(b+ nȳ + z)2n+a

]
,

where c = (b+ nȳ)2n+a(2n+ a+ 1)(2n+ a).

Laplace's approximation of predictive probability distribution func-

tion

As in Section (2.5) we de�ne l̃(λ) and l̃z(λ) and we can write

l̃(λ) = (αn+a−1) log(λ)−(b+nȳ)λ+(α−1)
n∑
i=1

log(yi)−n log (Γ(α))+a log(b)−log (Γ(a))

and

l̃z(λ) = (α(n+ 1) + a− 1) log(λ)−(b+nȳ+z)λ+(α−1)

(
log(z) +

n∑
i=1

log(yi)

)
−

−(n+ 1) log (Γ(α)) + a log(b)− log (Γ(a)) .
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The derivatives of �rst order for l̃(λ) and l̃z(λ) are equal zero for

λ̃ =
αn+ a− 1

b+ nȳ

for �rst function, and

λ̃z(z) =
α(n+ 1) + a− 1

b+ nȳ + z

for second function. The derivatives of second order for l̃(λ) and l̃z(λ) with

changed sign are

J(λ) =
αn+ a− 1

λ2

and

Jz(λ) =
α(n+ 1) + a− 1

λ2
.

We can to implement the Laplace's approximation for predictive density for

z given y (2.15), which in our speci�c case becomes

f̃ ∗(z|y) = exp
{
l̃z

(
λ̃z(z)

)
− l̃(λ̃)

} ∣∣∣J(λ̃)
∣∣∣1/2∣∣∣Jz (λ̃z(z)
)∣∣∣1/2 . (4.3)

HOPA method for approximation of predictive cumulative distri-

bution function

To implement HOPA we have to �nd z̃, an inner point of Z's support,

such that
(
z̃, λ̃z(z̃)

)
is the mode for l̃z(z, λ). First order condition is

{
∂l̃z/∂λ = (α(n+ 1) + a− 1)/λ− (b+ nȳ + z) = 0

∂l̃z/∂z = −λ+ α−1
z

= 0

and the solution of this system is{
z̃ = (α−1)(b+nȳ)

αn+a

λz(z̃) = α(n+1)+a−1
b+nȳ+z̃

= αn+a
b+nȳ
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Note that z̃ ∈ Z = (0,+∞) if only if α > 1. In particular, for α = 1 the

gamma distribution becomes an exponential distribution and the additional

condition to implement HOPA method does not hold. So the HOPA method,

with the settings of the problem above, can be implemented only in the case

we have α > 1. Knowing the function λ̃z(z), we can write the pro�le function

of z from l̃z

l̃p(z) = (α(n+ 1) + a− 1) log

(
α(n+ 1) + a− 1

b+ nȳ + z

)
+ (α− 1) log(z) + const ,

which has the �rst derivative equal with

l̃′p(z) = −α(n+ 1) + a− 1

b+ nȳ + z
+
α− 1

z
.

The second derivative of l̃z(λ) with respect to (z, λ) with changed sign,

J̃z(z, λ), is the symmetric matrix 2× 2(
α(n+1)+a−1

λ2
1

1 α−1
z2

)

We can calculate r∗(z) and r∗∗(z) functions, with there components r(z),

q∗(z) and q∗∗(z). The approximation for cumulative distribution function for

z given y is

F (z|y) ≈ Φ (r∗(z)) or F (z|y) ≈ Φ (r∗∗(z)) .

Numerical illustration

A sample of size 10 that is simulated from a Gamma(4, 2). Suppose we

know the shape parameter of gamma distribution and set gamma distribution

as the prior distribution for the rate parameter, with shape hyperparameters

equal 1 and rate hyperparameter equal 1. Table 4.4 contains the main sum-

maries of predictive random variable Z|Y = y calculated with HOPA method

and approximated by MCMC and HOPA simulations. The plots in Figure

4.4 show the intermediate and �nal results of the implementation of Laplace's

and HOPA methods.
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Figure 4.4: Gamma model with unknown rate parameter. Top-left: The
predictive density functions: exact ( black-solid line), approximation f̃ ∗

(green-dashed line) and approximation f̃ ∗∗ (red-dotted line). Top-right: r∗(z)
(green-solid line) and r∗∗(z) (red-dashed line) . Bottom-left : Spline approxi-
mations of r∗(z) (green-solid line) and r∗∗(z) (red-dashed line) with ε∗ = 0.4
and ε∗∗ = 0.1. Bottom-right: The predictive cumulative distribution func-
tions: MCMC simulation (black-solid line), HOPA based on r∗(z) (green-
dashed line) and HOPA based on r∗∗(z) (red-dotted line).
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Table 4.4: Predictive summaries of gamma model with unknown rate param-
eter using di�erent methods.

α0.05 median α0.95 mean variance HPD (90%)
MCMC simulation 0.75 2.07 4.57 2.29 1.45 [ 0.5 , 4.06 ]
HOPA1 0.76 1.99 4.56 - - -
HOPA1 sim.(106) 0.77 1.99 4.55 2.27 1.44 [ 0.49 , 4 ]
HOPA2 0.75 2.07 4.59 - - -
HOPA2 sim.(106) 0.75 2.07 4.6 2.29 1.48 [ 0.49 , 4.05 ]

Alternative solution to overcome the problem when shape param-

eter is lower than 1

As we mentioned in Chapter 3.3 the trick to implement HOPA method

in this case is to transform the predictive variable of interest Z into random

variable V = logZ. Suppose the case we have the same y realisation of

Gamma and V is log-Gamma, with the same parameters. In the new settings

we have that l̃v(λ) becomes

l̃v(λ) = (α(n+ 1) + a− 1) log(λ)− (b+nȳ+ ev)λ+ (α− 1)
n∑
i=1

log(yi) +αv−

−(n+ 1) log (Γ(α)) + a log(b)− log (Γ(a)) .

Now the �rst order condition of l̃v(λ) is the system{
∂l̃v/∂λ = (α(n+ 1) + a− 1)/λ− (b+ nȳ + ev) = 0

∂l̃v/∂v = −λev + α = 0

that has this intermediate solution{
λ = α(n+1)+a−1

b+nȳ+ev

ev = α/λ

The solution of the system with respect to v is

ṽ = log
α(b+ nŷ)

nα + a− 1
.
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The solution exists if only if nα+a−1 > 0. Note that this is the condition of

positivity of logarithm argument and the condition of positivity for solution

of λ. The condition holds if a ≥ 1, i.e. the prior distribution is bounded.

Otherwise, for a < 1, for any α there exist n0 such that nα + a − 1 > 0 for

n > n0. This is a mild condition to have z̃ and to implement HOPA method.

The matrix J does not change and Jv = Jz. The pro�le function of v changes

in this way

l̃p(v) = (α(n+ 1) + a− 1) log

(
α(n+ 1) + a− 1

b+ nȳ + ev

)
+ αv + ,

which has the �rst derivative equal with

l̃′p(v) = −evα(n+ 1) + a− 1

b+ nȳ + ev
+ α.

The second derivative of l̃v(λ) with respect to (v, λ) with changed sign,

J̃v(v, λ), is the matrix (
α(n+1)+a−1

λ2
ev

ev λev

)
We can now redi�ne the quantities r∗(v) and r∗∗(v) using the formulas

above.

Numerical illustration of HOPA method for transformed predictive

random variable V

The dataset is an i.i.d sample of size 10 simulated from a Gamma ran-

dom variable with shape parameter equal 0.5 and rate parameter equal 1.

We set the prior distribution of rate parameter Gamma(1, 1). The condition

to implement the method holds because nα + a− 1 = 5 > 0, or because for

a = 1 the prior distribution of the parameter is bounded. Table 4.5 contains

the main summaries of predictive random variable V |Y = y calculated from

MCMC simulation and approximated by HOPA methods and HOPA simu-

lations based on r∗(z) and r∗∗(z). Using formulas (3.7) and (3.8) and the

inverse transformation Z = eV , we can compute summaries for predictive
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random variable Z|Y = y, which are exposed in Table 4.6. The plots in

Figures 4.5 and 4.6 show the intermediate and �nal results of the implemen-

tation of the listed methods and the approximations of predictive probability

distribution functions f̃ ∗ and f̃ ∗∗. Note that the numerical irregularity for

the second method has a local character and it has a better accuracy.

Table 4.5: Predictive summaries of log-Gamma distribution with unknown
rate parameter and shape parameter lower than 1 using di�erent methods.

α0.05 median α0.95 mean variance HPD (90%)
MCMC simulation -6.48 -1.69 0.58 -2.15 5.15 [ -5.46 , 1.05 ]
HOPA1 -6.01 -1.36 0.24 - - -
HOPA1 sim.(106) -6.01 -1.36 0.24 -1.91 4.21 [ -4.85 , 0.8 ]
HOPA2 -6.6 -1.71 0.6 - - -
HOPA2 sim.(106) -6.6 -1.71 0.6 -2.18 5.32 [ -5.52 , 1.12 ]

Table 4.6: Predictive summaries of Gamma distribution with unknown rate
parameter and shape parameter lower than 1 using di�erent methods.

α0.05 median α0.95 mean variance HPD (90%)
MCMC simulation 0.0015 0.1839 1.7869 0.4568 0.5787 [ 0 , 1.22 ]
HOPA1 0.0024 0.2577 1.2734 - - -
HOPA1 sim.(106) 0.0025 0.2573 1.2724 0.4083 0.3612 [ 0 , 0.88 ]
HOPA2 0.0014 0.1814 1.8275 - - -
HOPA2 sim.(106) 0.0014 0.1815 1.8255 0.4597 0.5877 [ 0 , 1.22 ]

4.3.2 Gamma model with unknown parameters

Let y = (y1, . . . , yn) is an independent and identicaly distributed sam-

ple from Y ∼ Gamma(α, λ), where α is unknown shape parameter and λ

is unknown rate parameter. Suppose that the parameters α and λ are in-

dependent and their prior distributions are Gamma(a, b) and Gamma(c, d),

respectively. Then the likelihood function is

L(α, λ) =
1

Γ(α)n
λnα

(∏
yi

)α−1

e−λ
∑n

i=1 yi ,
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Figure 4.5: The log-gamma distribution with unknown rate parameter and
shape parameter lower than 1 . Top-left: The predictive density functions:
exact ( black-solid line), approximation f̃ ∗ (green-dashed line) and approx-
imation f̃ ∗∗ (red-dotted line). Top-right: r∗(z) (green-solid line) and r∗∗(z)
(red-dashed line) . Bottom-left : Spline approximations of r∗(z) (green-solid
line) and r∗∗(z) (red-dashed line) with ε∗ = ε∗∗ = 0.1. Bottom-right: The
predictive cumulative distribution functions: MCMC simulation (black-solid
line), HOPA based on r∗(z) (green-dashed line) and HOPA based on r∗∗(z)
(red-dotted line).
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Figure 4.6: Gamma distribution with unknown rate parameter and shape
parameter lower than 1. Top-left: The predictive density functions: exact (
red-dashed line) and MCMC simulation (histogram). Top-right: The predic-
tive density functions: exact ( red-dashed line) and HOPA1 simulation (his-
togram). Bottom-left : The predictive density functions: exact ( red-dashed
line) and HOPA2 simulation (histogram). Bottom-right: The predictive cu-
mulative distribution functions: MCMC simulation (black-solid line), HOPA
based on r∗(z) (green-dashed line) and HOPA based on r∗∗(z) (red-dotted
line).
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and the prior density of the parameters (α, λ) is

π(α, λ) =
ba

Γ(a)
αa−1e−bα

dc

Γ(c)
λc−1e−dλ .

Using the functions above, we can obtain the posterior density of the param-

eters, which is

π(α, λ|y) ∝ αa−1

Γ(α)n
λnα

(∏
yi

)α−1

λnα+c−1e−(d+nȳ)λ−bα.

The posterior density has no notable distribution. However, a feature of pos-

terior density is that the posterior density function of the parameter λ given

α is Gamma(nα+c, d+nȳ). This result will be used to implement Metropolis

within Gibbs method for simulating a sample from posterior density.

Assume a new observation Z, which is independent from Y . The predic-

tive density function of z given y is

f(z|y) =

∫ +∞

0

∫ +∞

0

f(z|α, λ)f(α, λ|y)dαdλ.

We can not deduce a closed form for this integral, hence, for the predictive

density. For this reason, the two-step simulation method will be used to get a

sample from the random variable Z given Y = y and further to approximate

both the density function and the cumulative distribution function. The

�rst step is the mentioned Metropolis within Gibbs simulation from posterior

density of parameters, π(α, λ|y). The second step uses the sample from �rst

stage as parameters for Gamma(α, λ) to simulate from this distribution the

last sample. The elements of this sample are realisations from predictive

distribution.

Wishing to implement HOPA method, we will deduce all the need quan-

tities from l̃(α, λ) and l̃z(α, λ) using numerical methods, where

l̃(α, λ) = (αn+ c− 1) log(λ)− (d+nȳ)λ+ (α− 1)
n∑
i=1

log(yi)−n log (Γ(α)) +

+a log(b)− log (Γ(a)) + (a− 1) log(α)− bα + c log(d)− log (Γ(c))
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and

l̃z(α, λ) = (α(n+1)+c−1) log(λ)−(d+nȳ+z)λ+(α−1)

(
n∑
i=1

log(yi) + log(z)

)
−

−(n+1) log (Γ(α))+a log(b)−log (Γ(a))+(a−1) log(α)−bα+c log(d)−log (Γ(c)) .

In order to know if the additional condition to implement HOPA method

holds, we will compute numerically z̃ and will check if it is an inner point of

Z = [0,+∞) or will set the prior distribution for parameters to be bounded.

Numerical illustration

The data consists on a sample of size 20 simulated from a gamma distri-

bution with shape parameter α = 8 and rate parameter λ = 2. Suppose we

know only the distribution. Firstly we have setted the prior distribution of

both parameters Gamma(1, 1). Note that the probability distribution func-

tion of Gamma(1, 1) is bounded and we can implement HOPA method and

to use approximation f̃ ∗. Indeed, we calculated z̃ = 3.07. The summaries of

predictive random variable Z|Y = y from MCMC and HOPA methods are

displayed in Table 4.7. The plots in Figure 4.7 show all the results.

Table 4.7: Predictive summaries of gamma model with unknown parameters
using di�erent methods.

α0.05 median α0.95 mean variance HPD (90%)
MCMC simulation 1.45 3.69 7.57 4 3.71 [ 1.06 , 6.83 ]
HOPA1 1.45 3.8 7.61 - - -
HOPA1 sim.(106) 1.45 3.8 7.62 4.03 3.81 [ 1.06 , 6.89 ]
HOPA2 1.46 3.71 7.59 - - -
HOPA2 sim.(106) 1.46 3.71 7.59 4.01 3.75 [ 1.07 , 6.87 ]
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Figure 4.7: Gamma model with unknown parameters. Top-left: The
predictive density functions: MCMC simulation (histogram), approximation
f̃ ∗ (green-dashed line) and approximation f̃ ∗∗ (red-dotted line). Top-right:

r∗(z) (green-solid line) and r∗∗(z) (red-dashed line) . Bottom-left : Spline
approximations of r∗(z) (green-solid line) and r∗∗(z) (red-dashed line) with
ε∗ = 0.2 and ε∗∗ = 0.1. Bottom-right: The predictive cumulative distribution
functions: MCMC simulation (black-solid line), HOPA based on r∗(z) (green-
dashed line) and HOPA based on r∗∗(z) (red-dotted line).
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Practical implementation to overcome the problem when z̃ can not

be �nded

We proceed with the transformation V = logZ. The functions of interest

become

l̃(α, λ) = (αn+ c− 1) log(λ)− (d+nȳ)λ+ (α− 1)
n∑
i=1

log(yi)−n log (Γ(α)) +

+a log(b)− log (Γ(a)) + (a− 1) log(α)− bα + c log(d)− log (Γ(c))

and

l̃v(α, λ) = (α(n+1)+c−1) log(λ)− (d+nȳ+ev)λ+(α−1)
n∑
i=1

log(yi)+αv−

−(n+1) log (Γ(α))+a log(b)−log (Γ(a))+(a−1) log(α)−bα+c log(d)−log (Γ(c)) .

We should solve the system 
∂l̃v/∂α = 0

∂l̃v/∂λ = 0

∂l̃v/∂v = 0

to conclude if the additional condition holds. An intermediate solution of

this system is
v = log α(d+nŷ)

nα+c−1

λ = nα+c−1
d+nŷ

n log nα+c−1
d+nŷ

+
∑n

i=1 log(yi) + logα− n+1
Γ(α)

Γ′(α) + a−1
α
− b = 0

Note that one of the conditions for the existence of the mode (ṽ, α̃v(ṽ), λ̃v(ṽ)),

as an inner point of IR × (0,+∞)2, is the same condition as for log-gamma

with unknown rate parameter, i.e. nα + c− 1 > 0. The second condition is

the existence of α̃ that is the solution for the third equation of the system.

We consider a simulated sample of size 30 from Gamma(0.5, 1). The

prior distribution is Gamma(1, 1) for both α and λ parameters, which is a
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bounded function. So we conclude that the additional condition holds and

we can apply HOPA method. After the implementation of MCMC method,

HOPA methods based on r∗(z) and r∗∗(z) for the predictive random variable

V |Y = y we have k = 0.216 and the next summaries that are showed in

Table 4.8 and in Figure 4.8. Implementing the inverse transformation from

V to Z, we obtain the results showed in Table 4.9 and in Figure 4.9. We

can note that the numerical irregularity for the second method has a local

character and it has a better accuracy.

Table 4.8: Predictive summaries of log-gamma distribution with unknown
parameters using di�erent methods.

α0.05 median α0.95 mean variance HPD (90%)
MCMC simulation -7.64 -1.82 0.58 -2.46 7.36 [ -6.23 , 1.13 ]
HOPA1 -1.46 6.03 5.32 - - -
HOPA1 sim.(106) -1.46 5.68 6.4 4.55 8.14 [ 1.21 , 6.4 ]
HOPA2 -7.52 -1.79 0.59 - - -
HOPA2 sim.(106) -7.55 -1.79 0.59 -2.42 7.12 [ -6.11 , 1.2 ]

Table 4.9: Predictive summaries of gamma model with unknown parameters
using di�erent methods.

α0.05 median α0.95 mean variance HPD (90%)
MCMC simulation 5e-04 0.162 1.7849 0.438 0.5189 [ 0 , 1.21 ]
HOPA1 0.23 415.1 205 - - -
HOPA1 sim.(106) 0.23 293.4 599.8 293.3 48581.9 [ 0 , 588.9 ]
HOPA2 5e-04 0.166 1.812 - - -
HOPA2 sim.(106) 5e-04 0.166 1.8048 0.444 0.5182 [ 0 , 1.22 ]

4.4 Stationary �rst order autoregressive pro-

cess AR(1)

Suppose that y = (y1, . . . , yT ) is a sample from a stationary �rst order

autoregressive process, where Yt = ρYt−1 + εt, with εi ∼ N(0, σ2) for i =
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Figure 4.8: Log-gamma distribution with unknown parameters. Top-left:

The predictive density functions: MCMC simulation (histogram), approxi-
mation f̃ ∗ (green-dashed line) and approximation f̃ ∗∗ (red-dotted line). Top-
right: r∗(z) (green-solid line) and r∗∗(z) (red-dashed line) . Bottom-left :
Spline approximations of r∗(z) (green-solid line) and r∗∗(z) (red-dashed line)
with ε∗ = 1.5 and ε∗∗ = 0.1. Bottom-right: The predictive cumulative dis-
tribution functions: MCMC simulation (black-solid line), HOPA based on
r∗(z) (green-dashed line) and HOPA based on r∗∗(z) (red-dotted line).
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Figure 4.9: Gamma model with unknown parameters. Top-left: The predic-
tive density functions: MCMC simulation (histogram) and HOPA1 simula-
tion (red histogram). Top-right: MCMC simulation (histogram) and HOPA2
simulation (red histogram). Bottom-left : MCMC simulation (black-solid
line) and HOPA based on r∗(z) (green-dashed line). Bottom-right: The
predictive cumulative distribution functions: MCMC simulation (black-solid
line) and HOPA based on r∗∗(z) (red-dotted line).
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2, . . . , T . Let Y1 ∼ N(0, σ2/(1− ρ2)), then the likelihood function is

L(σ2, ρ) = φ

(
y1

√
1− ρ2

σ

)
T∏
t=2

φ

(
yt − ρyt−1

σ

)
.

Let the parameters σ2 and ρ be a priori are independent and with prior

densities Gamma(a, b) and Unif(−1, 1), respectively. So the prior density

of the vector of the parameters is

π(σ2, ρ) =
ba

Γ(a)
(σ2)a−1e−bσ

2

I(0,+∞)(σ
2)

1

2
I(−1,1)(ρ) .

The posterior probability density of the parameters (ρ, σ2) has not a closed

form and to approximate this density we will use a random walk Metropolis-

Hastings simulation algorithm.

Assume a new observation Z at time T +1. We can not �nd a closed form

for the probability distribution function of the random variable Z|Y = y. For

this reason, the two-step simulation method will be used to generate a sample

from the random variable Z given Y = y, which we will use to approximate

both the density function and the cumulative distribution function.

For the implementetion of the HOPAmethod, we will use numerical meth-

ods to compute the needed quantities, starting from

l̃(σ2, ρ) = log

{
φ

(
y1

√
1− ρ2

σ

)}
+

T∑
t=2

log

{
φ

(
yt − ρyt−1

σ

)}
+ a log(b)−

− log (Γ(a)) + (a− 1) log(σ2)− bσ2 + log

(
1

2
I(−1,1)(ρ)

)
and

l̃z(σ
2, ρ) = log

{
φ

(
y1

√
1− ρ2

σ

)}
+

T∑
t=2

log

{
φ

(
yt − ρyt−1

σ

)}
+

+ log

{
φ

(
z − ρyt
σ

)}
+a log(b)−log (Γ(a))+(a−1) log(σ2)−bσ2+log

(
1

2
I(−1,1)(ρ)

)
.
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Numerical illustration

The dataset is an sample of size 30 generated from AR(1) with σ2 = 1 and

ρ = 0.5. The prior distribution for σ2 is Gamma(1, 1), which is bounded. So

we can implement HOPA method. Table 4.10 contains the main summaries

of predictive random variable Z|Y = y calculated from MCMC sample and

approximated by HOPA methods and HOPA simulations. The plots in Fig-

ure 4.10 show the intermediate and �nal results of the implementation of

HOPA methods and approximations of predictive probability density with

f̃ ∗ and f̃ ∗∗. Figure 4.11 illustrates the one-step prediction of the stochastic

process.

Table 4.10: Predictive summaries of AR(1) stochastic process using di�erent
methods.

α0.05 median α0.95 mean variance HPD (90%)
MCMC simulation -2.11 -0.47 1.23 -0.46 1.03 [ -2.08 , 1.25 ]
HOPA1 -2.07 -0.48 1.17 - - -
HOPA1 sim.(106) -2.07 -0.48 1.17 -0.47 0.88 [ -2.07 , 1.17 ]
HOPA2 -2.12 -0.47 1.21 - - -
HOPA2 sim.(106) -2.12 -0.47 1.21 -0.47 1.03 [ -2.14 , 1.19 ]
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Figure 4.10: Stationary AR(1) stochastic process. Top-left: MCMC simula-
tion (histogram), approximation f̃ ∗ (green-dashed line) and approximation
f̃ ∗∗ (red-dotted line). Top-right: r∗(z) (green-solid line) and r∗∗(z) (red-
dashed line) . Bottom-left : Spline approximations of r∗(z) (green-solid line)
and r∗∗(z) (red-dashed line) with ε∗ = 0.2 and ε∗∗ = 0.1. Bottom-right: The
predictive cumulative distribution functions: MCMC simulation (black-solid
line), HOPA based on r∗(z) (green-dashed line) and HOPA based on r∗∗(z)
(red-dotted line).
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Figure 4.11: Stationary AR(1) stochastic process and its one step prediction:
median (red-solid line) , 90% HPD interval (green-solid line).



CONCLUSIONS

As we live in a world of huge information, in constant evolution, quick

accurate prediction at a minimal computational cost is a natural desire. In

this respect this thesis developed a new method for Bayesian approximate

prediction that has the required characteristics. The new method is based

on higher-order asymptotics results, i.e. the accuracy of the method depends

on the size n of observable data. For this reason we named it Higher-Order

Predictive tail Area (HOPA) method. The method can be applied to a wide

variety of regular statistical models, with the essential requirement of the

posterior mode being unique.

The development of the method is based on the posterior predictive den-

sity function, for which we found two formulae that can be seen as ratios of

two integrals. The di�erence between these formulae is the expression of the

denominator, i.e. the marginal distribution of the observables. We applied

Laplace's method for integrals and obtained formulae that approximate the

posterior predictive density with relative error of order O(n−1). In prac-

tice, the procedures have two ingredients: the log-posterior function based

only on the observables, and based on the joint vector of the observables

and unobservables; these log-posteriors are supposed to be unimodal smooth

functions. The only requirement for the implementation of the approxima-

tions of the posterior predictive distribution is the computation of the mode

of the log-posterior, which need to be an inner point of the sample space,

and its second derivative.

We have found two di�erent approximations, where one of them relies

entirely on quantities derived from the log-posterior of the observables and

unobservables. Using these expressions we have implemented a third-order
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approximation to the tail area, with the assumption that the unobservable

vector is univariate. The results are two distinct HOPA methods that ap-

proximate the univariate predictive cumulative distribution function and its

inverse, i.e. the quantiles. The methods use the standard normal cumula-

tive distribution function and quantities derived from input functions. From

these approximations we also implemented the HOPA simulation scheme,

which relies on the simple inverse transformation of a standard normal sam-

ple. The generated sample from the predictive random variable allow us to

compute other quantities of interest, such as predictive moments.

A necessary condition for the implemention of the method is the existence

of a unique mode for the input function, which has to be an inner point of

the domain space set for the function under consideration. This condition

holds when we have a regular model with a bounded prior distribution for

the parameters, and the conditional probability distribution function of the

unobservable is a unimodal function, with the mode an inner point of the

support. If the prior distribution of the parameters is unbounded, then we

can overcome the problem by means of reparametrizations. Even in simple

models, it may happen that the distribution for the unobservable given ob-

served data and parameters has the mode on the boundary of the support.

For such cases a simple solution was founded, which consists of a one-to-one

trasformation of the initial predictive random variable.

From a practical point of view the construction of the approximation of

the posterior predictive cumulative distribution, requires the computation

of all needed functions for every point of the support. However, typically,

these functions have a numerical discontinuity in mode, and for this reason

we used numerical spline interpolation. The technique may exclude values in

a neighborhood of the mode, but this do not a�ect the approximation when

the function has a regular discontinuity.

In the examples of Chapter 4 we have implemented both HOPA methods.

The comparisons were done graphically and by means of summary statistics,

such as 5% and 95% quantiles, the median, the mean, the variance, and 90%

HPD intervals. We note that even if the di�erences between the approxima-

tions fo ther density are insigni�cant, the results of two HOPA methods can
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be quite di�erent. The second method provided better approximations for

the considered quantities in all examples, because the numerical irregularity

around the mode for this method is more local. This version of the HOPA

method is highly accurate in many situations even for limited sample sizes.

Compared to standard MCMC methods, the HOPA simulation scheme

has the advantage of giving independent samples at a negligible computa-

tional cost. Moreover, it doesn't need a proposal distribution, nor any check

of convergence. Finally, we also note that MCMC simulation may have poor

tail behavior, especially when the number of parameters is large.

In conclusion we can say that the best performing version of the HOPA

method could be useful in practice, possibly even in conjunction with other

Bayesian procedures. The method could be easily applicable to prior sensitiv-

ity analyses comparing di�erent posterior distribution under the same Monte

Carlo variation. A limitation of the method is the fact that it only works for

univariate predictive distributions. An extension to the multivariate case is

certainly worth further research e�orts.
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