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1. Introduction

As it is well known, the two most successful theories that describe our universe so far, Quantum
Field Theory and General Relativity, fail when one tries to combine them together. Despite
the efforts of the last half-century we are still far away from an experiment-confirmed the-
ory of quantum gravity. Lacking of the beacon of experimental data, for the moment, the only
possibility to advance in the field is to rely on theoretical considerations. This is sometimes mis-
understood as a philosophical approach or just a search for beauty in mathematical equations.
Despite the motives that lead someone into the study of the subject can be vary, the theoretical
approach has underlying “practical” principles at its core. For example, one of the preferred
feature of a theory is the dependence on as few free parameters as possible. While there is no
strict necessity for a theory to be true to depend on few free parameters, this greatly reduce
the need for experimental inputs that, as we pointed out before, at the moment are lacking.
Another common misconception is the idea of “beauty” of a theory. We do not want to attempt
to give here a precise meaning to it, we will just point out that, generally, beautiful theories are
the ones which possess suitable features, such as a high degree of symmetry, that make them
treatable through the exploit of simple, but ingenious, principles. Again a theory could be true
without possessing these features, but it is tautological that we cannot understand a theory
that resists any attempt of being understood. Furthermore, theories with an underlying rich
mathematical structure are generally more constrained and thus could give more possibilities
to test their validity. We will not go any further into this apology of the formal approach to
theoretical physics, we just hope the reader not acquainted with this approach will not be too
estranged while reading this work.
String theory (for an introduction see [1] and [2]) is one of the major candidates for a quantum
theory of gravity. It has revealed itself to be a consistent theory of quantum gravity and to
possess a very rich and complex underlying mathematical structure with the need of few free
parameters and some strong constraints on the structure of the theory itself. One of the current
major issues of string theory is that it predicts a huge number of possible vacua corresponding
to as many physical settings. Recently, since we were not able to explicitly reproduce some
particular backgrounds so far, some claims have been made (see [3] and [4]) that only few of
the vacua predicted by string theory, or even none of them, is able to reproduce our universe.
Apart from that, consistent string theories require supersymmetry to get rid of the presence
of tachyons, that would lead to an unstable theory, in the spectrum. Furthermore one of the
major constraint in the structure of the theory is that the theory itself predicts the number of
dimensions of the space-time in order to be consistent. This results into the prediction of extra
dimensions apart from the usual 4 that are observed. Extra dimensions can be consistent with
experiments only if they are very small. Thus string theory need a compactification procedure
on the target space and a way to obtain it is through a non-linear sigma model, which consist
of a 2-dimensional conformal field theory whose scalar fields are the components of coordinates
of a compact manifold. Since generally non-linear sigma models which compactify all the six
(for superstring theories) extra dimensions are too complicated, a lot of effort has been put to
study first the properties of the 4 dimensional case. In particular the most studied models are
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1. INTRODUCTION

compactifications on particular manifolds called Calabi-Yau manifolds. In 4 dimensions there
are only two kind of such manifolds: the tori and K3 surfaces. Toroidal compactifications
are simpler to study but, sometimes due to the triviality of the resulting theory, they are not
satisfying. Non-linear sigma models on K3 surfaces instead, while still treatable, possess a
lot of non-trivial properties which make them more interesting to be investigated. The study
of these models has revealed some unexpected connections between two seemingly unrelated
areas of Mathematics: modular forms and finite group representations. These kind of surpris-
ing connections, which come in different kinds, are generally known as moonshine phenomena
(see [5], [6]). The most incredible aspect of these phenomena is that the link between the areas
they connect seems to be related to some particular physical settings. It is known, for example,
that monstrous moonshine can be understood building an appropriate 2-dimensional conformal
field theory (see [7] and [8]). Moreover, the discovery of some of these mathematical relations
while studying a Physics setting has once again strengthened the relation between Mathematics
and Physics. However, despite the recent efforts and abstract proofs, a clear physical picture
giving a natural explanation to the emergence of these moonshine phenomena is still lacking.
Analogously, it is still not clear what could be the physical implications of these relations in the
study of non-linear sigma model on K3 surfaces. The goal of this thesis is to try to give new
possible interpretations of these phenomena and to try to exploit them to better understand
some non-linear sigma models on K3 surfaces. In particular we are interested in the models who
admit a subgroup one of the groups predicted by the so-called umbral moonshine conjecture
as a symmetry group. These models are not well understood, as most non-trivial non-linear
sigma models on K3 surfaces, due to the scarcity of information one can extract on them. In
the original part of this master thesis work we will find evidence that the symmetry algebra of
these models can be extended beyond the standard superconformal algebra coming from the
geometric structure of K3. We will also investigate a simple model which possess an algebra
that constitutes a good candidate for the extension of the aforementioned models.
The work is organized as follows:
In section 2 we present an introduction to conformal field theories in 2 dimensions. After illus-
trating the main consequences of conformal invariance, we discuss the structure of the space
of states, the highest weight representations of the Virasoro algebra and state-field correspon-
dence. We then work with some simple examples of conformal field theories, namely the free
boson and fermion and we give some details of theories whose currents generate a Kac-Moody
algebra. In the last two subsections we discuss conformal field theory with a torus as world-
sheet and conformal field theories with an orbifold target space. The last subsection will be
particularly important for the comprehension of section 6.2.
In section 3 we discuss superconformal field theories. We discuss in particular the case of
N = 1, 2, 4 supersymmetry and we will introduce some important tools that will be partic-
ularly important in the following such as the elliptic genus and spectral flow. We will also
present briefly the characters of the N = 4 superconformal algebra since they will be important
in section 5.
In section 4 we briefly introduce a particular kind of two dimensional conformal field theory,
which is especially important for string theory known as non-linear sigma models. This will link
the concepts explained in the previous sections to string theory. We will focus on non-linear
sigma models on a particular kind of manifolds, namely Calabi-Yau manifolds and in particular
on those with K3 target spaces. The conformal field theory underlying the non-linear sigma
models on these spaces possesses supersymmetry which makes them easier to study, especially
in the case of K3 surfaces where the supersymmetry group is bigger. In the last subsection, we
will also briefly discuss the moduli space of non-linear sigma models on K3 surfaces and their
symmetries since these will play a role in the discussion of the moonshine phenomena.
In section 5 we illustrate the main kind of moonshine of interest for Physics. We will first
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1. INTRODUCTION

discuss monstrous moonshine which is the first (historically) and most studied example of this
class of phenomena. We will then illustrate the moonshine phenomena related to the elliptic
genus of K3 surfaces. In particular we will discuss the discovery of the Mathieu moonshine and
then we will embed it in the wider family of umbral moonshine, which actually constitutes of
23 different, but related, moonshines. We will introduce the main mathematical tools used as
soon as we will need them, but we will rely on the basic notions of roots and lattices that can
be found in appendix C.
In section 6 we expose the original part of the work of this master thesis. The first part of the
work consist in the decomposition of the elliptic genus of K3 surfaces in terms of irreducible
representations of some umbral groups and of the characters of the N = 4 superconformal
algebra. We collect the result in appendix D. We will subsequently discuss how this decompo-
sition could influence some models in the moduli space of K3 non-linear sigma models which
admit one of the groups considered as symmetry group. After that, to continue the original
part of the work, we compute the characters of the free C2/Z3 orbifold model and we attempt
a decomposition of the elliptic genus of K3 in terms of these characters and of irreducible rep-
resentations of the same umbral groups considered previously in order to try to find a possible
interpretation of the results of section 6.1.
In the appendices we give the definition of the main mathematical object used throughout the
work and we present simple introductory discussions to the basic concepts of complex geometry
and lattices. In the last two appendices, as we already said, we collect the coefficients of the
decomposition of the elliptic genus of K3 surfaces in terms of the irreducible representations of
some umbral groups.
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2. Conformal Field Theory

In this section we give an introduction to conformal field theories. We will first discuss in an
informal way the main consequences of conformal invariance in 2 dimensions and then give
a systematic description of conformal field theories. For the latter part we will follow the
approach of [9] and [10]. We will define a conformal field theory by giving its space of state
and the collection of its correlation functions defined as maps from the state space to the space
of suitable functions of the coordinates. It is important to stress that correlation functions will
be the fundamental object of our theory: we will assign to each state a field such that the
vacuum expectation value of the fields will exactly give the same result as the one given by
the correlation functions acting on the corresponding states. This is the opposite way of what
one generally does in practice: the usual approach is to obtain the correlation functions from
the fields by some method, since they are generally not a priori known. The approach we will
follow can then be used as a posteriori justification of the usual results, one can in fact obtain
the correlation functions from methods which are not mathematically well-defined (for example
the path integral formulation) and then, after having checked that they satisfy some suitable
properties, use them to build a well-defined conformal field theory.
After giving the main ingredients we will discuss two simple but important examples, which will
be also used in the following sections, the free boson and the free fermion. In the last subsection
we will briefly discuss conformal field theories defined on the torus which are important in 1-loop
string computations.

2.1 Aspects of conformal symmetry in 2D

We will introduce here the basic concepts and implications of conformal invariance in two di-
mensions. We will also discuss its main implications both for the classical and the quantum
theory. This section is meant to be expository and we will not go through all the calculations
and details, we encourage the reader to refer to [11] or [12] or to wait for the following sections
for more informations. The reader who is acquainted with the basics of conformal field theory
can skip this section.
Let us consider a 2-dimensional space-time Σ with metric tensor gµν . A conformal transforma-
tion of the coordinates z := (z0, z1) is a diffeomorphism z → z′ = w(z) such that the metric
transforms as

g′µν(z
′) = Λ(z)gµν(z) . (2.1)

Under a generic diffeomorphism the controvariant metric tensor transforms as

g′µν(z′) =
∂wµ

∂zα
∂wν

∂zβ
gαβ(z) , (2.2)

so (2.1) requires (
∂w0

∂z0

)2

+
(
∂w0

∂z1

)2

=
(
∂w1

∂z0

)2

+
(
∂w1

∂z1

)2

∂w0

∂z0
∂w1

∂z0 + ∂w0

∂z1
∂w1

∂z1 = 0
(2.3)
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2.1. Aspects of conformal symmetry in 2D 2. CONFORMAL FIELD THEORY

which is equivalent to
∂w1

∂z0 = ∂w0

∂z1 and ∂w0

∂z0 = −∂w1

∂z1 (2.4)

or to
∂w1

∂z0 = −∂w0

∂z1 and ∂w0

∂z0 = ∂w1

∂z1 . (2.5)

It is then convenient to use complex coordinates

z := z0 + iz1 , z = z := z0 − iz1 ,

∂ := ∂z = 1
2
(∂0 − i∂1) , ∂ := ∂z̄ = 1

2
(∂0 + i∂1)

(2.6)

in this way (2.4) and (2.5) are equivalent to the Cauchy-Riemann equations for holomorphic
and antiholomorphic functions. Therefore the local conformal transformations in 2 dimension
are the set of all (anti)holomorphic maps in some open set. These do not form a group since we
have not required them to be invertible nor everywhere well-defined. It turns out (see [11]) that
the maps that form such group depend on the topology of Σ. For example, for the Riemann
sphere they are

f(z) = az+b
cz+d

with

(
a b
c d

)
∈ SL(2,C)

Z2
, (2.7)

where the group operation is the composition of maps and the action of Z2 is given by sending
(a, b, c, d)→ (−a,−b− c,−d) which clearly leaves f(z) = az+b

cz+d
invariant. We call the group of

global conformal transformations the special conformal group.
We have seen that conformal transformations are given maps (anti)holomorphic in some open
set. In general they will be meromorphic functions outside these open sets. Considering an
infinitesimal transformation we can then perform a Laurent expansion

z′ = z + ε(z) = z +
∞∑

n=−∞
εn(−zn+1) ,

z′ = z + ε(z) = z +
∞∑

n=−∞
εn(−zn+1) ,

(2.8)

where εn, εn are (small) constant. The generators corresponding to a transformation for a
particular n are

ln := −zn+1∂z ,

ln := −zn+1∂z .
(2.9)

The commutators between these generators are easily computed

[lm, ln] = (m− n)lm+n ,[
lm, ln

]
= (m− n)lm+n ,[

lm, ln
]

= 0 ,
(2.10)

so the lns and lns generate two copies of the Witt algebra. Notice that the special conformal
group of the sphere is generated by l−1, l0 and l1. In particular, recalling (2.7), l−1 generates
the translations z → z+ b, l0 generates dilations z → az and l1 generates the special conformal
transformations z → 1

cz+1
. For later convenience we also introduce a central extension of the

Witt algebra, the so called Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 . (2.11)

Given a field φ(z, z) of conformal dimensions (h, h̄) we call it primary if under any conformal
map z → w(z), z → w(z) it transforms as

φ′(w,w) =

(
dw

dz

)−h(
dw

dz

)−h
φ(z, z) , (2.12)
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2. CONFORMAL FIELD THEORY 2.1. Aspects of conformal symmetry in 2D

h and h are called the conformal dimensions of the field. A field is quasi-primary if it transforms
as (2.12) only under the special conformal group.
If we have a field theory with a conformal invariant action, using Noether’s theorem we can build
a conserved current jµ. Considering an infinitesimal conformal transformation zµ → zµ+ εµ(z),
we can write our current as jµ = Tµνε

ν . The tensor Tµν is symmetric and it is called the stress-
energy tensor. Conservation of the current ∂µj

µ = 0, when ε is constant, implies ∂µTµν = 0.
Considering a general infinitesimal transformation

0 =∂µj
µ = ∂µTµνε

ν + Tµν∂
µεν =

1

2
Tµν(∂

µεν + ∂νεµ) =

1

2
Tµνη

µν(∂ · ε) =
1

2
Tµ

µ(∂ · ε) ,
(2.13)

where we have used the fact that for an infinitesimal conformal transformation in 2 dimensions
(∂µεν+∂νεµ) = ηµν(∂ ·ε). Since the previous result must hold for generic infinitesimal conformal
transformations it implies that the stress-energy tensor is traceless Tµ

µ = 0.
It useful to write the stress-energy tensor in terms of complex coordinates. We consider an
euclidean metric ηµν = δµν and use the coordinates given in equation (2.6). The tensor transfor-

mation property Tµν = ∂xα

∂xµ
∂xβ

∂xν
Tαβ together with the tracelessness discussed before imply that

the only non-zero components of the stress-energy tensor are

Tzz = 1
4
(T00 − 2iT10 − T11) ,

Tz̄z̄ = 1
4
(T00 + 2iT10 − T11) .

(2.14)

Using ∂µTµν = 0 and the tracelessness it is easy to show

∂z̄Tzz = 0 ,
∂zTz̄z̄ = 0 ,

(2.15)

so Tzz and Tz̄z̄ are respectively holomorphic and antiholomorphic. We then simply write them
T (z) := Tzz and T (z) := Tz̄z̄.
The conserved Noether’s charge Q =

∫
dz1j0 in complex coordinates reads

Q =
1

2πi

∮
C

(
dzT (z)ε(z) + dzT (z)ε(z)

)
, (2.16)

where the contour C encircles all the singularities and we always consider contour integrals
taken counterclockwise.
In complex coordinates the condition for the conservation of a current (jz, jz) is

∂jz + ∂jz = 0 , (2.17)

so currents (jz, 0) with jz holomorphic or (0, jz) with jz antiholomorphic are conserved. In
particular starting from T (z), and analogously for T (z), it is possible to build an infinite
number of conserved currents by setting (jz, jz) = (znT (z), 0). The conserved charges

Ln =

∮
znT (z)dz (2.18)

are the modes of the expansion of the stress energy tensor

T (z) =
∑
n∈Z

Lnz
−n−2 . (2.19)
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2.1. Aspects of conformal symmetry in 2D 2. CONFORMAL FIELD THEORY

In general conformal field theories can possess other holomorphic (analogoulsy antiholomorphic)
fields whose components will be conserved for the reasons we said above. If it is the case, their
modes together with their commutation relations (between them and with the modes of the
stress-energy tensor) constitute an extension of the Witt (Virasoro in the quantum theory)
algebra called the chiral algebra.
We will now discuss the main implications of conformal invariance on the quantum theory.
We have seen that, when dealing with 2-dimensional conformal invariance, it is convenient to
work with complex numbers and (anti)holomorphic functions. In order to exploit the power of
complex analysis it is then convenient to map the space-time of a conformal invariant quantum
field theory into the complex plane, this will also lead to the concept of radial quantization.
Let us consider a flat 2-dimensional space-time with euclidean signature. For concreteness we
denote the time direction with z0 and the space direction with z1, but the choice of a time
direction is arbitrary. We then compactify the space direction on a circle, for simplicity we
consider it of unit radius. Thus our space-time is actually a cylinder of infinite length. We can
map this cylinder into the complex plane through the map

z = ew = ez
0+iz1

, (2.20)

where we have introduced the complex coordinate w := z0+iz1. With this map time translation
z0 → z0 + a correspond to complex dilation z → eaz while space translation z1 → z1 + b
correspond to complex rotations z → eibz. Furthermore, the infinite past of the cylinder is
mapped into the origin on the complex plane. Thus given a primary quantum field φ(z, z̄) with
conformal dimensions (h, h̄) we define an asymptotic in-state |φ〉 through

|φ〉 = lim
z,z̄→0

φ(z, z̄) |0〉 , (2.21)

where |0〉 is the vacuum state of the theory.
Defining the hermitian of the field φ(z, z̄) to be

φ†(z, z) := z−2hz−2hφ

(
1

z
,
1

z

)
(2.22)

we can also define an asymptotic out-state 〈φ| through

〈φ| = lim
z,z̄→0

〈0|φ†(z, z̄) = lim
w,w̄→∞

〈0|w2hw̄2h̄φ(w, w̄) . (2.23)

A very important feature is that conformal invariance fixes the form of some correlation func-
tions between primary fields. We will just give here the result without derivation (see again [11]).
The two-point function between primary fields has the form

〈φ1(z1, z1)φ2(z2, z2)〉 =
C12

(z1 − z2)2h1(z1 − z2)2h1
δh2
h1
δh2

h1
(2.24)

and in particular it is not null only when the two fields have the same conformal dimensions.
The form of 3-point function is

〈φ1(z1, z1)φ2(z2, z2)φ3(z3, z3)〉 = C123
1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13

×

1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13

,
(2.25)

where C12 and C123 depend on the fields and zij := zi− zj. Conformal invariance is not enough
to fix the form of higher number of points functions.
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2. CONFORMAL FIELD THEORY 2.2. Space of states and correlation functions

Correlation function can be obtained by standard quantum field theory methods, but for 2-
dimensional conformal field theories it is possible to define the so called Operator Product
Expansion (OPE) which can be used to systematically obtain the correlation functions. The
main idea behind the OPE is to approximate the product of two fields with a Laurent expansion

A(z, z̄)B(w, w̄) =
N∑

n=−∞

M∑
m=−∞

Cn(w, w̄)

(z − w)n(z̄ − w̄)m
, (2.26)

where the Cn are regular operators in the limit (z, z)→ (w,w). Since the previous expression
is an operator equality, it has to hold between all correlation functions. The knowledge of the
OPE together with conformal invariance, which fixes the form of 2 and 3 points functions, is
enough to obtain all the correlation functions of the theory. Conformal symmetry implies the
OPE of a primary field, of conformal dimension h, with the stress-energy tensor to be of the
form

T (z)Φ(w,w) =
h

(z − w)2
Φ(w,w) +

1

z − w
∂wΦ(w,w) + . . . , (2.27)

where the dots stand for non-singular terms. An analogous expression holds for the antiholo-
morphic stress-energy tensor. It is important to point out that the stress-energy tensor is not
a primary field, in fact the OPE of the stress-energy tensor with itself reads

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ . . . , (2.28)

where the dots denote again non-singular terms. It can be shown that the modes in the Fourier
expansion of the stress-energy tensor

T (z) =
∑
n∈Z

Lnz
−n−2 (2.29)

satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (2.30)

which, as we already said, is a central extension of the Witt algebra.
Since the Hamiltonian and the momentum are the quantum generators for the time and space
translations respectively, since the central extension vanish for L0 and L0, we have

H = L0 + L0 and P = i(L0 − L0) . (2.31)

2.2 Space of states and correlation functions

We will now formalize the properties of 2 dimensional conformal field theory, some of which
have already appeared in the previous section. We start by defining the space of state. We want
the state of space to be decomposable in terms of the eigenstates of L0 and L0 so that it will in
particular be decomposable in terms of eigenstate of the Hamiltonian and of the momentum.
Formally, the space of states of a two dimensional conformal field theory with unique vacuum
is a bigraded, infinite dimensional vector space over C

H =
⊕
h,h

V (h, h) (2.32)

9
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such that each V (h, h) is finite dimensional, dimV (h, h) = 0 if h < −h0 or h < −h0 for fixed
h0, h0 ∈ R+

0 , and V (0, 0) = C. The unit element |0〉 in V (0, 0) = C is called the vacuum state.
The subspaces

W :=
⊕
h

V (h, 0), W :=
⊕
h

V (0, h) (2.33)

are called the holomorphic (or chiral) and antiholomorphic (or antichiral) algebras. Furthermore
we will assume that H carries a real structure.
We now formalize the concept of the OPE. We denote with H{z, z} the space of functions
f : C→ H that are real analytic on C∗ and possess the following behaviour around z = 0:

f(z, z) =
∑

r∈R,n∈Z

arnz
r+nzr , (2.34)

where R is a countable subset of R, arn ∈ H with only finitely many coefficients arn for r+n < 0
or r < 0.
An Operator Product Expansion (OPE) is a map

H ⊗H→ H{z, z}

compatible with the gradings and real structure of H.
Let us denote with F(z1, . . . , zn) the space of maps f : Cn → C that are real analytic outside
partial diagonals and which possess a behaviour like (2.34) in each singularity.
To each state |Φ〉 ∈ V (h, h̄) we associate a linear operator Φ(z, z) : H→ H such that

|Φ〉 = lim
z,z̄→0

Φ(z, z) |0〉 (2.35)

and the operator associated to |0〉 is the identity 1. These operators are called fields. We will
later show that (2.35) together with conformal invariance is enough to completely fix the fields.
For every n ∈ N we then have a linear map

Fn : H⊗n → F(z1, . . . , zn)
|Φ1〉 ⊗ · · · ⊗ |Φn〉 → 〈0|Φ1(z1, z1) . . .Φn(zn, zn) |0〉 .

(2.36)

〈0|Φ1(z1, z1) . . .Φn(zn, zn) |0〉 is called an n point correlation function (or simply n point func-
tion).
We require that our n point functions are such that the following diagram commute

H⊗k+1 F(z0, . . . , zk)

H⊗k{z, z} F(z1, . . . , zk)

Fk+1

OPE Laurent expansion

Fk

where the OPE is taken with respect of the first two factors and the right vertical arrow is
a Laurent expansion around 0 of z = z1 − z0. With this requirement we can write the OPE
between two fields in the usual way as an expansion of the product of two fields

A(z, z̄)B(w, w̄) =
N∑

n=−∞

M∑
m=−∞

Cn(w, w̄)

(z − w)n(z̄ − w̄)m
, (2.37)

where the fields Cn(w, w̄) are regular at w = z and w̄ = z̄, N,M ∈ N and it is intended that
this expression must hold between correlation functions.

10



2. CONFORMAL FIELD THEORY 2.3. Ordering prescriptions

Furthermore, we make another assumption on the correlation functions: given a n + 1 point
function with the above properties, for any fixed i,j, the residues in zij := zi − zj in 0 are n
point functions with the same properties.
A vector space F =

⊕
n Fn of linear maps Fn : H⊗n → F(z1, . . . , zn) satisfying the above

properties is called a representation of an OPE H ⊗H→ H{z, z}.
We define a conformal field theory to be a representation of its OPE.

2.3 Ordering prescriptions

Up to now we have not given any prescription on how the fields inserted in (2.36) have to be
ordered.
It is well known that in a quantum field theory the fields inserted in a n point function have to
be time ordered. In the previous section we have seen that, in a 2d conformal field theory, the
complex plane is obtained by a 2 dimensional real euclidean space-time (z0, z1) with a compact
spatial direction z1, mapping z = ez0+iz1 . Thus points in the original space-time with later time
z0 will correspond to points in the complex plane with larger radius |z|. In a 2d conformal field
theory defined on the complex plane (i.e. all the variables in correlation functions take values
in C) we will thus assume that the fields in a n point function are radial ordered

RRR(A(z, z)B(w,w)) :=

{
A(z, z)B(w,w) for |z| > |w|
εB(w,w)A(z, z) for |z| < |w|

, (2.38)

where we have to include the factor ε if the space of state H is also Z2 graded due to the
presence of fermions (see section 3.2), and it has values ε = −1 if both A(z) and B(w) are odd
with respect to the grading (i.e. both are fermions) and ε = 1 otherwise. It generalizes easily
for n fields by associativity.
To be consistent with the previous requirement, we then choose the fields of our theory to be
local, i.e. Φ(z, z̄)Ψ(w, w̄) = εΨ(w, w̄)Φ(z, z̄), with ε defined as above, if z 6= w.
In analogy to ordinary quantum field theory we also define normal ordering for later convenience.
Its purpose is the usual one of defining finite quantities from divergent ones.
We define normal ordering by means of the OPE of two fields

φ(z, z)χ(w,w) = singular parts +
∞∑

n,m=0

(z − w)n(z − w)m

n!m!
NNN(χ∂n∂

m
φ)(w,w) , (2.39)

applying 1
2πi

∮
dz(z − w)−1(z − w)−1 to both sides of (2.39) we obtain

NNN(χφ)(w,w) =

∮
C(w)

dz

2πi

φ(z, z)χ(w,w)

(z − w)(z − w)
, (2.40)

where C(w) is a contour encircling w and no other singularities.
We remark that, since formula (2.37) has to hold when the fields are insertions of a n point
function, the OPE is defined between radial ordered fields. So (2.37) actually reads:

RRR(A(z, z̄)B(w, w̄)) =
N∑

n=−∞

M∑
m=−∞

Cn(w, w̄)

(z − w)n(z̄ − w̄)m
. (2.41)

In particular (2.40) is intended as

NNN(χφ)(w,w) =

∮
C(w)

dz

2πi

RRRφ(z, z)χ(w,w)

(z − w)(z − w)
. (2.42)

11



2.4. The conformal structure 2. CONFORMAL FIELD THEORY

In the rest of this work we will not write explicitly the radial ordering symbol, but radial
ordering is always assumed between expressions that are intended to be inserted in a n point
function.
In the following we will mostly denote normal ordered product with :. . . : instead than with
NNN(. . .).
It is useful, since we will use it later, to give a formula for the component of the normal order
(2.40) for chiral fields. If we decompose the fields as

φ(z) =
∑
n∈Z

z−n−hφφn χ(z) =
∑
n∈Z

z−n−hχχn (2.43)

and

NNN(χφ)(w) =
∑
n∈Z

z−n−hφ−hχ : χφ :n (2.44)

then

NNN(χφ)(w) =

∮
C(w)

dz

2πi

RRR(φ(z)χ(w))

z − w
=

1

2πi

∮
|z|>|w|

dz
φ(z)χ(w)

z − w
+

1

2πi

∮
|w|>|z|

dz
εχ(z)φ(w)

z − w
=

1

2πi

∮
|z|>|w|

dz
∑
n,p
l≥0

wl−p−hφz−n−hχ−l−1χnφp+

1

2πi

∮
|w|>|z|

dz
∑
n,p
l≥0

w−l−1−p−hφzl−n−hχεφpχn =

∑
p

n≤−hχ

w−n−p−hχ−hφχnφp + ε
∑
p

n>−hχ

w−n−p−hχ−hφφpχn ,

(2.45)

where we have used the definition of radial ordering in the first line and used the geometric
series 1

z−w =
∑
l≥0

wl

zl+1 in the second. Comparing with the expression above we have

: χφ :n=
∑

m≤−hχ

χmφn−m + ε
∑

m>−hχ

φn−mχm . (2.46)

With similar calculations it is easy to show also

: χ∂φ :n=
∑

m≤−hχ

(−hφ −m)χmφn−m + ε
∑

m>−hχ

(−hφ −m)φn−mχm . (2.47)

2.4 The conformal structure

We now describe, in the formalism of the previous section, the conformal structure of the theory,
with particular emphasis to the stress-energy tensor and its properties.
We require that the space of states of a conformal field theory contains a state |T 〉 ∈ V (2; 0)
with a real holomorphic associated field T (z) =

∑
n∈Z

Lnz
−n−2, whose Fourier components Ln =

1
2πi

∮
dzzn+1T (z) satisfy (Lm)† = L−m and generate a left-handed Virasoro algebra with central

charge c:

[Lm, Ln] = (m− n)Lm+n +
c

12
n(n2 − 1)δm+n,0 (2.48)
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2. CONFORMAL FIELD THEORY 2.4. The conformal structure

and an antiholomorphic field T (z) ∈ V (0, 2) with analogous properties generating a right-
handed Virasoro algebra commuting with the left-handed one. The field T (z) is called the
stress-energy tensor of the theory.
We furthermore require that our space of state H is the space of a representation of the left
and right-handed Virasoro algebras such that if |Φ〉 ∈ V (h, h) for any other state |Ψi〉 it holds:

∂
∂z
〈0|Φ(z, z)Ψ1(z1, z1) · · ·Ψn(z1, zn) |0〉 = 〈0| (L−1Φ)(z, z)Ψ1(z1, z1) · · ·Ψn(z1, zn) |0〉 ,

∂
∂z
〈0|Φ(z, z)Ψ1(z1, z1) · · ·Ψn(z1, zn) |0〉 = 〈0| (L−1Φ)(z, z)Ψ1(z1, z1) · · ·Ψn(z1, zn) |0〉 .

(2.49)
We have already defined primary fields through their transformation properties under conformal
tranformations. We will now define them by state-fields correspondence relating them to certain
states in particular representations of the Virasoro algebra. We define a primary state to be
a highest weight state of the left and the right handed Virasoro algebras, i.e. Lm |Φ〉 = 0 and
Lm |Φ〉 = 0 for m > 0, L0 |Φ〉 = h |Φ〉 and L0 |Φ〉 = h |Φ〉. We call a field Φ(z, z) ∈ V (h, h)
primary if it has the following OPEs

T (z)Φ(w,w) = h
(z−w)2 Φ(w,w) + 1

z−w∂wΦ(w,w) + . . . ,

T (z)Φ(w,w) = h
(z−w)2 Φ(w,w) + 1

z−w∂wΦ(w,w) + . . . ,
(2.50)

where the dots stand for terms regular in the limit z → w.
The corresponding states |Φ〉 = Φ(0, 0) |0〉 are primary, in fact

L0Φ(0, 0) |0〉 =
1

2πi

∮
dzzT (z)Φ(0, 0) |0〉 =

1

2πi

∮
dzz

(
h

z2
Φ(0, 0) +

1

z
∂wΦ(w, 0)

∣∣∣
w=0

)
|0〉 = h |Φ〉 ,

(2.51)

where we have used the residue theorem in the last line. Notice that T (z)Φ(0, 0) is always
correctly radial ordered in the whole complex plane. Furthermore, for n > 0

LnΦ(0, 0) |0〉 =
1

2πi

∮
dzzn+1T (z)Φ(0, 0) |0〉 =

1

2πi

∮
dzzn+1

(
h

z2
Φ(0, 0) +

1

z
∂wΦ(w, 0)

∣∣∣
w=0

)
|0〉 = 0

(2.52)

because there are no poles for n > 0. Similar relations hold for T (z). Viceversa if |Φ〉 is
primary the corresponding field is primary. In fact, with calculation similar to the ones before,
Ln |Φ〉 = 0 for n > 0 implies that the OPE has a pole of order at most 2, L0 |Φ〉 = h |Φ〉 fixes
the coefficient of the pole of order 2 to be equal to h and (2.49) implies that the coefficient of
the order 1 pole is ∂wΦ(w,w). Again, the extension to the right-handed part is straightforward.
We say a state |φ〉 has conformal dimension (h, h) if

L0 |φ〉 = h |φ〉 and L0 |φ〉 = h |φ〉 . (2.53)

It is useful to remark that, given a state |φ〉 of conformal dimension h, the Lns increase or
decrease its conformal dimension depending on the sign of n. In fact if L0 |φ〉 = h |φ〉, using
the commutation relations (2.48), we have

L0Ln |φ〉 = LnL0 |φ〉 − nLn |φ〉 = (h− n)Ln |φ〉 (2.54)

so Ln |φ〉 is an eigenstate of L0 with eigenvalue h− n. An analogous result holds obviously for
the right-handed Virasoro generators. In general if |φ〉 has conformal dimensions (h, h) we have
that the state

Ln1Ln2 · · ·LnrLn1Ln2 · · ·Lns |φ〉 (2.55)
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2.4. The conformal structure 2. CONFORMAL FIELD THEORY

has conformal dimensions (
h−

r∑
i=1

ni, h−
s∑
i=1

ni

)
. (2.56)

We have defined a primary state |φ〉 to be a highest weight state of the Virasoro algebra,i.e.
Lm |φ〉 = 0, Lm |φ〉 = 0 for m > 0 and L0 |φ〉 = h |φ〉, L0 |φ〉 = h |φ〉. Starting from a primary
state |φ〉 we can build a representation of the left and right handed Virasoro algebra by acting
with L−m and L−m, m > 0. We call the state L−i1 · · ·L−inL−i1L−in · · · |φ〉, with all the ijs and
ijs greater than zero, a secondary state or a descendant of |φ〉. We will now show that any
state of a unitary conformal field theory belongs to a highest weight representation. Suppose
there is a state that cannot be written as a linear combination of primary and secondary fields
of a highest weight representation. Since every state can be written as a linear combination of
eigenstates of L0, at least one of them must not belong to a highest weight representation. Let
us consider the smallest dimension L0 eigenstate |χ〉 (from (2.32) the spectrum of L0 must be
bounded from below) with this property. L0 eigenstates are orthogonal, so |χ〉 is orthogonal to
all the states of the highest weight representations. Since the state |χ〉 does not belong to a
highest weight representation, it is in particular not primary and then the state Ln |χ〉, is not
null for some n > 0. But, because L−m = L†m, then

〈χ|L−mLm |χ〉 > 0 . (2.57)

Since |χ〉 is the lowest dimension state that does not belong to a highest weight representation
then Ln |χ〉 belongs to a highest weight representation and so does L−nLn |χ〉, but (2.57) is in
contradiction to the fact that |χ〉 is orthogonal to all the states of a highest weight represen-
tation. So all the state of a unitary conformal field theory must belong to a highest weight
representation.

2.4.1 State-field correspondence

Up to now we have not really defined the fields of our theory, we have just said that they
are local and they must satisfy (2.35). As mentioned earlier this, together with the conformal
structure of the theory, will be enough to uniquely define them.
We first notice from (2.49) that, choosing |Φ〉 = |0〉 and since the operator associated to |0〉 is
the identity which is constant, we have

(L−1 |0〉)(z, z) = 0

in all correlation functions, so we can choose the operator associated to L−1 |0〉 to be identically
zero. But then we find

L−1 |0〉 = (L−1 |0〉)(0, 0) |0〉 = 0 , (2.58)

so we can assign to the state L−1 |Φ〉 the field [L−1,Φ(z, z̄)], in fact

[L−1,Φ(0, 0)] |0〉 = L−1Φ(0, 0) |0〉 − Φ(0, 0)L−1 |0〉 = L−1Φ(0, 0) |0〉 = L−1 |Φ〉 . (2.59)

But then, again from (2.49), we have that

[L−1,Φ(z, z̄)] =
∂

∂z
Φ(z, z̄) (2.60)

must hold in all correlation functions. So we can require that, for every state |Φ〉, the corre-
spondent field Φ(z, z̄) satisfies, in addition to (2.35), also (2.60).
It is easy to show, using Baker–Campbell–Hausdorff formula, that (2.60) implies

eλL−1Φ(z, z̄)e−λL−1 = Φ(z + λ, z̄) . (2.61)
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Repeating the same argument for the right handed side we obtain the similar relation:

eλL̄−1Φ(z, z̄)e−λL̄−1 = Φ(z, z̄ + λ) . (2.62)

From (2.35) we have to associate to |Φ〉 an operator Φ(0, 0), we then define the field Φ(z, z̄)
associated to the state |Φ〉 to be

Φ(z, z̄) := ezL−1+z̄L−1Φ(0, 0)e−zL−1−z̄L−1 . (2.63)

In particular it holds

Φ(z, z̄) |0〉 = ezL−1+z̄L−1 |Φ〉 . (2.64)

Let us now show that the field defined in this way is unique.
If Ψ(z, z̄) is another field such that Ψ(z, z̄) |0〉 = ezL−1+z̄L−1 |Φ〉, given another arbitrary state
χ ∈ H then

Ψ(z, z̄) |χ〉 = Ψ(z, z̄)χ(0, 0) |0〉 = εχ(0, 0)Ψ(z, z̄) |0〉 = εχ(0, 0)ezL−1+z̄L−1 |Φ〉 , (2.65)

where χ(z, z̄) is the state associated with |χ〉 and we have also used the locality property of the
fields. We have that

εχ(0, 0)ezL−1+z̄L−1 |Φ〉 = εχ(0, 0)Φ(z, z̄) |0〉 = Φ(z, z̄)χ(0, 0) |0〉 = Φ(z, z̄) |χ〉 , (2.66)

where we have used the fact that the grading of Φ(z, z̄) and Ψ(z, z̄) must clearly be the same
since they have the same action on the vacuum. So Φ(z, z̄) |χ〉 = Ψ(z, z̄) |χ〉 on every state and
thus the identity holds as an identity between operators Φ(z, z̄) = Ψ(z, z̄).
Given a field Φ(z, z) we define its adjoint demanding that

〈Φ|Ψ〉 = lim
z,z,w,w→0

〈0|Φ(z, z)†Ψ(w,w) |0〉 (2.67)

for any other field Ψ(w,w). In particular for primary fields, to be consistent with (2.24), we
define their conjugate to be

Φ†(z, z) := z−2hz−2hΦ

(
1

z
,
1

z

)
. (2.68)

This coincides with the definition given in the previous section. Considering the mode expansion
of a primary field Φ(z, z) =

∑
m,n

z−n−hz−m−hΦn,m the definition above implies Φ†n,m = Φ−n,−m.

2.5 Simple examples

In this section we discuss simple examples of conformal field theory. We start discussing the
free boson and the free fermion and then we will discuss more generally systems whose currents
form a Kac-Moody algebra. The purpose is to brief explain the basic properties that we will
use in section 6.2. For a more detailed discussion see [11] or [12].

2.5.1 The free boson

A free boson is a real scalar field with respect to conformal transformations, i.e.

X ′µ(z′, z′) = Xµ(z, z) (2.69)
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under a conformal transformation z → z′.
The action of a free boson defined on the complex plane is given by

S =
1

4π

∫
dzdz∂X(z, z) · ∂X(z, z) . (2.70)

The equations of motion are easily obtained

∂∂X(z, z) = 0 . (2.71)

Defining
j(z) = i∂X(z, z) ,

j(z) = i∂X(z, z)
(2.72)

from (2.71) they are, respectively, holomorphic and antiholomorphic fields and from (2.69)
they are primary with conformal dimension h = 1 and h = 1 respectively. The quickest way to
quantize the theory is to promote j and j to operators and then build the space of states using
the state-field correspondence. For brevity, we use the following OPEs as an ansatz

j(z)j(w) = 1
(z−w)2 + . . . ,

j(z)j(w) = 1
(z−w)2 + . . . ,

j(z)j(w) = . . . ,

(2.73)

where the dots stand for finite terms. It is a simple task to check that these are the correct
expressions by computing the two-point function by standard methods (see for example [11])

〈X(z, z)X(w,w)〉 = −1

2
log |z − w|2 (2.74)

and taking the derivatives. Expanding j(z) in modes

j(z) =
∑
n∈Z

jnz
−n−1 (2.75)

we can compute the commutator

[jn, jm] =

∮
dz

2πi

∮
dw

2πi
znwm[j(z), j(w)] =∮

dw

2πi
wm
(∮
|z|>|w|

dz

2πi
znj(z)j(w)−

∮
|z|<|w|

dz

2πi
znj(w)j(z)

)
=∮

dw

2πi
wm
∮
C(w)

dz

2πi
zn

1

(z − w)2
=

∮
dw

2πi
nwn−1wm = nδn+m,0 ,

(2.76)

where we have used the fact that the fields must be radial ordered and C(w) is a countour
encircling w. Analogously [

jn, jm
]

= nδn+m,0 ,[
jn, jm

]
= 0 .

(2.77)

The stress-energy tensor is given by

T (z) =
1

2
: j(z)j(w) : , (2.78)

it is a simple task to show that it satisfies the right properties.
The operators of the theory are given by linear combinations of products of the js and the js
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thus, defining the vacuum state |0〉 as the state annihilated by all non-negative modes jn and
jm, by state-field correspondence the space of state will be given by

H =
{

Fock space freely generated by j−n, j−m acting on |0〉 , n,m > 0
}

. (2.79)

From

〈0|L2L−2 |0〉 = 〈0| [L2, L−2] |0〉 =
c

2
(2.80)

after some computations, one obtains that the central charge for a free boson is c = 1.

2.5.2 The free fermion

Let us consider the system of two hermitian anticommuting fields ψ(z, z), ψ(z, z) with the
following action

S =
1

4π

∫
dzdz(ψ∂ψ + ψ∂ψ) . (2.81)

The equations of motion

∂ψ = 0 ∂ψ = 0 (2.82)

tell us that ψ is a holomorphic field while ψ is antiholomorphic. It is easy to show that conformal
invariance of the action implies that they must have conformal dimension 1

2
. There are two

different sectors corresponding to different behaviours under a 2π rotation on the complex plane

ψ(e2πiz) = ψ(z) Neveu-Schwarz sector (NS) ,
ψ(e2πiz) = −ψ(z) Ramond sector (R) .

(2.83)

These behaviours lead to different mode expansions

ψ(z) =
∑
r

ψrz
−r− 1

2

{
r ∈ Z + 1

2
Neveu-Schwarz sector

r ∈ Z Ramond sector
(2.84)

and analogously for the antiholomorphic field.
We quantize our theory by promoting ψ and ψ to operators. For brevity we start again from
the given formulas for the OPEs

ψ(z)ψ(w) = 1
z−w + . . . ,

ψ(z)ψ(w) = 1
z−w + . . . ,

ψ(z)ψ(w) = . . . ,

(2.85)

where the dots stand for non-singular terms as usual. It is easy to show that these are the
correct OPEs by comparing them with the two point functions that can be found in [11].
We can then compute the anticommutators between the modes

{ψr, ψs} =

∮
dz

2πi

∮
dw

2πi
zrws{ψ(z), ψ(w)} =∮

dw

2πi
ws
(∮
|z|>|w|

dz

2πi
zrψ(z)ψ(w)−

∮
|z|<|w|

dz

2πi
zr(−1)ψ(w)ψ(z)

)
=∮

dw

2πi
ws
∮
C(w)

zrRRR(ψ(z)ψ(w)) =∮
dw

2πi
ws
∮
C(w)

dz

2πi
zr

1

z − w
=

∮
dw

2πi
wr−1ws = δr+s,0 ,

(2.86)
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where we have recalled from (2.38) that under radial ordering fermionic fields take a minus sign
when they switch. Analogously

{ψr, ψs} = δr+s,0 ,

{ψr, ψs} = 0 ,
(2.87)

the only difference between the R and the NS sector is given by integer or half-integer indices.
The (holomorphic) stress-energy tensor is given by the limit

T (z) = lim
z→w

1

2

(
−ψ(z)∂wψ(w) +

1

(z − w)2

)
(2.88)

and an analogous expression holds for the antiholomorphic sector. This expression, which makes
the vev of T (z) finite, is needed to ensure the right commutation relations of the Virasoro modes
and differs from normal ordering by an additive constant. In the NS sector this just leads to
the usual normal ordering

T (z) =
1

2
: ψ(z)∂ψ(z) : . (2.89)

In the Ramond sector

〈ψ(z)ψ(w)〉 =
∑
k,q∈Z

z−k−
1
2w−q−

1
2 〈ψkψq〉 =

1

2
√
zw

+
∞∑
k=1

z−k−
1
2w−k−

1
2 =

1√
zw

[
1

2
+
∞∑
k=1

(w
z

)k]
=

1

2
√
zw

z + w

z − w
=

1

2

√
z
w

+
√

w
z

z − w
,

(2.90)

where we have used the fact 〈ψkψq〉 = δn+m,0. In fact, observing that

1

z − w
=
∑
n

wn

zn+1
=
∑
m

wm−
1
2 z−m−

1
2 , (2.91)

from the OPE (2.85) we have∑
n,m

z−n−
1
2w−m−

1
2 〈ψnψm〉 =

∑
m

wm−
1
2 z−m−

1
2 (2.92)

which gives the desired result.
Notice that expression (2.90) is consistent with (2.85) since it gives exactly the same expression
in the limit z → w . It is easy to compute

〈ψ(z)∂ψ(w)〉 = −1

2

√
z
w

+
√

w
z

(z − w)2
+

1

4

1

w
3
2 z

1
2

(2.93)

which leads to

〈T (z)〉 =
1

16z2
. (2.94)

Thus, since L0 is the mode multiplied by z−2 in the expansion of the stress-energy tensor, in
the Ramond sector we have

Ln = 1
2

: ψ∂ψ :n n 6= 0 ,
L0 = 1

2
: ψ∂ψ :0 + 1

16
.

(2.95)

The NS sector space of states is built in a manner similar to the one of the free boson. Starting
from the vacuum state |0〉, which is again the state annihilated by all the non-negative modes
ψr and ψs, we can obtain the space of states by state-field correspondence

HNS =
{

Fock space freely generated by ψ−r, ψ−s acting on |0〉 , r, s > 0
}

. (2.96)
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The space of states of the Ramond sector is slightly more complicated because of the presence
of zero modes ψ0 and ψ0 which do not change the eigenvalue of L0: there is a degenerate
vacuum. In particular, if one allows the existence of both chiral and antichiral conserved
fermion numbers, there are four ground states and we label them with

|0〉L± ⊗ |0〉R± , (2.97)

where L and R stand for the chiral sector (corresponding to ψ) and the antichiral sector (corre-
sponding to ψ) respectively.See [13] for a more detailed discussion. State-field correspondence
will work as before but now the fields can be applied to each vacuum separately. So

HR =
{

Fock space freely generated by ψ−r, ψ−s acting on |0〉L± ⊗ |0〉R± , r, s > 0
}

. (2.98)

2.5.3 Kac-Moody algebras

A lot of conformal field theories have chiral algebras that are bigger than just the Virasoro
algebra. One example which is particularly interesting is given by theories whose chiral algebra
contains a Kac-Moody algebras. We will see in section 3 that, for example, N = 4 supercon-
formal field theories possess a chiral algebra containing a Kac-Moody algebra.
We have seen that for a free boson the modes of the current j = i∂X(z, z) satisfy the commu-
tation relations

[jn, jm] = nδn+m,0 , (2.99)

we want now to consider more general systems. An obvious generalization is to consider a
system made by currents, i.e. primary fields of conformal dimension h = 1, whose components
generate, via the commutation relations, a Kac-Moody algebra. Given a finite-dimensional,
semi-simple Lie algebra g generated by currents ji, i = 1, . . . , dimg, with commutation relations

[ja, jb] = ifabcjc , (2.100)

the Kac-Moody algebra ĝk of level k is defined by the commutation relations

[jam, j
b
m] = ifabcjc + kmδabδm+n,0 , (2.101)

we have used Einstein convention in which repeated indices are summed over.
We will then consider the system made up by currents with the following OPE

ja(z)jb(w) =
kδab

(z − w)2
+

ifabc

z − w
jc(w) . (2.102)

The commutation relations of the modes of these currents give exactly (2.101), in fact

[
jan, j

b
m

]
=

∮
dw

2πi

∮
dz

2πi
znwm[ja(z), jb(w)] =∮

dw

2πi

∮
dz

2πi
znwm

kδab

(z − w)2
+

ifabc

z − w
jc(w) =∮

dw

2πi
wn+mifabcjc(z) +

∮
dw

2πi
mzn+m−1kδab = ifabcjcn+m(z) + kmδabδn+m,0 .

(2.103)

We want to build a stress-energy tensor, whose modes satisfy the Virasoro algebra, such that
the currents ji(z) are primary fields of conformal dimension h = 1. The general construction
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is called the Sugawara construction (see [12]). Guided by analogy with the free boson, we will
just use the ansatz

T (z) = C : ja(z)ja(z) : . (2.104)

Using the Kac-Moody algebra commutation relations, one easily obtains

[Lm, j
a
n] = −2Cn(k + Cg)j

a
n+m , (2.105)

where Cg is the dual Coxeter number given by

f bacf bcd = −2Cgδ
ab . (2.106)

In order for the currents to be primary fields of conformal dimension h = 1 we have to choose
the normalization of C such that

T (z) =
1

2(k + Cg)
: ja(z)ja(z) : , (2.107)

with some computations one can show that the modes of this form of the stress-energy tensor
also satisfy the Virasoro algebra commutation relations.

The same construction can be repeated analogously with antiholomorphic currents j
i
(z) of

conformal dimension h = 1.
It is useful to notice that, from (2.101), the zero modes form a subalgebra isomorphic to g. So
in particular, systems which possess a chiral algebra containing a Kac-Moody algebra ĝ admit
the group with algebra g, generated by the zero modes, as a symmetry group.

2.6 Conformal field theory with toroidal worldsheets

In the previous sections we have discussed conformal field theory defined on the complex plane.
For many applications in string theory, it is useful to consider theories defined on the torus. We
will make use of what we have defined up to now for conformal field theories on the complex
plane since a torus can be defined identifying the points of the complex plane C.
Given two complex numbers α1, α2 ∈ C we define an equivalence relation ∼ through

z ∼ z +mα1 + nα2 , (2.108)

then our torus will simply be

T = C/ ∼ . (2.109)

The shape of the torus is described by the modular parameter τ := α1

α2
. However different choice

for α1,α2 can parametrize the same torus. To see this let us considered the lattice spanned by
(α1, α2), the torus is given by identifying opposite “sides” of this lattice. If β1, β2 ∈ C span the
same lattice then (

β1

β2

)
=

(
a b
c d

)(
α1

α2

) (
a b
c d

)
,∈ SL(2,Z)

Z2
(2.110)

must hold since when inverting (2.110) we want the inverse matrix to have integer entries
and (−α1,−α2) generates the same lattice as (α1, α2). These matrices form the so called
modular group of the torus. We can always choose, through a conformal transformation,
(α1, α2) = (1, τ). The action of the modular group on the modular parameter τ is given by

τ → aτ+b
cτ+d

(
a b
c d

)
∈ SL(2,Z)

Z2
. (2.111)
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The torus is clearly left invariant by a modular transformation. It can be shown, but it is
non-trivial to prove, that the generators of the modular group are the so called S and T
transformations

S : τ → − 1
τ

,
T : τ → τ + 1 .

(2.112)

In the definition of our fields we are now free to chose periodicity conditions with respect to
the two cycles of the torus, i.e. ψ(z + nα1 +mα2) = e2πi(nu+mu)ψ(z) with u, v ∈ {0, 1

2
}.

The partition function of the conformal field theory on the torus is given by

Z(τ) = TrH

(
qL0− c

24 qL0− c
24

)
. (2.113)

For consistency, the partition function of a conformal field theory defined on the torus must be
modular invariant since we want conformal field theories built on the same torus with equivalent
modular parameters to be the same.

2.7 Conformal field theory on orbifolds

In this section we discuss theories in which the scalar fields map the world-sheet into an orbifold

O = M/G (2.114)

i.e. a manifold M in which we identify points which belong to the same orbit of an action of a
discrete group G. This is a particular type of non-linear sigma model, they will be discussed
in generality in section 4. We will follow the approach of [14]. The methods of this section will
be used when we will compute the characters of the orbifold C2/Z3. Orbifolds can be thought
as manifolds with “singularities”, which correspond to the fixed points of the group actions. A
very interesting fact is that strings behave well when encountering these singularities and thus
string theories with an orbifold target space are well-defined.
The easiest way to build the space of states of an orbifold conformal field theory is to start from
the space of states of the parent theory, i.e. the theory with target space M , and to restrict to
the states that are left invariant by the action of the group. However this is not the full space
of the orbifold theory. In fact to each fixed point one must add |G| − 1 twisted sectors Hh,
h ∈ G, which correspond to the fields that satisfy

Φ(e2πi(z)) = ±hΦ(z) , (2.115)

where the sign ± depends on the boundary condition, Ramond or Neveu-Schwarz, if Φ is a
fermionic field. We are denoting with h the action of h ∈ G on the fields. Each twisted sector is
obtained by state-field correspondence acting with twisted fields on the vacuum. Analogously,
it is possible to define a twisted ground state |τh〉 ∈ Hh which is obtained acting on the ground
state of the untwisted sector with an opportune twist field |τh〉 = τh(z, z) |0〉 and all the state
of the twisted sector will be obtained acting with untwisted fields on this ground state. Adding
the twisted sectors can be interpreted as introducing a cut in the world-sheet torus from 0 to
2π ∼ 0 such that (2.115) holds. The need to include this sector is evident when considering
the partition function of a CFT with a toroidal world-sheet. We use the notation

g2
h

:= TrHh

(
gqL0− c

24 qL0− c
24

)
(2.116)

that makes clear which boundary condition we are assuming with respect to the two cycles of
the torus. In the untwisted sector, the projection operator into G invariant states is

P =
1

|G|
∑
g∈G

g , (2.117)
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thus the partition function restricted to G invariant states is

Z(τ, z) =
1

|G|
∑
g∈G

g2
1

. (2.118)

This partition function is not modular invariant. In fact, under a S transformation τ → − 1
τ

g2
1

→ 12
g

(2.119)

because a S transformation exchange the torus whose lattice is spanned by (α1, α2) with the
one whose lattice is spanned by (−α2, α1).
To have a modular invariant partition functions is thus necessary to include also the twisted
sectors. Notice that from (2.115)

gΦ(e2πiz) = (ghg−1)gΦ(z) (2.120)

so Hh
∼= Hghg−1 . Since we are identifying |φ〉 ∈ Hh and |gφ〉 ∈ Hghg−1 to avoid overcounting

of states if the group is non-abelian, the projection operator in the h twisted sector must be
restricted to commuting elements

Ph =
1

|G|
∑
g∈G
hg=gh

g . (2.121)

The total partition function including the twisted sectors is then

Z(τ, z) =
1

|G|
∑
g,h∈G
hg=gh

g2
h

. (2.122)

Since a S transformation, τ → − 1
τ
, sends

g2
h
→ h−12

g
, (2.123)

while a T transformation, τ → τ + 1, sends

g2
h
→ hg2

h
, (2.124)

using the fact that S and T transformations generate the modular group, it is an easy calculation
to show that (2.122) is modular invariant. In fact, under a general modular transformation
τ → aτ+b

cτ+d
we will have

g2
h
→ gdhb2

gcha
. (2.125)
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3. Superconformal field theory

In this section we will discuss the basic aspects of superconformal field theory. We will discuss
N = 1, 2, 4 superconformal algebras and we will introduce some concept that will be important
in the following sections such as the elliptic genus and spectral flow. We will also give the
formulas of the characters of the N = 4 superconformal algebra and give a free field realization
of it.
Supersymmetry (for an introduction see [15]) is a symmetry relating bosons and fermions.
Roughly speaking, it associates to every boson in the theory a certain number of fermions. Its
algebraic structure is realized by anticommutators and, by Coleman and Mandula theorem,
supersymmetry is the only non-trivial extension of the Poincaré algebra of a quantum field
theory with “realistic” properties. Unfortunately there are no experimental evidences that
supersymmetry is realized in nature so far.
The importance of supersymmetry in string theory is related to the fact that supersymmetric
string theories do not contain tachyons in their spectrum, we will discuss this in more detail
in section 4. Since, as we will see in section 4, the perturbative aspects of string theory are
intimately related to conformal field theories, we are interested to study the main properties of
theories which are both supersymmetric and conformal. These are known as superconformal
field theories and come in different kinds depending on how many supercurrents are present.
The number of supercharges is generally denoted with N . We will expose the main aspects of
N = 1, 2, 4 superconformal field theories which are the most interesting cases to consider for
compactification.

3.1 Superconformal algebras

We will enlist here the commutation relations between the generator of N = 1, 2, 4 supercon-
formal algebras.

3.1.1 N = 1

The N = 1 superconformal algebra is generated by the modes of the stress-energy tensor T (z),

and of a supercurrent G(z) =
∑
r

Grz
r− 3

2 , i.e. a holomorphic hermitian (G(z̄†) = G(z)) field of

conformal dimension 3
2
. They satisfy

[Lm, Gr] =
(
m
2
− r
)
Gm+r ,

{Gr, Gs} = 2Lr+s + c
3

(
r2 − 1

4

)
δr+s,0 .

(3.1)

These commutation relations, together with the ones of the Virasoro algebra (2.48), generate
a N = 1 superconformal algebra.
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3.1.2 N = 2

A N = 2 superconformal algebra is an extension of the N = 1 superconformal algebra in which
the supercurrent G(z) splits into G(z) = 1√

2
(G+ + G−) such that (G+(z̄))† = G−(z) and their

modes satisfy

[Lm, G
±
r ] =

(
m
2
− r
)
G±m+r , [Jm, G

±
r ] = ±G±m+r ,

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s + c

3

(
r2 − 1

4

)
δr+s,0 , [Lm, Jn] = −mJm+n ,

{G+
r , G

+
s } = {G−r , G−s } = 0 , [Jm, Jn] = c

3
mδm+n,0 .

(3.2)

We call Q the charge associated with the U(1) current J .

3.1.3 N = 4

A N = 4 Superconformal algebra, which can only occur when c = 6k, is an extension of the
N = 2 superconformal algebra with 3 currents generating a ŝu(2)k Kac-Moody algebra

[Lm, J
3
n] = −nJ3

m+n , [Lm, J
±
n ] = −nJ±m+n ,

[2J3
m, 2J

3
n] = 2kmδm+n,0 , [J3

m, J
±
n ] = ±J±m+n ,

[J+
m, J

−
n ] = kmδm+n,0 + 2J3

m+n , [J±m, J
±
n ] = 0

(3.3)

and 4 supercurrent G±, G′± such that

{
G+
r , G

−
s

}
=
{
G′+r , G

′−
s

}
= 2Lr+s ± 2(r − s)J3

r+s + 2k(r2 − 1

4
)δr+s,0 ,

{G±r , G′∓s } = 2(s− r)J±r+s , {G±r , G′±s } = 0 ,
[Lm, G

±
r ] =

(
m
2
− r
)
G±m+r , [Lm, G

′±
r ] =

(
m
2
− r
)
G′±m+r ,

[J3
m, G

±
r ] = ±1

2
G±m+r , [J3

m, G
′±
r ] = ∓1

2
G′±m+r ,

[J±m, G
∓
r ] = ±G′∓m+r , [J±m, G

±
r ] = 0 ,

[J±m, G
′±
r ] = ∓G±m+r , [J±m, G

′∓
r ] = 0 .

(3.4)

In the following we will mostly interested in the case k = 1, i.e. c = 6. Comparing (3.4) with
(3.2) it is easy to notice that the N = 4 superconformal algebra contains a N = 2 supercon-
formal algebra whit current J = 2J3. In particular, the charges measured with respect to the
current of the N = 2 superconformal algebra are twice the charges measured with respect to J3.
This has to be carefully taken into account when using the formulas of the following sections.
To avoid confusion we will generally denote the charge of J3 with l.

3.2 The space of states

The space of states of a superconformal field theory contains both bosons and fermions. Thus
the representations R, R of the chiral algebras W, W of a superconformal field theory are
Z2 × Z2 graded:

R = Rb ⊕Rf ,
Ri = Ri

NS ⊕Ri
R i = {b, f} ,

R = R
b ⊕Rf

,

R
i

= R
i

NS ⊕R
i

R i = {b, f} .

(3.5)

Where the states in Rb and R
b

are bosonic, while the states in Rf and R
f

are fermionic and
the subscripts stand for the Ramond (R) or Neveu-Schwarz (NS) sector. They correspond to
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the periodicity condition chosen for the fields associated to fermionic states

ψ(e2πiz) = ψ(z) if |ψ〉 ∈ Rf
NS ,

ψ(e2πiz) = −ψ(z) if |ψ〉 ∈ Rf
R

(3.6)

and analogously for antiholomorphic fields.
The full space then decompose as

H = HNS NS ⊕HNS R ⊕HR NS ⊕HR R (3.7)

with
HNS NS =

⊕
i,j

Ri
NS ⊗R

j

NS , HNS R =
⊕
i,j

Ri
NS ⊗R

j

R ,

HR NS =
⊕
i,j

Ri
R ⊗R

j

NS , HRR =
⊕
i,j

Ri
R ⊗R

j

R .
(3.8)

For later convenience, we define the holomorphic fermion number operator (−1)F to be the
unitary operator with eigenvalues ±1 which commutes with holomorphic bosonic fields and
all antiholomorphic fields, it anticommutes with holomorphic fermionic fields and it is such
that (−1)F |0〉 = |0〉. Exchanging holomorphic and antiholomorphic in the previous definition

one obtains the antiholomorphic fermion number operator (−1)F . The operator F count the
number of fermionic state in the holomorphic sector, while F count the number of fermionic
states in the antiholomorphic sector.
Each chiral algebra of a superconformal field theory is a representation of a superconformal
algebra. We will say a theory is (N,N) supersymmetric if the (anti)holomorphic sector is the
space of a representation of a N (N , respectively) superconformal algebra, where if N (N)
is zero it means that the corresponding sector in non-supersymmetric. We are interested in
theories which possess the same supersymmetry in both sectors, and in particular in theories
that are at least N = (2, 2) supersymmetric.
In the following we will extensively work with highest weight representations of the N = (2, 2)
superconformal algebra. A representation with highest weight state |Φ〉, i.e. an eigenstate of
G0 and L0 annihilated by all the positive modes Gn, Ln for n > 0, of conformal dimension
h and charge Q is built as a Fock space acting on |Φ〉 with creation operators L−m, G−r for
m, r > 0 on |Φ〉. Unitarity imposes constraints on the values of (h,Q) of a primary state |Φ〉,
in fact in the NS sector

〈Φ| {G+
± 1

2

, G−∓ 1
2

} |Φ〉 = 〈Φ| 2L0 ∓ J0 |Φ〉 = 2h±Q , (3.9)

but,since (G+(z̄))† = G−(z) implies (G+
r )† = G−−r, we have

〈Φ| {G+
± 1

2

, G−∓ 1
2

} |Φ〉 = ‖G−∓ 1
2

|Φ〉‖2 + ‖G+
± 1

2

|Φ〉‖2 ≥ 0 , (3.10)

so h ≥ |Q|
2

. Representations with h = ±Q
2

are called massless, otherwise they are called massive.
Since we will need them in section 5, we now give character formulas of the irreducible repre-
sentations for the N = (4, 4) superconformal algebra. We consider the unitary highest weight
representations of the N = 4 superconformal algebra. They are built on states which are la-
belled by their conformal weight h and charge l = 1

2
Q. Their construction is the same of the

N = 2 highest weight representations, the only difficulty is that the unitary bound is more
complicated in the N = 4 case. We will work only with holomorphic characters in the Ramond
sector. Given a representation on the vector space V ⊂ HRR its character is given by

chV (τ, z) := TrV (−1)F qL0− c
24yJ0 . (3.11)
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The characters of the highest weight representations of the N = (4, 4) superconformal algebra
can be found in [5], we report them here since they will be used in what follows

chN=4
h,l= 1

2

(τ, z) = qh−
3
8
θ1(τ,z)2

η(τ)3 ,

chN=4
h= 1

4
,l=0

(τ, z) = θ1(τ,z)2

η(τ)3 µ(τ, z) ,
(3.12)

where

µ(τ, z) :=
−ieπiz

θ1(τ, z)

∞∑
n=−∞

(−1)n
q

1
2
n(n+1)e2πinz

1− qne2πiz
. (3.13)

In the previous formulas there is a little abuse of notation since the form of character with
(h = 1

4
, l = 1

2
) is not the one for a single representation but rather it involves a sum of them.

The correct formula would be

chN=4
h= 1

4
,l= 1

2
(τ, z) = qh−

3
8
θ1(τ, z)2

η(τ)3
− 2

θ1(τ, z)2

η(τ)3
µ(τ, z) . (3.14)

When evaluated at z = 0, the true characters take the following values

chN=4
h= 1

4
+n,l= 1

2

(τ, 0) = 0 ,

chN=4
h= 1

4
,l=0

(τ, 0) = 1 ,

chN=4
h= 1

4
,l= 1

2

(τ, 0) = −2 .

(3.15)

In particular the massive character in the limit n→ 0 is 0 when evaluated at z = 0, while the
true massless character takes value −2 at z = 0.
We will mostly use the notation with abuses in the following except when stated otherwise.
We will also present here a free fields realization of a N = (4, 4) superconformal field theory, it
will be used in section 6.2. A N = 4 superconformal algebra can be realized with 4 free boson
currents ji = ∂Xi and 4 free fermions ψi, i = 1, . . . , 4. The fields that realize (3.4) are given by

J3 = 1
2

(
: ψ

(1)
+ ψ

(1)
− : + : ψ

(2)
+ ψ

(2)
− :
)

, J± = ± : ψ
(1)
± ψ

(2)
± : ,

G± =
√

2
(

: ψ
(1)
± j

(1)
∓ : + : ψ

(2)
± j

(2)
∓ :
)

, G
′± =

√
2
(

: ψ
(1)
∓ j

(2)
∓ : − : ψ

(1)
∓ j

(1)
∓ :
)

,

T =: j
(1)
+ j

(1)
− : + : j

(2)
+ j

(2)
− : +1

2

(
: ∂ψ

(1)
+ ψ

(1)
− : + : ∂ψ

(1)
− ψ

(1)
+ : + : ∂ψ

(2)
+ ψ

(2)
− : + : ∂ψ

(2)
− ψ

(2)
+ :
)

,

(3.16)
where we have introduced the complex fields

ψ1
± = 1√

2
(ψ1 ± iψ2) , ψ2

± = 1√
2
(ψ3 ± iψ4) ,

j1
± = 1√

2
(j1 ± ij2) , j2

± = 1√
2
(j3 ± ij4) .

(3.17)

3.2.1 Spectral flow

We will now describe an important feature of theories which are at least N = 2 superconformal,
the spectral flow. It consists of a continuous deformation of the N = 2 superconformal algebra
generators which leave the commutation relations (3.2) unchanged.
We can describe a one parameter family of N = (2, 2) superconformal algebras, if we allow
r ∈ R for the modes of G±r , by sending (Ln, Jn, G

±
r )→ (Lθn, J

θ
n, G

θ±
r ) with

Lθn := Ln + θJn + c
6
θ2δn,0 , Jθn := Jn + c

3
θδn,0 , Gθ±

r := G±(r±θ) θ ∈
[
−1

2
, 1

2

)
. (3.18)

It is easy to show that these modes satisfy again (3.2). θ = −1
2

gives the representation of the
N = (2, 2) superconformal algebra in the Ramond sector. There the constraint due to unitarity,
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given by the expectation value of {G+
0 , G

−
0 }, is h ≥ c

24
.

The above transformation is generate by a U(1) operator Uθ =: eθJ :, when θ ∈
{
−1

2
, 1

2

}
it

is called spectral flow operator. It is easy to show that the action of a (left-right symmetric)
spectral flow on a state with quantum numbers (h,Q;h,Q) is given by

(h,Q;h,Q)
U± 1

2
U± 1

2−−−−−→
(
h± Q

2
+

c

24
, Q± c

6
;h± Q

2
+

c

24
, Q± c

6

)
. (3.19)

3.2.2 The elliptic genus

We will now introduce the elliptic genus, which will play a crucial role in the following part of
this work. For more informations see [16] and [17].
We will give the conformal field theory definition of the elliptic genus. There is also a geometric
definition for Calabi-Yau manifolds but we will not worry about that, we just state without
proof that the two coincide for non-linear sigma models on Calabi-Yau manifolds.
The (conformal field theoretic) elliptic genus of a unitary N = (2, 2) superconformal field theory
(on the torus) is given by:

φ(τ, z) := TrHRR

[
(−1)F qL0− c

24yJ0(−1)F qL0− c
24

]
, (3.20)

where q = e2πiτ and y = e2πiz.
We will now state, without proof, some properties of the elliptic genus.
The elliptic genus is independent of q̄ and it is a weak Jacobi form of index m = c

6
and weight

w = 0, i.e. it transforms as:

φ
(
aτ+b
cτ+d

, z
cτ+d

)
= (cτ + d)we2πim cz2

cτ+dφ(τ, z)

(
a b
c d

)
∈ SL(2,Z) ,

φ(τ, z + lτ + l′) = e2πim(l2τ+2lz)φ(τ, z) l, l′ ∈ Z
(3.21)

and has the following Fourier expansion:

φ(τ, z) =
∑

n≥0,l∈Z

c(n, l)qnyl

with c(n, l) = (−1)wc(n,−l). The transformation properties of the elliptic genus can be explic-
itly verified using the path integral formulation, see for example [18].
The most important property is perhaps the fact that the elliptic genus is constant on each
connected component of the moduli space of a N = (2, 2) superconformal field theory.
The elliptic genus for a K3 surface was computed in [19] and equals to (see appendix A for the
definition of the Jacobi theta functions)

φK3(τ, z) = 8

[(
θ2(τ, z)

θ2(τ, 0)

)2

+

(
θ3(τ, z)

θ3(τ, 0)

)2

+

(
θ4(τ, z)

θ4(τ, 0)

)2
]

. (3.22)

If the conformal field theory has a finite symmetry group G which commutes with the super-
conformal symmetry, it is useful to introduce also the twining genus associated to g ∈ G

φg(τ, z) := TrHRR

[
g(−1)F qL0− c

24yJ0(−1)F qL0− c
24

]
. (3.23)

The twining genera are conjectured to transform as weak Jacobi forms of index 1 and weight
0, possibly up to a phase, under the group

Γ1(N) =

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 mod N, d ≡ 1 mod N

}
, (3.24)

where N is the order of g.
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4. Non-linear sigma models and string
theory

Now that we have discussed the basic properties of 2-dimensional conformal field theories, we
can discuss the main features of their application in string theory. We will not give a ped-
agogical introduction to string theory, see [1] and [2] for a good introduction to strings and
superstrings. We will just try to condense the basic results found there in this section to give
an idea of the setting in which this work takes place.

4.1 Bosonic strings

The underlying idea that defines string theory is to consider, as the fundamental elements
of the theory, not point-particles but 1-dimensional objects called strings. It is well known
that parametrizing the space-time coordinates of a point particle Xµ = Xµ(τ) the locus of
the particle’s coordinates will be a line called the world-line. A 1-dimensional object, instead,
will sweep out a 2-dimensional surface M , sometimes called the world-sheet. We will not use
this terminology to avoid confusion with the space of the parameters referred with the same
name. In fact we can parametrize the 2-dimensional surface swept out by the strings with
two parameters, generally denoted with (τ, σ), and this is what we will call the world-sheet.
We will call the space in which the strings “live” the target space. As in the point-particle
case, it is important that the physical properties of our theory, and in particular the action,
do not depend on the parametrization. Furthermore, we know that the point-particle action is
proportional to the proper time along the world-line. So the simplest Lorentz invariant action
with these properties we can write for the strings is proportional to the area of the surface they
sweep, the so-called Nambu-Goto action

SNG = − 1

2πα′

∫
M

dτdσ
√
−h , (4.1)

where α′ is a constant with the dimension of a length squared and it related to the magnitude of
the string length (or, equivalently, energy). At energy scales much lower than α′ the string will
behave as a point particle and its behaviour is well approximated by an ordinary quantum field
theory. We have denoted with h the determinant of the induced metric hab = ∂aX

µ∂bX
νgµν

where gµν is the target space metric. It is in general more useful to work with the Polyakov
action

SP = − 1

4πα′

∫
M

dτdσ
√
−γγab∂aXµ∂bXµ , (4.2)

we will use the convention that greek indices are always contracted with the target space metric.
Here the worldsheet metric γab = γab(τ, σ) is a field as the Xs. We have denoted with γ its
determinant and with γab the components of its inverse. It is a simple calculation to show
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that when the equation of motion for γ are satisfied the Polyakov action coincides with the
Nambu-Goto action. Polyakov action exhibit a new symmetry not present in the Nambu-Goto
action, 2-dimensional Weyl invariance

X ′µ(τ, σ) = Xµ(τ, σ) ,
γ′ab(τ, σ) = e2ω(τ,σ)γab(τ, σ) ,

(4.3)

where ω(σ, τ) is an arbitrary real local parameter.
Defining the stress-energy tensor

T ab(τ, σ) = −4π
√
−y δ

δγab
SP , (4.4)

it is easy to show that Weyl invariance implies it is traceless Ta
a = 0. To work with the Polyakov

action, in particular with the path integral formulation, it is necessary to choose a gauge fixing
of the metric with respect to diffeomorphism×Weyl invariance of the Polyakov action. It is
generally useful to work with flat metrics, in 2 dimension is enough to choose Ricci-flat metrics.
However there is a residual gauge: working with complex coordinates z = τ + iσ let us consider
a holomorphic coordinate transformation

z′ = f(z) (4.5)

with f(z) a holomorphic function, combined with a Weyl transformation. The gauge-fixed
metric transforms as

ds′2 = e2ω|∂zf |−2dz′dz′ . (4.6)

In particular, for ω = ln |∂zf | the metric is invariant. Thus, after the gauge fixing, the action is
invariant under the residual gauge of holomorphic transformation of the complex coordinates.
Since we have seen in section 2 that the holomorphic functions make up the local conformal
group, after gauge fixing, all we have left to deal with is a 2-dimensional conformal field theory
on the world-sheet. Thus the perturbative quantum aspects of string theory reduce to the study
of an opportune 2-dimensional conformal field theory. This makes connections with what we
have seen in the previous sections of this work. Notice that if we fix γab = δab Polyakov action
coincides with the free boson action of section 2.69.

4.1.1 Bosonic closed string spectrum

We will now discuss briefly the spectrum of bosonic closed strings, for more details see [1].
Notice that the worldsheet of a closed string is a cylinder giving thus a natural interpretation
to the step that led to radial quantization in section 2. We gauge-fix the worldsheet metric
to be the flat Minkowsky metric, by working in light-cone gauge, i.e. we make a change of
coordinates with a Lorentz transformation Xµ → X ′µ = (X+, X−, X2, . . .) where

X± =
1√
2

(X0 ±X1) , (4.7)

we will fix the residual gauge imposing X+ = τ . Choosing opportunely the units, the equations
of motion become

∂a∂
aXµ = 0 (4.8)

with a = τ, σ, with the constraint (coming from the equation of motion of the worldsheet metric
which now is fixed)

(∂τX + ∂σX)2 = 0 . (4.9)
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For closed strings we have X i(τ, σ+ 2π) = X i(τ, σ) and the general solution of the equation of
motion (4.8) for the transverse coordinates is given by

X i(τ, σ) = xi +
pi

p+
τ + i

√
α′

2

∞∑
n=−∞
n6=0

αin
n
e−

2πin
l

(σ+τ) +
α̃in
n
e−

2πin
l

(σ−τ) (4.10)

with
xµ = 1

2π

∫ 2π

0
dσXµ(τ, σ) ,

pµ =
∫ 2π

0
dσΠµ ,

(4.11)

where L is the Lagrangian associated to the Polyakov action and Πµ = ∂L
∂(∂τXµ)

is the canonical

momentum associated to Xµ. The independent degree of freedom of (4.10) are the transverse
oscillator αin, α̃in and the longitudinal center-of-mass variables xi, pi, x−, p+. To quantize the
theory we can impose the usual equal time commutation relations of canonical quantization

[X−(σ),Π−(σ′)] = iδ(σ − σ′) ,
[X i(σ),Πj(σ′)] = iδijδ(σ − σ′) .

(4.12)

These imply, after some computations

[x−, p+] = −i , [xi, pj] = iδij ,
[αim, α

j
n] = mδijδm,−n , [α̃im, α̃

j
n] = mδijδm,−n .

(4.13)

The space of state is built as a Fock space acting with the transverse oscillators on a state
|0, 0, k〉 which is annihilated by all the positive modes αin, α̃in, for n > 0 and has momentum
pµ |0, 0, k〉 = kµ |0, 0, k〉. A general state will have the form

|N, Ñ, k〉 =

D−1∏
i=2

∞∏
n=1

(αi−n)Nin (α̃i−n)Ñin√
nNinNin !ñÑin Ñin !

 |0, 0, k〉 . (4.14)

As usual in quantum field theory the space of state must be restricted to gauge invariant state.
In particular, invariance under σ-translations implies for a physical state N = Ñ . Using this,
after a normal ordering procedure it is possible to show that the mass of physical states is
(see [1])

m2 =
4

α′

(
N +

2−D
24

)
, (4.15)

where D is the dimension of the target space. As we will point out later, to have a consistent
bosonic string theory the target space must have dimension D = 26. In particular, for N =
Ñ = 0, the state |0, 0, k〉 has negative mass squared and it is thus a tachyon. Apart from the
fact that tachyons have never been observed, their presence would make the vacuum unstable.
At the next level N = Ñ = 1, for D = 26, we have the massless states

αi−1α̃
j
−1 |0, 0, k〉 , (4.16)

they transform as 2-vectors under SO(D − 2) (notice that light-cone gauge preserves only
SO(D − 2) out of the full SO(D − 1) space-rotations group in D dimensions). This is a
reducible representation and it decomposes into a symmetric traceless tensor, an antisymmetric
tensor and a scalar. The symmetric traceless tensor can be identified with a graviton, the
antisymmetric tensor is called the Kalb-Ramond field, while the scalar is referred as the dilaton.
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4.2 Superstrings

The action SP is not the more general action we can write for string theory, in particular we
see the absence of fermionic fields that we need to include if we hope to make any connection
with well established physics. We have already studied an example of fermionic conformal field
theories in section 2.5.2, so a simple modification to the Polyakov action (4.2) is to add to
the action the fermion action (2.81). In general it is more interesting to consider supersym-
metric string theory, in fact non-supersymmetric string theory have unsuitable properties like
the presence of tachyons in their spectrum. We then add for each free boson a free fermion.
The system built in this way possesses N = 1 worldsheet superconformal symmetry with the
holomorphic supercurrent in the NS sector given by G(z) = iψµ∂Xµ. The elimination of the
tachyons from the spectrum and the promotion of worldsheet supersymmetry into space-time
supersymmetry is achieved through the so called GSO projection. Long story short, this is done
by keeping in the spectrum only states with a particular eigenvalue under the chiral fermion
number operators (−1)FL , (−1)FR (they are definite in a similar way to the holomorphic and
antiholomorphic fermion number operators discussed in section 3). Different consistent choices
of the eigenvalues in the various sectors of the superstring spectrum defines different theories,
in particular

Left sector Right sector

Type IIA

{
NS +
R -

} {
NS +
R +

}
Type IIB

{
NS +
R -

} {
NS +
R -

} ,

where the Neveu-Schwarz sector and the Ramond sector depend on the periodicity conditions
of the fermions and are defined as in section 3.
Up to now we have not specified the properties of the target space. As we said before, it turns
out that in order to have consistent string theories the dimension of the target space cannot be
arbitrary but it is fixed by the theory itself. The constraint can be derived by the requirement
of the cancellation of the Weyl anomaly, in order to have Weyl invariance preserved also at the
quantum level, and this fixes the central charge the conformal field theory must have. Since the
central charge is related to the number of bosons and fermions present (each one is a component
of field in the target space) this fixes the dimension of the target space itself. Analogously the
same constraint can be derived if one uses a non-covariant quantization, for example working
in light-cone gauge, and then requires that the final correlation functions are Lorentz covariant.
Independently of which method one chooses at the end one obtains that the allowed dimensions
for the target space are

D = 26 bosonic strings ,
D = 10 superstrings .

(4.17)

We will focus on the supersymmetric case. The appearance of extra dimensions apart from
the usual 4 that are observed requires attention in order to not be trivially in conflict with
experiments done so far. A possible solution is that the extra dimensions are very small so that
their presence was not revealed by the experiments up to now. With this interpretation, the
target space of superstrings will then have the form

X = M4 × Y 6 , (4.18)

where M4 is a 4-dimensional Minkowski space-time and Y 6 is a compact 6-dimensional Rie-
mannian manifold. The conformal field theory corresponding to string with such a target space
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will factorize into two conformal field theories, one corresponding to M4 and one correspond-
ing to Y 6. One way to study (super)string theory on the latter target space is to consider a
(supersymmetric) non-linear sigma model. We will now discuss briefly the main properties of
nonlinear sigma models (see also [20]), for a review of the basic notions of complex geometry
see appendix B .

4.3 Supersymmetric NLSM

A non-linear sigma model is a 2-dimensional conformal field theory whose scalar (i.e. h =
h̄ = 0) fields are maps from a 2 dimensional worldsheet Σ (typically a Riemann surface) to a
Riemannian manifold X. X is called the target space of the non-linear sigma model.
The action for a supersymmetric non-linear sigma model is given by

S =
1

4πα′

∫
Σ

d2z(Gµν(X) +Bµν(X))∂zX
µ∂zX

ν +Gµν(X)(ψµDzψ
ν + ψ

µ
Dzψ

ν
)+

1

2
Rµνρσψ

µψνψ
ρ
ψ
σ

+ α′Φ(X)R(2) ,

(4.19)

where the Xµs are bosonic fields from the worldsheet Σ to X, the metric Gµν is the pullback to
the worldsheet of the metric on X through the Xµ fields, Rijkl is the pullback of the Riemann
curvature on X, the Kalb-Ramond field Bµν(φ) is an antisymmetric closed 2-form on the target
space pulled back to the worldsheet, the dilaton Φ is a scalar function of the coordinates, R(2) is
the Ricci scalar of the worldsheet Σ and the ψ (ψ respectively) fermionic fields are sections of the
(anti)holomorphic cotangent bundle T ∗(1,0)X (T ∗(0,1)X respectively). The covariant derivatives
are given by

Dzψ
ν = ∂zψ

ν + Γνρσ(X)∂zX
ρψσ ,

Dzψ
ν

= ∂zψ
ν + Γνρσ(X)∂zX

ρψ
σ

,
(4.20)

where Γ is the Christoffel connection.
We want the previous action to be conformal invariant in order to obtain a consistent string
theory. The simplest way to guarantee conformal invariance, although not the only one (see
for example [21]), is to fix the dilaton to be constant with a saddle-point approximation and
the metric to be Ricci-flat. The role of the dilaton is to fix the coupling costant of the theory.
Furthermore, since in 2 dimensions the integral of the Ricci scalar is related to the Euler
characteristic by

χ(Σ) =
1

4π

∫
Σ

√
gR(2)d2z (4.21)

and for a Riemann surface Σ the Euler characteristic takes the constant value χ(Σ) = 2− 2g,
the genus g of the worldsheet determines the order of the coupling constant one is working
with.
For a fixed order in perturbation theory we can then simply work with the action

S =
1

4π

∫
Σ

d2z(Gµν(X) +Bµν(X))∂zX
µ∂zX

ν +Gµν(X)(ψµDzψ
ν + ψ

µ
Dzψ

ν
)+

1

2
Rµνρσψ

µψνψ
ρ
ψ
σ

.

(4.22)

It is useful to stress that unless both the metric and the Kalb-Ramond field are constant, the
previous action is not quadratic in the fields and then contains interactions. The coupling
of these interactions depends on the curvature of the target space, in particular they will be
weakly coupled for small values of the curvature while for large curvature the non-linear sigma
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model is strongly coupled and thus difficult to study.
The nonlinear sigma model with action (4.22) is N = 1 supersymmetric. If we want to extend
the N = 1 supersymmetry we will need to impose geometric constraints on the target space. In
fact an infinitesimal supersymmetry transformation will have the form δεX

i = εlijψ
j for some

l ∈ Γ(TX
⊕

T ∗X). While for N = 1 supersymmetry it is possible to choose a normalization
such that lij = δij, it has been shown in [22] that for N = 2 supersymmetry the second lij is an
almost complex structure that gives the target space the structure of a Kähler manifold and
for N = 4 there are 3 almost complex structures which give the target space the structure of a
hyperkähler manifold. These results are actually independent of conformal invariance, adding
the previous requirements to our theory, which we already said comprehend the Ricci-flatness
of the metric, we restrict the target space to be a Calabi-Yau manifold. Actually the Ricci-
flatness of the metric is true only at the lowest order in the perturbative expansion, while it
could receive corrections at higher orders. However for theories which possess at least N = 4
supersymmetries a Ricci-flatness is an exact requirement.
Due to the complexity of 6-dimensional1 Calabi-Yau manifolds, generally non-linear sigma mod-
els on them are too complicated to study their properties in detail. Thus a lot of effort has
been put in understanding first the properties of non-linear sigma models on 4-dimensional
Calabi-Yau manifolds with the hope to find ideas that could be generalized or that could shed
light on the more complicat 6-dimensional case. Furthermore some 6-dimensional Calabi-Yau
manifolds are obtained locally by taking the cartesian product of a 4-dimensianal Calabi-Yau
times a 2-dimensional one, in these cases the extension is trivial since the only 2-dimensional
Calabi-Yau manifolds are the tori.
4-dimensional Calabi-Yau manifolds are simpler to study and they come into only two different
kinds: the tori and K3 surfaces. The latter are the more interesting ones since they exhibit
a lot of non-trivial features, while it is still possible to exploit N = 4 supersymmetry, thanks
to the fact that K3 surfaces possess a hyperkähler structure, to simplify the treatment of the
non-linear sigma model. Moreover K3 surfaces possess some simple orbifold limits (such as
T4/Z2 and T4/Z3) in which the non-linear sigma model can be fully solved.

4.4 Moduli space of NLSM on K3

Given the definition and the basic properties of a non-linear sigma model, we will now discuss
briefly the moduli space of non-linear sigma models on K3 surfaces. The moduli space can
be seen as the space of inequivalent conformal field theories, arising form the non-linear sigma
model, we can build on K3 surfaces. From the action (4.22) we see that the free parameters
we can vary are the metric Gµν and the Kalb-Ramond field Bµν . By changing the metric we
target different geometries on K3 surfaces, it can been shown that the geometric moduli space
of Einstein metrics on K3 surfaces is 58 dimensional (see [20]). We have said that the Kalb-
Ramond field is a closed 2-form, actually we are interested in the cohomology class of B since
any exact part will not contribute to (4.22). The dimension of the second cohomology group
of a K3 surface is 22 (see again [20]). So in total we have 80 parameters spanning the moduli
space of K3 surfaces.
We will now give the form of the moduli space of non-linear sigma models on K3 surfaces.
Let Γa,b be the unique self-dual lattice in a + b dimensions with signature (a, b) (see appendix
C), O(a, b) be the orthogonal group on Ra,b ⊃ Γa,b, with a metric having signature (a, b),
O(Γa,b) < O(a, b) the subgroup preserving Γa,b and O+(a, b) the index 2 subgroup of O(a, b)
whose maximal compact subgroup is SO(a) × O(b). It has been shown that O+(Γ4,20) is a

1We will always refer to the real dimension of the manifold.
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group of equivalence between different non-linear sigma models. It contains the diffeomorphisms
between different K3 surfaces and translations of the Kalb-Ramond field of the type B → B+e
with e ∈ H2(X,Z) (since such a translation just shifts the action by 2πi). In addition to these
geometric symmetries, it can also contain symmetries that do not correspond to a manifest
symmetry of the non-linear sigma model action. This is the case, for example, of mirror
symmetry. For a more detailed discussion see [20] and [23].
It has been shown that the moduli space of non-linear sigma models on K3 surfaces is given by

M = (SO(4)×O(20))\O+(4, 20)/O+(Γ4,20) . (4.23)

In particular we see that (SO(4)× O(20))\O+(4, 20) ⊂ R4,20 ∼= Γ4,20 ⊗Z R is the Grassmanian
of positive four-planes, i.e. the space of positive four planes contained in R4,20. Thus choosing
a point in M is equivalent to choose a four-plane in Γ4,20⊗Z R. The set of singular four planes,
i.e. the planes orthogonal to a root v ∈ Γ4,20 with v2 = −2, correspond to the singular limits
of non-linear sigma models on K3 surfaces.
For later purposes, since they will be interesting when we will introduce umbral moonshine in
the next section, we will now discuss briefly the symmetries of non-linear sigma models on K3
surfaces which preserve N = (4, 4) supersymmetry and the spectral flow. The classification of
these symmetries was initiated in [24] and completed in [25] where singular points were included.
In the non-singular case, given a plane Π corresponding to a point in M , the symmetry group
G of the non-linear sigma model corresponding to Π is given by

G = Stab(Π) , (4.24)

where we are denoting with Stab(Π) the largest subgroup of O(Γ4,20) whose action on Γ4,20⊗ZR
fixes Π point-wise.
For the non-singular case there is a complete classification of the Stab(Π)s (see [24] and [26]).
For some of the groups, it has been found an explicit description of the corresponding non-linear
sigma model (generally as an orbifold of T4) while for many others the corresponding non-linear
sigma model is not well understood. This is the case, for example, of the group L2(11) which
will be considered in section 6, as part of the original work of this master thesis, in an attempt
to try to better understand the properties of such models.
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5. Moonshine

The term moonshine is used to denote some surprising relationships between representations of
finite groups and certain modular forms, traditionally thought as part of independent branches
of mathematics. Even more interesting is the fact that these phenomena have deep connections
with some physical models. In fact, for example, the construction of the monstrous moonshine
module can be understood considering the space of state of an opportune CFT. Furthermore,
Mathieu moonshine (which turned out to be a particular case in the more general class of
phenomena known as umbral moonshine) was discovered decomposing the elliptic genus of K3
into irreducible characters of N = 4 superconformal algebra. More generally, the appearance
of the umbral moonshine phenomenon in the elliptic genus of K3 is of great interest given the
role that K3 surfaces play in the effort to understand string compactification. Understanding
the umbral moonshine phenomenon could lead to a better comprehension of non-linear sigma
models on K3 surfaces. Conversely, a physical understanding could shed light to the mathe-
matical structure underlying the moonshine phenomena. In fact, despite the efforts of the last
few years, a clear and complete physical explanation of the appearance of moonshine in the
elliptic genus of K3 surfaces is still missing and its discovery could give important insights and
new ideas useful in the topic of string compactification.
In this section we will first describe briefly Monstrous moonshine and umbral moonshine fol-
lowing the approach of [27]. The exposition is thought to just discuss the main ideas behind
their construction in order to give a the necessary background to understand the context in
which the Master thesis work lays.

5.1 Monstrous Moonshine

Monstrous moonshine was the first and most studied example of the moonshine phenomena.
The conjecture was initiated by McKay observation (extended by Thompson) that the first
coefficients in the expansion of the Klein J-function

J(τ) =
E3

4(τ)

η24(τ)
− 744 = q−1 + 196884q + 21493760q2 + 864299970q3 + . . . (5.1)

can be written as particularly simple positive linear combinations of the dimensions of irre-
ducible representations of the Monster group M, which is the largest sporadic group and has
order 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71. In particular

196884 = 1 + 196883 ,
21493760 = 1 + 196883 + 21296876 ,

864299970 = 2 · 1 + 2 · 196883 + 21296876 + 842609326 ,
· · ·

(5.2)

The importance of the Klein J-function lays in the fact that it is the unique (up to modular
transformations) generator of modular functions. Modular functions are meromorphic functions
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f : H → C which grow, as τ → ∞, like e2πiτm and such that f(γτ) = f(τ) under a modular
transformation

γ : τ → aτ+b
cτ+d

(
a b
c d

)
∈ SL(2,Z) . (5.3)

We are denoting with H the complex upper-half plane H := {τ ∈ C : Im(τ) > 0}. We
more generally consider the complex upper-half plane extended by including the cusps i∞ ∪
Q. Modular functions form a function field with a unique generator called the Haptmodul.
Modular functions are a particular case of modular forms of weight k. The latter are defined
as holomorphic functions on H that, under a modular transformation (5.3) transform as

f(τ) = (cτ + d)−kf

(
aτ + b

cτ + d

)
. (5.4)

A natural generalization is to consider the transformation properties valid only for some sub-
group Γ ⊂ SL(2,Z). We will write fΓ to indicate that f is modular only under transformations
with parameters in Γ.
Monstrous moonshine conjecture states that, for each g ∈M, writing

J(τ) =
∑
n≥−1

dimVnq
n , (5.5)

where Vn are the spaces of representations of the monster group, the McKay-Thompson series

Tg(τ) :=
∑
n≥−1

TrVn(g)qn (5.6)

coincides with the unique Haptmodul JΓg with expansion q−1 +O(q) at τ = i∞ for some genus
zero subgroup1 Γg such that Γ0(N) / Γg ≤ SL(2,R) for some N dividing |g|gcd(24, g). The
group Γ0(N) is defined as

Γ0(N) :=

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 mod N

}
. (5.7)

A first important step toward a proof of the Monstrous moonshine conjecture was obtained by
Frenkel, Lepowsky and Meurman in [7] and [8] with the construction of the monster module2

V . This was achieved considering the space of states of a particular conformal field theory
in 2 dimensions. The starting point to construct V is to consider 24 chiral bosons X i(z)
compactified on the 24-dimensional torus R24/Λ, where Λ is the Leech lattice (see appendix
C). The partition function of this model has has the expansion ZR24

Λ

(τ) = q−1 + . . .. Since the

partition function is modular invariant it has to be equal to J(τ) up to an additive constant.
Since the Leech lattice has no root, it is possible to show that

ZR24/Λ(τ) = J(τ) + 24 . (5.8)

In fact it can be shown that the additive constant correspond to the number of currents and,
for a torus R24/L, they are equal to the number of bosons plus the number of roots of L. To
eliminate this constant is sufficient to consider a Z2 orbifold of this theory acting as X i → −X i.
The module V is the direct sum of Z2 invariant projections of the untwisted and twisted sectors.
The partition function of this model, which can be easily computed with the methods of section

1We call a subgroup G of SL(2,R) a genus zero subgroup if JG is a biholomorphic map between H/G and a
genus zero Riemann surface. Notice that, in particular, SL(2,Z) is genus zero since J maps biholomorphically
H/SL(2,Z) into the Riemann sphere C ∪∞.

2Given a group G, a G module is simply the space of a representation of G.
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2.7, is exactly equal to J(τ). Furthermore the monster group is a symmetry group of this model
so V must be the space of a representation of M (see [27] for a more detailed discussion).
To verify the conjecture it is enough to show that T Vg (τ) = TrV (gqL0− c

24 ) coincides with the
corresponding Hauptmodul JΓg . For a general group G, using conformal field theory arguments,
these functions are invariant under a subgroup Γ1

g of SL(2,Z). However this group will be in
general smaller than Γg and it is not genus 0. Thanks to the identity discovered independently
by Zagier, Borcherds and others

p−1
∏
m>0
n∈Z

(1− pmqn)amn = J(ρ)− J(τ) , (5.9)

where p = e2πiρ and ai denotes the coefficient of qi in the expansion of J , all the coefficients
of the Hauptmodul can be fixed knowing just a1, a2, a3, a5. It was shown by Borcherds in [28]
that both T Vg and JΓg satisfy an analogous identity and that their coefficients coincide. The
conjecture was thus proven. See again [27] for more details.

5.2 Moonshine in the elliptic genus of K3

Some years ago, it was noticed by Eguchi, Ooguri, Tachikawa in [5] that decomposing the
elliptic genus of a K3 surface in terms of the characters3 of unitary representations of the
N = 4 superconformal algebra

φK3(τ, z) = dim(H00)chN=4
h= 1

4
,l=0

(τ, z)− dim(H0)chN=4
h= 1

4
,l= 1

2
(τ, z) +

∞∑
n=1

dim(Hn)chN=4
h=n+ 1

4
,l= 1

2
(τ, z)

(5.10)
the first coefficients can be written in terms of the dimensions of representations of the Mathieu
group M24 in a surprisingly easy way. In particular

H00 = 23 + 1 H0 = 2 · 1 ,
H1 = 45 + 45 H2 = 231 + 231 ,
H3 = 770 + 770 H2 = 2277 + 2277 ,
H5 = 2 · 5796 H6 = 2 · 3520 + 2 · 10395 ,

. . .

(5.11)

M24 is the largest of the Mathieu groups, which are 5 finite simple groups. They are all
subgroups of the permutation group of 24 objects and can be defined as automorphism groups
of Steiner systems.
The conjecture was later extended to the twining genera (first to only some of them in [29]
and [30] and then to all the twining genera in [31])

φg(τ, z) = TrH00(g)chN=4
h= 1

4
,l=0

(τ, z)− TrH0(g)chN=4
h= 1

4
,l= 1

2
(τ, z) +

∞∑
n=1

TrHn(g)chN=4
h=n+ 1

4
,l= 1

2
(τ, z)

(5.12)
conjecturing that the representations in (5.10) are such that each twining genus is invariant
under some subgroup of SL(2,Z). The conjecture was verified for a lot of coefficients. It was
at last proven to be true in abstract terms in [32]. Mathieu moonshine would have an easy

3We use the same (abuse of) notation as in section 3.1.3, chN=4
h= 1

4 ,l=
1
2

is not the true massless character but a

linear combination of characters. Its form is given by (3.12).
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interpretation if M24 was a symmetry group at some point in the moduli space of non-linear
sigma models on K3 surfaces. In that case we would have

HR =
⊕
i,J

hiJR
M24
i ⊗RN=4

J , (5.13)

where RM24
i and RN=4

J are respectively representations of M24 and N = 4 superconformal
symmetry, and then (5.10) would be easily understood. Unfortunately this is not the case. In
fact the symmetries of non-linear sigma models on K3 were classified in [24] and in no point in
the moduli space they include M24 as a symmetry group.
Mathieu moonshine it is not the only moonshine that appear in the elliptic genus of K3 surfaces,
actually the Mathieu group is just one of 23 finite groups predicted by umbral moonshine.
Umbral moonshine was originally formulated by Cheng, Duncan and Harvey in [33] for some
of the umbral groups and mock modular forms and then extended as a connection between
Niemeier lattices and mock modular forms by the same authors in [34]. It was related to the
elliptic genus of K3 surfaces by Cheng and Harrison in [6].
To discuss the main ideas behind umbral moonshine we have to introduce the concepts of mock
modular form and mock Jacobi form. Let h be a holomorphic function on H with at most
exponential growth at all cusps i∞∪Q. Let w ∈ Z + 1

2
, g be a modular form of weight 2− w

with Fourier expansion g(τ) =
∑

n≥0 cg(n)qn and Γ ≤ SL(2,R) a discrete subgroup. Let g∗ be
defined as

g∗(τ) := cg(0)
(−Im(τ))1−w

w − 1
+
∑
n>0

(−4πn)w−1cg(n)q−nΓ(1− w, 4πnIm(τ)) (5.14)

with Γ(1 − w, x) =
∫∞
x
e−ttwdt. We call h a weakly holomorphic mock modular form for Γ if

ĥ = h+ g∗ transforms as a holomorphic modular form of weight w for Γ. In this case we call g
the shadow of h and ĥ its completion.
We already encountered weak Jacobi forms in the definition of the elliptic genus. Skew-
holomorphic Jacobi forms (of weight w and index m) are defined in a similar way but now
the transformation property under SL(2,Z) reads

φ
(
aτ+b
cτ+d

, z
cτ+d

)
= |cτ+d|

(cτ+d)(cτ+d)w
e2πim cz2

cτ+dφ(τ, z)

(
a b
c d

)
∈ SL(2,Z) (5.15)

and they have the following Fourier expansion

φ(τ, z) =
∑
D,l∈Z

D=l2mod4m

c(D, l)q
D
4m q

l2

4myl . (5.16)

We will use the fact that elliptic functions, i.e. functions φ : H× C→ C which satisfy

φ(τ, z + lτ + l′) = e2πim(l2τ+2lz)φ(τ, z) for l, l′ ∈ Z , (5.17)

admit a theta-decomposition

φ(τ, z) =
∑

r mod 2m

hr(τ)θm,r(τ, z) (5.18)

with

θm,r(τ, z) :=
∑

l=r mod 2m

q
l2

4myl , (5.19)
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where the hr are 2m smooth functions from H to C. From the definition, weak Jacobi forms
are a particular case of elliptic functions. An elliptic function φ(τ, z) is a weak mock Jacobi
form of weight w and index m if it is limited as Imτ → ∞ for every z ∈ C, all the hrs in
the theta-decomposition are holomorphic and if there exists a skew-holomorphic Jacobi form
of weight 3− w and index m, with decomposition σ =

∑
r grθm,r, such that

φ̂(τ, z) =
∑
r

(
hr(τ) +

1√
2m

g∗r(τ)

)
θm,r(τ, z) (5.20)

transforms as a weak Jacobi form of weight w and index m.
We are now ready to discuss the umbral moonshine conjecture. As we said before there are
23 umbral moonshine groups, and they are related to the 23 Niemeier lattices NX , where
X denotes their root systems which uniquely identify them. Umbral groups are constructed
quotienting the automorphism group of a Niemeier lattice by the Weyl group of its root system

GX = Aut(NX)/Weyl(X) . (5.21)

We enlist here the umbral groups associated to the Niemeier root systems labelled according
to their ADE classification

Niemeier root system X Umbral Group GX

A24
1 M24

A12
2 2.M12

A8
3 2.AGL3(2)

A6
4 GL2(5)/2

A4
5D4 GL2(3)
A4

6 SL2(3)
A2

7D5 Dih4

A3
8 Dih6

A2
9D6 Z4

A11D7E6 Z2

A2
12 Z4

A15D9 Z2

A17E7 Z2

A24 Z2

D6
4 3.Sym6

D4
6 Sym4

D3
8 Sym3

D10E
2
7 Z2

D2
12 Z2

D16E8 Z1

D24 Z1

E4
6 GL2(3)

E3
8 Sym3

Notice in particular that the Mathieu group M24 is one of the umbral groups.
To each root system it is possible to associate a mock modular form that will be related by
the umbral moonshine conjecture to the group GX . The main idea that allows us to associate
these mock modular forms to the umbral groups is the concept of optimal growth. Optimal
growth roughly translates into the requirement that the mock modular forms are bounded at
all the cusps which are not equivalent to i∞ and that they have the smallest possible growth,
compatible with the modular properties, around i∞. We give an insight of how these mock
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modular forms are constructed in the simple case of the mock modular forms with respect to
the whole SL(2,Z). Given ψ =

∑
r hrθm,r a mock Jacobi form of weight 1 and index m we say

it is optimal if
hr(τ) = O(q−

1
4m ) (5.22)

when Im→∞ for each r ∈ Z/2m. Let K be a subgroup of the group of the exact divisors4 of
m, we say that an index m mock Jacobi form is K-symmetric if

ψ =
∑

r mod 2m

hrθm,r =
∑

r mod 2m

hrθm,a(n)r n ∈ K , (5.23)

where

a(n) =

{
1 mod 2m

n

−1 mod 2m
n

. (5.24)

Furthermore we say a mock modular has positive integral coefficients if writing

ψ =
∑

1≤r≤m−1

h̃r(θm,r − θm,r) , (5.25)

which is possible since odd weight Jacobi form are odd under z → −z, hr has the expansion

h̃r =


−2q−

1
4m +

∑
n≥0

cr,nq
n

4m if r2 = 1 mod 4m∑
n≥0

cr,nq
n

4m otherwise
(5.26)

with cr,n ∈ N. If we choose the normalization h1 = −2q−
1

4m (1+O(q)) it turns out that there are
only 23 optimal K-symmetric mock Jacobi forms with positive integral coefficients of weight 1
under SL(2,Z). They are in one-to-one correspondence with the Niemeier root systems (see [27]
for an explanation in terms of ADE classification). In particular writing ψX =

∑
rH

X
r θm, r,

where (HX)r are vector-valued mock modular forms, the Coxeter number of X is equal to the
index of ψX and defining the set IX labelling the independent components of HX we can write

ψX =
∑
r∈IX

HX
r

∑
n∈K

(θm,a(n)r − θm,−a(n)r) . (5.27)

We have considered the case of mock modular forms for SL(2,Z) but umbral moonshine is
actually more gerenal. We report here the statement of umbral moonshine conjecture which
can be found in [27]:

Conjecture. Let GX be a umbral group defined in (5.21), m = Cox(X) the Coxeter number
of X and IX a subset of {1, 2, . . . ,m − 1} as before. Then there exists a bi-graded infinite-
dimensional GX-module

KX =
⊕
r∈IX

⊕
D≤0

D=r2 mod 4m

KX
r,D (5.28)

such that for any g ∈ GX and for any r ∈ IX , the graded character (adding −2q−
1

4m for r = 1)
coincides with the component HX

g,r of a vector valued mock modular form HX

HX
g,r = −2q−

1
4m δr,1 +

∞∑
D≤0

D=r2 mod 4m

q−
D
4mTrKX

r,D
(g) . (5.29)

4We say n is an exact divisor of m if n|m and (n, m
n ) = 1. The exact divisors form a group with multiplication

n ∗ n′ = nn′

(n,n′)2 .
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Umbral moonshine conjecture has been proved in [35].
We will now briefly discuss how the previous conjecture is related to the elliptic genus of K3.
K3 surfaces can have at most du Val type singularities, i.e. singularity of the type C2/G where
G is a finite subgroup of SU(2)C. It was found in [6] that there are 23 ways to split the part
corresponding to the singularities in the elliptic genus, each one related to a different Niemeier
root system X

φ(τ, z) = φX(τ, z) +
θ2

1(τ, z)

2η6(τ)

1

2πi

∂ψX

∂z
(τ, z)

∣∣∣∣∣
z=0

, (5.30)

where φX is the part of the elliptic genus corresponding to the singularities in the split given
by the Niemeier root system X and ψX is the optimal mock Jacobi form discussed above
corresponding to X. It is interesting to point out that for the root system corresponding to the
Mathieu group

φA
24
1 = 24

θ1(τ, z)2

η(τ)3
µ(τ, z) = 24chN=4

h= 1
4
,l=0

(τ, z) (5.31)

which is exactly the first term in the decomposition in (5.10).
An analogous decomposition is valid in general for the twining genera

φg(τ, z) = φXg (τ, z) +
θ2

1(τ, z)

2η6(τ)

1

2πi

∂ψXg
∂z

(τ, z)

∣∣∣∣∣
z=0

. (5.32)

These, for the case of A24
1 , leads to the form of the twining genera (5.12). It is important

to stress that some of the previous decompositions are just formal in the sense that there
are no known singular limits in which K3 surfaces develop the right number of singularities
corresponding to the umbral groups. This is the case, for example, of M24 since there are no
limits in which K3 surfaces can develop 24 A1-type singularities.
Many of the Umbral groups are not symmetry groups of non-linear sigma model on K3, so we
cannot understand them with a simple decomposition as in (5.13). It is then not clear which is
the underlying physical setting the relation between the elliptic genus of K3, the umbral groups
and the mock modular forms comes from. However some works (see [36], [37], [38] and [39])
have found some physical settings, mainly using string dualities, in which the umbral groups
seem to arise naturally.
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6. Umbral twining genera decomposi-
tion

In this section we expose the original part of this work. The aim was to consider a decom-
position as in (5.13) and exploit the decomposition of the twining genera into the irreducible
representations to obtain informations on some non-linear sigma models. In fact, the umbral
groups contain subgroups which are actually symmetry models of some non-linear sigma mod-
els. We will consider in particular the case of L2(11) which is a subgroup of both M24 and
2.M12.

6.1 Decomposition with N=4 characters

As the first original part of this work we computed the coefficients in the formal decomposition

HR =
⊕
i,J

hiJR
G
i ⊗RN=4

J (6.1)

into irreducible representations RG
i for some of the umbral groups G (from what we have said

in section 5, HRR will not be the Ramond sector of a non-linear sigma model on K3 for some of
the umbral groups). J is an opportune multi-index labelling the conformal weight and charge of
the irreducible representations of the N = 4 superconformal algebra. We followed the approach
of [31] to obtain the coefficients.
Let G be one of the umbral groups and let us assume a decomposition like (5.10) in which the
His are spaces of representation of G. We recall the formula of the twining genera

φg(τ, z) = TrHRR(gqL0− c
24yJ0(−1)F q̄L̄0− c

24 (−1)F̄ ) (6.2)

whit g ∈ G. Using (6.1) and the analogous of (5.10) the twining genera read

φg(τ, z) = TrH00(g)chN=4
h= 1

4
,l=0

(τ, z)− TrH0(g)chN=4
h= 1

4
,l= 1

2
(τ, z) +

∞∑
n=1

TrHn(g)chN=4
h=n+ 1

4
,l= 1

2
(τ, z) .

(6.3)
We recall, from section 3, that the twining genera are conjectured to transform as weak Jacobi
forms of index 1 and weight 0. Every weak Jacobi form of index 1 can be written in terms of
the standard Jacobi forms χ0,1(τ, z), χ−2,1(τ, z), of weight 0 and −2 respectively, given by

χ0,1(τ, z) = 4
4∑
i=2

θi(τ,z)
2

θi(τ,0)2 ,

χ−2,1(τ, z) = − θ1(τ,z)2

η(τ)6 ,
(6.4)

where the θi(τ, z)s are the Jacobi theta functions and η(τ) is the Dedekind eta. In particular
for the twining genera we have

φg(τ, z) =
1

12
φg(τ, 0)χ0,1(τ, z) + Fg(τ)χ−2,1(τ, z) , (6.5)
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where the Fgs are modular forms of weight two and, for the umbral groups, have been computed
in [40]. Furthermore from (6.3) we have

φg(τ, 0) = TrH00(g) . (6.6)

If the Hns have to be spaces of (unitary) representations of a umbral group G they can be
decomposed into (the spaces of) its irreducible representations RG

Hn =
⊕
i

hn,iR
G
i . (6.7)

Thus (6.3) becomes

φK3(τ, z) =
∑
i

h00iTrRGi (g)chN=4
h= 1

4
,l=0

(τ, z)−
∑
i

h0iTrRGi (g)chN=4
h= 1

4
,l= 1

2
(τ, z)+

∞∑
n=1

∑
i

hniTrRGi (g)chN=4
h=n+ 1

4
,l= 1

2
(τ, z) .

(6.8)

The characters of finite groups satisfy the orthonormality relations∑
[g]

c(g)TrRGi (g)TrRGj (g) = δij , (6.9)

where RG
i and RG

i are the space of states of two irreducible representations of G, the sum runs
over its conjugacy classes and c(g) is the inverse of the order of the centralizer of G

c(g) =
n(g)

|G|
(6.10)

with n(g) the number of elements in the conjugacy class of g and |G| the order of G. We
remark that (6.10) is independent from the choice of the representative g in each conjugacy
classes since both c(g) and the characters TrRGi are so. Thus multiplying both sides of (6.8) by

c(g)TrRGj (g), summing over the conjugacy classes of |G| and using (6.5) we obtain an equation

for the coefficients hnj

∞∑
n=1

hn,iq
n = h0,i + q

1
8
η(τ)3

θ1(τ, z)2

(∑
g

c(g)TrRi(g)φg(τ, z)− h00,ich
N=4
h= 1

4
,l=0

)
. (6.11)

We assume for all the umbral groups h0i = 2δ1
i which is the condition for G to act trivial on

the N = (4, 4) superconformal algebra and on the generators of the spectral flow. We will
discuss this condition in more details when we will consider also the antiholomorphic part of
the superconformal algebra. Using formula (6.11) and the explicit expressions found in [40]
for the Fgs we computed the first coefficients for some umbral groups. Results are given in
appendix D.
The appearance of coefficients with negative signs has an interesting interpretation if one also
consider the antiholomorphic part of the N = (4, 4) algebra. We consider the formal decompo-
sition

HR =
⊕
i,J,K

hiJKR
G
i ⊗RN=4

J ⊗RN=4
K , (6.12)

where RN=4
K are (the spaces of) irreducible representations of the antiholomorphic part of the

N = (4, 4) algebra and J , K are opportune multi-indices labelling the conformal weight and
charge of the irreducible representations. With this decomposition the twining genera read

φg(τ, z) =
∑
i,J,K

hi,J,KTrRGi (g)chN=4
J (τ, z)chN=4

K (τ , 0) , (6.13)
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we have obtained this decomposition by inserting yJ0 in (6.2) and then evaluating it for z = 0.
Now the characters evaluated at z = 0 have the following values1

chN=4
h= 1

4
+n,l= 1

2

(τ , 0) = 0 ,

chN=4
h= 1

4
,l=0

(τ , 0) = 1 ,

chN=4
h= 1

4
,l= 1

2

(τ , 0) = −2 ,

(6.14)

so the appearance of the massless representations (h = 1
4
, l = 1

2
) would give a natural ex-

planation to the negative coefficients that we found in the decompositions. Furthermore, the
requirement h0i = 2δ1

i that we have previously imposed will now become

hi( 1
4
, 1
2

)( 1
4
, 1
2

) = δ1
i ,

hi( 1
4
, 1
2

)( 1
4
,0) = 0 ,

(6.15)

where the index i = 1 refers to the one-dimensional representation of the group G. This is
consistent with the negative sign appearing in (6.3). We will now give a justification for the
need of these constraints. As we have said before we need the umbral goups G to act trivially
on the superconformal algebra and on the spectral flow generators. The fields in (3.4) and the
ones generated by their OPEs form the vacuum representation of the algebra in the NS-NS
sector RN=4

h=0,l=0 ⊗ RN=4
h=0,l=0

. This representation is mapped, under left-right symmetric spectral

flow, in the representation RN=4
h= 1

4
,l= 1

2

⊗RN=4
h= 1

4
,l= 1

2

in the R-R sector. Since we have required also

the spectral flow operators to be G-invariant the fields in this representation are G-invariant
too. The only irreducible representation of G in which all the elements can act trivially is the 1-
dimensional one, so the fields in the representation RN=4

h= 1
4
,l= 1

2

⊗RN=4
h= 1

4
,l= 1

2

in the R-R sector must

belong to the 1-dimensional representation of G. Furthermore, the presence of representations
of the kind RN=4

h= 1
4
,l= 1

2

⊗RN=4
h= 1

4
,l=0

in the R-R sector would make the elliptic genus vanish (see [41]

for a detailed explanation). Since we know the elliptic genus of a K3 surface is not null, we
can exclude their presence in the decomposition.
What is particularly interesting of the previous construction is the appearance of irreducible
representations of the kind

RN=4
h=n+ 1

4
,l= 1

2
⊗RN=4

h= 1
4
,l= 1

2
. (6.16)

In fact if we map them through spectral flow U− 1
2
U− 1

2
in the NS sector they become

RN=4
h=n,l=0 ⊗RN=4

h=0,l=0
, (6.17)

but this would constitute evidence of the presence of a holomorphic primary field, of conformal
weight n, which is not contained in the N = (4, 4) superconformal algebra.In fact the fields
contained in the N = (4, 4) superconformal algebra belong to the irreducible representation

RN=4
h=0,l=0⊗RN=4

h=0,l=0
since they are built acting on the vacuum with opportune generators of the

algebra.

6.1.1 Models with L2(11) symmetry and algebra extension

The group L2(11) is a subgroup of both the umbral groups M24 and 2.M12. It is particularly
interesting because it is actually a symmetry group of some non-linear sigma models on K3
surfaces. So far, it is not known what is the action of L2(11) on these models. It is conjectured

1The reader should be careful that here we are using the true character formula for chN=4
h= 1

4 ,l=
1
2

.
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that it could have the same action of M24 or of 2.M12, since it is a subgroup of both of them,
but there are no hints on which could be the correct one and different models could admit
different actions.
From the results of appendix D we have that, when L2(11) acts with the action of 2.M12,
negative coefficients appear in (6.8) while the coefficients are all positive when it acts with the
action of M24. This is due to the fact that different group actions lead to to different functions
Fg(τ) in (6.5) and obviously different Fgs lead to different coefficients in the decomposition
(6.8).
As we have pointed out at the end of the previous section, the appearance of negative signs in
the decomposition (6.8) can be explained by the presence of fields not contained in the N = 4
superconformal algebra. Thus, if L2(11) has the same action of 2.M12, we have a hint that
the symmetry group of the models that admit L2(11) as a symmetry group could be extended
beyond the N = 4 superconformal symmetry while there is not such a “evidence” when it acts
with the action of M24. While different symmetry algebras could be enough to establish which
is the action of L2(11) in the non-linear sigma models on K3 which admit it as a symmetry
group, we cannot conclude from what we have found in appendix D that they have actually
different algebras. In fact even if the coefficients in the decomposition (6.8) are all positive,
this does not exclude the presence of irreducible representations like (6.16). Actually positive
coefficients in (6.8) require ∑

K

hi,J,Kch
N=4
K (τ , 0) > 0 (6.18)

in (6.13), which does not necessarily implies hi,J,( 1
4
, 1
2

) = 0.
It is interesting but not clear the fact that, in the results of appendix D, negative signs appear
only in the coefficients of the 1-dimensional representation. Furthermore, in the table of the
coefficients for the group L2(11) with the action of 2.M12 the coefficient of the power q1 is −2
thus suggesting, but as before not necessarily implying, that the representation for n = 1 could
simply be

RN=4
h=1+ 1

4
,l= 1

2
⊗
(

0 ·RN=4
h=n+ 1

4
,l= 1

2
⊕ 1 ·RN=4

h= 1
4
,l= 1

2
⊕ 0 ·RN=4

h= 1
4
,l=0

)
. (6.19)

Mapping this in the NS sector we obtain the presence of primary field of conformal dimension
h = 1 not contained in the N = 4 superconformal algebra. This could be obtained by extending
the ŝu(2) Kac-Moody algebra of the N = 4 superconformal algebra to a ŝu(2)⊕û(1) Kac-Moody
algebra, which contains an additional current. We will investigate this possibility in the next
section where we will consider the decomposition in terms of an orbifold model which exactly
possesses this current algebra.

6.2 C2/Z3 characters

As a following step of the master thesis work, we computed the characters of 4 free bosons
X i and fermions Ψi, i = 1, 2, 3, 4, on the C2/Z3 non-linear sigma model orbifold. We were
motivated by the fact that, from the results found in appendix D for the group L2(11), the
negative coefficient at the first order in q could be explained extending the ŝu(2) Kac-Moody
algebra with a ŝu(2) ⊕ û(1) Kac-Moody algebra. We will see that this model has exactly
the latter current algebra. Furthermore the orbifold C2/Z3 possesses a du Val singularity
in the origin and we have seen in section 5.2 that this kind of singularity is involved in the
decomposition of the elliptic genus which relates it to umbral moonshine. Thus it is interesting
to see what happens when we decompose the elliptic genus in terms of the characters of this
orbifold.
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In order to compute the characters we start by organizing the fields in complex fields

Ψ1
± = 1√

2
(ψ1 ± iψ2) , Ψ2

± = 1√
2
(ψ3 ± iψ4) ,

J1
± = 1√

2
(j1 ± ij2) , J2

± = 1√
2
(j3 ± ij4) ,

(6.20)

where ji = ∂Xi. We denote the action of Z3 with g

gJ i±g
−1 = e

2πki±
3 J i± ,

gΨi
±g
−1 = e

2πk′i±
3 Ψi

± .
(6.21)

We want the action of the orbifold to preserve the N = 4 superconformal symmetry since we
want to extend it. So it has to leave invariant the fields in (3.16). This implies the following
conditions

ki± = −ki∓ , k′i± = −k′i∓ ,
k1
± = −k2

∓ , k′1± = −k′2∓ ,
k′i± = ki± .

(6.22)

We are free to choose the action of the orbifold with k1
+ = 1. In the following we will use the

notation
Ψi

+ = Ψi , Ψi
− = Ψ

i
,

J i+ = J i , J i− = J
i

.
(6.23)

The commutation and anticommutation relations become

[J in, J
j

m] = nδn+m,0δi,j , [J in, J
j
m] = 0 , [J

i

n, J
j

m] = 0 ,

{Ψi
r,Ψ

j

s} = δr+s,0δi,j , {Ψi
r,Ψ

j
s} = 0 , {Ψi

r,Ψ
j

s} = 0 .
(6.24)

One must be careful, however, that neither Ψ nor J are antiholomorphic, actually they are
both holomorphic fields. The action of the orbifolds in this notation is given by

gΨ1g−1 = e
2πi
3 Ψ1 , gΨ

1
g−1 = e−

2πi
3 Ψ

1
,

gΨ2g−1 = e−
2πi
3 Ψ2 , gΨ

2
g−1 = e

2πi
3 Ψ

2
,

gJ1g−1 = e
2πi
3 J1 , gJ

1
g−1 = e−

2πi
3 J

1
,

gJ2g−1 = e−
2πi
3 J2 , gJ

2
g−1 = e

2πi
3 J

2
.

(6.25)

The symmetry algebra of 4 free bosons and fermions is actually bigger than the N = 4 super-
conformal algebra of (3.16). In fact, apart from the ŝu(2) Kac-Moody algebra generated by J3,
J+ and J−, it possesses another ŝu(2) current algebra generated by

A = 1
2

(
: Ψ1Ψ

1
: − : Ψ1Ψ

1
:
)

, A+ =: Ψ1Ψ
2

: , A− = − : Ψ
1
Ψ2 : , (6.26)

but the action (6.25) leaves invariant only A so it breaks this ŝu(2) current algebra into a û(1).
So the C2/Z3 orbifold has the right kind of currents algebra we are interested to study.
The holomorphic untwisted characters in the Ramond sector are given by

Chh,lC2/Z3
(τ, z) =

1

3

2∑
k=0

TrVh(gke
−2πikl

3 (−1)FyJ0qL0− c
24 ) , (6.27)

where Vh is a highest weight representation of the free bosons and fermions algebra with con-
formal weight h and l = 0, . . . , 2 projects into states of g-eigenvalue l. We recall from section
3.1.3 that J0 = 2J3

0 in (3.16). We will also use (−1)F = eiπJ0 . Since the stress-energy tensor is
just the sum of the single fermions and bosons, and the fermionic charge the sum of the two
complex fermions, the trace factorize over the space of the two different complex bosons and
fermions. So we can first compute the character for one complex boson and for one complex
fermion. From section 2.5 we know that the central charge for a free real boson is c = 1 while
for a free real fermion is c = 1

2
, so the central charge of our system will be c = 6.

49



6.2. C2/Z3 characters 6. UMBRAL TWINING GENERA DECOMPOSITION

6.2.1 Bosonic characters

We first compute the characters with respect to the boson J1, we will drop the apex and just
write J in the following. Since the fermion current J3 in (3.16) acts trivially on the bosons we
have to compute

Chh,lC2/Z3,bos
(τ, z) =

1

3

2∑
k=0

TrV bosh
(gke

−2πikl
3 qL0− c

24 ) . (6.28)

A generic state in V bos
h is obtained acting with J−n and J−n, n ≥ 0, on highest weight state of

dimension h = |α|2, i.e.

J0 |α〉 = α |α〉 , J0 |α〉 = α |α〉 ,
Jn |α〉 = 0 , Jn |α〉 = 0 for n > 0.

(6.29)

We want to organize the |α〉s in g eigenstates. We have

J0g |α〉 = e−
2πi
3 gJ0 |α〉 = e−

2πi
3 αg |α〉 . (6.30)

We see that g |α〉 is an eigenstate of J0 with eigenvalue e−
2πi
3 α, so

g |α〉 = |e−
2πi
3 α〉 . (6.31)

The action of g clearly does not change the conformal dimension of |α〉. We can then build the
three eigenstates

|u1〉 = 1
3
(|α〉+ g |α〉+ g2 |α〉) ,

|u2〉 = 1
3
(|α〉+ e−

2πi
3 g |α〉+ e

2πi
3 g2 |α〉) ,

|u3〉 = 1
3
(|α〉+ e

2πi
3 g |α〉+ e−

2πi
3 g2 |α〉) .

(6.32)

They have eigenvalues g |uj〉 = e
2πi
3

(j−1) |uj〉 for α 6= 0. Notice that the vacuum state |0〉 with
conformal dimension h = 0 (and thus α = 0) is invariant. The states |ui〉s depend on α but for
brevity we will omit it in the notation, the only case when attention is needed is the one with
α = 0.
The space Vh is built as a Fock space acting on the |ui〉s with negative current modes, so a
general state will have the form

|n1 . . . nrn1 . . . ns〉i = Jn1
−1 · · · Jnr−rJ

n1

−1 · · · J
ns
−s |ui〉 . (6.33)

Recalling the form of T (z) from (3.16), for a single boson we will have

L0 = J0J0 +
∑
k>0

J−kJk +
∑
k>0

J−kJk . (6.34)

The 0-modes commute with all the Jns and Jns while[
J−kJk + J−kJk, J−n

]
= kJ−nδk,n ,[

J−kJk + J−kJk, J−n
]

= kJ−nδk,n ,
(6.35)

so, with a little of computation we find

L0 |n1 . . . nrn1 . . . ns〉i =

[
|α|2 +

∑
k

k(nk + nk)

]
|n1 . . . nrn1 . . . ns〉i , (6.36)
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where we have used the fact that Jk and Jk annihilate the |ui〉s for k > 0.
We want now to find the action of g on the state |n1 . . . nrn1 . . . ns〉j. Using (6.21) we have

g |n1 . . . nrn1 . . . ns〉j =gJn1
−1 · · · Jnr−rJ

n1

−1 · · · J
ns
−s |uj〉 =

gJn1
−1g

−1g · · · g−1gJnr−rg
−1gJ

n1

−1g
−1g · · · g−1gJ

ns
−sg

−1g |uj〉 =

e
2πi
3

∑
k

(nk−nk)
e

2πi
3

(j−1)(1−δα) |n1 . . . nrn1 . . . ns〉j ,

(6.37)

where we have included the behaviour in the particular case when α = 0. The action of gk on
the same state is

gk |n1 . . . nrn1 . . . ns〉j = e
2πik

3

[∑
l

(nl−nl)+(j−1)(1−δα)

]
|n1 . . . nrn1 . . . ns〉j . (6.38)

We are now ready to compute (6.28). For α 6= 0 we have

Chh,lC2/Z3,bos
(τ, z) =

1

3

2∑
k=0

TrV ferh
(gke

−2πikl
3 qL0− c

24 ) =

1

3

2∑
k=0

∑
{n},{n}

3∑
i,j=1

i 〈n1 . . . nrn1 . . . ns| gke
−2πikl

3 qL0− c
24 |n1 . . . nrn1 . . . ns〉j =

1

3

2∑
k=0

∑
{n},{n}

3∑
i,j=1

e
−2πikl

3 q
|α|2+

∑
l
l(nl+nl)− 1

12×

× i 〈n1 . . . nrn1 . . . ns| gk |n1 . . . nrn1 . . . ns〉j ,

(6.39)

where the notation {n} indicates the values of all the various indices n1, . . . , ns and we have
used the fact that for a complex boson c = 2 since the stress-energy tensor is the sum of two
free real bosons.
Now, since the states |n1 . . . nrn1 . . . ns〉j are orthonormal we have

〈n1 . . . nrn1 . . . ns| gk |n1 . . . nrn1 . . . ns〉j = e
2πik

3

[∑
l

(nl−nl)+(j−1)(1−δα)

]
δi,j . (6.40)

But for α 6= 0

1

3

3∑
j=1

e
2πik

3

[∑
l

(nl−nl)+(j−1)

]
=

{
1 if k = 0

0 otherwise
, (6.41)

where the sum is 0 if α, k 6= 0 because it appears a sum of roots of the unit. So the only
non-null characters with h 6= 0 are the ones where the orbifold acts trivially.
For α = 0 there is only a ground state so we have instead

Ch0,l
C2/Z3,bos

(τ, z) =
1

3

2∑
k=0

∑
{n},{n}

〈n1 . . . nrn1 . . . ns| gke
−2πikl

3 qL0− c
24 |n1 . . . nrn1 . . . ns〉 =

1

3

2∑
k=0

∑
{n},{n}

e
−2πikl

3 e
2πik

3

∑
l

(nl−nl)
q

∑
l

l(nl+nl)− 1
12

.

(6.42)

Summing up, we have two different forms for the characters

Ch0,l
C2/Z3,bos

(τ, z) = 1
3

2∑
k=0

∑
{n},{n}

e
−2πikl

3 e
2πik

3

∑
l

(nl−nl)
q

∑
l
l(nl+nl)− 1

12
for h = 0 massless ,

ChhC2/Z3,bos
(τ, z) =

∑
{n},{n}

q
h+
∑
l

l(nl+nl)− 1
12

for h 6= 0 massive .
(6.43)
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Let us compute Ch0,l
C2/Z3,bos

.

1

3

2∑
k=0

∑
{n},{n}

e
−2πikl

3 e
2πik

3

∑
l

(nl−nl)
q

∑
l
l(nl+nl)− 1

12
=

1

3

2∑
k=0

q−
1
12

∑
n1

(
e

2πik
3 q
)n1 ∑

n1

(
e
−2πik

3 q
)n1 ∑

n2

(
e

2πik
3 q2

)n2 ∑
n2

(
e
−2πik

3 q2
)n2

· · · =

1

3

2∑
k=0

q−
1
12

∞∏
n=1

1

1− e 2πik
3 qn

1

1− e− 2πik
3 qn

.

(6.44)

Wth similar calculations one can compute Chh,lC2/Z3,bos
. Finally, the characters for a single

complex boson are

Ch0,l
C2/Z3,bos

(τ, z) = 1
3

2∑
k=0

e−
2πik

3
lq−

1
12

∞∏
n=1

1

1−e
2πik

3 qn

1

1−e−
2πik

3 qn
for h = 0 massless ,

ChhC2/Z3,bos
(τ, z) = qh−

1
12

∞∏
n=1

(
1

1−qn

)2

for h 6= 0 massive .
(6.45)

In the C2/Z3 orbifold model there are two complex bosons and the action of g has opposite
sign between them. Furthermore the total conformal dimension will be the sum of the ones of
the two bosons, in the following we will indicate again with h this sum. The characters are
obtained multiplying the addends in (6.45), since the trace in (6.27) factorizes over the two
bosons, with the exchange k → −k because of the definition of the action of g. So the bosonic
part of the characters of the free C2/Z3 orbifold will be

Ch0,l
C2/Z3,bos

(τ, z) = 1
3

2∑
k=0

e−
2πik

3
lq−

1
6

∞∏
n=1

(
1

1−e
2πik

3 qn

1

1−e−
2πik

3 qn

)2

for h = 0 massless ,

ChhC2/Z3,bos
(τ, z) = qh−

1
6

∞∏
n=1

(
1

1−qn

)4

for h 6= 0 massive .
(6.46)

6.2.2 Fermionic characters

We compute here the fermionic characters

ChlC2/Z3,fer
(τ, z) =

1

3

2∑
k=0

TrV ferh
(gke

−2πikl
3 (eiπy)J0qL0− c

24 ) , (6.47)

where we have used (−1)F = eiπJ0 . Recall that since J0 is the charge with respect to the
N = 2 supersymmetry it equals J0 = 2J3

0 in (3.16). As we have seen in section 2.5.2 for a
real fermion we have to add the constant 1

16
to L0 in the Ramond sector. Our system is made

up by 4 real fermions and the stress-energy tensor in (3.16) is just the sum of 4 free fermion
stress-energy tensors. So to L0 coming from (3.16) (which refers to the NS sector) we have to
add the constant 1

4

L0 =
∑
k>0
k∈Z

k(Ψ
1

−kΨ
1
k + Ψ

2

−kΨ
2
k) +

1

4
. (6.48)

This is not the only subtlety in the Ramond sector, in fact we have already seen that there are
degenerate ground states. We want to build ground states which form a representation of the
ŝu(2) Kac-Moody algebra (3.3). The following commutation relations are easily obtained

[2J3
0 ,Ψ

i
n] = Ψi

n , [2J3
0 ,Ψ

i

n] = −Ψ
i

n . (6.49)
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So in particular if we consider the state such that J0 |Q〉 = Q |Q〉, application of Ψn increases its
charge of one unit while Ψ decreases it of the same amount. We start from a state |η〉 which is

annihilated by all the Ψi
n with n ≥ 0 and by all the Ψ

i

−n with n > 0. We cannot choose a state

annihilated also by Ψ
i

0 because it would be inconsistent with the anticommutation relations.

Choosing it to be annihilated by Ψ
i

0 instead of Ψi
0 is equivalent. The following states have the

same conformal dimension:

|s1〉 = |η〉 , |s2〉 = Ψ
1

0 |η〉 , |s3〉 = Ψ
2

0 |η〉 , |s4〉 = Ψ
1

0Ψ
2

0 |η〉 . (6.50)

Furthermore, recalling the form of raising and lowering operators of the ŝu(2) Kac-Moody
algebra from (3.16)

J−0 |s1〉 = |s4〉 , J+
0 |s4〉 = |s1〉 , J±0 |s3〉 = 0 , J±0 |s3〉 = 0 (6.51)

so |s1〉 and |s2〉 form a SU(2) doublet while |s3〉 and |s4〉 are two singlets. Then their charge
will be

J3
0 |s1〉 = 1

2
|s1〉 J3

0 |s2〉 = 0 ,
J3

0 |s4〉 = −1
2
|s4〉 J3

0 |s3〉 = 0 .
(6.52)

States will be built acting with negative modes on the ground states |si〉. So a general state
will have the form

|ni1 . . . nirin
i
1 . . . n

i
si
〉
j

=
∏
i=1,2

Ψi
−1 . . .Ψ

i
−riΨ

i

−1 . . .Ψ
i

−si |sj〉 , (6.53)

where nik, i = 1, 2, indicates the occupation numbers of the i-th fermion and it can be equal to
0 or 1 because if there are two identical modes then they vanish due to the anticommutation
relations. Such a state, using the commutation relations (6.49), will have a charge given by

2J3
0 |ni1 . . . nirin

i
1 . . . n

i
si
〉
j

=

[∑
i,k

(nik − nik) +Qj

]
|ni1 . . . nirin

i
1 . . . n

i
si
〉
j

, (6.54)

where we have called Qj the N = 2 charge of |sj〉.
We can choose the action of the orbifold such that g |s1〉 = 0, using (6.21) we then have

g |s1〉 = 0 , g |s2〉 = −1 ,
g |s4〉 = 0 , g |s3〉 = 1 .

(6.55)

The action of g on a general state will be

g |ni1 . . . nirin
i
1 . . . n

i
si
〉
j

= e
2πi
3

[∑
k

(n1
k−n

1
k−n

2
k+n2

k)+gj

]
|ni1 . . . nirin

i
1 . . . n

i
si
〉
j

(6.56)

with the notation g |sj〉 = gj |sj〉.
Using the anticommutation relations of (6.24) it is easy to show

[Ψ−kΨk,Ψ−n] = Ψ−kδk,n , [Ψ−kΨk,Ψ−n] = Ψ−kδk,n (6.57)

and with calculations similar to the ones of the previous section we have

L0 |ni1 . . . nirin
i
1 . . . n

i
si
〉
j

=

[∑
l,k

k(nlk + nlk) +
1

4

]
|ni1 . . . nirin

i
1 . . . n

i
si
〉
j

. (6.58)
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We can now compute

TrV ferh
(gke

−2πikl
3 (eiπy)J0qL0− c

24 ) =

4∑
r,s=1

∑
{ni},{nj}

r 〈ni1 . . . nirin
i
1 . . . n

i
si
| gke

−2πikl
3 (eiπy)J0qL0− 1

12 |ni1 . . . nirin
i
1 . . . n

i
si
〉
s

=

4∑
r,s=1

∑
{ni},{nj}

e
−2πikl

3 (eiπy)

[∑
i,k

(nik−n
i
k)+Qs

]
q

[∑
i,k
k(nik+nik)+ 1

4

]
− 1

12

r 〈ni1 . . . nirin
i
1 . . . n

i
si
| gk |ni1 . . . nirin

i
1 . . . n

i
si
〉
s

=

4∑
s=1

∑
{ni},{nj}

e
−2πikl

3 (eiπy)

[∑
i,k

(nik−n
i
k)+Qs

]
q

[∑
i,k
k(nik+nik)+ 1

4

]
− 1

12

e
2πi
3
k

[∑
k

(n1
k−n

1
k−n

2
k+n2

k)+gs

]
=

4∑
s=1

e
−2πikl

3 (eiπy)Qse
2πi
3
gsq

1
6×

∑
{ni},{nj}

[
eiπ(1+ 2

3
k)yq

]n1
1
[
eiπ(1+ 2

3
k)yq2

]n1
2 · · ·

[
e−iπ(1+ 2

3
k)y−1q

]n1
1
[
e−iπ(1+ 2

3
k)y−1q2

]n1
2 · · ·

[
eiπ(1− 2

3
k)yq

]n2
1
[
eiπ(1− 2

3
k)yq2

]n2
2 · · ·

[
e−iπ(1− 2

3
k)y−1q

]n2
1
[
e−iπ(1− 2

3
k)y−1q2

]n2
2 · · ·
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Remembering that nik = {0, 1} the fermionic part of the characters reads

ChlC2/Z3,fer
(τ, z) =

1

3

2∑
k=0

4∑
s=1

e
−2πikl

3 (eiπy)Qse
2πi
3
gsq

1
6

∞∏
n=1

(
1− e

2πik
3 yqn

)(
1− e−

2πik
3 y−1qn

)
×(

1− e−
2πik

3 yqn
)(

1− e
2πik

3 y−1qn
)

.

(6.60)

Since the trace in (6.27) factorizes over the fermions and the bosons the full untwisted characters
are given by

Ch0,l
C2/Z3

(τ, z) =
1

3

2∑
k=0

4∑
s=1

e
−2πikl

3 (eiπy)Qse
2πi
3
gs

∞∏
n=1

(
1

1− e 2πik
3 qn

1

1− e− 2πik
3 qn

)2

×(
1− e

2πik
3 yqn

)(
1− e−

2πik
3 y−1qn

)(
1− e−

2πik
3 yqn

)(
1− e

2πik
3 y−1qn

)
(6.61)

in the massless case, while massive characters read

Chh6=0
C2/Z3

(τ, z) = qh
4∑
s=1

(eiπy)Qse
2πi
3
gs

∞∏
n=1

(
1

1− qn

)4

×(
1− e

2πik
3 yqn

)(
1− e−

2πik
3 y−1qn

)(
1− e−

2πik
3 yqn

)(
1− e

2πik
3 y−1qn

)
.

(6.62)

6.2.3 Twisted characters

We also computed the characters of the C2/Z3 in the twisted sectors. There are 2 twisted
sectors corresponding to

J1(z) = e
2πi
3
kJ1(z) , Ψ1(e2πiz) = e

2πi
3
kΨ1(z) ,

J2(z) = e−
2πi
3
kJ2(z) , Ψ2(e2πiz) = e−

2πi
3
kΨ2(z)

(6.63)
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with k = 1, 2. To satisfy these periodicity conditions the modes of both the bosons and fermions
will be rational, i.e.

J1(z) =
∑

n∈Z− k
3

z−n−1J1
n , Ψ1(e2πiz) =

∑
n∈Z− k

3

z−n−1Ψ1
n ,

J2(z) =
∑

n∈Z+ k
3

z−n−1J2
n , Ψ2(e2πiz) =

∑
n∈Z+ k

3

z−n−1Ψ2
n .

(6.64)

In particular there are not 0-modes anymore, so there are not the difficulties with the ground
states encountered in the previous sections. In fact, there is a unique ground state and we
can choose the action of the orbifold in the twisted sector such that it will leave the ground
state invariant. The only difficulty here is to find the constant to be added to the 0-mode of
the stress-energy tensor as we did in section 2.5.2 for the Ramond sector of the free fermion.
Since the stress-energy tensor is just the sum of 2 complex bosons and 2 complex fermions
stress-energy tensors, we can compute the constant to be added to each of them separately and
then add them up. We use the prescriptions

T ibos(z) = lim
z→w

(
−J i(w)J

i
(z) + 1

(z−w)2

)
,

T ifer(z) = lim
z→w

(
1
2
(∂Ψi(z)Ψ(w)i + ∂Ψ

i
(w)Ψi(z)) + 1

(z−w)2

)
.

(6.65)

We compute 〈J1(z)J
1
(w)〉 in the k-th twisted sector:

〈J1(z)J
1
(w)〉 =

∑
m∈Z+ k

3

n∈Z− k
3

z−n−1w−m−1 〈JnJm〉 =
∑

n∈N+ k
3

nz−n−1wn−1 =
w−

k
3 z

k
3
−1(kw − kz + 3z)

3(w − z)2
.

(6.66)
Expanding in w − z, inserting in the expression of T 1

bos(z) and taking the limit one finds

〈T 1
bos(z)〉 =

1

9z2
(6.67)

for both values of k. Analogously

〈T 2
bos(z)〉 =

1

9z2
(6.68)

for both values of k. We next compute

〈Ψ1(z)Ψ
1
(w)〉 =

∑
m∈Z+ k

3

n∈Z− k
3

z−n−
1
2w−m−

1
2 〈ΨnΨm〉 =

∑
n∈N+ k

3

z−n−
1
2wn−

1
2 =

w
k
3
− 1

2 z
1
2
− k

3

z − w
. (6.69)

Taking the derivatives, expanding and taking the limit, after a little of computation one finds

〈T 1
fer(z)〉 =

1

72z2
(6.70)

in both the twisted sectors. 〈T 2
fer(z)〉 has the same value.

Summing all up one obtains that in both sector the constant to be added to L0 is 1
4
.

The characters can be obtained from the untwisted ones by replacing the integer modes with
the new non-integer ones and neglecting the effect of the zero modes but taking care of the new
constant to be added to L0. We have

ChsC2/Z3,twisted
(τ, z) =

1

3

2∑
k=0

∞∏
n=0

(
1

1− e 2πik
3 qn+ s

3

1

1− e− 2πik
3 qn+1− s

3

)2

×

(
1− ye(

2πik
3 )qn+ s

3

)(
1− e(−

2
3
πik)qn−

s
3

+1

y

)(
1− ye(−

2
3
πik)qn−

s
3

+1
)(

1− e(
2πik

3 )qn+ s
3

y

)
.

(6.71)
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6.3 Decomposition with C2/Z3 characters

We want to decompose the elliptic genus in a way similar to (5.10) to investigate if, with
the algebra of the C2/Z3 orbifold, the decomposition in irreducible representations admit only
positive coefficients.
Since the orbifold C2/Z3 is non-compact, the spectrum of L0 acquires also a continuous part.
We will however only consider the discrete part of the spectrum since this is the interesting
part to make connections with the elliptic genus of K3. So we consider a decomposition with
h = n ∈ N2

φK3(τ, z) = A0,l

2∑
l=0

Ch0,l
C2/Z3

(τ, z) +
∞∑
n=1

AnCh
n
C2/Z3

(τ, z) +
2∑
s=1

BsCh
s
C2/Z3,twisted

(τ, z) . (6.72)

We computed some coefficients expanding in powers of q and equating order by order with the
expansion of the elliptic genus from formula (3.22). To the order considered the expansions
of the twisted characters Bs, s = 1, 2, resulted equal and it could be obtained from a linear
combination of untwisted characters expanded to the same order so we set Bs = 0, s = 1, 2.
Furthermore, also the expansions of A0,1 and A0,2 were the same so we were able to obtain only
their sum that we will indicate with A0,1 := A0,1 + A0,2. We give here the results

A0,0 A0,1 A1 A2 A3 A4 A5 A6 A7 A8

-2 20 72 216 72 504 432 216 576 1080

If we assume A0,l = dimHG
0,l and An = dimHG

n for some umbral group G, we want to find a
decomposition in terms of irreducible representation as we did in section 6.1. We write

HG
0,l =

⊕
j

h0,l,jR
G
j HG

n =
⊕
j

hn,jR
G
j , (6.73)

where RG
j are irreducible representations of the group G. The twining genera will read

φg(τ, z) =
2∑
l=0

TrH0,l
(g)Ch0,l

C2/Z3
(τ, z) +

∞∑
n=1

TrHn(g)ChnC2/Z3
(τ, z) . (6.74)

Using ∑
g

c(g)TrRGi (g)TrRGj (g) = δij (6.75)

and

φg(τ, z) =
φg(τ, 0)

12
χ0,1(τ, z) + Fg(τ)χ−2,1(τ, z) (6.76)

we obtain3

∑
g

c(g)TrRi(g)Fg(τ)χ−2,1(τ, z) =
1∑
l=0

h0,l,i

(
Ch0,l

C2/Z3
(τ, z)− χ0,1

12
Ch0,l

C2/Z3
(τ, 0)

)
+

∞∑
n=1

hn,i

(
ChnC2/Z3

(τ, z)− χ0,1

12
ChnC2/Z3

(τ, 0)
)

.

(6.77)

2Notice that here h refers only to the bosonic conformal dimension because we have canceled out the 1
4

coming from the fermionic conformal dimension. If one consider the total conformal dimension one obtains
h = 1

4 + n as in (5.10)
3Again h0,1,i := h0,1,i + h0,2,i because massless characters with l = 1 and l = 2 were equal up to the order

considered.
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Again we set h0,0,i = −2δi,1. Results are shown in appendix E. Among the coefficients there
are again coefficients with negative sign (actually a lot more than before although this could
be meaningless since the presence of negative coefficients can be hidden as we explained in the
previous section). The cause of the issue could be that the new algebra is too large. In fact
if some of the characters are too big, some coefficients must take negative sign to match the
expansion of the elliptic genus of K3. This, indeed, could happen in our case since we have seen
that the massive characters of the orbifold are exactly the same of 4 free bosons and fermions
which is the largest supersymmetric algebra we can build in 4 dimensions. If this was not the
main issue one in principle could try a decomposition with characters of the orbifold C2/ZN
for some N > 3, in fact all these models still have a ŝu(2) ⊕ û(1) current algebra. Another
possibility, which would still give the right current algebra, could be to consider more exotic
orbifolds with continous groups like C2/U(1).
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7. Conclusions

In this thesis we have considered some aspects of non-linear sigma models on K3 surfaces, a
particular kind of N = (4, 4) superconformal field theories. These models are widely stud-
ied in an attempt to understand some features of string compactification which constitute an
indispensable ingredient for consistent string theories. In particular we considered the decom-
position of the elliptic genus in terms of the characters of the N = 4 superconformal algebra,
and some abstract aspects of the umbral moonshine conjeture to extract informations on some
non-linear sigma models which are not treatable with standard methods. This underlines the
importance of the study of non-standard methods and of the mathematical properties of the
theory in order to find new ways to extract informations where they seem to be inaccessible
with the standard approaches.
We have found evidences that the models which possess L2(11) as a symmetry group, whose
existence is known thanks to the fact that the symmetries of non-linear models on K3 surfaces
have been classified, could admit a chiral algebra extended beyond the N = (4, 4) supercon-
formal algebra. In particular a plausible extension could contain a ŝu(2) ⊕ û(1) Kac-Moody
algebra.
Subsequently, we have investigated the C2/Z3 orbifold model, which seemed to constitute a
good candidate, but we have concluded, with the same method used previously, that its al-
gebra do not solve the problem of the appearance of negative coefficients. We have indicated
some other candidates which can possess the right extended algebra, namely C2/ZN models
with N > 3 (although if the problem of the previous model is that the massive characters are
too big, these models would present the same issue) and more exotic orbifolds with a continuous
group like C2/U(1). Other possible extensions of this work include the search for alternative
interpretations of the appearance of negative sign coefficients in umbral groups which are not
symmetry groups of non-linear sigma models, as well as the extension of the analysis of the
decomposition of the elliptic genus in terms of irreducible representations for the other umbral
groups and of the subgroups which are symmetry groups of some non-linear sigma model on
K3.
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A. Definitions

In this section we collect some important definitions of standard functions we used throughout
the work and that were not defined elsewhere.
For the rest of this section, we set q = e2πiτ and y = e2πiz.
The Dedekind eta is a modular function of weight 1

2
. We used the following definition for the

Dedekind eta function

η(t) = q
1
24

∞∏
n=1

(1− qn) . (A.1)

Jacobi theta functions are Jacobi forms (see (3.21)) of weight 1
2

and index 1. The conventions
we used for the Jacobi theta functions are

θ1(τ, z) = −iq 1
8y

1
2

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn−1) ,

θ2(τ, z) = 2q
1
8 cos(πz)

∞∏
n=1

(1− qn)(1 + yqn)(1 + y−1qn) ,

θ3(τ, z) =
∞∏
n=1

(1− qn)(1 + yqn−
1
2 )(1 + y−1qn−

1
2 ) ,

θ4(τ, z) =
∞∏
n=1

(1− qn)(1− yqn− 1
2 )(1− y−1qn−

1
2 ) .

(A.2)

The Eisenstein series E2n, for n > 1, are modular forms of weight 2n. They are given by

E2n(q) = 1 + c2n

∞∑
k=1

k2n−1q2k

1− q2k
, (A.3)

where c2n = − 4n
B2n

and B2n are the Bernoulli numbers given by

Bn =
n!

2πi

∮
z

ez − 1

dz

zn+1
. (A.4)

63



A. DEFINITIONS

64



B. Basics of complex geometry

The purpose of this section is to give an overview of the basic concepts of complex geometry
needed to understand the geometrical objects used in this work, it is not thought to be an
exhaustive introduction to the subject. We will just expose facts without proofs and we will
not discuss them much, for a more exhaustive exposition see [42] and references therein. It is
assumed a basic knowledge of differential and Riemannian geometry.
Let M be a 2m dimensional real manifold (we will always assume them to be C∞), we will
denote the space of tensor fields of type (k, l) by Γ(

⊗k TM
⊗l T ∗M). We define an almost

complex structure to be a smooth tensor field J ∈ Γ(TM
⊗

T ∗M) such that J2 = 1. Given an
almost complex structure J his Nijenhuis tensor is defined as

NJ(v, w) = [v, w] + J [v, Jw] + J [Jv, w]− [Jv, Jw] . (B.1)

Definition. A complex manifold M, of complex dimension m, is a 2m real manifold equipped
with an almost complex structure J such that his Nijenhuis tensor is vanishing, i.e. NJ ≡ 0

This definition is equivalent to the “standard” one which uses local charts from M to C.
At every point p ∈M , J associate a linear map J : TpM → TpM . If we complexify the tangent
space this map extends naturally to the complexified tangent space J : TpM ⊗C→ TpM ⊗C.
Since J2 = −1 its eigenvalues in TpM ⊗ C are ±i. Let T 1,0

p M (T 0,1
p M respectively) be the

eigenspace of eigenvalue i (−i), then TpM ⊗C = T 1,0
p M ⊕T 0,1

p M and since this is true for every
p ∈M it can be extended to the whole tangent bundle TM and we write TCM = T 1,0M⊕T 0,1M
and analogously for the cotangent bundle. Let us denote with Ω(M) the space of k-forms, i.e.
the space of smooth sections of ΛkT ∗M , then the complexified bundles decompose as

ΛkT ∗CM =
k⊕

J=0

Λj,k−jM , (B.2)

where Λp,qM = ΛpT ∗(1,0)M ∧ΛqT ∗(0,1)M . We denote the space of (p, q) forms as Ω(p,q)(M). Let
α =

∑
IJ

fIJdz
I ∧ dz̄J ∈ Ωp,q be a (p, q) form, where I, J are suitable multi-indices, defining the

exterior derivatives
∂ : Ω(p,q) → Ω(p+1,q)

α →
∑
I,J,k

∂fIJ
∂zk

dzk ∧ dzI ∧ dz̄J

and
∂ : Ω(p,q) → Ω(p,q+1)

α →
∑
I,J,k

∂fIJ
∂z̄k

dz̄k ∧ dzI ∧ dz̄J ,

the usual exterior differential decomposes as d = ∂ + ∂. It is easy to show that it holds:

∂2 = 0 = ∂
2

and ∂∂ + ∂∂ = 0.
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Definition. The Dolbeault cohomology groups Hp,q

∂
(M) of M are defined as

Hp,q

∂
(M) =

Ker(∂ : Ωp,q(M)→ Ωp,q+1(M))

Im(∂ : Ωp,q−1(M)→ Ωp,q(M))
.

The definition using ∂ instead of ∂ is equivalent to this one. We also define the Hodge numbers
hp,q := dimHp,q

∂
(M).

Let now M be a complex manifold with complex structure J , and g an hermitian metric on
M . We call g hermitian if g(v, w) = g(Jv, Jw). Given a hermitian metric g we can define the
two-form ω(v, w) = g(Jv, w), which is called the hermitian form associated to the hermitian
metric g. We are now ready to define what a Kähler manifold is.

Definition. Let (M,J) be a m-dimensional complex manifold, g a Riemannian form on M .
We say g is a Kähler metric if its associated hermitian two-form is closed, i.e. dω = 0, and in
this case we call ω a Kähler form. A complex manifold equipped with a Kähler metric is called
a Kähler manifold.

Although Kähler manifolds are interesting objects we will work with more involved objects,
namely Calabi-Yau manifold. To define what a Calabi-Yau manifold is we need another impor-
tant concept: holonomy.

Definition. Let M be a n-dimensional Riemannian manifold with metric g and an affine
connection ∇. Given a point p ∈ M let us consider the set of all closed loops {γ(t) : 0 ≤
t ≤ 1, γ(0) = γ(1) = p}. Let us consider the linear transformation Pγ : TpM → TpM which
takes a vector V ∈ TpM and parallel transports it along γ(t). We denote the set of all these
transformations Holp(M) and call it the holonomy group of M at p

Clearly Holp(M) is a subgroup of GL(n, (R)) which is the maximal holonomy group possible.
If M is connected (we will always work with connected manifolds), since every two points p,
q on the manifold are then connected by some curve, parallel transport along that curve de-
fines an isomorphism between Holp(M) and Holq(M). So the holonomy group Holp(M) is
actually independent on the base point p and we will simply denote it with Hol(M). If M
is a n-dimensional orientable Riemannian manifold and ∇ is a metric connection, i.e. parallel
transport preserves the length of vectors, then Hol(M) must be a subgroup of SO(n). It can
be shown that if M is a Kähler manifold of real dimension 2m, then its holonomy group is a
subgroup of U(m).

Definition. A Calabi-Yau manifold, of real dimension 2m, is a Kähler manifold M with holon-
omy group Hol(M) contained in SU(m).

It can be shown that the previous definition is equivalent to the following one

Definition. A Calabi-Yau manifold is a Ricci-flat Kähler manifold.

Calabi-Yau manifolds admit many other equivalent definitions and possess a lot of interesting
properties but we will not discuss them here, see [42] and references therein for an overview.
With all this background we are finally ready to define K3 surfaces

Definition. A K3 surface is Calabi-Yau manifold M of complex dimension 2 with h1,0(M) = 0.

Actually there are only two kinds of Calabi-Yau surfaces of complex dimension 2, K3 surfaces
and the toruses.
K3 surfaces possess more properties than general Calabi-Yau manifolds, it can be shown in
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fact that they are hyperkähler manifolds.

Definition. A hyperkähler manifold, is a Calabi-Yau manifold M of real dimension 4m, with
holonomy group Hol(M) contained in Sp(m).

The tangent bundle of a hyperkähler manifold possesses a quaternionic structure generated by
3 almost complex structures I2 = J2 = K2 = −1.
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C. Roots and Lattices

We give in this appendix the basic definitions of roots and lattices mainly used in section 5.
This section is intended mostly to fix the notation throughout this work and it is not intended
as an exhaustive introduction to the topic. See [11] or [27] and references therein for a basic
introduction to the subject. We will follow the approach of [27].
Let V be a finite-dimensional real vector space of dimension r with an inner product 〈·, ·〉. A
finite subset X ⊂ V is called a root system of rank r if

� X spans V ;

� X is closed under reflections i.e. if α, β ∈ X then β − 〈α,β〉〈α,α〉 ∈ X ;

� if α ∈ X and cα ∈ X then c ∈ {−1, 1} ;

�
2〈α,β〉
〈α,α〉 ∈ Z .

The elements of a root system are called roots. A root system is called irreducible if there are
not two proper orthogonal subsets X1, X2 such that X = X1 ∪X2. It can be proven that the
roots of an irreducible root system have at most two possible lengths1. If all the roots have the
same length the root system is called simply laced. Simple roots are a subset of roots fi such
that every other root can be written as a linear combination of simple roots with all positive or
all negative coefficients. The subset of simple roots is unique up to the action of the Weyl group
Weyl(X) which is generate by reflections with respect to all roots. An irreducible root system

possesses a highest root θ which is defined by the property that the expansion θ =
r∑
i=1

aifi

maximizes the sum
∑
i

ai. The Coxeter number of X is given by

Cox(X) := 1 +
r∑
i=1

ai . (C.1)

To each irreducible root system is possible to associate a connected Dynkin diagram in the
following way:

� Each simple root is associated with a node

� Nodes associated to two distinct simple roots fi, fj are connected with Nij lines, with

Nij =
〈fi, fj〉
〈fi, fi〉

〈fj, fi〉
〈fj, fj〉

. (C.2)

For simply laced root systems we have Nij = {0, 1}. In this case the only possible Dynkin
diagrams belong to two infinite families An ,Dn or three exceptional cases E6, E7, E8, where

1We call the norm of a root its length.
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the subscript denotes the rank of the corresponding root system, corresponding to

A

D

E6

E7

E8

(C.3)

A lattice L of rank n is a free abelian group isomorphic to the additive group Zn with a
symmetric bilinear from 〈·, ·〉. See [43] for an introduction on the subject. A lattice L is
positive-definite if, when embedded in Rn, the bilinear form induces a positive-definite scalar
product on Rn. It is said integral if 〈a, b〉 ∈ Z for every a, b ∈ L while it is said even if 〈a, a〉 ∈ 2Z
for all a ∈ L. We call a lattice L unimodular if it is isomorphic to its dual lattice defined by

L∗ := {λ ∈ L⊗Z R : 〈λ, a〉 ∈ Z∀a ∈ L} . (C.4)

The elements a ∈ L such that 〈a, a〉 = 2 are called the roots of L. They form a root system.
Even unimodular lattices of signature (a, b) can only occur when a− b is a multiple of 8. There
is only one positive definite even unimodular lattice in 8 dimensions, and two of them in 16
dimensions. It was proven by Niemeier that there exists 24 even unimodular positive-definite
lattices in 24 dimensions. One of them, the Leech lattice, has no roots. We will call the
other 23 lattices with non-trivial root systems Niemeier lattices. It can also be proven that
the Niemeier lattices are uniquely identified by their root systems X, called the Niemeier root
systems. Niemeier root systems are given by union of simply-laced root systems X = ∪iYi such
that they have the same Coxeter number Cox(Yi) = Cox(Yj) and that the total rank is equal
to the rank of the lattice L, i.e.

∑
i rk(Yi) = 24. A list of the 23 Niemeier lattices is given in

section 5.
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D. Coefficients of N = 4 algebra de-
composition

In this section we collect the results of the decomposition of the twining genera in terms of the
characters of the N = 4 superconformal algebra. We considered the groups: M10, 2.AGL3(2),
2.M12, L2(11). The notation 2.M12 indicates the group such that 2.M12/Z2 = M12.
We will identify, for the various group, the irreducible representations Ri by their dimension as
in the following tables

Table D.1: Dimensions of the irreducible representations of the group L2(11)

R1 R2 R3 R4 R5 R6 R7 R8

d 1 5 5 10 10 11 12 12

Table D.2: Dimensions of the irreducible representations of the group M10

R1 R2 R3 R4 R5 R6 R7 R8

d 1 1 9 9 10 10 10 16

Table D.3: Dimensions of the irreducible representations of the group 2.AGL3(2)

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

d 1 3 3 6 7 8 7 7 14 21 21 8 8 8 24 24

Table D.4: Dimensions of the irreducible representations of the group 2.M12

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

d 1 11 11 16 16 45 54 55 55 55 66 99 120 144

R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26

d 176 10 10 12 32 44 44 110 110 120 160 160

We present here the coefficients of decomposition (6.11). There are 2 tables for the group
L2(11) referring to the decomposition obtained considering the action of 2.M12 or M24. The
columns label the coefficients of the various order of qn while the rows label the irreducible
representations of the group.
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Table D.5: Coefficients for the group L2(11) with the action of 2.M12

Ri H00 H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

R1 4 2 -2 0 -2 2 0 38 62 180 342 760 1364 2730 4790 8728
R2 0 0 1 7 10 41 91 221 467 1029 2008 4006 7502 13960 25037 44479
R3 0 0 1 7 10 41 91 221 467 1029 2008 4006 7502 13960 25037 44479
R4 0 0 4 6 34 68 192 424 980 1980 4116 7900 15134 27746 50336 88562
R5 2 0 2 10 24 82 174 454 934 2042 4036 8012 14976 27952 50074 88910
R6 0 0 2 8 26 70 202 454 1042 2174 4436 8660 16530 30446 55126 97332
R7 0 0 0 6 24 78 200 492 1098 2354 4788 9414 17894 33168 59916 106078
R8 0 0 0 6 24 78 200 492 1098 2354 4788 9414 17894 33168 59916 106078

Table D.6: Coefficients for the group L2(11) with the action of M24

Ri H00 H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

R1 4 2 0 2 2 8 10 52 84 210 386 820 1448 2838 4940 8922
R2 0 0 0 6 8 38 86 214 456 1014 1986 3976 7460 13906 24962 44382
R3 0 0 0 6 8 38 86 214 456 1014 1986 3976 7460 13906 24962 44382
R4 0 0 2 4 30 62 182 410 958 1950 4072 7840 15050 27638 50186 88368
R5 2 0 0 8 20 76 164 440 912 2012 3992 7952 14892 27844 49924 88716
R6 0 0 2 8 26 70 202 454 1042 2174 4436 8660 16530 30446 55126 97332
R7 0 0 2 8 28 84 210 506 1120 2384 4832 9474 17978 33276 60066 106272
R8 0 0 2 8 28 84 210 506 1120 2384 4832 9474 17978 33276 60066 106272

Table D.7: Coefficients for the group M10

Ri H00 H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

R1 4 2 0 0 0 8 14 46 74 192 360 742 1332 2592 4548 8168
R2 1 0 0 2 2 8 10 46 80 190 356 748 1338 2588 4536 8170
R3 0 0 0 6 18 60 140 354 762 1650 3306 6534 12332 22914 41244 73130
R4 1 0 2 6 16 62 144 352 758 1652 3312 6532 12324 22918 41254 73126
R5 1 0 0 8 20 68 150 400 842 1840 3662 7282 13670 25502 45780 81300
R6 0 0 2 4 26 58 166 378 874 1794 3724 7196 13786 25350 45982 81036
R7 0 0 2 4 26 58 166 378 874 1794 3724 7196 13786 25350 45982 81036
R8 0 0 2 12 32 100 262 614 1372 2920 5892 11582 21986 40660 73414 129900

Table D.8: Coefficients for the group 2.AGL3(2)

Ri H00 H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

R1 2 -4 2 -10 -18 -32 -62 -96 -162 -238 -354 -490 -690 -836 -1046 -1064
R2 0 3 0 4 12 22 52 88 176 307 580 988 1770 2990 5176 8598
R3 0 3 0 4 12 22 52 88 176 307 580 988 1770 2990 5176 8598
R4 0 0 0 0 0 6 10 38 86 214 436 928 1792 3478 6372 11586
R5 0 0 0 0 6 10 38 82 196 376 800 1490 2856 5140 9296 16134
R6 0 0 0 0 2 6 26 54 146 316 684 1356 2686 4994 9230 16432
R7 0 2 0 6 18 30 64 134 266 496 954 1742 3176 5634 9912 17074
R8 2 2 0 8 12 36 60 144 246 522 928 1782 3110 5714 9822 17202
R9 0 0 0 6 10 38 84 202 400 854 1622 3168 5798 10628 18754 32956
R10 0 0 0 0 8 22 74 174 428 906 1920 3774 7334 13612 24898 44152
R11 0 0 0 2 6 28 66 184 412 928 1890 3818 7276 13688 24796 44284
R12 1 0 2 4 14 30 60 134 264 510 994 1850 3384 6116 10794 18752
R13 0 0 2 6 12 30 64 128 264 518 984 1850 3398 6100 10794 18776
R14 0 0 2 6 12 30 64 128 264 518 984 1850 3398 6100 10794 18776
R15 0 0 0 2 10 32 90 224 512 1106 2276 4500 8608 16006 29024 51488
R16 0 0 0 2 10 32 90 224 512 1106 2276 4500 8608 16006 29024 51488
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Table D.9: Coefficients for the group 2.M12

Ri H00 H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14

R1 1 2 -4 -6 -10 -18 -26 -40 -60 -86 -124 -174 -238 -322 -436 -576
R2 1 0 2 2 4 8 12 18 26 40 64 94 142 228 354 542
R3 0 0 0 0 0 0 0 2 6 8 16 36 64 116 206 358
R4 0 0 1 3 4 7 13 19 31 49 74 120 190 296 473 757
R5 0 0 1 3 4 7 13 19 31 49 74 120 190 296 473 757
R6 0 0 0 0 0 0 2 6 12 30 62 118 232 428 770 1376
R7 0 0 0 0 0 0 2 6 12 30 66 132 258 486 894 1598
R8 0 0 0 0 0 0 0 2 8 22 54 114 232 454 844 1534
R9 0 0 0 2 6 8 14 28 46 78 134 232 404 688 1168 1982
R10 0 0 0 0 0 2 6 10 22 48 92 172 318 580 1030 1794
R11 0 0 0 0 0 0 2 8 18 40 88 174 332 626 1134 2010
R12 0 0 0 0 0 2 8 16 34 76 148 284 540 984 1766 3116
R13 0 0 0 0 0 0 2 10 26 60 136 282 554 1056 1944 3490
R14 0 0 0 0 2 6 10 24 54 106 214 414 772 1422 2556 4492
R15 0 0 0 0 0 2 8 20 50 112 230 462 890 1656 3012 5348
R16 0 0 2 2 6 8 14 20 38 50 86 120 190 274 442 638
R17 0 0 2 2 6 8 14 20 38 50 86 120 190 274 442 638
R18 1 0 0 2 2 4 4 14 16 36 46 92 122 236 336 592
R19 0 0 0 0 0 0 4 4 12 24 44 88 172 304 552 980
R20 0 0 0 2 2 6 8 18 26 60 92 178 294 538 888 1576
R21 0 0 0 2 2 6 8 18 26 60 92 178 294 538 888 1576
R22 0 0 0 0 2 2 10 16 42 76 170 302 604 1066 1968 3398
R23 0 0 0 0 2 2 10 16 42 76 170 302 604 1066 1968 3398
R24 0 0 0 0 0 4 4 20 32 84 152 332 588 1156 2016 3676
R25 0 0 0 0 0 2 6 18 44 98 204 414 794 1490 2712 4826
R26 0 0 0 0 0 2 6 18 44 98 204 414 794 1490 2712 4826
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E. Coefficients of C2/Z3 characters de-
composition

We present here the coefficients of decomposition (6.77). There are again 2 tables for the group
L2(11) referring to the decomposition obtained considering the action of 2.M12 or M24. The
coefficient H0,1 is actually the sum H0,1 +H0,2. The columns label the coefficients of the various
order of qn while the rows label the irreducible representations of the group as in appendix D.

Table E.1: Coefficients for the group L2(11) with the action of 2.M12

Ri H0,0 H0,1 H1 H2 H3 H4 H5 H6 H7 H8

R1 -2 0 0 10 -24 18 26 -50 12 46
R2 0 0 1 4 -11 16 3 -2 2 34
R3 0 0 1 4 -11 16 3 -2 2 34
R4 0 0 4 -6 16 -14 18 18 20 -42
R5 0 2 0 6 -12 30 -6 6 -12 66
R6 0 0 2 2 2 2 32 -22 16 2
R7 0 0 0 6 6 6 -4 12 12 18
R8 0 0 0 6 6 6 -4 12 12 18

Table E.2: Coefficients for the group L2(11) with the action of M24

Ri H0,0 H0,1 H1 H2 H3 H4 H5 H6 H7 H8

R1 -2 0 2 6 -26 22 28 -46 8 46
R2 0 0 0 6 -10 14 2 -4 4 34
R3 0 0 0 6 -10 14 2 -4 4 34
R4 0 0 2 -2 18 -18 16 14 24 -42
R5 0 2 -2 10 -10 26 -8 2 -8 66
R6 0 0 2 2 2 2 32 -22 16 2
R7 0 0 2 2 4 10 -2 16 8 18
R8 0 0 2 2 4 10 -2 16 8 18
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Table E.3: Coefficients for the group M10

Ri H0,0 H0,1 H1 H2 H3 H4 H5 H6 H7 H8

R1 -2 0 2 4 -22 28 22 -74 16 92
R2 0 1 -1 3 -7 7 4 3 -8 -1
R3 0 0 0 6 0 6 -10 24 0 22
R4 0 1 1 1 -5 29 -4 -23 8 69
R5 0 1 -1 9 -7 13 -6 27 -8 21
R6 0 0 2 -2 14 -10 12 10 16 -26
R7 0 0 2 -2 14 -10 12 10 16 -26
R8 0 0 2 6 -4 14 22 -12 16 30

Table E.4: Coefficients for the group 2.AGL3(2)

Ri H0,0 H0,1 H1 H2 H3 H4 H5 H6 H7 H8

R1 -2 -2 0 4 -4 12 0 -32 14 34
R2 0 0 3 -5 0 1 6 -8 1 11
R3 0 0 3 -5 0 1 6 -8 1 11
R4 0 0 0 0 0 6 -8 8 2 6
R5 0 0 0 0 6 -8 8 -2 0 -22
R6 0 0 0 0 2 0 8 -14 14 8
R7 0 0 2 0 0 -14 4 32 0 -24
R8 0 2 0 4 -18 20 8 -22 0 54
R9 0 0 0 6 -8 8 0 0 -16 32
R10 0 0 0 0 8 -2 8 -8 16 -8
R11 0 0 0 2 0 10 -8 16 0 8
R12 0 1 1 -1 -1 3 -2 1 8 3
R13 0 0 2 0 -6 4 4 -4 16 4
R14 0 0 2 0 -6 4 4 -4 16 4
R15 0 0 0 2 4 2 4 4 0 6
R16 0 0 0 2 4 2 4 4 0 6
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Table E.5: Coefficients for the group 2.M12

Ri H0,0 H0,1 H1 H2 H3 H4 H5 H6 H7 H8

R1 -2 -3 1 7 -5 -3 6 -21 8 19
R2 0 1 1 -3 -5 11 6 -21 8 21
R3 0 0 0 0 0 0 0 2 0 -10
R4 0 0 1 0 -5 0 7 0 2 0
R5 0 0 1 0 -5 0 7 0 2 0
R6 0 0 0 0 0 0 2 0 -6 4
R7 0 0 0 0 0 0 2 0 -6 4
R8 0 0 0 0 0 0 0 2 2 -2
R9 0 0 0 2 0 -10 0 16 2 -4
R10 0 0 0 0 0 2 0 -8 2 12
R11 0 0 0 0 0 0 2 2 -6 -4
R12 0 0 0 0 0 2 2 -8 -4 14
R13 0 0 0 0 0 0 2 4 -4 -8
R14 0 0 0 0 2 0 -8 4 12 -6
R15 0 0 0 0 0 2 2 -4 0 2
R16 0 0 2 -4 0 0 0 8 4 -8
R17 0 0 2 -4 0 0 0 8 4 -8
R18 0 1 -1 3 -7 3 10 -11 4 7
R19 0 0 0 0 0 0 4 -8 0 8
R20 0 0 0 2 -4 0 0 4 2 8
R21 0 0 0 2 -4 0 0 4 2 8
R22 0 0 0 0 2 -4 4 -4 4 0
R23 0 0 0 0 2 -4 4 -4 4 0
R24 0 0 0 0 0 4 -8 8 -8 8
R25 0 0 0 0 0 2 0 0 0 -4
R26 0 0 0 0 0 2 0 0 0 -4
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