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Abstract

This thesis studies the work of Przemysław Rola on the condition of no-arbitrage in a
finite discrete time market with a money account (risk-free) and bid-ask spreads. In the
first chapter, we introduce the mathematical model and we state the notions of Equiva-
lent Bid-Ask Martingale Measure (EBAMM) and consistent price system (CPS). In the
second chapter, we prove some lemmas and the fundamental theorem of asset pricing
using the existence of EBAMM or superCPS and subCPS as an equivalent condition for
no-arbitrage. In the last chapter, as an application of our findings, we introduce the
Cox-Ross-Rubinstein model with bid-ask spreads.
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Introduction

In this thesis, we will present and analyze the model of a finite discrete time market with
a bid-ask spread in order to find an equivalent condition to the absence of arbitrage. In
this financial market, there are two prices for each asset: the bid and ask price and the
numerical difference between these is called the bid-ask spread.

The ask price is the minimum amount a market maker is willing to sell a unit of asset:
from an investor’s point of view, it is the cost they would have to pay to purchase shares
of the asset. On the other hand, the bid price is the highest amount a market maker is
willing to buy a unit of an asset: from an investor’s point of view, it is the potential gain
from selling a unit of that asset. Obviously, the first one is greater than the second one:
the bid-ask spread is an implicit cost of transaction that the investor accepts when he
deals with assets.

The bid-ask spread can vary depending on many factors: liquidity is one of the most
important. Liquidity is a measure of how easily an asset can be converted into cash
without impacting its value. Currency is considered the most liquid asset, with a very
small bid-ask spread, measured in fractions of pennies (one-hundredth of a per cent). In
contrast, less liquid assets such as small-cap stocks may have bid-ask spreads that are a
significant percentage of the asset’s lowest ask price, such as 1-2%.

The difference between the bid and ask prices can also be significantly influenced by
the amount of buy and sell orders, or "bids" and "asks", placed by market participants. If
there are fewer buyers placing orders to purchase a security, this can lead to a decrease in
bid prices, causing the spread to widen. Similarly, if there are fewer sellers placing orders
to sell, this can also cause the spread to widen. For example, stocks like Google, Apple,
and Microsoft, which are heavily traded, tend to have a narrow bid-ask spread. On the
other hand, assets that are not well-known or popular may have a wider bid-ask spread
because of lower trading volume and less investor’s interest. De facto, the bid-ask spread
also indicates the market maker’s level of risk associated with making a trade, so it is also
influenced by the potential for price volatility.

The other main topic of this thesis is the notion of no-arbitrage. In mathematical
finance, arbitrage is a strategy, so the choice of purchase or sale of assets, that allows the
investor to make a profit without any risk: it generates a strictly positive gain almost
surely.

In absence of bid-ask spread, an equivalent condition for the absence of arbitrage for
friction-less markets is given by the first Fundamental Theorem of Asset Pricing, also
known as the Dalang–Morton–Willinger theorem: this states that a financial market is
arbitrage-free if and only if there exists at least one equivalent martingale measure Q (or
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Introduction 2

risk-neutral probability measure) that is equivalent to the original probability measure P.
Finding equivalent conditions for markets with friction is more challenging: today

there are a lot of relevant papers on this and we resume some of them. In article [10],
Kabanov gave equivalent conditions for strict no-arbitrage for markets with proportional
transaction cost and efficient friction.

In paper [18], Schachermayer states that the model satisfies the conditions of robust
no-arbitrage (which is a type of no-arbitrage notion, robust with respect to small changes
of bid-ask spreads) if and only if it admits a strictly consistent price system.

In this thesis, we examine a market with a limited number of assets and a money
market account over a finite and discrete period. We work with the traditional con-
cept of no-arbitrage and introduce the idea of an equivalent bid-ask martingale measure
(EBAMM).

We then introduce the idea of a consistent price system (CPS) and two variations of it:
the supermartingale consistent price system (supCPS) and the submartingale consistent
price system (subCPS). We demonstrate that the existence of an EBAMM is equivalent
to the existence of CPS.

In the second chapter, we prove two lemmas and the theorem where we verify that
the existence of supCPS and subCPS implies the absence of arbitrage (this result is still
valid if there exists a CPS).

In the second section of the second chapter, after two technical lemmas, we state and
prove the main theorem where we give necessary and sufficient conditions for the absence
of arbitrage.

In the last chapter, we give some applications where we make use of our results. We
study the Cox-Ross-Rubinstein model with bid-ask spreads: investigating the conditions
for the absence of arbitrage, we examine the evolution of the model and the existence of
EBAMM.



Chapter 1

The mathematical model

In this chapter, we introduce the model for the financial market with bid-ask spread. At
the end of this thesis in Appendix A, there are definitions and basic notions that might
help the reader.

Let Ω = {ω1, ω2, . . . , ωN} be a finite space equipped with a probability measure (see
Definition 12 in Appendix A) P such that P({ω}) = pn > 0 for n = 1, . . . , N . In addition
to the probability space (Ω, F ,P), we also fix T ∈ N, T ̸= 0, that is our final time horizon,
and a filtration F = (Ft)T

t=0 on Ω, an increasing sequence of σ-algebras (see Definition 11
in Appendix A).

In the financial market, we assume the existence of a money market account or a
non-risky asset B, which is a strictly positive adapted process B = (Bt)T

t=0. The dynamic
of the title is settled by the equation:B0 = 1

Bt = Bt−1(1 + r)

where r is the risk-free rate. We can assume Bt = 1 ∀t ∈ {0, 1, . . . , T} without losing
generality thanks to the discounting process described in [5, Section 2.1]. All transactions
in our model will be calculated in units of this process.

We now introduce the stochastic process (see Definition 14 in Appendix A) that model
risky assets.

Definition 1. The bid price process S is a d-dimensional and F-adapted process defined
as

S = (St)T
t=0 =

(
S1

t , . . . , Sd
t

)T

t=0
.

The ask price process S is a d-dimensional and F-adapted process defined as

S =
(
St

)T

t=0
=
(
S

1
t , . . . , S

d
t

)T

t=0
.

The pair
(
S, S

)
is called the bid-ask price process.

S
i

t̃ models the price of the risky asset at time t̃ of the i-th asset, on the other hand,
Si

t̃ models the income from the sale of the same asset: at any time, the investor can

3



The mathematical model 4

buy or sell an unlimited number of the i-th price process. We suppose Si
t ≤ S

i

t for any
i ∈ {1, . . . , d} and for any t ∈ {0, 1, . . . , T}: therefore when the investor sells a unit of
titles, he earns less than what he would spend on buying a new one.

Remark 1. In some papers, the hypothesis could have slight differences. It’s supposed
there exists a stock process S = (St)T

t=0 which models the “value” of the unit of asset.
The bid and price process are defined as

Si
t := (1 + λi

t) Si
t and S

i

t := (1 − µi
t) Si

t ,

where λi
t ∈ [0, +∞) and µi

t ∈ [0, 1) are real numbers.

A trading strategy is a stochastic process H = (Ht)T
t=0 =

(
H1

t , . . . , Hd
t

)T

t=0
which is

predictable with respect to F (see Definition 14 in Appendix A). H i
t stands for the units

of the asset Si that the investor keeps in his portfolio during the period from t − 1 to t.
Usually, the strategy that refers to the money account is denoted by βt. Therefore we
define the value of strategy or the value of portfolio as

V
(H,β)

t := (Ht)+ · St − (Ht)− · St + βt. (1.1)

We calculate it using the immediate liquidation: at time t, the investor sells all units of
assets he holds and pays short-selling positions.

We are interested in self-financing strategies, which are the particular type of strategies
that satisfies

βt = βt−1 − St−1 · (Ht − Ht−1)+ + St−1 · (Ht − Ht−1)−. (1.2)

This can be interpreted as follows: at time t − 1, we hold Ht−1 units of risky assets and
βt−1 units of the non-risky asset and we build the strategy for the period [t−1, t] choosing
Ht units of risky assets and βt units of the non-risky asset so as not to change the total
value of the portfolio. In this way, all asset transactions must be done by borrowing from
or charging into the money account. With the same financial interpretation, the condition
in Equation (1.2) is equivalent to

V
(H,β)

t−1 = H+
t · St−1 + H−

t · St−1 + βt + Lt, (1.3)

where

Lt := St−1 · (Ht − Ht−1)+ − St−1 · (Ht − Ht−1)− + St−1 · (H−
t − H−

t−1) − St−1 · (H+
t − H+

t−1).

Remark 2. The Equation (1.3) may appear to have no financial meaning. Actually,
based on the definitions given in Remark 1, it turns into

V
(H,β)

t−1 = Ht · St−1 + βt + λt−1St−1 · (Ht − Ht−1)+ + µt−1St−1 · (Ht − Ht−1)+,

with the convention λt−1St−1 = (λ1
t−1S

1
t−1, . . . , λd

t−1S
d
t−1) and the same agreement is valid

for µt−1St−1. The final terms (which correspond to Lt) can be interpreted as the alteration
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due to the reorganisation dictated by the strategy H that will be balanced with the
position in the risk-free asset. We can rewrite also the Equation (1.2) as

βt = βt−1 − (1 + λt−1)St−1 · (Ht − Ht−1)+ + (1 − µt−1)St−1 · (Ht − Ht−1)+,

where (1 + λt−1)St−1 =
(
(1 + λ1

t−1)S1
t−1, . . . , (1 + λd

t−1)Sd
t−1

)
and the same convention

applies to (1 + µt−1)St−1. It is important to note, however, that with these definitions the
value of the portfolio becomes as follows

V
(H,β)

t−1 := Ht−1 · St−1 + βt−1.

This implies that there are no transaction costs at the moment of leaving the financial
market. In our model, we don’t have this assumption so we calculate V

(H,β)
t−1 through the

immediate liquidation.

Let PT be the set of all possible self-financing strategies. With the convention H ≥ 0
if H i ≥ 0 ∀i and, in the same way, H ≤ 0 if H i ≤ 0 ∀i, we define the subsets

P+
T : = {H ∈ PT | H ≥ 0} and P−

T : = {H ∈ PT | H ≤ 0} . (1.4)

Definition 2. The stochastic process x = (xt)T
t=0 is defined as

xt = xt(H) : = −
t∑

j=1
(∆Hj)+ · Sj − 1 +

t∑
j=1

(∆Hj)− · Sj − 1 + (Ht)+ · St − (Ht)− · St, (1.5)

where · is the inner product in Rd and ∆H i
j = H i

j −H i
j−1 for any i= 1, . . . , d and j= 1, . . . , t

with the convention ∆H i
1 = H i

1.

The random variable xt models the gain or loss incurred up to time t in the market with
bid-ask spreads following the strategy H and starting from 0 units in the bank account
and 0 units in stock accounts.

In order to make clearer what each term stands for, we analyze x2(H) for just one
risky asset (d=1):

x2(H) = −H+
1 · S0 + H−

1 · S0 − (H2 − H1)+ · S1 + (H2 − H1)− · S1 + H+
2 · S2 − H−

2 · S2.

We examine each element:

• −H+
1 ·S0: it is the price to buy #H+

1 units of the risky asset at ask price S0 at time
t = 0;

• +H−
1 · S0: it is the income from selling #H−

1 units of the risky asset at bid price S0
at time t = 0;

• −(H2 − H1)+ · S1: at time t = 1, the investor takes the decision to have #H2 units
of the risky asset in the time interval [1, 2]. So if (H2 − H1) is positive, he buys at
time t = 1 #(H2 − H1) units of asset for the ask price S1;
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• +(H2−H1)− ·S1: following the same reason as before, the investor sells #(H2−H1)−

units of asset at bid price S1;

• +H+
2 · S2 − H−

2 · S2: this is the result of the immediate liquidation. At the time
t = 2, the investor sells all units of risky asset that he owns (so #H+

2 ) for the bid
price S2 and he buys #H−

2 units of the asset at ask price S2 to pay off his debts.

In general, for any t ∈ [0, T ], the first sum in Equation (1.5) is the aggregate cost from
buying assets up to time t while the second sum is the aggregate earnings from selling
assets up to time t. In the end, in order to get the value of our portfolio, we liquidate all
positions in risky assets and we pay short-selling positions: in this way we get the value
in units of the money account.

Remark 3. If the trading strategy H is self-financing, the position for the money account
is uniquely determined by the risky-asset strategy. So we can express βt in terms of H i

t .

We use the notation L0(Rd, Ft) for the set of Ft-measurable random vector taking val-
ues in Rd. When the σ-algebra is not written, it stands for L0(Rd, FT ), on the other hand
when the dimension is not written, it stands for L0(R, Ft). In addition, let L0

+(Rd, Ft)
be the subspace of L0(Rd, Ft) including the random vectors H ≥ 0 with the convention
fixed before. Moreover, we deal with the standard space L1 and L∞ (see Definition 15 in
Appendix A) in the same way.

Definition 3. The set of final gains is

RT := {xT (H) | H ∈ PT }.

The set of final sub-gains is
AT := RT − L0

+.

The closure of AT in probability is as AT .

We now introduce some random variables and sets that we will use later in proofs.
They are similar to the ones we introduced so far but they refer to different time ranges.

Definition 4. For 1 ≤ t ≤ t + k ≤ T and H ∈ L0(Rd, Ft−1), let be

xt−1,t+k(H) := −(H)+ · St−1 + (H)− · St−1 + (H)+ · St+k − (H)− · St+k.

This process is similar to xt: it models the gains or losses incurred when we buy(sell) #H
units of the assets at time t − 1 and then we sell(buy) them at time t + k.

Definition 5. For any 0 ≤ j ≤ t ≤ T , let be

R+
j,t :=

{
H ·

(
St − Sj

)
| H ∈ L0

+(Rd, Fj)
}

,

R−
j,t :=

{
H ·

(
St − Sj

)
| − H ∈ L0

+(Rd, Fj)
}

.
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The first one is the set of claims achieved when, at time j, we buy #H units of assets at
ask price Sj and then we sell them for St at time t. On the other hand, R−

j,t is the set of
claims made by a short-selling strategy: first we sell #H units of assets at bid price Sj

and then we re-buy at time t for St.

Remark 4. In the Definition 5 we do not use the time index for the strategy since during
the time interval j ≤ k ≤ t we do not trade. If this creates confusion for the reader,
according to the other notations in the thesis, they can replace H with Hj+1.

Furthermore, we define, for any 1 ≤ t ≤ t + k ≤ T , the following sets

Ft−1,t+k := R+
t−1,t+k + R−

t−1,t+k and Ft−1,t+k := Ft−1,t+k − L0
+(Ft+k) (1.6)

and for any t = 1, . . . , T we define the counterpart of sets Rt and At

Ft :=
∑
j<t

R+
j,t +

∑
j<t

R−
j,t and Ft := Ft − L0

+(Ft) (1.7)

In the end, we also introduce ΛT := ∑T
t=1 Ft − L0

+.
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Chapter 2

Consistent price system and
equivalent bid-ask martingale
measure

In this Chapter, we start exploring the main topic of this thesis: arbitrage in a market
with a bid-ask spread. In a frictionless market, the first fundamental theorem of asset
pricing states that a discrete market is arbitrage-free if, and only if, there exists at least
one risk-neutral probability measure, also called equivalent martingale measure, that is
equivalent to the original probability measure P. Finding similar conditions in a market
with friction is much more challenging: following the work of Przemysław in the article
[15], we define a consistent price system and equivalent bid-ask martingale measure and
we investigate the relations with the absence of arbitrage.

First, we give the definition of arbitrage using the random variable xt given in Defini-
tion 2.

Definition 6. An arbitrage is a self-financing strategy H ∈ Pt verifying the following
conditions:

• H0 = 0 and β0 = 0;

• xt(H) ≥ 0;

• P (xt(H) > 0) > 0.

An arbitrage is a trading strategy such that, starting from an investment zero, the resulting
contingent gain xT (H) is non-negative and not identically equal to zero: the investor can
gain without taking risks. We say that a market model is arbitrage-free if PT does not
include arbitrage strategies.

We can characterize it using the set introduced in Definition 3 with the following
condition:

Definition 7. There is no arbitrage in the market with bid-ask spreads if

AT ∩ L0
+ = {0}. (NA)

9
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Obviously, the condition NA is equivalent to FT ∩ L0
+ = {0}.

Lemma 1. Assume that AT ∩ L0
+ = {0}. Then At ∩ L0

+(Ft) = {0} for any t ≤ T .

Proof. If H̃ is an arbitrage strategy with time horizon t̃ (we liquidate all positions in risky
assets in t̃), then there is also an arbitrage strategy H in a model with a larger horizon
T : we can describe it as:

Ht =
H̃t if t ≤ t̃

0 if t > t̃.

We keep following the strategy H̃ until t̃, then we liquidate all risky assets and keep all
the money in the money account, which is risk-free, until T . This strategy satisfies the
three conditions in Definition 6.

Before introducing the Equivalent Bid-Ask Martingale Measure, we give the definition
of an equivalent martingale measure in a market without friction. The description of some
of the elements we will introduce is given in Definitions 16, 17, 18, 19 in Appendix A.

Definition 8. An equivalent martingale measure (EMM) is a probability measure Q on
(Ω, F) such that:

• Q is equivalent to P:

∀A ∈ F , P(A) = 0 ⇐⇒ Q(A) = 0;

• for any n = 1, . . . , N we have

Sn−1 = EQ[Sn|Fn−1]. (EMM)

Namely, S is a Q-martingale.

Equivalent martingale measures are often called risk-neutral measures. They are used
to set an objective and fair cost for an asset or a financial instrument like derivatives.
We use this measure to establish the price in order to remove the risk component. If real
probabilities were used, the cost of each asset would need to be changed depending on
the individual investor’s risk appetite.

Now we are ready to introduce a measure that plays a similar role in markets with
bid-ask spread. We use the same notation as in Przemysław’s article [15].

Definition 9. An equivalent bid-ask martingale measure(EBAMM) for the bid-ask pro-
cess (S, S) is a probability measure Q such that is equivalent to P, St, St ∈ L1(Q) and

Si
t−1 ≤ EQ

(
S

i

t|Ft−1
)

and EQ
(

Si
t|Ft−1

)
≤ S

i

t−1. (EBAMM)

The interpretation of this measure is that if we buy units of risky assets at time t − 1
at price S

i
t−1, we do not expect on “average” (following the probability measure Q) to sell

them at a better price. The same thing happens when we short sale: if we sell earning
Si

t−1 at t − 1, we expect at t to re-buy at a higher price S
i

t.



11 CPS and EBAMM

The similarity between these two definitions 8 and 9 is clear. We can see EBAMM
as a generalization of EMM : if we assume S = S (reducing our model to a market
model without transaction costs), the two inequalities in EBAMM correspond with the
equivalence in EMM.

We now introduce the notion of Consistent Price System.

Definition 10. A consistent price system (CPS) in the market with bid-ask spread is
the pair (S̃, P̃ ), where P̃ is a probability measure equivalent to P and S̃ = (S̃t)T

t=0 is a
d-dimensional process adapted to the filtration F such that it is a P̃ -martingale and

Si
t ≤ S̃i

t ≤ S
i
t P-a.e. for all i = 1, . . . , d and t = 0, . . . , T. (CPS)

If the process S̃ is a P̃ -supermartingale [respectively P̃ -submartingale], then the pair
(S̃, P̃ ) is a supermartingale consistent price system (supCPS) [submartingale consistent
price system (subCPS)].

Lemma 2. If there exists a CPS, then there exists an EBAMM.

Proof. Let (S̃,Q) be a consistent price system. Using the condition CPS and the mono-
tonicity of expected value, for any t = 1, . . . , T and i = 1, . . . , d we have

Si
t ≤ S̃i

t =⇒ EQ
(

Si
t|Ft−1

)
≤ EQ

(
S̃i

t |Ft−1

)
.

Then S̃ is a Q-martingale so

EQ
(

S̃i
t |Ft−1

)
= S̃i

t−1 ≤ S
i
t−1

where we re-use the fact S̃ is a CPS. Putting together the first and last inequality above
we have

EQ
(

Si
t|Ft−1

)
≤ S

i

t−1

which is the second condition in Definition 9. For the other we retrace the same reasoning
changing the direction of inequalities and reversing the bid and ask process

Si
t−1 ≤ S̃i

t−1 = EQ
(

S̃i
t |Ft−1

)
≤ EQ

(
S

i

t|Ft−1

)
.
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2.1 First Condition for No Arbitrage
Before we give the first result about the relation between the absence of arbitrage and the
existence of a consistent price system, we state some auxiliary lemmas that will be useful
in the proof of Theorem 1.

First, recalling the sets defined in Equation (1.4), let

R̃T :=
{
(Ĥ · Ŝ)T + (Ȟ · Š)T | Ĥ ∈ P+

T , Ȟ ∈ P−
T

}
R̃b

T :=
{
(Ĥ · Ŝ)T + (Ȟ · Š)T | Ĥ ∈ P+

T , Ȟ ∈ P−
T and Ĥ, Ȟ are bounded by b

}
where (H · S)t := ∑t

j=1 Hj ·∆Sj and “ · ” is the inner product in Rd and ∆Sj = Sj −Sj−1.

Lemma 3. The following are equivalent:

(a) R̃T ∩ L0
+ = {0}

(b)
{
η̂ · ∆Ŝt + η̌ · ∆Št | η̂, − η̌ ∈ L0

+(Rd, Ft−1)
}

∩ L0
+(Ft) = {0} for any t = 1, . . . , T .

Remark 5. Notice that condition (b) is the absence of arbitrage in a one-step model.

Proof Lemma 3. We prove each implication:

(a) ⇒ (b) This implication is trivial. If there are no arbitrage strategies until time T, then
there are no arbitrage strategies for any t ≤ T by Lemma 1 so they cannot exist
between two instants.

(b) ⇒ (a) Using the same reasoning as in book [11, Section 2.1.1], we assume R̃T ∩ L0
+ ̸=

{0} and prove the existence of arbitrage in a one-step model. Let the smallest
1 < t ≤ T be fixed such that R̃t ∩L0

+ ̸= {0}. Therefore we can find two strategies
Ĥ ∈ P+

t and Ȟ ∈ P−
t such that(

Ĥ · Ŝ
)

t
+
(
Ȟ · Š

)
t

≥ 0 P-a.e. and P
((

Ĥ · Ŝ
)

t
+
(
Ȟ · Š

)
t

> 0
)

> 0.

In particular, rewriting the first condition,

(Ĥ · Ŝ)t + (Ȟ · Š)t =
t∑

j=1
Ĥj∆Ŝj +

t∑
j=1

Ȟj∆Šj

=
t−1∑
j=1

Ĥj∆Ŝj + Ĥt∆Ŝt +
t−1∑
j=1

Ȟj∆Šj + Ȟt∆Št

= (Ĥ · Ŝ)t−1 + (Ȟ · Š)t−1 + Ĥt∆Ŝt + Ȟt∆Št ≥ 0.

Due to the choice of t, we have (Ĥ · Ŝ)t−1 + (Ȟ · Š)t−1 ≤ 0 P-a.e.
This implies Ĥt∆Ŝt + Ȟt∆Št ≥ 0 P-a.e., so for time t we get{

η̂ · ∆Ŝt + η̌ · ∆Št | η̂, − η̌ ∈ L0
+

}
∩ L0

+ =
{
Ĥt∆Ŝt + Ȟt∆Št

}
̸= {0}.
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Lemma 4. The following are equivalent:

(a) R̃T ∩ L0
+ = {0}

(b) R̃b
T ∩ L0

+ = {0}

Proof. We prove each implication:

(a) ⇒ (b) This implication is trivial: the set of bounded strategies is smaller than the set
of all admissible strategies.

(b) ⇒ (a) By Lemma 3, we know that R̃T ∩ L0
+ = {0} is equivalent to{

η̂ · ∆Ŝt + η̌ · ∆Št | η̂, − η̌ ∈ L0
+(Rd, Ft−1)

}
∩L0

+(Ft) = {0} for any t = 1, . . . , T.

Notice that if there is arbitrage in any one-step model, then R̃b
T ∩L0

+ ̸= {0}. Fix
any t and suppose that there exist two random variables Ĥ ∈ L0

+(Rd, Ft−1) and
(−Ȟ) ∈ L0

+(Rd, Ft−1) such that

Ĥt∆Ŝt + Ȟt∆Št ≥ 0 P-a.e. and P
(
Ĥt∆Ŝt + Ȟt∆Št > 0

)
> 0.

Define Ht := (Ĥt, Ȟt) ∈ L0(R2d, Ft−1) and the normalized random vector

H t =
Ht / ∥Ht∥ if Ht ̸= 0

0 if Ht = 0.

Now split H t into Ĥb
t := ( H

1
t , . . . , H

d
t ) and Ȟb

t := ( H
d+1
t , . . . , H

2d
t ). It is

obvious that Ĥb
t ∈ L0

+(Rd, Ft−1) and (−Ȟb
t ) ∈ L0

+(Rd, Ft−1). These two processes
satisfy

Ĥb
t ∆Ŝt + Ȟb

t ∆Št ≥ 0 P-a.e. and P
(
Ĥb

t ∆Ŝt + Ȟb
t ∆Št > 0

)
> 0

which means they are arbitrage strategies in the class of bounded ones, so
R̃b

T ∩ L0
+ ̸= {0}.

Remark 6. Following Przemysław’s work [15, Section 2], we state and prove Lemma 3
and 4 in order to have a clearer idea from a analytical point of view. Let be noted the
usefulness of Lemma 3 because it emphasizes how the condition of no-arbitrage in the final
moment implies that we cannot realize an arbitrage strategy for all previous moments.
Nevertheless, we could skip these lemmas: we do not consider unlimited strategies in PT

since they are not realistic. Therefore, the equivalence between the two conditions in
Lemma 4 is trivial. From now on, R̃T and R̃b

T will be the same set.

We now finally prove the following theorem.

Theorem 1. Suppose there exists a supCPS (S̃,Q) and a subCPS (S̃,Q). Then R̃T ∩L0
+ =

{0} and there is no arbitrage, i.e., AT ∩ L0
+ = {0}.
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Proof. We start proving R̃T ∩ L0
+ = {0}. Fix any random variable

X = (Ĥ · Ŝ)T + (Ȟ · Š)T ∈ R̃T ∩ L0
+.

Hence (Ĥ ·Ŝ)T +(Ȟ ·Š)T ≥ 0 because X ∈ L0
+. We want to show EQ[(Ĥ ·Ŝ)T +(Ȟ ·Š)T ] ≤ 0.

Using the law of total expectation, we can rewrite it as

EQ[(Ĥ · Ŝ)T + (Ȟ · Š)T ] = EQ
[
EQ

[
T∑

t=0
Ĥt · ∆Ŝt +

T∑
t=0

Ȟt · ∆Št|F0

]]
. (2.1)

For the positivity, the sign of conditional expectation is the same as the expected value.
For the linearity, we can extract each sum and, analyzing the single addendum, by the
tower property, we obtain:

EQ[Ĥt · ∆Ŝt|F0] = EQ
[
EQ[Ĥt · ∆Ŝt|Ft−1]

∣∣∣F0

]
for any t = 1, . . . , T because F0 ⊆ Ft. The inner conditional expectation is now

EQ[Ĥt · ∆Ŝt|Ft−1] = Ĥt · EQ[∆Ŝt|Ft−1]
= Ĥt · EQ[Ŝt − Ŝt−1|Ft−1]
= Ĥt ·

(
EQ[Ŝt|Ft−1] − EQ[Ŝt−1|Ft−1]

)
= Ĥt ·

(
EQ[Ŝt|Ft−1] − Ŝt−1

)
where we moved the process Ĥt out of the conditional expectation because it is predictable
and EQ[Ŝt−1|Ft−1] = Ŝt−1 because Ŝ is an adapted process. Now we use the assumption
that Ŝt is a Q-supermartingale, i.e.,

EQ[Ŝt|Ft−1] ≤ Ŝt−1

and, since Ĥt ∈ L0
+, we conclude that

EQ[Ĥt · ∆Ŝt|Ft−1] ≤ 0.

Analogously, for the other addends of the other sum, we get

EQ[Ȟt · ∆Št|Ft−1] = Ȟt

(
EQ[Št|Ft−1] − Št−1

)
and, since (−Ȟt) ∈ L0

+ and Št is a Q-submartingale, we get

EQ[Ȟt · ∆Št|Ft−1] ≤ 0.

Summing up, for any t, we have EQ[Ĥt · ∆Ŝt + Ȟt · ∆Št|Ft−1] ≤ 0 which implies

T∑
t=0

EQ
[
Ĥt · ∆Ŝt + Ȟt · ∆Št|Ft−1

]
≤ 0
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and, for Equation (2.1) and the positivity of the expected value, it is possible to conclude
that

EQ
[
EQ

[ T∑
t=0

EQ
[
Ĥt · ∆Ŝt + Ȟt · ∆Št|Ft−1

] ∣∣∣∣F0

]]
= EQ[(Ĥ · Ŝ)T + (Ȟ · Š)T ] ≤ 0.

Therefore, if a random variable X is positive and EQ[X] ≤ 0, this means X = 0 Q-a.e.
and, from the equivalence of measures, X = 0 P-a.e., proving the first assumption of
Theorem.

We want now to prove the absence of arbitrage. Let ξ ∈ AT ∩ L0
+. The following

inequalities are satisfied

0 ≤ ξ ≤ −
T∑

t=1
(∆Ht)+St−1 +

T∑
t=1

(∆Ht)−St−1 + (HT )+ST − (HT )−ST . (2.2)

For any strategy H ∈ PT , there exists two strategies Ĥ ∈ P+
T and Ȟ ∈ P+

T such that
∆H i

t = ∆Ĥ i
t +∆Ȟ i

t . We can define them by splitting the strategy H into two taking only
long and short position

Ĥ i
t := (H i

t)+ and Ȟ i
t := (H i

t)− for any t = 1, . . . , T i = 1, . . . , d.

Notice that it is not possible to have ∆Ĥ i
t > 0 and ∆Ȟ i

t < 0 at the same time t: indeed,
we would get simultaneously (H i

t)+ > (H i
t−1)+ ≥ 0 and (H i

t)− > (H i
t−1)− ≥ 0 which is a

contradiction. In the same way, there cannot exist H such that ∆Ĥ i
t < 0 and ∆Ȟ i

t > 0.
We can define Ĥ and Ȟ also in the following way

if H i
t ≥ 0 & H i

t−1 ≥ 0 then ∆Ĥ i
t := ∆H i

t , ∆Ȟ i
t := 0

if H i
t < 0 & H i

t−1 < 0 then ∆Ĥ i
t := 0, ∆Ȟ i

t := ∆H i
t

if H i
t ≥ 0 & H i

t−1 < 0 then ∆Ĥ i
t := H i

t , ∆Ȟ i
t := −H i

t−1

if H i
t < 0 & H i

t−1 ≥ 0 then ∆Ĥ i
t := −H i

t−1, ∆Ȟ i
t := H i

t .

With these definitions, it is evident that

∆H i
t > 0 =⇒ ∆Ĥ i

t ≥ 0 and ∆Ȟ i
t ≥ 0

∆H i
t < 0 =⇒ ∆Ĥ i

t ≤ 0 and ∆Ȟ i
t ≤ 0

for any t = 1 . . . , T and i = 1, . . . , d. Therefore, it is always true that

(∆H i
t)+ = (∆Ĥ i

t)+ + (∆Ȟ i
t)+ and (∆H i

t)− = (∆Ĥ i
t)− + (∆Ȟ i

t)−. (2.3)

By replacing (∆H)+ and (∆H)− in Equation (2.2), we obtain

ξ ≤ −
T∑

t=1
(∆Ht)+St−1 +

T∑
t=1

(∆Ht)−St−1 + (HT )+ST − (HT )−ST

= −
T∑

t=1
(∆Ĥt)+St−1 +

T∑
t=1

(∆Ĥt)−St−1 + (ĤT )+ST − (ĤT )−ST

−
T∑

t=1
(∆Ȟt)+St−1 +

T∑
t=1

(∆Ȟt)−St−1 + (ȞT )+ST − (ȞT )−ST .
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Now we consider inequalities CPS for Ŝ and Š

Si
t ≤ Ŝi

t ≤ S
i

t and Si
t ≤ Ši

t ≤ S
i

t P-a.e.

for any t = 1, . . . , T and, using again Equation (2.3), i = 1, . . . , d we get

ξ ≤ −
T∑

t=1
(∆Ĥt)+Ŝt−1 +

T∑
t=1

(∆Ĥt)−Št−1 + (ĤT )+ŠT − (ĤT )−ŜT

−
T∑

t=1
(∆Ȟt)+Ŝt−1 +

T∑
t=1

(∆Ȟt)−Št−1 + (ȞT )+ŠT − (ȞT )−ŠT

≤ −
T∑

t=1
∆ĤtŜt−1 + ĤT ŜT −

T∑
t=1

∆ȞtŠt−1 + ȞT ŠT .

If we expand the two sums, we can simplify some addends (we show it only for ∆Ĥ Ŝ, for
∆Ȟ Š it is the same):

−
T∑

t=1
∆ĤtŜt−1 + ĤT ŜT = −Ĥ1Ŝ0 −(Ĥ2−Ĥ1)Ŝ1 −(Ĥ3−Ĥ2)Ŝ2 − . . . −(ĤT −Ĥt−1)Ŝt−1 + ĤT ŜT

= −Ĥ1Ŝ0 + Ĥ1Ŝ1 − Ĥ2Ŝ1 + Ĥ2Ŝ2 − . . . − ĤT Ŝt−1 + ĤT ŜT

= Ĥ1(∆Ŝ1) + Ĥ2(∆Ŝ2) + . . . + ĤT (∆ŜT )
=
(
Ĥ · Ŝ

)
T

.

In conclusion, we arrive at the final inequality

0 ≤ ξ ≤
(

Ĥ · Ŝ
)

T
+
(

Ȟ · Š
)

T

where, on the right, we have a random variable in the set R̃T ∩L0
+ (we take the intersection

because it is surely positive). From the previous part of the proof, if (Ĥ ·Ŝ)T +(Ȟ ·Š)T ≥ 0,
then (Ĥ · Ŝ)T + (Ȟ · Š)T = 0 P-a.e and hence ξ = 0 P-a.e. From the arbitrariness of ξ, we
get AT ∩ L0

+ = {0}, the condition of no arbitrage.

Remark 7. If there exists a CPS, instead of supCPS and subCPS, then Theorem 1 is
still valid: in the proof, since S is a Q-martingale, EQ[St|Ft−1] = St−1 and

EQ
[
Ĥt · ∆St + Ȟt · ∆St|Ft−1

]
= 0.
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2.2 The fundamental theorem of asset pricing
Before stating the fundamental theorem, we prove some technical lemmas we will use
later using the sets and the process introduced in Equation (1.6) and (1.7) and Definition
4 and 5.

Lemma 5. Let Π belong to Ft. Then there exist two d-dimensional processes ϑ̃ = (ϑ̃j)t
j=1

and ϑ = (ϑj)t
j=1, predictable and non negative, such that for any j = 1, . . . , t and i =

1, . . . , d we cannot have at the same time ϑi
j > 0 and ϑ̃i

j > 0 and Π is bounded by

Π ≤ Ξ := −
t∑

j=1
ϑjSj−1 +

t∑
j=1

ϑ̃jSj−1 +
t∑

j=1
ϑjSt −

t∑
j=1

ϑ̃jSt P-a.e.

Proof. Let be Π as follows

Π = θ1(St − S0) + θ2(St − S1) + . . . + θt(St − St−1)+
+ θ̃1(St − S0) + θ̃2(St − S1) + . . . + θ̃t(St − St−1).

Reorganising the terms we get

Π = −
t∑

j=1
θjSj−1 +

t∑
j=1

θ̃jSj−1 +
t∑

j=1
θjSt −

t∑
j=1

θ̃jSt.

From the Definition 5 of R+
j,t and R−

j,t, Θ = (θj)t
j=1 and Θ = (θj)t

j=1 are d-dimensional,
predictable and non negative processes. Let be νi

j := min{θi
j, θ̃i

j} ≥ 0. We define ϑ, ϑ̃ as
follows

ϑi
j := θi

j − νi
j ϑ̃i

j := θ̃i
j − νi

j for i = 1, . . . , d, j = 1. . . . , t.

Clearly, ϑ and ϑ̃ are d-dimensional, predictable and non-negative processes and they
respect the condition that we cannot have ϑi

j > 0 and ϑ̃i
j > 0 at the same time j.

Let Ξ be
Ξ = −

t∑
j=1

ϑjSj−1 +
t∑

j=1
ϑ̃jSj−1 +

t∑
j=1

ϑjSt −
t∑

j=1
ϑ̃jSt.

Rewriting Π using ϑ and ϑ̃, we obtain

Π = −
t∑

j=1
(ϑj + νj)Sj−1 +

t∑
j=1

(ϑ̃j + νj)Sj−1 +
t∑

j=1
(ϑj + νj)St −

t∑
j=1

(ϑ̃j + νj)St

= Ξ −
t∑

j=1
νj(Sj−1 − Sj−1) −

t∑
j=1

νj(St − St).

The selling price is greater than the buying price from the hypotheses about processes S
and S, so the last two sums are positive and we get Π ≤ Ξ P-a.e.

Lemma 6. For any t = 1, . . . , T we have Ft ⊂ At.
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Proof. Since Ft = Ft − L0
+(Ft), it suffices to show Ft ⊂ At. Let Π ∈ Ft. By Lemma 5,

there exist two d-dimensional processes ϑ̃ = (ϑ̃j)t
j=1 and ϑ = (ϑj)t

j=1 predictable and non
negative such that

Π ≤ Ξ := −
t∑

j=1
ϑjSj−1 +

t∑
j=1

ϑ̃jSj−1 +
t∑

j=1
ϑjSt −

t∑
j=1

ϑ̃jSt P-a.e.

We define the strategy H = (Hj)t
j=1 ∈ Pt as follows

∆Hj := (∆Hj)+ − (∆Hj)− where (∆Hj)+ := ϑj and (∆Hj)− := ϑ̃j

with the convention ∆Hj = Hj − Hj−1 and ∆H1 = H1. For the construction of ϑ and ϑ̃
in the previous proof, H is a well-defined strategy.

Now we consider the random variable r defined as follows

r =
t∑

j=1
(∆Hj)−St −

t∑
j=1

(∆Hj)+St + H+
t St − H−

t St

= St

H+
t −

t∑
j=1

(∆Hj)+

− St

H−
t −

t∑
j=1

(∆Hj)−

 .

Then, using the definitions of positive and negative parts, we have

t∑
j=1

(∆Hj)+ −
t∑

j=1
(∆Hj)− =

t∑
j=1

(
(∆Hj)+ − (∆Hj)−

)
=

t∑
j=1

∆Hj = Ht = H+
t − H−

t .

Reorganising the left-hand side and right-hand side, we obtain

H+
t −

t∑
j=1

(∆Hj)+ = H−
t −

t∑
j=1

(∆Hj)−

and observing that

H+
t =

 t∑
j=1

∆Hj

+

≤
t∑

j=1
(∆Hj)+

we have

r =
H+

t −
t∑

j=1
(∆Hj)+

(St − St) ≥ 0

since the two factors are both negative and this implies r ∈ L0
+(Ft). Hence we can consider

Π + r ≤ Ξ + r = −
t∑

j=1
(∆Hj)+Sj−1 +

t∑
j=1

(∆Hj)−Sj−1 + (Ht)+St − (Ht)−St = xt(H).

Therefore Π ≤ xt(H) − r with xt(H) ∈ Rt. This implies that there exists r̃ ∈ L0
+(Ft),

defined as r̃ = r + Ξ − Π, such that Π = xt(H) − r̃: here we get Π ∈ At.
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Lemma 7. For any 1 ≤ t ≤ t + k ≤ T and x ∈ Ft−1,t+k, there exist Ht ∈ L0(Rd, Ft−1)
and r ∈ L0

+(Ft+k) such that x = xt−1,t+k(Ht) − r.

Proof. Fix any t, k such that 1 ≤ t ≤ t + k ≤ T and consider any x ∈ Ft−1,t+k: since the
definitions of Ft−1,t+k and Ft−1,t+k in Equation (1.6), we can write the random variable x
as

x = Π − l

= −θ · St−1 + θ̃·St−1 + θ · St+k − θ̃ · St+k − l

where θ, θ̃ ∈ L0
+(Rd, Ft−1) and l ∈ L0

+(R, Ft+k). Reasoning in the same way as in the
proof of Lemma 5, we can find two strategies ϑ, ϑ̃ ∈ L0

+(Rd, Ft−1) such that for any
j = 1, . . . , t and i = 1, . . . , d we cannot have ϑi

j > 0 and ϑ̃i
j > 0 at the same time: let be

νi := min{θi, θ̃i} ≥ 0. We define ϑ, ϑ̃ as follows

ϑi
j := θi

j − νi
j ϑ̃i

j := θ̃i
j − νi

j for i = 1, . . . , d, j = 1. . . . , t.

In this way, ϑ, ϑ̃ are d-dimensional, non-negative and Ft−1 measurable random vectors.
Furthermore, pointing out that Sk − Sk ≥ 0 is the bid-ask spread, we have

Π = −(ϑ + ν) · St−1 + (ϑ̃ + ν) · St−1 + (ϑ + ν) · St+k − (ϑ̃ + ν) · St+k

= −ϑ · St−1 + ϑ̃ · St−1 + ϑ · St+k − ϑ̃ · St+k − ν · (St−1 − St−1) − ν · (St+k − St+k)
= Ξ − ν · (St−1 − St−1) − ν · (St+k − St+k)
≤ Ξ P-a.e.

Notice that Ξ = −ϑ · St−1 + ϑ̃ · St−1 + ϑ · St+k − ϑ̃ · St+k ∈ Rt+k.
As in the Lemma 6, we define Ht := ϑ − ϑ̃. It is obvious that Ht ∈ L0

+(Rd, Ft−1) and
(H i

t)+ = ϑi, (H i
t)− = ϑ̃i. Defining l̃ := Ξ − Π ∈ L0

+(Ft+k), we have x = Π − l = Ξ − l − l̃.
Naming r := l + l̃ ∈ L0

+(Ft+k), we get

x = −ϑ · St−1 + ϑ̃ · St−1 + ϑ · St+k − ϑ̃ · St+k − l − l̃

= −(Ht)+ · St−1 + (Ht)− · St−1 + (Ht)+ · St+k − (Ht)− · St+k − r

= xt−1,t+k(Ht) − r.

Remark 8. It is worth noting that, for any Π ∈ FT , there exists a strategy H ∈ PT such
that Π = xT (H) − r where r is a random variable r ∈ L0

+.

Lemma 8. Let (Xn)n∈N be a sequence of random vectors such that Xn ∈ Rd and for
almost all ω ∈ Ω we have lim infn ∥Xn(ω)∥ < ∞. Then there exists a sequence of random
vectors Yn taking values in Rd that verify the following conditions:

(1) Yn converges pointwise to Y almost surely where Y is a d-dimensional random vector;

(2) Yn(ω) is a convergent subsequence of Xn(ω) for almost all ω ∈ Ω.
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Proof. See the paper [12, Lemma 2] or the article [10, Lemma 1].

Lemma 9 (Kreps-Yan). Let K ⊇ −L1
+ be a closed convex cone in L1 such that K ∩L1

+ =
{0}. Then there exists a probability P̃ ∼ P with dP̃

dP
∈ L∞ such that EP̃ [ξ] ≤ 0 for all

ξ ∈ K.

Proof. See the paper [12, Lemma 3] or the book [11, Theorem 2.1.4].

We are now ready to state and prove the main theorem of this thesis. We would like
to find a relationship between the EBAMM, the non-arbitrage condition (NA) and the
CPS.

In markets without transaction costs, the non-arbitrage condition is related to EMM by
the First Fundamental Theorem of Asset Pricing, also known as Dalang–Morton–Willinger
theorem.

Theorem 2 (FTAP). In a financial finite discrete time market (Ω, F , (Ft)T
t=0,P) without

frictions, the following conditions are equivalent:

(a) AT ∩ L0
+ = {0} (NA);

(b) Me ̸= ∅;

where Me is the set of equivalent martingale measures.

Proof. See in book [5, Theorem 2.2.7].

The fundamental theorem of asset pricing holds a crucial place in the study of pricing
and hedging of derivative securities. The most common interpretation of this result is
that the martingale measure is a mathematical model for a perfectly fair game: for any
strategy H ∈ PT , we will always have EQ[xT (H)] = 0. An interpretation of this result is
that the investor expects neither to gain nor to lose in expectation under Q. In contrast, a
market allowing for arbitrage is a model for an unfair game: choosing a suitable strategy
H̃ ∈ PT , the investor is sure not to lose, but also he has a strictly positive probability to
earn money.

Theorem 3 (Foundamental theorem). The following conditions are equivalent:

(a) AT ∩ L0
+ = {0} (NA);

(b) Ft ∩ L0
+(Ft) = {0} for any t ∈ {1, . . . , T};

(c) Ft−1,t+k ∩ L0
+(Ft+k) = {0} for any 1 ≤ t ≤ t + k ≤ T ;

(d) Ft−1,t+k ∩ L0
+(Ft+k) = {0} and Ft−1,t+k = F t−1,t+k for any 1 ≤ t ≤ t + k ≤ T ;

(e) F t−1,t+k ∩ L0
+(Ft+k) = {0} for any 1 ≤ t ≤ t + k ≤ T ;

(f) there exists an EBAMM Q for the bid-ask process (S, S) such that dQ
dP ∈ L∞;

(g) there exists a supCPS (Ŝ,Q) and subCPS (Š,Q) such that dQ
dP ∈ L∞.



21 The fundamental theorem of asset pricing

In our model, EBAMM plays the same role as EMM: under this probability measure,
the conditional expectation of the bid price Si

t given Ft−1 is less than the ask price S
i

t−1:
so we do not expect to sell a unit of an asset at a higher price than we paid for it. In the
same way, the conditional expectation of the ask price S

i
t given Ft−1 is greater than the

bid price Si
t−1.

In Theorem 3, we show that the condition (NA) is equivalent to the existence of the
EBAMM. However, we will not obtain a link between these two and the existence of
a CPS: instead, we will find as an equivalent condition the existence under the same
probability measure of a supCPS and subCPS. Splitting a strategy H into short and long
positions, supCPS and subCPS play the role of CPS in the two different cases.

The problem of whether there is a correlation between the presence of an EBAMM
and a CPS in our model remains open. In literature, we have noticeable result: in article
[7], Grigoriev prove this equivalence for any T in case d = 1; further on, in Corollary 2.2,
we prove it for d assets but for a time horizon T = 1.

In general, it is not clear when, in our model with d assets and the final time horizon
T , the existence of a supCPS (Ŝ,Q) and a subCPS (Š,Q) under the same probability
measure implies the existence of a CPS (S̃,Q).

Proof Theorem 3. In this proof, we will retrace Przemysław’s work in the article [15]. We
prove each implication.

(a) ⇒ (b) By Lemma 1, AT ∩ L0
+ = {0} implies At ∩ L0

+(Ft) = {0} for any t ∈ {1, . . . , T}.
By the inclusion from Lemma 6, we can conclude Ft ∩ L0

+(Ft) = 0 for any
t ∈ {1, . . . , T}.

(b) ⇒ (c) This implication is trivial from the way the sets Ft and Ft−1,t+k are defined.

(c) ⇒ (d) In this implication, we use similar reasoning as in article [12, Proof of Theorem
1] and article [17, Theorem 2.33].
The first part, Ft−1,t+k ∩ L0

+(Ft+k) = {0}, is trivial. In the second part, we
show that the set Ft−1,t+k is closed in the topology generated by convergence
in probability P. Taking a sequence (ξn)n∈N such that ξn ∈ Ft−1,t+k and, for
n → ∞, ξn −→ ζ in probability. To prove our thesis, we need only to show that
ζ ∈ Ft−1,t+k.
This sequence includes a subsequence which is convergent to ζ a.s. Restricting
to this subsequence, then ξn → ζ P-a.s. By Lemma 7, for any n there are
Hn

t ∈ L0(Rd, Ft−1) and rn ∈ L0
+(Ft+k) such that

ξn = xt−1,t+k(Hn
t ) − rn ∈ Ft−1,t+k

= −(Hn
t )+ · St−1 + (Hn

t )− · St−1 + (Hn
t )+ · St+k − (Hn

t )− · St+k − rn.

First, let us work on the set Ω1 := {ω ∈ Ω | lim infn∥Hn
t (ω)∥ < ∞}. Using

Lemma 8, we find an increasing sequence of integer-valued Ft−1-measurable ran-
dom variables τn such that Hτn

t is convergent a.s. on Ω1 and for almost all ω ∈ Ω1
the sequence H

τn(ω)
t (ω) is a convergent subsequence of Hn

t (ω). Obviously, we
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keep Hτn
t ∈ L0(Rd, Ft−1) and rτn ∈ L0

+(Ft+k). Now let H̃t := limn→∞ Hτn
t . From

the convergence of Hτn
t , we can state that (Hτn

t )+ and (Hτn
t )− are convergent

too. Therefore we have (Hτn
t )+ → (H̃t)+ and (Hτn

t )− → (H̃t)−. Furthermore,
rτn is convergent too a.s. on Ω1 and we introduce r̃ := limn→∞ rτn . Hence

ζ = lim
n→∞

[−(Hn
t )+ · St−1 + (Hn

t )− · St−1 + (Hn
t )+ · St+k − (Hn

t )− · St+k − rn]

= lim
n→∞

[−(Hτn
t )+ · St−1 + (Hτn

t )− · St−1 + (Hτn
t )+ · St+k − (Hτn

t )− · St+k − rτn ]

= −(H̃t)+ · St−1 + (H̃t)− · St−1 + (H̃t)+ · St+k − (H̃t)− · St+k − r̃.

From the last expression, it can be clearly seen that ζ ∈ Ft−1,t+k.
Now, we have to prove that the set Ft−1,t+k is closed also on the complementary
set Ω2 := {ω ∈ Ω | lim infn∥Hn

t (ω)∥ = ∞}. For detailed proof, check the article
[15, Proof of Theorem 2]

(d) ⇒ (e) This implication is trivial. We insert it in order to make the reasoning more
clear.

(e) ⇒ (f) In this implication we use some reasoning from article [14] and the construction
of a measure by induction as in [17, Corollary 2.35].
Without losing generality, we assume Si

t, S
i

t are integrable for any i = 1, . . . , d
and t = 0, . . . , T : for any random variable η ∈ L1(P) there exists a probability
measure P′ ∼ P such that dP′

dP ∈ L∞ and η ∈ L1(P′).
We will use induction on the length of the time interval. Let be it fixed at length
1. Choose any t ∈ {1, . . . , T} and define Ψt−1,t := F t−1,t ∩ L1(Ft), which is a
closed convex cone in L1(Ft). From hypothesis Ψt−1,t ∩ L1

+(Ft) = {0}, so, by
Lemma 9, we can find a probability measure Qt ∼ P on (Ω, Ft) such that

dQt

dP
∈ L∞(Ft) and EQt [ξ] ≤ 0 for any ξ ∈ Ψt−1,t.

In particular, since ξ ∈ F t−1,t, using Equation (1.7) and Definition 5, we can
explicit ξ as

ξi
t−1,t = H i

t(Si
t − S

i
t−1) or ξi

t−1,t = (−H i
t)(S

i
t − Si

t−1)

based on whether ξ ∈ R+
t−1,t or ξ ∈ R−

t−1,t. Then

EQt [H i
t(Si

t − S
i

t−1)] ≤ 0 and EQt [H i
t(S

i

t − Si
t−1)] ≥ 0.

Dividing the expected value, for any i = 1, . . . , d, we obtain the inequalities

EQt [H i
t Si

t] ≤ EQt [H i
t S

i
t−1] and EQt [H i

t S
i
t] ≤ EQt [H i

t Si
t−1].

Notice that H i ∈ L0
+(Ft). By the fact H i

t is predictable and S and S are adapted
processes, we finally get

EQt [Si
t|Ft−1] ≤ EQt [Si

t−1|Ft−1] = S
i

t−1 and EQt [Si

t|Ft−1] ≤ EQt [Si
t−1|Ft−1] = Si

t−1.
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Obviously all St, St ∈ L1(Qt) since St, St ∈ L1(P), St, St ∈ Ft and Qt ∼ P.
These are the conditions in Equation (EBAMM) that allow us to state Qt is an
Equivalent Bid-Ask Martingale Measure for the bid-ask process

(
(Sj)t

j=t−1, (Sj)t
j=t−1

)
and dQt

dP ∈ L∞.
Now let us move on to the inductive step: assume the claim is true for a long
time interval k and prove it is still true for a long time interval k + 1.
Fix any t, k such that 1 ≤ t ≤ t + k ≤ T . By the induction hypothesis, Qt+k

is an EBAMM in the market with the bid-ask process
(
(Sj)t+k

j=t , (Sj)t+k
j=t

)
and

dQt+k

dP ∈ L∞. Notice that the condition (d) does not change under an equivalent
probability measure. Hence we repeat the same process as in the previous part
to the probability space (Ω, Ft,Qt+k

|Ft
) where Qt+k

|Ft
stands for the measure Qt+k

restricted to Ft.
Then, by Lemma 9, there exists a probability measure Qt ∼ Qt+k

|Ft
on (Ω, Ft)

such that, as we showed previously,for any i = 1, . . . , d, we have

EQt(Si
t|Ft−1) ≤ S

i

t−1 and EQt(Si

t|Ft−1) ≥ Si
t−1 and dQt

dQt+k
|Ft

∈ L∞. (2.4)

Now we define the probability measure Q on (Ω, Ft+k) so that it satisfies

dQ
dP

:= dQt

dQt+k
|Ft

dQt+k

dP
. (2.5)

Therefore for any j ∈ {t + 1, . . . , t + k} and i ∈ {1, . . . , d}, using Theorem 4 in
Appendix A, we get

EQ[Si
j|Fj−1] =

EP
[

dQt

dQt+k
|Ft

dQt+k

dP Si
j|Fj−1

]

EP

[
dQt

dQt+k
|Ft

dQt+k

dP |Fj−1

] =
EP

[
dQt+k

dP Si
j|Fj−1

]
EP

[
dQt+k

dP |Fj−1
]

= EQt+k [Si
j|Fj−1] ≤ S

i
j−1.

The last inequalities hold since Qt+k is an EBAMM for
(
(Sj)t+k

j=t , (Sj)t+k
j=t

)
.

In the same way, we get also

EQ[Si

j|Fj−1] =
EP

[
dQt

dQt+k
|Ft

dQt+k

dP S
i

j|Fj−1

]

EP

[
dQt

dQt+k
|Ft

dQt+k

dP |Fj−1

] =
EP

[
dQt+k

dP S
i

j|Fj−1
]

EP
[

dQt+k

dP |Fj−1
]

= EQt+k [Si

j|Fj−1] ≥ Si
j−1.

Obviously all St, St ∈ L1(Q) since St, St ∈ L1(P), St, St ∈ Ft and Q ∼ P.
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Now consider the measure Qt+k
|Ft

restricted to Ft−1: it is the same measure as
Qt+k restricted to Ft−1 since Ft−1 ⊂ Ft. For this reason, using the definition of
Q given in Equation (2.5), we have

EQ[Si
t|Ft−1] = EQt [Si

t|Ft−1] ≥ Si
t−1 and EQ[Si

t|Ft−1] = EQt [Si
t|Ft−1] ≤ S

i
t−1,

where in the last step we used the inequalities in Equation (2.4).
In the end, Q is an EBAMM in the market with the bid-ask process

(
(Sj)t+k

j=t−1, (Sj)t+k
j=t−1

)
and dQ

dP ∈ L∞. By the induction, we conclude that there exists an EBAMM for
the bid-ask process

(
(St)T

t=0, (St)T
t=0

)
such thatdQ

dP ∈ L∞.

(f) ⇒ (g) We prove this implication using the induction on the length of the time interval.
Starting with a long time interval 1, fix any t ∈ {1, . . . , T} and define Ŝ =
(Ŝj)t

j=t−1 and Š = (Šj)t
j=t−1 in the following way:

Ŝ := St, Ŝt−1 := max
{
St−1, EQt [Ŝt|Ft−1]

}
,

Š := St, Št−1 := min
{
St−1, EQt [Št|Ft−1]

}
,

(2.6)

where Qt is an EBAMM in the market with the bid-ask process
(
(Sj)t

j=t−1, (Sj)t
j=t−1

)
and dQt

dP ∈ L∞. In this way, (Ŝ,Qt) is a supCPS while (Š,Qt) is a subCPS. Now
we proceed with the inductive step: we suppose the claim is true in a model with
time interval of length k ≥ 1 and prove it for a time interval of length k + 1. By
the induction hypothesis, there exists a supCPS

(
(Ŝj)t+k

j=t ,Qt+k
)

and a subCPS(
(Šj)t+k

j=t ,Qt+k
)

in the market with the bid-ask process
(
(Sj)t+k

j=t , (Sj)t+k
j=t

)
such

that dQt+k

dP ∈ L∞. Consider the probability space (Ω, Ft,Qt+k
|Ft

) where Qt+k
|Ft

stands
for the measure Qt+k restricted to Ft. By condition (f) there exists an EBAMM
Qt ∼ Qt+k

|Ft
such that dQt

dQt+k
|Ft

∈ L∞. Defining the processes Ŝ = (Ŝj)t
j=t−1 and

Š = (Šj)t
j=t−1 in the same way as in Equation 2.6, we already know that (Ŝ,Qt)

and (Š,Qt) are supCPS and subCPS.
For any i ∈ {1, . . . , d}, let be the stopping time

τi := min{j ≥ t − 1 | Ši
j = Ši

t}.

Then by optimal stopping theory (see the book [1, Chapter 21 and in particular
Proposition 21.15]), the process

Šτ := (Šj∧τ )t
j=t−1 =

(
Š1

j∧τ1 , . . . , Šd
j∧τd

)t

j=t−1
.

is a Qt-martingale.As previous, we define the probability measure Q on (Ω, Ft+k)
that it satisfies

dQ
dP

:= dQt

Qt+k
|Ft

dQt+k

dP
. (2.7)
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Moreover, we define another process Ŝ ′ = (Ŝ ′
j)t+k

t−1 in the following way:

Ŝ ′
j =

Ŝj for any j > t

Šj∧τ for j ∈ {t − 1, t}.

Notice that Ŝ ′i
t−1 = Ši

t−1∧τi
= Ši

t−1 and Ŝ ′i
t = Ši

t∧τi
= Ši

τi
, so the inequalities

CPS are satisfied for j = t − 1, t (for j > t they are satisfied since Ŝj is a
supCPS). Moreover, by definition of τi, definition of measure Q in Equation 2.7
and definition of the process Ŝ in Equation 2.6, we also obtain for any i = 1, . . . , d

EQ[Ŝ ′i
t+1|Ft] = EQ[Ŝi

t+1|Ft] = EQt+k [Ŝi
t+1|Ft] ≤ Ŝi

t ≤ S
i
t = Ši

t = Ši
τi

= Ŝ ′i
t .

Ŝ ′ = (Ŝ ′
j)t+k

j=t−1 is the desired Q-supermartingale and (Ŝ ′,Q) is the supCPS.
In an analogous way, we can construct a Q-submartingale. Define the stopping
time

σi := min{j ≥ t − 1 | Ŝi
j = Ŝi

t}.

Then
Ŝσ := (Ŝj∧σ)t

j=t−1 =
(
Ŝ1

j∧σ1 , . . . , Ŝd
j∧σd

)t

j=t−1
.

is a Qt-martingale. Defining the measure Q as in Equation 2.7 and the process
Š ′ = (Š ′

j)t+k
t−1 in the following way

Š ′
j =

Šj for any j > t

Ŝj∧σ for j ∈ {t − 1, t}.

we obtain the Q-submartingale and (Š ′,Q) is the subCPS.

(g) ⇒ (a) This implication is equivalent to Theorem 1.

Corollary. If T = 1, then

(NA) ⇐⇒ (EBAMM) ⇐⇒ (CPS).

Proof. The first iff is given by the Theorem 3. For the other, as in the proof (f) =⇒ (g),
let Q1 be an EBAMM and define the Snell envelope Ŝ = (Ŝt)1

t=0 of the bid process
S = (St)1

t=0 as follows

Ŝ1 := S1 and Ŝ0 := max
{
S0, EQ1 [Ŝ1|F0]

}
.

It’s clear that (Ŝ,Q1) is a supCPS. Furthermore, considering the optimal stopping time

τi := min
{
t ≥ 0 | Si

t = Ŝi
1

}
we construct the process S̃ := (S̃t)1

t=0 where S̃i := Ŝi
t∧τi

: this is a Q1-martingale (see the
book [1], Proposition 21.15, page 335). In this way, for any i = 1, . . . , d

S̃i
0 = Ŝi

0 and S̃i
1 = Ŝi

τi
= Si

1.

For t ∈ {0, 1}, the CPS inequalities are satisfied so (S̃,Q1) is a CPS.
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Remark 9. Condition (g) of Theorem 3 states there are a supCPS and a subCPS. We
define the Snell envelope S̃ of Ŝ for any t = 1, . . . , T

S̃T := ŜT and S̃t−1 := max
{
Ŝt−1, EQ[S̃t|Ft−1]

}
.

By optimal stopping theory,

τi := min
{
t ≥ 0 | S̃i

t = Ŝi
t

}
is an optimal stopping time and

S̃τ := (S̃t∧τ )T
t=0 =

(
S̃1

t∧τ1 , . . . , S̃d
t∧τd

)T

t=0

is a Q-martingale(see the book [1], Proposition 21.15, page 335). On the other hand, we
do not know if (S̃τ ,Q) is a CPS: indeed, we can only state that Si

t∧τi
≤ S̃i

t∧τi
≤ S

i

t∧τi
but

this does not imply Si
t ≤ S̃i

t∧τi
≤ S

i

t.



Chapter 3

The Cox-Ross-Rubinstein model

The Cox-Ross-Rubinstein model, also known as the binomial option pricing model, is a
famous discrete-time model used to determine the value of assets in finance. It models
the evolution of the price of an asset over a discrete period of time, considering the
possibility of upward and downward movements, as well as the associated probabilities
of each movement. It assumes that the stock price can increase or decrease by a fixed
amount during a time interval and that future prices are unrelated to past prices. One of
the key strengths of the CRR model is its simplicity. The model uses a tree structure to
represent the different possible outcomes of the price process over time: the branches of
the tree represent the possible upward or downward movements. This simplicity makes
the CRR model flexible: it can be modified to incorporate various assumptions about the
underlying asset, the market environment, and the behaviour of financial participants.
However, there are also some limitations to the CRR model. For example, it assumes that
the stock price can only move in two directions, up or down, over a certain time period.
This is a simplification of the real world, where stock prices change with continuity and
can be influenced by a multitude of factors, such as economic indicators, geopolitical
events, and company-specific news. Additionally, the model assumes that the probability
of upward and downward movements is constant over time, which may not always be the
case in real-world situations.

Now we introduce this model for a market with bid-ask spread. For the sake of
simplicity, in this chapter we assume d = 1. In the probability space (Ω, F ,P), define a
sequence of i.i.d. bivariate random variables (ζt)T

t=1 = (ζ
t
, ζt)T

t=1 such that

P(ζt = (u, u)) := p > 0 and P(ζt = (d, d)) := 1 − p > 0,

where u, u, d, d are real numbers. These values represent the increase (u) or decrease (d)
of the bid-ask process: in a natural way, we fix d < u and d < u. Consider the filtration
F = (Ft)T

t=0 such that F0 = {∅, Ω}, Ft = σ(ζ1, . . . , ζt) and FT = F . As in Chapter 1, we
assume the money market account

Bt ≡ 1 for any t = 1, . . . , T.

The dynamics of the bid-ask process (S, S) is determined by the equations below:

St := (1 + ζ
t
)St−1 and St := (1 + ζt)St−1.

27
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Moreover, assume that S, S are strictly positive, St > 0 and St > 0 P-a.e. We clarify the
values of the bid-ask process, introducing these notions in the case of an “up” or “down”
market:

Su
t := St−1(1 + u), S

u

t := St−1(1 + u),
Sd

t := St−1(1 + d), S
d
t := St−1(1 + d).

This is illustrated in Figure 3.1.

[
]St−1, St−1

]

[
]Sd

t , S
d
t

]

[
]Su

t , S
u
t

]
p

1 − p

Figure 3.1: The CRR model during [t − 1, t]

Now we are going to study a one-step model with one risky asset: the general case
with d assets and period of time [0, T ] is a concatenation of this one-step model.

Let us fix the initial value of the bid-ask process, i.e. St−1 and St−1. The first condition
to impose in our model is St ≤ St which is equivalent to

St−1(1 + u) ≤ St−1(1 + u) and St−1(1 + d) ≤ St−1(1 + d) (3.1)
⇓ ⇓

St−1

St−1
≤ 1 + u

1 + u
and St−1

St−1
≤ 1 + d

1 + d
. (3.2)

We try to estimate an EBAMM. Let Q∗ be an EBAMM. For any t = 1, . . . ,T, let

q∗ := Q∗((ζ
t
, ζt) = (u, u)|Ft−1) and 1 − q∗ := Q∗((ζ

t
, ζt) = (d, d)|Ft−1). (3.3)

By Definition 9, Q∗ has to satisfy conditions in Equation EBAMM, so

EQ∗ [St|Ft−1] = St−1(1 + u)q∗ + St−1(1 + d)(1 − q∗) ≤ St−1,

EQ∗ [St|Ft−1] = St−1(1 + u)q∗ + St−1(1 + d)(1 − q∗) ≥ St−1.

From these inequalities, we obtain

−d

u − d
≤ q∗ ≤ −d

u − d
. (3.4)
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In order to make possible the chain of inequalities in Equation 3.4, we have to require
that

−d

u − d
≤ −d

u − d
, 0 <

−d

u − d
,

−d

u − d
< 1,

or equivalent by
d u ≤ d u, d < 0, u > 0. (3.5)

These inequalities in Equation 3.5 ensure the existence of at least one q∗ ∈ (0, 1): these
are necessary and sufficient conditions for the existence of an EBAMM. From Theorem
3 and Corollary 2.2, these conditions are equivalent to the absence of arbitrage and the
existence of a CPS.

We show our results in some examples.

Example 1. Consider a CRR model with T = 1 represented in Figure 3.2 where S0 = 1
and S0 = 2. Let

u = 3, d = −1
3 , u = 1

4 , d = −4
5 .

Notice that conditions in Equation 3.2 are true, i.e.

S0

S0
= 2

1 ≤ 16
5 = 1 + u

1 + u
and S0

S0
= 2

1 ≤ 10
3 = 1 + d

1 + d
−

Equations 3.5 are satisfied:

d = −4
5 < 0, u = 3 > 0, d u = −12

5 ≤ − 1
12 = d u,

so there exist an EBAMM Q∗ such that −d
u−d

= 1
10 ≤ q∗ ≤ 16

21 = −d
u−d

and there is no
arbitrage.

[1, 2]

[2
5 , 2

3
]

[5
2 , 4

]

Figure 3.2: The CRR model of Example 1

Example 2. Consider a CRR model with T = 1 represented in Figure 3.3 where S0 = 1
and S0 = 2. Let

u = 10, d = 3, u = 4, d = 1
2 .
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Notice that conditions in Equation 3.2 are satisfied so S1 ≤ S1. On the other hand,
conditions for the existence of EBAMM in Equation 3.5 are not true since d > 0.

[1, 2]

[3, 4]

[10, 11]

Figure 3.3: The CRR model of Example 2

It is clear that the strategy H, where the investor buys a unit of the asset at time t = 0
and at time t = 1 he liquidates all, is an arbitrage: it generates a strictly positive gain
whether the market goes up or down.

Now we are in a position to consider a multi-period model with horizon T . We are
interested in studying recombinant trees: this property reduces the number of the nodes
from 2T to T +1 speeding up the calculation of the option price and avoiding the numerical
issues. A tree is recombinant if the paths (up, down) and (down, up) merge together, so
the price of a unit of asset experiencing a market movement that goes up and then down
is the same of a market movement that first goes down and then up. This is illustrated
in Figure 3.4 with T = 2.
Consider a two-step model (from t−1 to t+1). In order to have the recombinant property,
we need to impose in the middle path

St−1(1 + u)(1 + d) = St−1(1 + d)(1 + u) and St−1(1 + u)(1 + d) = St−1(1 + d)(1 + u),

which are equivalent to
1 + u

1 + u
= 1 + d

1 + d
.

In this way, Equation 3.2 becomes

1 + ∆t−1 ≤ 1 + u

1 + u
= 1 + d

1 + d

and we keep St < St ∀t. For the estimation of an EBAMM we make the same steps:
defining q∗ in the same way as in Definition 3.3, we get at time t

EQ∗ [St|Ft−1] = St−1(1 + u)q∗ + St−1(1 + d)(1 − q∗) ≤ St−1,

EQ∗ [St|Ft−1] = St−1(1 + u)q∗ + St−1(1 + d)(1 − q∗) ≥ St−1;
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and at time (t + 1)

EQ∗ [St+1|Ft] = St(1 + u)q∗ + St(1 + d)(1 − q∗) ≤ St,

EQ∗ [St+1|Ft] = St(1 + u)q∗ + St(1 + d)(1 − q∗) ≥ St.

From these, it is clear that conditions in Equation 3.5 are still necessary and sufficient for
the existence of an EBAMM and the absence of arbitrage by Theorem 3.

Corollary. Consider a CRR model with bid-ask spread from t = 0 to t = T . Define
∆ = S0 − S0. Then the conditions in Equation 3.5, namely

d u ≤ d u, d < 0, u > 0

are equivalent to the existence of an EBAMM Q∗ and the absence of arbitrage, where

Q∗(ζt = (u, u)|Ft−1) = q∗ ∈
[

−d

u − d
,

−d

u − d

]
.

[
St−1, St−1

]

[
St−1(1 + d), St−1(1 + d)

)
]

[
St−1(1 + u), St−1(1 + u)

)
]

[
St−1(1 + d)(1 + d), St−1(1 + d)(1 + d)

]

[
St−1(1 + u)(1 + d), St−1(1 + d)(1 + u)

]

[
St−1(1 + u)(1 + u), St−1(1 + u)(1 + u)

]

Figure 3.4: Two-steps CRR model
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Appendix A

Mathematical prerequisites

In this appendix, we will provide a list of definitions to enhance the reader’s understanding.

Definition 11 (σ-algebra). Let be Ω a set. Then a family of subsets F ⊂ P (Ω) is called
a σ-algebra if it satisfies the following properties:

• Ω ∈ F

• F is closed under complementation: if A ∈ F , then X \ A ∈ F

• F is closed under countable unions: if A1, A2, A3 . . . ∈ F , then A = A1 ∪ A2 ∪ A3 ∪
· · · ∈ F

Definition 12 (probability space). An ordered triple (Ω, F ,P) is a probability space if

• Ω is a sample space (a non-empty set);

• F is a σ-algebra;

• P : F → [0, 1] is a probability measure such that it is countably additive and
P(Ω) = 1.

Definition 13 (filtration). Given a set of index T = {0, 1, 2, . . . , T}, an increasing family
of σ-algebras, i.e. F0 ⊆ F2 ⊆ . . . ⊆ FT is called filtration and (Ω, F , (Ft)T

t=0,P) a filtrated
probability space. Usually, we assume FT = F . F0 = {∅, Ω} is called the trivial σ-algebra.

Definition 14 (stochastic process). Given a set of index T = {0, 1, 2, . . . , T} and two
measurable spaces (Ω, F) and (E, E), a stochastic process with values in (E, E) is a family
of random variable

X = (Xt)t∈T = {Xt|t ∈ T }

Moreover, we define:

• a stochastic process X adapted with respect to (Ft) if, for any t ∈ T , Xt is Ft-
measurable;

• a stochastic process X predictable with respect to (Ft) if, for any t ∈ T , Xt is
Ft−1-measurable.
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Definition 15. Let (Ω, F ,P) a finite probability space where Ω = {ω1, . . . , ωN}. We
define the norm for random variables

∥X∥p :=
(

N∑
n=1

|X(ωn)|p P[ωn]
) 1

p

= EP [|X|p]
1
p

and for p = ∞
∥X∥∞ := max

n∈{1,...,N}
{X(ωn) | P[ωn] > 0}.

For every p, we define the vector space Lp as

Lp(Ω, F ,P) := {X : Ω → R is F -measurable and ∥X∥P < ∞}.

Definition 16 (conditional expectation). Let X ∈ L(Ω, F ,P) and G ⊂ F be a sub-σ-
algebra. We call E[X|G] the conditional expectation of X given G as the unique random
variable in L(Ω, G,P) such that for all Z ∈ L(Ω, G,P)

E[X Z] = E[ E[X|G] Z].

Definition 17 (martingale). An adapted process (X)t∈T is called martingale if for any
t ∈ T

E[Xt|Ft−1] = Xt−1

Definition 18 (supermartingale). An adapted process (X)t∈T is called supermartingale
if for any t ∈ T

E[Xt|Ft−1] ≤ Xt−1

Definition 19 (submartingale). An adapted process (X)t∈T is called submartingale if for
any t ∈ T

E[Xt|Ft−1] ≥ Xt−1

Theorem 4. Let P be a probability measure on (Ω, F) and Q another probability measure
on (Ω, F) defined by

dQ
dP

:= Z

where Z is the Radon-Nikodym derivative, a random variable F-measurable such that
Z ≥ 0 a.s. and EP[Z] = 1.

Let G ⊆ F be any sub-σ-algebra. For any F-measurable random variable X we have

EP[Z | G] EQ[X | G] = EP[Z X | G]
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