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Introduction

This work arises from the combination of practical problems and theoretical

interests. The attempt to provide a quantitative view on the evolution of

the temporal and geo-economic relations between the major financial mar-

kets before and during the global financial crisis of 2007-2012 through the

analysis of the historical quotes of the main National Stock Market Indices,

motivates the search for statistical methodologies able to accommodate flexi-

ble dynamic structure of dependency and to answer the main issues and aims

of multivariate financial time series analysis.

Large datasets and high frequency data, typical of this field, motivate

the search for a formulation able to handle high-dimensional data through

tractable computations and simple online updating and prediction proce-

dures. Besides these issues, it is important for the model to allow the presence

of missing values and to take also into account the possibility that covari-

ances and variances change rapidly in particular financial scenarios. Finally,

the model should consider that the marginal distributions of the returns are

characterized by heavy tails. With this goals in mind, we develop a novel co-

variance stochastic process on continuous time with locally-varying smooth-

ness to accommodate locally adaptive smoothing for the time-varying mean

and covariance functions. This is accomplished by modifying recent method

for Bayesian Covariance Regression to incorporate dictionary functions that

are assigned nested Gaussian Process priors.

The use of latent factors in the formulation of the model and the possi-

bility of representing the nested Gaussian Process priors through stochastic

differential equations, allows us to answer the issue of high dimensionality

and to develop a computationally tractable and efficient approach through

MCMC, allowing also the implementation of an efficient online updating al-

gorithm, particularly worthy in financial time series with data collected at

high frequencies. Working with continuous time processes through a Bayesian
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8 Introduzione

approach we can also easily handle missing values in the model estimation

without the need for any imputation. Finally, multivariate analysis allows

for significant improvements in terms of interpretation of the results and

forecasts.

In Chapter 1, we provide a summarizing overview of the main events of the

world financial crisis, which represents the main motivating problem for our

proposed model. The focus is on the causes, the effects on the world finance

scenario and policy responses, from the boom and burst of the U.S. housing

bubble in 2006 until the recent happenings in the global economy. Chapter

2 motivates the use of National Stock Market Indices for the analysis of the

dynamic dependence structure between financial markets before and during

the crisis, defining the main features and problems that arise in the context

of multivariate financial time series analysis and providing a summary of

the literature on the main methods that address these issues. In Chapter

3 we provide a detailed description of the proposed model, with particular

attention to (i) basic model structure, (ii) prior specification, (iii) posterior

computation via MCMC and (iv) online updating algorithm. A couple of

simulation studies implemented to assess the performance of our model and to

compare the results to the main competing approach are reported in Chapter

4. Finally Chapter 5 shows the results of the application to our motivating

example, highlighting the improvements provided by our approach in the

analysis of the dependence structure of financial markets in relation to theory

and economic facts, and considering also predictive performance.

All the following analysis has been performed using the free statistical

software R.
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Chapter 1

The Global Financial Crisis

The 2007-2012 global financial crisis has been the dominant theme in the

recent history of the world economy and finance, and is often regarded as the

worst crisis since the Great Depression of the thirties.

The direct consequences of this period of strong financial instability were

the fall of the world stock markets and the collapse of large financial insti-

tutions or their bailout by national governments which had to come up with

rescue packages to save their financial systems, even in the wealthier coun-

tries. At the outbreak of the U.S. housing bubble between 2006 and 2007

that resulted in the suffering of the real estate market, foreclosure and evic-

tions, followed the 2008-2012 global recession which affected the entire world

economy and was manifested through persistent high unemployment rates,

declines in consumer confidence and wealth as well as a downturn in economic

activity, leading to a slowdown in the growth of GDP in many countries as

shown in Figure 1.1 and contributing to the European sovereign-debt crisis.

1.1 What went wrong?

Financial Crisis Inquiry Commission (2011) reported its findings about the

causes of the U.S. financial crisis concluding that: “the crisis was avoidable

and was caused by: widespread failures in financial regulation, including the

Federal Reserve (Fed) failure to stem the tide of toxic mortgages; dramatic

breakdowns in corporate governance including too many financial firms acting

recklessly and taking on too much risk; an explosive mix of excessive borrow-

ing and risk by households and Wall Street that put the financial system on a

collision course with crisis; key policy makers ill prepared for the crisis, lack-
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10 The Global Financial Crisis

Figure 1.1: World map of the real GDP growth rates for 2009. Source: CIA world fact-

book.

ing a full understanding of the financial system they oversaw; and systemic

breaches in accountability and ethics at all levels”. Undoubtedly, the crisis

was triggered by the coexistence of a complex system of causes such as easy

credit conditions, the lack of proper regulation able to keep pace with the

increasing importance of investment banks and hedge funds (shadow banking

system), as well as the affirmation of new financial instruments which derived

from the housing market.

Referring to Taylor (2009) the key factor behind the boom and burst of

the housing bubble, that caused the outbreak of the recent financial crisis,

relates to the monetary excesses stimulated by the unusually low interest

rates decisions (around 1%) of the Federal Reserve to soften the effects of

the 2000 Dot-com Bubble as well as to face the risk of deflation. Krugman

(2002) argues that Fed “needs to create a housing bubble to replace the Nasdaq

bubble”, to emphasize how the actual result of this loose fitting monetary

policy was to fuel housing market instead of business investment.

A further incentive to the growth of the real estate market was repre-

sented by the growing demand for financial assets by foreign countries with

high savings rates. This additional influx of “saving glut” (Bernanke, 2007),

together with an underestimation of the risk of mortgage caused by optimistic

forecasts on the expansion of the real estate market via backward-looking

models, and, finally, the increasing competition between mortgage lenders

10



1.2 11

for revenue and market share, stimulated the decline of mortgage standards

and risky loans proliferated between 2004 and 2007. Even the Government

Sponsored Enterprises (GSE1): Fannie Mae and Freddie Mac, which prior to

2003 maintained conservative underwriting standards, relaxed them in order

to compete with the private banks. The direct result of this predatory lending

was the growth of new risky loans with higher interest rates and less favorable

terms to people who may have difficulty maintaining the repayment schedule

(subprime mortgage), which rose from the historical 8% to approximately

20% from 2004 to 2006.

A further complication of this “originate and distribute” banking model,

in which mortgage were pooled, tranched, and then resold via securitiza-

tion (Brunnermeier, 2009), was the creation of securities of great complexity

that stimulated large capital inflows from abroad, facilitating the creation

of a wide network of dependencies between financial operators worldwide.

Figure 1.2 shows an example of the complexity and financial innovation of

two types of securities which derived their value from mortgage payments.

More specifically, residential mortgage-backed securities (RMBS) and collat-

eralized debt obligations (CDO) can be seen as tranches, characterized by

different risk and returns, of diversified portfolios composed of mortgages and

other loans, that the banks sold to investors with different “appetites”. The

possibility to insure these obligations through credit default swaps (CDS)

together with the complexity of these securities, contributed to an underes-

timation of risk by rating agencies. As a result the CDO issuance rose from

an estimated 20 billion dollars in the first quarter of 2004 to its peak of over

180 billion dollars in the same period of 2007, increasing significantly the

leverage of many banks (including Lehman Brothers, Bear Stearns, Merrill

Lynch, Goldman Sachs and Morgan Stanley) and subjecting them to a real

risk of liquidity in the event of a fall of the housing market. Specifically, the

vulnerability of these entities were linked to the maturity mismatch, as they

were borrowing short-term in liquid markets to purchase long-term, illiquid

and risky assets.

1.2 The burst of the bubble

Witter, in August 2006, wrote in Barron’s magazine that “a housing crisis

1Private enterprises with government support, operating in financial services.
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12 The Global Financial Crisis

Figure 1.2: Diagram of residential mortgage-backed securities (RMBS) or collateralized

debt obligations (CDO). Source: The Financial Crisis Inquiry Report.

approaches”, and noted that the median price of new homes in the U.S. had

dropped almost 3% since January 2006. Indeed, once the initial grace period

ended, subprime borrowers proved unable to pay their mortgage payments

(this is an on-going crisis) increasing foreclosures and the supply of homes for

sale nearly on 1.3 million properties in 2007. This placed downward pressure

on housing prices, resulting in many owners holding negative equity: a mort-
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1.3 13

gage debt higher than the value of the property. Borrowers in this situation

had an incentive to default on their mortgages as a mortgage is typically non

recourse debt secured against the property, triggering a vicious cycle at the

base of the housing bubble burst between 2006 and 2007. As direct result,

the declining mortgage payments caused the values of securities tied to U.S.

real estate pricing to plummet, eroding the net worth and financial health of

banks globally.

In an interview with the Financial Times, in July 2007, Citigroup CEO

Chuck Prince, said about the subprime mortgage crisis: “When the music

stops, in terms of liquidity, things will be complicated. But as long as the mu-

sic is playing, you’ve got to get up and dance. We are still dancing.” If we can

have some doubts about the fact that in early summer of 2007 finance was

still dancing, certainly the active phase of the crisis manifested from August

2007 as a liquidity crisis due to the over-leveraged world financial institutions

which were incurring in significant losses from their risky investments on the

mortgage supply chain. The decline in the value of mortgage-backed securities

held by these companies together with the inability to secure new funding in

the credit markets, led to investor panic and bank run. One of the first victims

was the highly leveraged British bank Northern Rock in mid-September 2007

whose problems proved to be an early indication of the incoming crisis. Sub-

sequently over 100 mortgage lenders failed, were acquired under duress, or

were subject to government takeover during 2007 and 2008. The five largest

U.S. investment banks, either went bankrupt (Lehman Brothers), were taken

over by other companies (Bear Stearns and Merrill Lynch), or were bailed-out

by the U.S. government (Goldman Sachs and Morgan Stanley) during 2008.

Even the GSE: Fannie Mae and Freddie Mac, were placed into receivership in

September 2008. The results were the downturns in stock markets around the

world, a worldwide slowdown in the economic growth and the rapid contagion

of foreign banking and financial systems (especially in Europe).

1.3 A prolonged crisis

The systemic imbalances that followed the subprime mortgage crisis led to

the 2008-2012 global recession which affected the entire world economy, with

higher detriment in some countries than others. In most cases the recession

was manifested through a sharp drop in international trade, increasing un-
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14 The Global Financial Crisis

employment rates, low consumer confidence, escalating sovereign-debt crisis

(in particular in Europe), inflation, and rising petroleum and food prices.

In the U.S., beside the Dow Jones average’s fall of more than 50% over a

period of 17 months between October 2007 and March 2009, the crisis struck

heavily wealth, consumptions and business investments. Figure 1.3 shows

how since 2007 real median household income has declined for all race and

Hispanic-origin groups. The decline was 5.4 percent for Non-Hispanic-White

household income, 10.1 percent for Black household income, 7.5 percent for

Asian household and 7.2 percent for Hispanic. The peak in the U.S. unem-

ployment rate from 2008 in Figure 1.4 represents a further evident effect of

the crisis that expands through a year-on-year decline in capital investment

since the final quarter of 2006, and a plunge in the volumes of international

trade in the second half of 2008, resulting in the contraction of the Real Gross

Domestic Product (GDP) in the third quarter of 2008, and a sharp drop in

early 2009.

The increasing interconnection between world financial markets and in-

stitutions, generated a contagion effect that took shape through the rapid

development and spread of the crisis into a global economic shock. Referring

to these issue Baily and Elliott (2009) reported that: “The U.S. economy

has been spending too much and borrowing too much for years and the rest

of the world depended on the U.S. consumer as a source of global demand."

As a result, U.S. recession and the increased savings rate of U.S. consumers

were accompanied by dramatic declines in various stock indices and in eco-

nomic growth elsewhere. Declines in GDP at annual rates for the first quarter

of 2009 were −14.4% for Germany, −15.2% for Japan, −7.4% for the UK,

−9.8% for the Euro area and −21.5% for Mexico. In addition to these, also

different states of Southeast Asia such as Taiwan, Singapore, Hong Kong

and India suffered the contagion effect during the third and fourth quarter of

2008. Finally, of the largest economies in the world by GDP, China avoided

the recession in 2008 experiencing a growth between 5% and 8% which, how-

ever, represents a slowdown compared to the 10% growth rates of the past

five years.

A further downside of the crisis in the Eurozone is manifested through the

ongoing European sovereign debt crisis. The transfer of private debts arising

from the burst of the housing bubble to the already high sovereign debt as

a result of banking system bailouts, together with the structural problem

of Eurozone system based on monetary union without fiscal union, caused
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1.3 15

Figure 1.3: Real median Household income by Race from 1967 to 2010, in 2010 dollars.

Source: U.S. Census Bureau, Current Population Survey, 1968 to 2011 Annual Social and

Economic Supplements.

the impossibility for some European countries to re-finance their government

debt without the assistance of third parties. The results were an increasing

downgrade of the sovereign debt of many European countries by the credit

rating agencies since early 2010, and repeated speculative attacks against

euro by financial speculators and hedge funds that contributed to worsen the

crisis. The countries most affected by the sovereign debt crisis were Greece,

Portugal, Ireland and in June 2012 also Spain became a matter of concern

because of its difficulties to access capital markets with rising interest rates.

The greek debt was the first to raise concerns at the beginning of 2010.

Unsustainable public sector wages, pension commitments and high percent-

age of debt in the hands of foreign creditors generated a structural deficit

that made it necessary continuous requests of loans from the EU and Interna-

tional Monetary Fund (IMF) to cover its financial needs since the early 2010.

The result was the downgrade of Greece’s sovereign debt from Standard &

Poor’s to BB+ or "junk", leading to the decline of Stock markets worldwide.

Austerity measures that followed from mid-2010, through an increase in tax-

ation were met with great anger by the Greek public and contributed to a

worsening of the Greek recession, resulting in a decline of the Greek GDP in

2011 of −6.9% together with a growth of the unemployment rate.

15



16 The Global Financial Crisis

Figure 1.4: U.S. Quarterly unemployment rate for workers 25 and older, from 1980 and

2009, by education. Source: Henry Farber of Princeton University, analyzing Bureau of

Labor Statistics data.

Unlike Greece, the Irish debt crisis was mainly based on the state guar-

anteeing the six main Irish-based banks that had invested heavily in real

estate during the housing bubble, instead of on government over-spending.

The burst of the bubble between 2006 and 2007 and the subsequent economic

collapse in 2008, led the federal budget to a deficit of 32% GDP in 2010, the

highest in the history of the Eurozone. The acute phase of the Irish debt

crisis came in November 2010 when Ireland called for the intervention of the

EU, the IMF and bilateral loans with non-euro countries through a "bailout"

agreement. However, despite these measures, In April 2011 Moody’s down-

graded the banks’ debt to junk status.

On May 2011 the Portugal became the third European country to receive

emergency fund through a bailout package equally split between the Euro-

pean Financial Stabilization Mechanism, the European Financial Stability

Facility, and the International Monetary Fund. The underlying causes of the

Portuguese debt crisis are related to decades-long governmental overspend-

ing in unnecessary external consultancy, top management and head officer

bonuses and wages, redundant public servants together with risky invest-

ments in housing bubble that led the country close to bankruptcy by 2011

and caused the cutting of Portugal’s credit rating to junk status by Moody’s

on July 2011.

More recently, attention has focused on Spanish debt, whose crisis is

16
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linked to high investments of Spanish banks in long-term mortgage during

Spanish Real Estate boom. The subsequent building market crash weakened

private banks, requiring government bailouts. As a result in May 2012, Bankia

received a 19 billion euro bailout, and unemployment rates grew dramatically

from March 2012.

The possibility of spread of the debt crisis to other states remains con-

crete. Among these it is useful to include Italy with a debt of almost 120%

of GDP as well as lower economic growth with respect to EU average, and

United Kingdom with its highly leveraged financial industry.

1.4 Policy responses

Since the beginning of the crisis several measures have been launched by

central banks and governments to cover the risk of bankruptcy of their finan-

cial systems, prevent the growth of the debt crisis and address the problem

of recession. To answer these goals, strong fiscal stimulus, monetary pol-

icy expansion and bank rescue packages together with austerity measures

of spending cuts and taxation, have been carried out by different countries

worldwide.

Beside the rescue of several financial institutions during the acute phase

of the crisis, the U.S. responded through a continuous sharp reduction in the

federal funds rate from the 5.25% in August 2007 to the 0% - 0.25% since

December 2008; with the introduction of the term auction facility (TAF) in

December 2007 to allow banks to borrow directly from the Fed and, finally,

with Temporary Cash Infusions through 100 billion dollars defined in the

Economic Stimulus Act of February 2008. Recalling Taylor (2008) the actual

results of these policies were not in line with expectations as the three month

LIBOR-OIS spread2 remained substantially unchanged showing that a less

expensive liquidity does not mean more confidence; in addition the attempt

to encourage consumption through the Economic Stimulus Act resulted in an

increase in savings instead of aggregate consumption, highlighting a growing

pessimism.

Additional measures were taken later, with the commitment of the gov-

ernment to buy the toxic assets through the Troubled Asset Relief Program

2Difference between the 3-month London Interbank Offered Rate (LIBOR) and the

3-month Overnight Index Swap (OIS) rate.
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18 The Global Financial Crisis

(TARP) with a significant impact on the spread LIBOR-OIS, especially after

the second announcement on October 13 of 2008. In addition to these, a more

structured response to the problems of the recession through a program of

rescue and creation of jobs, relief for those most affected by the crisis and

investments in education, research, health, infrastructure and new energies

came from the American Recovery and Reinvestment Act (ARRA) signed

into law on February 17, 2009, by President Barack Obama.

Similarly to the U.S., the other countries responded to the financial crisis

and the subsequent recession through low-rates monetary policy and stim-

ulus plans aimed at economic recovery. In autumn 2008 states in Asia and

Pacific reacted to the outbreak of the crisis through a cut in interest rates

(in China for the first time since 2002) and stimulus packages particularly

important in India, Japan, Australia, Indonesia, Taiwan and finally, China

which announced a plan accounting for 16% of GDP, much higher than that

of other countries that were equivalent to about 3%.

In addition to the monetary policies of the European Central Bank to

address the growing financial and economic crisis, the Eurozone had to im-

plement additional measures to prevent the sovereign debt crisis in their

own countries. This led to policies by individual countries through auster-

ity measures to cope with the increasing amount of sovereign debt, but also

to agreement between Eurozone leaders to prevent the collapse of member

economies. The results were an increasing taxation and spending cuts (partic-

ularly relevant in Greece, Ireland, Portugal, Spain and Italy) with side-effect

on economic recession, and the introduction of rescue packages from the EU

since early 2010 to ensure financial stability across Europe. The European

Financial Stability Facility (EFSF) on 9 May 2010 and the European Fi-

nancial Stabilization Mechanism (EFSM) on 5 January 2011 represent the

specific temporary legal European Union funding vehicle (to be succeeded in

July 2012 by the permanent European Stability Mechanism (ESM)) to pro-

vide financial assistance to Eurozone states in difficulty. Further measures

to restore confidence in Europe, boost the economy and prevent other crisis

in the Eurozone have been launched through the agreement to introduce a

European Fiscal Compact including the Stability and Growth Pact aiming

at straightening the debt rules with penalties in case of breaches.
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Chapter 2

National Stock Market Indices

Spurred by the increasing growth of interest in the causes and consequences

of the financial crisis on the worldwide financial and economic systems, we

aim to provide a quantitative analysis of the dynamic dependence structure

between financial markets in the main countries, and in its features during

the crisis that have followed in recent years, through the joint study of the

main National Stock Market Indices (NSI) between 2004 and 2012. Although

only a window into a much larger problem with complex roots and ongoing ef-

fects, the multivariate analysis of these technical indicators designed through

the synthesis of numerous data on the evolution of the various stocks, cer-

tainly represents an informative overview on the temporal and geo-economic

changes in world financial market during the recent years.

2.1 National Stock Market Indices (NSI)

A National Market Index is a synthetic data calculated using statistical tech-

niques for the construction of composite weighted price indices, which repre-

sents the performance of the stock market of a given nation. More specifically,

referring to Gallo and Pacini (2002), most of Stock Market Indices represent

composite price indices calculated through a weighted average of simple price

indices relating a baskets of stocks, with reference to a base of time:

It =
1

ft

∑n
i=1

pi,t
pi,0
Wi,0

∑n
i=1Wi,0

,

where n is the number of stocks in the basket on which the index is calculated,

pi,0 is the price of the i-th stock measured at the base time, pi,t is the price
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20 National Stock Market Indices

of the i-th stock at time t, Wi,0 are the weights used, while ft is a correction

factor which takes into account changes over time in the life of the stocks

like splits, recapitalizations and the change in the composition of the basket,

ensuring the continuity of the index.

Typically the weighting is based on the value of capitalization of the

business companies included in the calculation of the index at the base time,

leading to Wi,0 = pi,0qi,0, where qi,0 represents the amount of stock i ex-

changed on the market at time 0. As a result

It =
1

ft

∑n
i=1 pi,tqi,0

∑n
i=1 pi,0qi,0

,

showing a similar structure to the index of Laspeyres (see e.g., Predetti,

2006). Example of value weighted National Stock Market Indices are S&P

500, NASDAQ Composite, FTSE 100, CAC 40, DAX 30 and FTSE MIB. A

special case is that of DOW JONES and NIKKEI 225 indices which repre-

sent the most important price-weighted indices of the few remaining. More

specifically, price-weighted indices are obtained as the average of prices of n

stocks, possibly corrected through a correction factor ft:

It =
1

ft

n
∑

i=1

pi,t
n
.

Note that, unlike the previous indices, these depend on the currency and

do not take into account the importance of the stocks in terms of market

capitalization and average trading volume.

The construction and the joint analysis of such indices can be traced

back to the field of multivariate financial time series, with the specific fea-

tures of financial data. The non-stationary behavior of the series of indices

typically assumed as a random walk process, together with the different bases

of currency for price weighted indices, and time for value weighted indices,

motivates the use of logarithmic returns

yj,t = log(Ij,t/Ij,t−1), (2.1)

where Ij,t is the value of the j-th National Stock Market Index at time t.

Beside this, large datasets and high frequency data, typical of this field,

require models able to handle high-dimensional data through tractable com-

putations and simple online updating and prediction procedures. Referring

to Fama (1965), another aspect to consider is the empirical evidence related

20
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GERMANY, DAX30: Squared Log-Returns

Time
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Figure 2.1: Squared Log-Returns of DAX30, using weekly data from 2004/07/19, to

2012/06/25.

to variance and covariance non-stationarity, manifesting through a strong

heteroscedasticity characterized by the possibility of rapid changes in the

dynamic evolution of volatilities and co-volatilies. Figure 2.1 shows an ex-

ample where volatilities, described by the squared log-returns of the German

stock market index (DAX30), change dramatically, motivating the search for

fully flexible models able to capture such rapid changes which may occur

during financial crisis. Finally, the possibility to easily handle missing data

in fitting the model, together with the ability to accommodate heavy tails

showed by the marginal distribution of logarithmic returns, represent addi-

tional key aspects to further improve the performance of the models in terms

of accuracy of analysis and computational tractability.

2.2 Literature Overview

There is a rich literature on univariate stochastic volatility modeling, with an

increasing emphasis on multivariate generalizations. One popular approach

estimates the p × p time-varying covariance matrix Σt via an exponentially

weighted moving average (EWMA; see, e.g., Tsay, 2005). Specifically, given

a set of zero mean observations {y1, ..., yT} where yt ∈ R
p, the covariance

matrix Σt can be recursively estimated from the equation

Σ̂t = (1− λ)yt−1y
T
t−1 + λΣ̂t−1,

21



22 National Stock Market Indices

where 0 < λ < 1 represents a decay factor and T sufficiently large such that

λT−1 ≈ 0. In particular, the higher λ, the more weight is given to the observa-

tions that are more distant, leading to quite different final results. Besides its

simplicity, the model has, however, some key limitations: for the estimation

of λ, EWMA assumes the conditional normal distribution for the observa-

tions without considering the possibility of heavy tails (Fama, 1965) when

financial time series are analyzed; to overcome this problem Guermat and

Harris (2002) suggest a general power EWMA model based on the General-

ized Error Distribution (GED). Another important limitation is referred to

the use of a single time-constant smoothing parameter λ, with extensions to

accommodate locally-varying smoothness λt not straightforward due to the

need to maintain positive semidefinite Σt at every time. This issue leads to

restrictive dynamics induced by the assumption of equal reaction of volatil-

ity to different economic events and the persistence in volatility for all assets

considered in the model.

A generalization of the exponentially weighted moving-average approach

is represented by the Diagonal VEC Model (Bollerslev, Engle and Wooldrige,

1988) in which the conditional variances and covariances are written as a lin-

ear combination of lagged conditional variances and covariances and lagged

squared observations and their cross-product. More specifically a DVEC(m, s)

follows the equation

Σt = A0 +
m
∑

j=1

Aj ⊙ (yt−jy
T
t−j) +

s
∑

r=1

Br ⊙ Σt−r,

where Aj and Br are p× p symmetric parameter matrices and ⊙ denote the

element-by-element multiplication (Hadamard product). The generality and

flexibility of this formulation encounters a series of theoretical and compu-

tational disadvantages: conditions for Σt to be positive definite for all t are

only sufficient and rather restrictive, estimation is computationally demand-

ing involving a large number of parameters (m+ s+1)p(p+1)/2 and models

do not allow for interaction between different variances and covariances.

BEKK model (Engle and Krones, 1995) answers the issues of positive

definiteness and dynamic dependence between the volatility series, suggesting

a model for the conditional covariance matrix in which

Σt = A0A
T
0 +

m
∑

j=1

Aj(yt−jy
T
t−j)A

T
j +

s
∑

r=1

BrΣt−rB
T
r ,
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where A0 is a lower triangular matrix and Aj and Br are p× p matrices. The

decomposition of the constant term into a product of two triangular matrices

ensures positive definiteness of Σt by construction; however as for DVEC, also

BEKK suffers from the curse of dimensionality limiting its applicability in

large p settings. To address this problem Ding (1994) introduces the principal

component GARCH (PC-GARCH), later depth by Alexander (2001) under

the name O-GARCH. The dimensionality reduction is obtained by assuming

a latent factor model for the observed variables yt = Γft, where Γ is a p ×

m matrix with orthogonal columns, and the latent factors in the m × 1

vector process ft are conditionally uncorrelated with GARCH conditional

volatilities. The resulting time varying covariance matrix is

Σt = ΓDtΓ
T ,

where Dt represents the m×m diagonal matrix with conditional factor vari-

ances on the diagonal. This model shows good performance in highly corre-

lated systems where the volatility and co-volatility of the observed variables

can be explained by a few latent factors, however if the data are weakly corre-

lated identification problems may arise. Another important limitation refers

to the assumption of orthogonality of Γ. To overcome these issues van der

Wiede (2002) introduces GO-GARCH, where the number of factors equals

the number of series and the transformation matrix Γ is assumed to be invert-

ible instead of orthogonal; however the formulation increases dramatically the

number of parameters. Key assumptions of factor volatility models are that

Γ is time-constant and the latent factors are uncorrelated. This ensure sim-

plicity of analysis but permit only limited evolution of the the time-varying

covariance matrix Σt.

To complete the introduction on multivariate GARCH it is important to

highlight that such models fall far short of our goal of allowing Σt to be fully

flexible with the dependence between Σt and Σt+∆ varying with not just the

time-lag ∆ but also time. In addition, these models do not handle missing

data easily and tend to require long series for accurate estimation (Burns,

2005).

An alternative to multivariate GARCH is represented by stochastic volatil-

ity (SV) models (Harvey et al., 1994) where the volatility process is random

rather than being a deterministic function of past returns. In general, SV

assume

Σt = AΓtA
T ,
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with A real and Γt = diag(exp(h1t), ..., exp(hpt)), where hit, for i = 1, ..., p,

are independent autoregressive processes. The equation for Σt results from

a state space formulation of the model which allows the implementation

of Kalman filter and smoother for the Quasi Maximum Likelihood (QML)

estimation (Ruiz, 1994) and enables to handle missing values. See Chib et al.

(2009) for major details on such approaches. The main disadvantages of these

models are that time variation of covariances are restricted by sole variation

in variances, together with the fact that the conditional volatility of an asset

depends only on its past variances and not on covariances with other assets.

To address the SV lack of flexibility, Philipov and Glickman (2006a) de-

velop a multivariate stochastic volatility model in which the time-varying

covariance structure follows a stochastic process based on Wishart distribu-

tion. More formally they consider

Σ−1
t |Σt−1 ∼ W (n, St−1),

St−1 = 1/n(A1/2)(Σ−1
t−1)

ν(A1/2)T .

Greater flexibility has as its counterpart a challenging posterior computa-

tion and lack of simplicity in description of marginal distributions. Moreover

in the case of large p setting, working with p × p covariance matrix could

generate computational problems (an issue faced by Philipov and Glickman

(2006b) through the application of the approach to the matrix of variance

and covariance of a vector of latent factors in a standard model factor anal-

ysis). Finally it could not be optimal to control intra and inter-temporal

covariance relationships through single parameters (n and ν). More recently

Prado and West (2012) address the problem of posterior computation for

dynamic covariance matrices via discounting methods that maintain simple

update equations as new observations are added. In particular they assume

Σ−1
t−1|y1:t−1, β ∼ W (ht−1, D

−1
t−1),

Dt = βDt−1 + yty
T
t ,

ht = βht−1 + 1.

This implies Σ−1
t |y1:t−1, β ∼ W (βht−1, (βDt−1)

−1). The advantage of this

formulation is that the update with a new observation yt is conjugate, main-

taining Wishart posterior; however the model constrains ht > p − 1 and,

therefore, β > (p− 2)/(p− 1). Moreover the model restricts the evolution of
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the covariance to be stationary and slowly-changing, this could be a key lim-

itation in financial applications where covariances could change dramatically

in particular economic scenarios.

Accommodating changes in continuous time is also important to avoid

having the model being critically dependent on the time scale, with incon-

sistent models obtained as time units are varied. With reference to this, it

is important to stress how the above-mentioned models assume that the ob-

servations evolve in discrete time on a regular grid, leading to discrete-time

covariance dynamics. Our emphasis is instead on developing continuous time

stochastic processes for time-varying covariance matrices, which accommo-

date locally-varying smoothness.

In this regard, a highly relevant development refers to Bayesian Nonpara-

metric Covariance Regression (BNCR) model of Fox and Dunson (2011),

which defines the covariance matrix as a regularized quadratic function of

time-varying loadings in a latent factor model, characterizing the latter as a

sparse combination of a collection of unknown Gaussian process (GP) dic-

tionary functions. More specifically they assume

cov(yi|ti = t) = Σ(t) = Θξ(t)ξ(t)TΘT + Σ0, t ∈ T ⊂ R
+,

where Θ is a p×L matrix of coefficients, ξ(t) is a time-varying L×K matrix

with unknown continuous dictionary functions entries ξlk : T → R that are

modeled through independent Gaussian Process (GP) random functions, and

finally Σ0 is a positive definite diagonal matrix. The previous equation for

Σ(t) results from the marginalization of ηi in the latent factor model

yi = Θξ(ti)ηi + ǫi, (2.2)

with the latent factor ηi ∼ NK(0, IK) and ǫi ∼ Np(0,Σ0). A further general-

ization of the model allows also the possibility of including the nonparametric

mean regression by assuming

ηi = ψ(ti) + νi, (2.3)

where νi ∼ NK(0, IK) and ψ(t) is a K × 1 matrix with unknown continuous

entries ψk : T → R that can be modeled in a related manner to the dictio-

nary elements in ξ(t). The induced mean of yi conditionally on ti = t, and

marginalizing out νi is then:

µ(t) = Θξ(t)ψ(t). (2.4)
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Although their approach provides a continuous time and highly flexible

model that accommodates missing data and scales to large p, there are two

limitations motivating this work. Firstly, their proposed covariance stochas-

tic process assumes a stationary dependence structure, and hence tends to

under-smooth during periods of stability and over-smooth during periods

of dramatic change. Secondly, the well known computational problems with

usual GP regression are inherited, leading to difficulties in scaling to long

series and issues in mixing of MCMC algorithms for posterior computation.
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Chapter 3

Locally Adaptive Bayesian

Covariance Regression

Our focus is on developing a Locally Adaptive Bayesian Covariance Regres-

sion (LABNCR) model that allows covariance and mean to vary flexibly

over time, and additionally accommodate locally adaptive smoothing. Lo-

cally adaptive smoothing to accommodate varying smoothness in a trajec-

tory over time has been well studied, but such approaches have not yet been

developed for time-varying covariance matrices and multivariate nonpara-

metric mean regression, to our knowledge. To address this gap, we generalize

recently developed methods for Bayesian covariance regression to incorporate

random dictionary elements with locally varying smoothness. Using a differ-

ential equation representation, we additionally develop a fast computational

approach via MCMC, with online algorithms also considered.

The detailed description of the proposed model is provided in Section

3.2, while Section 3.1 introduces the problem of locally adaptive modeling

via nested Gaussian Process (nGP) prior, as it has been outlined by Zhu and

Dunson (2012) with reference to nonparametric mean regression in univariate

models. We consider a similar approach for time-varying covariances by also

allowing for the multivariate case.

3.1 Nested Gaussian Process

Zhu and Dunson (2012) consider the problem of nonparametric mean regres-
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28 Locally Adaptive Bayesian Covariance Regression

sion in the univariate model

yi = U(ti) + ǫi, ǫi ∼ N(0, σ2
ǫ ), (3.1)

where

U(t) = E[yi|ti = t], t ∈ T ⊂ R
+, U : T → R,

is an unknown continuous mean function to be estimated at To = {t1, ..., tT} ⊂

T . To allow the smoothness of U to vary locally as a function of t, a nested

Gaussian Process prior is assumed. More specifically the nGP prior for U

specifies a GP for U ’s mth-order derivative DmU , centered on a local in-

stantaneous mean function C : T → R which represents an higher-level GP,

that induces adaptivity to locally-varying smoothing. Formally, both GP are

defined by the following stochastic differential equations (SDEs):

DmU(t) = C(t) + σUWU(t), m ∈ N, m ≥ 2, σU ∈ R
+, (3.2)

DnC(t) = σCWC(t), n ∈ N, n ≥ 1, σC ∈ R
+, (3.3)

where WU : T → R and WC : T → R are two independent Gaussian white

noise processes with zero mean and covariance function defined by a delta

function δ(t− t′). The initial value of U and its derivatives up to order m− 1

at t1 are assumed [U(t1), D
1U(t1), ..., D

m−1U(t1)]
T ∼ Nm(0, σ

2
µIm); the same

goes for the initial value C(t1) and its derivatives up to order n−1 leading to

[C(t1), D
1C(t1), ..., D

n−1C(t1)]
T ∼ Nn(0, σ

2
αIn). In addition the initial values,

the corresponding derivatives and the white noise Gaussian Processes are

assumed mutually independent. This formulation naturally induces a prior

for U whose smoothness, measured by DmU , is expected to be centered on a

continuous time stochastic process C. Finally, to conclude prior specification,

they assume independent Inverse Gamma priors for σ2
ǫ , σ

2
U and σ2

C .

The markovian property implied by SDEs in equations (3.2) and (3.3)

allows to obtain a simple state space formulation for the assumed nGP prior,

particularly worthy for posterior computation. Specifically, for m = 2 and

n = 1 (this can be easily extended for higher m and n), and for δi = ti+1 − ti

sufficiently small, the nGP for U along with its first order derivative U ′ and

C, follow the approximated state equation






U(ti+1)

U ′(ti+1)

C(ti+1)






=







1 δi 0

0 1 δi

0 0 1













U(ti)

U ′(ti)

C(ti)






+







0 0

1 0

0 1







[

ωi,U

ωi,C

]

(3.4)
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where [ωi,U , ωi,C ]
T ∼ N2(0, Vi), with Vi = diag(σ2

Uδi, σ
2
Cδi). Note that this

formulation allows continuous time and irregular grid of observations over

t by relating the latent states at i + 1 to those at i through the distance

between ti+1 and ti, where i represents a discrete order index and ti ∈ T the

time observation related to the i-th observation.

For posterior computation, note that, given σ2
ǫ , σ

2
U and σ2

C , the observa-

tion equation (3.1) combined with the above state equation, forms a state

space model for which the vector of latent states [U(ti), U
′(ti), C(ti)]

T with

ti ∈ T , can be efficiently updated using a simulation smoother algorithm

(Durbin and Koopman, 2002). Conditionally to [U(ti), U
′(ti), C(ti)]

T , poste-

rior samples of σ2
ǫ , σ

2
U and σ2

C can be easily obtained by drawing from the

standard conjugate Inverse Gamma distribution.

3.1.1 Simulation Smoother

Considering the importance of the simulation smoother for posterior com-

putation under the assumption of nGP prior (which plays a key role also

in our model), we summarize below the main features of the one proposed

by Durbin and Koopman (2002) for drawing samples from the conditional

distribution of latent state vectors in a state space model, given the obser-

vations. This simple and computationally efficient technique represent a key

element for posterior computation in our model, allowing us to reduce the

GP computational burden involving matrix inversions from O(T 3) to O(T ),

with T denoting the length of the time series.

To introduce the simulation smoother, consider the state space model

yi = Ziβi + ǫi, ǫi ∼ N(0, Hi),

βi+1 = Tiβi +Riωi, ωi ∼ N(0, Qi), (3.5)

β1 ∼ N(b1, P1), i = 1, ..., T,

where yi is a p× 1 vector of observations, βi an m× 1 vector of latent states,

and ǫi and ωi are vectors of disturbances. Zi, Ti, Ri, Hi and Qi are matrices

assumed to be known and b1 and P1 represent the initial conditions.

The algorithm for generating draws of the state vector β = [βT1 , ..., β
T
T ]
T

from the conditional density p(β|y) with y = [yT1 , ..., y
T
T ], iterates between

standard Kalman filtering and state smoothing algorithms. The first out-

puts the one step ahead state prediction bi+1 = E[βi+1|y1, ..., yi] and predic-

tion variance Pi+1 = var(βi+1|y1, ..., yi) from the following recursive equation
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30 Locally Adaptive Bayesian Covariance Regression

based on the theoretical results of Multivariate Normal distribution:

vi = yi − Zibi, Fi = ZiPiZ
T
i +Hi,

Ki = TiPiZ
T
i F

−1
i , Li = Ti −KiZi,

bi+1 = Tibi +Kivi, Pi+1 = TiPiL
T
i +RiQiR

T
i ,

(3.6)

for i = 1, ..., T and with b1 and P1 respectively mean a variance of the initial

state β1. Given the Kalman filter estimates and conditioning on the whole ob-

servation data y, the state smoother outputs β̂i = E[βi|y] and Vi = var(βi|y)

for i = 1, ..., T by backwards recursion through the following equation, again

based on the theoretical results of Multivariate Normal distribution:

ri−1 = ZT
i F

−1
i vi + LTi ri, Ni−1 = ZT

i F
−1
i Zi + LTi NiLi,

β̂i = bi + Piri−1, Vi = Pi − PiNi−1Pi,
(3.7)

where rT and NT are set to 0 to start the backwards recursion. Based on

these results the simulation smoother draws random vector β̃ through the

following step:

1. Draw a random vector w+ = [ǫT1 , ω
T
1 , ..., ǫ

T
T , ω

T
T ]
T from the joint density

p(w) ∼ N2×T (0, diag(H1, Q1, ..., HT , QT )) and use it to generate β+ and

y+ by means of recursion from the state space model in (3.5) with w

replaced by w+, where the recursion is initialized by the draw β+
1 ∼

N(b1, P1).

2. Compute β̂ = E[β|y] and β̂+ = E[β+|y+] using (3.6) forward, (3.7)

backward and finally forward the equation β̂i+1 = Tiβ̂i +RiQiR
T
i ri for

i = 1, ..., T .

3. Take β̃ = β̂ + (β+ − β̂+).

The entire approach is mainly based on the property of V = var(β|y) not

depending upon y and on the assumption of linear and Gaussian model. As a

result, instead of drawing directly from the density of β|y which is N(β̂, V ),

we can simulate samples from N(0, V ) and adding these to the known vector

β̂. The difference β+ − β̂+ is the desired drawn from N(0, V ) since β̂+ =

E[β+|y+], and recalling the independence between V and y, var(β+|y+) = V .

Note also that the initialization at i = 1 for the filter, and the assumption

rT = 0 and NT = 0 for the backward smoother, lead to larger conditional

variances of βi at the beginning and the end of the sample as discussed in

Durbin and Koopman (2001).
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3.2 Locally Adaptive Covariance Regression

In order to allow locally adaptive smoothing for the time-varying covariance

and mean functions we develop a novel stochastic process with locally-varying

smoothness. This is accomplished by modifying the model of Fox and Dun-

son (2011) to incorporate dictionary functions ξlk and ψk, that are assigned

nested Gaussian process priors. Note also that compared to Zhu and Dunson

(2012) our approach allows generalizations in: (i) extending the analysis to

the multivariate case (i.e. yi is a p-dimensional vector instead of a scalar)

and (ii) accommodating locally adaptive smoothing not only for the mean

but also for the time-varying variance and covariance functions.

3.2.1 Notation and Motivation

Working in a context of multivariate time series, let yi represent a p × 1

vector of observations, where i = 1, ..., T represents a discrete order index

and assume

yi ∼ Np(µ(ti),Σ(ti)),

with µ(ti) and Σ(ti) denoting respectively the p × 1 mean vector and p × p

covariance matrix at "location" ti ∈ T ⊂ R
+, where ti represents the time

observation related to the i-th observation.

Our aim is to define a prior ΠΣ for ΣT = {Σ(t), t ∈ T } and, if µ(t) is

not known, to also define a prior Πµ for µT = {µ(t), t ∈ T }. We look for

priors with the properties of large support as well as good performance in

large-p samples, but differently from previous proposals, we require that these

priors allows for locally varying smoothing. Note that even if we will focus

on multivariate time series (i.e., t is a time observation), our formulation can

be easily extended without any loss of generality to the case where t is an

arbitrary predictor value.

3.2.2 Latent Factor Model

Following the approach of Fox and Dunson (2011) outlined in Section 2.2,

we address the problem of dimensionality reduction by modeling a p × p

covariance matrix Σ(t) over an arbitrary predictor space T (which represents

an enormous dimensional regression problem in large-p settings), through a
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lower dimensional p×K, with K << p, factor loadings matrix Λ(t) indexed

by predictors t, by assuming the decomposition

Σ(t) = Λ(t)Λ(t)T + Σ0,

where Σ0 = diag(σ2
1, ..., σ

2
p). Note that such a decomposition for Σ(t) is nat-

urally induced by the marginalization of the K × 1 vector of latent factors

ηi, in the latent factor model

yi = Λ(ti)ηi + ǫi, (3.8)

where ηi ∼ NK(0, IK) and ǫi ∼ Np(0,Σ0). To further improve the tractability

of the model, we assume that the time-varying factor loadings matrix Λ(t) is

a linear combination of a much smaller set of continuous dictionary functions

ξlk : T → R comprising the L×K, with L << p, matrix ξ(t). As a result

Λ(ti) = Θξ(ti),

where Θ is a p × L matrix of coefficients relating the matrix Λ(t) to the

time-varying dictionary elements in ξ(t). Such a decomposition for Λ(ti) re-

produces the equation (2.2) described in Section 2.2, and further reduces the

number of continuous random function to be modeled from p× L to L×K,

leading to an higher flexible and computationally tractable formulation in

which the induced covariance structure, after marginalizing out the latent

factors, follows the equation

cov(yi|ti = t) = Σ(t) = Θξ(t)ξ(t)TΘT + Σ0. (3.9)

As stated in Fox and Dunson (2011) the above decomposition for Σ(t)

is not unique as it is not guaranteed the identifiability of Θ and ξ(t). A

possibility to cope with this issue is to constrain the factor loading ma-

trix (Geweke and Zhou, 1996), but this approach induces order dependence

among responses (Aguilar and West, 2000, West, 2003, Lopes and West, 2004,

Carvalho et al., 2008). However, we are focusing on inference and prediction

on the covariance matrix Σ(t), rather than on the structure of Θ and ξ(t). It

follows that the issue of identifiability is not troublesome, as it does not cause

problems on the uniqueness of Λ(t) = Θξ(t), allowing us to avoid restrictions

and define priors with good computational properties. The characterization

of the class of time-varying covariance matrices Σ(t) is proved by Lemma 2.1
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of Fox and Dunson (2011), which states that for K and L sufficiently large,

any covariance regression can be decomposed as in (3.9).

Recalling equations (2.3) and (2.4) in Section 2.2, when µ(t) is not know,

we can incorporate the nonparametric mean regression in the model formu-

lation by assuming

ηi = ψ(ti) + νi, νi ∼ NK(0, IK), (3.10)

where ψ(ti) = [ψ1(ti), ..., ψK(ti)]
T is a vector of continuous functions ψj :

T → R that can be modeled similarly to the dictionary elements functions

ξlk. As a result, marginalizing out the latent factors, the induced mean of yi

conditionally on ti = t, turns to be

µ(t) = Θξ(t)ψ(t). (3.11)

3.2.3 Prior Specification

The key point is to identify independent priors Πξ, ΠΘ, ΠΣ0
and Πψ for

ξT = {ξ(t), t ∈ T }, Θ, Σ0 and ψT = {ψ(t), t ∈ T } respectively, to induce

priors ΠΣ and Πµ on ΣT and µT , through equations (3.9) and (3.11), with

the goal of maintaining simple computation and allowing both covariances

and means to vary flexibly over time. Fox and Dunson (2011) address this

issue by considering dictionary function as

ξlk ∼ GP (0, c),

independently for all l, k, with c squared exponential correlation function

having c(ξ, ξ′) = exp(−κ||ξ − ξ′||22), but proves unable to accommodate lo-

cally adaptive smoothing. We, instead, specify the dictionary functions as

independent nGP prior to explicitly model the expectation of the derivative

of ξlk, for each (l, k) with l = 1, ..., L and k = 1, ..., K, as a function of t

through the specification of a GP prior for ξlk’s mth-order derivative Dmξlk,

centered on a higher-level GP. As a result we allow the smoothness of the

induced GP prior on ξlk to be measured by a time-varying set of derivatives,

centered on a GP instantaneous mean function Alk : T → R to accommodate

nonparametric locally-adaptive smoothing.

Recalling equations (3.2) and (3.3) from Zhu and Dunson (2012), outlined

in Section 3.1, we use the nGP by defining a GP prior for the random dictio-

nary function ξlk and the local instantaneous mean Alk, through the following

33



34 Locally Adaptive Bayesian Covariance Regression

stochastic differential equations with parameters σξlk ∈ R
+ and σAlk

∈ R
+:

Dmξlk(t) = Alk(t) + σξlkWξlk(t), m ∈ N, m ≥ 2, (3.12)

DnAlk(t) = σAlk
WAlk

(t), n ∈ N, n ≥ 1, (3.13)

where Wξlk : T → R and WAlk
: T → R are two independent Gaussian white

noise processes with mean function E[Wξlk(t)] = E[WAlk
(t)] = 0, ∀t ∈ T ;

and covariance function E[Wξlk(t)Wξlk(t
′)] = E[WAlk

(t)WAlk
(t′)] = δ(t− t′) a

delta function. This formulation naturally induces a prior for ξlk with varying

smoothness, where E[Dmξlk(t)|Alk(t)] = Alk(t) and initialization at t1 based

on the assumption

(ξlk(t1), D
1ξlk(t1), ..., D

m−1ξlk(t1)) ∼ Nm(0, σ
2
µlk
Im).

The same goes for the initial value Alk(t1) and its derivatives up to order

n− 1 leading to the prior

(Alk(t1), D
1Alk(t1), ..., D

n−1Alk(t1)) ∼ Nn(0, σ
2
αlk
In).

The prior for the initial values and for Wξlk and WAlk
are assumed mutu-

ally independent. Finally, we assume

σ2
ξlk

∼ invGa(aξ, bξ),

σ2
Alk

∼ invGa(aA, bA),

independently for each (l, k); where invGa(a, b) denote the Inverse Gamma

distribution with shape a and scale b.

Recalling equation (3.4), for m = 2 and n = 1 and for δi sufficiently small,

the approximated state equation induced by the nGP prior for ξlk, turns to

be






ξlk(ti+1)

ξ′lk(ti+1)

Alk(ti+1)






=







1 δi 0

0 1 δi

0 0 1













ξlk(ti)

ξ′lk(ti)

Alk(ti)






+







0 0

1 0

0 1







[

ωi,ξlk
ωi,Alk

]

(3.14)

where [ωi,ξlk , ωi,Alk
]T ∼ N2(0, Vi,lk), with Vi,lk = diag(σ2

ξlk
δi, σ

2
Alk
δi).

To address the issue related to the selection of the number of dictionary

elements, a shrinkage prior ΠΘ is proposed for Θ. In particular, as proposed

in Bhattacharya and Dunson (2011) we assume:

θjl|φjl, τl ∼ N(0, φ−1
jl τ

−1
l ), φjl ∼ Ga(3/2, 3/2),

ϑ1 ∼ Ga(a1, 1), ϑh ∼ Ga(a2, 1), h ≥ 2, τl =
l
∏

h=1

ϑh, (3.15)
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Note that if a2 > 1 the expected value for ϑh is greater than 1. As a

result, as l goes to infinity, τl tends towards infinity shrinking θjl towards

zero. This leads to a flexible prior for θjl with a local shrinkage parameter φjl

and a global column-wise shrinkage factor τl, which allows many elements of

Θ being close to zero as L increases.

Finally for the variances of the error terms in vector ǫi, we assume the

usual Inverse Gamma prior distribution. Specifically ΠΣ0
is defined through

σ−2
j ∼ Ga(aσ, bσ),

independently for each j = 1, ..., p. To conclude prior specification, if µ(t) is

unknown, a similar approach based on dictionary elements, can be considered

in the definition of the prior Πψ. In particular, recalling the previous results

of the prior for ξlk, we can represent the nGP for ψk with the following state

equation:






ψk(ti+1)

ψ′
k(ti+1)

Bk(ti+1)






=







1 δi 0

0 1 δi

0 0 1













ψk(ti)

ψ′
k(ti)

Bk(ti)






+







0 0

1 0

0 1







[

ωi,ψk

ωi,Bk

]

(3.16)

independently ∀k, with k = 1, ..., K. Where [ωi,ψk
, ωi,Bk

]T ∼ N2(0, Si,k), with

Si,k = diag(σ2
ψk
δi, σ

2
Bk
δi). Similarly to ξlk, the priors for the initial values are

assumed

(ψk(t1), D
1ψk(t1), ..., D

m−1ψk(t1)) ∼ Nm(0, σ
2
µk
Im),

(Bk(t1), D
1Bk(t1), ..., D

n−1Bk(t1)) ∼ Nn(0, σ
2
αk
In).

While those for the variances in the state equation follow

σ2
ψk

∼ invGa(aψ, bψ),

σ2
Bk

∼ invGa(aB, bB).

3.2.4 Hyperparameters interpretation

We now focus our attention on the hyperparameters of the priors for σ2
ξlk

,

σ2
Ak

, σ2
ψk

and σ2
Bk

. Several simulation studies have shown that the higher the

variances in the latent state equations, the better our formulation accom-

modates locally adaptive smoothing for sudden changes in covariances and

means. A theoretical support for this data-driven consideration can be iden-

tified in the connection between the nGP prior and nested smoothing splines.
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36 Locally Adaptive Bayesian Covariance Regression

It has been shown (Zhu and Dunson, 2012) that the posterior mean of U ,

under nGP prior can be related to the minimizer of the equation

1

T

T
∑

i=1

(yi − U(ti))
2 + λU

∫

T

(DmU(t)− C(t))2dt+ λC

∫

T

(DnC(t))2dt,

where λU ∈ R
+ and λC ∈ R

+ regulate the smoothness of unknown functions

U and A respectively, leading to less smoothed patterns when fixed at low

values. The resulting inverse relationship between these smoothing parame-

ters and the variances in the state equation, together with the results in the

simulation studies, suggest to fix the hyperparameters in the Inverse Gamma

priors for σ2
ξlk

, σ2
Alk

, σ2
ψk

and σ2
Bk

, so as to allow high variances in the case in

which the time series analyzed are expected to have strong changes in their

covariance (or mean) dynamic.

In practical applications, it may be useful to obtain a first estimate of the

covariance matrix Σ̃(t) and the mean vector µ̃(t), to set the hyperparameters

according to the results of the graphical analysis of the estimated values.

More specifically, µ̃j(ti) can be the output of a standard moving average on

each time series yj = [yj,1, ..., yj,T ], while Σ̃(ti) can be obtained by a simple

estimator, such as the EWMA procedure. With these choices, the recursive

equation

Σ̃(ti) = (1− λ){[yi−1 − µ̃(ti−1)][yi−1 − µ̃(ti−1)]
T}+ λΣ̃(ti−1),

become easy to implement.

3.3 Posterior Computation

Posterior computation can proceed via a straightforward modification of the

Gibbs sampling algorithm proposed by Fox and Dunson (2011). The algo-

rithm alternates between a simulation smoother step to update state space

formulation of the nGP, and standard Gibbs sampling steps for updating

the parametric component model from their conditional distributions. When

also the mean process needs to be estimated, an additional step with a block

sampling for {ψ(ti)}
T
i=1 and {νi}

T
i=1 is implemented.

3.3.1 Main Steps

We outline here the main features of the algorithm for posterior computation,

based on observations (yi, ti) for i = 1, ..., T .
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3.3.2 Detailed Algorithm 37

A. Given Θ and {ηi}
T
i=1, a multivariate version of the MCMC algorithm

proposed by Zhu and Dunson (2012) draws posterior samples from

each dictionary element’s function {ξlk(ti)}
T
i=1, its first order deriva-

tive {ξ′lk(ti)}
T
i=1, the corresponding instantaneous mean {Alk(ti)}

T
i=1,

the variances in the state equations σ2
ξlk

, σ2
Alk

and the variances of the

error terms in the observation equation σ2
j with j = 1, ..., p.

B. If the mean process needs not to be estimated, recalling the prior ηi ∼

NK∗(0, IK∗) and model (3.8), the standard conjugate posterior distri-

bution from which to sample the vector of latent factors for each i,

given Θ, {σ−2
j }pj=1, {yi}

T
i=1 and {ξ(ti)}

T
i=1 is Gaussian.

Otherwise, if we want to incorporate the mean regression, through

model (3.10), we implement a block sampling of {ψ(ti)}
T
i=1 and {νi}

T
i=1

following a similar approach used for the dictionary elements process,

based on the Durbin and Koopman (2002) simulation smoother and

the implementation by Zhu and Dunson (2012).

C. Finally, conditioned on {yi}
T
i=1, {ηi}

T
i=1, {σ−2

j }pj=1 and {ξ(ti)}
T
i=1, and

recalling the shrinkage prior for the elements of Θ in (3.15), we update

Θ, each local shrinkage hyperparameter φjl and the global shrinkage

hyperparameters τl, following the standard conjugate analysis as in

Fox and Dunson (2011).

3.3.2 Detailed Algorithm

For a fixed truncation level L∗ and a latent factor dimension K∗, the detailed

steps of the Gibbs sampler for posterior computations, without nonparamet-

ric mean regression are:

1. Define the vector of the latent state and the error terms in the state
space equation resulting from nGP prior for dictionary elements as

Ξi = [ξ11(ti), ξ21(ti), .., ξL∗K∗(ti), ξ
′
11(ti).., ξ

′
L∗K∗(ti), A11(ti), .., AL∗K∗(ti)]

T ,

Ωi,ξ = [ωi,ξ11 , ωi,ξ21 , .., ωi,ξL∗K∗
, ωi,A11

, ωi,A21
, .., ωi,AL∗K∗

]T ,

Given Θ, {ηi}
T
i=1, {yi}

T
i=1, Σ0 and the variances in latent state equations

{σ2
ξlk
}, {σ2

Alk
}, with l = 1, ..., L∗ and k = 1, ..., K∗; update {Ξi}

T
i=1 by

using the simulation smoother in the following state space model:

yi = [ηTi ⊗Θ, 0p×(2×K∗×L∗)]Ξi + ǫi, (3.17)

Ξi+1 = TiΞi +RiΩi,ξ, (3.18)
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38 Locally Adaptive Bayesian Covariance Regression

where the observation equation in (3.17) results by applying the vec

operator in the latent factor model yi = Θξ(ti)ηi+ ǫi. More specifically

recalling the property vec(ABC) = (CT ⊗ A)vec(B) we obtain

yi = vec(yi) = vec{Θξ(ti)ηi + ǫi}

= vec{Θξ(ti)ηi}+ vec(ǫi)

= (ηTi ⊗Θ)vec{ξ(ti)}+ ǫi.

The state equation in (3.18) is a joint representation of the equations

resulting from the nGP prior on each ξlk defined in (3.14). As a re-

sult, the (3 × L∗ × K∗) × (3 × L∗ × K∗) matrix Ti together with the

(3×L∗×K∗)×(2×L∗×K∗) matrix Ri reproduce, for each dictionary ele-

ment, the state equation in (3.14) by fixing to 0 the coefficients relating

latent states with different (l, k) (from the assumption of independence

between the dictionary elements). Finally, recalling the assumptions

on ωi,ξlk and ωi,Alk
, Ωi,ξ is normally distributed with E[Ωi,ξ] = 0 and

E[Ωi,ξΩ
T
i,ξ] = diag(σ2

ξ11
δi, σ

2
ξ21
δi, ..., σ

2
ξL∗K∗

δi, σ
2
A11
δi, σ

2
A21
δi, ..., σ

2
AL∗K∗

δi).

2. Given {Ξi}
T
i=1 sample each σ2

ξlk
and σ2

Alk
respectively from

σ2
ξlk

|{Ξi} ∼ invGa

(

aξ +
T

2
, bξ +

1

2

T−1
∑

i=1

(ξlk(ti+1)
′ − ξlk(ti)

′ −Alk(ti)δi)
2

δi

)

,

σ2
Alk

|{Ξi} ∼ invGa

(

aA +
T

2
, bA +

1

2

T−1
∑

i=1

(Alk(ti+1)−Alk(ti))
2

δi

)

.

3. Conditioned on Θ, {ηi}
T
i=1, {yi}

T
i=1, and {ξ(ti)}

T
i=1 (obtained from Ξi),

the standard conjugate posterior from which to update σ−2
j is

σ−2
j |Θ, {ηi}, {yi}, {ξ(ti)} ∼ Ga

(

aσ +
T

2
, bσ +

1

2

T
∑

i=1

(yji − θj·ξ(ti)ηi)
2

)

,

where θj· = [θj1, ..., θjL∗ ].

4. In the case nonparametric mean regression is not considered, given Θ,
Σ0, yi, and ξ(ti), the vector of latent factors at each time ti can sampled
from the Gaussian conditional distribution of ηi|Θ,Σ0, yi, ξ(ti):

NK∗

(

(I + ξ(ti)
TΘTΣ−1

0 Θξ(ti))
−1ξ(ti)

TΘTΣ−1

0 yi, (I + ξ(ti)
TΘTΣ−1

0 Θξ(ti))
−1
)

.
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3.3.2 Detailed Algorithm 39

5. Given {ηi}
T
i=1, {yi}

T
i=1, {ξ(ti)}

T
i=1 and the hyperparameters φ and τ , the

shrinkage prior on Θ combined with the likelihood for the latent factor

model lead to the Gaussian posterior

θj·|{ηi}, {yi}, {ξ(ti)}, φ, τ ∼ NL∗



Σ̃θη̃
Tσ−2

j





yj1
.
.
.
yjT



 , Σ̃θ



 ,

where η̃T = [ξ(t1)η1, ξ(t2)η2, ..., ξ(tT )ηT ] and

Σ̃−1
θ = σ−2

j η̃T η̃ + diag(φj1τ1, ..., φjL∗τL∗).

6. The Gamma prior on the local shrinkage hyperparameter φjl implies

the standard conjugate posterior given θjl and τl

φjl|θjl, τl ∼ Ga

(

2,
3 + τlθ

2
jl

2

)

.

7. Following Bhattacharya and Dunson (2011), conditioned on Θ and τ ,

sample the global shrinkage hyperparameters from

ϑ1|Θ, τ
(−1) ∼ Ga

(

a1 +
pL∗

2
, 1 +

1

2

L∗

∑

l=1

τ
(−1)
l

p
∑

j=1

φjlθ
2
jl

)

,

ϑh|Θ, τ
(−h) ∼ Ga

(

a2 +
p(L∗ − h+ 1)

2
, 1 +

1

2

L∗

∑

l=1

τ
(−h)
l

p
∑

j=1

φjlθ
2
jl

)

,

where τ
(−h)
l =

∏l
t=1,t 6=h ϑt for h = 1, ..., p.

If one wishes to consider also the problem of mean regression as in (3.10),

the Gibbs sampler mimics the previous algorithm except for the step 4 which

is replaced by a block sampling of {ψ(ti)}
T
i=1 and {νi}

T
i=1. In particular

4.1. Similarly to Ξi and Ωi,ξ let

Ψi = [ψ1(ti), ψ2(ti), ..., ψK∗(ti), ψ
′
1(ti), ..., ψ

′
K∗(ti), B1(ti), ..., BK∗(ti)]

T ,

Ωi,ψ = [ωi,ψ1
, ωi,ψ2

, ..., ωi,ψK∗
, ωi,B1

, ωi,B2
, ..., ωi,BK∗

]T ,

be the vectors of the latent state and error terms in the state space

equation resulting from nGP prior for ψ.
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40 Locally Adaptive Bayesian Covariance Regression

Conditioned to Θ, {ξ(ti)}
T
i=1, {yi}

T
i=1, Σ0, and the variances in latent

state equations {σ2
ψk
}, {σ2

Bk
}, with k = 1, ..., K∗; sample {Ψi}

T
i=1 from

the simulation smoother in the following state space model:

yi = [Θξ(ti), 0p×(2×K∗)]Ψi +̟i, (3.19)

Ψi+1 = GiΨi + FiΩi,ψ, (3.20)

with ̟i ∼ Np(0,Θξ(ti)ξ(ti)
TΘT + Σ0). The observation equation in

(3.19) results by marginalizing out νi in the latent factor model with

nonparametric mean regression yi = Θξ(ti)ψ(ti) + Θξ(ti)νi + ǫi. Anal-

ogously to Ξi, the state equation in (3.20) is a joint representation

of the state equation induced by the nGP prior on each ψk defined

in (3.16); where the (3 × K∗) × (3 × K∗) matrix Gi and the (3 ×

K∗) × (2 × K∗) matrix Fi are constructed with the same goal of the

matrices Ti and Ri in the state space model for Ξi. Finally, Ωi,ψ ∼

N2×K∗(0, diag(σ2
ψ1
δi, σ

2
ψ2
δi, ..., σ

2
ψK∗

δi, σ
2
B1
δi, σ

2
B2
δi, ..., σ

2
BK∗

δi)).

4.2. Given {Ψi}
T
i=1 update each σ2

ψk
and σ2

Bk
respectively from

σ2
ψk

|{Ψi} ∼ invGa

(

aψ +
T

2
, bψ +

1

2

T−1
∑

i=1

(ψk(ti+1)
′ − ψk(ti)

′ −Bk(ti)δi)
2

δi

)

,

σ2
Bk

|{Ψi} ∼ invGa

(

aB +
T

2
, bB +

1

2

T−1
∑

i=1

(Bk(ti+1)−Bk(ti))
2

δi

)

.

4.3. Conditioned on Θ, Σ0, yi, ξ(ti) and ψ(ti), and recalling νi ∼ NK∗(0, IK∗);
the standard conjugate posterior distribution νi|Θ,Σ0, ỹi, ξ(ti), ψ(ti) is

NK∗

(

(I + ξ(ti)
TΘTΣ−1

0 Θξ(ti))
−1ξ(ti)

TΘTΣ−1

0 ỹi, (I + ξ(ti)
TΘTΣ−1

0 Θξ(ti))
−1
)

,

with ỹi = yi −Θξ(ti)ψ(ti) = Θξ(ti)νi + ǫi.

3.4 Online Updating

The problem of online updating represents a key point in multivariate time

series with high frequency data. Referring to our formulation, we are inter-

ested in finding an update approximated posterior distribution for Σ(tT+h)

and µ(tT+h) with h = 1, ..., H, once a new vector of observation {yi}
T+H
i=T+1

is available, instead of rerunning posterior computation for the whole time

series.
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3.4.1 Online Updating Algorithm 41

Conditionally to the posterior estimates of the Gibbs sampler based on

observations available up to time T , {yi}
T
i=1, it is easy to implement a highly

computationally tractable online updating algorithm which alternates be-

tween steps 1 and 4 outlined in Section 3.3.2 for the new set of observations,

and that can be initialized at T + 1 using the one step ahead predictive

distribution for the latent state vector in the state space formulation.

3.4.1 Online Updating Algorithm

Consider Θ, Σ0, {σ
2
ξlk
}, {σ2

Alk
}, {σ2

ψk
} and {σ2

Bk
} fixed at their posterior mean

Θ̂, Σ̂0, {σ̂
2
ξlk
}, {σ̂2

Alk
}, {σ̂2

ψk
}, {σ̂2

Bk
} respectively, and let Ξ̂T , Σ̂ΞT

and Ψ̂T ,

Σ̂ΨT
be the sample mean and covariance matrix of the posterior distribution

respectively for ΞT and ΨT , obtained from the posterior estimates of the

Gibbs sampler conditioned on {yi}
T
i=1.

1. Given Θ̂, Σ̂0, {σ̂
2
ξlk
}, {σ̂2

Alk
}, {ηi}

T+H
i=T+1 and {yi}

T+H
i=T+1, update {Ξi}

T+H
i=T+1

by using the simulation smoother in the following state space model

yi = [ηTi ⊗ Θ̂, 0p×(2×K∗×L∗)]Ξi + ǫi,

Ξi+1 = TiΞi +RiΩi,ξ,

where ΞT+1 can be initialized from the standard one step ahead pre-

dictive distribution

ΞT+1 ∼ N(TT Ξ̂T , TT Σ̂ΞT
T TT +RTE[ΩT,ξΩ

T
T,ξ]R

T
T ).

2. Conditioned on Θ̂, Σ̂0, {σ̂
2
ψk
}, {σ̂2

Bk
}, {ξ(ti)}

T+H
i=T+1 and {yi}

T+H
i=T+1, sample

{Ψi}
T+H
i=T+1 through the simulation smoother in the state space model

yi = [Θ̂ξ(ti), 0p×(2×K∗)]Ψi +̟i,

Ψi+1 = GiΨi + FiΩi,ψ,

similarly to ΞT+1, ΨT+1 ∼ N(GT Ψ̂T , GT Σ̂ΨT
GT
T + FTE[ΩT,ψΩ

T
T,ψ]F

T
T ).

3. Given Θ̂, Σ̂0, {yi}, ξ(ti) and ψ(ti), for i = T+1, ...T+H, sample νi from
the standard conjugate posterior distribution for νi|Θ,Σ0, ỹi, ξ(ti), ψ(ti):

NK∗

(

(I + ξ(ti)
TΘTΣ−1

0 Θξ(ti))
−1ξ(ti)

TΘTΣ−1

0 ỹi, (I + ξ(ti)
TΘTΣ−1

0 Θξ(ti))
−1
)

,

with ỹi = yi −Θξ(ti)ψ(ti) = Θξ(ti)νi + ǫi.
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42 Locally Adaptive Bayesian Covariance Regression

4. Compute the updated covariance {Σ(ti)}
T+H
i=T+1 and mean {µ(ti)}

T+H
i=T+1

from the usual equations

Σ(ti) = Θ̂ξ(ti)ξ(ti)
T Θ̂T + Σ̂0,

µ(ti) = Θ̂ξ(ti)ψ(ti).

Note that the initialization procedure for latent state vectors in the al-

gorithm depends on the sample moments of posterior distribution for the

latent states at T . As it is known for Kalman smoother(see, e.g., Durbin and

Koopman, 2001), this could lead to computational problems in the online up-

dating, due to the larger conditional variances of the latent states at the end

of the sample (i.e., at T ). To overcome this problem, we replace the previous

assumptions for the initial values with a data-driven initialization scheme.

In particular, instead of using only the new observations for the online up-

dating, we run the algorithm starting from {yi}
T+H
i=T−k, with k small enough,

and choosing diffuse but proper priors for the initial states at T − k. As a

result the distribution of the smoothed states at T is not anymore affected by

the problem of large conditional variances, leading to better online updating

performance.
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Chapter 4

Simulation Studies

The aim of the following simulation studies is to assess whether and to what

extent the assumption of nGP prior for the dictionary elements can accom-

modate, in practice, even dramatic changes in the time-varying covariances,

and to compare the performance of our proposal with respect to BNCR pro-

posed by Fox and Dunson (2011) with GP in the dictionary elements, which

represents the main competing alternative. In the last subsection we also an-

alyze the performance of the online updating algorithm proposed.

4.1 Estimation Performance

We generate a set of 5-dimensional observations yi for each ti in the dis-

crete set To = {1, 2, ..., 100}, from the latent factor model in (3.8) with

Λ(ti) = Θξ(ti) and ηi defined as in (3.10). To allow dramatic changes of the

covariances in the generating mechanism, we consider a 2×2 (i.e. L = K = 2)

matrix {ξ(ti)}
100
i=1 from the time-varying functions adapted from Donoho

and Johnstone (1994), with locally-varying smoothness (more specifically we

choose functions bumps). The latent mean dictionary elements {ψ(ti)}
100
i=1 are

simulated from a Gaussian processes GP(0, c) with c(t, t′) = exp(−κ||t−t′||22)

and length scale κ = 10, while the elements in matrix Θ can be obtained from

the shrinkage prior in (3.15) with a1 = a2 = 10. Finally the elements of the

diagonal matrix Σ−1
0 are sampled independently from a Ga(1, 0.1).

Posterior computation for our proposed approach is performed by using

truncation levels K∗ = L∗ = 2; placing a Ga(1, 0.1) prior on the precision

parameters σ−2
j , and choosing a1 = a2 = 2. As regards the nGP prior for
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44 Simulation Studies

each dictionary element ξlk with l = 1, ..., L∗ and k = 1, ..., K∗, we choose

diffuse but proper priors for the initial values by setting σ2
µlk

= σ2
αlk

= 100

and place an invGa(2, 5× 108) prior on each σ2
ξlk

and σ2
Alk

in order to allow

less smoothed behavior according to a previous graphical analysis of Σ̃(ti)

estimated via EWMA. Similarly we set σ2
µk

= σ2
αk

= 100 in the prior for the

initial values of the latent state equations resulting from the nGP prior for

ψk, and consider aψ = aB = bψ = bB = 0.005 to balance the rough behavior

induced on the nonparametric mean functions by the settings of the nGP

prior on ξlk, as suggested from previous graphical analysis. Note also that for

posterior computation, we first scale the predictor space to (0, 1], leading to

δi = 1/100, ∀i = 1, ..., 100.

For inference in BNCR we consider the same previous hyperparameters

setting for Θ and Σ0 priors as well as the same truncation levels K∗ and L∗,

while the length scale κ in GP prior for ξlk and ψk has been set to 10 using

the data-driven heuristic outlined by Fox and Dunson (2011). In both cases

we run 50,000 Gibbs iterations discarding the first 20,000 as burn-in, and

tinning the chain every 5 samples.

For monitoring convergence we analyzed several trace plot together with

the Gelman-Rubin (see e.g. Gelman and Rubin, 1992) diagnostic which is

based on the comparison of within-chain and between-chain variances (similar

to a classical analysis of variance) in parallel chains after burn-in. Values of

the potential scale reduction factor R̂ near 1 suggest converge. Having a single

chain, we compared the within and between variances from samples obtained

by splitting the chains in 6 pieces of same length. We consider this approach

because of the substantial independence between samples after tinning the

chain. Examination of trace plots for the elements of {Σ(ti)}
100
i=1 and {µ(ti)}

100
i=1

in Figure 4.1 shows no evidence against convergence. Similar conclusions

derive form the analysis of Gelman-Rubin’s R̂. In LABNCR the 95% of the

chains have a potential reduction factor lower than 1.35, with a median equal

to 1.11 and a maximum of 1.50. BNCR shows more problematic mixing, but

not enough to reject the convergence, with an R̂ < 1.44 in the 95% of the

chains and a median and a maximum of 1.18 and 1.67, respectively.

Figure 4.2 compares true mean and covariance functions to posterior mean

respectively of our proposed approach and BNCR. A more detailed compar-

ison between the true and posterior mean (for both approaches), for selected

components of Σ(t) and µ(t) over the predictor space To together with the

point-wise 95% high posterior density intervals is shown in Figure 4.3.
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Figure 4.1: Some trace plot for posterior computation in LABNCR model after discarding the first 20,000 iterations as burn-in. Variances

(Top), Covariances (Middle), Means (Bottom).
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Figure 4.2: Left column: comparison between true covariance matrix functions Σ(t) over

the predictor space To and the posterior mean respectively of LABNCR and BNCR. Right

column: Similar comparison conducted on each component mean function

From these plots we can clearly note that our approach is able to capture

conditional heteroscedasticity as well as mean patterns, also in correspon-

dence of dramatic changes in the time-varying true functions. The major

differences compared to the true values can be found at the beginning and

at the end of the series and are likely to be related to the structure of the

simulation smoother which also causes a widening of the credibility bands

at the very end of the series. For references regarding this issue see Durbin

and Koopman (2001). However, even in the most problematic cases, the true

values are within the bands of the 95% high posterior density intervals. Much

more problematic is the behavior of the posterior distributions for the com-
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Figure 4.3: Plots of truth (black) and posterior mean respectively of LABNCR (solid

red line) and BNCR (solid green line) for selected components of the covariance (top),

variance (middle), mean (bottom). For both the approach the dotted lines represent the

95% high posterior density intervals.

peting alternative which badly over-smooth both covariance and mean func-

tions leading also to many 95% high posterior density intervals not containing

the true values. The comparison of the summaries of the squared errors be-

tween true values {µ(ti)}
100
i=1 and {Σ(ti)}

100
i=1 and posterior mean {Σ̂(ti)}

100
i=1

and {µ̂(ti)}
100
i=1 respectively for BNCR and LABNCR in Table 4.1, once again

confirms the overall better performance of our approach.

To better understand the improvement of our approach in allowing locally

varying smoothness and to evaluate the consequences of the over-smoothing

induced by BNCR on the distribution of yi with i = 1, ..., 100, consider

Figure 4.4 which shows, for some selected series {yji}
100
i=1, the time varying
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Mean {µ(ti)} Covariance {Σ(ti)}

BNCR LABNCR BNCR LABNCR

Mean 2.24 1.64 1351.09 667.27

90th Quantile 4.86 3.22 1608.45 1556.38

95th Quantile 9.39 4.98 5140.102 3460.47

Max 74.57 67.87 96092.35 22373.37

Table 4.1: Summaries of the squared errors between true values {µ(ti)}
100
i=1 and {Σ(ti)}

100
i=1

and posterior mean {Σ̂(ti)}
100
i=1 and {µ̂(ti)}

100
i=1 obtained respectively with BNCR and our

LABNCR.

mean together with the point-wise 2.5% and 97.5% quantiles of the marginal

distribution of yji induced respectively by the true mean and true variance,

the posterior mean of µj(ti) and Σjj(ti) from our proposed approach, and

the posterior mean of the same quantities from the competing alternative.

We can clearly see that the marginal distribution of yji induced by BNCR is

over-concentrated along the mean leading to incorrect inferences on the series

analyzed. Note that our proposal is also able to accommodate for heavy tails,

typical characteristic in financial series.

4.2 Online Updating Performance

To analyze the performance of the online updating algorithm proposed, we

simulate 50 new observations {yi}
150
i=101 with ti ∈ T ∗

o = {101, ..., 150}, consid-

ering the same Θ and Σ0 used in the generating mechanism for the previous

simulated data and taking the 50 subsequent observations from the bumps

functions for the dictionary elements {ξ(ti)}
150
i=101; finally the additional latent

mean dictionary elements {ψ(ti)}
150
i=101 are simulated as before, maintaining

the continuity with the previously simulated functions {ψ(ti)}
100
i=1.

According to the algorithm described in section 3.4, we fix Θ, Σ0, {σ
2
ξlk
},

{σ2
Alk

}, {σ2
ψk
} and {σ2

Bk
} at their posterior mean from the previous Gibbs

sampler, and consider the last three observations y98, y99 and y100 (i.e. k = 3)

to initialize the simulation smoother in i = 101 through a data-driven ap-

proach. Posterior computation shows a good performance in terms of mixing,

and convergence was assessed after 5,000 Gibbs iterations with a small burn-

in of 500.
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Figure 4.4: Plot for 4 selected simulated series of the time-varying mean µj(ti) and the

time-varying 2.5th and 97.5th quantiles of the marginal distribution of yji with true mean

and variance (black), mean and variance from posterior mean of LABNCR (red), mean

and variance form posterior mean BNCR (green). Black points represent the simulated

data.

Figure 4.5 compares true mean and covariance to posterior mean of a

selected set of components of {µ(ti)}
150
i=101 and {Σ(ti)}

150
i=101, including also the

95% high posterior density intervals. The results clearly show that the online

updating is characterized by a good performance, which allows to capture

the behavior of new observations conditioning on the previous estimates.

Note that the posterior distribution of the approximated mean and covari-

ance functions tends to slightly over-estimate the patterns of the functions at

dramatic changes, however also in these cases the true values are within the

bands of the credibility intervals. Finally, note that the data-driven initializa-

tion ensures a good behavior at the beginning of the series, while the results
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Figure 4.5: Plots of truth (black) and posterior mean of the online updating procedure

(solid red line) for selected components of the covariance (top), variance (middle), mean

(bottom). The dotted lines represent the 95% high posterior density intervals.

at the very end continue to remain troublesome because of the initialization

scheme of the backward smoother at the end of the series.
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Chapter 5

Application to National Stock

Market Indices

In this application we focus our attention on the multivariate weekly time

series of the main 33 (i.e. p = 33) National Stock Market Indices from

12/07/2004 to 25/06/2012 (T = 416 weeks). The dataset has been down-

loaded from Yahoo! Finance, which represents the top financial news and re-

search website in the U.S. since January 2008, providing stock quotes, stock

exchange rate and report from the main financial markets worldwide. For

the analysis we choose the adjusted closing quotations, which account for all

corporate actions such as stock splits and dividend distribution, allowing for

a more accurate representation of the firm’s equity value beyond the simple

market price.

Figure 5.1 shows the main features in terms of stationarity (top), mean

patterns (middle) and volatility (bottom) of two selected market stock indices

(USA NASDAQ and ITALY FTSE MIB, respectively). The non-stationary

behavior motivate the analysis of the p-dimensional vector of logarithmic

returns yi with i = 1, ..., 415, defined in (2.1). Beside this, the marginal

distribution of log returns shows heavy tails and irregular cyclical trends in

the nonparametric estimation of the mean, while EWMA estimates, highlight

rapid changes of volatility during the financial crisis that occurred in the

recent years. All these results, together with large datasets and high frequency

data, typical in financial fields, motivate the use of our approach to obtain

a better characterization of the time-varying dependence structure among

financial markets.
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Figure 5.1: Plots of the main features of USA NASDAQ (left) and ITALY FTSE MIB

(right). Specifically: observed time series (top), log-returns series (black) with nonparamet-

ric mean estimation via 12 week Equally Weigthed Moving Average (red) in the middle,

EWMA volatility estimates (bottom).

5.1 Heteroscedastic Modeling of National Stock

Market Indices

We consider the heteroscedastic model yi ∼ N33(µ(ti),Σ(ti)), for i = 1, ..., 415,

and ti in the discrete set To = {1, 2, ..., 415}, where mean µ(ti) and covariance

matrix Σ(ti) of the stock market indices at time t = ti are given in (3.11)

and (3.9), respectively.

Posterior computation is performed by first rescaling the predictor space

To to (0, 1] and using the same setting of the simulation study, with the

exception of the truncation levels fixed at K∗ = 4 and L∗ = 5, and the
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hyperparameters of the nGP prior for each ξlk and ψk with l = 1, ..., L∗ and

k = 1, ..., K∗, set to aξ = aA = aψ = aB = 2 and bξ = bA = bψ = bB = 5×107

to capture also rapid changes in the mean functions according to Figure 5.1.

Recalling a key advantage of Fox and Dunson (2011) formulation, the few

number of missing values in our dataset does not represent a limitation, since

we can update our posterior considering solely the observed data, without

introducing approximations. We run 10,000 Gibbs iterations with a burn-in

of 2, 500.

Similarly to simulation studies, we monitor convergence by combining

trace plots examination with the analysis of Gelman-Rubin diagnostic. In

this case we consider also Geweke test (Geweke, 1992), which assesses the

equality of means of the first and last parts of the Markov chain for each

variable, by implementing an equivalent of t-test. If the samples are drawn

from the stationary distribution of the chain, the two means are equal and

Geweke’s statistic has an asymptotically standard normal distribution (i.e. is

a standard Z-score). With a significance level α = 0.05 the 94.3% of the Z-

scores (one for each chain) fall within the interval [−2, 2], showing no evidence

against convergence. Similar conclusions are suggested by the examination

of the trace plots for {Σ(ti)}
415
i=1 and {µ(ti)}

415
t=1 in Figure 5.2, and from the

results of the Gelman-Rubin’s diagnostic which shows a potential reduction

factor lower than 1.2 in the 95% of the chains, with a median equal to 1.03.

5.2 Posterior results and economic facts

Results from posterior computation provide relevant informations regarding

the volatility and co-volatility processes with reference to theory and eco-

nomic facts.

Posterior distributions for the variances in Figure 5.3 show that we are

clearly able to capture the rapid changes in the dynamics of volatility that

occur during the world financial crisis of 2008, in early 2010 with the Greek

debt crisis and in the summer of 2011 with the financial speculation in gov-

ernment bonds of European countries, together with the rejection of the U.S.

budget and the downgrading of the United States rating. Moreover, the re-

sulting marginal distribution of the log returns induced by the posterior mean

of µj(t) and Σjj(t), shows that we are also able to accommodate heavy tails

as well as cyclical trends for the means.
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Figure 5.2: Some trace plot for posterior computation in LABNCR model after discarding the first 2,500 iterations as burn-in. Variances

(Top), Covariances (Middle), Means (Bottom).
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Figure 5.3: Top: Plot for 2 stock market indices, respectively USA NASDAQ (left) and

ITALY FTSE MIB (right), of the log returns (black) and the time-varying estimated mean

{µ̂j(ti)}
415
i=1 together with the time-varying 2.5% and 97.5% quantiles (red) of the marginal

distribution for yji with mean and variance from posterior mean of LABNCR. Bottom:

posterior mean (black) and 95% hpd intervals (dotted red) for the volatilities process of

the two selected indices.

Important informations about the ability of our model to capture the

evolution of world geo-economic structure during different finance scenar-

ios are provided in Figures 5.4, 5.5 and 5.6. From the correlations between

NASDAQ and the other stock market indices (based on the posterior mean

{Σ̂(ti)}
415
i=1 of the covariances function) in Figure 5.4, we can immediately no-

tice the presence of a clear geo-economic structure in world markets, where

the dependence between the U.S. and European countries is systematically

higher than that of South East Asian Nations (Economic Tigers), showing

also different reactions to crises.

Figure 5.5 confirms the above considerations showing how Western coun-

tries shows more connection with countries closer in terms of geographical,

political and economic structure; the same holds for Eastern countries where

we observe a reversal of the colored curves. As expected, Russia is placed

in a middle path between the two blocks. A further element that our model

captures about the structure of the markets is shown in Figure 5.6. The

time-varying regression coefficients obtained from the standard formulas of
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Figure 5.4: Black line: For USA NASDAQ median of correlations with the other 32

world stock indices based on posterior mean of {Σ(ti)}
415
i=1. Red lines: 25th, 75th (dotted

lines) and 50th (solid line) quantiles of correlations between USA NASDAQ and European

countries (without considering Greece and Russia which present a specific pattern). Green

lines: 25th, 75th (dotted lines) and 50th (solid line) quantiles of correlations between USA

NASDAQ and the countries of Southeast Asia (Asian Tigers and India). The timeline is

divided in windows that relate to the main financial events of the recent years. Specifically:

event A corresponds to the burst of U.S. housing bubble, event B to the concrete risk of

failure of the first U.S. credit agencies (Bear Stearns, Fannie Mae and Freddie Mac), event

C to the world financial crisis after the Lehman Brothers’ bankruptcy, event D to the Greek

debt crisis, event E to financial reform launched by Barack Obama and EU efforts to save

Greece (the two peaks represent Irish debt crisis and Portugal debt crisis, respectively),

event F to the worsening of European sovereign-debt crisis and the rejection of the U.S.

budget, finally G to the crisis of credit institutions in Spain and the growing financial

instability Eurozone.

the conditional normal distribution based on the posterior mean of {µ(ti)}
415
i=1

and {Σ(ti)}
415
i=1, highlight clearly the increasing dependence between Euro-

pean countries with higher crisis in sovereign debt and Germany, which plays

a central role in Euro zone as expected.

The flexibility of the proposed approach and the possibility of accommo-

dating varying smoothness in the trajectories over time, allows to obtain a

good characterization of the dynamic dependence structure according with

the major theories on financial crisis. Figure 5.4 shows that the change of

regime in correlations occurs exactly in correspondence of burst of U.S. hous-

ing bubble (A), in the first half of 2006. Moreover we can immediately notice

that the correlations among financial markets increase significantly during
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Figure 5.5: For 3 selected Stock Market Indices, respectively GERMANY DAX30 (top),

CHINA SSE Composite (middle) and RUSSIA RTSI Index (bottom), plot of the median

of the correlations based on posterior mean of {Σ(ti)}
415
i=1 with the other 32 world stock

indices (black), the European countries without considering Greece and Russia (red) and

the Asian Tigers including India (green).

the crisis, showing a clear international financial contagion effect in agree-

ment with other theories on financial crisis (see, e.g., Baig and Goldfajn,

1999 and Stjin and Forbes, 2009). As expected the persistence of high levels

of correlation is evident during the global financial crisis between late-2008

and end-2009 (C), at the beginning of which, our approach also capture a

dramatic change in the correlations between the U.S. and Economic Tigers,

which interestingly lead to levels close to those of Europe. Further rapid

changes are identified in correspondence of Greek crisis (D), the worsening

of European sovereign-debt crisis and the rejection of the U.S. budget (F),

and the recent crisis of credit institutions in Spain, together with the growing
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Figure 5.6: For 3 of the European countries more subject to sovereign debt crisis, respec-

tively ITALY (left), SPAIN (middle) and GREECE (right), plot of 25th, 50th and 75th

quantiles of the time-varying regression parameters based on posterior mean {Σ̂(ti)}
415
i=1

with the other countries (black) and Germany (red).

financial instability in Eurozone (G). Finally, even in the period of U.S. fi-

nancial reform launched by Barack Obama and EU policy responses through

rescue packages to ensure financial stability in Europe (E), we can notice two

peaks representing Irish debt crisis and Portugal debt crisis, respectively.

5.3 Updating and Predicting

The possibility to quickly update the estimates and the predictions as soon as

new data arrive, represents a crucial aspect to obtain quantitative informa-

tions about the future scenarios of the crisis in financial markets. To answer

this goal, we apply the online updating algorithm presented in Section 3.4, to

the new set of weekly observations {yi}
422
i=416 from 02/07/2012 to 13/08/2012,

conditioning on posterior estimates from the Gibbs sampler based on ob-

servations {yi}
415
i=1 available up to 25/06/2012. We initialized the simulation

smoother algorithm with the last 8 observations of the previous sample.

Figure 5.7 shows, for 3 selected Stock Market Indices, the new observed

log returns {yji}
422
i=416 (black) together with the mean and the 2.5th and 97.5th

quantiles of the marginal distribution (red) and conditional distribution of

yji|y
−j
i with y−ji = {yqi, q 6= j}, from the standard formulas of the multivari-

ate normal distribution (green), based on the posterior mean of the updated

{Σ(ti)}
422
i=416 and {µ(ti)}

422
i=416 after 5,000 Gibbs iterations with a burn-in of

500. Examination of the trace plots for the time-varying means and covari-

ance matrices showed no evidence against convergence. From these results,
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Figure 5.7: For 3 selected Stock Market Indices: USA NASDAQ (left), INDIA BSE30

(middle) and FRANCE CAC40 (right), plot of the observed log returns (black) together

with the mean and the 2.5th and 97.5th quantiles of the marginal distribution (red) and

conditional distribution given the other 32 world stock indices (green) based on the pos-

terior mean of {Σ(ti)}
422
i=416 and {µ(ti)}

422
i=416, from the online updating procedure for the

new observation from 02/07/2012 to 13/08/2012.

we can clearly notice the good performance of our proposed online updating

algorithm in obtaining a good characterization for the distribution of new

observations. Also note that the multivariate approach, together with flexi-

ble model for the mean and covariance, allows for significant improvements

when the conditional distribution of an Index given the others are analyzed.

To obtain further informations about the predictive performance of our

LABNCR, we can easily use our online updating algorithm to obtain h step-

ahead predictions for Σ(tT+h|T ) and µ(tT+h|T ) with h = 1, ..., H. In particu-

lar, referring to Durbin and Koopman (2001), we can generate the forecasts

Σ̂(tT+h|T ) and µ̂(tT+h|T ) for h = 1, ..., H merely by treating {yi}
T+H
i=T+1 as miss-

ing values in the proposed online updating algorithm. Here, we consider the

one step ahead prediction (i.e. H = 1) problem for the new observations.

More specifically, for each i from 415 to 421, we update the mean and co-

variance functions conditioning on informations up to ti through the online

algorithm, and then obtain the predicted posterior distribution for Σ(ti+1|i)

and µ(ti+1|i) by adding to the sample considered for the online updating a

last column yi+1 of missing values.

Figure 5.8, shows the boxplots of the one step ahead prediction errors for

the 33 National Stock Market indices obtained as the difference between

the predicted values ỹj,i+1|i and, once available, the observed log returns

yj,i+1 with i + 1 = 416, ..., 422 corresponding to weeks from 02/07/2012 to

13/08/2012. In (a) we forecast the future log returns with the unconditional

59



60 Application to National Stock Market Indices

(a)

-0
.0
8

-0
.0
6

-0
.0
4

-0
.0
2

0
.0
0

0
.0
2

0
.0
4

0
.0
6

2012-07-02 2012-07-16 2012-07-30 2012-08-13

(b)

-0
.0
8

-0
.0
6

-0
.0
4

-0
.0
2

0
.0
0

0
.0
2

0
.0
4

0
.0
6

2012-07-02 2012-07-16 2012-07-30 2012-08-13

(c)

-0
.0
8

-0
.0
6

-0
.0
4

-0
.0
2

0
.0
0

0
.0
2

0
.0
4

0
.0
6

2012-07-02 2012-07-16 2012-07-30 2012-08-13

Figure 5.8: Boxplot of the one step ahead prediction errors for the 33 National

Stock Market Index, where the predicted values are respectively: (a) unconditional mean

{ỹi+1}
421
i=415 = 0, (b) marginal mean of the one step ahead predictive distribution using the

online updating procedure for {ỹi+1|i}
421
i=415, (c) conditional mean given the log returns of

the other 32 Stock Market Indices at i + 1 of the one step ahead predictive distribution

using the online updating procedure for {ỹi+1|i}
421
i=415. Predictions for (b) and (c) are base

on the posterior mean of {Σ(ti+1)}
421
i=415 and {µ(ti+1)}

421
i=415 of our LABNCR.

mean {ỹi+1}
421
i=415 = 0, which is what is often done in practice under the

general assumption of zero mean, stationary log returns. In (b) we consider

ỹi+1|i = µ̂(ti+1|i), the posterior mean of the one step ahead predicted non-

parametric mean, obtained from the previous proposed approach after 5,000

Gibbs iteration with a burn-in of 500. Finally in (c) we suppose that the

log returns of all Stock Market Indices except that of country j (i.e., yj,i+1)

become available at ti+1 and, considering yi+1 ∼ Np(µ̂(ti+1|i), Σ̂(ti+1|i)), with

µ̂(ti+1|i) and Σ̂(ti+1|i) posterior mean of the one step ahead predictive dis-

tribution for µ(ti+1|i) and Σ(ti+1|i) respectively, we forecast ỹj,i+1 with the

conditional mean of yj,i+1 given the other log returns at time ti+1.

Comparing boxplot in (a) with those in (b) we can see that our model

allows to obtain improvements also in terms of prediction. Furthermore, by

analyzing the boxplot in (c) we can notice how our ability to obtain a good

characterization of the time-varying covariance structure, can play a crucial

role also in improving forecasting, since it enters into the standard formula

for calculating the conditional mean in the normal distribution.
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Discussion

In this work, we have presented a generalization of Bayesian Nonparametric

Covariance Regression in order to obtain a better characterization for mean

and covariance temporal dynamics. The founding element of our approach

is the assumption of nGP prior for the random functions for the dictionary

elements ξlk and for the function controlling the mean structure ψk, in order

to allow locally adaptive smoothing both for the time-varying covariance and

mean functions.

Maintaining simple conjugate posterior updates and tractable computa-

tions in large-p settings from Fox and Dunson (2011) latent factor model

formulation for yi, our model increases significantly the flexibility of previous

approaches as it allows to capture even dramatic changes both in mean and

covariance dynamics, improving predictive performance, and leading to con-

ditional distribution able to accommodate even heavy tails. Beside these key

advantages, the state space formulation for nGP prior enables us to develop a

fast online updating algorithm particularly worthy in application with high

frequency data, that can be easily used also to make inference on h steps

ahead predictive distributions for yi.

We compared our approach with the main competing alternative, through

a simulation study, showing the better performance of LABNCR, which also

highlights good results in the online updating. The application to the problem

of capturing temporal and geo-economic structure between the main financial

markets, demonstrates the utility of our approach and the improvements

that can be obtained in the analysis of multivariate financial time series with

reference to (i) heavy tails, (ii) cyclical trends in the mean structure, (iii)

dramatic changes in mean and covariance functions, (iii) high dimensional

dataset, (iv) online updating with high frequency data and (v) predictions.

Although we focused our attention on multivariate financial time series,

the proposed approach can be easily considered in other fields of research. In
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medical applications, for example, the evaluation of patients condition over

time often leads to the availability of large quantities of online time-varying

indicators, whose joint analysis can provide important information regard-

ing the progress of a disease. Other important examples of high dimensional

multivariate time series, in which the dynamic analysis of the dependence

structure plays a crucial role, can be found in computer science, meteorol-

ogy as well as bioinformatics. In all cases mentioned, our model could be

particularly worthy in obtaining a flexible characterization of the dynamic

evolution of the structure of dependence among the time-varying variables

analyzed. Moreover the proposed approach can be considered also when t

is an arbitrary predictor value. From this point of view, a direct extension

of LABNCR relates to the generalization of the model to accommodate a

multivariate predictor space.
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