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ABSTRACT

In this work I will present a model relating the flux emitted by a gamma-ray burst and the angle
between the line of sight and the jet orientation, considering at first a homogeneous jet, then a
more realistic structured jet with power law distribution of velocity and density. The model is
based on the geometry of the phenomenon and not strictly dependent on the emission nature.
Under the assumption of isotropic specific intensity, it is considered the emission by a sphere
expanding at relativistic speed, then the region of interest is reduced to that of the cone defined
by the jet aperture.
Inserting the parameters of the first peak of GRB170817A obtained by other works in the ge-
ometrical model resulted a not accurate fit of the light curve, but considering an angle of view
of 0.35 the on axis equivalent luminosity obtained is ∼ 1051 erg s−1, in agreement with the one
derived in other works and also with the canonical luminosity of short gamma ray bursts.



1. INTRODUCTION

Gamma ray bursts (GRBs) are among the most energetic phenomena of the universe. These
prompt emission of γ-rays are related to supernovae, black holes accretion and neutron stars
merging, situated at cosmological distances and with a luminosity around 1051 erg s−1, making
them the most luminous objects in the sky.
The electromagnetic emission is produced by the interaction between the electrons of the mate-
rial expelled at highly relativistic speed (Γ∼ 50−100), usually in two opposite collimated jets,
and the extremely intense and turbulent magnetic field produced by the event. There are two
possible scenarios that can explain the high energy gained by the electrons: internal and exter-
nal shocks. For internal shock is intended the collision between two shells of ejected material:
the outer and slower one is reached by a faster one creating a shock-wave that gives part of the
energy to the electrons, accelerating them, and increases the density of the shocked material.
In the external shock the collision is between the ejected material and the interstellar medium
(ISM); then there is a lower density, because the ejecta are usually much denser than the ISM,
but the difference in Lorentz factor between the two fronts is higher with respect to the previous
case, in general ∆Γ∼ Γe jecta against ∆Γ∼ a few, thus producing a more violent collision.
These GRBs are expected to emit alongside electromagnetic waves also neutrinos and gravita-
tional waves. In the last decades this kind of signal has been observed numerous times, even
more than once a day, whereas gravitational waves and neutrinos have been observed only re-
cently.
On August 17th 2017 at 12:41:06.474598 UTC, for the first time ever, the joint emission of
electromagnetic (GRB170817A) and gravitational waves (GW170817) compatible with the co-
alescence of two neutron stars was detected respectively by the Fermi Gamma-Ray Burst Mon-
itor and the Advanced LIGO and Advanced Virgo detectors. The detection of this phenomenon,
supposedly located in the galaxy NGC4993 at a distance of 42.9±3.2 Mpc (Abbott et al. 2017),
has extremely relevant implications for the study of GRBs: from the analysis of gravitational
waves it is possible to gather information about the structure of the object generating the GRB
and it showed an inclination angle θobs between the total angular momentum of the system and
the line of sight (los) θobs ≤ 36◦ or θobs ≤ 28◦, if the value of the Hubble constant is assumed
respectively 73.24±1.5Kms−1Mpc−1 (Riess et al. 2016) and 67.8±0.9Kms−1Mpc−1 (Planck
collaboration 2016). It is impossible to extract this information from electromagnetic observa-
tions; so this occasion is fundamental in order to constraint the real energy involved in GRBs.
Although the complexity of the mechanism generating GRBs does not allow to create an ex-
act model, it has been established with some certainty that they are related to the emission of
narrow jets of relativistic matter, so the direction of the jet with respect to the los has effect on
the observed flux, from which the isotropic equivalent energy is deducted; for this reason the
information obtained by the gravitational waves are fundamental.
The emission of a GRB from the coalescence of two neutron stars is expected to happen within
few seconds from the merging; the delay is due to the time necessary to the formation of the
inner engine, to the acceleration of the jet material and the time of propagation of the photons
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through the expelled material surrounding the inner engine. This prediction is reflected in the
observed delay of +1.74± 0.05 s between the detection of the first photons of GRB170817A
and the peak of intensity of gravitational waves of GW170817 (Abbott et al 2017).
Further analysis of the gravitational wave data obtained by LIGO showed a descending signal
starting∼ 0.67 s after the peak corresponding to the coalescence; this suggests that the newborn
object is not, or at least not yet, a black hole, but the central engine of GRB170817A is likely
a rotating hyper-massive neutron star (HMNS). This object is supposed to have mass ∼ 2.5 M�
and radius ∼ 16 Km; it avoids gravitational collapse thanks to rapid differential spinning and
emits gravitational waves because it is still highly asymmetric; however it will eventually slow
down and, after some delay, collapse into a stellar mass black hole. However, it is still not clear
what this means with regard to GRB170817A: perhaps the first prompt emission is powered by
the coalescence itself and related to the initial outflow from the HMNS while the second and
softer emission is related to accretion of the orbiting debris on the later formed black hole (van
Putten, Della Valle 2018).

1.1 GRB170817A

The light emitted by GRB170817A has been observed by many different observatories in many
different wavelength, so the spectrum and light curve of the emission have been plenty anal-
ysed. For what concerns this work the data obtained by the Fermi Gamma-Ray Burst Monitor
during the first few seconds since the detection are the most important. The duration of a GRB
(T90) is usually defined as the time between reaching the 5% and 95% of the cumulative ob-
served fluence for the burst in the canonical energy range of 50− 300 keV; for GRB170817A
was found t90 = 2± 0.5 s, starting at T0 - 0.192 s, where T0= 12 : 41 : 06.474598 UTC on
2017 August 17. The first impulse, corresponding to the time interval between T0−0.320 s and
T0+0.256 s, is best fitted by a Comptonized function with energy peak of Epeak = 185±62 keV
and exponent α = −0.62± 0.4 (Goldstein et al. 2017); this results in a time-averaged flux of
(3.1±0.7)×10−7 erg s−1 cm−2 in the energy range from 10 KeV to 1 MeV (Abbott et al 2017).
The main pulse is followed by a softer one lasting from T 0+0.832 s to T 0+1.984 s, which is
well fitted by a black body with temperature kT = 10.3± 1.5 Kev and has a mean flux, in the
range 10−1000 Kev, of (0.53±0.1)×10−7 erg s−1 cm−2; but the energy emission is close to
the lower bound of the Fermi-GBM so it is not possible to exclude non thermal spectrum (Ab-
bott et al. 2017). The softer emission is maybe related to the formation of a cocoon due to the
transfer of energy from the jet to the surrounding dense material ejected during the coalescence.
This cocoon is expanding at mildly relativistic speed with Lorentz factor Γcc ≈ 10, much slower
than the jet with Γ≈ 50−100 and has a much wider opening angle with respect to the jet, thus
the cocoon emission can be considered almost isotropic and it will not depend strongly on the
angle of view.
The minimum variability time scale ∆tmin is the time scale related to the rise time of the shortest
pulse observed; on different energy ranges different values were found:

10−1000 Kev → ∆tmin = 0.125±0.064 s (1.1)
10−50 Kev → ∆tmin = 0.312±0.065 s (1.2)

10−300 Kev → ∆tmin = 0.373±0.069 s. (1.3)
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There is a relation between the hardness of the pulse and the rise time scale; indeed as shown by
Golkhou et al. (2015) to higher energy corresponds shorter pulses and this behaviour has been
observed also in the emission of GRB170817A (Goldstein et al. 2017).
The shape of the pulses is described quite accurately by the equations:

I(t) = Aexp
(
−
(tpeak− t

σrise

)ν)
f or t ≤ tpeak (1.4)

I(t) = Aexp
(
−
(t− tpeak

σdecay

)ν)
f or t ≥ tpeak (1.5)

where A is the amplitude of the pulse and tpeak, σrise, σdecay are the characteristic time scales of
the rise and decay (Norris et al. 2005). For GRB170817A has been found:

tpeak =−114±45 ms σrise = 129±45 ms σdecay = 306±64 ms ν ≈ 2 (1.6)

where the start time of the pulse is t10 = T 0− 0.310± 0.048 s, defined as the time at which
the pulse reaches 10% of the maximum amplitude (Goldstein et al. 2017). The rising time is
equated to the minimum variability time scale that can be attributed to the light-crossing time
of the individual emission regions and is expressed as:

σrise ≈
δR

2cΓ2 (1.7)

where δR is the thickness of the emission region. The decay time is attributed to angular effects
and is defined as:

σdecay =
R(1− cos(θobs−θe))

c
≈ R

2cΓ2 (1.8)

where R is the radius of the shell, θe is the angle of emission of the photon and the approx-
imation is valid if it is assumed that the solid angle accessible to the observer is limited by
relativistic beaming. In the scenario of internal shock, assuming a Lorentz factor < 100 for
the outer and slower shell and that the whole time delay between GW and GRB is due to jet
propagation, given the measured time scales (eqns. 1.6) it results for Γ = 100 (Abbot et al 2017)

R∼ 2×1014cm δR∼ 7×1013cm. (1.9)

Whereas, considering the softer thermal signal, it could be related to the emission of the photo-
sphere of the fireball before it becomes optically thin to γ-rays. In this case the delay between
GW and GRB is possibly due to the time necessary to the photosphere to expand enough to
become optically thin. This leads to other possible values for the distance from the inner engine
at which the radiation is emitted, corresponding to the photosphere’s radius: the smaller one is
the innermost stable circular orbit of a Schwarzchild black hole with mass equal to the stimated
inner engine mass MBH = 2.8 M� and the greater is obtained from the expression proposed by
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Nakar and Sari 2012:

R = 1.4×109
( t

1 s

)( T
10 keV

)2
cm (1.10)

with the results 2.5×106 cm < R < 3×108 cm (Abbot 2017).
From the collected data it has been deducted that GRB170817A is strangely dim: with an
isotropic equivalent energy of Eiso = 4.17+6.54

−0.99×1046 erg is many order of magnitude less en-
ergetic than the usual sGRB (Zhang et al 2018).
There are two main possibilities to produce a low luminosity sGRB from a neutron star merger.
The first one is a usually bright sGRB jet viewed off-axis; within this picture, the main jet is di-
rected toward a different direction with respect to the observer. In a similar scenario, a uniform
conical jet is disfavoured because, due to relativistic beaming, the radiation emitted by a source
moving at high speed it is unlikely to be viewed outside the jet cone. A more promising sce-
nario is a structured jet, still viewed from off axis with respect to the central and faster region;
in this case the observed emission is from the slower outer regions with low luminosity along
line of sight. The extreme case of a structured jet is a cocoon: a really wide outflow of material
at mildly relativistic speed expanding almost spherically, maybe produced by the interaction of
an original collimated jet with the surrounding dense environment.
The second possibility is that GRB 170817A may be intrinsically low energetic. However, the
late rise of X-ray and radio flux from the source suggests that the total energy budget is higher,
disfavouring this possibility in favour the off-axis structured jet scenario.



2. MODEL

2.1 Dynamics’ effects on emission

Due to the high speed of the particles it is necessary to calculate the relativistic effects that their
motion has on the emitted radiation. Consider the rest frame F ′ in which the particle has zero
velocity, since charged particles have to be accelerated in order to emit radiation F ′ is inertial
with respect to the source only at a given time t and in an infinitesimal neighbourhood of t the
motion is still not relativistic. Suppose that in such frame a energy dW ′ is emitted in the interval
dt ′, due to how F ′ is defined the motion is non-relativistic then the emission is isotropic and has
vanishing momentum d p′ = 0. In the observer reference frame the source is moving at speed
−v and, given the definition of the Lorentz factor γ =(1−(v/c)2)−1/2, it is seen emitting energy

dW = γ dW ′ (2.1)

since energy and momentum form a 4-vector. The time interval transforms as

dt = γ dt ′ (2.2)

then the total emitted power is:

P′ =
dW ′

dt ′
P =

dW
dt

(2.3)

this means that P = P′ or that the total emitted power is Lorentz invariant.
The radiation emitted by a non-relativistic source is given by the Larmor formula:

|Erad|= |Brad|=
qev̇
Rc2 sinΦ (2.4)

where v̇ is the acceleration of the charge and Φ the angle between the direction n̂ of the emis-
sion; the resulting Poynting vector is

S =
c

4 π
E2

rad =
q2

e v̇2

4 π R2 c3 sin2
Φ. (2.5)

The energy emitted per unit solid angle dΩ per unit time dt around n̂ is

dW
dt

= S ·R2 dΩ (2.6)
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then

dW
dt dΩ

=
q2

e v̇2

4π c3 sin2
Φ (2.7)

integration over the solid angle to consider all the direction of emission results:

P =
dW
dt

=
q2

e v̇2

4π c3

∫
4π

sin2
ΦdΩ (2.8)

that is the Larmor formula for a single accelerated particle:

P =
2q2

e v̇2

3c3 =
2q2

e
3c3 |a

′|2. (2.9)

Since 4-velocity and 4-acceleration are orthogonal (a′α · v′α = 0), in the rest frame F ′ v′α =
(c,0,0,0) and a′ = v̇′, then a′0 = 0; thus

|a′|2 =
3

∑
k=1

ak ·ak =~a ·~a (2.10)

and finally the total emitted power is

P =
2q2

e
3c3 ~a ·~a. (2.11)

However in this way the dependence on the angle disappears, whereas it is important for what
concerns GRBs. The solid angle is defined in the two reference frame as

dΩ = dµ dϕ dΩ
′ = dµ

′ dϕ
′ (2.12)

where dµ = sinθ dθ and dµ ′ = sinθ ′ dθ ′, and since energy and momentum form the 4-vector

dW α = γ (dW ′+~vd p′) = γ(1−β µ)dW ′ (2.13)

where β = v/c; then, given dϕ = dϕ ′, the following relations hold:

µ =
µ ′+β

1+β µ ′
→ dµ =

dµ ′

γ2 (1+β µ ′)2 (2.14)

dΩ =
dΩ′

γ2 (1+β µ ′)2 (2.15)

and finally

dW
dΩ

= γ
3 (1+β µ)3 dW ′

dΩ′
(2.16)
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Now, it is necessary to distinguish between emitted and received power from the point of view
of the observer, respectively Pe and Pr: the first is obtained considering the interval of time dur-
ing which the radiation is emitted dt = γ dt ′, the latter considering the interval of time during
which the radiation is received dt = γ(1+β µ)dt ′; then

dPe

dΩ
= γ

2 (1+β µ)3 dP′

dΩ′
=

1
γ4 (1−β µ)3

dP′

dΩ′
(2.17)

dPr

dΩ
= γ

4 (1+β µ)4 dP′

dΩ′
=

1
γ4 (1−β µ)4

dP′

dΩ′
. (2.18)

The interesting one is Pr, which is the effective power received by the observer; thus from eqn.
2.9

dP′

dΩ′
=

qe (a′)2

4 π c3 sin2
φ
′ (2.19)

which is usually not easy to calculate due to the unknown angle, except for two specific cases.
When, in the rest frame, the velocity and acceleration are parallel:

Φ
′ = θ → sin2

θ
′ =

sin2
θ

γ2 (1−β µ)2 (2.20)

then

dP‖
dΩ

=
q2

ea2
‖

4π c3
sin2

θ

(1−β µ)6 . (2.21)

When they are perpendicular:

cosΦ
′ = sinθ

′ cosϕ
′ → sin2

Φ
′ = 1− sin2

θ cos2 ϕ

γ2(1−β µ)2 (2.22)

resulting in

dP⊥
dΩ

=
q2

ea2
⊥

4π c3

[
1− sin2

θ cos2 ϕ

γ2(1−β µ)2

]
. (2.23)

In the case of highly relativistic (γ � 1) sources holds the approximation:

(1−β µ)≈ 1+ γ2θ 2

2γ2 (2.24)

then the power received per solid angle can be approximated as

dP‖
dΩ
≈

16 q2
ea2
‖

π c3 γ
10 γ2θ 2

(1+ γ2θ 2)6 (2.25)

dP⊥
dΩ
≈

4 q2
ea2
⊥

π c3 γ
8 1−2γ2θ 2 cos2ϕ + γ4θ 4

(1+ γ2θ 2)6 (2.26)
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in which the dependence on θ appears through the term γθ and there is a maximum in the
emission for θ ∼ 1/γ . It means that, since γ � 1 was considered, most of the emission is con-
centrated in a cone of half opening ∼ 1/γ around the direction of the motion.
It is a good approximation to assume that most of the emission of a relativistic jet is due to
synchrotron radiation. The power emitted via synchrotron for unit frequency by electrons with
power law energy distribution, moving at relativistic speed with Lorentz factor Γ is, in the
source rest frame:

P′
ν ′ =

√
3q3KB′ sinη

mec2(p+1)
Γ

( p
4
+

19
12

)
Γ

( p
4
− 1

12

)( mecν ′

3qBsinη

)(1−p)/2
(2.27)

K =(p−1)n0γ
p−1

e,min (2.28)

where η is the angle between the magnetic field B′ and the electron velocity, γmin is the min-
imum Lorentz factor of the electrons in the rest frame of the distribution which has numeric
density n0. Given a power law energy distribution of the electron, delimited by the maximum
electrons Lorentz factor γe,max obtained equating the acceleration time and the energy loss time
(de Jager et al. 1996) and by γe,min, for 1 < p < 2 are defined as

N(E)dE = E−pdE (2.29)

γe,max ∼ 4×107B′−1/2 (2.30)

γe,min =
[2− p

p−1
mp

me
εeΓγ

p−2
e,max

]1/(p−1)
(2.31)

where mp is the proton mass and εe∼ 0.1 is the fraction of internal energy given to the electrons.
In general the approximation

γe ≈ 〈γe〉
(p−2)
(p−1)

(2.32)

is valid, with 〈γe〉 the mean value of γe.
Assumed that the specific intensity I′

ν ′ is isotropic in the source rest frame and given

dP′
ν ′ =

I′
ν ′

c
dΩcos2

θ (2.33)

it follows

P′
ν ′ =

∫
4π

dP′
ν ′ =

1
c

∫
4π

I′
ν ′ cos2

θdΩ

=
I′
ν ′

c

∫ 2π

0
dφ

∫ 1

−1
µ

2dµ =
4π I′

ν ′

3c
. (2.34)

Assuming that the prompt emission happens in the outer region of the source, so radiation is
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not absorbed by other ejected material and neglecting intergalactic and galactic absorption and
scattering (weak hypothesis, useful only for upper limit), in other words propagation in the void;
it yields:

dI′
ν ′

d s
= 0 → I′

ν ′ = const. (2.35)

Given this hypothesis the flux for unit frequency is:

F ′
ν ′ =

∫
S(t)

I′
ν ′ cosα dΩ =

∫
S(t)

3cP′
ν ′

4π
cosα dΩ (2.36)

for compact sources cosα ≈ 1 is a good approximation, through the Doppler factor Λ(θ) the
quantity is expressed in the observer rest frame:

Fν =
3cP′

ν ′

4π

∫
S(t)

Λ
3 dΩ (2.37)

Λ(θ) =[Γ(1−β cosθ)]−1. (2.38)

A more realistic scenario includes also synchrotron self-absorption; it is usually negligible, spe-
cially in the γ-ray range, but has to be considered for frequencies in the soft X-ray range.
The optical depth is to be known in order to estimated the effects of self absorption; it can be
approximated as α ′

ν ′R/Γ, where

α
′
ν ′ =

p+2
8πme(ν ′)2

∫
∞

γmin

P′
ν ′,e(γe)

N(γe)

γe
dγe. (2.39)

Then the radiative transport equation has to be modified to include absorption in the case
α ′

ν ′R/Γ∼ 1:

d I′ν
d s

= I′
ν ′(1−α

′
ν ′) (2.40)

thus leading to a decrease in intensity as the distance increases.

In the following sections will be presented the model representing the effect of off axis view
of the emission from a pulse on the observed flux, developed using only geometrical properties
and as few assumptions as possible on the emission.

2.2 Expanding sphere

In order to produce a simple model to represent the emission from an off axis jet, I first con-
sidered a spherical shell with negligible thickness, radius r and expanding at relativistic speed
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with a Lorentz factor Γ. Given I(x, t), the specific intensity of the single surface element, the
bolometric flux emitted by the sphere is

F(t) =
∫

S(t)
I(x, t)cosα

dS
s2 (2.41)

where S(t) is the locus of points on the surface of the sphere with equal arrival time t to the
observer at cosmological distance D from the centre of the sphere. Assuming cylindrical sym-
metry with respect to the jet axis dS = 2π r(te)2 sinθ dθ with te = t− r/c the emission time;
s = D− r(te) cos2 θ is the distance between the element with coordinates (θ ,φ , te) and the ob-
server. Due to the cosmological distance and the small angular size of the source cosα ≈ 1; the
result is:

F(t) = 2π

∫
S(t)

I(x, t)
r2(t)

(D− r(t)cosθ)2 sinθ dθ . (2.42)

For simplicity I assume constant luminosity during the pulse of duration T and isotropic emis-
sion in the rest frame of the source, thus the specific intensity has the general form:

I(x, t) = I(θ)
( r0

r(t)

)2
(2.43)

where I(θ) is related to the Doppler factor Λ(θ) due to the relativistic speed of the source:

I(θ) = I′0Λ
−4(θ) = I′0[Γ(1−β cosθ)]−4. (2.44)

This assumption is justified if the emission is due to internal shocks which imply a constant
number of emitting particles whose density decreases with the expansion of the sphere. In
external shock scenarios such assumption may not be correct because during the expansion
more particles are involved and then the emission may increase. So the flux emitted by the
region S(t) of the sphere is

F(t) = 2π I′0 r2
∫

S(t)

sinθ dθ

(D− r(t)cosθ)2[Γ(1−β cosθ)]4
(2.45)

where ′ stands for the quantity in the source rest frame.

2.3 Off axis jet

In order to obtain the expression of the flux emitted by jet with semi-aperture θ j and off axis by
θobs with respect to the los of an observer situated along the z axis, as shown in figure (2.3) is
enough to integrate over the region delimited by the jet. The region of integration depends on
θ and then to time t: indeed, even if the whole surface emits at the exact same time, the first
photon reaching the observer is the one emitted from the tip of the sphere along the los, then due
to its large dimension of the source the observer will see the sequential lightning of concentric
circles resulting from the intersection of the sphere with the plane z = R cosθ moving in the
−z direction at the speed of light. Thus the time t at which the region of the jet nearest to the
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observer turns on is related to the radius the jet inclination θobs and half-opening θ j by:

θon = θobs−θ j → cosθon = 1− ct
r

(2.46)

and it will turn off at the end of the pulse with duration T . Analogously, the region turns off
when it is reached by another plane moving at the same speed and in the same direction, but T
later or cT behind of the previous. It is necessary to consider also the expansion of the sphere
∆r = cβT during the pulse: the effect of the shell expansion is to reduce the distance the light
emitted at later times has to travel to the observer, thus also the difference of time of observa-
tion between first and last photon emitted is reduced. For this reason the factor τ = T (1−β ) is
introduced and the relation between time and jet characteristics is:

θo f f = θobs +θ j → cosθo f f = 1− c(t− τ)

r+∆r
. (2.47)

Finally, substituting θon and θo f f in eqn. (2.5) as integration extrema results:

F(t) = 2π I′0 r2
∫

θo f f

θon

sinθ dθ

(D− r(t)cosθ)2[Γ(1−βcosθ)]4
. (2.48)

Expression 2.48 represents the flux emitted by the whole spherical crown delimited by θon and
θo f f , not by the jet only, as shown in figure 2.1 and for θobs = 0 reproduces the case of an
on-axis jet. It is necessary to find the intersection between the previously mentioned planes and
the jet to obtain the correct expression.

x

y

z

R

θon

θo f f

Fig. 2.1: Representative scheme for emitting spherical crown.
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Fig. 2.2: Simplified top (left) and front (right) view of the representative scheme (fig. 2.3).

The locus of point of equal arrival time of photons to the observer on the z axis is a circum-
ference defined by the intersection of the sphere with the plane z = r cosθ , whereas if only the
region delimited by the jet opening is emitting, then only an arc of circumference is emitting.
Considering the two planes z = r cosθ and z = r cos(θ +dθ), their intersection with the sphere
is a ring with radius r sinθ , height dθ and surface Aring, the part of the ring delimited by the jet
has surface Aarc; thus, due to the infinitesimal height of the ring the ratio between the surfaces
is equal to the ratio between the length of arc and circumference. Moreover the flux is directly
proportional to the emitting region, then

Aarc

Aring
=

larc

lring
→ Farc

Fring
=

larc

lring
=

l(θ)
2π r sinθ

. (2.49)
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Fig. 2.3: Representative scheme of the expanding sphere (− and−−), the jet (−) and the causality plane
(−).

By rotating the coordinate system counter-clockwise by θobs around y the jet axis overlaps
the z′ axis, then the emitting region of the jet is the smaller portion of the sphere delimited by
the plane z′ = r cosθ j, ; thus the region of interest is the intersection of the planes:

z = r cosθ (2.50)
z′ = zcosθobs− x sinθobs = r cosθ j (2.51)

results

x = r
cosθobs cosθ − cosθ j

sinθobs
. (2.52)

It is also true that x = r sinθ cosα , so

α = arccos
(cosθ j− cosθobs cosθ

sinθ0 sinθ

)
→ l(θ) = α r sinθ . (2.53)

Finally, the flux emitted by a jet with half opening θ j seen off axis by an angle θobs is:

F(t) = 2 I′0 r2
∫

θon

θo f f

arccos
(cosθ j− cosθobs cosθ

sinθ0 sinθ

) sinθ dθ

(D− r(t)cosθ)2[Γ(1−β cosθ)]4
. (2.54)
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Substituting the expression 2.34 of the specific intensity and approximating D− r(t)cosθ ≈ D,
since the distance D of the source is much greater than its size, it results:

F(t) =
3cP′r2

2πD2

∫
θon

θo f f

arccos
(cosθ j− cosθobs cosθ

sinθ0 sinθ

) sinθ dθ

[Γ(1−β cosθ)]4
. (2.55)



3. GEOMETRY EFFECTS

Lets assume, for the moment, that the emission is not dependent on any variable and pose

I′0 = 1 (3.1)

and focus on the effect of the structure itself on the emission in the hypothesis of uniform jet.
Some relations linking the geometric characteristics to the flux arise from the model: for exam-
ple, the time at which the first photon is seen is given by

t f irst =
r (1− cos(θobs−θ jet))

c
(3.2)

and the time at which the off-axis light curve reaches the maximum, just before the end of the
emission, is

tpeak,o f f = τ +
(r+∆r)(1− cos(θobs−θ jet))

c
(3.3)

while for the on-axis one:

tpeak,on = τ +
(r+∆r)(1− cosθ jet)

c
(3.4)

However these are empirical relations and lose precision for some combinations of the param-
eters, see for example fig. 3.4, but the error is usually negligible if compared to the uncer-
tainty introduced by the exposure time necessary to collect data, for example for Fermi GBM
texp ∼ 0.1−0.05 (Abbot et al. 2017).

3.1 Dependence on R

With regard to on axis emission, increasing the radius of the sphere, which represent the distance
at which the emission happens, increases also the maximum of the flux and the duration of the
observed emission, as shown in fig. 3.1. This is to be expected because an increase in radius
means a quadratic increase of the emitting region and then of the flux. Also, a bigger source
means that more time is required before the whole surface enters in causal contact with the
observer, or in other words the delay between the observation of the first and last photons is
greater for greater radii.
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Fig. 3.1: On axis light curves for R = 2×1010−8×1010−2×1011 cm; normalization is with respect to
the peak of emission corresponding to the minor radius.

Similarly, for off-axis jet, the flux intensity and emission duration increase with radius;
furthermore for given θobs and θ jet the time at which the first photon is seen increases with R as
shown in fig. 3.2
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Fig. 3.2: Off-axis emission for R = 2×1010−8×1010−2×1011 cm, T = 0.1, θobs = 0.4, θ jet = 0.05,
Γ = 30; with the same normalization as fig. 3.1.
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3.2 Dependence on T

The parameter T represents how long the surface of the sphere, or the jet, emits radiation: if

T ≥
r (1− cos(θobs−θ jet))

c
(3.5)

it means that at a certain time the observer will see the whole surface emitting, leading to a
saturation in the flux; otherwise, only a smaller portion at time is visible, then the flux will not
reach the maximum. This is shown in fig. 3.3, an for on axis (θobs = 0) jet with a given θ jet .
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Fig. 3.3: Normalized flux for on axis jet for different values of T = (0.2−1−2−4). In black the rising
part of the light curve, that is the same for all T , in red the decaying part which depends on T .

The dependence on T of the off axis emission is quite similar to the on axis case: there is an
increase in flux intensity for greater T, until saturation is reached, and also the duration of the
signal is directly proportional to T.
The flux saturation value can be altered at later time by dynamical effects such as deceleration
of the jet, sideways expansion and dependence on time of the specific intensity.
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Fig. 3.4: Off axis light curves for T=(0.2-1-2-4-8) and Γ = 30, θ jet = 0.1, θobs = 0.4, R = 6 · 1010 cm.
There is a evident loss in precision for the time tpeak,o f f (∗) for T=0.2-1.
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Fig. 3.5: Comparison between the on-axis light curve (-) and the off-axis one (-), both normalized to the
maximum value of the on axis flux, with T = (0.2−1−2−4) s (clockwise from top left) and
Γ = 30, θ jet = 0.1, θobs = 0.4, R = 6 ·1010 cm. The values of the light curves at the peak time
are highlighted with ∗.
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3.3 Dependence on Γ

For the an on axis emission results that the time at which the peak occurs and the duration
decrease with the increase of Γ, while the intensity increases, as shown in fig 3.6. This, together
with the fact that since the radiation is emitted by a source moving with Γ, it is highly blue-
shifted, could be the motivation to the shortness-hardness relation observed in most GRBs.
On the contrary, because the relativistic beaming limits the emission in a solid angle ∼ Γ−1

and for an off axis observer with θobs > θ j +1/Γ the increase of the Lorentz factor lowers the
observed flux .
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Fig. 3.6: Left: flux of an on axis uniform jet for Γ = 20−25−30 (from bottom to top), normalized with
respect to the peak corresponding to Γ = 20. Right: light curves for off axis emission with
Γ = 20−25−30 (from top to bottom) with the same normalization as left panel.
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3.4 Dependence on θ j

The jet opening is directly related to the observed flux because the emitting area is directly pro-
portional to θ j for both on and off axis jets and a larger area means a greater emission.
For on axis jets the effect of θ jet is only to set the time at which the emission starts to decrease
(tpeak,on), while the part of the light curve rising with time is totally unaffected.
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Fig. 3.7: Comparison between the on-axis light curve (-) and the off-axis one (-), both normalized to the
maximum value of the on axis flux, with θ j = (0.05− 0.1− 0.15− 0.2) (clockwise from top
left) and Γ = 30, T = 0.2 s, θobs = 0.4, R = 6 · 1010 cm. The values of the light curves at the
peak time are highlighted with ∗.

In the off axis case, things are a little different: the relation between opening angle and flux
is the same as the on axis one, but also the time at which the emission is first seen depends
on θ j. In fact the photons emitted from the edge of the jet closer to the observer has to travel
longer than the ones emitted from the tip of the sphere, producing a delay given by eqn. 3.2.
Furthermore, since the photon emitted from the further edge on the jet has to travel even longer
and that its distance from the observer increases with θ j, the duration of the signal is directly
proportional to the opening angle of the jet.
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3.5 Dependence on θobs

The main effect of the angle of view is to decrease the intensity of the observed emission, as
noticeable in fig. 3.8 representing the steep fall of the off axis flux peak corresponds to the
increase of θobs. This happens because the relativistic beaming limits the most of the radiation
in a cone of aperture ∼ Γ−1, the outside of it the emission is much dimmer.
An other effect of the increase of θobs, reported in fig. 3.9, is the delay of the time at which the
first and also the last photons are seen, thus increasing the duration of the signal.

Fig. 3.8: Behaviour of the flux emission normalized peak for different angles of view, Γ = 50 θ j = 0.01,
T = 1, R = 6×1010 cm.
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Fig. 3.9: Comparison between the on-axis light curve (-) and the off-axis one (-), both normalized to the
maximum value of the on axis flux, with θobs = (0.2−0.4−0.8−1.2) (clockwise from top left)
and Γ = 30, T = 2 s, θ jet = 0.1 r = 6 ·1010 cm. The values of the light curves at the peak time
are highlighted with ∗. For the top left panel the value of the off-axis peak flux is ∼ 10−5.



4. SECOND ORDER MODEL

4.1 Temporal dependence of the Lorentz factor

As the ejected material travels further, it increases in mass collecting interstellar medium and, in
the absence of continuous injection of energy from the central engine to the jet, it slows down.
From Rohads 1999 and Sari, Piran and Halpern 1999 for an interstellar medium with density
described by a power-law ρ = n0 r−s:

Γ(t) = Γ0(t/t jet)
−3/8 f or s = 0 (4.1)

Γ(t) = Γ0(t/t jet)
−1/4 f or s = 2 (4.2)

where
t jet = 6.2(1+ z)(E52/n0)

1/3(θ j/0.1)8/3 hrs (4.3)

is the time at which the opposite edges of the jet enters in causal contact and E52 stands for
E/(1052 erg). Hydrodynamic simulations lead to more accurate results, but generally still agree
with this qualitative model.
Since temporal dependence can be introduced simply substituting Γ → Γ(t), its effects are
straightforward to quantify because it is possible to extract the time dependence of the Lorentz
factor from the integral of eqn. 2.55 since integration is with respect to θ and only through the
extrema of integration the time dependence is introduced in the geometric model.
With regard to the prompt emission, there is not enough time to allow the Lorentz factor to vary
much, thus time dependence of Γ can be neglected with a good approximation. Whereas, at
later times when the jet has swiped a mass of interstellar medium comparable with its own, the
decrease of its velocity has to be considered, because lower Γ means less beaming and so higher
flux, but also softer radiation.

4.2 Sideways expansion

Sideways expansion of the jet effects the direction of motion of the ejected material and not only
the jet aperture. It is still not clear what is the real behaviour of the expansion that in general
depends on the density of the surrounding environment and on the characteristics (aperture,
energy, density) of the jet.
Numerical simulations showed that sideways expansion does not have great effect on the prompt
emission, on which I focused, because due to the briefness of the emission the jet has not enough
time to expand and sideways expansion becomes important around t j (Sari, Piran and Halpern
1999). Instead, at much later time, i.e. during the afterglow, the expansion is no more negligible,
but since the velocity is already decreased to quasi- or sub-relativistic regime the beaming of the
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emission becomes negligible and it is a good approximation to consider that the ejected material
expanding spherically.

4.3 Structured jet

The previous sections were developed under the assumption of uniform jet: each point of the
jet has the same velocity (represented by Γ), the same density (n) and then the same energy.
More realistically the ejected material is more dense and fast in the inner region of the jet
and at greater distance from the jet axis both n and Γ decrease due to the interaction with the
surrounding medium. Their actual behaviours are not certain, the most probable are Gaussian
and power law distributions; I chose the following expressions to describe density and velocity:

Γ(θ) = Γmin +(Γmax−Γmin)
[
1− (θ −θobs)

2

k1 θ 3
jet

]
(4.4)

n(θ) = nmin +4 nmax

[
1− (θ −θobs)

2

k2 θ 3
jet

]
(4.5)

where k1 and k2 are adimensional parameters used to adjust the slope of the distribution, I
introduced the factor 4 in eqn. 4.5 to mimic the effect of an adiabatic shock on the density for a
fluid moving with Lorentz factor Γ: nshocked ≈ 4Γn (Piran 2005, van Eerten et al. 2010).
Computing the light curve of a structured jet is a time requesting task, so an approximation
was necessary: I divided the structured jet in uniform concentric sub-jets with half-opening
decreasing by a constant factor ∆θ and Lorentz factor and density given by evaluating eqn. 4.4
and 4.5 at θ = θ jet −∆θ/2. For each sub-jet eqn. 2.55 is evaluated and the resulting fluxes are
summed, but doing this way there is an overcount of the area of the inner jets, so it is necessary
to subtract eqn. 2.55 evaluated for the inner jet half-opening and the outer one Lorentz factor.
This is done in the hypothesis of infinitesimally thin shell, otherwise the model presented is no
longer a good approximation because the shape of the equal arrival time surfaces depends on
the actual shape of the jet.
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Fig. 4.1: Shape of the Γ (left) and density (right) distributions.
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Fig. 4.2: Light curve for an off axis structured jet (-) with distribution of Γ 4.4 and density 4.5, compared
to the ones from the single sub-jets. The luminosity scale is arbitrary.



5. COMPARISON WITH THE LITERATURE

The hypothesis regarding origin and mechanism of GRBs are many and different; the lack of
an analytical model exactly fitting all the different aspects, from the dynamics of the ejected
material to the emission process, makes numerical simulation the most viable way to obtain
realistic results. However also from the most simple and idealized models is possible to obtain
a qualitative behaviour representing the variation of observed flux in function of the angle be-
tween the line of sight and the jet.
For example Lazzati et al. (2017) proposed a model for sGRBs from binary mergers in which
initially a collimated jet is ejected, then propagating in a dense and baryon rich environment,
it produce a hot, wide cocoon which is responsible for the prompt emission. First, they con-
sidered a central engine releasing E2 energy for a period of time teng in two opposite jets of
half-opening θ j which are accelerated up to a Lorentz factor Γ, giving a total isotropic equiv-
alent energy Eiso = 4πE2/Ω2 where Ω2 is the solid angle occupied by the to jets. The prompt
emission of the sGRB is computed considering top-hat uniform jet with sharp edges, radiating
its internal energy at a certain distance Rrad from the centre of the engine. The nature of the
emission is not discussed and considered irrelevant to the conclusions of the work.
The observed peak bolometric luminosity with respect to the observer angle is calculated as:

Lprompt,pk(θobs) = Lprompt,pk(0)
∫

Σ
δ 4(Γ,θv,obs) dσ∫
Σ

δ 4(Γ,θv) dσ
(5.1)

where Lprompt,pk(0) is the peak bolometric luminosity for an on-axis observer, δ (Γ,θ) is the
relativistic Doppler factor, θv,obs is the angle between the velocity and the observer, θv is the an-
gle between the velocity and the jet axis and the integral is performed over the emitting surface
Σ. As soon as the line of sight moves outside the opening angle of the jet the peak luminosity
of the prompt emission decreases dramatically as shown in fig. 5.1.
The model was developed further, through simulations, in order to account also the emission
of the cocoon and the dynamical effects, but since the cocoon is expected to expand quasi-
spherically and with decreasing Lorentz factor the emission will tend to become isotropic, thus
the dependence on the observer angle ceases.
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Fig. 5.1: Figure 1 from Lazzati et al. 2017, to confront with fig. 5.2
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Fig. 5.2: Behaviour of the peak of the light curve, normalized with respect to the on axis peak, depending
on θobs for different values of Γ. The vertical line represents the half-opening angle of the jet.
The dashed lines are qualitative behaviours from Granot et al. 2002. It is evident the similarity
in the decay of the intensity for increasing viewing angle with the ones reported in fig. 5.1.

A more sophisticated model is presented by Granot et al. 2002. The GRB emission for off-
axis observer is calculated considering 3 different models of jet propagating in an homogeneous
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medium: a point source moving along the jet axis, an homogeneous jet and a two-dimensional
hydrodynamical simulation.
The first model has the advantage to be very simple, but it is limited to θobs > 2θ jet ant t > t jet
with

t jet = 6.2(1+ z)
(E52

n

)1/3(θ jet

0.1

)−8/3
hours (5.2)

The flux of a point source moving with Lorentz factor Γ at an angle θ with respect to the ob-
server is given by:

Fν =
1+ z
4πD2

L

L′
ν ′

Γ3(1−β cosθ)3 (5.3)

where DL is the luminosity distance, L′
ν ′ and ν ′ are the comoving spectral luminosity and fre-

quency. Then, given t0 and ν0 the time and frequency for an on-axis observer, it results

ν

ν0
=

t0
t
=

1−β

(1−β cosθ)
≡ a≈ (1+Γ

2
θ

2)−1 (5.4)

Fν(θobs, t) = a3Fν/a(0,at) (5.5)

The second model is based on a jet with values of energy and Lorentz factor constant with re-
spect to θ , but varying in time, with deceleration and sideways expansion determinated by the
laws of mass and energy conservation as described in Kumar and Panaitescu 2000. The emis-
sion is due to both synchrotron and inverse Compton and the flux is calculated integrating over
equal arrival time surfaces.
The two-dimensional hydrodynamical simulation is described in Granot et al 2001; it is more
realistic and considers jets with smoother edges.
They obtained a qualitative behaviour from the first model describing the time and intensity at
the luminosity peak:

tpeak ≈ (5+2lnΘ)Θ2t jet (5.6)

Lpeak ≈ 2−β+3
Θ
−2αL(0, t jet) (5.7)

where Θ = (θobs/θ jet)− 1, α ∼ 2 and β ∼ 1 are parameters describing the dependence of L
on time L ∝ t−α and frequency L ∝ ν−β . As shown in fig. 5.3, this simple model overesti-
mates the intensity of the light curve with respect to the other more complex ones, but describes
quite well the overall behaviour specially at grater times and observer angles. Comparing the
second model with respect to the simulation, the light curve produced by the homogeneous jet
overestimates at almost all times and angle the one derived from the more complex, however
for θobs < θ jet the results are quite similar. It is noticeable that light curves obtained from the
simulations are more intense at early time, because the emission from the outer, slower region
of the jet, neglected in the case of a hard edged homogeneous one, dominates.
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Fig. 5.3: Figure 1 and 2 from Granot et al. 2002. Even if the scales are different the similarity with fig.
4.2 is evident.

In J.Granot et al. 2018, it is presented a simple analytic model for off-axis emission from
GRB jets showing the dependence of the observed flux on the angle of view θobs and many other
parameters related to the ejecta. The starting point is the assumption that the jet of opening an-
gle θ j propagates as if it was spherical as long as Γ > θ

−1
j , with equivalent isotropic energy

Eiso =
E

1− cosθ j
≈ 2 E

θ 2
j

(5.8)

E =
2π

3
θ

2
j R3

Γ
2n mpc2 (5.9)

where n is the ambient density and mp the mass of the proton. Sideways expansion starts when
Γ∼ θ

−1
j , thus the spherical phase ends and results

E =
2π

3
R3n mpc2 (5.10)

The observer time is given by

t = (1+ z)
R

4cΓ2 (5.11)

thus the jet break time can be expressed as (see also Sari, Piran and Halpern 1999)

tb = 0.7(1+ z)
(E51

n

)1/3( θ j

0.1

)2
days (5.12)

the notation E51 = E/1051 is used. Because of the relativistic beaming the off-axis observer
will see the afterglow only near its peak at tpeak(θobs) given by:
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tpeak(θobs) = A
(

θobs

θ j

)2
t j = 70(1+ z)

(E51

n

)1/3
θ

2
obs days (5.13)

where A∼ 1, the flux rises until tpeak and then decays as for an on-axis observer.
From the universal post jet break light curve for an on-axis observer obtained by Nakar, Piran,
Granot 2002, normalized to the optical frequency 5× 1014 Hz; the peak of the flux above self
absorption frequency is given by:

F peak
ν>νm,νc(θobs) =1.67

g0(p)
g0(2.2)

A−p(1+ z)(1−p)/2D−2
L,28(1+Y )−1

× ε
p−1
e,−1ε

(p−2)/4
B,−2 n(3p−2)/12E2/3

50.7ν
−p/2
14.7 θ

−2p
obs,−1 mJy (5.14)

F peak
νm<ν<νc(θobs) =0.618

g1(p)
g1(2.2)

A−p(1+ z)(3−p)/2D−2
L,28

× ε
p−1
e,−1ε

(p+1)/4
B,−2 n(p+1)/4E50.7ν

(1−p)/2
14.7 θ

−2p
obs,−1 mJy (5.15)

F peak
νa<ν<νm<νc(θobs) = 4.4

g2(p)
g2(2.2)

A−1/3(1+ z)4/3D−2
L,28

ε
−2/3
e,−1 ε

1/3
B,−2n1/3E50.7ν

1/3
9.93θ

−2/3
obs,−1 mJy (5.16)

where z is the cosmological red-shift, Y the Compton parameter DL the luminosity distance, g0,
g1 and g2 are functions depending only on the index p,εe and εB are adimensional parameters
representing the fraction of internal energy belonging respectively to the electrons and the mag-
netic field, νm is the frequency of maximum synchrotron emission, νc the cooling one and νa
the self-absorption one given by

νc =3.62×1015
[2.16

1.22
(p−0.98)
(p−0.04)

]2
10

2.2−p
1.985 (1+ z)−1

× ε
−3/2
B,−2 n−5/6E−2/3

50.7 (1+Y )−2 Hz (5.17)

νm =3.74×1011
[g1(p)g2(2.2)

g1(2.2)g2(p)
10

2.2−p
3.93

] 6
3p−1

(1+ z)

× ε
1/2
B,−2ε

2
e,−1n−1/6E−2/3

50.7 t−2
days Hz (5.18)

It has to be stressed that the flux peak is independent of θ j and strongly dependent on θobs. In-
deed the chosen values for the parameters, derived from both long and short GRBs, are εe = 0.1,
εB = 0.01, p = 2.5, n = 1, 8◦ < θ j < 16◦ and E ∼ 1048−1049 erg. Unfortunately, the depen-
dence on Γ is hidden in the other parameters, namely εe, εB, n and E, which are related to the
hypotheses on the shock characteristics through non trivial relations; thus the dependence of the
flux peak on the observer angle:

F peak
ν>νm,νc(θobs) ∝

(
θobs

0.1

)−5
(5.19)

F peak
νm<ν<νc(θobs) ∝

(
θobs

0.1

)−5
(5.20)

F peak
νa<ν<νm<νc(θobs) ∝

(
θobs

0.1

)−2/3
(5.21)
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Since the expression from Granot et al. 2018 lack of explicit dependence on many parameters
relevant to the proposed model what matters in the fig. 5.4 and 5.5 is that the curves are almost
parallel, showing that the qualitative behaviour is similar.
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Fig. 5.4: Proposed model (-) for different values of θ jet = 0.05−0.1−0.2−0.4 (from left to right), eqn.
5.20(– bottom) and eqn. 5.21(– top).
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Fig. 5.5: Proposed model (line in different colours) for different values Γ, eqn. 5.20(– bottom) and eqn.
5.21(– top).
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However, numerical simulations have shown that the simply analytic model for a uniform
jet is not correct. Instead a structured jet with a more energetic and faster central region and
a less energetic and slower outer region whose expansion direction is not exactly radial, but
points more sideways is more realistic. The outer region dominates the early emission for large
viewing angles, since it has lower Γ and thus the emission is spread on a wider solid angle with
respect to the one generated by the central region. Indeed the analytic peak flux prediction is
higher than that of the numerical simulation by around an order of magnitude and for certain
values of t the discrepancy is even higher.
From the gravitational waves data of GW170817, supposing that the jet is aligned with the
total orbital momentum of the binary system, the values of θobs = 0.6± 0.1 are assumed.
Furthermore the unusually low isotropic equivalent energy in the γ-ray region measured of
Eγ,iso = (5.36± 0.38)× 1046 D2

40 Mpc and the peak energy νFν = 40− 185 keV suggest that
GRB170817A has been produced by a jet seen off-axis, composed of a roughly uniform core of
half-opening θ0 and in the surrounding region the energy per unit solid angle decays gradually.
The resulting flux density is, for the different intervals of frequency:

Fν>νm,νc(t) =1.18
g0(p)

g0(2.2)
101.78(2.2−p)D−2
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4
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4

days µJy (5.22)

Fνm<ν<νc(t) =0.0131
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Fνa<ν<νm<νc(t) = 0.196
g2(p)
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× ε
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e,−1 ε

1/3
B,−2n1/2E5/6

46.64ν
1/3
9.93t1/2

days mJy (5.24)

substituting in the previous eqn. 5.13 an expression for the peak flux is obtained.
The values θ0 = 0.2, n = 1 and Eiso = 1053 erg were used as first approximation to start the
fit of the numerical model with the measurements in X-ray and radio, which gave as result:
E ∼ (1048.5− 1049.5)ξ−1

e,−1 erg, circumburst density n ∼ (10−5− 10−2)ξ−1
e,−1 cm−3 for viewing

angle θobs ∼ 0.28−0.45, εe ∼ (10−1.7−10−0.7)ξe,−1, εB ∼ (10−5.6−10−1.7)ξe,−1, power law
index for the energy distribution of the radiating electrons p≈ 2.2, where ξe ∼ 0.1 is a param-
eter representing the non-thermal acceleration efficiency of the shock on the electrons.

An other simple model is presented by E. Rossi et al 2002.
First they considered a uniform jet with opening θ j emitting synchrotron radiation and focused
on the power law branch of the spectrum between νm and νc respectively the peak and cooling
frequencies.
Given a frequency, an observer angle θo and a time t the observed flux is:

F(ν ,θo, t) ∝ AeI′(
ν

δ
,δ t)δ 3(Γ,θo) (5.25)

where Ae is the emitting area δ (Γ,θ) = [Γ(1−β cosθ)]−1 is the relativistic Doppler factor. I′

is the co-moving intensity at the co-moving frequency ν ′ = ν/δ at the co-moving time t ′ = δ t;
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I′ = I′(ν ′m, t
′)
(

ν ′

ν ′m

)−α

∝ Γ
2+3α

δ
1+αt ν

−α (5.26)

with α depending on the chosen frequency interval.
Due to the relativistic beaming the observed flux depends on the observer angle; in particular
for the on axis case (θo ≈ 0)

F = Fon ≈ π

(R
Γ

)2
I′ (2Γ)3 ∀t (5.27)

while for the off-axis case (θo > θ j)

F = Fo f f ≈

π(Rθ)2I′
(

1
Γ(1−β cosθo)

)3
t < tb

π

(
R
Γ

)2
I′ (2Γ)3 t > tb

(5.28)

where tb is the jet break time at which lateral expansion takes place and it is given by

tb ∝

{
θ 2/3ε1/3θ 2

o ∝ θ 2
o f or θ � θo

θ 8/3ε1/3 ∝ θ 2 f or θ � θo
(5.29)

where ε is the energy per unit solid angle, described by the power law

ε =

εc f or 0≤ θ ≤ θc

εc

(
θ

θc

)−2
f or θc ≤ θ ≤ θ j

(5.30)

with θc introduced to avoid divergences in θ = 0 limited to be greater than Γ−1
max ∼ 10−3deg.

Also the Lorentz factor follows a power law:

Γ =

Γc f or 0≤ θ ≤ θc

Γc

(
θ

θc

)−αΓ

f or θc ≤ θ ≤ θ j
(5.31)

with αΓ > 0, this index is not important to the dynamic and the computation of light curve as
long as Γ(t = 0,θ)≡ Γ0(θ)> θ−1 and Γ0(θ)� 1 ∀θ .
The light curve from a inhomogeneous jet, with the characteristic described above, is computed
dividing it in a number of concentric hollow cones, each one with energy and Lorentz factor
given by eqns. 5.30 and 5.31 respectively, and summing the single light curves obtained con-
sidering the asymptotic behaviour related to the opening angle of the sub-cones.
The results are summarised in the following fig. 5.6
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Fig. 5.6: Results from Rossi et al. 2002. Left panel: light curves of an homogeneous top-hat jet with
opening θ j = 1◦ for angle of view θo = 0◦,2◦,4◦,8◦,from top to bottom. Right panel: light
curves of an inhomogeneous jet with θ j = 1◦ and θo = 0.5◦,1◦,2◦,4◦,8◦,16◦; the dashed lines
are the light curves for a top-hat homogeneous jet with opening angle 2θo and energy per unit
solid angle ε(θo).

Comparing fig. 5.6 and 4.2 it is noticeable that the qualitative behaviour is quite similar to
the one obtained through the geometrical model represented by eqn. 2.55, for both top-hat ho-
mogeneous and structured jet. In the left panel of fig. 5.6 an horizontal part of the light curves
is present, it happens because the whole surface is visible to the observer at the given angle and
thus the flux reaches the maximum value, which lasts until the surface starts to turn off. This
characteristic is present also in the proposed model and is mostly due to the geometry of the
phenomenon rather than depending on the emission processes, as described in chapter 4.
A useful comparison between the models of jet with homogeneous characteristics, with Gaus-
sian energy distribution and cocoon is reported in E. Troja et al. 2018. Through numerical
simulation they compared the three models with the data regarding GRB170817A and obtained
the best fit parameters reported in fig. 5.7.
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Fig. 5.7: Table 2 from Troja et al. 2018, reporting a summary of the values they obtained from the
simulations.

They obtained that, as already seen, the early time emission is dominated by the slower
external region of jets who do not have hard edges, as the Gaussian ones; while at later time the
light curves are rather similar. Furthermore the early time emission from a uniform hard-edged
jet seen off axis with θobs ∼ 4θ jet is almost undistinguishable from the Gaussian jet one; at
least until the first reaches the peak of intensity when, in the off axis case the intensity start
decreasing leading to an underestimation of different order of magnitude.
All the three model produced results similarly consistent with data, due to the uncertainties on
the environment and the many degeneracies in the parameters. The Gaussian and homogeneous
models produce really similar results as shown in fig. 5.7 and lead to an angle of view of
0.32− 0.43 and 0.51 respectively. The cocoon interpretation leads to relatively slow ejecta
u ∼ Γ ∈ [3.7; 18.6] with most of the energy in the slower material. However, the ejected mass
and the minimum velocity of the distribution umin are poorly constraint, leading to a uncertainty
in the total energy which strongly depends on umin. The main difference in these models is that
the cocoon produces a higher total energy, ∼ 1052 erg while the others ∼ 1050 erg, and a less
dense environment, ncocoon ∼ 10−5.2 cm−3 while n jet ∼ 10−3.8 cm−3.
With regard to GRB170817A they obtained, from the best fit parameters of a Gaussian jet, a
total isotropic equivalent energy in the γ-ray spectrum if seen on axis of Eγ,OA ∼ 2×1051 erg,
while the observed one is Eγ,obs ∼ 5×1046 erg.
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Through the relations 3.2-3.3 and the data on GRB170817A is possible to put more strict con-
straint on the characteristic of the phenomenon, but first is necessary to analyse in more detail
the possibilities and make some hypothesis.
First of all the time delay between the detection of the gravitational waves peak and the prompt
emission of γ-rays is kind of a mystery: there are different plausible reasons to it leading to
different interpretation of the origin of the emission. The observed delay ∆t = 1.74± 0.05s is
imputable to four main factors: the time necessary to the ejected material to fall back on the
newborn object (tacc); the delayed formation of a black hole; a delay in the emission itself; the
jet has to travel up to a given radius in order to emit γ-rays (tprop). However, the accretion time
is really small: from B. B. Zhang et al. 2018

tacc ∼ 2
( 2

Gρns

)1/2
∼ 5 ·10−4s (6.1)

thus it is negligible. Also the idea of a later black hole is to discard because the analysis of the
extended gravitational emission (van Pullet, Della Valle 2018) shows that it is highly probable
that the remnant of the merger and then the central engine of GRB170817A is a HMNS, since
the gravitational signal detected 0.67s after the peak is compatible with the one emitted by an
asymmetric spinning object, quite different from the one emitted during the ringdown of a black
hole. The more plausible hypothesis is that the ejected material has to travel a certain distance
in order to emit; in the case of synchrotron emission the time needed is reported by B.B.Zhang
et al 2018 as:

tprop ∼
R

Γ2c
∼ 1,74

( R
5 ·1014cm

)(
Γ

100

)−2
s (6.2)

that makes the most part of the delay, so

∆t = (1+ z) tprop (6.3)

where z ∼ 0.009 is the cosmological redshift for GRB170817A. Relation 6.2 is similar to eqn.
1.8 and thanks to both it is possible to reduce the degeneracy on the variables of the system: for
a chosen Γ (or R) the appropriate R (or Γ) to obtain the observed delay is provided. For example
from eqn. 1.8 given σdecay = 0.3 and supposing Γ = 50 the resulting radius is 4.5×1013 cm and
from eqn. 6.2 assuming the whole observed delay between GW and GRB is due to the propa-
gation time, then tprop = tdelay− t10 = 1.42 s and for the same Lorentz factor results R ∼ 1014

cm. Whereas if the inner engine required some time to start accelerating the jet and equating
that time to the interval between the peak of gravitational waves and the signal associated with
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a HMNS results: tprop = tdelay− t10− tHMNS = 0.75 s giving R∼ 5.6×1013, really close to the
one obtained from the eqn. 1.8 from Abbot et al 2017.
From the data of GRB170817 the peak of the light curve and thus the area is obtained; from the
geometric model a synthetic light curve is produced for given values of R, Γ, θ jet , θobs and T .
In order to obtain the values of energy peak and fluence equivalent to the case of on axis jet
it is necessary to find the values of the jet parameter that best fit the observed signal and then
substituting them in the on axis model. Due to the complexity of eqn. 2.55 I was not able to
perform a proper fit, whereas given the previous relations and the data obtained by others (see
previous chapter) it is possible only to obtain a variety of plausible values for the parameters.
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Fig. 6.1: Comparison between the proposed model (-) with t10 (–), t90 (–), the best fit curve (-) and
relative errors (–) for the data of the first peak of GRB170817A (Goldstein 2017). The light
curve is obtained from an off-axis structured jet with characteristics: θ jet = 0.2, θobs = 0.35,
R = 1012 cm, Γmin = 10, Γmax = 40, T = 20, nmin = 0.001, nmax = 0.009, B′ = 1012 G.

Using the values of the parameters proposed by Granot et al. 2018, with the main aim to
obtain a similar fluence value of (1.4± 0.3)× 10−7 erg cm−2 (Abbot et al. 2017) and secon-
darily to fit the shape of the peak described by eqn. 1.5 and parameters 1.6, I chose the values
θ j = 0.2, θobs = 0.35, R = 1012 cm, Γmin = 10, Γmax = 40, T = 20, nmin = 0.001, nmax = 0.009,
B′ = 1012 G giving the light curve, translated by T0 - 0.32 s, reported in fig. 6.1. Unfortunately
the light curve obtained from a structured jet with the given characteristics does not fit well the
data of the first peak, but since their shape is approximatively the same (fast rise and slow de-
cay), it does not seem unbelievable that the main behaviour is well described. Maybe the chosen
distribution of velocity and density is not accurate and a flatter jet could produces a wider peak.
I obtained a fluence of (5.49±0.07)×10−7 erg cm−2, a mean flux value of (3.22±0.04)×10−7

erg s−1 cm−2, resulting in a observed luminosity of (4.9±0.3)×1045 erg s−1 if considered on
axis. Otherwise, assuming the GRB170817A has been seen off-axis and considering the ra-
tio between the peak flux value for both on and off axis light curves derived by the geometric
model Fpeak,ON/Fpeak,OFF ∼ 1.13×106; it results an on axis luminosity of (5.54±0.39)×1051
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erg s−1. It is really close to the one obtained by Troja et al. 2018 in the case of structured of
uniform jets of∼ 1050 and also from Granot et al. 2018∼ 1048.5−1049.5. The errors I obtained
account only for the approximation made to evaluate the structured jet light curve, thus they
are underestimated considering that also dynamics and emission were approximated and the
extremely simplified model.



7. CONCLUSION

Although the proposed model is really simple and quite inaccurate, it results a good first approx-
imation that well describes the main behaviour of the emission from an off-axis jets, with partic-
ular attention on the angle of view. The shape of the synthetic light curve for off axis structured
jet derived from eqn. 2.55 is promisingly similar, even if it does not properly fits, to the first
peak of GRB170817A. The results are in good agreement with more sophisticated models based
on accurate hydrodynamical simulations: given an observed luminosity of (4.9± 0.3)× 1045

erg s−1 an on axis equivalent of (5.54±0.39)×1051 erg s−1 is obtained.
Unfortunately, due to the amount of free parameters and the lack of enough known relations be-
tween them it is not possible for a model as simple as the presented one to give reliable results.
The main issue of the model is to focus on infinitesimally thick emitting regions: this approx-
imation gives a simple expression for the surfaces of equal arrival time, but is quite unrealistic
since observation and relations 1.8 and 6.2 suggest a shell thickness of around 10% of R. Sec-
ondarily the emission mechanism considered lacks of precision due to the assumption of only
synchrotron emission, while also inverse Compton and self-absorption should be considered.
furthermore the emission depends strongly on the characteristic of the source, such as emitters
density, energy and the magnetic field, quantities whose values are quite uncertain. The model
ignores also the dynamics of the ejected material, while this can be an acceptable approximation
for the early prompt emission, it is totally unacceptable for later time. Besides a more precise
emission mechanism, in order to improve this geometrical model is necessary a more realistic
description of both jet’s structure and dynamics.
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