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Abstract

This work focuses on the study of controlling complex systems, such as quadro-
tors, through machine learning techniques. Specifically, it explores the im-
plementation of the Model-Based Reinforcement Learning (MBRL) algorithm
known as Monte Carlo Probabilistic Inference for Learning and COntrol (MC-
PILCO), an extension of the PILCO algorithm, which leverages Gaussian Process
Regression (GPR) to accurately learn the dynamics of the quadrotor and inves-
tigates its potential applications in flight control.
The context of the research concerns the need to develop effective and flexi-
ble control methods for quadrotors, which must confront complex dynamics,
model uncertainties, and operating environment uncertainties. In this respect,
MC-PILCO, which relies on GPR, emerges as a promising technique for learning
the system’s dynamics.
The research involved studying the equations of quadrotor dynamics and using
them to simulate the learning environment. The GPR model, used within the
MC-PILCO algorithm, was trained using an RBF kernel and a speed integration
model. Furthermore, the use of the Subset of Data method to approximate the
GPR model was investigated, analyzing the effect of reducing the number of
data points on prediction accuracy.
Experimental results in simulated environments show that the GPR model im-
proves with an increase in data and that the Subset of Data method provides
acceptable results within a certain degree of approximation. The effectiveness
of MC-PILCO was demonstrated by comparing its control results with those of
other existing traditional controllers, showing substantial improvements.
This demonstrates that the proposed MC-PILCO approach, which incorporates
GPR, represents a valid alternative to the currently available simulation and
control methods for quadrotors, paving the way for future research in this area.





Sommario

Questo elaborato si concentra sullo studio del controllo di sistemi complessi,
come i quadrotor, attraverso l’uso di tecniche di apprendimento automatico. In
particolare, viene esplorata l’implementazione dell’algoritmo di Model-Based
Reinforcement Learning (MBRL) chiamato Monte Carlo Probabilistic Inference
for Learning and COntrol (MC-PILCO), un’estensione dell’algoritmo PILCO,
che sfrutta la Regressione del Processo Gaussiano (GPR) per apprendere accu-
ratamente la dinamica del quadrotor e indagare le sue potenziali applicazioni
nel controllo del volo.
Il contesto della ricerca riguarda la necessità di sviluppare metodi di controllo
efficaci e flessibili per i quadrotor, i quali devono affrontare dinamiche com-
plesse, incertezze del modello e incertezze dell’ambiente operativo. A questo
proposito, MC-PILCO, che si basa su GPR, emerge come una tecnica promet-
tente per apprendere la dinamica del sistema.
La ricerca ha comportato lo studio delle equazioni di dinamica del quadrotor e
il loro utilizzo per simulare l’ambiente di apprendimento. Il modello GPR, uti-
lizzato all’interno dell’algoritmo MC-PILCO, è stato addestrato utilizzando un
kernel RBF e un modello di integrazione della velocità. Inoltre, è stata esaminata
l’uso del metodo Subset of Data per approssimare il modello GPR, analizzando
l’effetto della riduzione del numero di punti dati sulla precisione della previ-
sione.
I risultati sperimentali, in ambienti simulati, mostrano che il modello GPR
migliora con un aumento dei dati e che il metodo Subset of Data fornisce risultati
accettabili entro un certo grado di approssimazione. L’efficacia del MC-PILCO
è stata dimostrata confrontando i suoi risultati di controllo con quelli di altri
controllori tradizionali già esistenti, mostrando miglioramenti notevoli.
Questo dimostra che l’approccio MC-PILCO proposto, che incorpora GPR, rap-
presenta una valida alternativa ai metodi di simulazione e controllo attualmente
disponibili per i quadrotor, aprendo la strada per future ricerche in questo set-
tore.
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1
Introduction

In the contemporary engineering landscape, the domain of autonomous
guidance is assuming escalating significance. The systems to which these tech-
niques are applied are typically complex and nonlinear. A prime example
includes unmanned aerial vehicles, specifically the quadrotor.
The distinct structure of these vehicles endows them with superior flexibility
and stability compared to other aerial vehicles. Quadrotors have experienced
increased popularity in various sectors such as agriculture, surveillance, cinema,
and military applications in recent years.
Nevertheless, the challenges of system stabilization and maintaining robustness
amidst environmental variations render the control of quadrotors a nontrivial
task. Autonomous operations for aerial vehicles lean heavily on onboard stabi-
lization and trajectory tracking capabilities, thus requiring considerable effort to
ensure these vehicles attain stable flight capabilities.

Given the increasing demand for these vehicles across a variety of applica-
tions, the complexity of control challenges is consistently escalating. It is thus
critical to develop progressively more efficient and effective methodologies.

To solve the issue of position control in a quadrotor, initial efforts gravitated
towards methods of linearization and model simplification due to their com-
putational simplicity and stable hover flight [1, 6]. Following advancements
in modeling techniques and growing computational power, more sophisticated
control techniques were developed that referred to nonlinear models [12, 3].

In recent years, the emergence of advanced control techniques, specifically
Model-Predictive Control (MPC), has begun to shift the frontier of control [16,
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5, 22]. These techniques have demonstrated significant improvements in the
domain of trajectory control.

Reinforcement Learning algorithms have opened a new frontier in control.
These have delivered impressive performances in numerous applications, offer-
ing the opportunity to learn control laws without any model knowledge, relying
solely on interactions with the environment. However, in real-world robotics
contexts, the necessity of environment interaction can pose considerable limita-
tions. In the case of a quadrotor, a policy that is not yet perfected could interact
with the environment leading to disastrous outcomes.
The focus of this thesis is to study, analyze, and test the techniques of Model-
Based Reinforcement Learning, a strategy to augment the efficiency of the col-
lected data, applied to quadrotor control. We aim to implement MC-PILCO [2],
which has already exhibited excellent results in robotic control applications, and
evaluate its suitability for this application and analyze the results.

This thesis work is primarily divided into five chapters:

1. Chapter 2: This chapter begins with a qualitative introduction to the oper-
ating principles of a quadrotor. From these principles, we derive its non-
linear model while discussing potential challenges with its representation
and offering alternative solutions. In the end, we design straightforward
PID controllers to test and validate the derived models [1, 14].

2. Chapter 3: In this chapter, we introduce the predictive model used to es-
timate the evolution of the quadrotor over time, specifically leveraging
the Gaussian Process Regression approach. We first introduce various
models, then specifically discuss training for learning the dynamics of the
quadrotor. The results of the training phase will be presented, analyzing
the precision for the quantity of data used. We will conclude with an anal-
ysis of model approximation methods, which will enable predictions with
a lesser amount of data - a capability playing a crucial role in subsequent
chapters.

3. Chapter 4: This chapter provides a brief introduction to Reinforcement
Learning algorithms and Model-Based Reinforcement Learning, with a
particular focus on MC-PILCO.

4. Chapter 5: This chapter compiles all the results obtained by applying the
algorithm in two different contexts. Initially, on a nominal model described
by the ODE derived in Chapter 2, and subsequently, the algorithm has been
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CHAPTER 1. INTRODUCTION

readjusted and utilized for controlling a quadrotor on a simulator capable
of simulating real-world uncertainties with higher fidelity.

5. Chapter 6: This final chapter draws conclusions and presents the future
developments of this project.
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2
Quadrotor Model

Designing a controller of any kind necessitates the derivation of a precise
model of our quadrotor as a foundational step. This process starts with an
examination of the quadrotor’s attributes, the reference frame necessary to depict
its pose, and a method to represent its orientation. Subsequently, we establish the
quadrotor dynamics model employing the Newton-Euler method, disregarding
environmental noise and aerodynamic impacts. Once the model was completed,
we could construct a controller and simulate its behavior utilizing the quadrotor
state’s differential equation.

Our aim was to design two distinct PID controllers. The primary purpose
of the first one is to stabilize the quadrotor at a specific altitude and orientation,
although, as will be seen, it allows the quadrotor to move freely in the 𝑥𝑦

plane. This controller will solely be used for the validation of model learning.
Conversely, the second PID will have a slightly more intricate structure, but
its architecture enables it to control the orientation to move and stabilize the
quadrotor at a specified position.

2.1 Quadrotor Characteristic

A quadrotor should be classified as a rotary-wing aircraft, which in our
scenario, is propelled by four rotors positioned at the ends of arms extending
from a symmetric frame [25]. To study the dynamics, we first establish the
reference frames. For our purpose, are sufficient two right-handed coordinate
systems, an Earth-Fixed Inertial Frame (INF) coordinates system and a Base
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2.1. QUADROTOR CHARACTERISTIC

Fixed-Frame (BFF) which is attached to the quadrotor body.
Different alignment of the reference frame with respect to their body is reported
in the literature. Thus, we chose to place both z-axis oriented downwards [19,
20, 25]. For the body-fixed frame attached to the quadrotor, we chose the plus
configuration [25] with the axes x and y in line with two arms and its origin placed
at its center of mass. The final reference frames choice is shown in (Figure 2.1)
where at the beginning, the two orientations are aligned. The motion space of

Fig. 2.1: Quadrotors body-fixed and inertial coordinate systems

the rigid body aircraft can be described by its position and its orientation with
respect to its center of mass, thus, requiring six Degree of Freedom (DoF) to
define the pose in time.

Quadrotor Motion Now that we have defined how the pose is described, we
are interested in how we can control its position and orientation specifically.

6



CHAPTER 2. QUADROTOR MODEL

Our actuation is provided by the propeller whose rotational speed generates a
thrust force and a reactive torque [20, 25] that can be exploited for our purpose.
Our quadrotor is made of four motors, each controlling a propeller. This means
that our model will have six DoF but only four inputs to control its pose. This
makes our quadrotor an under-actuated system.
The main maneuver, as illustrated in Figure 2.2, includes forward/backward
and left/right translation, altitude variation, and the yaw rotation (z-axis), and
each of this motion can be obtained from the relative speed difference between
each motor. To move the quadrotor forward along the 𝑥𝐵-axis, a rotation around
the 𝑦𝐵-axis is required, this inclination can be achieved by reducing the forward
motor speed and increasing the rear one. This will create a difference in thrust
generated by the two motors, lower for the front and higher rear motor, thus
applying a torque on the 𝑦𝐵 axis that produces the rotation needed. For a
translation along the 𝑦𝐵, the same reasoning is applied, using this time the
left/right motor. This thrust variation will generate the torque on the 𝑥𝐵 axis,
rotating the quadrotor according to the speed difference. For a rotation of
the yaw angle, namely a rotation around the 𝑧𝐵 axis, a different principle is
exploited. This motion, indeed, is realized from the reactive torque produced
by the rotor. The blade rotates in the reverse direction alternatively, and a change
in the speed of the opposite pairs will produce a reactive torque that will make
the body rotate on its 𝑧𝐵 axis. Lastly, when the four-rotor speeds are exactly the
same, the quadrotor has all thrust in balance. Therefore, no rotation is produced.
Then, by changing the speed of all the motors simultaneously, it is possible to
modify its altitude. These basic control sequences can then be combined to
create a complex and sophisticated trajectory.

Rotors As said the main forces and torques are given by rotors driven by
motors. These rotors are composed of a Brushless DC Motor (BLDCM) and a
double-blade propeller. The main characteristic of this type of motor is how
the commutation is achieved with a change of the input voltage, instead of the
mechanical commutator, brush, of the classical DC motor [19]. This guarantee
to the BLDCM a longer life and a higher torque/weights ratio and, despite there
being additional problems related to its voltage control circuit.
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2.2. EULER’S ANGLES

(a) (b) (c)

(d) (e) (f)

Fig. 2.2: Quadrotor motion dynamics [25]: (a), (b) difference in torque to manipulate
the yaw angle 𝜓; (c), (d) altitude motion due to balanced torques; (e), (f) difference in
thrust to manipulate roll (𝜗) and pitch (𝜑)

2.2 Euler’s Angles

The quadrotor can be assumed and described as a rigid body. The way
that best describes its orientation with respect to the INF is with the Euler’s
angle. This rule, developed by Leonard Euler, allows us to perfectly describe the
orientation of a rigid body by means of three angles that make a 3-dimensional
space [21]. We will refer to the Roll-Pitch-Yaw (RPY) angles that are typically
used in the (aero)nautical fields to describe the attitude of an aircraft. For our
purpose we will resort to the 𝑋𝑌𝑍 angles ΘΘΘ =

[
𝜑, 𝜗,𝜓

]
defined as 𝜑 ∈ [−𝜋,𝜋]

for rotation around 𝑥-axis, 𝜗 ∈ [−𝜋
2 ,

𝜋
2
[

for rotation around 𝑦-axis and 𝜓 ∈
[−𝜋,𝜋] for rotation around 𝑧-axis. This angle represents a sequence of three
elemental rotations, and together, they are a minimal representation of the body
BFF orientation seen by the INF, which is assumed as a known orientation. This
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CHAPTER 2. QUADROTOR MODEL

rotation is given by the matrices:

𝑅𝑅𝑅𝑥(𝜑) =

1 0 0
0 𝑐(𝜑) −𝑠(𝜑)
0 𝑠(𝜑) 𝑐(𝜑)

 , (2.1)

𝑅𝑅𝑅𝑦(𝜗) =

𝑐(𝜗) 0 𝑠(𝜗)

0 1 0
−𝑠(𝜗) 0 𝑐(𝜑)

 , (2.2)

𝑅𝑅𝑅𝑧(𝜓) =

𝑐(𝜓) −𝑠(𝜓) 0
𝑠(𝜓) 𝑐(𝜓) 0

0 0 1

 , (2.3)

where, for notations necessity we used 𝑐(𝜑) = cos 𝜑, 𝑐(𝜗) = cos𝜗, 𝑐(𝜓) = cos𝜓,
𝑠(𝜑) = sin 𝜑, 𝑠(𝜗) = sin𝜗 and 𝑠(𝜓) = sin𝜓.
To find the resulting frame orientation of the rigid body with respect to the INF,
we have to consider the composition of these three rotation matrices, i.e.

𝑅𝑅𝑅𝑊𝐵 = 𝑅𝑅𝑅𝑊𝐵 (𝜓, 𝜗, 𝜑) = 𝑅𝑅𝑅𝑧(𝜓)𝑅𝑅𝑅𝑦(𝜗)𝑅𝑅𝑅𝑥(𝜑) =

=


𝑐(𝜗)𝑐(𝜓) 𝑠(𝜑)𝑠(𝜗)𝑐(𝜓) − 𝑐(𝜑)𝑠(𝜓) 𝑐(𝜑)𝑠(𝜗)𝑐(𝜓) + 𝑠(𝜑)𝑠(𝜓)
𝑐(𝜗)𝑠(𝜓) 𝑠(𝜑)𝑠(𝜗)𝑠(𝜓) + 𝑐(𝜑)𝑐(𝜓) 𝑐(𝜑)𝑠(𝜗)𝑠(𝜓) − 𝑠(𝜑)𝑐(𝜓)
−𝑠(𝜗) 𝑠(𝜑)𝑐(𝜗) 𝑐(𝜑)𝑐(𝜗)


. (2.4)

Singularities These angles are widely used to describe the dynamics of a
quadrotor. Despite the fact, that they are very intuitive and easy to interpret
and visualize, they suffer from singularities [8]. This happens specifically when
we reach the pitch 𝜗 = 𝜋/2 obtaining the rotation matrix

𝑅𝑅𝑅𝑊𝐵 (𝜓,𝜋/2, 𝜑) = 𝑅𝑅𝑅𝑧(𝜓)𝑅𝑅𝑅𝑦(𝜋/2)𝑅𝑅𝑅𝑥(𝜑) =

=


0 𝑠(𝜑 − 𝜓) 𝑐(𝜑 − 𝜓)
0 𝑐(𝜑 − 𝜓) −𝑠(𝜑 − 𝜓)
−1 0 0


. (2.5)

We observe that the resulting matrix is a function of both 𝜑 and 𝜓, but there is
only one DoF because only the difference 𝜑 − 𝜓 affects the resulting rotation.
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2.3. QUADROTOR DYNAMIC MODEL

Fig. 2.3: Quadrotor rotors torques and forces

These conditions lead to mathematical issues for the dynamic model with that
specific orientation. Moreover, the representation by RPY angles goes hand in
hand with the computation of sine and cosine, which increases the computa-
tional cost. A valid alternative, more efficient and singularity-free, might be
obtained by describing the quadrotor dynamic exploiting quaternion. This tool
will be discussed in Section 2.4, also presenting an alternative with quaternions
in addition to the classical dynamic model.

2.3 Quadrotor Dynamic Model

We now want to look for the dynamic model of the quadrotor. Two different
methods can be applied to solve the dynamic problem: the Euler-Lagrange and
the Newton-Euler formalism. It has been noted that the Newton-Euler method is
easy to be understood and accepted physically despite the compact formulation
and generalization shown by Euler-Lagrange formalism [25].
As we can see in Figure 2.3, each rotor will provide its contribution in terms
of force and torque, according to the motor speed 𝜔𝑖 and blade configuration.
Our goal is to find how the interactions of the quadrotor with the environment
generate these forces and how they contribute to the whole body dynamics.
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CHAPTER 2. QUADROTOR MODEL

2.3.1 Generalized Coordinates

We define, as a first step, the generalized coordinates[
ΓΓΓ

ΘΘΘ

]
=

[
𝑥 𝑦 𝑧 𝜑 𝜗 𝜓

]𝑇 ∈ R6, (2.6)

where the vector ΓΓΓ = [𝑥, 𝑦, 𝑧]𝑇 ∈ R3 denotes the position of the quadrotor center
of mass with respect to the INF and ΘΘΘ = [𝜑, 𝜗,𝜓]𝑇 ∈ R3 are the three Euler
angles (respectively Yaw, Pitch, Roll) as defined in Section 2.2. For the BFF, we
will consider its linear and angular velocity, respectively

𝜂𝜂𝜂 = [𝑢 𝑣 𝑤]𝑇 ,
ΩΩΩ =

[
𝑝 𝑞 𝑟

]𝑇
.

(2.7)

The coordinates defined in ((2.6)) and ((2.7)) are related together by the relation

ΓΓΓ¤ = 𝑅𝑅𝑅𝑊𝐵 · 𝜂𝜂𝜂 (2.8)

ΘΘΘ¤ = 𝑇𝑇𝑇 ·ΩΩΩ (2.9)

with ΓΓΓ¤ = [𝑥¤ , 𝑦¤ , 𝑧¤]𝑇 ∈ R3 and = ΘΘΘ¤ = [𝜑¤ , 𝜗¤ ,𝜓¤ ]𝑇 ∈ R3. For angular velocities trans-
formation the matrix 𝑇 come, due to integral interpretation, from the relation
[11]

ΩΩΩ =


𝜑¤
0
0

 +𝑅𝑅𝑅𝑥(𝜑)
𝑇


0
𝜗¤
0

 +𝑅𝑅𝑅𝑥(𝜑)
𝑇𝑅𝑅𝑅𝑦(𝜗)𝑇


0
0
𝜓¤

 := 𝑇−1
Θ ΘΘΘ¤ , (2.10)

thus

𝑇−1
Θ =


1 0 −𝑠(𝜗)
0 𝑐(𝜑) 𝑐(𝜗)𝑠(𝜑)
0 −𝑠(𝜑) 𝑐(𝜗)𝑐(𝜑)

 =⇒ 𝑇Θ =


1 𝑠(𝜑)𝑡(𝜗) 𝑐(𝜑)𝑡(𝜗)
0 𝑐(𝜑) −𝑠(𝜑)
0 𝑠(𝜑)/𝑐(𝜗) 𝑐(𝜑)/𝑐(𝜗)

 (2.11)

where 𝑡(·) = 𝑡𝑎𝑛(·).

11



2.3. QUADROTOR DYNAMIC MODEL

2.3.2 Torques and Forces

As previously said the kinematics and dynamics model of a quadrotor will
be derived based on Newton-Euler formalism. We will make the following
assumptions [14, 24]:

• The structure is rigid and symmetrical.

• The center of gravity of the quadrotor coincides with the body fixed frame
origin.

• The propellers are rigid.

• Thrust and drag are proportional to the square of the propellers speed.

From the first assumption we can simplify the inertia matrix used, namely, we
have the inertia tensor defined as [19]

𝐼𝐼𝐼 =


𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

 =


𝐼𝑥 0 0
0 𝐼𝑦 0
0 0 𝐼𝑧

 . (2.12)

Now to derive the dynamic equations, we must consider all the forces and the
torques that act on the body [19]. In the BFF, the torque moment must also
account for the Coriolis effect, thus

𝐵𝜏𝜏𝜏 =
𝑑𝐿𝐿𝐿
𝑑𝑡
+ΩΩΩ × 𝐿𝐿𝐿 = 𝐼𝐼𝐼 · 𝜔𝜔𝜔¤ 𝐵 +ΩΩΩ × (𝐼𝐼𝐼 ·ΩΩΩ) . (2.13)

Developing the cross-product, we find the equations

𝐵𝜏𝑥 = 𝐼𝑥𝑝¤ + (𝐼𝑧 − 𝐼𝑦)𝑞𝑟
𝐵𝜏𝑦 = 𝐼𝑦𝑞¤ + (𝐼𝑥 − 𝐼𝑧)𝑟𝑝
𝐵𝜏𝑧 = 𝐼𝑧𝑟¤ + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞

(2.14)

Similarly, the translation forces by the time derivative of the momentum𝑃𝑃𝑃 = 𝑚 ·𝜂𝜂𝜂
thus, for the translation in the BFF, we have

𝐵𝐹𝐹𝐹 =

(
𝑑𝑃𝑃𝑃
𝑑𝑡

)
+ΩΩΩ × 𝑃𝑃𝑃 = 𝑚

(
𝜂𝜂𝜂¤ +ΩΩΩ × 𝜂𝜂𝜂) (2.15)

12



CHAPTER 2. QUADROTOR MODEL

leading to the equations

𝐵𝐹𝑥 = 𝑚
(
𝑢¤ + 𝑞𝑤 − 𝑣𝑟)

𝐵𝐹𝑦 = 𝑚
(
𝑣¤ + 𝑟𝑢 − 𝑤𝑝)

𝐵𝐹𝑧 = 𝑚
(
𝑤¤ + 𝑝𝑣 − 𝑞𝑢) . (2.16)

To wrap up, until now, we have considered the quadrotor as a rigid body whose
motion equations are subject to external force 𝐵𝐹𝐹𝐹 ∈ R3 and torque 𝐵𝜏𝜏𝜏 ∈ R3.
According to the Newton-Euler equations we arrive can write ((2.14)) and ((2.16))
in the compact form [25] given by[

𝑚𝐼3×3 000
000 𝐼3×3

] [
𝜂𝜂𝜂¤
ΩΩΩ¤

]
+

[
ΩΩΩ × 𝑚𝜂𝜂𝜂
ΩΩΩ × 𝐼ΩΩΩ

]
=

[
𝐵𝐹𝐹𝐹
𝐵𝜏𝜏𝜏

]
. (2.17)

We now consider the forces and the torques that will be present in equations
((2.17)). The main interactions acting between the quadrotor and the environ-
ment are [19]

1. gyroscopic effect;

2. propeller drag torque;

3. thrust;

4. earth gravity;

5. aerodynamic force.

Initially, we will neglect point 5, however, this is only a first assumption and
it will be considered in a further section.

Gyroscopic Effect

The gyroscopic effect is the tendency of the rotating body to maintain a
steady direction of its axis of rotation. For each rotor, we consider its rotational
frame similar to the BFF. Thus, considering rotor with positive angular speed
𝜔𝜔𝜔 𝑗 , 𝑗 = {2, 4}, we can write the gyroscopic moment as

𝐵
𝐺𝜏𝜏𝜏 𝑗 = 𝐼𝐼𝐼 𝑗 · 𝜔𝜔𝜔¤ 𝑗 +ΩΩΩ ×

(
𝐼𝐼𝐼 𝑗 · 𝜔𝜔𝜔 𝑗

)
, (2.18)

where 𝐼𝐼𝐼 𝑗 is the gyroscopic inertia of the 𝑗-th rotor. We now consider that the
direction of 𝜔𝜔𝜔 𝑗 coincide with the 𝑧-axis of the BFF coordinates system, thus

13



2.3. QUADROTOR DYNAMIC MODEL

𝐼 𝑗 ,𝑥 = 𝐼 𝑗 ,𝑦 = 0. Moreover, we assume all the rotor to be identical and therefore
𝐼 𝑗 ,𝑧 = 𝐼𝐺, finally leading to the equations

𝐵
𝐺𝜏𝑗 ,𝑥 = 𝐼𝐺𝜔 𝑗𝑞
𝐵
𝐺𝜏𝑗 ,𝑦 = −𝐼𝐺𝜔 𝑗𝑝
𝐵
𝐺𝜏𝑗 ,𝑧 = 𝐼𝐺𝜔¤ 𝑗

. (2.19)

Note that this torque is found for clockwise rotation while for motor 𝑗 = {1, 3}
with a counterclockwise rotation is sufficient to change the sign of 𝐵

𝐺𝜏𝜏𝜏 𝑗,𝑥 and
𝐵
𝐺𝜏𝜏𝜏 𝑗,𝑦 .

Air Drag

Propellers, depending on their shape and rotation direction, are subject to
the reaction of the air onto them. This interaction is called drag torque. Again
we consider the propeller rotation axis to be aligned with the BFF 𝑧-axis, The
drag torque for the clockwise motor is modeled as

𝐵
𝐷𝜏𝑗 = 𝑐𝐷𝜌𝐴𝑅2 (

𝜔 𝑗𝑅
)2 = 𝑐𝐷𝜌𝜋𝑅5𝜔2

𝑗 = 𝑘𝐷𝜔2
𝐽 (2.20)

where

• 𝑐𝐷 is the non-dimensional drag torque coefficient;

• 𝜌 [𝑘𝑔/𝑚3] is the air density;

• 𝐴 [𝑚2] is the area of the propeller disk;

• 𝑅 [𝑚] is the propeller radius;

• 𝑘𝐷 [𝑘𝑔𝑚2] is the resulting dimensional drag torque coefficient.

Now we can sum all torques that act on the rotor for the 𝑧-axis of the BFF.
For simplicity notation, we will drop the 𝐵 frame reference and the 𝑗 index, for
instance, we will consider 𝜏𝐷 =𝐵𝐷 𝜏𝑧 . Summing all the torques that act on the
rotor, we obtain ∑

𝜏 = 𝐼𝐺𝜔¤ = 𝑀𝐸 −𝑀𝐵 −𝑀𝐿 (2.21)

where

• 𝑀𝐸 = 𝑘𝑡 𝑖𝑎 is the electromagnetic torque,

• 𝑀𝐵 = 𝐵𝑎𝜔 is the friction torque,

14
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• 𝑀𝐿 = 𝑀𝐷 is the load torque that we consider to be only the drag force.

Considering now all body-fixed coordinate system components, the magnetic
torque generated by the BLDCM is 𝑀𝑀𝑀𝐸 = 𝑀𝑀𝑀𝐺 +𝑀𝑀𝑀𝐷 +𝑀𝑀𝑀𝐵. This consideration
give, for rotors 𝑗 = {2, 4}, the equation from the air-frame perspective

𝐵
𝐸𝜏𝑗,𝑥 = −𝐼𝐺𝜔 𝑗𝑞
𝐵
𝐸𝜏𝑗,𝑦 = 𝐼𝐺𝜔 𝑗𝑝

𝐵
𝐸𝜏𝑗,𝑧 = −

(
𝐼𝐺𝜔¤ 𝑗 + 𝑘𝑑𝜔2

𝑗 + 𝐵𝑎𝜔 𝑗

) . (2.22)

For the rotors 𝑗 = {1, 3}, we have only to change signs in equation (2.22) due to
the different rotation directions.

Thrust

The thrust force is probably the main force that acts on the quadrotor. It
is generated by the propeller rotation, and it is used to lift and transnational
purposes. We will consider its direction to be always aligned with the BFF
𝑧-axis. The thrust force, for a rotor 𝑗 = {1, 2, 3, 4} is modeled as

𝑇𝑗 =𝐵𝑇 𝐹𝑧,𝑗 = −𝑐𝑇𝜌𝜋𝑅4𝜔2
𝑗 = −𝑘𝑇𝜔2

𝑗 (2.23)

where the coefficient is defined in the same way as the drag torque. Now
considering all the rotors, the total thrust force is

𝐵
𝑇𝐹𝑧 =

4∑
𝑗=1

𝑇𝑗 = −𝑘𝑇
4∑
𝑗=1

𝜔2
𝑗 . (2.24)

We define with 𝑙𝑎 the length of each arm, assumed equal to all the arms, namely
the distance in the XY BFF plane from the rotor rotational axis to the drone
center of mass. The thrust difference generated by the propeller in the 𝑥-axis
produces a torque on the 𝑦-axis and vice-versa

𝐵
𝑇𝜏𝑥 = 𝑙𝑎(𝑇4 − 𝑇2)
𝐵
𝑇𝜏𝑦 = 𝑙𝑎(𝑇1 − 𝑇3)
𝐵
𝑇𝜏𝑧 = 0

. (2.25)
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Earth Gravity

Gravity applies a weight force to the center of mass that is modeled in the
inertial frame as

𝑊
𝑔 𝐹𝐹𝐹 =

[
0 0 𝑚𝑔

]𝑇
, (2.26)

where 𝑔 = 9.81𝑚/𝑠2. Now resorting to the inverse rotation matrix defined in
equation (2.4), i.e. 𝑅𝑅𝑅𝐵𝑊 = 𝑅𝑅𝑅𝑊𝐵

𝑇 , the gravity force upon the quadrotor is obtained
as

𝐵
𝑔𝐹𝐹𝐹 = 𝑅𝑅𝑅𝐵𝑊 ·𝑊𝑔 𝐹𝐹𝐹 =


−𝑚𝑔 · 𝑐(𝜗)
𝑚𝑔 · 𝑠(𝜑)𝑐(𝜗)
𝑚𝑔 · 𝑐(𝜑)𝑐(𝜗)

 . (2.27)

Assuming that the quadrotor mass and gravitational centers coincide, no mo-
ment is generated by its weight force [19].

2.3.3 State-Space Model

At this time, we defined all the force and torque components that interact
with the quadrotor, thus, exploiting the relation given by equation (2.17). By
that, we are able to build the state space model with the equation of motion.
For our model, we will consider the state from the variable defined by equation
(2.6) and (2.7), so

𝑥𝑥𝑥 =
[
𝑥 𝑦 𝑧 𝜑 𝜗 𝜓 𝑢 𝑣 𝑤 𝑝 𝑞 𝑟

]𝑇 ∈ R12. (2.28)

For the input, we choose the 4 motors’ speed

𝑢𝑢𝑢 =
[
𝜔1 𝜔2 𝜔3 𝜔4

]𝑇 ∈ R4. (2.29)

Now that we defined the state of our model and its input we can define its
dynamic evolution. Specifically, we are interested in the vector

𝑥𝑥𝑥¤ =
[
𝑥¤ 𝑦¤ 𝑧¤ 𝜑¤ 𝜗¤ 𝜓¤ 𝑢¤ 𝑣¤ 𝑤¤ 𝑝¤ 𝑞¤ 𝑟¤

]𝑇 ∈ R12. (2.30)

The first six states have already been defined in (2.8) and (2.9), while for the
evolution of the velocities of the quadrotor concerning its BFF, we must resort
to the equations and assumption done in section 2.3.2. Considering first the
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moments, we take equation (2.22), with an inverted sign to have it as perceived
by the quadrotor air-frame, [19], and equation (2.25). From equation (2.14),
isolating the angular acceleration we get

𝑝¤ = 𝑙𝑎
𝐼𝑥
(𝑇4 − 𝑇2) + 1

𝐼𝑥

∑4
𝑗=1

𝐵
𝐸𝜏
−
𝑗 ,𝑥 + (

𝐼𝑦−𝐼𝑧)
𝐼𝑥

𝑞𝑟

𝑞¤ = 𝑙𝑎
𝐼𝑦
(𝑇1 − 𝑇3) + 1

𝐼𝑦

∑4
𝑗=1

𝐵
𝐸𝜏
−
𝑗 ,𝑦 + (𝐼𝑥−𝐼𝑧)𝐼𝑦

𝑝𝑟

𝑟¤ = 1
𝐼𝑧

∑4
𝑗=1

𝐵
𝐸𝜏
−
𝑗 ,𝑧

. (2.31)

Following the same procedure, we can exploit equations (2.24) and (2.27), insert-
ing them in (2.16) and isolating the translational accelerations, yields the force
equations set as


𝑢¤ = 𝑣𝑟 − 𝑤𝑞 − 𝑔 · 𝑠(𝜗)
𝑣¤ = 𝑤𝑝 − 𝑢𝑟 + 𝑔 · 𝑠(𝜑)𝑐(𝜗)
𝑤¤ = 𝑢𝑞 − 𝑣𝑝 + 𝑔 · 𝑐(𝜑)𝑐(𝜗) + 1

𝑚
∑4
𝑗=1 𝑇𝑗

. (2.32)

These equations give all the necessary to define the quadrotor dynamic described
by its motion equations (2.8), (2.9), (2.31) and (2.32). As the last step, we can
make explicit the last two equations set as a function of motor speed obtaining

17



2.4. QUATERNION MODELING

the final state space evolution

𝑥𝑥𝑥¤ = 𝑓𝑓𝑓 (𝑥𝑥𝑥, 𝑢𝑢𝑢) =



𝑥¤ = [
𝑐(𝜗)𝑐(𝜓)] 𝑢 + [

𝑠(𝜑)𝑠(𝜗)𝑐(𝜓) − 𝑐(𝜑)𝑠(𝜓)] 𝑣+
+ [
𝑐(𝜑)𝑠(𝜗)𝑐(𝜓) + 𝑠(𝜑)𝑠(𝜓)] 𝑤

𝑦¤ = [
𝑐(𝜗)𝑠(𝜓)] 𝑢 + [

𝑠(𝜑)𝑠(𝜗)𝑠(𝜓) + 𝑐(𝜑)𝑐(𝜓)] 𝑣+
+ [
𝑐(𝜑)𝑠(𝜗)𝑠(𝜓) − 𝑠(𝜑)𝑐(𝜓)] 𝑤

𝑧¤ = [−𝑠(𝜗)] 𝑢 + [
𝑠(𝜑)𝑐(𝜗)] 𝑣 + [

𝑐(𝜑)𝑐(𝜗)] 𝑤
𝜑¤ = 𝑝 + [

𝑠(𝜑)𝑡(𝜗)] 𝑞 + [
𝑐(𝜑)𝑡(𝜗)] 𝑟

𝜗¤ = [
𝑐(𝜑)] 𝑞 + [−𝑠(𝜑)] 𝑟

𝜓¤ =
[
𝑠(𝜑)
𝑐(𝜗)

]
𝑞 +

[
𝑐(𝜑)
𝑐(𝜗)

]
𝑟

𝑢¤ = 𝑣𝑟 − 𝑤𝑞 − 𝑔 · 𝑠(𝜗)
𝑣¤ = 𝑤𝑝 − 𝑢𝑟 + 𝑔 · 𝑠(𝜑)𝑐(𝜗)
𝑤¤ = 𝑢𝑞 − 𝑣𝑝 + 𝑔 · 𝑐(𝜑)𝑐(𝜗) − 𝑘𝑇

𝑚
∑4
𝑗=1 𝜔

2
𝑗

𝑝¤ = 𝑙𝑎
𝐼𝑥
𝑘𝑇

(
𝜔2

2 − 𝜔2
4
) + 𝐼𝐺

𝐼𝑥
𝑞
∑4
𝑗=1 𝜔 𝑗 (−1)𝑗 + (𝐼𝑦−𝐼𝑧)𝐼𝑥

𝑞𝑟

𝑞¤ = 𝑙𝑎
𝐼𝑦
𝑘𝑇

(
𝜔2

3 − 𝜔2
1

)
− 𝐼𝐺

𝐼𝑦
𝑝
∑4
𝑗=1 𝜔 𝑗 (−1)𝑗 + (𝐼𝑧−𝐼𝑥)𝐼𝑦

𝑝𝑟

𝑟¤ = 1
𝐼𝑧

∑4
𝑗=1

(
𝐼𝐺𝜔¤ 𝑗 + 𝑘𝐷𝜔2

𝑗 + 𝐵𝑎𝜔 𝑗

)
(−1)𝑗 + (𝐼𝑥−𝐼𝑦)𝐼𝑧

𝑝𝑞

. (2.33)

2.4 Quaternion Modeling

As anticipated in Section 2.2 Euler’s representation may fall in a singular
configuration. As we can see by expression (2.5) if the pitch angle is 𝜋/2 the
rotation matrix will depend only on the difference 𝜑 − 𝜓 translating in a loss
of a DoF. To deal with this problem we need a different representation for the
rotation that allows singular-free modeling of our quadrotor dynamics. Quater-
nions will allow us to describe our quadrotor orientation, namely, its RPY angles,
overcoming singularity issues [8].

2.4.1 Quaternion Math and Properties

We can talk of a quaternion as a particular description of a rotation around
a vector. Quaternion is defined as a hyper-complex number [16, 13] of rank 4.
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The most popular approach to describe a quaternion is

𝑞𝑞𝑞 = 𝑞0 + 𝑞1𝑖𝑖𝑖 + 𝑞2𝑗𝑗𝑗 + 𝑞3𝑘𝑘𝑘

𝑞𝑞𝑞 =
[
𝑞0 𝑞1 𝑞2 𝑞3

]𝑇 , (2.34)

where the quaternion elements from 𝑞1 to 𝑞3 are called the vector part of the
quaternion, while 𝑞0 is the scalar part. Multiplication of two quaternions 𝑝𝑝𝑝,
𝑞𝑞𝑞 if both express a rotation represents a combined rotation. Their product is
performed by the Kronecker product and, just as rotation, is a non-commutative
operation

𝑝𝑝𝑝 ⊗ 𝑞𝑞𝑞 =


𝑝0𝑞0 − 𝑝1𝑞1 − 𝑝2𝑞2 − 𝑝3𝑞3

𝑝0𝑞1 + 𝑝1𝑞0 + 𝑝2𝑞3 − 𝑝3𝑞2

𝑝0𝑞2 − 𝑝1𝑞3 + 𝑝2𝑞0 + 𝑝3𝑞1

𝑝0𝑞3 + 𝑝1𝑞2 − 𝑝2𝑞1 + 𝑝3𝑞0


. (2.35)

For our purpose, we will assume all quaternion with unitary norms [13], namely

𝑁𝑜𝑟𝑚(𝑞𝑞𝑞) = | |𝑞𝑞𝑞 | | =
√
𝑞2

0 + 𝑞2
1 + 𝑞2

2 + 𝑞2
3 = 1, (2.36)

and the inverse of the unitary quaternion is

𝐼𝑛𝑣(𝑞𝑞𝑞) = 𝑞𝑞𝑞−1 =
𝑞𝑞𝑞∗

| |𝑞𝑞𝑞 | | = 𝑞𝑞𝑞
∗. (2.37)

To conclude our properties analysis we want to define the quaternion derivative,
which will become particularly useful later. From the possible representation
[13] we are considering as if our angular velocity vector ΩΩΩ is in the body frame
of reference [8], specifically

𝑞𝑞𝑞¤ΩΩΩ(𝑞𝑞𝑞,ΩΩΩ) =
1
2

[
0
ΩΩΩ

]
⊗ 𝑞𝑞𝑞 (2.38)

Quaternion Elementary Rotation A unitary quaternion can be used as a rota-
tion operator, however, the transformation resort both to the quaternion and its
conjugate. If we want rotate a vector 𝑛𝑛𝑛 according to the representation given by
𝑞𝑞𝑞 we have the equation

𝑚𝑚𝑚 = 𝑞𝑞𝑞 ⊗
[
0
𝑛𝑛𝑛

]
⊗ 𝑞𝑞𝑞∗. (2.39)
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To find the elementary rotation expressed by quaternion it is sufficient to replace
𝑛𝑛𝑛 with the 𝑥, 𝑦, and 𝑧 axis, obtaining the vector part

𝑅𝑥(𝑞𝑞𝑞) = 𝑞𝑞𝑞 ⊗


0
1
0
0


⊗ 𝑞𝑞𝑞∗ =


𝑞2

0 + 𝑞2
1 − 𝑞2

2 − 𝑞2
3

2
(
𝑞1𝑞2 + 𝑞0𝑞3

)
2
(
𝑞1𝑞3 − 𝑞0𝑞2

)


𝑅𝑦(𝑞𝑞𝑞) = 𝑞𝑞𝑞 ⊗


0
0
1
0


⊗ 𝑞𝑞𝑞∗ =


2
(
𝑞1𝑞2 − 𝑞0𝑞3

)
𝑞2

0 − 𝑞2
1 + 𝑞2

2 − 𝑞2
3

2
(
𝑞2𝑞3 + 𝑞0𝑞1

)


𝑅𝑧(𝑞𝑞𝑞) = 𝑞𝑞𝑞 ⊗


0
0
0
1


⊗ 𝑞𝑞𝑞∗ =


2
(
𝑞1𝑞3 + 𝑞0𝑞2

)
2
(
𝑞2𝑞3 − 𝑞0𝑞1

)
𝑞2

0 − 𝑞2
1 − 𝑞2

2 + 𝑞2
3



. (2.40)

To represent the quaternion for our purpose we exploit the property [13] that
relates with the Euler angle (𝜑, 𝜗𝜓) as

𝑞𝑞𝑞 =


𝑐(𝜑/2)𝑐(𝜗/2)𝑐(𝜓/2) + 𝑠(𝜑/2)𝑠(𝜗/2)𝑠(𝜓/2)
𝑠(𝜑/2)𝑐(𝜗/2)𝑐(𝜓/2) − 𝑐(𝜑/2)𝑠(𝜗/2)𝑠(𝜓/2)
𝑐(𝜑/2)𝑠(𝜗/2)𝑐(𝜓/2) + 𝑠(𝜑/2)𝑐(𝜗/2)𝑠(𝜓/2)
𝑐(𝜑/2)𝑐(𝜗/2)𝑠(𝜓/2) − 𝑠(𝜑/2)𝑠(𝜗/2)𝑐(𝜓/2)


, (2.41)

while from quaternion to Euler angle is


𝜑

𝜗

𝜓

 =


𝑎𝑡𝑎𝑛2

(
2(𝑞0𝑞1 + 𝑞2𝑞3), 𝑞2

0 − 𝑞2
1 − 𝑞2

2 + 𝑞2
3

)
𝑎𝑠𝑖𝑛

(
2(𝑞0𝑞2 − 𝑞3𝑞1))

𝑎𝑡𝑎𝑛2
(
2(𝑞0𝑞3 + 𝑞1𝑞2), 𝑞2

0 + 𝑞2
1 − 𝑞2

2 − 𝑞2
3

)
 (2.42)

Quaternion Rotation Matrix We can now combine the elementary rotation
expression found in (2.40) to obtain the rotation matrix of a vector as a function
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of quaternion [8, 13]

𝑄𝑅𝑊𝐵 =
[
𝑅𝑥(𝑞𝑞𝑞) 𝑅𝑦(𝑞𝑞𝑞) 𝑅𝑧(𝑞𝑞𝑞)

]
=

=


𝑞2

0 + 𝑞2
1 − 𝑞2

2 − 𝑞2
3 2

(
𝑞1𝑞2 − 𝑞0𝑞3

)
2
(
𝑞1𝑞3 + 𝑞0𝑞2

)
2
(
𝑞1𝑞2 + 𝑞0𝑞3

)
𝑞2

0 − 𝑞2
1 + 𝑞2

2 − 𝑞2
3 2

(
𝑞2𝑞3 − 𝑞0𝑞1

)
2
(
𝑞1𝑞3 − 𝑞0𝑞2

)
2
(
𝑞2𝑞3 + 𝑞0𝑞1

)
𝑞2

0 − 𝑞2
1 − 𝑞2

2 + 𝑞2
3


. (2.43)

Another interesting characteristic of the rotation matrix expressed in terms of a
quaternion is the fact that its element does not
On the other hand, the inverse transformation is derived directly by the quater-
nion inverse, defined in (2.37) and is given by

𝑄𝑅𝐵𝑊 =
(
𝑄𝑅𝑊𝐵

)−1
=

(
𝑄𝑅𝑊𝐵

)𝑇
=

=


𝑞2

0 + 𝑞2
1 − 𝑞2

2 − 𝑞2
3 2

(
𝑞1𝑞2 + 𝑞0𝑞3

)
2
(
𝑞1𝑞3 − 𝑞0𝑞2

)
2
(
𝑞1𝑞2 − 𝑞0𝑞3

)
𝑞2

0 − 𝑞2
1 + 𝑞2

2 − 𝑞2
3 2

(
𝑞2𝑞3 + 𝑞0𝑞1

)
2
(
𝑞1𝑞3 + 𝑞0𝑞2

)
2
(
𝑞2𝑞3 − 𝑞0𝑞1

)
𝑞2

0 − 𝑞2
1 − 𝑞2

2 + 𝑞2
3


. (2.44)

2.4.2 Quaternion Based Dynamic Model

To define the quadrotor model, we keep the assumption of its structure and
the dynamic unchanged. It is necessary to modify the state that no longer resorts
to the RPY angle but is replaced with its quaternion representation. Our new
state is

𝑥𝑥𝑥𝑄 =
[
𝑥 𝑦 𝑧 𝑞𝑞𝑞𝑇 𝑢 𝑣 𝑤 𝑝 𝑞 𝑟

]𝑇 ∈ R13, (2.45)

where 𝑞𝑞𝑞 is defined as in equation (2.41). To derive the new model of the quadro-
tor dynamics, we must modify the evolution defined by the set of equations
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(2.33) according to the new state representation, thus

𝑥𝑥𝑥¤𝑄 =



𝑥¤ = [
𝑞2

0 + 𝑞2
1 − 𝑞2

2 − 𝑞2
3
]
𝑢 + [

2
(
𝑞1𝑞2 − 𝑞0𝑞3

) ]
𝑣+

+ [
2
(
𝑞1𝑞3 + 𝑞0𝑞2

) ]
𝑤

𝑦¤ = [
2
(
𝑞1𝑞2 + 𝑞0𝑞3

) ]
𝑢 + [

𝑞2
0 − 𝑞2

1 + 𝑞2
2 − 𝑞2

3
]
𝑣+

+ [
2
(
𝑞2𝑞3 − 𝑞0𝑞1

) ]
𝑤

𝑧¤ = [
2
(
𝑞1𝑞3 − 𝑞0𝑞2

) ]
𝑢 + [

2
(
𝑞2𝑞3 + 𝑞0𝑞1

) ]
𝑣+

+ [
𝑞2

0 − 𝑞2
1 − 𝑞2

2 + 𝑞2
3
]
𝑤

𝑞0¤ = 1
2
[−𝑞1𝑝 − 𝑞2𝑞 − 𝑞3𝑟

]
𝑞1¤ = 1

2
[
𝑞0𝑝 − 𝑞3𝑞 + 𝑞2𝑟

]
𝑞2¤ = 1

2
[
𝑞3𝑝 + 𝑞0𝑞 − 𝑞1𝑟

]
𝑞3¤ = 1

2
[−𝑞2𝑝 + 𝑞1𝑞 + 𝑞0𝑟

]
𝑢¤ = 𝑣𝑟 − 𝑤𝑞 − 𝑔 · 2 (

𝑞1𝑞3 − 𝑞0𝑞2
)

𝑣¤ = 𝑤𝑝 − 𝑢𝑟 + 𝑔 · 2 (
𝑞2𝑞3 + 𝑞0𝑞1

)
𝑤¤ = 𝑢𝑞 − 𝑣𝑝 + 𝑔 ·

(
𝑞2

0 − 𝑞2
1 − 𝑞2

2 + 𝑞2
3

)
+ 𝑘𝐷

𝑚
∑4
𝑗=1 𝜔

2
𝑗

𝑝¤ = 𝑙𝑎
𝐼𝑥
𝑘𝑇

(
𝜔2

4 − 𝜔2
2
) + 𝐼𝐺

𝐼𝑥
𝑞
∑4
𝑗=1 𝜔 𝑗 (−1)𝑗 + (𝐼𝑦−𝐼𝑧)𝐼𝑥

𝑞𝑟

𝑞¤ = 𝑙𝑎
𝐼𝑦
𝑘𝑇

(
𝜔2

1 − 𝜔2
3

)
+ 𝐼𝐺

𝐼𝑦
𝑝
∑4
𝑗=1 𝜔 𝑗 (−1)𝑗 + (𝐼𝑧−𝐼𝑥)𝐼𝑦

𝑝𝑟

𝑟¤ = 1
𝐼𝑧

∑4
𝑗=1

(
𝐼𝐺𝜔¤ 𝑗 + 𝑘𝐷𝜔2

𝑗 + 𝐵𝑎𝜔 𝑗

)
(−1)𝑗 + (𝐼𝑥−𝐼𝑦)𝐼𝑧

𝑝𝑞

. (2.46)

At this point, we have the quadrotor dynamic model with orientation based on
quaternion representation. It is clear how this expression does not suffer from
problem-related to singularity. Moreover, it is not required anymore to compute
any trigonometric function as 𝑠𝑖𝑛 or 𝑐𝑜𝑠, lightening the computational cost.

Alternative to quaternions In the following sections, our primary task remains
to learn a model that can best approximate the dynamics of the quadrotor.
However, it will be seen that it can be practical to exploit only the state elements
representing speed and to integrate the position elements. A representation with
quaternions would make the integration step unusable, so we prefer to opt for
representations without quaternions. To avoid the occurrence of singularities,
we will adopt a representation of the system’s orientation by augmenting the
state with the sine and cosine functions in place of the respective angles.
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2.5 Quadrotor Model in a Single Reference Frame

Up to now, we found the state-space model defined by the state in (2.28)
or, resorting to quaternions, (2.45). Looking at that equation, it is immediately
noticed that they describe a classical physical system, where the system pose,
and the corresponding velocities make the state. However, this information
is expressed in two different reference frames. The position refers to the INF
while the velocities are expressed consistently to the BFF. This expression
is convenient for finding the equation of motion and exploiting them for the
model simulation process. On the other hand, however, for model learning, we
might want a different state representation where both pose, and velocities are
expressed in the INF.

2.5.1 State Redefinition

In Chapter 2, we found the state-space model defined by the state in (2.28)
or, resorting to quaternions, (2.45). Looking at that equation, it is immediately
noticed that they describe a classical physical system, where the system pose,
and the corresponding velocities make the state. However, this information
is expressed in two different reference frames. The position refers to the INF
while the velocities are expressed consistently to the BFF. This expression
is convenient for finding the equation of motion and exploiting them for the
model simulation process. On the other hand, however, for model learning, we
might want a different state representation where both pose, and velocities are
expressed in the INF.
According to that, we aim to define our new state

𝑥𝑥𝑥 =
[
𝑥 𝑦 𝑧 𝜑 𝜗 𝜓 𝑥¤ 𝑦¤ 𝑧¤ 𝜑¤ 𝜗¤ 𝜓¤

]𝑇 ∈ R12, (2.47)

whose dynamic will become

𝑥𝑥𝑥¤ =
[
𝑥¤ 𝑦¤ 𝑧¤ 𝜑¤ 𝜗¤ 𝜓¤ 𝑥¥ 𝑦¥ 𝑧¥ 𝜑¥ 𝜗¥ 𝜓¥

]𝑇 ∈ R12. (2.48)

To derive the entire dynamic, we can start from equations about torques and
forces expressed in Section 2.3.2, keeping in mind that they are expressed con-
cerning the BFF. Thus, to move in the INF, we will exploit the rotation matrix
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(2.4) [14, 15] and the transformation (2.11).

Linear Equation of Motion The translational equation of motion should take
into account the thrust force generated by the propeller and the gravity force,
which in contrast to the previous case, we don’t need to translate in the BFF. The
equations of motion are now

𝑚


𝑥¥
𝑦¥
𝑧¥

 =


0
0
𝑚𝑔

 +𝑅𝑅𝑅
𝑊
𝐵


0
0

−∑4
𝑗=1 𝑇𝑗

 (2.49)

obtaining 
𝑥¥ = − [

𝑐(𝜑)𝑠(𝜗)𝑐(𝜓) + 𝑠(𝜑)𝑠(𝜓)] 𝑘𝑇
𝑚

∑4
𝑗=1 𝜔

2
𝑗

𝑦¥ = − [
𝑐(𝜑)𝑠(𝜗)𝑠(𝜓) − 𝑠(𝜑)𝑐(𝜓)] 𝑘𝑇

𝑚
∑4
𝑗=1 𝜔

2
𝑗

𝑧¥ = 𝑔 − [
𝑐(𝜑)𝑐(𝜗)] 𝑘𝑇

𝑚
∑4
𝑗=1 𝜔

2
𝑗

. (2.50)

Rotational Equations of Motion For the rotational variables at the moment,
we try considering the total moments acting on the quadrotors similarly as in
Section 2.3.2, namely

𝐼𝑥 0 0
0 𝐼𝑦 0
0 0 𝐼𝑧



𝑝¤
𝑞¤
𝑟¤

 +

𝑝

𝑞

𝑟

 ×

𝐼𝑥 0 0
0 𝐼𝑦 0
0 0 𝐼𝑧



𝑝

𝑞

𝑟

 +

𝑝

𝑞

𝑟

 ×


0
0

𝐼𝐺 ·Ω𝑟

 =


𝑙𝑎 · 𝜏𝑥
𝑙𝑎 · 𝜏𝑦
𝜏𝑧

 , (2.51)

where the Ω𝑟 =
∑4
𝑗=1 𝜔 𝑗 (−1)𝑗 is the relative velocity.

From the expression (2.51), it is mandatory to notice that we are still obtaining
our dynamics considering the angular velocities of our quadrotor. Expanding
the last equations leads to

𝑝¤ = 𝑙𝑎
𝐼𝑥
𝑘𝑇

(
𝜔2

4 − 𝜔2
2
) − 𝐼𝐺

𝐼𝑥
𝑞
∑4
𝑗=1 𝜔 𝑗 (−1)𝑗 + (𝐼𝑦−𝐼𝑧)𝐼𝑥

𝑞𝑟

𝑞¤ = 𝑙𝑎
𝐼𝑦
𝑘𝑇

(
𝜔2

1 − 𝜔2
3

)
+ 𝐼𝐺

𝐼𝑦
𝜔𝜑

∑4
𝑗=1 𝜔 𝑗 (−1)𝑗 + (𝐼𝑧−𝐼𝑥)𝐼𝑦

𝑝𝑟

𝑟¤ = 1
𝐼𝑧

∑4
𝑗=1

(
𝐼𝐺𝜔¤ 𝑗 + 𝑘𝐷𝜔2

𝑗 + 𝐵𝑎𝜔 𝑗

)
(−1)𝑗 + (𝐼𝑥−𝐼𝑦)𝐼𝑧

𝑝𝑞

. (2.52)
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We must notice that what we have just found are the equations of the angular
acceleration rate, thus leading to the state defined as

𝑥𝑥𝑥 =
[
𝑥 𝑦 𝑧 𝜑 𝜗 𝜓 𝑥¤ 𝑦¤ 𝑧¤ 𝑝 𝑞 𝑟

]𝑇 ∈ R12. (2.53)

For the next phase, specifically during the behavior simulation, we must inte-
grate our derivatives just found, resulting in a meaningless operation for the
angular velocities 𝑝, 𝑞, and 𝑟. This is because angular velocities are not scalar
quantities but vector quantities. In other words, angular velocity describes
the change in orientation of an object around an axis of rotation and therefore
has a specific direction and sense. On the other hand, the rotation angle is
a scalar quantity obtained by integrating the angular velocity along a specific
path. Integrating angular velocities without considering these factors can lead
to inconsistent or incorrect results.
Differently, if we maintain the state as in (2.53), it is possible to integrate an-
gular acceleration rates to calculate the change in angular velocity of an object
around an axis of rotation. Angular acceleration rates represent the change in
the angular velocity of an object over time. Since angular velocity is a vector
quantity, angular acceleration is also a vector quantity. By integrating angular
acceleration rates over time, one can obtain the change in angular velocity over
time, i.e., the change in orientation of the object around the axis of rotation.
To overcome this problem, we keep our state defined by the RPY Euler angle and
its respective angular velocities relating them through a transformation matrix
defined as in (2.11). While integrating our state, this matrix allows us to map the
Euler’s angle derivative with their angular velocities. In this way, it is possible
to define a coherent state accounting for the relation between these quantities.
Wrapping together all our considerations, we come up with the state behavior

25



2.5. QUADROTOR MODEL IN A SINGLE REFERENCE FRAME

with the final state space dynamic

𝑥𝑥𝑥¤ =



𝑥¤
𝑦¤
𝑧¤
𝜑¤ = 𝑝 + [

𝑠(𝜑)𝑡(𝜗)] 𝑞 + [
𝑐(𝜑)𝑡(𝜗)] 𝑟

𝜗¤ = [
𝑐(𝜑)] 𝑞 + [−𝑠(𝜑)] 𝑟

𝜓¤ =
[
𝑠(𝜑)
𝑐(𝜗)

]
𝑞 +

[
𝑐(𝜑)
𝑐(𝜗)

]
𝑟

𝑥¥ = − [
𝑐(𝜑)𝑠(𝜗)𝑐(𝜓) + 𝑠(𝜑)𝑠(𝜓)] 𝑘𝑇

𝑚
∑4
𝑗=1 𝜔

2
𝑗

𝑦¥ = − [
𝑐(𝜑)𝑠(𝜗)𝑠(𝜓) − 𝑠(𝜑)𝑐(𝜓)] 𝑘𝑇

𝑚
∑4
𝑗=1 𝜔

2
𝑗

𝑧¥ = 𝑔 − [
𝑐(𝜑)𝑐(𝜗)] 𝑘𝑇

𝑚
∑4
𝑗=1 𝜔

2
𝑗

𝑝¤ = 𝑙𝑎
𝐼𝑥
𝑘𝑇

(
𝜔2

4 − 𝜔2
2
) − 𝐼𝐺

𝐼𝑥
𝑞
∑4
𝑗=1 𝜔 𝑗 (−1)𝑗 + (𝐼𝑦−𝐼𝑧)𝐼𝑥

𝑞𝑟

𝑞¤ = 𝑙𝑎
𝐼𝑦
𝑘𝑇

(
𝜔2

1 − 𝜔2
3

)
+ 𝐼𝐺

𝐼𝑦
𝜔𝜑

∑4
𝑗=1 𝜔 𝑗 (−1)𝑗 + (𝐼𝑧−𝐼𝑥)𝐼𝑦

𝑝𝑟

𝑟¤ = 1
𝐼𝑧

∑4
𝑗=1

(
𝐼𝐺𝜔¤ 𝑗 + 𝑘𝐷𝜔2

𝑗 + 𝐵𝑎𝜔 𝑗

)
(−1)𝑗 + (𝐼𝑥−𝐼𝑦)𝐼𝑧

𝑝𝑞

. (2.54)

2.5.2 Input Redefinition

Propellers driven with BLDCM generate quadrotor forces and moments.
Thus, we always considered the input as each motor’s angular speed 𝜔 𝑗 . How-
ever, looking at our quadrotor structure, some considerations might be helpful
to rewrite the input more conveniently. From equation (2.33) observe that the
interaction of the propellers with the environment can generate thrust 𝑓𝑧 and
torques {𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧}. The overall thrust generated by propellers acts only on the
𝑧-axis acceleration, and the speed difference between each motor has a role in
changing the three torque considered. For now, we neglect the presence of fric-
tion and consider only the steady-state behavior for step reference so that the
speed derivative is zero. We can now define a new input vector given by


𝑓𝑧
𝜏𝑥
𝜏𝑦
𝜏𝑧


=


𝑘𝑇 𝑘𝑇 𝑘𝑇 𝑘𝑇
0 𝑘𝑇 0 −𝑘𝑇
−𝑘𝑇 0 𝑘𝑇 0
𝑘𝐷 −𝑘𝐷 𝑘𝐷 −𝑘𝐷



𝜔2

1
𝜔2

2
𝜔2

3
𝜔2

4


. (2.55)
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According to this new input, we aim to directly control the torques and forces
that produce the basic quadrotor maneuver. Then we can translate our forces
in the required speed according to the inverse of equation (2.55). After some
computation, we come up with the velocities

𝜔1 =
√

1
4𝑘𝑇 𝑓𝑧 − 1

2𝑘𝑇 𝜏𝑦 − 1
4𝑘𝐷 𝜏𝑧

𝜔2 =
√

1
4𝑘𝑇 𝑓𝑧 + 1

2𝑘𝑇 𝜏𝑥 + 1
4𝑘𝐷 𝜏𝑧

𝜔3 =
√

1
4𝑘𝑇 𝑓𝑧 + 1

2𝑘𝑇 𝜏𝑦 − 1
4𝑘𝐷 𝜏𝑧

𝜔4 =
√

1
4𝑘𝑇 𝑓𝑧 − 1

2𝑘𝑇 𝜏𝑥 + 1
4𝑘𝐷 𝜏𝑧

. (2.56)

At this point, we could see how physics can affect the quadrotor attitude seen
by the INF.
The evolution of the state then can be easily described by the equations just
found, since for the position and orientation, their change is given by the re-
spective velocity, which is the other states’ components. The dynamic of the
quadrotor now depends on those forces as



𝑥¥
𝑦¥
𝑧¥
𝜑¥
𝜗¥
𝜓¥


=



− [
𝑐(𝜑)𝑠(𝜗)𝑐(𝜓) + 𝑠(𝜑)𝑠(𝜓)] 𝑓𝑧

𝑚

− [
𝑐(𝜑)𝑠(𝜗)𝑠(𝜓) − 𝑠(𝜑)𝑐(𝜓)] 𝑓𝑧

𝑚

𝑔 − [
𝑐(𝜑)𝑐(𝜗)] 𝑓𝑧

𝑚
𝑙𝑎
𝐼𝑥
𝜏𝑥 + 𝐼𝐺

𝐼𝑥
𝜗¤ ·Ω𝑟 + (𝐼𝑦−𝐼𝑧)𝐼𝑥

𝜗¤𝜓¤
𝑙𝑎
𝐼𝑦
𝜏𝑦 + 𝐼𝐺

𝐼𝑦
𝜑¤ ·Ω𝑟 + (𝐼𝑧−𝐼𝑥)𝐼𝑦

𝜑¤𝜓¤
1
𝐼𝑧
𝜏𝑧 + (𝐼𝑥−𝐼𝑦)𝐼𝑧

𝜑¤ 𝜗¤

. (2.57)

2.6 Quadrotor Control

We can now move to the PID controller design that aims to reach a desired
pose in terms of orientation and z altitude. While the control input of the former
can be seen as a speed offset, ideally not null only when required to adjust the
orientation, the latter is directly related to the propeller rotational speed. We
can easily translate also the force 𝑓𝑧 to be seen as an offset by setting a default
initial speed that can generate enough thrust to compensate for the gravitational
acceleration. According to the equation (2.54), all propellers must have the same
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speed obtained from the relation

𝜔∗𝑗 =
√

𝑚

4
[
𝑐(𝜑)𝑐(𝜗)] 𝑘𝑇 𝑔. (2.58)

Applying this as an initial speed guarantees the simulation starts at a stable
altitude, and thus, the control output is just a propeller angular speed offset.
This configuration can also be extended to the case of the PID responsible for
the position control.

2.6.1 PID Orientation-Altitude Control

We have already introduced the goal of our first controller is to validate the
models designed to ensure that all its representations return the same behavior.
We only focus on controlling the altitude and quadrotor orientation acting on
forces described in 2.5.2.
Since the force and torques act independently, we can design four different
control structures so that each will contribute to each propeller according to
equation (2.56). Mathematically speaking, we have



𝑓𝑧 = 𝐾𝑃,𝑧𝑒𝑧(𝑡) + 𝐾𝐼 ,𝑧
∫
𝑒𝑧(𝑡) + 𝐾𝐷,𝑧 𝑑𝑑𝑡 𝑒𝑧(𝑡), 𝑒𝑧(𝑡) = 𝑧(𝑡) − 𝑧∗

𝜏𝑥 = 𝐾𝑃,𝜑𝑒𝜑(𝑡) + 𝐾𝐼 ,𝜑
∫
𝑒𝜑(𝑡) + 𝐾𝐷,𝜑 𝑑

𝑑𝑡 𝑒𝜑(𝑡), 𝑒𝜑(𝑡) = 𝜑∗ − 𝜑(𝑡)
𝜏𝑦 = 𝐾𝑃,𝜗𝑒𝜗(𝑡) + 𝐾𝐼 ,𝜗

∫
𝑒𝜗(𝑡) + 𝐾𝐷,𝜗 𝑑

𝑑𝑡 𝑒𝜗(𝑡), 𝑒𝜗(𝑡) = 𝜗∗ − 𝜗(𝑡)
𝜏𝑧 = 𝐾𝑃,𝜓𝑒𝜓(𝑡) + 𝐾𝐼 ,𝜓

∫
𝑒𝜓(𝑡) + 𝐾𝐷,𝜓 𝑑

𝑑𝑡 𝑒𝜓(𝑡), 𝑒𝜓(𝑡) = 𝜓∗ − 𝜓(𝑡)

(2.59)

where 𝑧∗, 𝜑∗, 𝜗∗ and 𝜓∗ are the reference altitude and orientation desired. To set
the controller parameters, we manually tuned the PID controllers. We initially
tuned the only proportional parameters 𝐾𝑃,𝑖 to have an oscillatory response.
Then we refined the integrative and derivative parameters to give stability and
improve performances as much as possible.

PID-orientation Controller Simulation We are now interested to see how our
so-designed controllers suit the model in the previous section. To do so, we
simulate the model under the input driven by the PID. The algorithm 1 shows
the steps required to observe another behavior and build the PID for the 𝑧 axis
altitude control. The procedure is equivalent to equations (2.60). Finally, the
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Algorithm 1 PID Algorithm for 𝑧 altitude
Require: 𝑧∗, 𝑧, 𝑑𝑡, 𝑒−1, 𝑒+
𝑒 ← 𝑧 − 𝑧∗
𝑒+← 𝑒+ + 𝑒 {Cumulative Error Increment}
𝑒𝑑 ← (𝑒 − 𝑒−1)/𝑑𝑡 {Differential Error Update}
(𝐾𝑃,𝑧 , 𝐾𝐼 ,𝑧 , 𝐾𝐷,𝑧) ← (5.5, 1.75, 6.85)
𝑢𝑧 ← 𝐾𝑃,𝑧 · 𝑒 + 𝐾𝐼 ,𝑧 · 𝑒+ + 𝐾𝐷,𝑧 · 𝑒𝑑
if 𝑢𝑧 ≤ 0 then
𝑢𝑧 ← 0 {avoid negative motor speed}

end if
return 𝑢𝑧

𝑥, 𝑦 position has been left free since they are strictly related to the quadrotor
orientation. Thus, controlling the angles also means controlling the 𝑥𝑦-plane
position.
Despite speed performances not being a requirement for our purpose, we still
want the controller to have a reasonable transient period. Several tests have been
done for tuning and tracking evaluation providing different target altitudes and
orientations.

Figure 2.4 shows a meaningful evolution of the quadrotor model for two
different targets. From this example, we can make some considerations. Firstly,
the controller can reach the desired target in a reasonable time according to
generic quadrotor dynamics, reaching the target pose in a few seconds under a
reasonable error. Secondly, the orientation variation strongly affects the position
in the 𝑥𝑦 plane, confirming the relationship between the quadrotor states, also
shown in the differential equations. Moreover, we can observe that a change in
the orientation affects, as a perturbation, all the poses proportionally to the mag-
nitude of this variation. These relationships between orientation and translation
are at the base of quadrotor motion, and combining them allows the tracking
of very complex trajectories. In the second half of the simulation, we can ob-
serve another behavior due to the changing of the orientation. Specifically, with
the rotation of the 𝜓 angle, we can see a change in the translation along the 𝑥
axis. Specifically, the position change will start to reverse its direction. This is
explained by the fact that we represent our orientation with absolute angles.
Thus, the thrust responsible for the position change will be translated in the
three axes according to the rotation matrix (2.4).
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Fig. 2.4: PID Orientation Controller Response

2.6.2 PID Position Control

The PID controller designed for orientation can reach its goal quickly. How-
ever, reducing the goal to the altitude and orientation greatly limited the position
control capability. In the next sections, we might want a controller capable of
directly acting on the position for exploration purposes. To do so, a slight mod-
ification of the design is required.
Similar to the prior controller, forces and torques are provided by the same law
as in (2.60). In this case, the main difference is due to the target angles 𝜑∗ and 𝜗∗

that are not fixed anymore but will be a function of a dedicated PID controller
depending on the position error.
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The new control law is now expressed as

𝜗∗𝑡 = 𝐾𝑃,𝑥𝑒𝑥(𝑡) + 𝐾𝐼 ,𝑥
∫
𝑒𝑥(𝑡) + 𝐾𝐷,𝑥 𝑑𝑑𝑡 𝑒𝑥(𝑡), 𝑒𝑥(𝑡) = 𝑥∗ − 𝑥(𝑡)

𝜑∗𝑡 = 𝐾𝑃,𝑦𝑒𝑦(𝑡) + 𝐾𝐼 ,𝑦
∫
𝑒𝑦(𝑡) + 𝐾𝐷,𝑦 𝑑𝑑𝑡 𝑒𝑦(𝑡), 𝑒𝑦(𝑡) = 𝑦∗ − 𝑦(𝑡)

𝑓𝑧 = 𝐾𝑃,𝑧𝑒𝑧(𝑡) + 𝐾𝐼 ,𝑧
∫
𝑒𝑧(𝑡) + 𝐾𝐷,𝑧 𝑑𝑑𝑡 𝑒𝑧(𝑡), 𝑒𝑧(𝑡) = 𝑧(𝑡) − 𝑧∗

𝜏𝑥 = 𝐾𝑃,𝜑𝑒𝜑(𝑡) + 𝐾𝐼 ,𝜑
∫
𝑒𝜑(𝑡) + 𝐾𝐷,𝜑 𝑑

𝑑𝑡 𝑒𝜑(𝑡), 𝑒𝜑(𝑡) = 𝜑∗𝑡 − 𝜑(𝑡)
𝜏𝑦 = 𝐾𝑃,𝜗𝑒𝜗(𝑡) + 𝐾𝐼 ,𝜗

∫
𝑒𝜗(𝑡) + 𝐾𝐷,𝜗 𝑑

𝑑𝑡 𝑒𝜗(𝑡), 𝑒𝜗(𝑡) = 𝜗∗𝑡 − 𝜗(𝑡)
𝜏𝑧 = 𝐾𝑃,𝜓𝑒𝜓(𝑡) + 𝐾𝐼 ,𝜓

∫
𝑒𝜓(𝑡) + 𝐾𝐷,𝜓 𝑑

𝑑𝑡 𝑒𝜓(𝑡), 𝑒𝜓(𝑡) = 𝜓∗ − 𝜓(𝑡)

(2.60)

Fig. 2.5: PID Position Controller Response

PID-position Controller Simulation It is time to validate the new controller to
check if it can track the reference position. As for the orientation PID controller,
we test a sequence of two different reference targets, shown in Figure 2.5. The
controller design has achieved its objective, but it’s evident that it takes longer to
stabilize at the desired coordinates, and the quadrotor’s motion tends to be not
robustly stable. The observed behavior is due to the higher complexity required
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to control the angle with respect to the current position error that continuously
changes according to the system position. This cascade dependency effect makes
the quadrotor harder to stabilize, with more challenging parameters tuning.
Despite this type of controller being capable of achieving the established ob-
jective, its rise time and oscillatory behavior make it physically impractical for
real-world applications. In such cases, the quadrotor will no longer operate in a
nominal environment. Still, it will also have to deal with external disturbances
caused by aerodynamic effects or environmental noise, such as wind.
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3
Gaussian Processes for Regression

In machine learning tasks, regression is one of the fundamental algorithms
for prediction.
Regression is a statistical tool to guess a real-valued continuous output based on
input features. Given an observation set, defined asD = { (𝑥𝑥𝑥 𝑖 , 𝑦𝑖 ) |𝑖 = 1, . . . , 𝑛},
the regression goal is to build a model that can fit the available data best so
that can accurately predict the output value of new and unseen input data. The
simplest model is the linear regression and is given by

𝑓 (𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑇𝑤𝑤𝑤 (3.1)

where 𝑥𝑥𝑥 ∈ R𝑑 is the input vector describer by its 𝑑 features,𝑤𝑤𝑤 ∈ R𝑑 is the weights
vector associated with the input and 𝑓 (·) is the model function. A biased term is
often introduced. However, it can be easily integrated into the vector to maintain
the compact form above. The final task is to find a line that employs a linear
combination of its input vector to approximate the observed outcome 𝑦 ∈ R.

In Gaussian Process (GP) for linear regression is with the Bayesian analysis
that sees the model as shown in (3.1) but considers the model with Gaussian
noise, namely

𝑦 = 𝑓 (𝑥𝑥𝑥) + 𝜀 (3.2)

where 𝜀 is used to model a white noise that will be discussed, with further
analysis, in Section 3.1.

Despite the simplicity of this model type, it presents limited flexibility for our
purpose. Since the model we have to construct has a non-linear input-output
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relationship, it’s convenient to resort to a different interpretation that no longer
considers the weights vector but works directly in the function space. This
approach will be discussed in Section 3.2.

Projection of Inputs into Features Space Sometimes, as we just introduced,
the regression model may lack expressiveness. A technique to overcome this
limit is to project the input vector into some feature vector of higher dimension
resorting to some function fixed for all projections, to preserve linearity. For
instance, if we consider a scalar input 𝑥, a possible projection can be given by the
space of powers of 𝑥: 𝜙(𝑥) = (

1, 𝑥, 𝑥2, . . .
)𝑇 that allows the implementation of

polynomial regression. In conclusion, we can introduce the function 𝜙, which
maps a 𝑑-dimensional input vector 𝑥𝑥𝑥 into an N dimensional feature space and,
in matrix form, we can see Φ(𝑋𝑋𝑋) ∈ R𝑛×𝑁 as the aggregation of columns of
𝜙(𝑥𝑥𝑥) ∈ R𝑁 for all 𝑛 cases in the training set.

3.1 Weight-Space Model

We start our initial analysis from the more straightforward case, which is the
Bayesian standard linear regression model with Gaussian noise, as defined in
equation (3.1), (3.2). From the beginning, we assumed that the observation is
corrupted by an additive noise which is modeled as an independent distributed
Gaussian with zero mean and variance 𝜎2

𝑛 , namely

𝜀 ∼ N (
0, 𝜎2

𝑛
)
. (3.3)

This last assumption on the model allows us to derive the likelihood, which
describes the probability density of the observation given the parameters, and,
due to the independence assumption on the training points, return

𝑝
(
𝑦𝑦𝑦 |𝑋,𝑤𝑤𝑤)

=
𝑛∏
𝑖=1

𝑝
(
𝑦𝑖 |𝑋𝑋𝑋 𝑖 , 𝑤𝑤𝑤

)
=

𝑛∏
𝑖=1

1√
2𝜋𝜎𝑛

exp

(
−(𝑦𝑖 − 𝑥𝑥𝑥

𝑇
𝑖 𝑤𝑤𝑤)2

2𝜎2
𝑛

)
=

1
(2𝜋𝜎2

𝑛)
exp

(
− 1

2𝜎2
𝑛
|𝑦𝑦𝑦 − 𝑋𝑇𝑤𝑤𝑤 |2

)
= N

(
𝑋𝑇𝑤𝑤𝑤, 𝜎2

𝑛𝐼𝐼𝐼
) . (3.4)

In addition, for the Bayesian formalism, we need to specify a prior for the
distribution of the parameters, where typically is set to zero mean and covariance
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matrix Σ𝑝 ∈ R𝑁×𝑁 , so
𝑤𝑤𝑤 ∼ N(000,Σ𝑝) ∈ R𝑁 . (3.5)

Prediction of new outcomes come from the posterior distribution over the
weights, found resorting to Bayes’ rule

𝑝(𝑤𝑤𝑤 |𝑦𝑦𝑦, 𝑋) = 𝑝(𝑦𝑦𝑦 |𝑋,𝑤𝑤𝑤)𝑝(𝑤𝑤𝑤)
𝑝(𝑦𝑦𝑦 |𝑋) ∝ 𝑝(𝑦𝑦𝑦 |𝑋,𝑤𝑤𝑤)𝑝(𝑤𝑤𝑤) ∼ N(𝑤𝑤�̄� =

1
𝜎2
𝑛
𝐴−1𝑋𝑦𝑦𝑦, 𝐴−1), (3.6)

where 𝐴 = 𝜎2
𝑛𝑋𝑋

𝑇 + 𝜎−1
𝑝 .

To conclude our analysis, reviewing the prediction procedure from the
weights just found is interesting. We will consider the model with the inputs
projected into feature space, so

𝑓 (𝑥𝑥𝑥) = 𝜙(𝑥𝑥𝑥)𝑇𝑤𝑤𝑤. (3.7)

This analysis is similar to the standard linear model, computed in [7], but substi-
tuted 𝑋 ∈ R𝑛×𝑑 for Φ(𝑋) ∈ R𝑛×𝑁 . For notation simplicity consider 𝜙𝜙𝜙 = 𝜙(𝑥𝑥𝑥) and
𝑓∗ = 𝑓 (𝑥𝑥𝑥∗). Thus the predictive distribution, for a new unseen input 𝑥𝑥𝑥∗, become

𝑓∗ |𝑥𝑥𝑥∗, 𝑋, 𝑦𝑦𝑦 ∼ N
(

1
𝜎2
𝑛
𝜙(𝑥𝑥𝑥∗)𝑇𝐴−1𝜙𝜙𝜙𝑦𝑦𝑦, 𝜙(𝑥𝑥𝑥∗)𝑇𝐴−1𝜙(𝑥𝑥𝑥∗)

)
(3.8)

with 𝐴 = 𝜎2
𝑛ΦΦ

𝑇 + Σ−1
𝑝 . It is immediate to note that to make predictions with

this equation is required to invert the matrix 𝐴, which might be an expensive
procedure if the number of features is large. To overcome this problem, the last
equation can be rewritten by exploiting the kernel tool 𝐾. However, this method
will not be explored further for the current case since it will be discussed widely
in Section 3.2.

3.2 Function-Space Model

A different approach is using a Gaussian Process (GP) to describe a distribu-
tion over function, so we are inferring directly in function space. We start again
from the function 𝑓 (𝑥𝑥𝑥), which describes a real process, assuming this time that
it is completely described by its mean function 𝑚(𝑥𝑥𝑥) and its covariance function
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𝑘(𝑥𝑥𝑥, 𝑥𝑥𝑥′) as: 
𝑚(𝑥𝑥𝑥) = E (

𝑓 (𝑥𝑥𝑥))
𝑘(𝑥𝑥𝑥, 𝑥𝑥𝑥′) = E ( (

𝑓 (𝑥𝑥𝑥) − 𝑚(𝑥𝑥𝑥)) (
𝑓 (𝑥𝑥𝑥′) − 𝑚(𝑥𝑥𝑥′)) ) . (3.9)

We will then write our Gaussian process as

𝑓 (𝑥𝑥𝑥) ∼ GP(𝑚(𝑥𝑥𝑥), 𝑘(𝑥𝑥𝑥, 𝑥𝑥𝑥′)). (3.10)

and it is clear how the random variables represent the value of the function
𝑓 (𝑥𝑥𝑥) at location 𝑥𝑥𝑥. To better explain the Gaussian process, we consider the
Bayesian linear regression model seen in Section 3.1 𝑓 (𝑥𝑥𝑥) = 𝜙(𝑥𝑥𝑥)𝑇𝑤𝑤𝑤 with prior
𝑤𝑤𝑤 ∼ N(000,Σ𝑝). The mean and the covariance are given by:

E
[
𝑓 (𝑥𝑥𝑥)] = 𝜙(𝑥𝑥𝑥)𝑇E[𝑤𝑤𝑤] = 0

E
[
𝑓 (𝑥𝑥𝑥) 𝑓 (𝑥𝑥𝑥′)] = 𝜙(𝑥𝑥𝑥)𝑇E[𝑤𝑤𝑤𝑤𝑤𝑤𝑇]𝜙(𝑥𝑥𝑥′) = 𝜙(𝑥𝑥𝑥)𝑇Σ𝑝𝜙(𝑥𝑥𝑥′)

(3.11)

showing that 𝑓 (𝑥𝑥𝑥) and 𝑓 (𝑥𝑥𝑥′) are jointly Gaussian with zero mean and covariance
𝜙(𝑥𝑥𝑥)𝑇Σ𝑝𝜙(𝑥𝑥𝑥′). It can be then shown that choosing a squared exponential (SE)
covariance function

𝑐𝑜𝑣(𝑥𝑥𝑥𝑝 , 𝑥𝑥𝑥𝑞) = 𝑘(𝑥𝑥𝑥𝑝 , 𝑥𝑥𝑥𝑞) = 𝜆2exp
(
−1

2
��𝑥𝑥𝑥𝑝 − 𝑥𝑥𝑥𝑞 ��2) , (3.12)

it corresponds to a Bayesian linear regression model with infinite basis functions.
We can also obtain the SE covariance function from the linear combination of
an infinite number of Gaussian-shaped basis functions. The specification of
the covariance function implies a distribution over functions. To show that one
can take samples from the distribution of function evaluated at any number of
points. Choosing some inputs point, 𝑋∗ ∈ R𝑛∗×𝑁 , and resorting element-wise
to (3.12) to write the covariance matrix. Then is possible to generate a random
Gaussian vector with the covariance matrix just defined

𝑓∗ ∼ N (000, 𝐾(𝑋∗, 𝑋∗)) , (3.13)

where 𝐾(𝑋∗, 𝑋∗) =
{
𝑘(𝑥𝑥𝑥𝑝 , 𝑥𝑥𝑥𝑞)𝑖 𝑗 ,∀𝑖, 𝑗

} ∈ R𝑛∗×𝑛∗ .
In the end, the main objective is to use the so-modeled 𝑓∗ to make predictions
of new and unobserved data. We will do a more in-depth analysis in the next
paragraph considering two different scenarios: the case of noise-free and the
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case of noisy observation.

Prediction with Noise-free Observation The simpler case to incorporate knowl-
edge provided by the data about the function is by considering them noiseless
and assuming the model

𝑦 = 𝑓 (𝑥𝑥𝑥) ∈ R. (3.14)

Saying that observations are noise-free is equivalent to saying that we have the
pairs

{(
𝑥𝑥𝑥 𝑖 , 𝑓𝑖 |𝑖 = 1, . . . , 𝑛

)}
, while the test outputs, used to make a prediction,

are denoted with 𝑓𝑓𝑓 ∗. By that the joint distribution of training outputs 𝑓𝑓𝑓 and the
test outputs 𝑓𝑓𝑓 ∗ according to the prior is[

𝑦𝑦𝑦

𝑓𝑓𝑓 ∗

]
∼ N

(
000,

[
𝐾(𝑋, 𝑋) 𝐾(𝑋, 𝑋∗)
𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)

])
. (3.15)

Note that the covariance matrix is found evaluating all the pairs of 𝑛 training
and 𝑛∗ test points so that 𝐾(𝑋, 𝑋∗) ∈ R𝑛×𝑛∗ denotes the 𝑛×𝑛∗matrix and similarly
for the other entries 𝐾(𝑋, 𝑋) ∈ R𝑛×𝑛 , 𝐾(𝑋∗, 𝑋) ∈ R𝑛∗×𝑛 and 𝐾(𝑋∗, 𝑋∗) ∈ R𝑛∗×𝑛∗ .
To get the posterior distribution over functions, we need to restrict this prior
joint distribution to contain only those functions which follow the observed
data points. This operation is straightforward, corresponding to conditioning
the joint Gaussian prior distribution on the observation, obtaining

𝑓𝑓𝑓 ∗ |𝑋, 𝑦𝑦𝑦, 𝑋∗ ∼ N
(
𝑚𝑚�̂� 𝑓𝑓𝑓 ∗ ,ΣΣΣ̂ 𝑓𝑓𝑓 ∗

)
, (3.16)

with
𝑚𝑚�̂� 𝑓𝑓𝑓 ∗ = 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝑦𝑦𝑦,

ΣΣΣ̂ 𝑓𝑓𝑓 ∗ = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)𝐾(𝑋, 𝑋)−1𝐾(𝑋, 𝑋∗) . (3.17)

Now the prediction of 𝑓𝑓𝑓 ∗ can be sampled from the joint posterior distribution
evaluating the mean and the covariance matrix from (3.16).

Prediction with Noisy Observation Realistically, we have no access to real
function values but only to its corresponding noisy observation, namely 𝑦 =

𝑓 (𝑥𝑥𝑥) + 𝜀. Assuming additive independent and identically distributed Gaussian
noise 𝜀 with variance 𝜎2

𝑠 , the prior on the noisy observation becomes

𝑐𝑜𝑣(𝑦𝑦𝑦) = 𝐾(𝑋, 𝑋) + 𝜎2
𝑛𝐼𝐼𝐼 , (3.18)
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Due to the independence assumption, the noise is added on the diagonal of the
covariance, compared with the noise-free model (3.14). The joint distribution of
the observation with noise and the test values under the prior is seen as[

𝑦𝑦𝑦

𝑓𝑓𝑓 ∗

]
∼ N

(
000,

[
𝐾(𝑋, 𝑋) + 𝜎2

𝑛𝐼𝐼𝐼 𝐾(𝑋, 𝑋∗)
𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)

])
. (3.19)

The conditional distribution derived, as equation (3.16), directly drive the pre-
dictive equations for GP regression

𝑓𝑓𝑓 ∗ |𝑋, 𝑦𝑦𝑦, 𝑋∗ ∼
(
𝑚𝑚�̂̃� 𝑓𝑓𝑓 ∗ ,ΣΣΣ̂̃ 𝑓𝑓𝑓 ∗

)
, (3.20)

where
𝑚𝑚�̂̃� 𝑓𝑓𝑓 ∗ = E

[
𝑓𝑓𝑓 ∗ |𝑋, 𝑦𝑦𝑦, 𝑋∗

]
= 𝐾(𝑋∗, 𝑋)

[
𝐾(𝑋, 𝑋) + 𝜎2

𝑛

]−1
𝑦𝑦𝑦

ΣΣΣ̂̃ 𝑓𝑓𝑓 ∗ = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗, 𝑋)
[
𝐾(𝑋, 𝑋) + 𝜎2

𝑛

]−1
𝐾(𝑋, 𝑋∗)

. (3.21)

The expression now can be written in a compact form with 𝐾 = 𝐾(𝑋, 𝑋) and
𝐾∗ = (𝑋∗, 𝑋∗), while for a single test input 𝑥𝑥𝑥∗ we write 𝑘𝑘𝑘∗(𝑥𝑥𝑥∗) = 𝑘𝑘𝑘∗ denoting the
covariance vector between the test point and the 𝑛 training points. Notice that
𝐾 can be computed once offline and then used for all successive predictions so
it is possible to find the vector

𝛼𝛼𝛼 =
[
𝐾 + 𝜎2

𝑛𝐼𝐼𝐼
]−1

𝑦𝑦𝑦. (3.22)

Using this compact notation, the prediction of a single test point reduces to

�̄� ∗ = 𝑘𝑘𝑘𝑇∗ 𝛼𝛼𝛼
V

[
𝑓𝑓𝑓 ∗

]
= 𝑘(𝑥𝑥𝑥∗, 𝑥𝑥𝑥∗) − 𝑘𝑘𝑘𝑇∗ (𝐾 + 𝜎2

𝑛𝐼𝐼𝐼)−1𝑘𝑘𝑘∗
. (3.23)

It is clear how the mean prediction is a linear combination of 𝑛 kernel functions,
each one centered in a training point, namely

�̄� (𝑥𝑥𝑥∗) =
𝑛∑
𝑖=1

𝛼𝑖𝑘(𝑥𝑥𝑥 𝑖 , 𝑥𝑥𝑥∗). (3.24)

This final result shows how the flexibility of the function-view space model is
vastly improved concerning the parameter-view space since the function shape
can be arbitrarily modeled from the choice of the kernel function. This increases
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the model’s capability to deal with non-homogeneous and nonlinear data. How-
ever, it is essential to notice that this choice must be made appropriately to the
problem.

3.3 Quadrotor Model Learning

We now have introduced the framework that will be considered to learn the
model of a quadrotor system defined as in (2.54). Specifically, we will use the
function-space model presented in 3.2 with noisy observation.

3.3.1 Kernel Choice

In the previous section, we introduced, among the many existing, the Squared
Exponential (SE) kernel, or Radial Basis Function (RBF), which is a very popular
covariance function. For several reasons, it might be convenient initially to keep
this choice for our problems, defined in its general form

𝐾(𝑥𝑥�̃� 𝑖 , 𝑥𝑥�̃� 𝑗) = 𝜎2
𝑓 exp

(
− (
𝑥𝑥�̃� 𝑖 − 𝑥𝑥�̃� 𝑗 )𝑇 Λ (

𝑥𝑥�̃� 𝑖 − 𝑥𝑥�̃� 𝑗 ) ) . (3.25)

In the function above, 𝑥𝑥�̃� 𝑖 , 𝑥𝑥�̃� 𝑗 are two points in the input space for 𝑖 , 𝑗 ∈ {1, . . . , 𝑛},
𝛾 is a positive hyperparameter that controls the amplitude of the function (in-
versely proportional to the width of the radial basis functions), and 𝜎2 is a
hyperparameter that controls the vertical amplitude of the covariance function.
The first advantage is that the RBF kernel can approximate almost any continu-
ous function, providing sufficient data. Secondly, this kernel can catch nonlinear
relations between data points, which is a significant advantage considering our
system’s nature. Finally, another remarkable advantage is its computational
simplicity since it only requires Euclidean norms between vectors and its expo-
nential result. Yet, it offers other interesting properties, such as integrated reg-
ularization, transformation invariance, and only two hyperparameters. These
characteristics make this kernel the best candidate to learn our Gaussian Pro-
cesses (GPs) model. It must be taken into account, however, that the kernel
performance might suffer from the higher dimensionality of the system. Before
moving on to policy analysis and optimization, we must investigate whether the
choice suits our problem and the computational cost regarding time and data
requirements.
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3.3. QUADROTOR MODEL LEARNING

Kernel Parameters Tuning For the hyperparameters optimization, we must
also include the parameter 𝜎𝑛 representing noise associated with the observa-
tion. In the learning task, our goal is to find the best parameters

(
𝜎2
𝑓 ,Λ, 𝜎𝑛

)
that let our model generalize our observation better. We can estimate the best
parameter following the log-marginal likelihood maximization approach. We
assume Λ to be a diagonal matrix, with its diagonal matrix, with its diagonal
elements named length scales.

log 𝑝(𝑥𝑥𝑥 |�̃� ,𝜃𝜃𝜃) = −1
2𝑥
𝑥𝑥𝑇𝐾−1

𝑥𝑥𝑥 𝑥𝑥𝑥 − 1
2 log |𝐾𝑥𝑥𝑥 | − 𝑛2 log 2𝜋 (3.26)

where 𝐾𝑥𝑥𝑥 = 𝐾 𝑓𝑓𝑓 + 𝜎2
𝑛𝐼 is the covariance matrix of the noisy 𝑥𝑥𝑥 provided that 𝐾 𝑓

is the covariance matrix for the noise-free latent 𝑓𝑓𝑓 . We now explicitly write
the marginal likelihood conditioned on the hyperparameters 𝜃𝜃𝜃. To maximize
the hyperparameters according to (??), we seek the partial derivatives of the
marginal likelihood w.r.t the hyperparameters, namely

𝜕

𝜕𝜃𝑗
log 𝑝

(
𝑦𝑦𝑦 |𝑋,𝜃𝜃𝜃)

=
1
2𝑦
𝑦𝑦𝑇𝐾−1 𝜕𝐾

𝜕𝜃𝑗
𝐾−1𝑦𝑦𝑦 − 1

2 𝑡𝑟
(
𝐾−1 𝜕𝐾

𝜕𝜃𝑗

)
=

1
2

((
𝛼𝛼𝛼𝑇𝛼𝛼𝛼 − 𝐾−1

) 𝜕𝐾
𝜕𝜃𝑗

) (3.27)

where 𝛼𝛼𝛼 = 𝐾−1𝑦𝑦𝑦. We do not go further in explaining this approach since its not
our primary purpose, and more in-depth detail can be found in [7].

3.3.2 Quadrotor Trajectory Generation

To move on to the learning phase, we must generate meaningful data points.
This means generating a sequence of input/output (𝑥𝑥𝑥𝑡 , 𝑢𝑢𝑢𝑡), where our input is
the motor’s rotational velocity and the output is the observed state at time 𝑡. In
particular the state 𝑥𝑥𝑥𝑡 is obtained starting from the state 𝑥𝑥𝑥𝑡−1 and applying the
input 𝑢𝑢𝑢𝑡 . In the previous section, we introduced a PID orientation controller
explicitly designed for this purpose. It is capable of tracking some reference
targets defined by the 𝑧-axis coordinates and the orientation angle (𝜑, 𝜗,𝜓).
To generate meaningful data observations, the idea is to set, as a first step, a
number 𝑁𝑡𝑟𝑎𝑖𝑛 of random target and exploit our PID controllers to drive the
quadrotor model state to the desired pose for a certain interval 𝑇𝑐 . We can do
this procedure for each target generated using the initial state reached by the
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model at the last step for the previous target. Thus, if we require more data,
increasing the 𝑁𝑡𝑟𝑎𝑖𝑛 value is sufficient. Once applied all generated targets we
will have our state/input sequence defined as{(𝑥𝑥𝑥𝑡 , 𝑢𝑢𝑢𝑡) |𝑥𝑥𝑥𝑡 = 𝑓𝑓𝑓 (𝑥𝑥𝑥𝑡−1, 𝑢𝑢𝑢𝑡), 𝑡 ∈ [𝑇𝑐 , 𝑁𝑡𝑟𝑎𝑖𝑛 · 𝑇𝑐] , 𝑥𝑥𝑥0 = 𝑥𝑥�̄�

}
. (3.28)

The above trajectory is derived by the function 𝑓𝑓𝑓 (·) described by the Ordinary
Differential Equation (ODE) 2.54, and the initial state 𝑥𝑥𝑥0 is chosen arbitrarily.
The same reasoning is also applied to the performance evaluation generating a
set of 𝑁𝑡𝑒𝑠𝑡 trajectories used to analyze how well the model can predict the state
evolution.

3.3.3 Model Training

It is now possible to start the model training with generated data defined as
D = {(𝑢𝑢𝑢 𝑖 , 𝑥𝑥𝑥 𝑖) , 𝑖 = 1, . . . , 𝑛}, according to the previous section, where the total
number of sample is 𝑛 = 𝑇𝑐

𝑑𝑡𝑁𝑡𝑟𝑎𝑖𝑛 ,𝑢𝑢𝑢 𝑖 is the input vector and 𝑥𝑥𝑥 𝑖 is the state reached
applying the input 𝑖. For the trajectory generation, we set the control time at
𝑇𝑐 = 2𝑠 for each target and a sampling time 𝑑𝑡 = 0.02𝑠. This means that each
target will provide additional 150 data to the model for training. As done in
other studies involving angles [2], to avoid singularities the state 𝑥𝑥𝑥𝑡 is replaced
in the algorithm with the representation

𝑥𝑥𝑥∗𝑡 =
[
ΓΓΓ,ΓΓΓ¤ ,ΩΩΩ, sin(𝜑), sin(𝜗), sin(𝜓), cos(𝜑), cos(𝜗), cos(𝜓)]𝑇 ∈ R15. (3.29)

Moreover, in all the following training, we considered all the state measurements
with white noise with a standard deviation of 103. Finally, we define the input
of the GP given by the combination of the states and the actual quadrotor model
input, namely

𝑥𝑥�̃� =

[
𝑥𝑥𝑥∗𝑡
𝑢𝑢𝑢𝑡

]
∈ R19. (3.30)

One Step Ahead Prediction and Speed Integration Approach Typically in
Gaussian Process Regression (GPR)-based, we model each state dimension’s
evolution with a distinct GP. We now denote with Δ(𝑖)𝑡 = 𝑥(𝑖)𝑡+1− 𝑥(𝑖)𝑡 the difference
between the value of the 𝑖-th state at times 𝑡 + 1 and 𝑡. It can be convenient to
desire each GP objective to find the one step ahead prediction expressed by the Δ𝑡
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for each state separately.
Moreover, before moving to the model evaluation, we observe that our state is

defined, in a compact form, as 𝑥𝑥𝑥𝑡 =
[
𝑞𝑞𝑞𝑇𝑡 , 𝑞𝑞𝑞¤𝑇𝑡

]𝑇 ∈ R𝑑𝑥𝑥𝑥 , where 𝑞𝑞𝑞𝑇𝑡 ∈ R𝑑𝑥𝑥𝑥/2 represent

the quadrotor pose at time step 𝑡 and 𝑞𝑞𝑞¤𝑇𝑡 ∈ R𝑑𝑥𝑥𝑥/2 represent their derivatives
concerning time. By considering this representation, we may want to exploit
the relation between the components 𝑞𝑞𝑞 and 𝑞𝑞𝑞¤ . Thus, under the assumption of
a sufficiently small (w.r.t. the application) sampling time 𝑇𝑠 , it is reasonable to
assume a constant acceleration between two consecutive time steps obtaining
the evolution of 𝑞𝑞𝑞𝑡

𝑞𝑞𝑞𝑡+1 = 𝑞𝑞𝑞𝑡 + 𝑇𝑠𝑞𝑞𝑞¤ 𝑡 +
𝑇𝑠
2 (𝑞𝑞𝑞¤ 𝑡+1 − 𝑞𝑞𝑞¤ 𝑡). (3.31)

This means training only 𝑑𝑥𝑥𝑥/2 GPs related to the velocities and adopting some
integration technique to derive the evolution of 𝑞𝑞𝑞𝑡 .

3.4 Learning Result

Let us now delve into the performances of the learning procedure. Some
metrics are particularly interesting: the one step ahead prediction precision, the
long-term prediction accuracy, and the rollout cumulative error.
The one step ahead prediction precision refers to the difference between the pre-
dicted step Δ̂𝑡(𝑖) and the real difference in our test state evolution Δ(𝑖)𝑡 = 𝑥𝑥𝑥𝑡+1−𝑥𝑥𝑥𝑡 .
Prediction performances will be expressed as the Mean Squared Error (MSE) of
all test samples for each GP.
On the other hand, long-term prediction refers to the complete evolution of each
state component over the entire control period. To observe this, we compare
the rollout of the test trajectory with the rollout w.r.t the behavior of the GP
predictions provided the same input sequence. To quantify the error accumula-
tion along the control periods, we calculate the RMSE between the trajectories’
errors. Since we are estimating the velocity change at each time step, even a
small error in the prediction leads to a different state with respect to the true
evolution. This displacement will inevitably lead to a larger prediction error
due to error integration phenomena. For this reason, we want also to investigate
how the error propagates in time, observing the cumulative error for the full
event horizon.
To evaluate the training process, we observe the behavior of the introduced met-
rics as the training data is increased. Specifically, we repeat the GP training for
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different 𝑁𝑡𝑟𝑎𝑖𝑛 trajectories and collect the GP one step ahead prediction MSE,
the rollout over periods RMSE, and the cumulative error for 𝑁𝑡𝑒𝑠𝑡 trajectories.
The final result is obtained on a total of 𝑁𝑡𝑒𝑠𝑡 = 35 trajectories of 𝑇𝑐 = 3𝑠 sampled
with a period of 𝑑𝑡 = 0.02𝑠, which translates into 150 samples for each new

target. The first training is performed with a single trajectory under the same
conditions as the test ones. We then evaluate the model prediction performances
by increasing the training trajectory by five at each iteration.
The overall evolution of the error, shown in figure 3.1, is reported by the mean
and standard deviation of the test trajectories, where all the data is normalized
according to the maximum error of the respective prediction. The learning be-
haviors are promising, showing a decreasing error and becoming more precise
at every iteration interval, translating into successful model training. This con-
sideration is also confirmed by looking at the cumulative error in figure 3.3,
showing, for each GP, better results while increasing the number of data points.
For each model, it is also interesting to note the strong correlation between the
GP and cumulative rollout errors. This is evident, for instance, when comparing
the first GP, which predicts the linear velocity variation on the 𝑥 axis, with the
rollout on the 𝑥 position.
In conclusion, comparing the two plots, it is evident that each GP error strongly
correlates to its respective rollout evolution. Moreover, we can observe that
the learning performance becomes remarkable after already 15 train trajectories,
meaning a total of 𝑛 ≥ 𝑁𝑡𝑟𝑎𝑖𝑛 · (𝑇𝑐/𝑑𝑡) = 2250 data samples.

3.5 Model Approximation

As we have seen in chapter 3, GP brings high flexibility fully probabilistic
model useful for regression tasks. Specifically for our case, we consider a model
with additive noise as defined in 3.2 and 3.3. Moreover, the problem stated in
section ?? requires the definition of six different GP regressors, each associated
with a different model velocity.
Each GP is completely determined by a covariance function, the kernel, with
some hyperparameter to be tuned. The search for optimal hyperparameters is
the fundamental step in the learning process. Once those have been found, the
model is ready to predict new observations. The optimization aims to maximize
the marginal likelihood of the observed data under the GP model. This operation
requires the following step:
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1. computes the covariance matrix of the GP model using the current hyper-
parameters and the chosen kernel;

2. perform inference on the training data to obtain the predictive distribution
of the GP model and calculate the marginal likelihood;

3. computes the gradient of the marginal likelihood with respect to each
hyperparameter;

4. using a chosen optimization algorithm to update the hyperparameters
based on the computed gradient;

5. repeat steps 1-4 until a pre-specified convergence criterion is reached, such
as a maximum number of iterations, a minimum change in the marginal
likelihood, or the gradient norm below a specified threshold.

We know that the inference is derived by the distribution 3.20, which involves
the inversions of a matrix of size 𝑛×𝑛 requiring𝑂(𝑛3) operations, with 𝑛 number
of training samples. This fact implies that with modern desktop machines, the
exact implementation can only be built with a few thousand observations [18].

3.5.1 Subset of Data (SOD)

The Subset of Data (SoD) method is an approximation approach for GP that
aims to reduce the computational cost and complexity of operations associated
with the inference and training of the GP model. The SoD method is based on
selecting a subset of the available data to approximate the GP.
The main idea of SoD is to select a representative subset S of size 𝑚 < 𝑛 of
the input data, where 𝑛 is the total number of observations in the dataset. This
subset is chosen in such a way as to preserve the essential information of the
original dataset while reducing the computational cost associated with the GP.
The subset selection can be done in several ways, for example, random sampling,
stratified sampling, clustering, and error-based selection. For our model made
by the six GP of the quadrotor velocities, the error-based selection was chosen by
selecting the points that maximize a measure of error between the original GP
and the approximated GP. In this case, the objective will be to maintain the points
that have a prediction error between the original GP and the approximated GP
beyond a certain threshold. Specifically, the selection criterion used is given by:��� 𝑓𝑓𝑓 (𝑥𝑥𝑥) − 𝑓𝑓�̃� (𝑥𝑥𝑥)��� > 𝜖, ∀𝑥𝑥𝑥 ∈ D , (3.32)
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where 𝜖 is an arbitrarily chosen threshold, 𝑓 (x) is the prediction of the original
GP for the input point x, and �̃� (x) is the prediction of the approximated GP using
the subset S.
Error-based selection has the advantage of providing a more accurate approxi-
mation of the GP compared to other methods, as it considers each point’s effect
on the model’s prediction. However, this method’s computational cost may be
higher than other methods, as it requires the calculation of the discrepancy for
each point in the dataset. Moreover, it should be noted that this strategy might
be sensitive to outliers.

Approximation Result As we have just seen, the choice of points to select is
made if the prediction error exceeds a certain threshold. This process must be
repeated for each GP, which may have different selections for each threshold.
We, therefore, wanted to observe, for a sequence of thresholds, how the models
behaved in terms of performance, thus further evaluating the errors of the
individual GP and the error of the rollouts compared to the number of selected
points. For comparison, the model was trained by choosing a fixed value of
samples for training generated by 𝑁𝑡𝑟𝑎𝑖𝑛 = 30 trajectories, which, according to
the model training, brings enough points to have a reliable model.
The process was repeated for the sequence of thresholds

𝜖𝜖𝜖 = [0, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5] .

From the results obtained, shown in Figure 3.2, we notice, as one would expect,
that as the number of selected data decreases, the performance of the model
worsens. A promising result is that model performances improve with each
training done with more data. This can be interpreted as a confirmation that
the selection criteria is choosing the meaningful point. Evaluating this result
concerning the full model, made of a total of 𝑛 = 4500 samples, we immediately
notice that the performance becomes comparable after just a few hundred data.
Also, the cumulative error reported in figure 3.4 validates these results. In
conclusion, looking at these results, we can now set a threshold for each GP,
providing a sufficiently accurate velocity change prediction based on a small
and limited subset of the original dataset. This will be a crucial step in the next
section since this will improve data efficiency in terms of computational time
and memory space.
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(a) GP one step ahead prediction MSE

(b) Rollout evolution RMSE

Fig. 3.1: Error behavior for different train size dataset
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(a) SOD - GP one step ahead prediction MSE

(b) SOD - Rollout evolution RMSE

Fig. 3.2: Error behavior for different sampled dataset
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Fig. 3.3: Cumulative Error for different train size dataset

Fig. 3.4: Cumulative Error SOD for different sampled dataset
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4
Quadrotor Control with MC-PILCO

In the previous section, we derived a nominal model for the quadrotor sys-
tem, and we defined our model learning approach. Once the dynamic equation
and effectiveness of predictions of the GPs trained model are validated, we can
finally proceed to the Reinforcement Learning control strategy. In this section,
we provide a broad view of what reinforcement learning is, and more specifi-
cally, we will set our Model-Based Reinforcement Learning (RL) domain. We
will briefly resume the GPR model prediction goal in the context of our prob-
lem. This chapter will also discuss the control policy, its optimization, and the
problem cost function.
We also present the learning algorithm results. This will be shown not only in
an environment driven by de model defined in Chapter 2 but also resorting to
the PyBullet physics simulator. The simulation uses an advanced and realistic
quadrotor model, including flight dynamics and physical interaction consider-
ations. This highly detailed simulation will give us an overview of the policy
behavior interacting within an environment as close to reality.

4.1 Reinforcement Learning Framework

Reinforcement Learning (RL) is a specialized branch of machine learning
aimed at designing an agent capable of making informed decisions within a
particular environment. This environment is defined by a state space, denoted
as 𝑆𝑆𝑆, and the potential actions that the agent can execute are included within
an action space 𝐴𝐴𝐴. It’s worth mentioning that the state and action spaces can be
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either discrete or continuous, and this nature substantially affects the choice of
RL methods employed.
The agent can observe the present state 𝑠 ∈ 𝑆𝑆𝑆 of the environment at a specific
moment and respond with the appropriate action. This action consequently
modifies the environment, leading to a transition into a new state, denoted as
𝑠′. The principal objective for the agent is to choose the most beneficial action
based on its perception of the current state of the environment, intending to
accomplish a task stipulated by the application. This task is guided by a reward
function ℛ(𝑠, 𝑎) (or a cost function C(𝑠, 𝑎)), which is dependent on the current
state and the executed action. Consequently, the ultimate goal for the agent
is to learn a policy 𝜋(𝑎 |𝑠) that maximizes (in the case of the reward function)
or minimizes (in the case of the cost function) this function. Essentially, this
policy can be understood as a mapping from states to actions, which could be
either deterministic (a specific action is always taken given a state) or stochastic
(actions are chosen based on specific probabilities). The policy thus determines
the action to be taken based on the present observed state of the environment.
Note that we have introduced both the reward and cost functions. Using one
rather than the other strongly depends on the application and the algorithm
chosen. The algorithm selected for the quadrotor application relies on a cost
function. Thus, from now, we will only consider a cost function as an action
return.

In RL literature the agent-environment system is typically described by the
Markov Decision Process (MDP) [23], defined as 〈𝑆𝑆𝑆,𝐴𝐴𝐴,P , C , 𝛾〉, where:

• 𝑆𝑆𝑆: finite set of states;

• 𝐴𝐴𝐴: finite set of action;

• P: state transition probability function defined as

P𝑎𝑠𝑠′ = P [𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] ; (4.1)

• C: cost function C𝑎𝑠 = E [C𝑡+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] returning the immediate cost
of being in a specific state;

• 𝛾: discount factor 𝛾 ∈ [0, 1].
This formulation becomes particularly useful when the system is known, namely
the state transition function is defined and when it is finite. Under these assump-
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tions, we have the agent described by a policy function

𝜋 : 𝐴 × 𝑆→ [0, 1]
𝜋(𝑎 |𝑠) = P (𝑎𝑡 = 𝑎 |𝑠𝑡 = 𝑠) . (4.2)

The policy, then, defines the probability of the agent taking action 𝑎 being the
current state 𝑠. The final goal is to find a policy that minimizes the expected
long-term cost

𝐺𝑡 = 𝐶𝑡+1 + 𝛾𝐶𝑡+2 + 𝛾2𝐶𝑡+3 + · · · =
∞∑
𝑘=0

𝛾𝑘𝐶𝑡+𝑘+1. (4.3)

This value, for each possible state under the policy 𝜋, is defined by the value
function

𝑣𝜋(𝑠) � E [𝐺𝑡 |𝑆𝑡 = 𝑠] =
∑
𝑎∈𝐴𝐴𝐴

𝜋(𝑎 |𝑠)
(
𝐶𝑎𝑠 + 𝛾

∑
𝑠′∈𝑆𝑆𝑆

𝑃𝑃𝑃𝑎𝑠𝑠′𝑣𝜋(𝑠′)
)

(4.4)

that is a direct derivation of the Bellman Expectation Equation. The value function
is helpful if and only if the environment is perfectly known, meaning that the
state transition probability must be well-defined. In real context, however, this
scenario rarely happens. To overcome this condition is necessary to define the
action-value function

𝑞𝜋(𝑠, 𝑎) � E𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = E𝜋
[ ∞∑
𝑘=0

𝛾𝑘𝐶𝑡+𝑘+1 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
. (4.5)

According to this new definition, the agent’s goal becomes to find a policy that
minimizes the action value function for every pair (𝑠, 𝑎).

4.1.1 Limitation in Real Scenario

Traditional Reinforcement Learning (RL) techniques, such as those based on
Markov Decision Processes (MDPs), perform well in contexts where the state
and action spaces are relatively small and discrete. However, these techniques
encounter significant difficulties when facing problems featuring very large
or continuous state or action spaces. To begin with, the reason why these
techniques face challenges in large spaces can be attributed to the so-called
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"curse of dimensionality" [4]. Regarding RL, the curse of dimensionality refers
to the phenomenon where the increase in the number of dimensions in the state
or action space leads to an exponential increase in the number of possible state or
action configurations. This makes computation difficult and learning an optimal
policy challenging since the number of possible policies increases exponentially
with the size of the state or action space.
Another related problem is the so-called exploration vs. exploitation problem
[23]. In a large space, the agent must balance exploring new states or actions
with exploiting the information it has already learned. This balance becomes
increasingly difficult to manage as the size of the space increases since there are
many more configurations to explore.
In our case, then, another issue arises. For quadrotor control, an RL algorithm
must be applied to a problem with continuous state and action spaces, thus
presenting further challenges. In a discrete space, the agent can easily enumerate
and compare all possible actions in every state. However, the number of possible
actions in each state is infinite in a continuous space. This makes the direct
application of methods such as dynamic programming impossible, as it requires
exhaustive exploration of all possible actions in each state. In a continuous
space, therefore, the agent will need to learn an approximation function to
represent the value function or the action-value function. This task can be
challenging since the approximation function must accurately describe the value
function or the action-value function at an infinite number of points in the
space. This could lead to an excessively high data requirement. Advanced RL
techniques have been developed to overcome these challenges, such as deep
learning for approximating the value function or the action-value function and
stochastic optimization methods for action selection in continuous spaces. These
techniques show promising results in their ability to solve RL problems with
large and continuous state or action spaces.

4.2 Model-Based Reinforcement Learning

So far, we have discussed what is referred to as Model-Free Reinforcement
Learning. This approach seeks to learn an optimal policy or value function
directly, relying solely on the agent’s experience, which can be gathered through
various techniques. Model-Free RL has its merits. It can be straightforward to
implement and require low computational power during execution. However,
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it tends to be data inefficient, as every decision is based on direct experience.
As we have seen before, it will require an ever-increasing amount of data as
the dimensionality of the environment grows. Moreover, exploration might be
expensive or dangerous in real applications context. The exploration of the
quadrotor environment might lead to risky maneuvers, potentially leading to
damage to the system itself.

There is, however, another approach that aims to overcome this hurdle:
Model-Based Reinforcement Learning (Model-Based Reinforcement Learning
(MBLR)). In MBLR, the agent seeks to learn a model of the environment’s dy-
namics. In other words, the agent tries to understand how its actions affect the
state of the environment. Once the agent has learned a model of the environ-
ment, it can use this model to plan its actions. This planning can occur through
various techniques, which we will explain for our problem later. The advantages
of MBLR include the following:

• Data efficiency: MBLR can be much more data-efficient than Model-Free
RL. Since the agent learns a model of the environment, it can use this
model to simulate multiple possible future paths and choose the action
that appears best according to the model. This means that the agent can
effectively learn from fewer interactions with the environment.

• Long-term planning: Since the agent learns a model of the environment,
it can use this model to plan its actions over a longer time horizon.

• Adaptability: If the environment changes, an agent using Model-Based
RL can quickly update its model and adapt its behavior accordingly. This
can be particularly useful, as in the case of a quadrotor, in non-stationary
environments, where the dynamics of the environment can change over
time.

This approach seems more suitable as it tends to overcome all the issues raised.
However, we must also consider that this method has some disadvantages.
Model-based planning can be computationally expensive, especially if the agent
must view many possible future paths. Moreover, learning an accurate model
of the environment can be a challenging task, particularly in complex environ-
ments with a large number of states and actions. As we have seen in the previous
chapter, however, we have been able to develop a model capable of learning the
dynamics of the quadrotor with a reasonable degree of precision, and by resort-
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ing to approximation methods, we are also able to lighten the computational
load during the action planning phase.

4.2.1 Model-Based Policy Gradient

Moving forward with our goal to devise an effective policy for the quadrotor
control problem, we now turn our attention to a crucial tool within reinforce-
ment learning that allows for the direct optimization of policies: Policy Gradient
methods. Policy Gradient methods enable an agent to optimize policies directly
without needing a value function. In its most general form, a policy map states
to actions. The policy gradient provides a smooth and continuous optimization
landscape that can greatly aid learning and exploration.
The specific reinforcement learning setting we are considering involves Probabilistic
Inference for Learning COntrol (PILCO). In this setting, the policy gradient ap-
proach is enriched by a practical consideration of model uncertainty, which leads
to improved learning efficiency and robustness of the policy, crucial factors for
operating in dynamic environments such as that of a quadrotor.
The critical aspect of gradient-based policy search is that the policy is defined
by some parameters 𝜃 optimized by gradient-descent over a cost function. To
incorporate the model uncertainty on the policy optimization, let us consider
our quadrotor dynamics given by the discrete-time system described by the
unknown function 𝑓𝑓𝑓 (·, ·):

𝑥𝑥𝑥𝑡+1 = 𝑓𝑓𝑓 (𝑥𝑥𝑥𝑡 , 𝑢𝑢𝑢𝑡) +𝑤𝑤𝑤𝑡 . (4.6)

In the last equation, 𝑥𝑥𝑥𝑡 ∈ R𝑑𝑥 and 𝑢𝑢𝑢𝑡 ∈ R𝑑𝑢 are respectively the state and control
inputs of the system at each time step 𝑡, while 𝑤𝑤𝑤𝑡 ∼ N (000,ΣΣΣ𝑤) is the model
additive noise shaped as an independent Gaussian random variable. The cost
function formulated in the previous section 𝑐(𝑥𝑥𝑥𝑡) returns the immediate cost, or
penalty, for lying in state 𝑥𝑥𝑥𝑡 . On the other hand, inputs will be chosen from a
policy 𝜋𝜃 : 𝑥𝑥𝑥 → 𝑢 according to the parameters 𝜃. The final goal is to derive a
policy that minimizes the expected cumulative cost over a finite number of time
steps 𝑇, namely,

𝐽 (𝜃) =
𝑇∑
𝑡=0
E𝑥𝑥𝑥𝑡 [𝑐(𝑥𝑥𝑥𝑡)] (4.7)
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starting from the initial state 𝑥0 selected according a given probability 𝑝 (𝑥0). To
learn the policy model-based approach typically repeats in succession several
trials attempting to resolve the required task. Each trial is built in three main
phases:

1. Model Learning: the data collected from all the previous interactions are
used to build a model of the system dynamics;

2. Policy Update: the policy is optimized attempting to minimize the cost 𝐽 (𝜃)
according to the current model;

3. Policy Execution: the current optimized policy is applied to the system, and
the data are stored for model improvement in the next trials.

This method will rely on the learned model to predict the state evolution when
the current policy is applied. These predictions will be then used to estimate
𝐽 (𝜃) and its gradient ∇𝜃𝐽 (𝜃) to update the policy parameters 𝜃 following the
gradient-descent approach.

4.2.2 GPR and One-Step-Ahead Prediction

In our exploration of Gaussian Process Regression (GPR)-based methodolo-
gies, as previously detailed in section 3.3.3, a frequent tactic entails the individual
modeling of each state dimension utilizing a distinct Gaussian Process (GP).
Let us consider the 𝑖-th state’s value at times 𝑡 + 1 and 𝑡. The differential Δ(𝑖)𝑡
between these two temporal instances can be defined mathematically as

Δ(𝑖)𝑡 = 𝑥(𝑖)𝑡+1 − 𝑥(𝑖)𝑡 , 𝑖 ∈ {1, . . . , 𝑑𝑥} , (4.8)

Moreover, we can introduce an element of observational noise into our model
by defining 𝑦(𝑖)𝑡 as

𝑦(𝑖)𝑡 = Δ(𝑖)𝑡 + 𝑒(𝑖) (4.9)

In this equation, 𝑒(𝑖) serves the function of modeling additive noise. By in-
corporating this factor, we simulate the noise that is inevitably encountered in
real-world observational data, adding robustness to our model. Again, we con-
sider as GP input the combination of the system state and its input at time 𝑡

𝑥𝑥�̃�𝑡 =

[
𝑥𝑥𝑥𝑡
𝑢𝑢𝑢𝑡

]
. (4.10)
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Then, given the dataset

D =
(
�̃� , 𝑦𝑦𝑦(𝑖)

)
𝑦𝑦𝑦(𝑖) =

[
𝑦(𝑖)𝑡1 , . . . , 𝑦

(𝑖)
𝑡𝑛

]𝑇
�̃� = [�̃�𝑡1 , . . . , �̃�𝑡𝑛]

, (4.11)

with 𝑦𝑦𝑦(𝑖) a sequence of 𝑛 noisy measurement, and �̃� is the set of corresponding
GP inputs. We can define the probabilistic model assumed by GPR for each state

𝑦𝑦𝑦(𝑖) =


ℎ(𝑖) (�̃�𝑡1)

...

ℎ(𝑖) (�̃�𝑡𝑛 )

 +

𝑒(𝑖)𝑡1
...

𝑒(𝑖)𝑡𝑛

 = ℎℎℎ(𝑖)(�̃�) + 𝑒𝑒𝑒(𝑖) (4.12)

where 𝑒𝑒𝑒(𝑖) ∼ N(0, 𝜎𝑖𝐼) is the additive noise modeled as a zero-mean Gaussian
and is the unknown function

ℎ(𝑖) : �̃� → Δ(𝑖), 𝑖 ∈ {1, . . . , 𝑑𝑥} (4.13)

that describes the system dynamics, modeled as a priori zero-mean GP.
According to the formalism described in chapter 3 the GP ℎ(𝑖) can be shaped

as
ℎ(𝑖) ∼ N

(
000, 𝐾𝑖(�̃� , �̃�)

)
(4.14)

where the matrix 𝐾𝑖(�̃� , �̃�) is the kernel function whose choice has been dis-
cussed in section 3.3.1. From equations (3.20) and (3.21), we can now compute
in closed form the posterior distribution of ℎ(𝑖). Given a general GP input 𝑥𝑥�̃�𝑡 ∉ �̃�
the distribution of Δ̂

(𝑖)
𝑡 and the estimate of Δ(𝑖)𝑡 are Gaussian with mean and

variance

E[Δ̂(𝑖)𝑡 ] = E[ℎ̂
(𝑖)
𝑡 (𝑥𝑥�̃�𝑡)] = 𝑘𝑖(𝑥𝑥�̃�𝑡 , �̃�)Γ−1

𝑖 𝑦𝑦𝑦
(𝑖)

V[Δ̂(𝑖)𝑡 ] = V[ℎ̂
(𝑖)
𝑡 (𝑥𝑥�̃�𝑡)] = 𝑘𝑖(𝑥𝑥�̃�𝑡 , 𝑥𝑥�̃�𝑡) − 𝑘𝑖(𝑥𝑥�̃�𝑡 , �̃�)Γ−1

𝑖 𝑘𝑖(𝑥𝑥�̃�𝑡 , �̃�)𝑇
(4.15)

with Γ𝑖 and 𝑘𝑖(𝑥𝑥�̃�𝑡 , �̃�)

Γ𝑖 = (𝐾𝑖(�̃� , �̃�) + 𝜎2
𝑖 𝐼)

𝑘𝑖(𝑥𝑥�̃�𝑡 , �̃�) = [𝑘𝑖(𝑥𝑥�̃�𝑡 , 𝑥𝑥�̃�𝑡1), . . . , 𝑘𝑖(𝑥𝑥�̃�𝑡 , 𝑥𝑥�̃�𝑡𝑛 )]
. (4.16)
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In conclusion, modeling each state with a distinct GP, the posterior distribution
for the estimated state at time 𝑡 + 1 is

𝑝(𝑥𝑥�̂�𝑡+1 |𝑥𝑥�̃�𝑡 ,D) ∼ N(𝜇𝜇𝜇𝑡+1,Σ𝑡+1) (4.17)

where

𝜇𝜇𝜇𝑡+1 = 𝑥𝑥𝑥𝑡 +
[
E[Δ̂(1)𝑡 ], . . . ,E[Δ̂

(𝑑𝑥)
𝑡 ]

]𝑇
Σ𝑡+1 = 𝑑𝑖𝑎𝑔

( [
E[Δ̂(1)𝑡 ], . . . ,E[Δ̂

(𝑑𝑥)
𝑡 ]

] ) . (4.18)

4.2.3 Long-Term Prediction with GP Dynamical Models

The improvement of the parameterized policy 𝜋𝜃 is based on the long-term
prediction of the evolution 𝑝(�̂�1), . . . , (�̂�𝑇). The exact computation requires
applying the one-step-ahead prediction in cascade, propagating uncertainty.
This means, starting from an initial distribution 𝑝(𝑥𝑥𝑥0), at each time steps 𝑡
obtaining the next state distribution by marginalizing over 𝑝(𝑥𝑥�̂�𝑡), namely

𝑝(𝑥𝑥�̂�𝑡+1) =
∫

𝑝(𝑥𝑥�̂�𝑡+1 |𝑥𝑥�̂�𝑡 ,𝜋𝜃(𝑥𝑥�̂�𝑡),D)𝑑𝑥𝑥�̂�𝑡 . (4.19)

This exact predicted distribution computation, in practical terms, is not fea-
sible. Thus we will apply a different approach to solve this problem. The
original PILCO presentation [10] aims to approximate the solution with Moment
Matching. In Moment Matching, we assume the GP models use only the SE
kernel as a prior covariance and considering a normal initial state distribution
𝑥𝑥𝑥0 ∼ 𝑁(𝜇𝜇𝜇0,Σ0), the first and second moments of 𝑝(𝑥𝑥�̂�1) can be computed in the
closed form [9]. Consequently, the distribution 𝑝(𝑥𝑥�̂�1) can be approximated as a
Gaussian distribution, with its mean and variance corresponding to the previ-
ously computed moments. Subsequently, the probability distributions for the
following time steps of the prediction horizon are iteratively computed using
the same procedure. For detailed information about the computation of the first
and second moments, refer to [9]. Moment matching offers the advantage of
providing a closed-form solution for handling uncertainty propagation through
the GP dynamics model. Therefore, it is possible to compute the policy gradi-
ent based on long-term predictions analytically in this context. However, the
Gaussian approximation employed in moment matching also entails two main
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Fig. 4.1: Particles propagating thought the stochastic model [2]

weaknesses:

1. The computation of the two moments assumes the use of SE kernels;

2. This method allows for modeling only unimodal distributions, which
might be an overly restrictive approximation of the true system behav-
ior.

Due to this limitation for this work, we apply a different method. The in-
tegral in (4.19) can be approximated by relying on Monte Carlo, particularly
particle-based methods. Specifically, 𝑀 particles are sampled from the initial
state distribution 𝑝(𝑥𝑥𝑥0). Each one of the 𝑀 particles is propagated using the
one-step-ahead GP models (4.17). Let 𝑥(𝑚)𝑡 be the state of the 𝑚th particle at
time 𝑡, with 𝑚 = 1, ..., 𝑀. At time step 𝑡, the actual policy 𝜋𝜃 is evaluated to
compute the associated control. The GP model provides the Gaussian distribu-
tion 𝑝(𝑥𝑥𝑥(𝑚)𝑡+1 |𝑥𝑥𝑥(𝑚)𝑡 ,𝜋𝜃(𝑥𝑥𝑥(𝑚)𝑡 ), 𝐷) from which 𝑥𝑥𝑥(𝑚)𝑡+1, the state of the particle at the next
time step, is sampled. This process is iterated until each particle’s trajectory of
length 𝑇 is generated. The overall process is shown in Figure 4.1. The long-term
distribution at each time step is approximated with the distribution of the par-
ticles.
Note that this approach does not impose any constraint on the choice of the ker-
nel function and the initial state distribution. Moreover, there are no restrictions
on the distribution of 𝑝(𝑥𝑥�̂�𝑡). Therefore, particle-based methods do not suffer
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from the problems seen in moment matching at the cost of being more compu-
tationally heavy. Specifically, the computation of (4.17) entails the computation
of (4.15), which are the mean and the variance of the delta states, respectively.
Regarding the computational complexity, it can be noted that Γ−1

𝑖 𝑦𝑦𝑦
(𝑖) computed

a single-time offline during the training of the GP model (the same computa-
tion is needed at the moment matching case), and the number of operations
required to compute (4.15).a is linear w.r.t. the number of samples 𝑛. The
computational bottleneck is the computation of (4.15).b, which is 𝑂(𝑛2). Then,
the cost of a single state prediction is 𝑂(𝑑𝑥𝑛2), leading to a total computational
cost of 𝑂(𝑑𝑥𝑀𝑇𝑛2). Depending on the complexity of the system dynamics, the
number of particles necessary to obtain a good approximation might be high,
determining a considerable computational burden.
Nevertheless, the computational burden can be substantially mitigated via graph-
ics processing units (GPU) parallel computing due to the possibility of comput-
ing the evolution of each particle in parallel. Notice that we are estimating
the full state assuming the model predicts each component with distinct and
independent GP. However, from section 3.3.3, we have seen that our model, like
many physical systems, is described by its pose and respective velocities. This
allows us to employ the speed integration model, limiting estimating only the
velocity GP and integrating the result to obtain the pose components. This will
decrease the cost of a state prediction to 𝑂( 𝑑𝑥2 𝑀𝑇𝑛2). Nevertheless, this ap-
proach is based on a constant acceleration assumption and works appropriately
only considering small enough sampling times.

4.3 Policy Optimization

Monte Carlo Particle-Based Method and speed-integration GPR offer a reli-
able strategy for achieving credible long-term state predictions. Such long-term
predictions allow for policy optimization that takes into account the entire be-
havior horizon. This perspective of policy optimization fosters a more insightful
policy capable of mitigating issues related to inherent noise. The following sec-
tions will provide a detailed exposition of this policy optimization approach.
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4.3.1 Policy Structure

In MC-PILCO, we can optimize any differentiable policy function. Neural
Networks are an example of a function. However, we will resort to a more
interpretable function for our purpose. The function is the so-called squashed
RBF network policy, defined as

𝜋𝜃(𝑥𝑥𝑥) = 𝑢𝑚𝑎𝑥 tanh

(
1

𝑢𝑚𝑎𝑥

𝑛𝑏∑
𝑖=1

𝑤𝑖𝑒
| |𝑎𝑎𝑎 𝑖−𝑥𝑥𝑥 | |2Σ𝜋

)
. (4.20)

Clearly, the policy parameters are 𝜃𝜃𝜃 = {𝑤𝑤𝑤,𝐴𝐴𝐴,Σ𝜋}, where 𝑤 =
[
𝑤1, . . . , 𝑤𝑛𝑏

]
are the weights of the Gaussian basis function, while 𝐴 =

[
𝑎1, . . . , 𝑎𝑛𝑏

]
and

Σ𝜋, assumed diagonal, determines the center and the shape of theses functions
respectively. Again the elements of the Gaussian shape are called lengthscales.
In the function, the hyperbolic tangent limits the basis function between [−1, 1],
and the returned values are then rescaled of a factor 𝑢𝑚𝑎𝑥 . This means that our
policy output will be in the interval [−𝑢𝑚𝑎𝑥 , 𝑢𝑚𝑎𝑥] that, in our context, can be
seen as the maximum motor speed offset allowed.

4.3.2 Policy Gradient Computation

The success of policy optimization is contingent upon the cumulative cost
function of long-term prediction, denoted as E𝑥𝑥𝑥𝑡 . However, accurately estimat-
ing the trajectory of state evolution necessitates the utilization of the Monte Carlo
particle method. With reference to the procedures detailed in Section 4.2.3, we
define 𝑥𝑥𝑥(𝑚)𝑡 as the state of the 𝑚-th particle, with 𝑚 ranging from 1 to 𝑀 and 𝑡

between 0 and 𝑇. In this setting, the cumulative cost is estimated through the
Monte Carlo method as follows:

𝐽(𝜃) =
𝑇∑
𝑡=0

(
1
𝑀

𝑀∑
𝑚=1

𝑐(𝑥𝑥𝑥(𝑚)𝑡 )
)
, (4.21)

The state evolution of each particle, 𝑥𝑥𝑥𝑡(𝑚), is a sample drawn from the nor-
mal distribution 𝑝(𝑥𝑥𝑥𝑡 + 1(𝑚) |𝑥𝑥𝑥𝑡(𝑚),𝜋𝜃(𝑥𝑥𝑥𝑡(𝑚)),D) ∼ N(𝜇𝜇𝜇𝑡 + 1,Σ𝑡+1), as given by
equation (4.18).

The intrinsic stochastic components of our model complicate the direct com-
putation of gradients with respect to the policy parameters. However, applying
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the so-called "reparameterization trick" [2] offers an elegant solution, providing
a pathway to differentiate through the stochastic processes.

In this approach, rather than sampling directly from a normally distributed
variable𝑁(𝜇𝜇𝜇𝑡 + 1,Σ𝑡 + 1) during the gradient computation, we sample a point 𝜉
from a standard normal distributioncharacterized by a zero mean and unit vari-
anceand of dimensions identical to 𝜇𝜇𝜇𝑡 + 1. This sample point is subsequently
mapped into our distribution of interest, yielding 𝑥(𝑚)𝑡 + 1 = 𝜇𝜇𝜇𝑡 + 1 + 𝐿𝑡 + 1𝜉,
where 𝐿𝑡+1 signifies the Cholesky decomposition ofΣ𝑡+1, i.e.,Σ𝑡+1 = 𝐿𝑡+1𝐿𝑇𝑡+1. By
applying this reparameterization trick, we can create a deterministic relationship
between 𝑥(𝑚)𝑡 + 1 and 𝜃, allowing the computation of ∇𝜃𝐽 using backpropaga-
tion. The policy parameters 𝜃 are then updated via the Adam optimizer, with
𝛼𝑙𝑟 serving as the step size within the framework of Adam [17].

Dropout The gradient-based optimization procedure we employ is not with-
out its challenges, with the occurrence of local minima standing out as a sig-
nificant hurdle. These cost function nadirs can trap the optimization process
in sub-optimal configurations. Optimizers such as Adam introduce noise re-
duction techniques to provide more accurate gradient estimations, which aid
in escaping these sub-optimal traps. However, even these stochastic gradient
descent methods cannot guarantee arrival at the global minimum.

This work adopts the "dropout" technique presented in [2]. Dropout, ap-
plied to the policy (4.20), involves the random elimination of weights 𝑤𝑤𝑤 with
probability 𝑝𝑑. It is accomplished by scaling all weights 𝑤𝑖 by a random variable
𝑟𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1− 𝑝𝑑). This operation, in essence, constructs a distribution over
the weights, thus creating a parameterized stochastic policy 𝜋𝜃. Following this
process, the stochastic policy employed during policy optimization elevates the
entropy of the particle distribution, aiding the system in exploring areas asso-
ciated with lower costs and thereby sidestepping local minima. The utility of
dropout also extends to mitigating issues related to exploding gradients, possi-
bly because the gradient is evaluated across a variety of𝑤𝑤𝑤 values. Each different
𝑤𝑤𝑤 value yields a different policy, and by averaging the gradients over slightly
diverging policies, a regularization effect is achieved.
However, it’s important to note that while dropout introduces beneficial entropy
into the policy, it may, in doing so, negatively affect the precision of the resulting
solution. Consequently, it’s crucial to manage dropout in such a way that the
policy optimization phase yields a deterministic policy, thereby ensuring the
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accuracy of the solution.
Following this reasoning, a heuristic scaling procedure has been proposed [2]
that progressively diminishes the dropout rate, or 𝑝𝑑, to zero during the policy
update iterations.

Dropout Scaling The scaling procedure is guided by a monitoring signal 𝑠.
This signal is derived from the statistics of past iterations of 𝐽. Specifically, the
cost change Δ𝐽 𝑗 = 𝐽(𝜃𝑗) − 𝐽(𝜃 𝑗 − 1) at the 𝑗-th optimization step is defined. The
monitoring signal 𝑠 is then computed as a filtered version of the ratio between
the mean and the standard deviation of Δ𝐽 𝑗 , calculated using the Exponential
Moving Average (EMA) filter. At the 𝑗-th optimization step, the following
conditions are met:

ℰ[Δ𝐽 𝑗] = 𝛼𝑠ℰ[Δ𝐽 𝑗 − 1] + (1 − 𝛼𝑠)Δ𝐽 𝑗, (4.22)

𝒱[Δ𝐽 𝑗] = 𝛼𝑠((𝒱[Δ𝐽 𝑗 − 1]) + (1 − 𝛼𝑠)(Δ𝐽 𝑗 − ℰ[Δ𝐽 𝑗 − 1])2), (4.23)

𝑠 𝑗 = 𝛼𝑠𝑠 𝑗 − 1 + (1 − 𝛼𝑠)
ℰ[Δ𝐽 𝑗]√
𝒱[Δ𝐽 𝑗]

, (4.24)

where 𝛼𝑠 is the coefficient of the EMA filter, which governs its memory capacity.
For each iteration of the optimization procedure, the algorithm examines whether
the absolute value of the monitoring signal 𝑠 over the last 𝑛𝑠 iterations is beneath
the threshold 𝜎𝑠 . Specifically, the algorithm checks the condition:

[|𝑠 𝑗−𝑛𝑠 | · · · |𝑠 𝑗 |] < 𝜎𝑠 (4.25)

If this condition is satisfied, it suggests that the solution may fall into a local
minimum, thus triggering a decrease in the dropout rate. The new value of 𝑝𝑑
is then calculated as follows:

𝑝𝑑 = max(𝑝𝑑 − Δ𝑝𝑑 , 0),
𝛼𝑙𝑟 = max(𝜆𝑠𝛼𝑙𝑟 , 𝛼𝑙𝑟𝑚𝑖𝑛 )
𝜎𝑠 = 𝜆𝑠𝜎𝑠

(4.26)

where 𝛼𝑝𝑑 is the learning rate for the dropout rate, and 𝑝𝑑𝑚𝑖𝑛 is the minimum
achievable dropout rate. The algorithm continues to iterate, reducing 𝑝𝑑 as long
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as
𝑝𝑑 ≥ 0and𝛼𝑙𝑟 ≥ 𝛼𝑙𝑟𝑚𝑖𝑛 (4.27)

In the above way, our proposed method is guided by intelligent dropout scal-
ing, which helps prevent the solution from getting trapped in suboptimal local
minima. The intelligent dropout scaling also leads to a regularization effect, re-
ducing the chances of overfitting while improving the model’s generalizability.
The algorithm 2 reports the pseudo-code for the MC-PILCO with dropout.

Algorithm 2 PID Algorithm for 𝑧 altitude
Require: Policy 𝜋𝜃(·), cost 𝑐(·), kernel 𝑘(·, ·), max optimization steps 𝑁𝑜𝑝𝑡 , parti-

cles number 𝑀, learning rate 𝛼𝑙𝑟 , min learning rate 𝛼𝑙𝑟𝑚𝑖𝑛 , dropout probability
𝑝𝑑, dropout probability reduction Δ𝑝𝑑 and monitoring parameters: 𝜎𝑠 , 𝜆𝑠 , 𝑛𝑠 .

Apply initial control policy to the system and collect data
while task not successfully learned do

(1) Model Learning:
GP models are learned from sampled data - section 3.3.3
(2) Policy Update:
𝑠0← 0
for 𝑗 = 1 to 𝑁𝑜𝑝𝑡 do

Simulate 𝑀 particles rollouts with current GP models and 𝜋𝜃

Compute 𝐽(𝜃𝑗) from eq. (4.21)
Compute ∇𝐽(𝜃)
𝜋𝜃𝑗+1 = gradient-based update
Update 𝑠 𝑗 with eq. (1.45)
if (1.46) then

Update 𝑝𝑑, 𝛼𝑙𝑟 and 𝜎𝑠 with eq. (4.22), (4.24)
end if
if not (1.48) then

Exit for loop
end if

end for
(3) Policy Execution:
Apply the updated policy to the system and collect data

end while
return trained policy, learned GP model

In this work, we adapted the MC-PILCO implementation developed by [2] in
Python and publicly available at https://www.merl.com/research/license/
MC-PILCO.
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4.3.3 Cost Function

The definition of the cost function 𝑐(x𝑡), representing the penalty for occu-
pying a particular state, is a crucial element in our reinforcement learning (RL)
framework. The reason is that this function encapsulates our objective - penaliz-
ing the quadrotor for deviating from the desired state. In the current study, we
define the cost function as a saturating function expressed as the negative expo-
nential of the squared norm of the difference between the current and desired
state, i.e.,

𝑐(x𝑡) = 1 − exp
(
−(𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥𝑑𝑒𝑠)𝑇𝐿(𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥𝑑𝑒𝑠)

)
. (4.28)

Here, x𝑑𝑒𝑠 represents the desired state. The matrix 𝐿 is a diagonal matrix that
allows for different weights for different components of 𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥𝑑𝑒𝑠 , depending on
the variations in their ranges or their relative importance. Our primary objective
is to find a policy capable of controlling the propeller motor’s rotational speed,
thus reducing the problem’s complexity by focusing on the desired position in
the 𝑥𝑦𝑧 space. This is based on the understanding that stability at a specific
location requires a null velocity and no inclination w.r.t. the 𝑥𝑦 plane. This sim-
plification translates into a cost function based on the first three state parameters:

𝑐(x𝑡) = 1 − exp

(
−

(
𝑥𝑡 − 𝑥∗
𝑙𝑥

)2
−

(
𝑦𝑡 − 𝑦∗
𝑙𝑦

)2
−

(
𝑧𝑡 − 𝑧∗
𝑙𝑧

)2
)
. (4.29)

Here, 𝑙𝑥 , 𝑙𝑦 , and 𝑙𝑧 represent characteristic lengthscales in the 𝑥, 𝑦, and 𝑧 dimen-
sions, respectively, which provide a normalized measure of the deviation from
the desired position.
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5
MC-PILCO Application Results

In Chapter 4, we introduced our Reinforcement Learning approach, enlight-
ening how it works and all the needs to reach our quadrotor position tracking
objective. This section will finally apply this framework to our problem and ob-
serve its results. We initially want to observe if the learned policy can move the
quadrotor to the desired position. We will then focus on seeing if it is capable of
reaching that point sable and how the system behaves under the policy control
with respect to a traditional PID controller.
Policy optimization has been performed on a simulation moved by our nominal
differential orders equation. The second step was to test this performance in
a more realistic environment. This has been done by exploiting the PyBullet
physics simulator for Python. Combined with the Gym package, we used a
quadrotor simulation that added to the dynamics of external disturbances such
as ground effects, drag forces, and downwash.

5.1 Nominal ODE Simulation

We started by developing a model of the quadrotor that describes its state evo-
lution by ODEs, as indicated in equation (2.54). In Section 2.6, we determined the
base velocity that allows the quadrotor to maintain a certain altitude and, ideally,
position. For simplicity, we assume the quadrotor starts at an altitude of 2𝑚 from
the ground, with an initial position of 𝑥𝑥𝑥0 = [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0]𝑇 .
This higher altitude helps us avoid problems related to take-off and landing,
and also reduces the risk of collisions.
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Fig. 5.1: PID Position ODE Control for Target Position 𝑥𝑥𝑥𝑑𝑒𝑠

Our goal now is to move the quadrotor from the initial position 𝑥𝑥𝑥0 to the desired
position 𝑥𝑥𝑥𝑑𝑒𝑠 = [1,−1, 1]𝑇 , which represents a 1𝑚 movement in all three direc-
tions. Because of the quadrotor’s unique structure, we don’t need to specify the
components of the other states. Indeed, maintaining a desired position means
the quadrotor’s orientation must remain parallel to the 𝑥𝑦 plane, and, similarly,
all velocities should be zero. In other words, imposing a target position intro-
duces restrictions on other dimensions. The only thing that can change freely is
the orientation 𝜓, but for now, we are ignoring this as it doesn’t affect the final
goal.

From the PID for position tracking described by (2.60), we have developed a
controller that enables the quadrotor to move to the target position. However,
reaching the goal results in a slow and nearly unstable operation. Figure 5.1
reports the controller’s behavior.

The control of the 𝑧 altitude exhibits good performance, with the quadrotor
getting close to the target within about 2𝑠. On the other hand, reaching the
desired positions on 𝑥 and 𝑦 axes involves a critical state evolution. The primary
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issue is the oscillatory behavior, which requires several seconds to fade away,
consequently delaying the rise time - it takes about 5𝑠 to reach the target posi-
tions, with oscillations still present after 20𝑠. In our nominal environment, we
observe that the quadrotor can handle this maneuver, where the only disturbance
is the white additive noise considered in the states’ observations. However, in
a real-world context, additional external disturbances may introduce numerous
other instabilities and uncertainties, potentially leading to disastrous behavior.

5.1.1 Cost Shape

In the last section of the previous chapter, we introduced the cost function,
which will be responsible for defining our final goal. According to the target
desired, our function is

𝑐(x𝑡) = 1 − exp

(
−

(
𝑥𝑡 − (1)
𝑙𝑥

)2
−

(
𝑦𝑡 − (−1)

𝑙𝑦

)2
−

(
𝑧𝑡 − (1)
𝑙𝑧

)2
)
. (5.1)

The lengthscales 𝑙𝑥 , 𝑙𝑦 , and 𝑙𝑧 are crucial parameters in our cost function. Their
role is to provide a normalized measure of the deviation from the desired po-
sition in each dimension, effectively scaling the contribution of each state com-
ponent to the cost. The choice of these lengthscales is not trivial and can signif-
icantly influence the controller’s performance. In this work, we have chosen all
three lengthscales to be equal to 3. The reason for this choice is twofold. First,
this value provides a sufficiently smooth curve around the desired point, mean-
ing that minor deviations from the target position will not result in significant
changes in the cost. This is desirable as it allows the quadrotor to adjust its po-
sition gradually without being heavily penalized for minor errors. Second, this
choice helps avoid the risk of infinite gradients, which could lead to unstable or
unpredictable behavior of the controller.

5.1.2 Policy Optimization Trials and Results

Exploration Policy In the previous section, we discussed the alternation of ex-
ploration and exploitation. The latter corresponds to the target policy, the rule
set our agent adheres to achieve the given objective. In contrast, the exploration
policy serves a different purpose altogether.
Typically, in reinforcement learning (RL) algorithms, the agent refines its policy

67



5.1. NOMINAL ODE SIMULATION

by leveraging observations from the environment. However, there can be in-
stances where it might be more advantageous for the agent to diverge from its
learned policy. The goal behind this deviation is to foster an environment for
exploration, encouraging the agent to test diverse actions in a range of states,
thereby expanding its understanding of the environment.
This exploration phase can be likened to a stage of data collection or informa-
tion gathering. Through exploration, the agent can uncover the various rewards
linked with different state-action pairs, facilitating a more profound comprehen-
sion of the inherent cost structure of the environment. Not only does exploration
aid in reward discovery, but it also stimulates the agent to venture into uncharted
states and transitions. This could potentially lead to lower costs, thereby con-
tributing to the development of a more sophisticated policy.
In our Model-Based RL setting, exploration takes on an even more pivotal role.
During the initial iteration, the agent has neither knowledge nor data about
the environment, rendering it incapable of learning a model for its long-term
prediction. Hence, it is necessary to execute some exploration actions to gather
preliminary data. Given our objective to evaluate whether our algorithm can
enhance the performance of existing controllers, we employ the PID position
controller we designed as our exploration policy. The evolution of this explo-
ration policy is depicted in Figure 5.1.

Parameter Description Value
Δ𝑝𝑑 pd reduction term 0.125
𝛼𝑙𝑟 optimizer’s learning rate 0.01

𝛼𝑙𝑟𝑚𝑖𝑛 minimum learning rate 0.0025
𝛼𝑠 EMA filter memory 0.99
𝜎𝑠 threshold of monitoring signal 0.08
𝑛𝑠 number of monitored iterations 200
Λ𝑠 reduction coefficient of 𝜎𝑠 and 𝛼𝑙𝑟 0.5
𝑝𝑑 dropout rate 0.25

Table 5.1: Summary of parameters

Optimization Trials and Results The parameters listed in Table 5.1 are those
used during the policy optimization process. The entire process is carried out
over a total of 5 trials, in each of which we expect an increase in performance or,
more generally, an improvement in the result.
In this context, the time horizon for the exploration trajectory is set to 20𝑠, while
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the horizon for policy optimization is 5𝑠. The reasoning behind this choice lies
in the desire to provide a large volume of data for the initial learning phase,
hence a longer exploration time horizon.
Our primary objective is to verify the algorithm’s ability to accurately learn the
model. In light of the results set out in Section 3.4, it is reasonable to expect
an initial non-optimal estimate. However, it is anticipated that as the trials
progress, there will be an improvement in performance, hopefully culminating
in satisfactory results. This trend is corroborated by the data from the various
trials. To better illustrate this point, Figure 5.3 shows the performance of the
first Gaussian Process (GP) in reference to Δ𝑥¤ . As can be seen, the model
demonstrates the ability to learn the dynamics from the first trial, albeit with
a high level of uncertainty. Over time, this uncertainty tends to decrease. In
fact, the latest trials show that the model not only provides precise estimates but
is also capable of effectively generalizing the additive error introduced in the
observations.

The importance of a well-trained model lies in its ability to maintain a strong
correlation between the particles, which represent the long-term state estimates,
and the actual evolution of the system. Figure 5.4 illustrates the state estimates
obtained through the particles for each trial.
Another indicator of the effectiveness of policy optimization can be observed by
analyzing the progression of cost. Figure 5.2 shows encouraging trends in this
regard. In the first trial, the total cost decreases only to a certain point. However,
a higher plateau in this phase of improvement can be explained by the fact that
we are only at the first trial. At this stage, the model is not yet capable of making
accurate predictions, and the agent has not had the opportunity to accumulate
enough experience from interactions with the environment to learn an optimal
policy. This circumstance is also evident in the evolution of the particles, where
it is clear that the agent, in the first trial, is not yet able to exert effective control.
Consequently, the cost of the particles will go to 1, the highest possible value.

With the advancement to the second trial, where the model has had the
opportunity to incorporate data from the first application of the policy to the
system, tangible progress is manifested. It is possible to note, in fact, a decrease in
the uncertainty associated with the Gaussian Process (GP) and a simultaneous
convergence of the control of particles toward the predefined objective. This
positive evolution finds further confirmation in the cost progression, which, at
this stage, begins to converge toward optimal values.
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However, the most significant evaluation metric is the behavior of the policy
when applied to the system described by ordinary differential equations (ODE).
This information is illustrated in Figure 5.5, where the pose state and cost be-
havior are shown. The first trajectory presented is the one generated by the PID
controller for exploration. As can be easily observed, the trajectory is almost
unstable, and the controller seems unable to reach the pre-set target within a
wide time horizon of 20𝑠. The following images show the results obtained from
the learned policy. From the first trial, the response appears much smoother,
thus eliminating all the oscillatory issues previously highlighted, although it
cannot reach the pre-set target. This may be due to the model’s inability, up to
this point in the process, to converge with the evolution of the particles.
However, starting from the second trial, the results begin to become significant.
With the increase in the precision of the model and good convergence of the
particles, the actual system rollout shows that the optimized policy can reach
the target in a stable manner, with optimal movements and significantly reduced
response times, approximately 2𝑠 rise time.
In the subsequent trials, the refinement of the policy may not appear as evident.
However, observing the rollout on the real system, it will be possible to notice a
gradual optimization of the rise times, stability (with reduced overshoots), and
precision in reaching the target.
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Fig. 5.2: Learning Plot
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Fig. 5.4: Particles Long-Terms Predictions
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Fig. 5.5: True Rollout Evolution
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5.2 Simulation with PyBullet

In Section 5.1, we introduced the nominal model simulated using ODE. As
shown, the algorithm was fully capable of learning a policy that could optimally
control the drone’s position, significantly improving the performance of a tradi-
tional PID controller. In particular, all oscillatory trends are entirely suppressed,
the rise time is improved, and stability for the desired goal is achieved.
Since the environment used so far is a nominal one, despite the immense im-
provements, verifying its performance in more realistic environments is neces-
sary, which consequently presents external disturbances and greater uncertain-
ties.
Unfortunately, it was impossible to test the algorithm with a real drone, so we
relied on the PyBullet library, which can simulate realistic physics dynamics
with a high degree of reliability.

5.2.1 PyBullet Simulator

PyBullet is an open-source, cross-platform physics library often used for 3D
simulations in the field of robotics. PyBullet can simulate the laws of physics,
including effects such as gravity, friction, and collision. Robot simulation is
easily supported through the Universal Robot Description Format (URDF) file
format. This allows users to simulate complex robots with many moving parts,
which can interact with the environment in realistic ways.
Furthermore, PyBullet is easily integrable with OpenAI Gym, a toolkit for the
development and comparison of reinforcement learning algorithms. This inte-
gration allows the creation of complex and realistic simulation environments in
which reinforcement learning agents can be trained.

In our case, PyBullet will be used in combination with OpenAIGym for the
simulation of a quadrotor. The environment is publicly available at the GitHub
repository https://github.com/utiasDSL/gym-pybullet-drones.
This modeling has been done in great detail, allowing for the consideration of
various physical aspects. These effects are:

1. Ground Effect: the phenomenon where a drone flying close to the ground
experiences an increase in lift due to air flow interference between the
drone and the ground. This is modeled in PyBullet by taking into account
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the distance between the drone and the ground and adjusting the forces
of the thrusters based on this distance.

2. Drag Forces: forces opposite to the motion of the drone through the air.
These forces are modeled in PyBullet by calculating the drag force based
on the drone’s speed and a drag coefficient specified in the URDF file.

3. Downwash: the airflow that is pushed down by a drone’s thrusters. This
can influence the behavior of the drone, especially in a quadrotor where
the downwash from one thruster can affect the other thrusters. This can
be modeled in PyBullet using a physical model that takes into account the
interactions between the airflows of the different thrusters.

Although accurate, it should be noted that PyBullet provides an approximate
model. However, it can perfectly capture the main and most "problematic"
physical details for our purpose.

The configuration of a drone proposed by the repository was used for this
experiment. Using a pre-configured drone in PyBullet allows us to emulate
the perspective of the MC-PILCO algorithm, which aims to control the drone
starting from zero experience, providing a faithful simulation environment for
the training and evaluation of this learning approach.

5.2.2 Policy Optimization

Exploration In the previous experiment, we used a PID position controller
specifically designed for our nominal model. Therefore, to generate the first
exploration, we will need to use a differently calibrated PID.
In the Gym-PyBullet repository, a PID position controller for the available
quadrotor is provided. Similar to the one we developed for the nominal model,
this one also aims to derive the forces𝑢𝑢𝑢 =

[
𝑓𝑧 , 𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧

]
necessary for the correct

displacement of the quadrotor, based on position errors. These forces will then
be converted into the required speeds according to equations (2.56).
Having defined the new target position 𝑥𝑥𝑥𝑑𝑒𝑠 = [0.75,−0.5, 1], the controller’s
response is shown in Figure 5.6.
From the image, we immediately notice that this controller has definitely been

calibrated better and more precisely than the one designed for the model sim-
ulated with the ODE. However, in this case, as well, there are some significant
issues. Firstly, we notice again a strongly oscillatory trend, with the achieve-
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Fig. 5.6: PID Position PyBullet Control for Target Position 𝑥𝑥𝑥𝑑𝑒𝑠

ment of significant inclinations in short periods of time. Moreover, even if only
slightly, we notice that the position along 𝑦 tends to stabilize with a slight offset
from the desired point. We, therefore, want to start from this trajectory, provided
in the exploration phase, and see what improvements MC-PILCO can make.

Results The parameters used for MC-PILCO are the same as before, reported
in Table 5.1. The main difference, due to the difference between the models, lies
in the exploration trajectory. In the nominal case, a high frequency in oscilla-
tions and inclinations, always less than 15◦, was noticed. Despite the long time
horizon, this dynamic leads to redundancy in the collected points.
In the environment developed with Gym-PyBullet, on the other hand, the con-
troller is able to execute wider maneuvers and, therefore, more significant for the
training phase of the model. In a way, it can be assumed that the optimization
of the policy begins with a greater knowledge of the environment.
This consideration is supported by the obtained results, shown in Figure 5.8,
where from the first trial, it is noted how the dynamics of the particles tend to
converge. From this, the total cost in Figure 5.7 will also converge more quickly.
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Fig. 5.7: Learning Plot

The results of better precision in estimating the GPR model are also noticed in
applying the optimized policy to the real system. In fact, something that did not
happen in the previous simulation, it is noted from the first trial that the model
is able to stabilize, even if not yet precisely to the given target. In the following
trials, however, the policy becomes increasingly precise and, in a completely
overlapping way with the previous simulation, tends to improve its rise time
and overshoot performance.

One last consideration that deserves to be mentioned is the input provided
by the PID position controller and the policy optimized with MC-PILCO. In the
first case, obtained from the exploratory phase, we notice that the controller
gives a very "noisy" input. The PID indeed has a structure that allows it to react
only based on the error relative to a specific target. Providing a more regular
input becomes a difficult task in such a complex environment and with many
external factors. This difficulty can be clearly seen in the input during the ex-
ploration phase in Figure 5.10.
On the contrary, MC-PILCO exploits the model learned from the previous ex-
perience to predict future evolution, thus allowing it to develop the best control
strategy for the task to be performed. Already from the first trial, and more so
in the subsequent ones, it is noticeable how the input provided to the system
becomes much more regular, requiring smaller variations compared to the tra-
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ditional controller. This definitely provides an advantage in real contexts as the
motors also have their inertia, and inevitably too sudden speed changes lead to
delays with consequent problems for more sophisticated controls.
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Fig. 5.8: Particles Long-Terms Predictions
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Fig. 5.9: True Rollout Evolution
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Fig. 5.10: Quadrotor Input
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6
Conclusions and Future Works

6.1 Review of Previous Steps

In this study, our objective was to introduce and test a novel and alternative
methodology for controlling a quadrotor, a type of unmanned aerial vehicle.

Our starting point involved an in-depth examination of the quadrotor system.
We pursued this by deriving a comprehensive model of its dynamics. This
process was grounded in Newton-Euler laws, which provide a robust theoretical
basis for understanding rigid bodies’ rotational and translational dynamics. In
essence, we used these laws as a framework to understand how external forces
and torques influence the motion of the quadrotor.
This dynamic model was initially derived with respect to two distinct frames
of reference: an inertial frame (INF) and a body-fixed frame (BFF) attached to
the quadrotor. These two reference frames provide different perspectives on the
motion of the quadrotor, each offering unique insights.
Following the derivation of the model, we transformed it entirely into the inertial
reference frame (INF). This transformation simplifies the subsequent control
design by considering the quadrotor’s dynamics from a single, fixed reference
frame.

To validate our derived models, we implemented a PID controller, a well-
known control strategy that adjusts the control output based on the present
and past error values. The PID controllers were applied to test the response
of our models. We aimed to verify that the dynamic evolutions under these
controllers were equivalent for the INF and BFF-derived models. This was a
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critical step to confirm the accuracy and reliability of our derived models. Upon
successful verification, we proceeded to conduct an in-depth analysis of our
novel quadrotor control methodology.

For this thesis, we sought to apply the MC-PILCO (Model-based Probabilis-
tic Inference Learning Control) algorithm in a new context. From the outset, to
ascertain its feasibility, we had to evaluate the ability of the chosen GPR model
to accurately learn the dynamics of the drone.
This phase presented several challenges. Firstly, the representation of the model
in a single reference frame played a crucial role. This allowed us to resort
to simpler models that could be managed via speed integration. The process
of transforming complex dynamics into a single frame simplifies the system’s
overall management by integrating velocity, we could calculate the pose of the
quadrotor over time, a crucial requirement for our next control strategies.
Another hurdle we encountered pertained to the length of the required time
horizons. For very high values, the cumulative error tended to grow exponen-
tially. This error accumulation can be problematic, as it could lead to significant
deviations from the real quadrotor trajectory over time. However, we noticed
that obtaining a reliable predictive model was possible with a sufficient and
significant amount of data.

Subsequently, we had to conduct a study related to approximation methods.
Due to computational constraints, working with fewer data points was neces-
sary. We resorted to a particular approximation method known as "Subset of
Data", which allowed us to select only certain points based on an error criterion.
This method involves the selection of a subset of data points that are most rep-
resentative or informative in the context of the problem at hand.
Our findings showed that the model provided reliable estimates even with only
tens of data points. This is noteworthy as it demonstrates that we can obtain
a robust representation of the drone’s dynamics with a manageable amount of
data. This is advantageous as it reduces the computational burden, which can
be a significant concern, especially for real-time applications.
With the successful implementation of the approximation method, we were able
to proceed with the actual implementation of the MC-PILCO algorithm. As a
model-based method, MC-PILCO relies on having a reliable system dynamics
model. Our successful application of the SoD approximation method allowed
us to build such a model.

By balancing these challenges, we were able to implement the MC-PILCO
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algorithm. Based on probabilistic Gaussian process models, this algorithm
efficiently optimizes control policies by actively learning from data. In our
context, it allowed us to optimize the drone’s control policy to evaluate its
performance improvement.

6.2 Conclusions

The MC-PILCO algorithm implemented for this task displayed impressive
results when compared to traditional control methods. In a simulated environ-
ment, all control performance indicators were significantly improved, illustrat-
ing the effectiveness of this approach.
One of the most conspicuous improvements was the optimization of the ma-
neuvers. The flight paths generated by the MC-PILCO algorithm were much
smoother and more regular than those obtained with the PID controller. Conse-
quently, other performance measures, such as overshoot and rise time, were also
notably improved. Improvements in these measures show that the MC-PILCO
algorithm enabled the quadrotor to reach its target position more quickly and
accurately than the PID controller.
Another important factor was the robust stability achieved by the quadrotor.
It was able to reach the predefined goal with significant consistency and re-
silience. Robust stability is crucial in real-world applications as it ensures the
system’s performance is not overly affected by changes in the environment or
minor deviations from the model assumptions.

As reliable and faithful to reality, as it may be, this algorithm has always
been developed for control in simulated environments. However, based on the
experience gained during the execution of this project, we can draw important
conclusions.
Firstly, the reliability of the learned model for estimating the dynamics of the
quadrotor plays a crucial role during the optimization phase. The ability to
predict future evolutions with low uncertainty in response to specific inputs
is necessary for algorithms that rely on long-term predictions. MC-PILCO,
strongly based on this concept, requires the model to approximate the system’s
behavior with an extremely high level of precision.
In simulated contexts, we found that a model based on Gaussian Process Re-
gression (GPR) could perfectly fulfill this task. However, this might not be as
straightforward in real-world environments, where external disturbances and

85



6.3. FUTURE WORKS

uncertainties increase exponentially.
This condition could inevitably lead to a need for more data or, alternatively, the
exploration of new, more effective approximation models. One such promising
avenue could be the use of neural networks.

The results obtained with the MC-PILCO algorithm demonstrate that only
a single significant exploration trajectory for the required task was necessary to
learn the optimal policy. This is a significant finding as it indicates the potential
efficiency of this approach in learning complex control policies. It reduces the
need for extensive exploratory data, thus potentially accelerating the learning
process and making the approach more feasible for real-world applications.
In conclusion, the results obtained are very promising for achieving short-term
objectives. They show that the MC-PILCO algorithm could be a viable and
advantageous alternative for controlling complex nonlinear systems. This opens
up wide-ranging perspectives for quadrotor control.

The optimized policy’s final outcome in the gym environment was thor-
oughly tested using a graphical user interface (GUI). In addition to showcasing
the final result, the video recording also includes a comparison with the PID
controller. The link to the video is https://youtu.be/Eu_x05O-rwA.

6.3 Future Works

The results obtained indeed open up the prospect of significant advance-
ments for this approach. First and foremost, it would be interesting to see how
MC-PILCO is able to interface with the real world. The simulations we con-
ducted demonstrated that, with an effective model and an appropriate explo-
ration trajectory, the quadrotor could perform a point-to-point task effectively.
Given the results obtained, it’s reasonable to think that, with the right precau-
tions, MC-PILCO could find an optimal policy, improving upon the performance
of existing controllers, even in real-world environments.

Subsequently, it would also be interesting to see how this approach can
handle different tasks. An intriguing case would be to provide a different goal
point from the one reached in the exploration phase. To further complicate
the task, it would be a good idea to no longer require the task to reach just
one point but a series of points in sequence. This would necessitate further
analysis of the problem and potentially require modifications to the initial system
representation, perhaps needing to include the target in the state representation.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

Further research needs to be undertaken to address these challenges and con-
tinue the advancement in the field of autonomous quadrotor control, assuming
these endeavors are successful. In this regard, the future of MC-PILCO seems
promising, offering a potent tool for the effective control of complex systems.
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