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Abstract

The purpose of this activity is to design and simulate a robust controller
for a robot manipulator tracking a trajectory in case of uncertainties in the
dynamical model.

In this study the main goal is to introduce a way to overcome the usual
assumptions made in the design of the robustness which depends on a
previous knowledge of some parameters.

Matlab has been adopted as a computing environment for the develop-
ment of the design. The analysis of the obtained results has been carried
out through Simulink toolbox.

After the derivation of the model describing the dynamics of the robot
under analysis, a simple feedback control system has been implemented to
control the position of the manipulator. To enhance the robustness of the
system stability, the previous structure has been subsequently improved by
introducing a term that represents the robust contribution that counteracts
the indeterminacy in computing the nonlinear terms that depend on the
manipulator state.

To overcome the assumptions made in the design of robustness term
that need previous knowledge of some parameters, a technique which
depends on the evaluation of the Lyapunov function is used to determine
this term.



Chapter 1

Introduction

The relationship between robotics and control theory has a long and
storied history, spanning over half a century. Control theory has played
a crucial role in solving fundamental challenges in robotics, while prob-
lems encountered in robotics have driven the development of new control
theories. In recent years, robotics has experienced rapid progress, and the
outlook for the future remains promising.

In the early days, the machine tool industry dominated robotics, leading
to the design of stiff mechanisms with independent single-input/single-
output (SISO) linear control for each joint. Simple tasks such as material
transfer and spot welding were accomplished through point-to-point con-
trol, while more complex tasks like arc welding and spray painting utilized
continuous-path tracking. However, sensing of the external environment
was limited.

As the demand for more advanced tasks, such as assembly, emerged,
regulating contact forces and moments became necessary. Achieving
higher speed operation and payload-to-weight ratios required a deeper
understanding of the complex nonlinear dynamics of robots, which, in
turn, drove the development of new theoretical control approaches such
as nonlinear, robust, and adaptive control.

The first industrial robot in the United States was the Unimate, installed
in a General Motors plant in 1961 for moving die castings and welding parts
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on auto bodies. Production began in 1966, with other companies in Japan
and Europe also entering the market in the 1970s. Early robotics primarily
focused on manipulator arms and basic factory automation tasks, like
handling materials, welding, and painting.[33]

Progress in robot control faced challenges such as high computation
costs, limited sensors, and a lack of understanding of robot dynamics.
These barriers led to research efforts aimed at increasing fundamental
knowledge of dynamics, architecture, and system-level design. However,
early control schemes based on approximate linear models and the sepa-
ration of mechanical and control system design had limitations.

The advancement of robot control was also influenced by Moore’s Law,
as increasing computation speed and decreasing costs enabled the imple-
mentation of advanced sensor-based control systems.

Pioneering research in robotics delved into the inventive application
of well-established control techniques and the generation of novel con-
cepts, some of which left a lasting impact on control research as a whole.
Notably, early investigations into computed torque and inverse dynamics
control in [25]. It’s worth highlighting the historical context by noting
that, up until the mid-1980s, research papers on robot control consistently
featured assessments of the computational demands associated with their
implementations. In the mid-1980s, robot manipulators became a standard
control application, and were recognized and exploited in research, The
inverse dynamics control motivated the differential geometric method of
feedback linearization that has been used in a lot of practical problems
within and outside of robotics.[14]

The usage of inverse dynamics control laws imposes an accurate knowl-
edge of the parameters of the system dynamic model, and the equations of
motion are computed in real time. These conditions cannot be insured in
practice because the model is usually known with the presence of uncer-
tainty due to imperfect knowledge of manipulator mechanical parameters,
and existence of unmodelled dynamics.

Over the past few decades, substantial research has focused on enhanc-
ing or creating controllers for systems with uncertainties. Key elements of
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CHAPTER 1. INTRODUCTION

established nonlinear robust control approaches include adaptive control,
sliding mode control (SMC), a blend of adaptive and sliding mode con-
trol, passivity-based control, and robust control based on Lyapunov stabil-
ity.[50] In conventional nonlinear adaptive controllers, the controller aims
to acquire knowledge about uncertain parameters associated with specific
structured dynamics. This allows for precise control and compensation for
structured uncertainties as well as bounded disturbances. However, adap-
tive control methods are limited in their ability to parameterize known
functional relationships when the constants within those relationships are
unknown. Consequently, these limitations can impact the performance
of existing nonlinear adaptive controllers in scenarios where the dynamic
model is poorly understood or when rapid real-time control is essential
.[20, 2, 6, 38, 37, 35, 3]

On the other hand, robust variable structure controllers utilizing slid-
ing mode control (SMC) are naturally appealing due to their capacity to
handle uncertainties, exhibit excellent transient performance (i.e., minimal
tracking error), and provide swift responses. However, the discontinu-
ous nature of the control law in sliding mode control (SMC) can lead to
a phenomenon known as "chattering," which has the potential to trigger
unmodeled high-frequency dynamics. Attempts to mitigate this chatter-
ing through techniques like the boundary-layer method entail a trade-off
between performance and chattering reduction. Additionally, achieving
robustness and convergence in SMC requires a priori knowledge of the
upper bounds of the perturbation vector, which represents the unknowns
in the system. Designing controllers based on worst-case scenarios may
result in overly conservative approaches . [38, 3, 42, 49, 39]

Efforts have been made to address the limitations of SMC, including
chattering and the need for prior knowledge of perturbation bounds. Per-
turbation estimation was investigated for a specific class of nonlinear un-
certain systems in[38, 8, 19, 30], but these challenges remained largely
unresolved.

Robust adaptive controllers, such as combined adaptive sliding mode
controllers, have been explored as a means to overcome the drawbacks of

3
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both adaptive control and SMC. This approach employs adaptive control
to estimate unknown system parameters and SMC to handle unmodeled
dynamics and external disturbances. However, these combined adaptive
controllers require a linearly parameterized model of the system and prior
knowledge of uncertainty bounds. Moreover, dealing with a large num-
ber of parameters and adaptation gains corresponding to each unknown
parameter introduces complexity. Issues related to adaptation time and
computational burden can pose stability and robustness challenges, par-
ticularly in scenarios where rapid real-time control is necessary .[37, 46,
47],

Addressing the design of robust adaptive controllers without knowl-
edge of uncertainty bounds was tackled in [12] and related references,
along with [4], which necessitated a specific linearly parameterized model
of the system for controller construction.

Passive controllers leverage the passive nature of controlled dynami-
cal systems, which generally cannot provide more energy than is input
into them. Implementing such controllers is relatively straightforward,
but they do not readily yield quantifiable performance measures [1]. In
contrast, robust Lyapunov stability-based approaches offer insights into
the asymptotic behavior of solutions without the need to solve differential
equations. However, akin to sliding mode control, these approaches yield
discontinuous control laws that are susceptible to chattering .[38, 23]. The

authors of [36] propose a robust controller to address the uncertainties
discussed earlier. This controller offers a promising solution but hinges on
three critical assumptions. While two of these assumptions are often met
in practice, the third one necessitates prior knowledge of the range of un-
certainties. The primary objective of this thesis is to present an innovative
approach to fulfill this assumption without the requirement for explicit
knowledge of these parameters.

The core investigation and experimentation in this thesis primarily fo-
cus on a relatively simple 2R planar manipulator. Through extensive anal-
ysis and testing on this platform. Subsequently, the research extends its
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scope to a more intricate and dynamic structure, namely the widely em-
ployed SCARA robot. This expansion allows for a broader assessment
of the developed control strategies and their adaptability across different
robotic systems.

By pursuing these research objectives, the thesis aims to contribute
to the advancement of robotics control and address practical challenges
related to handling uncertainties in real-world applications. The transition
from a simpler manipulator to a more complex one like the SCARA robot
underscores the robustness and generalizability of the proposed approach,
making it a valuable contribution to the field of robotics and control theory.

This document is organized as follows:

-Chapter 2: Provides a concise introduction to the process of deriving
the dynamic model using the Lagrange formulation. It also includes an
illustrative example of this derivation applied to the 2R robot, which is the
robot under examination.

-Chapter 3: We delve into the concept of Inverse Dynamics Control
and present the design details of our robust controller. Additionally, we
provide an overview of Sliding Mode Control (SMC), which is the category
our controller falls under. In this chapter, we also introduce the PD+ non
linear controller as an alternative approach to address uncertainties in the
system dynamics. Furthermore, we conduct a comparative analysis of
simulation results for both controllers.

-Chapter 4: Expands our study by applying our Robust Controller to a
more complex robot structure, specifically, the well-known SCARA robot.
We meticulously analyze the simulation results in this context.

-Chapter 5: We reach the culmination of this thesis, offering essential in-
sights. We conclude our extensive exploration of Robust control for robotic
manipulators, emphasizing both the established and novel methodologies
we’ve applied

5



Chapter 2

Dynamical Model

Robot Dynamics is the subject that studies the motions of robots tak-
ing into account the forces and torques that cause them.[22] Deriving the
dynamical model of a robotic manipulator or any mechanical system is of
crucial importance for various reasons:

Control and Trajectory Planning:The dynamical model provides the
mathematical description of how the system’s motion is affected by the
forces and torques applied to it. This information is essential for design-
ing control algorithms to achieve desired trajectories and achieve accurate
and stable motion control. Simulation and Analysis:The dynamical model
allows to simulate the behavior of the mechanical system under differ-
ent conditions. This helps in understanding the system’s performance,
identifying critical points, predicting behavior, and evaluating its stabil-
ity.[36] Design and Optimization: Knowledge of the dynamical model is
vital for designing mechanical systems with optimized performance. It
enables to select appropriate actuator specifications, joint designs, link
lengths, and other parameters to meet specific performance criteria. Safety
and Robustness:Understanding the system’s dynamics is crucial for en-
suring the safety of both the manipulator and its surroundings. It helps
in identifying potential risks and designing safety measures. Moreover,
a robust dynamical model helps in designing control strategies that can
handle uncertainties and disturbances during operation. The Dynami-
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cal equations associated also referred to as the equations of motion are a
set of second-order differential equations. When we talk about dynamics
there are main topics that are forward dynamics and inverse dynamics,the
forward problem is to determine the robot’s acceleration given the state
and the joint torques and forces,while the inverse problem is to find the
forces and torques corresponding to the state of the robot and the desired
acceleration.

There are two main methods that are used for deriving the equations
of motion one of them is based on the Lagrange formulationa derived from
the kinetic and potential energy of the robot, and the second one is based
on the NewtonEuler formulation that is a direct application of Newton’s and
Euler’s dynamic equations for a rigid body. The Lagrangian formalism is
elegant and efficient for robots with simple structures, such as those with
three or fewer degrees of freedom. However, as the number of degrees
of freedom increases, the calculations can become cumbersome. For more
complex robots with open chains, the Newton-Euler formulation offers ef-
ficient recursive algorithms for both inverse and forward dynamics. These
algorithms can be assembled into closed-form analytic expressions, pro-
viding a practical and efficient approach for handling the dynamics of such
robots[22][13].

In this chapter the Lagrange formulation method is briefly explained for
the derivation of the equations of motion of a manipulator in the joint space,
which is conceptually simple and systematic. We will use the equations of
motion in chapter 3 and chapter 4, for deeper explanation refer to [36].

2.1 Lagrange Formulation
The dynamic model of a manipulator describes how the joint actuator

torques are related to the motion of the structure. The use of Lagrange
formulation gives the advantage of deriving the equations of motion in a
systematic way independently of the reference coordinate frame. In this
method The derivation of the dynamic model of the manipulator begins
with the determination of the mechanical system’s kinetic energy and

7
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potential energy[36]. When the generalized coordinates that are the set of
variables 𝑞𝑖 , 𝑖 = 1, . . . , 𝑛, are chosen which effectively describe the positions
of an n-DOF manipulator, the Lagrangian of the mechanical system is a
function of the generalized coordinates:

ℒ = T −U (2.1)

where T denotes the total Kinetic energy,and U denotes the total potential
energy of the system. The Lagrange equations are

𝑑
𝑑𝑡

(
𝜕ℒ
𝜕 ¤𝑞𝑖

)
− 𝜕ℒ

𝜕𝑞𝑖
= 𝜉𝑖 for 𝑖 = 1, . . . , 𝑛 (2.2)

where 𝜉𝑖 is the generalized force associated with the generalized coordi-
nate 𝑞𝑖 , we can rewrite (2.2) in a compact form :

𝑑
𝑑𝑡

(
𝜕ℒ
𝜕 ¤𝑞

)𝑇
−

(
𝜕ℒ
𝜕𝑞

)𝑇
= 𝜉 (2.3)

In a manipulator with an open kinematic chain, the vector of joint
variables 𝑞 gathers the generalized coordinates. The contributions to the
generalized forces are determined by the nonconservative forces, where the
joint actuator torques, joint friction torques, and the joint torques resulting
from end-effector forces applied during contact with the environment.
The equations in (2.2) establish the relationships between the generalized
forces applied to the manipulator and the joint positions, velocities, and
accelerations.

2.1.1 Kinetic Energy Computation

Considering a manipulator that has n-rigid links the sum of the contri-
butions relative to the motion of each link and the contributions relative to
the motion of each joint actuator.

T =
𝑛∑
𝑖=1

(Tℓ𝑖 + T𝑚𝑖 ) (2.4)

8
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where Tℓ𝑖 , T𝑚𝑖 respectively are the kinetic energy of Link i and the kinetic
energy of the motor that actuate Joint i. The contribution of the kinetic
energy of link i is given by

Tℓ𝑖 = 1
2

∫
𝑉ℓ𝑖

( ¤𝑝∗𝑖 )𝑇 ¤𝑝∗𝑖𝜌𝑑𝑉 (2.5)

where ¤𝑝∗𝑖 is the linear velocity vector and 𝜌 is the density of the elemen-
tary particle of volume 𝑑𝑉 ; 𝑉ℓ𝑖 is the volume of link i. Considering the
position vector 𝑝∗𝑖 of the elementary particle, and the position vector 𝑃𝑐𝑖 of
the link center of mass, both of them with respect to the base frame :

𝑟𝑖 = [𝑟𝑖𝑥 𝑟𝑖𝑦 𝑟𝑖𝑧]𝑇 = 𝑝∗𝑖 − 𝑝ℓ𝑖 (2.6)

where
𝑝ℓ𝑖 =

1
𝑚𝑙𝑖

∫
𝑉𝑙𝑖

𝑝∗𝑖𝜌 𝑑𝑉 (2.7)

where 𝑚𝑙𝑖 is the link mass. Hence the point velocity of the link can be
expressed as

¤𝑝∗𝑖 = ¤𝑝ℓ𝑖 + 𝜔𝑖 × 𝑟𝑖 = ¤𝑝ℓ𝑖 + 𝑆(𝜔𝑖)𝑟𝑖 (2.8)

where ¤𝑝𝑙𝑖 and 𝜔𝑖 respectively are the center of mass linear velocity and the
link’s angular velocity see figure(2.1).

By substituting the velocity expression (2.8) into(2.5) , we can observe
that the kinetic energy of each link is composed of the following contribu-
tions: Translational The contribution is :

1
2

∫
𝑉ℓ𝑖

¤𝑝𝑇ℓ𝑖 ¤𝑝ℓ𝑖𝜌 𝑑𝑉 =
1
2𝑚ℓ𝑖

¤𝑝𝑇ℓ𝑖 ¤𝑝ℓ𝑖 (2.9)

Mutual
The contribution is:

2

(
1
2

∫
𝑉ℓ𝑖

¤𝑝𝑇ℓ𝑖𝑆(𝜔𝑖)𝑟𝑖𝜌 𝑑𝑉
)
= 2

(
1
2
¤𝑝𝑇ℓ𝑖𝑆(𝜔𝑖)

∫
𝑉ℓ𝑖

(𝑝∗𝑖 − 𝑝ℓ𝑖 )𝜌 𝑑𝑉
)
= 0 (2.10)

9
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Figure 2.1: Kinematic description of Link i for Lagrange formulation(from
[36])

referring to 2.7 it is ∫
𝑉ℓ𝑖

¤𝑝∗𝑖𝜌 𝑑𝑉 = 𝑝ℓ𝑖

∫
𝑉ℓ𝑖

𝜌 𝑑𝑉 (2.11)

Rotational
The contribution is

1
2

∫
𝑉ℓ𝑖

𝑟𝑇𝑖 𝑆
𝑇(𝜔𝑖)𝑆(𝜔𝑖)𝑟𝑖𝜌 𝑑𝑉 =

1
2𝜔

𝑇
𝑖

(∫
𝑉ℓ𝑖

𝑆𝑇(𝑟𝑖)𝑆(𝑟𝑖)𝜌 𝑑𝑉
)
𝜔𝑖 (2.12)

where the property 𝑆(𝜔𝑖)𝑟𝑖 = −𝑆(𝑟𝑖)𝜔𝑖 has been exploited. in the view of

10
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the matrix operator 𝑆(.)

𝑆(𝑟𝑖) =


0 −𝑟𝑖𝑧 𝑟𝑖𝑦
𝑟𝑖𝑧 0 −𝑟𝑖𝑥
−𝑟𝑖𝑦 𝑟𝑖𝑥 0

 (2.13)

it is

1
2

∫
𝑉ℓ𝑖

𝑟𝑇𝑖 𝑆
𝑇(𝜔𝑖)𝑆(𝜔𝑖)𝑟𝑖𝜌 𝑑𝑉 =

1
2𝜔

𝑇
𝑖 𝐼ℓ𝑖𝜔𝑖 (2.14)

The matrix

𝐼ℓ𝑖 =


∫ (𝑟2

𝑖𝑦 + 𝑟2
𝑖𝑧)𝜌 𝑑𝑉 − ∫

𝑟𝑖𝑥𝑟𝑖𝑦𝜌 𝑑𝑉 − ∫
𝑟𝑖𝑥𝑟𝑖𝑧𝜌 𝑑𝑉

∗ ∫ (𝑟2
𝑖𝑥 + 𝑟2

𝑖𝑧)𝜌 𝑑𝑉 − ∫
𝑟𝑖𝑦𝑟𝑖𝑧𝜌 𝑑𝑉

∗ ∗ ∫ (𝑟2
𝑖𝑥 + 𝑟2

𝑖𝑦)𝜌 𝑑𝑉

 (2.15)

=


𝐼ℓ𝑖𝑥𝑥 −𝐼ℓ𝑖𝑥𝑦 −𝐼ℓ𝑖𝑥𝑧
∗ 𝐼ℓ𝑖𝑦𝑦 −𝐼ℓ𝑖𝑦𝑧
∗ ∗ 𝐼ℓ𝑖𝑧𝑧

 (2.16)

The tensor is symmetric and describes the inertia relative to the center
of mass of Link i when expressed in the base frame. It’s important to note
that the position of Link i depends on the manipulator’s configuration,
making the inertia tensor configuration-dependent when expressed in the
base frame. If the angular velocity of Link i is represented with reference
to a frame attached to the link (as in the Denavit-Hartenberg convention),
the tensor takes on a specific form.

𝜔𝑖
𝑖 = 𝑅𝑇𝑖 𝜔𝑖 (2.17)

where 𝑅𝑖 is the rotation matrix from Link i frame to the base frame.
When referred to the link frame, the inertia tensor is constant. Let 𝐼 𝑖ℓ𝑖 be
such tensor; then the following relation is easily verified

𝐼ℓ𝑖 = 𝑅𝑖𝐼 𝑖ℓ𝑖𝑅
𝑇
𝑖 (2.18)

11
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If the axes of Link i frame coincide with the central axes of inertia, then
the inertia products are null and the inertia tensor relative to the centre of
mass is a diagonal matrix.

By summing the translational and rotational contributions 2.9 and 2.14
the kinetic energy of Link i is

Tℓ𝑖 = 1
2𝑚ℓ𝑖

¤𝑝𝑇ℓ𝑖 ¤𝑝ℓ𝑖 +
1
2𝜔

𝑇
𝑖 𝑅𝑖𝐼

𝑖
ℓ𝑖
𝑅𝑇𝑖 𝜔𝑖 . (2.19)

Now we express the kinetic energy as a function of the generalized
coordinates of the system, that are the joint variables. To do that, the
geometric method for Jacobian computation is applied to the intermediate
link other than the end-effector, yielding

¤𝑝ℓ𝑖 = 𝑗(ℓ𝑖)𝑃1
¤𝑞1 + . . . + 𝑗(ℓ𝑖)𝑃𝑖

¤𝑞𝑖 = 𝐽(ℓ𝑖)𝑃 ¤𝑞 (2.20)

𝜔𝑖 = 𝑗(ℓ𝑖)𝑂1
¤𝑞1 + . . . + 𝑗(ℓ𝑖)𝑂𝑖

¤𝑞𝑖 = 𝐽(ℓ𝑖)𝑂 ¤𝑞 (2.21)

where the contributions of the Jacobian columns relative to the joint veloc-
ities have been taken into account up to current Link i. The Jacobians to
consider are then:

𝐽(ℓ𝑖)𝑃 =
[
𝑗(ℓ𝑖)𝑃1

. . . 𝑗(ℓ𝑖)𝑃𝑖
0 . . . 0

]
(2.22)

𝐽(ℓ𝑖)𝑂 =
[
𝑗(ℓ𝑖)𝑂1

. . . 𝑗(ℓ𝑖)𝑂𝑖
0 . . . 0

]
(2.23)

the columns of the matrices in 2.22 and 2.23 can be computed according to
the Jacobian partitioning that is explained in the third chapter of [36], we
get

𝑗(ℓ𝑖)𝑃𝑗
=


𝑧 𝑗−1 for a prismatic joint

𝑧 𝑗−1x(𝑝ℓ𝑖 − 𝑝 𝑗−1) for revolute joint

12
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𝑗(ℓ𝑖)𝑂 𝑗
=


0 for a prismatic joint

𝑧 𝑗−1 for revolute joint

where 𝑝 𝑗−1 is the position vector of the origin of Frame 𝑗 − 1 and 𝑧 − 1 is
the unit vector of axis 𝑧 of Frame 𝑗 − 1 It follows that the kinetic energy of
Link i in 2.19 can be re written as

Tℓ𝑖 = 1
2𝑚ℓ𝑖

¤𝑞𝑇 𝐽(ℓ𝑖)𝑇𝑝 𝐽(ℓ𝑖)𝑃 ¤𝑞 + 1
2
¤𝑞𝑇 𝐽(ℓ𝑖)𝑇𝑂 𝑅𝑖𝐼 𝑖ℓ𝑖𝑅

𝑇
𝑖 𝐽

(ℓ𝑖)
𝑂 ¤𝑞 (2.24)

The kinetic energy contribution of Joint i’s motor can be computed in a
manner similar to that of the link. This is particularly applicable to ro-
tary electric motors, which can actuate both revolute and prismatic joints
through appropriate transmissions. When considering such motors, we
can assume that the contribution of the fixed part (stator) is already ac-
counted for in the kinetic energy of the link on which the motor is situated.
Thus, we only need to compute the contribution of the rotor.

Figure 2.2: Kinematic description of Motor i (from[36])

In Fig. 2.2, we assume that the motor of Joint i is located on Link 𝑖 − 1

13
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. The joint actuator torques are transmitted to the motors via mechanical
transmission gears, and the contribution of the gears to the kinetic energy
can be appropriately included in that of the motor.

It is also assumed that no induced motion occurs, meaning the motion
of Joint i does not affect the motion of other joints[36].

The kinetic energy of Rotor i can be written as

T𝑚𝑖 =
1
2𝑚𝑚𝑖 ¤𝑝𝑇𝑚𝑖

¤𝑝𝑚𝑖 + 1
2𝜔

𝑇
𝑚𝑖
𝐼𝑚𝑖𝜔𝑚𝑖 (2.25)

where 𝑚𝑚𝑖 is the mass of the rotor, ¤𝑝𝑚𝑖 denotes the linear velocity of the
centre of mass of the rotor, 𝐼𝑚𝑖 is the inertia tensor of the rotor relative to
its centre of mass, and 𝜔𝑚𝑖 denotes the angular velocity of the rotor. We
denote the angular position of the rotor (𝜗𝑚𝑖 ). On the assumption of a rigid
transmission we get

𝑘𝑟𝑖 ¤𝑞𝑖 = ¤𝜗𝑚𝑖 (2.26)

where 𝑘𝑟𝑖 is the gear reduction ratio. We notice that, in the case of actuation
of a prismatic joint, the gear reduction ratio is a dimensional quantity.

According to the angular velocity composition rule that is explained
in the third chapter of [36]. and the relation in( 2.26), the total angular
velocity of the rotor is given by :

𝜔𝑚𝑖 = 𝜔𝑖−1 + 𝑘𝑟𝑖 ¤𝑞𝑖𝑧𝑚𝑖 (2.27)

where 𝜔𝑖−1 is the angular velocity of Link 𝑖 − 1 on which the motor is
located, and 𝑧𝑚𝑖 denotes the unit vector along the rotor axis. expressing
the rotor kinetic energy as a function of the joint variables, it is worth
expressing the linear velocity of the rotor centre of mass similar to 2.20

¤𝑝𝑚𝑖 = 𝐽(𝑚𝑖)
𝑃 ¤𝑞 (2.28)

The Jacobian is
𝐽(𝑚𝑖)
𝑃 = [𝐽(𝑚𝑖)

𝑃1
. . . 𝐽(𝑚𝑖)

𝑃,𝑖−1 0 . . . 0] (2.29)

14
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where the columns of this Jacobian defined by

𝐽(𝑚𝑖)
𝑃𝑗

=


𝑧 𝑗−1, for a prismatic joint

𝑧 𝑗−1x(𝑝𝑚𝑖 − 𝑝 𝑗−1), for a revolute joint

We have 𝑝 𝑗−1 is the position vector of the origin of frame 𝑗 − 1. looking
back at (2.29) 𝐽(𝑚𝑖)

𝑝𝑖 = 0 because the center of mass of the rotor has been
taken along its axis of rotation. Refering to( 2.27) it’s possible to express
the angular velocity as a function of the joints variables in this way:

𝜔𝑚𝑖 = 𝐽(𝑚𝑖)
𝑂 ¤𝑞 (2.30)

In this case the Jacobian

𝐽(𝑚𝑖)
𝑂 = [𝐽(𝑚𝑖

𝑂1 . . . 𝐽
(𝑚𝑖)
𝑂,𝑖−1𝐽

(𝑚𝑖)
𝑂𝑖

0 . . . 0] (2.31)

by referring to ( 2.27 ) and ( 2.21 ) the columns of that Jacobian are respec-
tively given by

𝐽(𝑚𝑖)
𝑂 𝑗

=


𝐽(𝑙𝑖)𝑂𝑖

, 𝑗 = 1, . . . , 𝑖 − 1

𝑘𝑟𝑖 𝑧𝑚𝑖 , 𝑗 = 𝑖

Hence, the kinetic energy of Rotor i can be expressed as follows:

T𝑚𝑖 =
1
2𝑚𝑚𝑖 ¤𝑞𝑇 𝐽(𝑚𝑖)𝑇

𝑃 𝐽(𝑚𝑖)
𝑝 ¤𝑞 + 1

2
¤𝑞𝑇 𝐽(𝑚𝑖)𝑇

𝑂 𝑅𝑚𝑖 𝐼
𝑚𝑖
𝑚𝑖
𝑅𝑇𝑚𝑖

𝐽(𝑚𝑖)
𝑂 ¤𝑞 (2.32)

By summing ( 2.24 ) and( 2.4 ) we get the total kinetic energy in a quadratic
form

T =
1
2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑏𝑖 𝑗(𝑞) ¤𝑞𝑖 ¤𝑞 𝑗 = 1
2
¤𝑞𝑇𝐵(𝑞) ¤𝑞 (2.33)
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where

𝐵(𝑞) =
𝑛∑
𝑖=1

(
𝑚ℓ𝑖 𝐽

(ℓ𝑖)𝑇
𝑃 𝐽(ℓ𝑖)𝑃 + 𝐽(ℓ𝑖)𝑇𝑂 𝑅𝑖𝐼 𝑖ℓ𝑖𝑅

𝑇
𝑖 𝐽

(ℓ𝑖)
𝑂 + 𝑚𝑚𝑖 𝐽

(𝑚𝑖)𝑇
𝑃 𝐽(𝑚𝑖)

𝑃 + 𝐽(𝑚𝑖)𝑇
𝑂 𝑅𝑚𝑖 𝐼

𝑚𝑖
𝑚𝑖
𝑅𝑇𝑚𝑖

𝐽(𝑚𝑖)
𝑂

)
(2.34)

where𝐵(𝑞) is an (n x n) symmetric, positive definite configuration-dependent
(in general),It’s referred to as the inertia matrix[36] or the mass matrix[22].

2.1.2 Potential Energy Computation

Similar to the kinetic energy, the potential energy stored in the manip-
ulator is obtained by summing up the contributions from each link and
each rotor:

U =
𝑛∑
𝑖=1

(Uℓ𝑖 +U𝑚𝑖

)
(2.35)

Assuming rigid links, the contribution of gravitational forces, and only
gravitational forces, is expressed as follows:

Uℓ𝑖 = −
∫
𝑉ℓ𝑖

𝑔𝑇0 𝑝
∗
𝑖𝜌 𝑑𝑉 = −𝑚ℓ𝑖 𝑔𝑇0 𝑝ℓ𝑖 (2.36)

In( 2.36 ) 𝑔0 is the acceleration vector of the gravity in the base frame. The
contribution of rotor i :

U𝑚𝑖 = −𝑚𝑚𝑖 𝑔
𝑇
0 𝑝𝑚𝑖 (2.37)

Now we substitute ( 2.36 ) and ( 2.37) into ( 2.35 ) we get the potential
energy

U = −
𝑛∑
𝑖=1

(
𝑚ℓ𝑖 𝑔

𝑇
0 𝑝ℓ𝑖 + 𝑚𝑚𝑖 𝑔

𝑇
0 𝑝𝑚𝑖

)
(2.38)

Where we have the potential energy, by the vectors 𝑝ℓ𝑖 and 𝑝𝑚𝑖 is a function
of the joint variables 𝑞 and not of the joint velocities ¤𝑞 .
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2.1.3 Equations of Motion

After calculating the total kinetic and potential energy of the system,
as given in equations ( 2.33) and ( 2.38 ), the Lagrangianin( 2.1 ) for the
manipulator can be expressed as:

ℒ(𝑞, ¤𝑞) = T (𝑞, ¤𝑞) − U(𝑞) (2.39)

By taking the derivatives required by the Lagrange equations as described
in 2.3and considering thatU does not depend on ¤𝑞, we obtain the following
result:

𝐵(𝑞) ¥𝑞 + 𝑛(𝑞, ¤𝑞) = 𝜉 (2.40)

where

𝑛(𝑞, ¤𝑞) = ¤𝐵(𝑞) ¤𝑞 − 1
2

(
𝜕

𝜕𝑞
( ¤𝑞𝑇𝐵(𝑞) ¤𝑞)

)𝑇
+

(
𝜕U(𝑞)
𝜕𝑞

)𝑇
(2.41)

Taking into account the fact that U in equation (2.38 ) does not depend on
¤𝑞 . and considering the expression provided in equation (2.33) , we can
derive the following result:

𝑑
𝑑𝑡

(
𝜕ℒ
𝜕 ¤𝑞𝑖

)
=
𝑑
𝑑𝑡

(
𝜕T
𝜕 ¤𝑞𝑖

)
=

𝑛∑
𝑗=1

𝑏𝑖 𝑗(𝑞) ¥𝑞 𝑗+
𝑛∑
𝑗=1

𝑑𝑏𝑖 𝑗(𝑞)
𝑑𝑡

¤𝑞 𝑗 =
𝑛∑
𝑗=1

𝑏𝑖 𝑗(𝑞) ¥𝑞 𝑗+
𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝜕𝑏𝑖 𝑗(𝑞)
𝜕𝑞𝑘

¤𝑞𝑘 ¤𝑞 𝑗
(2.42)

and
𝜕T
𝜕𝑞𝑖

=
1
2

𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝜕𝑏 𝑗𝑘(𝑞)
𝜕𝑞𝑖

¤𝑞𝑘 ¤𝑞 𝑗 (2.43)

In the derivation, we have conveniently switched the indices of summation.
Moreover in ( 2.20) and (2.28)

𝜕U
𝜕𝑞𝑖

= −
𝑛∑
𝑗=1

(
𝑚ℓ𝑖 𝑔

𝑇
0
𝜕𝑝ℓ 𝑗
𝜕𝑞𝑖

+ 𝑚𝑚𝑗 𝑔
𝑇
0
𝜕𝑝𝑚𝑗

𝜕𝑞𝑖

)
(2.44)

= −
𝑛∑
𝑗=1

(
𝑚ℓ 𝑗 𝑔

𝑇
0 𝐽

(ℓ 𝑗)
𝑃𝑖

(𝑞) + 𝑚𝑚𝑗 𝑔
𝑇
0 𝐽

(𝑚𝑗)
𝑃𝑖

(𝑞)
)
= 𝑔𝑖(𝑞) (2.45)
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where also the summation index has been changed. Hence the equations
of motion can be expressed as

𝑛∑
𝑗=1

𝑏𝑖 𝑗(𝑞) ¥𝑞 𝑗 +
𝑛∑
𝑗=1

𝑛∑
𝑘=1

ℎ𝑖 𝑗𝑘(𝑞) ¤𝑞𝑘 ¤𝑞 𝑗 + 𝑔𝑖(𝑞) = 𝜉𝑖 𝑖 = 1, . . . , 𝑛 (2.46)

where
ℎ𝑖 𝑗𝑘 =

𝜕𝑏𝑖 𝑗
𝜕𝑞𝑘

− 1
2
𝜕𝑏 𝑗𝑘
𝜕𝑞𝑖

(2.47)

The equations of motion(2.46) have a physical interpretation: The coef-
ficients 𝑏𝑖𝑖 represent the moment of inertia at Joint i axis in the current
manipulator configuration when the other joints are fixed, while 𝑏𝑖 𝑗 ac-
counts for the effect of the acceleration of Joint j on Joint i. The Term ℎ𝑖 𝑗𝑞 𝑗 ¤𝑞2

𝑗

epresents the centrifugal effect induced on Joint i by the velocity of Joint
j (noting that ℎ𝑖𝑖𝑖 = 0 since 𝜕𝑏𝑖𝑖

𝜕𝑞𝑖
= 0). Furthermore, the term ℎ𝑖 𝑗𝑘𝑞 𝑗 ¤𝑞 𝑗𝑞𝑘 ¤𝑞𝑘

captures the Coriolis effect induced on Joint i by the velocities of Joints j
and k.Additionally, the term 𝑔𝑖 represents the moment generated at Joint
i axis of the manipulator in the current configuration due to the presence
of gravity. During the structure’s design, some joint dynamic couplings,
such as 𝑏𝑖 𝑗 and ℎ𝑖 𝑗𝑘 ,can be reduced or set to zero to simplify the control
problem. This approach helps manage complexity and improve control
efficiency.

The equations of motion ( 2.40 ) can be expressed in a more concise
matrix form, representing the joint space dynamic model:

𝐵(𝑞) ¥𝑞 + 𝐶(𝑞, ¤𝑞) ¤𝑞 + 𝐹𝑣 ¤𝑞 + 𝐹𝑠𝑠𝑔𝑛( ¤𝑞) + 𝑔(𝑞) = 𝜏 − 𝐽𝑇(𝑞)ℎ𝑒 (2.48)

In ( 2.48) the nonconservative forces that act at the joints can be expressed
as the difference between the actuation torques and the combined effects
of viscous friction torques 𝐹𝑣 ¤𝑞 and simplified static friction torques 𝑓𝑠(𝑞, ¤𝑞).
Here, 𝐹𝑣 is a diagonal matrix of viscous friction coefficients, and 𝐹𝑠𝑠𝑔𝑛( ¤𝑞)
can be represented as the Coulomb friction torques . The matrices 𝐹𝑠 and 𝐹𝑣
have dimensions (𝑛x𝑛), and 𝑠𝑔𝑛( ¤𝑞)represents the (𝑛x1) vector containing
the sign functions of the individual joint velocities. When the manipu-
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lator’s end-effector makes contact with the environment, a portion of the
actuation torques is utilized to counterbalance the torques arising from the
contact forces at the joints. This balancing effect is given by the product of
the transpose of the Jacobian matrix 𝐽𝑇(𝑞)ℎ𝑒 , where ℎ𝑒 represents the force
and moment exerted by the end-effector on the environment.

we also have that 𝐶 is a suitable (𝑛x𝑛) matrix such that its elements 𝑐𝑖 𝑗
satisfy the equation

𝑛∑
𝑗=1

𝑐𝑖 𝑗 ¤𝑞 𝑗 =
𝑛∑
𝑗=1

𝑛∑
𝑘=1

ℎ𝑖 𝑗𝑘 ¤𝑞𝑘 ¤𝑞 𝑗 (2.49)

This dynamic model has two properties that are useful for both dynamic
parameter identification and the derivation of control algorithms. The first
property is the skew-symmetry of Matrix ¤𝐵 − 2𝐶 The choice of matrix 𝐶 is
not unique, since we can have more than one matrix that satisfies ( 2.49 ).A
specific choice can be achieved by expanding the term on the right-hand
side of ( 2.49 ) and taking into account the expressions of the coefficients
ℎ𝑖 𝑗𝑘 as given in ( 2.47 ) we get

𝑛∑
𝑗=1

𝑐𝑖 𝑗 ¤𝑞 𝑗 = 1
2

𝑛∑
𝑗=1

𝑛∑
𝑘=1

𝜕𝑏𝑖 𝑗
𝜕𝑞𝑘

¤𝑞𝑘 ¤𝑞 𝑗 + 1
2

𝑛∑
𝑗=1

𝑛∑
𝑘=1

(
𝜕𝑏𝑖𝑘
𝜕𝑞 𝑗

− 𝜕𝑏 𝑗𝑘
𝜕𝑞𝑖

)
¤𝑞𝑘 ¤𝑞 𝑗

which gives us the relation to calculate the generic element of 𝐶

𝑐𝑖 𝑗 =
𝑛∑
𝑘=1

𝑐𝑖 𝑗𝑘 ¤𝑞𝑘 (2.50)

where the coefficients

𝑐𝑖 𝑗𝑘 =
1
2

(
𝜕𝑏𝑖 𝑗
𝜕𝑞𝑘

+ 𝜕𝑏𝑖𝑘
𝜕𝑞 𝑗

+ 𝜕𝑏 𝑗𝑘
𝜕𝑞𝑖

)
(2.51)

The Terms in( 2.51 ) are referred to as Christoffel symbols of the first type. It
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is essential to note that, due to the symmetry of 𝐵 it results:

𝑐𝑖 𝑗𝑘 = 𝑐𝑖𝑘 𝑗 (2.52)

This particular choice for the matrix 𝐶 reveals a notable property of the
equations of motion ( 2.48 ). The matrix

𝑁(𝑞, ¤𝑞) = ¤𝐵(𝑞) − 2𝐶(𝑞, ¤𝑞) (2.53)

is skew-symmetric, By substituting ( 2.51 ) into ( 2.50 ) we get the expression
of the generic element of the matrix 𝑁 in ( 2.53 ) as

𝑛𝑖 𝑗 = 𝑏𝑖 𝑗 − 2𝑐𝑖 𝑗 =
𝑛∑
𝑘=1

(
𝜕𝑏 𝑗𝑘
𝜕𝑞𝑖

− 𝜕𝑏𝑖𝑘
𝜕𝑞 𝑗

)
¤𝑞𝑘 (2.54)

The skew symmetry of the matrix 𝑁 gives us this interesting result:

¤𝑞𝑇𝑁(𝑞, ¤𝑞) ¤𝑞 = 0 (2.55)

It can be shown that The relation (2.55) holds for any matrix 𝐶 choice as
it directly follows from the physical properties of the system. In contrast,
the general skew symmetry (for any vector) valid only for the specific
choice of 𝐶 elements stated in (2.50) and (2.51). The second property is the
linearity in the dynamics parameters. A crucial characteristic of the dynamic
model is its linearity concerning the dynamic parameters that define the
manipulator’s links and rotors. By associating the kinetic and potential
energy contributions of each rotor with those of the link on which it is
located, we can consider the augmented Link i as the union of Link i and
Rotor 𝑖+1. In this context, the kinetic energy contribution of the augmented
Link i is given by...

T𝑖 = Tℓ𝑖 + T𝑚𝑖+1 (2.56)

by calculating the linear velocity of the link and rotor with reference to the
center of mass of the augmented link,and by the virtue of steiner theorem
we get the matrix that represents the inertia tensor relative to the overall
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centre of mass the inertia tensor incorporates an additional contribution
resulting from the translation of the reference point (pole) relative to which
the tensor is evaluated. and by Assuming the rotor has a symmetric mass
distribution about its axis of rotation, its inertia tensor is expressed in a
frame 𝑅𝑚𝑖 with the center of mass at the origin, and the 𝑧𝑚𝑖 axis aligned
with the rotation axis. we get that the inertia tensor remains unchanged
(invariant) with respect to any rotation around the 𝑧𝑚𝑖 axis and remains
constant when referred to any frame attached to Link 𝑖1. To achieve the
objective of determining a set of dynamic parameters that are independent
of the manipulator joint configuration, it is beneficial to refer the inertia
tensor of the link 𝐼𝑖to frame 𝑅𝑖 attached to the link and the inertia tensor
𝐼𝑚𝑖+1 to frame 𝑅𝑚𝑖+1 . This transformation ensures that the inertia tensor
becomes diagonal. By applying the linear velocity composition rule for
Link i and referring all the vectors to Frame i, we obtain:

T𝑖 = 1
2𝑚𝑖 ¤𝑝 𝑖𝑇𝑖 ¤𝑝 𝑖𝑖+¤𝑝 𝑖𝑇𝑖 𝑆(𝑤 𝑖

𝑖)𝑚𝑖𝑟 𝑖𝑖 𝑐𝑖+
1
2𝑤

𝑖𝑇
𝑖 𝐼

𝑖
𝑖𝑤

𝑖
𝑖+𝑘𝑟,𝑖+1 ¤𝑞𝑖+1𝐼𝑚𝑖+1𝑧

𝑖𝑇
𝑚𝑖+1𝑤

𝑖
𝑖+

1
2 𝑘

2
𝑟,𝑖+1 ¤𝑞2

𝑖+1𝐼𝑚𝑖+1

(2.57)
where

𝐼 𝑖𝑖 = 𝐼 𝑖𝑖 + 𝑚𝑖𝑆𝑇(𝑟 𝑖𝑖 ,𝐶𝑖 )𝑆(𝑟 𝑖𝑖,𝐶𝑖 ) (2.58)

The result represents the inertia tensor with respect to the origin of Frame
i, using the Steiner theorem. If we make 𝑟 𝑖𝑖,𝐶𝑖 = [ℓ𝐶𝑖𝑥 ℓ𝐶𝑖𝑦 ℓ𝐶𝑖𝑧]𝑇 The first
moment of inertia becomes

𝑚𝑖𝑟 𝑖𝑖 ,𝐶𝑖 =


𝑚𝑖ℓ𝐶𝑖𝑥
𝑚𝑖ℓ𝐶𝑖𝑦
𝑚𝑖ℓ𝐶𝑖𝑧

 (2.59)

From (2.58) the inertia tensor of augmented Link i is

𝐼 𝑖𝑖 =


𝐼𝑖𝑥𝑥 + 𝑚𝑖(ℓ 2

𝐶𝑖𝑦
+ ℓ2

𝐶𝑖𝑧
) −𝐼𝑖𝑥𝑦 − 𝑚𝑖ℓ𝐶𝑖𝑥ℓ𝐶𝑖𝑦 𝐼𝑖𝑥𝑧 − 𝑚𝑖ℓ𝐶𝑖𝑥ℓ𝐶𝑖𝑧

∗ 𝐼𝑖𝑦𝑦 + 𝑚𝑖(ℓ 2
𝐶𝑖𝑥

+ ℓ2
𝐶𝑖𝑧

) −𝐼𝑖𝑦𝑧 − 𝑚𝑖ℓ𝐶𝑖𝑦ℓ𝐶𝑖𝑧
∗ ∗ 𝐼𝑖𝑧𝑧 + 𝑚𝑖(ℓ 2

𝐶𝑖𝑥
+ ℓ2

𝐶𝑖𝑦
)


(2.60)
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=


𝐼𝑖𝑥𝑥 −𝐼𝑖𝑥𝑦 −𝐼𝑖𝑥𝑧
∗ 𝐼𝑖𝑦𝑦 −𝐼𝑖𝑦𝑧
∗ ∗ 𝐼𝑖𝑧𝑧

 (2.61)

Hence, the kinetic energy of the augmented link shows linearity concerning
the dynamic parameters. These dynamic parameters include the mass, the
three components of the first moment of inertia as given in (2.59), the
six components of the inertia tensor as stated in (2.61), and the moment of
inertia of the rotor. Concerning potential energy, by referring all the vectors
to Frame i, we can express the single contribution of potential energy:

U𝑖 = −𝑔 𝑖𝑇0 (𝑚𝑖𝑝 𝑖𝑖 + 𝑚𝑖𝑟 𝑖𝑖 𝑐𝑖) (2.62)

Which confirm that the potential energy of the augmented link is linear
with respect to the mass and the three components of the first moment of
inertia in (2.59) The Lagrangian of the system (7.1) can be formulated by
summing the contributions of kinetic energy and potential energy for all
augmented links in the following manner:

ℒ =
𝑛∑
𝑖=1

(𝛽𝑇T 𝑖 − 𝛽𝑇U 𝑖)𝜋𝑖 (2.63)

where 𝑖 is the (11 x 1) vector of dynamic parameters

𝜋𝑖 = [ 𝑚𝑖 𝑚𝑖ℓ𝐶𝑖 𝑥 𝑚𝑖ℓ𝐶𝑖 𝑦 𝑚𝑖ℓ𝐶𝑖 𝑧 𝐼𝑖𝑥𝑥 𝐼𝑖𝑥𝑦 𝐼𝑖𝑥𝑧 𝐼𝑖𝑦𝑦 𝐼𝑖𝑦𝑧 𝐼𝑖𝑧𝑧 𝐼𝑚𝑖 ]𝑇 (2.64)

where the expression includes the moment of inertia of Rotor i, which
has been linked with the parameters of Link i to simplify the notation.
In equation (2.63), 𝛽T 𝑖 and 𝛽U 𝑖 are two (11 x 1) vectors that enable the
representation of the Lagrangian as a function of 𝜋𝑖 . These vectors are
dependent on the generalized coordinates of the mechanical system, in-
cluding their derivatives concerning 𝛽T 𝑖 . At this stage, it is essential to
note that the derivations involved in the Lagrange equations (2.2) do not
affect the linearity in the parameters. As a result, the generalized force at
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Joint i can be expressed as follows:

𝜉𝑖 =
𝑛∑
𝑗=1

𝑦𝑇𝑖𝑗𝜋 𝑗 (2.65)

where
𝑦𝑖 𝑗 =

𝑑
𝑑𝑡

𝜕𝛽T 𝑗

𝜕 ¤𝑞 𝑖
− 𝜕𝛽T 𝑗

𝜕𝑞𝑖
+ 𝜕𝛽U 𝑗

𝜕𝑞𝑖
(2.66)

As the partial derivatives of 𝛽T 𝑗 and 𝛽U 𝑗 appearing in (2.66) become zero
for𝑗 < 𝑖, we arrive at the following significant outcome:

𝜉1

𝜉2
...

𝜉𝑛


=


𝑦𝑇11 𝑦𝑇12 . . . 𝑦𝑇1𝑛
0𝑇 𝑦𝑇22 . . . 𝑦𝑇2𝑛
...

... . . . ...

0𝑇 0𝑇 . . . 𝑦𝑇𝑛𝑛



𝜋1

𝜋2
...

𝜋𝑛


(2.67)

This results in the manipulator model exhibiting linearity concerning a
suitable set of dynamic parameters. In the scenario where there are no
contact forces (i.e., ℎ𝑒 = 0), it might be beneficial to incorporate the viscous
friction coefficient 𝐹𝑣𝑖 and Coulomb friction coefficient 𝐹𝑠𝑖 as part of the
parameters represented by the vector 𝑖 . This addition would result in a total
of 13 parameters per joint. In conclusion, Equation (2.67) can be concisely
expressed as:

𝜏 = 𝑌(𝑞, ¤𝑞, ¥𝑞)𝜋 (2.68)

2.2 Two-link Planar Arm Dynamic Model
Consider the two-link planar arm shown in Fig.( 2.3), with the vector

of generalized coordinates 𝑞 = [𝜗1 𝜗2]𝑇 . The distances of the centers of
mass of the two links from their respective joint axes are represented as
ℓ1, ℓ2. Additionally, we have𝑚ℓ1 and 𝑚ℓ2 as the masses of the two links,
and𝑚𝑚1 and 𝑚𝑚1 as the masses of the rotors of the two joint motors. The
moments of inertia with respect to the axes of the two rotors are denoted
as 𝐼𝑚1 and 𝐼𝑚2 , while 𝐼ℓ1and 𝐼ℓ2represent the moments of inertia relative to
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the centers of mass of the two links, respectively. We assume that𝑝𝑚𝑖 = 𝑝𝑖1
and𝑧𝑚𝑖 = 𝑧𝑖1 for 𝑖 = 1, 2. In other words, the motors are positioned on the
joint axes, with centers of mass located at the origins of their respective
frames. From (2.34) we compute the inertia matrix

Figure 2.3: Two-link planar arm (from[36])

𝐵(𝑞) =
[
𝑏11(𝜗2) 𝑏12(𝜗2)
𝑏21(𝜗2) 𝑏22

]
𝑏11 = 𝐼ℓ1 + 𝑚ℓ1ℓ 2

1 + 𝑘2
𝑟1𝐼𝑚1 + 𝐼ℓ2 + 𝑚ℓ2(𝑎2

1 + ℓ 2
2 + 2𝑎1ℓ2𝑐2) + 𝐼𝑚2 + 𝑚𝑚2𝑎

2
1

𝑏12 = 𝑏21 = 𝐼ℓ2 + 𝑚ℓ2(ℓ2
2 + 𝑎1ℓ2𝑐2) + 𝑘𝑟2𝐼𝑚2

𝑏22 = 𝐼ℓ2 + 𝑚ℓ2ℓ2
2 + 𝑘2

𝑟2𝐼𝑚2

Computing Christoffel symbols in (2.51):

𝑐111 =
1
2
𝜕𝑏11
𝜕𝑞1

= 0
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𝑐112 = 𝑐121 =
1
2
𝜕𝑏11
𝜕𝑞2

= −𝑚ℓ2𝑎1ℓ2𝑠2 = ℎ

𝑐122 =
𝜕𝑏12
𝜕𝑞2

− 1
2
𝜕𝑏22
𝜕𝑞1

= ℎ

𝑐211 =
𝜕𝑏21
𝜕𝑞1

− 1
2
𝜕𝑏11
𝜕𝑞2

= −ℎ

𝑐212 = 𝑐221 =
1
2
𝜕𝑏22
𝜕𝑞1

= 0

𝑐222 =
1
2
𝜕𝑏22
𝜕𝑞2

= 0

from which we build the 𝐶 matrix as

𝐶(𝑞, ¤𝑞) =
[
ℎ ¤𝜗2 ℎ( ¤𝜗1 + ¤𝜗2)
−ℎ ¤𝜗1 0

]
Now we need to compute 𝑁 matrix given by (2.53)

𝑁(𝑞, ¤𝑞) = ¤𝐵(𝑞) − 2𝐶(𝑞, ¤𝑞)

=

[
2ℎ ¤𝜗2 ℎ ¤𝜗2

ℎ ¤𝜗2 0

]
− 2

[
ℎ ¤𝜗2 ℎ( ¤𝜗1 + ¤𝜗2)
−ℎ ¤𝜗1 0

]
=

[
0 −2ℎ ¤𝜗1 − ℎ ¤𝜗2

2ℎ ¤𝜗1 + ℎ ¤𝜗2 0

]
From witch we see that the skew symmetry property is confirmed. Now
we need to compute the gravitational term, since 𝑔0 = [0 − 𝑔 0]𝑇 we get

𝑔1 = (𝑚ℓ1ℓ1 + 𝑚𝑚2𝑎1 + 𝑚ℓ2𝑎1)𝑔𝑐1 + 𝑚ℓ2ℓ2𝑔𝑐12

𝑔2 = 𝑚ℓ2ℓ2𝑔𝑐12

At this point we can state the resulting equations of motions which com-
putes 𝜏1 and 𝜏2 that are the torques applied to the joints. these equations
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are computed in the absence of friction and tip contact forces :

𝜏1 = (𝐼ℓ1 + 𝑚ℓ1ℓ 2
1 + 𝑘2

𝑟1𝐼𝑚1 + 𝐼ℓ2 + 𝑚ℓ2(𝑎2
1 + ℓ 2

2 + 2𝑎1ℓ2𝑐2) + 𝐼𝑚2 + 𝑚𝑚2𝑎
2
1) ¥𝜗1

+ (𝐼ℓ2 + 𝑚ℓ2(ℓ2
2 + 𝑎1ℓ2𝑐2) + 𝑘𝑟2𝐼𝑚2) ¥𝜗2

− 2𝑚ℓ2𝑎1ℓ2𝑠2 ¤𝜗1 ¤𝜗2 − 𝑚ℓ2𝑎1ℓ2𝑠2 ¤𝜗2
2

+ (𝑚ℓ1ℓ1 + 𝑚𝑚2𝑎1 + 𝑚ℓ2𝑎1)𝑔𝑐1 + 𝑚ℓ2ℓ2𝑔𝑐12.
(2.69)

𝜏2 = (𝐼ℓ2 + 𝑚ℓ2(ℓ2
2 + 𝑎1ℓ2𝑐2) + 𝑘𝑟2𝐼𝑚2) ¥𝜗1

+ (𝐼ℓ2 + 𝑚ℓ2ℓ2
2 + 𝑘2

𝑟2𝐼𝑚2) ¥𝜗2

+ 𝑚ℓ2𝑎1ℓ2𝑠2 ¤𝜗2
1 + 𝑚ℓ2ℓ2𝑔𝑐12

The parameterization of the dynamic model with reference to (2.68)
Upon careful examination of the expressions for the joint torques, we can
identify the corresponding parameter vector as follows:

𝜋1 = 𝑚ℓ1 + 𝑚𝑚2 ,

𝜋2 = 𝑚ℓ1(ℓ1 − 𝑎1),
𝜋3 = 𝐼ℓ1 + 𝑚ℓ1(ℓ1 − 𝑎1)2 + 𝐼𝑚2 ,

𝜋4 = 𝐼𝑚1 ,

𝜋5 = 𝑚ℓ2 ,

𝜋6 = 𝑚ℓ2(ℓ2 − 𝑎2),
𝜋7 = 𝐼ℓ2 + 𝑚ℓ2(ℓ2 − 𝑎2)2,
𝜋8 = 𝐼𝑚2.

𝜋 = [𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6 𝜋7 𝜋8]𝑇 (2.70)
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𝑦11 = 𝑎2
1
¥𝜗1 + 𝑎1𝑔𝑐1,

𝑦12 = 2𝑎1 ¥𝜗1 + 𝑔𝑐1,

𝑦13 = ¥𝜗1,

𝑦14 = 𝑘2
𝑟1
¥𝜗1,

𝑦15 = (𝑎2
1 + 2𝑎1𝑎2𝑐2 + 𝑎2

2) ¥𝜗1 + (𝑎1𝑎2𝑐2 + 𝑎2
2) ¥𝜗2

− 2𝑎1𝑎2𝑠2 ¤𝜗1 ¤𝜗2 − 𝑎1𝑎2𝑠2 ¤𝜗2
2 + 𝑎1𝑔𝑐1 + 𝑎2𝑔𝑐12

𝑦16 = (2𝑎1𝑐2 + 2𝑎2) ¥𝜗1 + (𝑎1𝑐2 + 2𝑎2) ¥𝜗2 − 2𝑎1𝑠2 ¤𝜗1 ¤𝜗2

− 𝑎1𝑠2 ¤𝜗2
2 + 𝑔𝑐12,

𝑦17 = ¥𝜗1 + ¥𝜗2,

𝑦18 = 𝑘𝑟2 ¥𝜗2,

It is evident that the count of non-null parameters is lower than the maxi-
mum permissible number of twenty-two parameters in this situation. The
regressor in equation (2.68) is then computed:

𝑦21 = 0,

𝑦22 = 0,

𝑦23 = 0,

𝑦24 = 0,

𝑦25 = (𝑎1𝑎2𝑐2 + 𝑎2
2) ¥𝜗1 + 𝑎2

2
¥𝜗2 + 𝑎1𝑎2𝑠2 ¤𝜗2

1 + 𝑎2𝑔𝑐12,

𝑦26 = (𝑎1𝑐2 + 2𝑎2) ¥𝜗1 + 2𝑎2 ¥𝜗2 + 𝑎1𝑠2 ¤𝜗2
1 + 𝑔𝑐12

𝑦27 = ¥𝜗1 + ¥𝜗2,

𝑦28 = 𝑘𝑟2 ¥𝜗1 + 𝑘2
𝑟2
¥𝜗2.

𝑌 =

[
𝑦11 𝑦12 𝑦13 𝑦14 𝑦15 𝑦16 𝑦17 𝑦18

𝑦21 𝑦22 𝑦23 𝑦24 𝑦25 𝑦26 𝑦27 𝑦28

]
(2.71)

27



Chapter 3

Motion Control (Inverse
Dynamics Control)

The primary objective in controlling a manipulator is to determine the
time history of generalized forces (forces or torques) applied by the joint
actuators. This task ensures the successful execution of the desired task
while meeting specific transient and steady-state requirements.

Various techniques can be employed for controlling a manipulator, and
the choice of technique and its implementation significantly influence the
manipulator’s performance and its potential applications. For example, the
requirement for trajectory tracking control in operational space may lead to
different hardware/software implementations compared to point-to-point
control, which focuses solely on reaching the final position.

Additionally, the mechanical design of the manipulator plays a vital
role in determining the suitable control scheme. For instance, the control
problem for a Cartesian manipulator differs substantially from that of an
anthropomorphic manipulator.

The type of driving system used for the joints also affects the control
strategy. If a manipulator is actuated by electric motors with high gear ra-
tios, the presence of gears can linearize the system dynamics and decouple
the joints, reducing nonlinearity effects. However, this may introduce joint
friction, elasticity, and backlash, which can limit system performance. In
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contrast, a robot actuated with direct drives eliminates drawbacks related
to friction, elasticity, and backlash, but it introduces weighty nonlinearities
and couplings between the joints, necessitating different control strategies
for achieving high performance.

Irrespective of the specific type of mechanical manipulator, it is essen-
tial to note that task specifications (end-effector motion and forces) are
typically defined in operational space, while control actions (joint actuator
generalized forces) are carried out in the joint space. This naturally leads
to considering two kinds of general control approaches: the joint space
control approach and the operational space control approach. Both ap-
proaches incorporate closed-loop control structures to leverage the benefits
of feedback, such as robustness to modeling uncertainties and disturbance
reduction. We can make the following general considerations:

The joint space control problem can be broken down into two subprob-
lems. Firstly, we solve the manipulator’s inverse kinematics to transform
the desired motion 𝑥𝑑 from the operational space into the correspond-
ing motion 𝑞𝑑 in the joint space. Subsequently, a joint space control ap-
proach is designed to ensure that the actual motion 𝑞 tracks the reference
inputs𝑞𝑑 .However, this approach has the limitation that it does not di-
rectly influence the operational space variables 𝑥𝑒 , which are controlled
in an open-loop fashion through the manipulator’s mechanical structure.
Consequently, uncertainties in the structure (e.g., construction tolerance,
lack of calibration, gear backlash, elasticity) or inaccuracies in knowledge
about the end-effector pose relative to the object being manipulated can
result in reduced accuracy in the operational space variables.

On the other hand, the operational space control problem adopts a
more comprehensive approach with greater algorithmic complexity. In
this approach, the inverse kinematics is embedded into the feedback con-
trol loop. A key conceptual advantage is the ability to directly influence
operational space variables 𝑥𝑒 . However, practical measurement of these
variables is often indirect and involves evaluating direct kinematics func-
tions based on measured joint space variables. In this chapter, we will
focus on inverse dynamics control in joint space. We will address the issue
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of uncertainties in the dynamical model and how they can affect control
efficiency. To tackle this challenge, we introduce robust control as a solu-
tion. Our approach involves a novel method to calculate a parameter that
relies on feedback about the error, rather than relying on prior knowledge
of the uncertainties. By adopting this feedback-based approach, we aim
to enhance the system’s ability to cope with uncertainties, leading to more
efficient and reliable control of the manipulator.

3.1 Inverse Dynamics Control
As demonstrated in the previous chapter , the equations of motion of

a manipulator, in the absence of external end-effector forces and, for the
sake of simplicity, static friction (as it is challenging to accurately model),
can be expressed as follows:

𝐵(𝑞) ¥𝑞 + 𝐶(𝑞, ¤𝑞) ¤𝑞 + 𝐹𝑣 ¤𝑞 + 𝑔(𝑞) = 𝜏 (3.1)

To control the motion of the manipulator in free space, the objective is to
determine the 𝑛 components of generalized forces "torques for revolute
joints and forces for prismatic joints "that enable the execution of a motion
𝑞(𝑡) such that the manipulator moves according to the specified trajectory
𝑞𝑑(𝑡). After considering the influence of various factors, such as the trans-
missions, backlash, and armature currents of the motors, as well as the
vector of armature voltages, armature resistances, and voltage constants of
the motors, we also take into account the matrix of gains of the amplifiers
and the vector of control voltages of the servomotors. The dynamic model
of the system, encompassing the manipulator and its drives, is expressed
by:

𝐵(𝑞) ¥𝑞 + 𝐶(𝑞, ¤𝑞) ¤𝑞 + 𝐹 ¤𝑞 + 𝑔(𝑞) = 𝑢 (3.2)

let’s consider the problem of tracking a joint space trajectory. We approach
this within the context of controlling nonlinear multivariable systems. The
dynamic model of an n-joint manipulator is represented by equation (3.2),
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which can be rephrased as follows:

𝐵(𝑞) ¥𝑞 + 𝑛(𝑞, ¤𝑞) = 𝑢 (3.3)

where
𝑛(𝑞, ¤𝑞) = 𝐶(𝑞, ¤𝑞) ¤𝑞 + 𝐹 ¤𝑞 + 𝑔(𝑞) (3.4)

The approach presented here is based on the concept of determining
a control vector 𝑢 as a function of the system state that achieves a linear
input/output relationship. Rather than seeking an approximate lineariza-
tion, the goal is to achieve an exact linearization of the system dynamics
through nonlinear state feedback. The potential to find such a linearizing
controller is ensured by the specific structure of the system dynamics. The
equation in (3.3) exhibits linearity in the control 𝑢 and involves a full-rank
matrix 𝐵(𝑞), which is invertible for any manipulator configuration. By
taking the control 𝑢 as a function of the manipulator state in the form:

𝑢 = 𝐵(𝑞)𝑦 + 𝑛(𝑞, ¤𝑞) (3.5)

This approach leads to a system described by:

¥𝑞 = 𝑦

where 𝑦 results in a new input vector whose expression is yet to be deter-
mined; the resulting block scheme is illustrated in Fig. 3.1.

Figure 3.1: (Exact linearization performed by inverse dynamics control
from[36])
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The control law in (3.5) is termed inverse dynamics control because it
is based on computing the manipulator’s inverse dynamics. The system
under control, exhibits linearity and decoupling with respect to the new
input 𝑦. In simpler terms, each component 𝑦𝑖 influences only the joint
variable 𝑞𝑖 through a double integrator relationship, independently of the
motion of other joints. With the adoption of this control law, the manipu-
lator control problem is simplified to the task of determining a stabilizing
control law 𝑦. To achieve this objective, the selection of

𝑦 = −𝐾𝑃𝑞 − 𝐾𝐷 ¤𝑞 + 𝑟 (3.6)

we get a system of second-order equations:

𝑟 = ¥𝑞 + 𝐾𝐷 ¤𝑞 + 𝐾𝑃𝑞 (3.7)

which, under the assumption of positive definite matrices 𝐾𝑃 and 𝐾𝐷 ,
ensures asymptotic stability. Selecting 𝐾𝑃 and 𝐾𝐷 as diagonal matrices of
the form:

𝐾𝑃 = 𝑑𝑖𝑎𝑔{𝜔2
𝑛1, . . . , 𝜔

2
𝑛𝑛}

𝐾𝐷 = 𝑑𝑖𝑎𝑔{2𝜁1𝜔𝑛1, . . . , 2𝜁𝑛𝜔𝑛𝑛}
We obtain a decoupled system, each reference component 𝑟𝑖 only influ-
ences the joint variable 𝑞𝑖 . with a second-order input/output relationship
characterized by a natural frequency 𝜔𝑛𝑖 and a damping ratio 𝜁𝑖 . Given
any desired trajectory 𝑞𝑑(𝑡) , tracking this trajectory for the output 𝑞(𝑡) is
ensured be selecting

𝑟 = ¥𝑞𝑑 + 𝐾𝐷 ¤𝑞𝑑 + 𝐾𝑃𝑞𝑑 (3.8)

If we substitute (3.8) into (3.7) we get the homogeneous second-order dif-
ferential equation

¥̄𝑞 + 𝐾𝐷 ¤̄𝑞 + 𝐾𝑃 𝑞̄ = 0 (3.9)

The dynamics of the position error 𝑞̄ = 𝑞𝑑 − 𝑞 while tracking the given
trajectory.This error occurs only if 𝑞(0) and/or ¤𝑞(0) are different from zero
and it converges to zero with a speed that depends on the matrices 𝐾𝑃 and
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𝐾𝐷 as shown in the simulation results in figures (3.2 and 3.3).
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Figure 3.2: (Error convergence with setting small gains 𝑘𝑝1 = 4, 𝑘𝑝2 = 9 and
𝑘𝑑1 = 4, 𝑘𝑑2 = 9)

We can see the simulation results shown in figures (3.2 and 3.3) on the
2R Robot that we got it’s dynamical model in the previous chapter where
we set the parameters to:

𝑎1 = 1 𝑎2 = 1 ℓ1 = 0.5 ℓ2 = 0.5

𝑚ℓ1 = 50 𝑚ℓ2 = 50 𝐼ℓ1 = 10 𝐼ℓ2 = 10

𝑔 = 9.81 𝑘𝑟1 = 𝑘𝑟2 = 0 𝑚𝑚1 = 𝑚𝑚2 = 0 𝐼𝑚1 = 𝐼𝑚2 = 0

Where 𝑎1,2 are the lengths of links,ℓ1,2 are the distances of the center of
mass of the two links,𝑚ℓ1,2 are the masses of the links,𝐼ℓ1,2 are the moments
of inertia of the links,𝑔 is the gravity,𝑘𝑟1,2 are the gears reduction ratios of
Motors,𝑚𝑚1,2 are the masses of the motors,and 𝐼𝑚1,2 are the moments of
inertia of the motors.

Figure (3.4) depicate the resulting block scheme. The block scheme
illustrates two feedback loops: an inner loop based on the manipulator’s
dynamic model and an outer loop operating on the tracking error. The ob-
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Figure 3.3: (Error convergence setting big gains 𝑘𝑝1 = 49, 𝑘𝑝2 = 64 and
𝑘𝑑1 = 28, 𝑘𝑑2 = 48)

Figure 3.4: (Block scheme of joint space inverse dynamics control from[36])
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jective of the inner loop is to achieve a linear and decoupled input/output
relationship. On the other hand, the outer loop is responsible for stabiliz-
ing the entire system. The controller design for the outer loop is simplified
as it operates on a linear and time-invariant system. It is important to note
that the implementation of this control scheme involves computing the
inertia matrix 𝐵(𝑞) and the vector of Coriolis,centrifugal,gravitational,and
damping terms 𝑛(𝑞, ¤𝑞) in (3.4). These terms must be computed online since
the control now relies on nonlinear feedback of the current system state.
As a result, it is not possible to precompute these terms offline,The control
technique of nonlinear compensation and decoupling is highly appealing
because it transforms the nonlinear and coupled manipulator dynamics
into 𝑛 linear and decoupled second-order subsystems.

However, the technique relies on the assumption of perfect cancellation
of dynamic terms, leading to concerns about sensitivity and robustness
due to inevitable imperfect compensation. The implementation of inverse
dynamics control laws necessitates accurate knowledge of the system’s
dynamic model parameters and real-time computation of the complete
equations of motion.

However, these conditions can be challenging to meet in practical sit-
uations. On one hand, the model is typically known with some degree
of uncertainty, owing to imperfect knowledge of manipulator mechanical
parameters, presence of unmodeled dynamics, and model dependence on
end-effector payloads, which are not precisely known and, therefore, not
perfectly compensated. Additionally, the computation of inverse dynamics
needs to be executed at sampling intervals on the order of a millisecond
to maintain the assumption of operating in the continuous time domain.
This requirement can impose significant constraints on the hardware and
software architecture of the control system. Consequently, in certain situa-
tions, it may be prudent to reduce the computational burden by calculating
only the dominant terms of the inverse dynamics. Based on the observa-
tions mentioned above, it becomes apparent that from an implementation
perspective, compensation can be imperfect due to both model uncertainty
and approximations made during on-line computation of inverse dynamics
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simulation results are shown in figure (3.5) .
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Figure 3.5: Error behavior with the presence of uncertainties

In the following section we will introduce control techniques that aim
to counteract the effects of imperfect compensation. In [36], the authors
propose an approach that involves introducing an additional term to the in-
verse dynamics controller. This inclusion enhances the system’s robustness
by compensating for the approximations made during on-line computation
of inverse dynamics. However, this approach relies on three assumptions,
two of which are practically guaranteed, while the third requires prior
knowledge to be applicable. To overcome the requirement for previous
knowledge and ensure robust control, we will introduce an alternative
approach in the following sections. This new approach calculates the ro-
bustness term based on feedback from the system, making it independent
of prior knowledge.

3.2 Robust Control
The control problem is to create a control strategy that guarantees track-

ing of desired joint angle trajectory 𝑞𝑑(𝑡) , characterized by bounded first
derivative ¤𝑞𝑑(𝑡) and second derivative ¥𝑞𝑑(𝑡) . This control law should en-
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sure that the actual position and velocity trajectories 𝑞(𝑡) and 𝑞(𝑡) follow
the reference trajectories 𝑞𝑑(𝑡) and ¤𝑞𝑑(𝑡) with both a specified convergence
rate and a desired level of accuracy. This control approach should remain
effective regardless of initial conditions and variations within permissible
uncertainties. Additionally, the feedback loop will utilize available mea-
surements of joint angles and rates to achieve these tracking objectives.[31]

In scenarios which involves imperfect compensation and uncertainties
it’s reasonable to consider 𝐵̂ and 𝑛̂ which represent the adopted computa-
tional model expressed in terms of estimates of the terms in the dynamic
model that arises from imperfect model compensation and intentional
simplification in inverse dynamics computation. The uncertainty is repre-
sented by :

𝐵̃ = 𝐵̂ − 𝐵 𝑛̃ = 𝑛̂ − 𝑛 (3.10)

Taking these estimates into account our control vector expressed by equa-
tion (3.3) becomes:

𝑢 = 𝐵̂(𝑞)𝑦 + 𝑛̂(𝑞, ¤𝑞) (3.11)

by making use of (3.11) as a non linear control law we get :

𝐵 ¥𝑞 + 𝑛 = 𝐵̂𝑦 + 𝑛̂ (3.12)

The functional dependence has been omitted in the above representation.
Since the inertia matrix B is invertible,we can write:

¥𝑞 = 𝑦 + (𝐵−1𝐵̂ − 𝐼)𝑦 + 𝐵−1𝑛̃ = 𝑦 − 𝜂 (3.13)

where:
𝜂 = (𝐼 − 𝐵−1𝐵̂)𝑦 − 𝐵−1𝑛̃ (3.14)

by using feedback and PD gains that will be defined later we can take 𝑦 as
:

𝑦 = ¥𝑞𝑑 + 𝐾𝐷( ¤𝑞𝑑 − ¤𝑞) + 𝐾𝑃(𝑞𝑑 − 𝑞)
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substituting this into (3.13) we get 𝜂 as

¥̃𝑞 + 𝐾𝐷 ¤̃𝑞 + 𝐾𝑃 𝑞̃ = 𝜂 (3.15)

at this point the system described by (3.15) remains nonlinear and coupled
because 𝜂 is a nonlinear function of 𝑞 and ¤𝑞. Merely relying on the term on
the left-hand side does not guarantee error convergence to zero. In order
to achieve error convergence to zero while tracking a trajectory, especially
in the presence of uncertainties, a simple linear PD control is no longer
adequate. To address this, the Lyapunov direct method can be employed
to design an outer feedback loop on the error, which must be robust to the
uncertainty 𝜂 in (3.14 ).

Since our desired trajectory is assigned in the joint space where 𝑞̃ =

𝑞𝑑 − 𝑞 is the position error,we get it’s first time-derivative as ¤̃𝑞 = ¤𝑞𝑑 − ¤𝑞 and
it’s second time-derivative relying on (3.13) as

¥̃𝑞 = ¥𝑞𝑑 − 𝑦 + 𝜂 (3.16)

at this point we can introduce the system state as 𝜉 which can be written
as:

𝜉 =

[
𝑞̃
¤̃𝑞

]
(3.17)

By the derivation of 𝜉 we get the first-order differential matrix equation as:

¤𝜉 = 𝐻𝜉 + 𝐷( ¥𝑞𝑑 − 𝑦 + 𝜂) (3.18)

in which 𝐻 is a block matrix of dimension (2𝑛 x 2𝑛),and 𝐷 is also a block
matrix of dimension (2𝑛 x 𝑛) that has the values :

𝐻 =

[
𝑂 𝐼

𝑂 𝑂

]
𝐷 =

[
𝑂

𝐼

]
(3.19)

After reaching this point our problem of tracking a given trajectory can be
addressed by finding a control law 𝑦 . The objective of the control law 𝑦 is
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to ensure asymptotic stability of (3.18) for any variation of 𝜂 .
with reference to (3.13) we choose:

𝑦 = ¥𝑞𝑑 + 𝐾𝐷 ¤̃𝑞 + 𝐾𝑃 𝑞̃ + 𝑤 (3.20)

In the proposed control law, the PD term ensures the stabilization of the
error dynamic system matrix, ¥𝑞𝑑 provides a feedforward term, and the term
𝑤 is chosen to ensure robustness to the effects of uncertainty described by
𝜂 in (3.14). In (3.20) if we set 𝐾 = [𝐾𝑃 𝐾𝐷] we get

¤𝜉 = 𝐻̃𝜉 + 𝐷(𝜂 − 𝑤) (3.21)

in (3.21) 𝐻̃ is the subtraction of 𝐻 minus 𝐷 where 𝐷 is multiplied by 𝐾 :

𝐻̃ = (𝐻 − 𝐷𝐾) =
[
𝑂 𝐼

−𝐾𝑃 −𝐾𝐷

]
that is a matrix with all its eigenvalues have negative real parts,given that
𝐾𝑃 and 𝐾𝐷 are positive definite.

𝐾𝑃 =


𝑘𝑝11 0 . . . 0
0 𝑘𝑝22 . . . 0
...

... . . . ...

0 0 . . . 𝑘𝑝𝑛𝑛


, 𝐾𝐷 =


𝑘𝑑11 0 . . . 0
0 𝑘𝑑22 0 . . . 0
... 0... . . . ...

0 0 . . . 𝑘𝑑𝑛𝑛


By selecting 𝐾𝑃 and 𝐾𝐷 as a diagonal matrix with the diagonal elements
(𝑘𝑝11 , 𝑘𝑝22 , . . . , 𝑘𝑝𝑛𝑛 ) ,(𝑘𝑑11 , 𝑘𝑑22 , . . . , 𝑘𝑑𝑛𝑛 )are positive and greater than zero,
and all off diagonal elements are zeros.This choice allows the desired error
system dynamics to be prescribed. the system can be decoupled into 𝑛

independent equations as regards the linear part. If the uncertainty term
vanishes, i.e., 𝑤 = 0, the result with an exact inverse dynamics controller
is recovered (𝐵̂ = 𝐵 and 𝑛̂ = 𝑛).

In order to determine the value of 𝑤, we can consider the following
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positive definite quadratic form as a candidate for the Lyapunov function:

𝑉(𝜉) = 𝜉𝑇𝑄𝜉 > 0 ∀𝜉 ≠ 0 (3.22)

where𝑄 is a positive definite matrix of dimensions (2𝑛 x 2𝑛), if we compute
the derivative of 𝑉 along the trajectories of the error system (3.21) we get

¤𝑉 = ¤𝜉𝑇𝑄𝜉 + 𝜉𝑇𝑄 ¤𝜉 = 𝜉𝑇(𝐻̃𝑇𝑄 +𝑄𝐻̃)𝜉 + 2𝜉𝑇𝑄𝐷(𝜂 − 𝑤) (3.23)

Given that 𝐻̃ has eigenvalues with all negative real parts, it is a well-
known fact that for any symmetric positive definite matrix 𝑃, the equation

𝐻̃𝑇𝑄 +𝑄𝐻̃ = −𝑃 (3.24)

gives a unique solution 𝑄 that is symmetric positive definite. Now (3.23)
is

¤𝑉 = −𝜉𝑇𝑃𝜉 + 2𝜉𝑇𝑄𝐷(𝜂 − 𝑤) (3.25)

The first term on the right-hand side of equation (3.25) is negative definite,
which implies that the solutions converge if 𝜉 ∈ N(𝐷𝑇𝑄). but instead if
𝜉 ∉ N(𝐷𝑇𝑄), the control 𝑤 must be chosen in a way that makes the second
term in equation (3.25) less than or equal to zero.

If we introduce 𝑧 = 𝐷𝑇𝑄𝜉 , the second term in (3.25) now is 𝑧𝑇(𝜂 − 𝑤)
by making :

𝑤 =
𝜌

‖𝑧‖ 𝑧 𝜌 > 0 (3.26)

where It is essential to divide 𝑧 by its norm to achieve a linear dependence
on 𝑧 in the term containing the control 𝑧𝑇𝑤. By doing so, it effectively
counteracts,for 𝑧 → 0 the term containing the uncertainty 𝑧𝑇𝜂, which is
linear in 𝑧. from(3.26) we get :

𝑧𝑇(𝜂 − 𝑤) = 𝑧𝑇𝜂 − 𝜌

‖𝑧‖ 𝑧
𝑇𝑧 ≤ ‖𝑧‖‖𝜂‖ − 𝜌‖𝑧‖ = ‖𝑧‖(‖𝜂‖ − 𝜌) (3.27)

so now the main focus to make sure of the convergence we need to choose
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𝜌 such that :
𝜌 ≥ ‖𝜂‖ ∀𝑞, ¤𝑞, ¥𝑞𝑑 (3.28)

if we make so the control law (3.26) guarantees that ¤𝑉 is less than zero
along all trajectories of the error system.

To achieve this goal the writers in[36] propose some assumptions were
the control design is reliant on the assumption that, while the uncertainty
𝜂 is unknown, an estimate of its range of variation is accessible to ensure
asymptotic stability.

At this point they introduced three assumptions considering the 𝜂 is a
a function of 𝑞 , ¤𝑞 , and ¥𝑞 that are:

𝑠𝑢𝑝𝑡≥0‖ ¥𝑞𝑑‖ < 𝑄𝑀 < ∞ ∀¥𝑞𝑑 (3.29)

‖𝐼 − 𝐵−1(𝑞)𝐵̂(𝑞)‖ ≤ 𝛼 ≤ 1 ∀𝑞 (3.30)

‖𝑛̃‖ ≤ 𝜙 < ∞ ∀𝑞, ¤𝑞 (3.31)

Assumption (3.29) is practically fulfilled since any planned trajectory can-
not demand infinite accelerations. Regarding assumption (3.30), since 𝐵
is a positive definite matrix with upper and lower bounded norms, the
following inequality holds:

0 < 𝐵𝑚 ≤ ‖𝐵−1(𝑞)‖ ≤ 𝐵𝑀 < ∞ ∀𝑞 (3.32)

so the choice for 𝐵̂ always exists which satisfies (3.30). In fact, by setting

𝐵̂ =
2

𝐵𝑀 + 𝐵𝑚 𝐼

and from (3.30) it is

‖𝐵−1𝐵̂ − 𝐼‖ ≤ 𝐵𝑀 − 𝐵𝑚
𝐵𝑀 + 𝐵𝑚 = 𝛼 < 1 (3.33)
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If 𝐵̂ is a better estimate of the inertia matrix, the inequality can be satisfied
with values of 𝛼 that can be arbitrarily small (in the limit, it is 𝐵̂ = 𝐵 and
𝛼 = 0 ).

Regarding assumption (3.31), it is observed that 𝑛̃ is a function of 𝑞 and
¤𝑞. For revolute joints, a periodic dependence on 𝑞 is obtained, while for
prismatic joints, a linear dependence is obtained. However, the joint ranges
are limited, and thus the contribution mentioned above is also limited.
Additionally, concerning the dependence on ¤𝑞, unbounded velocities for
an unstable system may arise in theory, but in practice, there are saturations
on the maximum velocities of the motors. In total, assumption (3.31) can
be realistically satisfied.

To fulfill the condition in (3.28), and by considering the definition of 𝜂
in (3.14) along with assumptions (3.29)(3.31),and being ‖𝑤‖ = 𝜌 it’s

‖𝜂‖ ≤ ‖𝐼 − 𝐵−1𝐵̂‖(‖ ¥𝑞𝑑‖ + ‖𝐾‖‖𝜉‖ + ‖𝑤‖) + ‖𝐵−1‖‖𝑛̃‖

≤ 𝛼𝑄𝑀 + 𝛼‖𝐾‖‖𝑥𝑖‖ + 𝛼𝜌 + 𝐵𝑀Φ

Then by setting :

𝜌 ≥ 1
1 − 𝛼

(𝛼𝑄𝑀 + 𝛼‖𝐾‖‖𝜉‖ + 𝐵𝑀Φ) (3.34)

we have :
¤𝑉 = −𝜉𝑇𝑃𝜉 + 2𝑧𝑇

(
𝜂 − 𝜌

‖𝑧‖ 𝑧
)
< 0 ∀𝜉 ≠ 0 (3.35)

The resulting block scheme is illustrated in Fig(3.6) and the simulation
results for error convergence are shown in Fig(3.7)

However, obtaining such estimates can be challenging in certain situ-
ations. This difficulty arises due to the presence of significant flexibility
resulting from variation in payload, unanticipated disturbances, and the
evolution of time-dependent factors like friction and parameters associated
with the robot’s aging(wear and tear).[50][51].

Given the circumstances, it is now more practical to seek a solution that
ensures error convergence without relying on any assumptions regarding
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Figure 3.6: (Block scheme of joint space robust control from[36])

0 1 2 3 4 5 6 7 8 9 10

 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

eq1

eq2

Figure 3.7: (Error Convergence RAW=16 )

43



CHAPTER 3. MOTION CONTROL (INVERSE DYNAMICS CONTROL)

prior knowledge or estimates of the range of variations in uncertainties 𝜂.
To initiate this approach, we begin by defining (u), which represents

the input to the manipulator as:

𝐵̂(𝑞)𝑦 + 𝑛̂(𝑞, ¤𝑞) = 𝑢 (3.36)

Furthermore, we maintain consistency by selecting the same control law:

𝑦 = 𝐾𝑃 𝑞̃ + 𝐾𝐷 ¤̃𝑞 + ¥𝑞𝑑 + 𝜔 (3.37)

In this control law, the PD terms play a crucial role to insure stability
of the error dynamic system matrix. Additionally, ¥𝑞𝑑 serves as the feed-
forward term, And the important parameter, 𝜔, that plays a pivotal role in
accounting for the robustness against the effects of 𝜂, which represents the
uncertainties.

To determine the value of 𝜔 and given that our candidate for the Lya-
punov function is:

𝑉(𝜉) = 𝜉𝑇𝑄𝜉 (3.38)

This Lyapunov function in (3.38) is greater than zero for all 𝜉 except when
𝜉 = 0. ie:

𝑉(𝜉) > 0 ∀𝜉 ≠ 0

Indeed, the first condition for the Lyapunov function, which involves the
matrix 𝑄 being positive definite (as computed and explained previously),
is satisfied. This positive definiteness is a crucial requirement to ensure
error convergence in the context of Lyapunov stability analysis.[18]

The second condition pertains to radial unboundedness, indicating
that the Lyapunov function should exhibit unbounded growth as the state
vectors move away from the origin. In mathematical terms, this condition
can be expressed as follows: 𝑉(𝜉) → ∞ as 𝜉 → ∞. It is evident that our
chosen candidate satisfies this condition.[18]

Concerning the condition of having the derivative of the Lyapunov
function less than zero for all 𝜉 not equal to zero( ¤𝑉(𝜉) < 0 ∀𝜉 ≠ 0 )][18],
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and by examining the derivative of our Lyapunov candidate which is:

¤𝑉 = ¤𝜉𝑇𝑄𝜉 + 𝜉𝑇𝑄 ¤𝜉 (3.39)

By performing the same calculations as outlined previously we get :

¤𝑉 = −𝜉𝑇𝑃𝜉 + 2𝑧𝑇(𝜂 − 𝜌

‖𝑧‖ 𝑧) (3.40)

As previously proposed, by setting

𝜔 =
𝜌

‖𝑧‖ 𝑧

, our task now simplifies to choosing a value for 𝜌 that ensures ¤𝑉 < 0 for
all 𝜉 not equal to 0. This is achieved without requiring prior knowledge
about the uncertainties.

It’s important to recall that 𝜌, as discussed earlier, must be greater than
or equal to the norm of 𝜂 for all 𝑞, ¤𝑞, ¥𝑞𝑑.

Examining equation (3.39), we notice that Q is a constant matrix deter-
mined by 𝐻̃ and 𝑃, which are also constants. Given that we have access to 𝜉

and ¤𝜉 through online feedback, we can contemplate treating 𝜌 as a variable
and defining its value online. This can be done by continuously monitor-
ing the value of ¤𝑉 and updating the value of 𝜌 dynamically. The goal is to
adjust 𝜌 such that it becomes sufficiently large to ensure ¤𝑉(𝜉) < 0 ∀𝜉 ≠ 0
, thereby achieving the desired stability and convergence properties.

By adopting this approach and considering that the previously dis-
cussed assumptions (3.29) and (3.31) are realistically met, there’s no re-
quirement for estimates regarding the range of variations in the unknown
uncertainty 𝜂 in order to compute 𝜌 as described in (3.34). Instead, this
method allows 𝜌to be dynamically updated online based on the value of
¤𝑉 . This dynamic update ensures that 𝜌 adapts in real-time to maintain
the desired stability properties without relying on prior knowledge of 𝜂’s
variations.

By implementing this approach, we have determined the parameter
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(𝜔), which serves as the robust component designed to counteract the ef-
fects of uncertainties present in (𝐵̂) and (𝑛̂) when calculating the nonlinear
components that depend on the manipulator’s state. Crucially, this calcu-
lation is performed without the need for any prior knowledge about the
characteristics or specifics of these uncertainties.

To determine 𝜌, we require a mechanism that incrementally increases
its value until ( ¤𝑉(𝜉) < 0) is attained. Once this goal is reached, it be-
comes crucial to sustain the value of 𝜌 as long as the condition remains
satisfied. In cases where the condition is no longer met, it becomes neces-
sary to recalibrate 𝜌 once again to ensure the continuous fulfillment of the
condition.

To achieve this, we can make use of the derivative of 𝜌. By setting the
derivative equal to a constant multiplied by the current time value, we can
systematically boost 𝜌 as time elapses when our condition is unfulfilled.
Conversely, when the condition is met, setting the derivative of 𝜌 to zero
will maintain its current value.

The function of ¤𝜌 can be written as :

¤𝜌(𝑡) =

𝐾 If ¤𝑉 > 0

0 If ¤𝑉 < 0

By integrating ( ¤𝜌) and incorporating it into the controller, while utilizing
the relationship 𝜔 = 𝜌

‖𝑧‖ 𝑧, we effectively determine the value of 𝜔. This
approach allows us to dynamically compute and adjust 𝜔 in response
to the system’s behaviour, which contributes to the robustness against
uncertainties and helps achieve the desired control objectives.

In summary, the approach presented has resulted in the development
of a control law comprised of three distinct contributions:

• The term 𝐵̂𝑦 + 𝑛̂ serves to approximately compensate for nonlinear
effects and achieve joint decoupling.

• The term ¥𝑞𝑑 + 𝐾𝐷 ¤̃𝑞 + 𝐾𝑃 𝑞̃ introduces both linear feedforward action
( ¥𝑞𝑑 + 𝐾𝐷 ¤𝑞𝑑 + 𝐾𝑃𝑞𝑑) and linear feedback action (−𝐾𝐷 ¤𝑞 − 𝐾𝑃𝑞). These
actions collectively serve to stabilize the error system dynamics.
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• The term 𝑤 = 𝜌
‖𝑧‖ 𝑧 signifies the robust component designed to coun-

terbalance the uncertainties in 𝐵̃ and 𝑛̃ when computing the nonlin-
ear terms linked to the manipulator’s state. Notably, the magnitude
of the scalar 𝜌 increases with greater uncertainty. This control law
can be described as a unit vector type because it is represented by
a vector with a magnitude of 𝜌 aligned along the unit vector of
𝑧 = 𝐷𝑇𝑄𝜉, ∀𝜉.

3.2.1 Overview of Sliding Mode Control (SMC)

In this section, we will provide a general definition and overview of
Sliding Mode Control (SMC). Sliding Mode Control is a critical concept in
our study, and by grasping its fundamentals, we can better interpret and
analyze the outcomes of our simulations.

Sliding mode control (SMC) is a robust control technique used to gen-
erate control inputs for achieving desired trajectories in a given system.
These inputs may take on a discontinuous form depending on the system’s
state. Robustness is a fundamental characteristic of SMC, meaning that
it can effectively achieve its control objectives even in the presence dis-
turbances or uncertainties affecting the system. This robustness is a key
feature of SMC, as demonstrated in various studies (e.g., [7] [40] [48] and
related references).[11]

Sliding mode control falls under the broader category of Variable Struc-
ture Control Systems (VSCS). In SMC, VSCS are purposefully designed to
drive and maintain the system state within a defined region determined
by a switching function. This approach offers several advantages. Firstly,
it allows for tailoring the dynamic behavior of the system by selecting an
appropriate switching function. Secondly, it provides a high degree of
robustness to the closed-loop response, rendering it highly insensitive to
specific types of system uncertainties. Moreover, the analysis of discon-
tinuous signals applied to the system can be utilized to model the signal
activity required for achieving optimal system performance.

The concept of Variable Structure Control Systems originated in the
1960s in the Soviet Union and has since evolved into a well-established and
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mature approach for achieving robust control and estimation in a wide
range of applications.[32]

The SMC design process comprises two fundamental steps:
1- Crafting a stable surface within the system’s state space in Rn.
2- Formulating a control input that constrains the trajectory of the sys-

tem defined in step (1) within a predetermined vicinity of the established
stable surface. This restriction ensures that the trajectory converges to-
wards the origin while remaining within the specified neighborhood.

In practical SMC design, for the sake of simplicity and ease of im-
plementation, the mentioned "surface" is typically a subspace within the
system’s state space. The selection of a stable subspace ensures that ev-
ery trajectory, when confined to the vicinity of this subspace, ultimately
converges to the origin of the state space [7] [40] [42] [48]. The SMC the-
ory hinges on the existence of these stable sliding subspaces, and various
systematic and ad hoc methods for identifying such stable subspaces are
available in the literature [7] [40] [42] [48].

Under the robust control scheme described before , all resulting trajec-
tories converge to the subspace defined by 𝑧 = 𝐷𝑇𝑄𝜉 = 0. This subspace,
referred to as the sliding subspace, is determined by the matrix 𝑄 used
in the Lyapunov function 𝑉 . Within this attractive sliding subspace, the
control input𝑤 ideally switches at an infinite frequency, leading to the con-
vergence of all error components to zero. The speed of this convergence
depends on the characteristics of the matrices 𝑄, 𝐾𝑃 , 𝐾𝐷 ,and 𝐾 which is
the variable used to compute 𝜌 (how fast 𝜌 grow in time).

In a two-dimensional scenario, the behavior of an error trajectory is
illustrated in Figure 3.8 . Notably, when the initial condition 𝜉(0) ≠ 0 and
𝜉(0) ∉ N(𝐷𝑇𝑄) , the trajectory is attracted to the sliding hyperplane (a
line) 𝑧 = 0. It then approaches the origin of the error state space, and this
evolution is governed by the value of 𝜌.

In practice, physical limitations on the controller’s components lead
to a control signal that switches at a finite frequency. Consequently, the
trajectories oscillate around the sliding subspace with an amplitude that
decreases as the frequency of switching increases.
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Figure 3.8: (Error trajectory with robust control from[36])

To eliminate the undesired high-frequency components (chattering) in
control systems, one approach is to adopt a robust control law that, while
it may not guarantee error convergence to zero, does ensure that the errors
remain bounded within a specified norm. A control law of this type can
be designed as follows:

𝜔 =


𝜌
‖𝑧‖ 𝑧 if ‖𝑧‖ ≥ 𝜖
𝜌
𝜖 𝑧 if ‖𝑧‖ < 𝜖

(3.41)

To offer an intuitive interpretation of this control law, let’s consider
that equation (3.41) results in a zero control input when the error exists
in the null space of the matrix 𝐷𝑇𝑄. Conversely, equation (3.26) features
a gain that tends to infinity as 𝑧 approaches the null vector, resulting in a
control input with a limited magnitude. These control inputs, despite their
differing behaviors, operate at an infinite switching frequency, compelling
the error system dynamics to remain confined to the sliding subspace.

In the example mentioned earlier, control law (3.41) establishes a hy-
perplane 𝑧 = 0 that is no longer attractive, permitting the error to fluctuate
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within a boundary layer whose thickness depends on 𝜖 (see Fig.3.9).

Figure 3.9: (Error trajectory with robust control and chattering elimination
from[36])

3.2.2 simulation

In this section, we present a comprehensive set of results to provide
a detailed insight into the performance of our robust controller, which
incorporates the online computation of 𝜌, in the context of tracking control
for a two-link rigid manipulator. We go beyond a singular perspective by
presenting a range of scenarios that involve variations in the value assigned
to constant 𝐾 and see how 𝜌 change over time and the effects on the error
convergence.

Moreover, our presentation extends to an investigation to apply the
previously explained solution to eliminate the undesired high-frequency
components (chattering) in control systems,

The simulation was done using Matlab and Simulink,
The prescribed joint trajectories are defined as follows:
For the first joint: 𝑞𝑑1 = 0.25𝜋 + 0.5(1 − cos(0.5𝜋𝑡))
For the second joint: 𝑞𝑑2 = 0.5𝜋 + 0.25(1 − cos(𝜋𝑡))
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where the 2R robot whose dynamical model was derived previously
and for our purpose of analysis, we assigned specific parameter values to
the system as follows:

Link Lengths: - 𝑎1 = 1 - 𝑎2 = 1
Center of Mass Distances: - ℓ1 = 0.5 - ℓ2 = 0.5
Link Masses: - 𝑚ℓ1 = 50 - 𝑚ℓ2 = 50
Link Moments of Inertia: - 𝐼ℓ1 = 10 - 𝐼ℓ2 = 10
Gravity: - 𝑔 = 9.81
Motor Gear Reduction Ratios: - 𝑘𝑟1 = 𝑘𝑟2 = 0
Motor Masses: - 𝑚𝑚1 = 𝑚𝑚2 = 0
Motor Moments of Inertia: - 𝐼𝑚1 = 𝐼𝑚2 = 0
These parameters define the physical characteristics and properties of

our 2R robot, which are essential for the subsequent analysis and control
design.

To simulate uncertainties in the system, the controller was provided
with altered parameter values, introducing the following modifications:

Modified Link Lengths: - 𝑎̂1 = 0.5 - 𝑎̂2 = 0.7
These modified parameters (𝑎̂1 and 𝑎̂2) represent the variations in the

lengths of the robot’s links, introducing uncertainty into the system for the
purpose of analysis and robust control evaluation.

We have also configured the following values in our MATLAB code:

𝐾𝑝 =

[
49 0
0 68

]
𝐾𝑑 =

[
15 0
0 28

]

𝑃 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


By utilizing MATLAB’s Lyapunov solver with the commandQ = lyap(H_TILDA’,
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P), we obtained the matrix 𝑄:

𝑄 =


1.8197 0 0.0102 0

0 1.4380 0 0.0074
0.0102 0 0.0340 0

0 0.0074 0 0.0181


The effect of the constant K
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Figure 3.10: (Error Convergence K=1000 )

As illustrated in Figure (3.11), where we have chosen the value of the
constant 𝐾 = 1000 our 𝜌 grows rapidly, reaching a magnitude significant
enough to make 𝜔 able to counteract the uncertainties throughout the
entire trajectory.

The error can be observed in the figure (3.10), where the error converges
towards the sliding hyperplane (a line) 𝑧 = 0. and ultimately approaches
to zero.

While in Figure (3.13), where we observe the behavior of 𝜌 with 𝐾 =

15, it becomes apparent that 𝜌 increases multiple times. This increase is
necessary to effectively adapt to the effects of uncertainties that impact the
convergence of the error throughout the trajectory. We can closely examine
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Figure 3.11: (Raw evolution with K=1000 )
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Figure 3.12: (Error Convergence K=15 )
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Figure 3.13: (Raw evolution with K=15 )
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Figure 3.14: (The derivative of Lyaponove function when K=15 )
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the behavior of the error in Figure (3.12).
Specifically, we see that the value of 𝜌 rises when the derivative of the

Lyapunov function, as depicted in Figure (3.14), exceeds zero. This scenario
causes the error to depart from the sliding hyperplane. By augmenting
the value of 𝜌, we actively prevent ¤𝑉 from becoming positive, successfully
guiding the error back onto the sliding hyperplane.

eliminating the undesired high-frequency components (chattering)
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Figure 3.15: (u1,u2 with chattering )

In Figure (3.15), we observe a practical aspect of the control system. in
which, the control signal exhibits a finite switching frequency.

In Figure (3.16), we can observe the control signal behavior when adopt-
ing the robust control law as defined in Equation (3.41). While this control
law may not guarantee error convergence to zero, it does ensure that the
errors remain bounded within a specified norm. This control strategy es-
tablishes a hyperplane 𝑧 = 0 that is no longer an attractive equilibrium
point, allowing the error to fluctuate within a boundary layer. The thick-
ness of this boundary layer is denoted as (𝜖 = 0.07), as shown in Figure
(3.17).
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Figure 3.16: (u1,u2 without chattering )
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Figure 3.17: (Error Convergence,K=1000,epsilon=0.07)
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3.3 Non linear PD+ controller
PD+ control strategies typically consist of two main components: a

feedback component for ensuring closed-loop stability and a feedforward
component designed to enhance tracking performance [43]. In many cases,
the feedback component employs a linear PD controller with constant
gains, while the feedforward part can take various forms, including full or
partial manipulator dynamics or even be absent altogether.

When the feedforward term encompasses the complete manipulator dy-
namics, stability analysis of linear PD+ control methods has demonstrated
global asymptotic and exponential stability, particularly in the context of
tracking control for rigid manipulators [43], [41], [29], [44]. However, in
scenarios where the feedforward term does not encompass the entire ma-
nipulator dynamics, the equilibrium point of the closed-loop system is no
longer guaranteed to be at the origin, and tracking errors may not diminish
over time. In such cases, stability and robustness analyses of linear PD+
controllers have indicated exponential convergence and uniform ultimate
boundedness of tracking errors for manipulator control [43].

While the use of PD+ control laws guarantees closed-loop system sta-
bility, the overall performance is heavily influenced by the selection of
controller gains. Conventional PD+ controllers with fixed gains often de-
mand substantial initial actuator torques, and this can be problematic,
especially when dealing with limitations imposed by the size of the ac-
tuators. To enhance the performance of closed-loop systems, a solution
has been introduced in the form of independent joint nonlinear gain PD
controllers [45], [15], [21], [34]. These controllers feature proportional and
derivative gains that are nonlinear functions of the errors in joint position
and velocity.

In the context of the control design described below, it is assumed that
certain factors, including friction effects, disturbance terms, and joint angle
velocities, have bounded characteristics as follows:

0 ≤ 𝑘 𝑓 𝑑1 = 𝜆𝑚(𝐹𝑑) ≤ 𝜆𝑀(𝐹𝑑) = 𝑘 𝑓 𝑑2 (3.42)
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𝑘 𝑓 𝑠 = sup
¤𝑞∈𝑅𝑛

‖ 𝑓𝑠( ¤𝑞)‖ , 𝑘𝑢𝑑 = sup
𝑡∈𝑅+

‖𝑢𝑑(𝑡)‖ (3.43)

𝑘𝑞𝑑1 = sup
𝑡∈𝑅+

‖ ¤𝑞𝑑(𝑡)‖ , 𝑘𝑞𝑑2 = sup
𝑡∈𝑅+

‖ ¥𝑞𝑑(𝑡)‖ (3.44)

Utilizing the equations of motion derived in prior sections, we adopt
the following general control framework:

𝑢 = 𝑢 𝑓 𝑏(𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑) + 𝑢 𝑓 𝑓 (𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑 , ¥𝑞𝑑) (3.45)

In this context, the control structure consists of a feedback component
denoted as 𝑢 𝑓 𝑏 and a feedforward term represented as 𝑢 𝑓 𝑓 . Our focus is
on examining the stability robustness of a particular category of nonlinear
controllers that incorporate the feedforward component as:

𝑢 𝑓 𝑓 = 𝐵𝑛(𝑞) ¥𝑞𝑑 + 𝐶𝑛(𝑞, ¤𝑞) ¤𝑞𝑑 + 𝑔𝑛(𝑞) (3.46)

Here, 𝐵𝑛(𝑞), 𝐶𝑛(𝑞, ¤𝑞), and 𝑔𝑛(𝑞) represent the nominal or estimated values
for 𝐵(𝑞), 𝐶(𝑞, ¤𝑞), and 𝑔(𝑞), respectively, and these estimates are constrained
by the following bounds:

𝛿𝑀 = sup
𝑞∈𝑅𝑛

‖𝐵(𝑞) − 𝐵𝑛(𝑞)‖ (3.47)

𝛿𝐶 = sup
𝑞∈𝑅𝑛 ,‖ ¤𝑞𝑑 ‖≤𝑘𝑞𝑑1

‖𝐶(𝑞, ¤𝑞𝑑) − 𝐶𝑛(𝑞, ¤𝑞𝑑) (3.48)

𝛿𝑔 = sup
𝑞∈𝑅𝑛

‖𝑔(𝑞) − 𝑔𝑛(𝑞)‖ (3.49)

While subsequent stability and robustness analysis relies on the existence
of the mentioned bounds, only 𝐶 needs to be explicitly and beforehand
known to guarantee stability and robustness. In scenarios involving ma-
nipulators with known uncertainty limited to the inertia parameters, the
bound 𝐶 can be determined using The property of the dynamic model of
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the manipulator which states that There exist a positive constant 𝐾𝐶 such
that :

‖𝐶(𝑥, 𝑦)𝑧‖ = ‖𝐶(𝑥, 𝑧)𝑦‖ ≤ 𝐾𝐶 ‖𝑦‖‖𝑧‖ ∀𝑥, 𝑦, 𝑧 (3.50)

Where 𝐾𝐶 satisfies the following bound [16]:

𝐾𝐶 ≥ 𝑛2
(
max
𝑖, 𝑗 ,𝑘,𝑞

|𝑐𝑖 𝑗𝑘(𝑞) |
)

(3.51)

where 𝑐𝑖 𝑗𝑘(𝑞) is the (i,j,k)-th Christoffel symbol used in the definition of the
matrix 𝐶(𝑞, ¤𝑞)

However, in many practical applications, the primary source of un-
certainty is an unknown payload, resulting in a single uncertain inertia
parameter affecting the computation of 𝛿𝐶 . The general structure of 𝑈 𝑓 𝑏

is designed based on the characteristic that rigid manipulators fall into a
category of mechanical systems that can be stabilized using PD-type con-
trol laws. The suggested feedback term takes the form of a general affine
function of the tracking errors, as described by the following equation:

𝑢 𝑓 𝑏 = 𝐾𝑝(𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑)𝑞̃ + 𝐾𝑑(𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑) ¤̃𝑞 (3.52)

The matrices 𝐾𝑝(𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑) and 𝐾𝑑(𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑) are chosen as function ma-
trices to meet stability and performance criteria. In their basic configu-
ration, 𝐾𝑝 and 𝐾𝑑 are diagonal matrices with positive definite constant
values, resulting in the widely used independent joint linear PD control
law. However, to enhance specific performance aspects or adhere to torque
constraints, the representation of 𝑢 𝑓 𝑏 has been expanded to include non-
linear gain PD controllers [15], [21], [34].

In order to broaden the scope of representations for 𝑢 𝑓 𝑏 in the context
of trajectory tracking control for n-joint rigid robotic manipulators with
nonlinear and interconnected dynamics, a more comprehensive structure
for the gain matrices is introduced. The nonlinear controllers falling under
this category are formulated as follows:

𝑢 𝑓 𝑏 = 𝐾𝑝(𝑞̃)𝑞̃ + 𝐾𝑑(𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑) ¤̃𝑞 (3.53)
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The derivative gain matrix, denoted as 𝐾𝑑(𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑), is assumed to be
symmetric, positive definite, and bounded for all 𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑. Throughout
the following discussion, we use the notation 𝐾𝑑(𝑞̃ , ¤̃𝑞) to represent the
symmetric, positive definite derivative gain matrix. It’s important to note
that the subsequent developments apply equally to the more general case
of 𝐾𝑑(𝑞, ¤𝑞, 𝑞𝑑 , ¤𝑞𝑑). In previous studies [15], [21], [34], to guarantee global
asymptotic stability of nonlinear gain PD controllers for position control
of manipulators, they have typically employed a positive definite diagonal
proportional gain matrix 𝐾𝑝(𝑞̃) with 𝐾𝑝𝑖𝑖(𝑞̃𝑖) > 0, 𝑖 = 1 . . . 𝑛 as it’s diagonal
elements. In this context, the proportional gain matrix 𝐾𝑝(𝑞̃) is assumed
to be symmetric with structure:

𝐾𝑝(𝑞̃) =


𝑘𝑝11(𝑞̃1) 𝑘𝑝12 . . . 𝑘𝑝1𝑛

𝑘𝑝21 𝑘𝑝22(𝑞̃2) . . . 𝑘𝑝2𝑛
...

... . . . ...

𝑘𝑝𝑛1 𝑘𝑝𝑛2 . . . 𝑘𝑝𝑛𝑛(𝑞̃𝑛)


(3.54)

The diagonal elements of 𝐾𝑝(𝑞̃) have both an upper bound and a positive
lower bound, meaning they satisfy the following condition:

𝑘𝑀𝑝𝑖𝑖 ≥ 𝑘𝑝𝑖𝑖(𝑞̃𝑖) ≥ 𝑘𝑚𝑝𝑖𝑖 > 0, ∀𝑞̃𝑖 ∈ 𝑅 (3.55)

Defining constant symmetric positive definite matrices 𝐾𝑚𝑝 and 𝐾𝑀𝑝 for
𝑖 = 1, . . . , 𝑛 as:

𝐾𝑚𝑝 = 𝐾𝑝(𝑞̃) − 𝑑𝑖𝑎𝑔[𝐾𝑝(𝑞̃)] + 𝑑𝑖𝑎𝑔(𝑘𝑚𝑝11, . . . , 𝑘
𝑚
𝑝𝑛𝑛) (3.56)

and
𝐾𝑀𝑝 = 𝐾𝑝(𝑞̃) − 𝑑𝑖𝑎𝑔[𝐾𝑝(𝑞̃)] + 𝑑𝑖𝑎𝑔(𝑘𝑀𝑝11, . . . , 𝑘

𝑀
𝑝𝑛𝑛) (3.57)

When 𝑘𝑀𝑝𝑖𝑖 > 𝑘𝑚𝑝𝑖𝑖 > 0, 𝑖 = 1, . . . , 𝑛, it is always possible to construct 𝐾𝑚𝑝 and
𝐾𝑀𝑝 as defined in (3.56) and (3.57). For instance, 𝐾𝑚𝑝 and 𝐾𝑀𝑝 can be defined
as diagonally dominant symmetric positive definite matrices that meet the
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following conditions:

𝑘𝑀𝑝𝑖𝑖 > 𝑘𝑚𝑝𝑖𝑖 >
𝑛∑

𝑗=1, 𝑗≠𝑖
|𝑘𝑝𝑖𝑗

with the potential for non-zero off-diagonal elements.
The stability analysis of nonlinear controllers relies on the following

properties of the aforementioned gain matrices:

1. Given that the proportional gain matrix 𝐾𝑝(𝑞̃) and the constant ma-
trices 𝐾𝑚𝑝 and 𝐾𝑀𝑝 are symmetric and positive definite, there exist
positive constants 𝑘𝑝1 and 𝑘𝑝2 such that ∀𝑞̃ , 𝑥 ∈ 𝑅𝑛 :

𝑘𝑝1‖𝑥‖2 ≤ 𝑥𝑇𝐾𝑚𝑝 𝑥 ≤ 𝑥𝑇𝐾𝑝(𝑞̃)𝑥 ≤ 𝑥𝑇𝐾𝑀𝑝 𝑥 ≤ 𝑘𝑝2‖𝑥‖2

where 𝑘𝑝1 is equal to the smallest eigenvalue of 𝐾𝑚𝑝 and 𝑘𝑝2 is equal
to the largest eigenvalue of 𝐾𝑀𝑝 .

2. As the derivative gain matrix 𝐾𝑑(𝑞̃ , ¤̃𝑞) is symmetric and positive defi-
nite, there exist positive constants 𝑘𝑑1 and 𝑘𝑑2 such that ∀𝑞̃ , ¤̃𝑞, 𝑥 ∈ 𝑅𝑛 ,

𝑘𝑑1‖𝑥‖2 ≤ 𝑥𝑇𝐾𝑑(𝑞̃ , ¤̃𝑞)𝑥 ≤ 𝑘𝑑2‖𝑥‖2

where 𝑘𝑑1 is equal to ∞ of the smallest eigenvalue of 𝐾𝑑(𝑞̃ , ¤̃𝑞) ,𝑘𝑑2 is
equal ti the 𝑠𝑢𝑝 of the largest eigenvalue of 𝐾𝑑(𝑞̃ , ¤̃𝑞).

Regarding the stability of the closed-loop system when employing the
controller (3.53) for trajectory tracking in the context of the dynamics . The
closed-loop system is given as :

𝐵(𝑞) ¥̃𝑞 + 𝐶(𝑞, ¤𝑞) ¤̃𝑞 + 𝐾𝑝(𝑞̃)𝑞̃ + [𝐾𝑑(𝑞̃ , ¤̃𝑞) + 𝐹𝑑] ¤̃𝑞 = Δ𝑢 (3.58)

(3.58) is considered a non-autonomous differential equation because 𝑞𝑑
and ¤𝑞𝑑 are time-varying trajectories.

Δ𝑢 = [𝐵(𝑞)−𝐵𝑛(𝑞)] ¥𝑞𝑑+[𝐶(𝑞, ¤𝑞)−𝐶𝑛(𝑞, ¤𝑞)] ¤𝑞𝑑+[𝑔(𝑞)−𝑔𝑛(𝑞)]+𝐹𝑑 ¤𝑞𝑑+ 𝑓𝑠( ¤𝑞)+𝑢𝑑
(3.59)

Prior to presenting the stability results, we introduce the following lemmas.
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Lemma 1: Considering a dynamic system

¤𝑥𝑖 = 𝑓𝑖(𝑥1, . . . , 𝑥𝑚 , 𝑡) (3.60)

where 𝑥𝑖 ∈ 𝑅𝑛𝑖 , 𝑓 𝑜𝑟𝑖 + 1, . . . , 𝑚 and 𝑡 ≥ 0. Letting 𝑓𝑖 be locally Lipschitz
with respect to 𝑥𝑖 , . . . , 𝑥𝑚 uniformly in 𝑡 on bounded intervals and contin-
uous in 𝑡 for 𝑡 ≥ 0. Now suppose a scalar function𝑉(𝑥, 𝑡) : 𝑅𝑁 × 𝑅+ → 𝑅+
that is :

𝑉(𝑥, 𝑡) ≥ 𝑐𝑖 ‖𝑥𝑖 ‖2 (3.61)

in which we have 𝑥𝑇 = [𝑥𝑇1 , . . . , 𝑥𝑇𝑚], 𝑁 = 𝑛1 + . . . + 𝑛𝑚 , 𝑐𝑖 > 0 for 𝑖 =

1, . . . , 𝑚, and along the solution trajectories of (3.60)

¤𝑉(𝑥, 𝑡) ≤ −
∑
𝑖∈𝐼1

©­«𝛾𝑖 −
∑
𝑗∈𝐼2𝑖

𝛾𝑖 𝑗 ‖𝑥 𝑗 ‖𝑟𝑖 𝑗ª®¬ ‖𝑥𝑖 ‖2 + 𝜖

where 𝛾𝑖 , 𝛾𝑖 𝑗 , 𝑟𝑖 𝑗 > 0, 𝜖 ≥ 0 and 𝐼2𝑖 ⊆ 𝐼1 ⊆ {1, . . . , 𝑚}.
If ∀𝑖 ∈ 𝐼𝑖 (with reference to (3.61))

𝛾𝑖 >
∑
𝑗∈𝐼2𝑖

𝛾𝑖 𝑗

(
𝑉0
𝑐 𝑗

) 𝑟𝑖 𝑗/2
(3.62)

where 𝑉0 = 𝑉(𝑥1(0), . . . , 𝑥𝑚(0), 0) then

∀𝛽𝑖 ∈ ©­«0, 𝛾𝑖 −
∑
𝑗∈𝐼2𝑖

𝛾𝑖 𝑗

(
𝑉0
𝑐 𝑗

) 𝑟𝑖 𝑗/2ª®¬
The subsequent inequality is valid:

¤𝑉(𝑥, 𝑡) ≤ −
∑
𝑖∈𝐼1

𝛽𝑖 ‖𝑥𝑖 ‖2 + 𝜖 (3.63)

for ‖𝑥‖ > 𝑅 where 𝑅 =
√
𝜖/(𝑚𝑖𝑛𝛽𝑖) The proof is based on Lemma 2.1

from [44]. Definition 1: Uniform Ultimate Boundedness (U.U.B.) [17]:
A solution 𝑥(𝑡) : [𝑡0,∞)𝑛of (3.60) with the initial condition 𝑥(𝑡0) = 𝑥0 is
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considered uniformly ultimately bounded if there exist positive constants
b and c. For every (0, c), there exists a positive constant 𝑏 and 𝑐, and for
every 𝜎 ∈ (0, 𝑐) there is a positive constant 𝑇(𝜎) such that ‖𝑥0‖ < 𝜎 implies
that ‖𝑥(𝑡)‖ ≤ 𝑏 for all 𝑡 ≥ 𝑡0 + 𝑇(𝜎) . The constant 𝑏 is referred to as the
ultimate bound. Uniform ultimate boundedness means that the solution
trajectory of the system (3.60), starting at 𝑥0 at time 𝑡0, will ultimately enter
and remain within the closed ball 𝐵(𝑏). If 𝐵(𝑏) is a small region around
the equilibrium, then U.U.B. represents a practical notion of stability, often
referred to as practical stability. The next lemma provides conditions that
ensure U.U.B, and global exponential convergence (to a closed ball) of the
solution trajectories of (3.60) [5].

Lemma 2: If exists a continuously differentiable scalar function𝑉(𝑥, 𝑡) :
𝑅𝑁 × 𝑅+ → 𝑅+ that has the following properties :

• There are positive constants 𝑐 and 𝑐 such that ∀𝑥 ∈ 𝑅𝑁 and 𝑡 ∈ 𝑅+,

𝑐‖𝑥‖2 ≤ 𝑉(𝑥, 𝑡) ≤ 𝑐‖𝑥‖2

• There are constants 𝜇 > 0 and 𝜖 ≥ 0 such that along the solution
trajectories of (3.60)

¤𝑉(𝑥, 𝑡) ≤ −𝜇𝑉(𝑥, 𝑡) + 𝜖 (3.64)

for all 𝑥 s.t 𝜇𝑉(𝑥, 𝑡) > 𝜖 and 𝑡 ∈ 𝑅+ . Then the solution trajectories of
(3.60) are uniformly ultimately bounded and globally exponentially con-
vergent to the closed ball 𝐵(𝑟), where 𝑟 =

√
𝜖/(𝜇𝑐) . If, in addition,𝜖 = 0,

then the system (3.60) is globally exponentially stable about its origin [5].
Theorem 1: Consider the robotic model described by the dynamics

along with the nonlinear gain 𝑃𝐷+ controller from equation (3.53). As-
sume that the derivative gain matrix 𝐾𝑑(𝑞̃ , ¤̃𝑞) is symmetric and positive
definite for all 𝑞̃ , ¤̃𝑞 ∈ 𝑅𝑛 in the real numbers with 𝑘𝑑1 > 𝛿𝐶 . Additionally,
consider the symmetric proportional gain matrix𝐾𝑝(𝑞̃) with the structure
defined in equation (3.54) and diagonal elements satisfying equation (3.55).
If the symmetric matrices𝐾𝑚𝑝 and 𝐾𝑀𝑝 as defined in equations (3.56) and
(3.57) are positive definite, then the solution 𝑞 of the closed-loop system
described in equation (3.58) will exhibit both uniform ultimate bounded-
ness and exponential convergence towards the closed ball 𝐵(𝑟), as defined
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below.[31] Proof Considering the following scalar function:

𝑉(𝑞̃ , ¤̃𝑞) = 1
2
¤̃𝑞𝑇𝐵(𝑞) ¤̃𝑞 +

∫ 𝑞̃

0
𝑧𝑇𝐾𝑝(𝑧)𝑑𝑧 + 𝛼 𝑞̃𝑇𝐵(𝑞) ¤̃𝑞 (3.65)

We can rewrite the integral term as :

𝑛∑
𝑖=1

(∫ 𝑞̃𝑖

0
𝑧𝑖𝑘𝑝𝑖𝑖(𝑧𝑖)𝑑𝑧𝑖

)
+ 1

2

𝑛∑
𝑖=1

𝑛∑
𝑗=1, 𝑗≠𝑖

𝑘𝑝𝑖𝑗 𝑞̃𝑖 𝑞̃ 𝑗

and 𝛼 in (3.65 is a sufficiently small positive constant :

𝑚𝑖𝑛

{
𝑘𝑝1

𝑚2
,
𝑚1
𝑚2
,

2(𝑘𝑑1 + 𝑘 𝑓 𝑑1 − 𝛿𝐶)
3𝜔𝑘𝐶 + 2𝑚2 + 𝜌𝑘∗

}
> 𝛼 > 0 (3.66)

where 𝑘∗ = 𝑘𝑑2 + 𝑘𝐶 𝑘𝑞𝑑1 + 𝑘 𝑓 𝑑2 + 𝛿𝐶 and 𝜌 is defined as:

𝜌 >
𝑘𝑑2 + 𝑘𝐶 𝑘𝑞𝑑1 + 𝑘 𝑓 𝑑2 + 𝛿𝐶

2𝑘𝑝1
> 0 (3.67)

we also have the constant 𝜔 > 0 whose value will be defined later. The
first term of 𝑉(𝑞̃ , ¤̃𝑞) is a positive definite function with respect to ¤̃𝑞 due to
the positive definiteness of 𝐵(𝑞). To demonstrate that the integral term in
equation (3.65) is also a positive definite function, it can be expressed as
follows:∫ 𝑞̃

0
𝑧𝑇𝐾𝑝(𝑧)𝑑𝑧 =

𝑛∑
𝑖=1

(∫ 𝑞̃𝑖

0
𝑧𝑖𝑘𝑝𝑖𝑖(𝑧𝑖)𝑑𝑧𝑖

)
+ 1

2 𝑞̃
𝑇𝐾𝑚𝑝 𝑞̃ − 1

2

𝑛∑
𝑖=1

𝑘𝑚𝑝𝑖𝑖 𝑞̃
2
𝑖

=
𝑛∑
𝑖=1

(∫ 𝑞̃𝑖

0
𝑧𝑖𝑘𝑝𝑖𝑖(𝑧𝑖)𝑑𝑧𝑖 − 1

2 𝑘
𝑚
𝑝𝑖𝑖 𝑞̃

2
𝑖

)
+ 1

2 𝑞̃
𝑇𝐾𝑚𝑝 𝑞̃

(3.68)

referring to (3.55) we have for 𝑖 = 1, . . . , 𝑛∫ 𝑞̃𝑖

0
𝑧𝑖𝑘𝑝𝑖𝑖(𝑧𝑖)𝑑𝑧𝑖 ≥

∫ 𝑞̃𝑖

0
𝑧𝑖𝑘𝑚𝑝𝑖𝑖𝑑𝑧𝑖 =

1
2 𝑘

𝑚
𝑝𝑖𝑖 𝑞̃

2
𝑖 (3.69)
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by using (3.68) and the first property of the gain matrix:∫ 𝑞̃

0
𝑧𝑇𝐾𝑝(𝑧)𝑑𝑧 ≥ 1

2 𝑞̃
𝑇𝐾𝑚𝑝 𝑞̃ ≥ 1

2 𝑘𝑝1‖ 𝑞̃‖2 (3.70)

so we get the lower-bound of (3.65) as:

𝑉(𝑞̃ , ¤̃𝑞) ≥ 1
2𝑚1‖ ¤̃𝑞‖2 + 1

2 𝑘𝑝1‖ 𝑞̃‖2 + 𝛼 𝑞̃𝑇𝐵(𝑞) ¤̃𝑞

The cross term in (3.65 ) have the upper-bound:

|𝛼 𝑞̃𝑇𝐵(𝑞) ¤̃𝑞 | ≤ 𝛼𝑚2‖ 𝑞̃‖‖ ¤̃𝑞‖ ≤ 1
2𝛼𝑚2(‖ 𝑞̃‖2 + ‖ ¤̃𝑞‖2) (3.71)

so we get that 𝛼 𝑞̃𝑇𝐵(𝑞) ¤̃𝑞 ≥ −1
2𝛼𝑚2(‖ 𝑞̃‖2 + ‖ ¤̃𝑞‖2)

So our 𝑉(𝑞̃ , ¤̃𝑞) can be lower bounded as:

𝑉(𝑞̃ , ¤̃𝑞) ≥ 1
2𝑚1‖ ¤̃𝑞‖2 + 1

2 𝑘𝑝1‖ 𝑞̃‖2 − 1
2𝛼𝑚2(‖ 𝑞̃‖2 + ‖ ¤̃𝑞‖2) ≥ 𝑐1‖ 𝑞̃‖2 + 𝑐2‖ ¤̃𝑞‖2

(3.72)
where

𝑐1 =
1
2(𝑘𝑝1 − 𝛼𝑚2) and 𝑐2 =

1
2(𝑚1 − 𝛼𝑚2) (3.73)

Given that 𝛼 satisfies (3.66), which implies 𝑚𝑖𝑛{𝑐1, 𝑐2} > 0 , we have
ensured that 𝑉(𝑞̃ , ¤̃𝑞) in (3.65) is globally positive definite and radially un-
bounded. Additionally, it is zero at the equilibrium point(𝑞̃ = 0, ¤̃𝑞 = 0).
Therefore, the scalar function 𝑉(𝑞̃ , ¤̃𝑞) in (3.65) serves as a Lyapunov func-
tion candidate.

To demonstrate the decrement property of the scalar function (3.65),
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we can rewrite the integral term as follows:∫ 𝑞̃

0
𝑧𝑇𝐾𝑝(𝑧)𝑑𝑧 =

𝑛∑
𝑖=1

(∫ 𝑞̃𝑖

0
𝑧𝑖𝑘𝑝𝑖𝑖(𝑧𝑖)𝑑𝑧𝑖

)
+ 1

2 𝑞̃
𝑇𝐾𝑀𝑝 𝑞̃ − 1

2

𝑛∑
𝑖=1

𝑘𝑀𝑝𝑖𝑖 𝑞̃
2
𝑖

=
𝑛∑
𝑖=1

(∫ 𝑞̃𝑖

0
𝑧𝑖𝑘𝑝𝑖𝑖(𝑧𝑖)𝑑𝑧𝑖 − 1

2 𝑘
𝑀
𝑝𝑖𝑖 𝑞̃

2
𝑖

)
+ 1

2 𝑞̃
𝑇𝐾𝑀𝑝 𝑞̃

(3.74)

from (3.55)we have for 𝑖 = 1, . . . , 𝑛∫ 𝑞̃𝑖

0
𝑧𝑖𝑘𝑝𝑖𝑖(𝑧𝑖)𝑑𝑧𝑖 ≤

∫ 𝑞̃𝑖

0
𝑧𝑖𝑘𝑀𝑝𝑖𝑖𝑑𝑧𝑖 =

1
2 𝑘

𝑀
𝑝𝑖𝑖 𝑞̃

2
𝑖 (3.75)

Which yields using (3.75) and the first property of the gain matrices to:∫ 𝑞̃

0
𝑧𝑇𝐾𝑝(𝑧)𝑑𝑧 ≤ 1

2 𝑞̃
𝑇𝐾𝑀𝑝 𝑞̃ ≤ 1

2 𝑘𝑝2‖ 𝑞̃‖2 (3.76)

so we can introduce an upper-bound on the Lyaponov candidate as

𝑉(𝑞̃ , ¤̃𝑞) ≤ 1
2𝑚2‖ ¤̃𝑞‖2 + 1

2𝛼𝑚2(‖ 𝑞̃‖2 + ‖ ¤̃𝑞‖2) + 1
2 𝑘𝑝2‖ 𝑞̃‖2 ≤ 𝑐3‖ 𝑞̃‖2 + 𝑐4‖ ¤̃𝑞‖2

(3.77)
in (3.77) we have that

𝑐3 =
1
2(𝛼𝑚2 + 𝑘𝑝2) and 𝑐4 =

1
2(𝛼 + 1)𝑚2 (3.78)

So, the proposed Lyapunov function𝑉(𝑞̃ , ¤̃𝑞) in equation (3.65) is a func-
tion that possesses global positive definiteness, radial unboundedness, and
decreasing properties while satisfying the following inequalities:

𝑐(‖ 𝑞̃‖2 + ‖ ¤̃𝑞‖2) ≤ 𝑉(𝑞̃ , ¤̃𝑞) ≤ 𝑐(‖ 𝑞̃‖2 + ‖ ¤̃𝑞‖2) (3.79)

where 𝑐 = 𝑚𝑖𝑛{𝑐1, 𝑐2} > 0 and 𝑐 = 𝑚𝑎𝑥{𝑐3, 𝑐4} > 0
The time derivative of𝑉(𝑞̃ , ¤̃𝑞) along the solution trajectories of equation
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(3.58) is expressed as:

¤𝑉(𝑞̃ , ¤̃𝑞) = −¤̃𝑞𝑇[𝐾𝑑(𝑞̃ , ¤̃𝑞) + 𝐹𝑑] ¤̃𝑞 + 𝛼 ¤̃𝑞𝑇𝐵(𝑞) ¤̃𝑞
+ 𝛼 𝑞̃𝑇𝐶(𝑞, ¤𝑞)𝑇 ¤̃𝑞 − 𝛼 𝑞̃𝑇𝐾𝑝(𝑞̃)𝑞̃
− 𝛼 𝑞̃𝑇[𝐾𝑑(𝑞̃ , ¤̃𝑞) + 𝐹𝑑] ¤̃𝑞 + ( ¤̃𝑞𝑇 + 𝛼 𝑞̃𝑇)Δ𝑢

(3.80)

In order to introduce an upper bound we start from :

𝛼 𝑞̃𝑇𝐶(𝑞, ¤𝑞)𝑇 ¤̃𝑞 =𝛼 𝑞̃𝑇𝐶(𝑞, ¤𝑞𝑑 − ¤̃𝑞)𝑇 ¤̃𝑞
≤ 𝛼𝑘𝐶 ‖ ¤𝑞𝑑 − ¤̃𝑞‖‖ 𝑞̃‖‖ ¤̃𝑞‖
≤ 𝛼𝑘𝐶 𝑘𝑞𝑑1‖ 𝑞̃‖‖ ¤̃𝑞‖ + 𝛼𝑘𝐶 ‖ 𝑞̃‖‖ ¤̃𝑞‖2

(3.81)

Since 𝐵(𝑞), 𝐾𝑃(𝑞̃) and 𝐾𝑑(𝑞̃ , ¤̃𝑞) are positive definite matrices we can write :

𝛼 ¤̃𝑞𝑇𝐵(𝑞) ¤̃𝑞 ≤ 𝛼𝑚2‖ ¤̃𝑞‖2 (3.82)

−¤̃𝑞𝑇[𝐾𝑑(𝑞̃ , ¤̃𝑞) + 𝐹𝑑] ¤̃𝑞 ≤ −(𝑘𝑑1 + 𝑘 𝑓 𝑑1)‖ ¤̃𝑞‖2 (3.83)

−𝛼 𝑞̃𝑇𝐾𝑝(𝑞̃)𝑞̃ ≤ −𝛼𝑘𝑝1‖ 𝑞̃‖2 (3.84)

| − 𝛼 𝑞̃𝑇[𝐾𝑑(𝑞̃ , ¤̃𝑞) + 𝐹𝑑] ¤̃𝑞𝑑 | ≤ 𝛼(𝑘𝑑2 + 𝑘 𝑓 𝑑2)‖ 𝑞̃‖‖ ¤̃𝑞‖ (3.85)

Considering the bounds provided in equations (3.42) through (3.44) and
(3.47) through (3.49), we can deduce the following:

‖[𝐶(𝑞, ¤𝑞) − 𝐶𝑛(𝑞, ¤𝑞)] ¤𝑞𝑑‖ = ‖[𝐶(𝑞, ¤𝑞𝑑) − 𝐶𝑛(𝑞, ¤𝑞𝑑)] ¤𝑞‖ ≤ 𝛿𝐶 ‖ ¤𝑞𝑑 − ¤̃𝑞‖ (3.86)

‖Δ𝑢‖ ≤𝛿𝑀 𝑘𝑞𝑑2 + 𝛿𝐶(𝑘𝑞𝑑1 + ‖ ¤̃𝑞‖) + 𝛿𝑔

𝑘 𝑓 𝑑2𝑘𝑞𝑑1 + 𝑘 𝑓 𝑠 + 𝑘𝑢𝑑
= 𝜂1 + 𝜂2‖ ¤̃𝑞‖

(3.87)
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where 𝜂1 = 𝛿𝑀 𝑘𝑞𝑑2 + (𝛿𝐶 + 𝑘 𝑓 𝑑2)𝑘𝑞𝑑1 + 𝛿𝑔 + 𝑘 𝑓 𝑠 + 𝑘𝑢𝑑 and 𝜂2 = 𝛿𝐶 and

( ¤̃𝑞𝑇 + 𝛼 𝑞̃𝑇)Δ𝑢 ≤‖ ¤̃𝑞‖‖Δ𝑢‖ + 𝛼‖ 𝑞̃‖‖Δ𝑢‖
≤ 𝛼𝜂1‖ 𝑞̃‖ + 𝜂1‖ ¤̃𝑞‖
+ 𝛼𝜂2‖ 𝑞̃‖‖ ¤̃𝑞‖ + 𝜂2‖ ¤̃𝑞‖2

(3.88)

Following the inequalities (3.81) through (3.85) and (3.88), we can now
express the time derivative of 𝑉(𝑞̃ , ¤̃𝑞) as:

¤𝑉(𝑞̃ , ¤̃𝑞) ≤ − (𝑘𝑑1 + 𝑘 𝑓 𝑑1 − 𝛼𝑚2 − 𝜂2)‖ ¤̃𝑞‖2 − 𝛼𝑘𝑝1‖ 𝑞̃‖2

+ 𝛼(𝑘𝑑2 + 𝑘 𝑓 𝑑2 + 𝑘𝐶 𝑘𝑞𝑑1 + 𝜂2)‖ 𝑞̃‖‖ ¤̃𝑞‖
+ 𝜂1‖ ¤̃𝑞‖ + 𝛼𝜂1‖ 𝑞̃‖ + 𝛼𝑘𝐶 ‖ 𝑞̃‖‖ ¤̃𝑞‖2

(3.89)

if we make 𝑎 = 𝛼𝑚2 + 𝜂2, 𝑏 = 𝑘𝑑2 + 𝑘𝐶 𝑘𝑞𝑑1 + 𝑘 𝑓 𝑑2 + 𝜂2 ,𝑣1 = 𝑘𝑑1 + 𝑘 𝑓 𝑑1 −
𝑎 − 1

2𝛼𝜌𝑏, 𝑣2 = 𝑘𝑝1 − 𝑏
2𝜌 , where 𝜌 is a positive constant that was defined in

(3.67) we can rewrite(3.89) as:

¤𝑉(𝑞̃ , ¤̃𝑞) ≤ − (𝑘𝑑1 + 𝑘 𝑓 𝑑1 − 𝑎)‖ ¤̃𝑞‖2 − 𝛼𝑘𝑝1‖ 𝑞̃‖2

+ 𝛼𝑏‖ 𝑞̃‖‖ ¤̃𝑞‖ + 𝜂1‖ ¤̃𝑞‖ + 𝛼𝜂1‖ 𝑞̃‖ + 𝛼𝑘𝐶 ‖ 𝑞̃‖‖ ¤̃𝑞‖2

≤ −(𝑘𝑑1 + 𝑘 𝑓 𝑑1 − 𝑎)‖ ¤̃𝑞‖2 − 𝛼𝑘𝑝1‖ 𝑞̃‖2 + 𝑎𝑏
2

( ‖ 𝑞̃‖2

𝜌
+ 𝜌‖ ¤̃𝑞‖2

)
+ 𝜂1‖ ¤̃𝑞‖ + 𝛼𝜂1‖ 𝑞̃‖ + 𝛼𝑘𝐶 ‖ 𝑞̃‖‖ ¤̃𝑞‖2

≤ −𝑣1‖ ¤̃𝑞‖2 − 𝛼𝑣2‖ 𝑞̃‖2 + 𝜂1‖ ¤̃𝑞‖ + 𝛼𝜂1‖ 𝑞̃‖ + 𝛼𝑘𝐶 ‖ 𝑞̃‖‖ ¤̃𝑞‖2

Given that the conditions in (3.66) and (3.67) imply that 𝑣1 and 𝑣2 are both
greater than 0, we can establish the following inequalities through the
process of completing the square:

𝜂1‖ ¤̃𝑞‖ ≤
(
𝜂1√
𝑣1

)2
+

(√
𝑣1

2

)2

‖ ¤̃𝑞‖2 (3.90)

𝜂1‖ 𝑞̃‖ ≤
(
𝜂1√
𝑣2

)2
+

(√
𝑣2

2

)2

‖ 𝑞̃‖2 (3.91)
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Now we can write the upper-bound of ¤𝑉(𝑞̃ , ¤̃𝑞) as:

¤𝑉(𝑞̃ , ¤̃𝑞) ≤ − 3
4𝑣1‖ ¤̃𝑞‖2 − 3

4𝛼𝑣2‖ 𝑞̃‖2 + 𝛼𝑘𝐶 ‖ 𝑞̃‖‖ ¤̃𝑞‖2 + 𝜂2
1
𝑣1

+ 𝛼𝜂2
1

𝑣2

= 𝛾1‖ 𝑞̃‖2 − 𝛾2‖ ¤̃𝑞‖2 + 𝛾21‖ 𝑞̃‖‖ ¤̃𝑞‖2 + 𝜖

(3.92)

in which
𝛾1 = 3𝛼𝑣2/4, 𝛾2 = 3𝑣1/4 and 𝛾21 = 𝛼𝑘𝐶 (3.93)

𝜖 =
𝜂2

1
𝑣1

+ 𝛼𝜂2
1

𝑣2
(3.94)

Define w in (3.66) as 𝜔 =
(
𝑉0
𝑐1

)1/2
> 0, where 𝑉0 = 𝑉(𝑞̃ , ¤̃𝑞)��𝑡=0 > 0 for a

positive definite 𝑉(𝑞̃ , ¤̃𝑞), and 𝑐1 > 0 is given by (3.73). Since 𝛼 satisfies
(3.66), we have:

𝛾2 > 𝛾21𝜔 (3.95)

and by using Lemma 1 for 𝛽2 ∈ (0, 𝛾2 − 𝛾21𝜔) with ‖ 𝑞̃‖ >
√
𝜖/𝑚𝑖𝑛{𝛾1, 𝛽2}

the following inequality holds

¤𝑉(𝑞̃ , ¤̃𝑞) ≤ − 𝛾1‖ 𝑞̃‖2 − 𝛽2‖ ¤̃𝑞‖2 + 𝜖

≤ −𝑚𝑖𝑛{𝛾1, 𝛽2}(‖ 𝑞̃‖2 + ‖ ¤̃𝑞‖2) + 𝜖

≤ −𝜇𝑉(𝑞̃ , ¤̃𝑞) + 𝜖

(3.96)

in which we have 𝜇 = 𝑚𝑖𝑛{𝛾1, 𝛽2}/𝑐. By applying Lemma 2, we can estab-
lish that the solution 𝑞 of the closed-loop system (3.58 ) is both uniformly
ultimately bounded and exponentially convergent to the closed ball 𝐵(𝑟),
where the value of 𝑟 is determined as 𝑟 =

√
𝜖/(𝜇𝑐) , and the constants 𝑐

and 𝑐 are provided by (3.79).
Given that the lower bound of 𝛼 is zero, equation (3.95) can be fulfilled

for any initial conditions𝑉0 by selecting a very small 𝛼. As a result, the
convergence domain covers the entire state space, and the solution 𝑞 of
the closed-loop system (3.58) experiences global exponential convergence
towards the closed ball 𝐵(𝑟), albeit without a uniform rate[31].

69



CHAPTER 3. MOTION CONTROL (INVERSE DYNAMICS CONTROL)

3.3.1 simulation

The presented results showcase the convergence behavior and ultimate
upper bounds (U.U.B.) of tracking errors during the utilization of the non-
linear PD+ controller for tracking control in a two-link rigid manipulator.
Furthermore, comparative results are provided, specifically focusing on
tracking error convergence, to assess the performance of the nonlinear
PD+ controller in contrast to the previously explained robust controller.

In the simulation, a planar elbow manipulator is employed. It’s config-
ured with the first revolute joint anchored to the ground and the second
revolute joint connected to link 1. This manipulator bears a payload, specif-
ically a mass of 𝑚1 = 1 kg, positioned at the far end of link 2.

For illustrative purposes, the manipulator’s dynamics are considered
without accounting for friction and disturbance terms. The primary source
of uncertainty is attributed to variations in the payload, which can range
from 0 to 1 kg.

The prescribed joint trajectories are defined as follows:
For the first joint: 𝑞𝑑1 = 0.25𝜋 + 0.5(1 − cos(0.5𝜋𝑡))
For the second joint: 𝑞𝑑2 = 0.5𝜋 + 0.25(1 − cos(𝜋𝑡))
To track these trajectories,the non linear PD+ controller utilizes the

feedforward component as described in equation (3.46). However, it’s im-
portant to note that the nominal dynamic terms, including 𝐵𝑛(𝑞), 𝐶𝑛(𝑞, ¤𝑞),
and 𝑔𝑛(𝑞), were calculated based on a nominal payload of 𝑚𝑙 = 0.5 kg.
This nominal payload value differs from the actual payload of 1 kg that
was used for this specific simulation, and the feedback component of this
controller :

𝑢 𝑓 𝑏 = 𝐾𝑝(𝑞̃)𝑞̃ + 𝐾𝑑(𝑞̃ , ¤̃𝑞) ¤̃𝑞 (3.97)

As previously mentioned, the key requirement for guaranteeing the
stability of the controller discussed above is the selection of positive definite
proportional and derivative gain matrices. Specifically, these matrices
should be chosen in a way that 𝑘𝑑1 > 𝛿𝑐 . With the numerical values
provided for the manipulator parameters, The positive constant 𝑘𝐶 , which
is calculated based on the difference between the Coriolis and centrifugal
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terms of the actual system 𝐶(𝑞, 𝑞𝑑) and the nominal system𝐶𝑛(𝑞, 𝑞𝑑), is
determined to be 𝑘𝐶 = 2.

Hence, we derive the bound 𝛿𝐶 = 2.2 .The performance of the feed-
back controllers depends on the specific nonlinear gain functions and the
selected parameter values within the gain matrices.

We utilized the following diagonal gain matrices for the PD+ non linear
controller :

𝐾𝑝(𝑞̃) =
[

194.2
0.2+| 𝑞̃1 | 0

0 74.3
0.2+| 𝑞̃2 |

]
(3.98)

𝐾𝑑(𝑞̃ , ¤̃𝑞) =


74.4
(0.5+| 𝑞̃1 |)(1+0.07| ¤̃𝑞1 |) 0

0 7.6
(0.1+| 𝑞̃2 |)(1+0.07| ¤̃𝑞2 |)

 (3.99)

while for the robust controller we set the values :

𝐾𝑝 =

[
49 0
0 68

]
𝐾𝑑 =

[
15 0
0 28

]

𝑃 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and we get :

𝑄 =


1.8197 0 0.0102 0

0 1.4380 0 0.0074
0.0102 0 0.0340 0

0 0.0074 0 0.0181


with

𝐾 = 1000 and 𝜖 = 0.001
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Figure 3.18: (Error convergence )

Figure 3.19: (Kp,Kd of the PD+ controller )
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Figure 3.20: (Controllers outputs )
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As evident from figure (3.18), it’s apparent that the PD+ controller
exhibits a notably faster convergence rate. This characteristic is a result of
its primary objective, which is to rapidly escalate the gain values to very
high levels, as illustrated in figure (3.19).

Conversely, our robust controller operates effectively with substantially
lower gain values, resulting in a smoother controller output, as depicted
in figure (3.20),keeping in mind that faster convergnce can be achieved by
higher values for 𝐾𝑝 , 𝐾𝑑 , 𝑄, and 𝐾.

It’s important to note that achieving faster convergence with the PD+
controller necessitates prior knowledge regarding the extent of uncertain-
ties, which is vital for computing its gain matrices. In contrast, our robust
controller demands no prior knowledge, as it dynamically computes the
required value of 𝜌 online, as demonstrated in figure (3.21).
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Chapter 4

Extending Controller Efficacy:
Complex Robot Validation

In the previous chapters, our efforts were primarily focused on the
development, analysis, and simulation of our control strategy. We estab-
lished a solid groundwork using a simple Two-link Planar Arm as our
testing ground.

However, as we progress into this chapter, we embark on a transforma-
tive journey to assess the real-world applicability of our controller on more
intricate robotic platforms. Introducing SCARA robot into our research
endeavors represents a substantial leap in complexity and challenges.

This chapter signifies a pivotal phase in our research, where we shift
our emphasis towards the practical validation of our control strategies.
Our objective is to evaluate the true effectiveness and adaptability of our
control methodologies in real-world scenarios.

The SCARA robot, with it’s multiple degrees of freedom, intricate
dynamics, and diverse operational demands, present a profound testing
ground. Our assessment on this platform goes beyond a mere formality; it
is a crucial step towards real-world implementation.

Through a meticulously planned series of experiments and compre-
hensive analyses, our aim is to showcase the capability of our controller
in navigating the intricacies of this multi-dimensional robot. This journey
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begins with a detailed introduction to the robot, highlighting it’s unique
attributes and functionalities.

We delve into the adaptation and implementation of our control algo-
rithms, tailoring them to meet the specific requirements and dynamics of
this complex robotic system. Our evaluation encompasses various facets,
including trajectory tracking precision, system stability, and adaptability
to dynamic uncertainties.

By validating our control strategy across such diverse platforms, we
take a significant stride towards its practical deployment in complex real-
world scenarios. This chapter serves as the bridge between theory and
application, setting the stage for the eventual integration of our control
algorithms into a wide array of intricate robotic systems.

4.1 SCARA Robot
At this juncture in our research journey, it becomes highly pertinent

to put our controller to the test on a robotic platform that closely mirrors
real-world applications. To accomplish this goal, we set our sights on the
SCARA robot, a widely employed and versatile robot in various industrial
domains.

What sets the SCARA robot apart from our previous testing platform
is its unique configuration. Beyond the complexities of operating in a
three-dimensional space, the SCARA robot introduces an additional layer
of intricacy with the inclusion of a prismatic joint.

The addition of a prismatic joint significantly expands the robot’s op-
erational capabilities, enabling it to perform tasks and maneuvers that are
not achievable by traditional rotational joints alone.

By applying our controller to the SCARA robot, we aim to evaluate
its adaptability to a wider spectrum of robotic systems and operational
scenarios. This step represents a crucial move towards ensuring that our
control strategy is not only effective in theory but also capable of thriving
in the practical, real-life environments where robots like the SCARA are
extensively utilized.
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The SCARA, which stands for "Selective Compliance Assembly Robot
Arm", see Figure(4.1) was firstly designed in 1979 by Hiroshi Makino,
a professor of Yamanashi University (Japan)[27][24]. Since that time, it
became one of the most used robotic arms in the world. It has gained
widespread acclaim and utilization owing to its multitude of advantageous
features. Its success can be attributed to several key factors, which include
its remarkable precision, compact dimensions, straightforward structure,
minimal backlash between components, and ease of assembly.

Figure 4.1: Example of SCARA Robot

This robotic arm’s versatility shines in the realm of factory assembly
lines, primarily due to its exceptional capability to execute movements
not only along a horizontal plane but also seamlessly transitioning to the
vertical dimension. This distinctive attribute empowers the SCARA robot
to perform a wide range of tasks within the workspace.

Typical industrial applications where the SCARA robot excels include,
but are not limited to, pick and place operations, palletizing tasks, intricate
assembling processes, and efficient packaging activities. Its adaptability
and efficiency make it a valuable asset in various manufacturing scenarios,
enhancing productivity and precision[9].
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While various companies produce SCARA robots with unique features
and capabilities tailored to specific applications, the fundamental struc-
tural design remains relatively consistent across the board.

The core structure typically consists of two primary links and a total of
four axes, providing the robot with four degrees of freedom. Among these
axes, two are parallel rotary joints that enable rotational movement in the
horizontal plane. Additionally, a linear vertical joint provides freedom of
movement along the X-Y-Z coordinate space. The fourth degree of freedom
is facilitated by the rotational motion of the end effector along the vertical
axis as seen in the Figure(4.2)

This standardized configuration offers a versatile platform that can be
adapted and customized to meet the diverse needs of different industries
and applications, making SCARA robots a valuable asset in the world of
automation and robotics.[10].

Figure 4.2: Schematic Diagram of the SCARA Robot[28]
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4.2 Simulation
We have conducted experiments to validate the performance of our

controller on a SCARA Manipulator. These experiments specifically aim
to assess the controller’s robustness in the face of dynamic model uncertain-
ties. Additionally, we have investigated error convergence using a robust
control approach, where the online computation of the 𝜌 value eliminates
the need for any prior knowledge of uncertainty characteristics.

In the context of our experimental setup, we harnessed the capabilities
of the MATLAB Simulink SimScape[26] library to create two distinct Rigid
Body Trees. These trees played a pivotal role in our investigation, each
serving a unique purpose.

The first Rigid Body Tree was meticulously configured with what we
consider as real parameters in our experiment. Subsequently, we em-
ployed the powerful Robotics Toolbox library within Simulink to compute
essential matrices, namely 𝐵, 𝐶, and 𝐺, which govern the dynamics of the
robotic system.These matrices were calculated using the Robotics Toolbox
library and subsequently utilized as inputs for the Robot function in our
simulation.

On the other hand, the second Rigid Body Tree took on a different role
in our experiment. It was intentionally endowed with intentionally inac-
curate parameters, intentionally introduced to emulate uncertainties in the
system’s dynamic model.This approach allowed us to simulate a scenario
where the system’s true characteristics were not perfectly known,Just as in
the case of the first tree, we leveraged the Robotics Toolbox library within
Simulink to compute alternative matrices, denoted as 𝐵̂, 𝐶̂, and 𝐺̂. These
matrices were crafted using the intentionally erroneous parameters, mir-
roring the uncertainties we aimed to address in our study. Notably, the
computed 𝐵̂, 𝐶̂, and 𝑔̂ matrices derived from the second Rigid Body Tree
served a distinct purpose. They were utilized as inputs to our robust con-
trol strategy (the controller function in our simulation). The essence of this
approach lay in its ability to adapt to the dynamic uncertainties present
in the system, making real-time adjustments to ensure precise trajectory
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tracking and system stability. By incorporating these matrices into the
controller within Simulink, we could effectively test the performance and
robustness of our control strategy under conditions where prior knowledge
of uncertainties was not available.

In the process of constructing our first rigid body tree, which represents
the robot with real parameters, in Simscape, the following parameters were
configured:

• Base radius: 0.04 meters
• Length: 0.05 meters

• Links lengths:

– 𝑎1: 0.1 meters
– 𝑎2: 0.2 meters
– 𝑎3: 0.15 meters
– 𝑎4: 0.01 meters

For the second rigid body tree, which models the robot with incorrect
parameters to simulate uncertainties, the parameters were set as follows:

• Base radius: 0.04 meters
• Length: 0.03 meters

• Links lengths:

– 𝑎̂1: 0.088 meters
– 𝑎̂2: 0.3 meters
– 𝑎̂3: 0.2 meters
– 𝑎̂4: 0.02 meters

By setting the desired trajectory as:

𝑞𝑑1 = cos(𝑡)
𝑞𝑑2 = cos(2𝑡)

𝑞𝑑3 = cos
(
5𝑡
30

)
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𝑞𝑑4 = cos(3𝑡)
and by setting:

𝐾𝑝 =


49 0 0 0
0 68 0 0
0 0 49 0
0 0 0 68


𝐾𝑑 =


20 0 0 0
0 30 0 0
0 0 10 0
0 0 0 10


𝑃 = Identity matrix of size(8)
𝜖 = 0.07

𝐾 = 1000

4.2.1 Results and comments

The simulation results for the SCARA robot reaffirm the findings pre-
sented in the earlier chapters, where we extensively discussed the dynamics
and control strategies for the 2R robot,

In Figure (4.3), we observe the convergence of the error towards the
subspace defined by 𝑧 = 𝐷𝑇𝑄𝜉 = 0. The rate of this convergence is
influenced by various factors such as the matrices𝑄, 𝐾𝑃 , 𝐾𝐷 , and a constant
𝐾 which controls the growth rate of the variable 𝜌 over time. Figure (4.4)
provides insights into the behavior of the variable 𝜌.

This convergence of the error towards zero is primarily guided by the
control input 𝜔, which, ideally switches at an infinite frequency, a phe-
nomenon known as chattering, as depicted in Figure (4.5).

By employing a robust control law, as described in Equation (3.41),
we can observe the corresponding control input in Figure (4.6). Here, the
parameter 𝜖 plays a crucial role, representing a trade-off between achieving
a smooth controller output and ensuring that the error remains bounded.
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The thickness of the boundary layer within which the error fluctuates
depends on the value of 𝜖, as illustrated in Figure (4.7).
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Figure 4.3: (Error convergence with chattering )
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Figure 4.5: (Controller output with chattering )
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Figure 4.6: (Controller output without chattering )
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Figure 4.7: (Error convergence without chattering )
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Chapter 5

Conclusion

The control of rigid manipulators with tracking objectives has seen
significant advancements through the implementation of robust controllers
featuring real-time computation for the robustness term. These controllers
also incorporate estimates of dynamic model terms, accounting for both
the challenges posed by imperfect model compensation and intentional
simplifications made during inverse dynamics computation. As a result
of these innovative approaches, it has been demonstrated that all resulting
trajectories tend to converge effectively within the desired subspace.

To ensure stability in this context, a novel method has been introduced
to calculate the value of the term "" dynamically. This computation occurs
in real time, primarily by monitoring the derivative of the Lyapunov func-
tion. The primary objective is to adjust the value of "" to ensure that the
derivative of the Lyapunov function remains non-positive, thereby guar-
anteeing stability.

One key component in this control strategy is the term 𝜔 defined as
𝜔 = 𝜌

‖𝑧‖ 𝑧 This term plays a crucial role in countering uncertainties in 𝐵̃ and
𝑛̃ when computing the nonlinear terms linked to the manipulator’s state.
Notably, the magnitude of 𝜌 increases in response to higher uncertainty
levels, ensuring robustness in the face of dynamic variations.

An additional important aspect of this control approach is the elimi-
nation of undesired high-frequency components, often referred to as chat-
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tering, which can plague control systems. To address this issue, a robust
control law has been adopted, emphasizing that while it may not guarantee
error convergence to zero, it does maintain the errors within a specified
norm. Consequently, this law results in a control input characterized by a
limited magnitude.

What distinguishes this control strategy is its ability to operate at an infi-
nite switching frequency, a feature that compels the error system dynamics
to remain confined to the sliding subspace. This control law establishes a
hyperplane that no longer attracts the error, allowing it to fluctuate within
a boundary layer whose thickness is contingent on the parameter 𝜖.

Simulation results have been employed to provide an in-depth illustra-
tion of the stability and robustness analysis inherent in this control scheme.
These results serve to underscore the promising potential for enhanced
controller performance in practical applications.
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