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Introduction

The present work lies within the field of biophysics, or, more gener-
ally, statistical physics of complex systems. Its final aim is to improve,
using methods and approaches proper of this field, current knowledge
about influenza virus evolution, focusing on a key-protein of the virus,
hemagglutinin protein (HA), its major surface antigen. Starting from
the selection of an appropriate ensemble of HA sequences retrieved from
the international influenza database at NCBI, it presents and shows
the application of different information theory techniques and statistical
mechanics methods, in order to:

1. characterize the information content of the data sample, providing
evidences that the latter is well suited to be subject to inferential
procedures;

2. extract, using these procedures, information about the existence
of substructures of co-evolving sites within the protein.

As will be discussed in the last section, methods and algorithms
here introduced and applied in order to reach these results, can be in
fact generalized to other fields and problems, different from the one here
presented.

Let us outline the following chapters and their content.
First chapter. We give a brief overview on influenza A virus bi-

ology and ecology: we describe the virion structure, its fundamental
proteins, their roles and the replication cycle of the virus; we discuss
its presence in nature, the variety of existing subtypes and the complex
phylogenetic relations between them, to end up with a review of the
current knowledge about evolutionary behavior of influenza A hemag-
glutinin protein.

Second chapter. We present the data sample of HA protein se-
quences upon which are based all the subsequent analysis, we explain
how and where this has been retrieved, under which choices, and what
are the first standard procedures one has to apply to a sample of protein
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sequences before any further step.
Third chapter. We explain the message-passing clustering algo-

rithm used to cluster our sequences sample by similarity, the information
theory framework within which the clustering outcome can be inter-
preted as an indicator of the information content of the sample and the
positive conclusions one can draw from this analysis about how the data
chosen for the present work (the HA sequences) are able to represent
faithfully the actual system (the HA protein).

Fourth chapter. We present, compare and apply two different
methods, called Direct coupling analysis and Statistical couplings analy-
sis, both able, at least theoretically, to infer interactions between sites of
a protein starting from empirical correlations computed on a sample of
its sequences; we discuss the failure of the former method and we show
the preliminary results obtained with the latter, i.e., the identification of
co-evolving ensembles of sites (sectors) within the HA protein sequence.



Chapter 1

Influenza A virus: biology
and ecology

In this first chapter, assuming the reader to be almost completely
unaware about it, we briefly introduce the influenza A virus biology and
ecology. However, the essential information needed to fully understand
the biological subject of the present work and hence the following chap-
ters are mainly the functional role of the Hemagglutinin (HA) protein,
the major surface antigen of the influenza virus virion (explained in sec-
tion 1.2.1), the existence in nature of many influenza A virus subtypes,
indexed using their antigenic proteins HA and NA (explained in the
same section) and the discussion on influenza A virus evolution (section
1.4).

1.1 A global public health challenge

As every one knows by his own experience, seasonal influenza is an
acute viral infection. It is caused by a family of RNA viruses called
Orthomyxoviruses1.

There are three types of seasonal influenza, caused by three of the
six Orthomyxoviruses: A, B and C, further subdivided into subtypes
according to different kinds and combinations of virus surface proteins.
Type C of influenza cases occur much less frequently than A and B (for
this reason only the latter are included in seasonal influenza vaccines);
the same is true for the B type with respect to the A one, the most
common and infectious. Since in our study not only we chose to work
only on type A of influenza, but also on a particular subtype of it, the

1From orthos, Greek for “straight”, and myxa, Greek for “mucus”.
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H3N2, which is the most widespread influenza virus currently circulat-
ing among humans, in the following we will talk strictly about A type
of influenza virus.

Seasonal influenza is characterized by high fever, cough, headache,
muscle and joint pain, sore throat and runny nose. Although most peo-
ple recover from these symptoms within few days without any kind of
medical attention, for people at high risk influenza can cause severe ill-
ness or death. According to WHO [43] these people are children younger
than two years old, adults of age 65 or older, and people of any age with
frail medical conditions, e.g. chronic heart, lung, kidney, liver, blood
and metabolic diseases (such as diabetes) or weakened immune systems.

Worldwide influenza A annual epidemics results in about three to
five million cases of severe illness and about 250000 to half a million
deaths per year, making it one of the major infectious diseases in hu-
mans [43]. Due to its impact on health, influenza is today a uniquely
well-documented system of molecular evolution, even if not since a long
time (see 2.1). Its entire viral gene sequence, subdivided in eight seg-
ments (each one of them encoding for specific proteins, as we will see in
the next section), is now available for several thousand strains and can
be freely downloaded from the NCBI database [42], [41].

Vaccination is the most effective way to prevent influenza disease or
the severe outcomes from the illness, being able to avoid, among healthy
adults, from 70% to 90% of the cases and to reduce, among elderly pop-
ulation, severe illnesses and complications by up to 60% and deaths by
80% [43]. Vaccination not only is strictly recommended for high risk
individuals, but also for people who live with or take care of them. Ob-
viously, the success of the vaccine in preventing diseases is deeply related
with how the vaccine is well-matched with the influenza virus strain cir-
culating among humans in that particular year.

In fact, seasonal influenza virus undergoes rapid evolution in order
to escape human immune response. Being able to predict the follow-
ing strain is the hard challenge scientists all over the world are facing
every year. The WHO Global Influenza Surveillance Network (GISN),
a partnership of National Influenza Center around the world, monitors
the influenza viruses circulating in humans. Current strategies consist,
roughly speaking, in the observation of the viral strain circulating in the
south hemisphere during the winter season that precede the one in the
north hemisphere, and vice versa.

However, the international database now available [41] gives us new
power of insight in the genetic history of influenza virus. It contains an
impressive amount of data that could be used to improve our ability to



1.2 Biology of influenza A virus 9

foresee influenza virus evolution. Being able to extract useful informa-
tion from it, is the aim of this work.

1.2 Biology of influenza A virus

In this section we present influenza virus structure and molecular
biology, and we explain its replication cycle. Since this is simply a
summary of the current knowledge of molecular biology of influenza A
virus, detailed references are not given individually. The summary is
mainly based on Webster and Lamb textbooks and fundamental review
articles [31], [32], [34] and [33]; for replication cycle, the short but clear
review by Samji [35] has been very useful.

1.2.1 Components of the virion

Influenza A viruses are enveloped single-stranded RNA viruses with
a pleomorphic2 appearance (that after isolation may be spherical) and
an average diameter of 120 nm. The virion consist of a host-derived lipid
bilayer envelope — in which are embedded the glycoproteins HA and
NA, and the matrix protein M2 — , an inner shell of matrix protein M1,
and, at the center of the virion, the nucleocapsids of the viral genome3.

Figure 1.1: 3D representation of influenza A virus virion [38].

2Pleomorphism, in microbiology, is the ability of some bacteria or virus to alter
their shape or size in response to environmental conditions.

3HA, NA, M2 and M1 proteins, together with the other six influenza A virus
proteins (produced during virus replication cycle but not present in the full-formed
virion), are encoded in the viral RNA and described in detail in the next pages.
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The genome of influenza A virus consists of eight separate segments
of RNA with negative polarity (i.e. complementary to mRNA sense). To
be infectious, a virus must contains each of these segments, that codes
the viral proteins:

1. polymerase B2 protein (PB2), segment 1;

2. polymerase B1 protein (PB1), segment 2;

3. polymerase A protein (PA), segment 3;

4. hemagglutinin (HA), segment 4;

5. nucleoprotein (NP), segment 5;

6. neuraminidase (NA), segment 6;

7. matrix proteins (M1 and M2), segment 7;

8. non-structural proteins (NS1 and NS2), segment 8.

Let us give a brief overview on these proteins and their structural
functions.

Polymerase proteins

Proteins PB2, PB1 and PA, form the active RNA-RNA polymerase,
which is responsible for replication and transcription of the genome.
In particular: PB2 is known to work during initiation of viral mRNA
transcription as the protein which recognizes and binds structures of
host cell mRNAs to use them as viral mRNA transcription primers4;
PB1 is believed to be responsible for elongation of viral mRNA; while
PA function is less clear, but there are evidences suggesting a role as
protein kinase, i.e., a protein that modifies other proteins by chemically
adding phosphate groups to them, or as a helix-unwinding protein. All
these proteins can be found in the nucleus of the infected cell.

Hemagglutinin

The HA protein is an integral membrane protein and the major sur-
face antigen of the influenza virus virion. It spans the lipid membrane
so that the major part, which contains at least 5 antigenic domains, is
presented at the outer surface. It is responsible for binding the virion

4RNA and DNA polymerases can only add new nucleotides to an existing strand
of nucleic acid, called primer.
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to host cell receptors and for fusion between the virion envelope and the
host cell membrane, followed by penetration of the interior of the virus
particle into the host cell. Since it is further split into two subunits dur-
ing virus replication cycle, HA protein is usually divided in two different
domain: HA1 and HA2. The antigenic sites are placed on the head of
the molecule (HA1 domain), while the feet are embedded in the lipid
layer (HA2 domain). The body of the HA molecule contains the stalk
region and the fusiogenic domain (consisting of both HA1 and HA2 do-
main sections), which is the one needed for membrane fusion.

So far 16 subtypes of HA protein (H1 to H16) have been found in
nature, which differ by at least 30% in the amino acids sequence of HA1
domain. These subtypes are used to classify, together with NA subtypes
(see in the following), subtypes of influenza A virus, as, for example, the
one subject of our study: H3N2.

Nucleoprotein

NP plays a central role for virus infectivity, because it binds to and
encapsidates viral RNA, forming the so-called viral nucleocapsids. NP
is believed to be involved also in the switching of viral RNA polymerase
activity from mRNA synthesis to cRNA synthesis. NP is abundantly
synthesized in infected cells and is the second most abundant protein in
the influenza virus virion.

Neuraminidase

Like HA, neuraminidase NA is a glycoprotein, which is also found
as projections of tetrameric structure on the surface of the virus. It
works as an enzyme, cleaving sialic acid from the HA molecule, from
other NA molecules and from glycoproteins and glycolipids on the cell
surface. Thus, it is fundamental to free virus particles from host cell
receptors, to permit progeny virions to escape from the cell in which
they have been produced, facilitating virus spread.

NA is the second major surface antigen of the virion, and for this
reason, as HA protein, is highly mutable with variant selection partly
in response to host immune pressure. Nine subtypes of NA (N1 to N9)
have been identified in nature; as already said, based on the antigenicity
of NA and HA glycoproteins, influenza A viruses are further subdivided
into sixteen H (from H1 to H16) and nine N (N1 to N9) subtypes.
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Matrix proteins

M1 protein is the most abundant protein in the influenza virus virion
(and, in the infected cell, is present in both cytoplasm and nucleus). The
protein forms a shell surrounding the virion nucleocapsids, underneath
the virion envelope. It has no known enzymatic activity.

M2 protein, instead, is believed to act as a ion channel to control the
pH of the particle, especially during HA synthesis and virus uncoating
(the process that releases viral genome in the infected cell).

Non-structural proteins

The NS1 and NS2 proteins, particularly NS1, are abundant in the
infected cell (nucleus and cytoplasm) but are not incorporated into
progeny virions. These proteins appear to have a regulatory function
to promote the synthesis of viral components in the infected cell. This
function, however, has not been fully defined.

1.2.2 Replication cycle

Influenza virus has evolved a number of mechanisms that enable it to
invade host cells and subvert the host cell machinery for its own purpose,
that is the production of more virus. The ensemble of these mechanisms
constitutes the virus replication cycle, a complex process that can be
divided into three main stages:

1. entry of the virus into the host cell;

2. transcription and replication of the viral genome;

3. formation of progeny viral particles (and desertion of the host cell).

Entry of the virus

The replication process starts when HA binds to an host cell via in-
teraction between the receptor-binding site of HA and the terminal sialic
acid of the cell surface receptor glycoprotein or glycolipid. Since sialic
acid of the needed type (with carbohydrates linkage) are present on sev-
eral cells of the organism, multiple cell types may be infected. Following
binding, the attached virion is endocytosed5 by the cell. The low pH
of the endocytotic vesicle start a conformational change in HA which

5Endocytosis is an energy-using process by which cells absorb molecules and par-
ticles from outside the vesicular membrane.
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facilitate insertion of the hydrophobic free amino terminus of HA2 into
the vesicular membrane, initiating fusion of the viral and vesicular mem-
branes. The acidic environment of the endosome is not only important
for inducing the conformation in HA and, thus, fusion of the viral and
endosomal membranes, but also opens up the M2 ion channel. Opening
the M2 ion channels acidifies the viral core. This acidic environment in
the virion releases the nucleocapsids from M1 such that they are free
to enter the host cell cytoplasm. Uncoating of the virus is completed
within 20-30 minutes after virus attachment.

Figure 1.2: Schematic representation of influenza A virus replication
cycle. Picture taken from [38].

Transcription and replication of viral RNA

The nucleocapsids of the parent virus migrate into the host cell nu-
cleus, where polymerase complexes cleaves and elongates viral RNA,
and starts primary transcription of mRNA (during the first stage the
production of viral RNA is limited by the NP in favor of viral mRNA;
translation of host mRNAs is blocked). mRNA is then transported to
the cytoplasm, where viral proteins are synthesized at the ribosome. In
the early stages of infection predominantly synthesized viral proteins are
NP and NS1; later the principal translation products are M1, HA, and
NA proteins. Newly synthesized NP and NS1 migrate to the nucleus,
where the novel viral RNA is encapsidated by NP protein and function
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as templates for secondary transcription of viral mRNAs, while HA, NA
and M2 proteins are transported to the cell surface, where they integrate
into the cell membrane.

Formation of progeny viral particles

Once the viral RNA has been replicated using the host cell replication
machinery, the virus is ready to form progeny viral particles and leave
the cell (and go on to infect neighboring cells). Since influenza is an
enveloped virus, it uses the host cell plasma membrane to form the viral
particles. Viral proteins normally found within the viral lipid bilayer,
like HA, NA, and M2, must reach high enough concentration in the host
cell plasma membrane. When the required concentration is reached, a
viral core of nucleocapsids encased in a shell of M1 proteins aggregate
and condense to produce the viral particle. The particle buds outward
through the cell membrane, enclosing itself within a bubble of membrane
as its own envelope.

The time from entry to production of new viruses is on average six
hours.

1.3 Ecology of influenza A virus

1.3.1 Influenza A viruses in nature

Influenza A viruses infect a large variety of animals — including
humans, pigs, horses, sea mammals and birds — divided, as shown in
figure 1.3, into five different host groups, based on phylogenetic analysis
of virus proteins (in particular the NP protein) from a large sample of
influenza viruses.

The occurrence of interspecies transmission between these hosts
group strongly depends on the species involved. Understanding it is
of primarily importance, because is strictly related to pandemic disease
outbreaks in humans. Although has been demonstrated only between
pigs and humans, there is extensive evidence for transmission between
wild ducks and other species [31]. For these reasons and because here we
only want to give the reader a general idea of the complex landscape of
influenza A virus hosts and ecology, we will talk mainly about influenza
A virus in wild ducks (aquatic birds) and pigs, that are, from a human
point of view, the most interesting and dangerous hosts in nature.
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Figure 1.3: Wild aquatic birds are currently considered the primordial
reservoir of all influenza viruses (the animals in picture are grouped in
5 hosts family by phylogenetic analysis of NP protein). Picture is taken
from [31].

Influenza viruses in birds

Phylogenetic studies have shown, in the last twenty years, that wild
aquatic birds may represent a primordial reservoir for all influenza viruses
circulating in avian and mammalian species [31]. In fact all of the differ-
ent subtypes of influenza A virus (from H1 to H16 and from N1 to N9)
are perpetuated in aquatic birds [36]. This is a consequence of the fact
that infection caused by most strains of influenza virus are completely
asymptomatic in ducks and in many other avian species.

The avirulent nature of influenza infection in these animals may be
a result of an adaptation process occurred over many centuries. If this
is true, wild birds not only occupy a unique and very important position
in the history of influenza viruses, but they also constitute the principal
reservoir that ensures the perpetuation of the virus and a “laboratory”
for its evolution.

Water plays a fundamental role in the spread of influenza virus
through aquatic wild birds. In these animals, the virus usually repli-
cates within the cells of the intestinal tract and it is expelled in high
concentration in the feces. As a consequence, influenza virus can be
easily isolated in lakes water, from where it is able to infect other birds.
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This suggests that the water supply of aquatic wild birds represents the
most efficient way to transmit influenza viruses within these species (for
example, about 20%-30% of juvenile birds shows influenza virus infec-
tion when birds congregate in Canadian lakes before migration every
year [36]). Direct transmission by feces also provide a way for ducks, as
they migrate through an area, to spread the influenza viruses to other
domestic and feral birds.

Recent phylogenetic analysis indicate also that avian influenza virus
strains predominant in Eurasia and Australia could be distinguished ge-
netically from those in North America, and this is presumably due to
the confinement of birds to distinct flyways in each hemisphere. As ex-
pected, the evolution of the virus can be influenced by the interposition
of physical barriers able to avoid intermixing between hosts.

Influenza virus have also been isolated sporadically from shorebirds
— including gulls, terns, shearwaters, guillemots, sandpipers — and
from domestic poultry, like chickens and turkeys. The predominant sub-
types of influenza circulating in these birds are different from those of
wild ducks. However, all avian viruses appear to originate from aquatic
birds, because they have no other known reservoir. The fact that also
all of the current mammalian influenza A virus strains appear to be de-
rived from aquatic birds, strongly suggests that these animals constitute
an influenza virus gene pool of worldwide extent [31], available for the
future generation of influenza viruses in mammalian species.

Influenza viruses in pigs

There are only two subtypes of influenza viruses isolated from pigs:
classic swine and avian-like H1N1, and human-like and avian-like H3N2
viruses.

The first evidence of swine influenza was observed in 1918, during
the H1N1 influenza pandemic also known as Spanish flu6. In only two
years the virus infected more than 500 million people around the world
and killed from 50 to 100 millions of them, i.e. three to five percent of
the world population at that time [40].

The origin of the the pandemic virus strain, even today, is not
completely understood. The leading theory is that the virus strain orig-
inated at Fort Riley, in Kansas, through genetic drift and antigenic shift
in poultry and swine. However, a recent reconstruction based on ini-

6The nickname is due to the neutrality of Spain in the first world war: it was the
only country in which scientific publications about the mortality and illness were not
silenced by wartime censors in order to maintain high morale in soldiers.
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tial data suggests that the virus jumped directly from birds to humans,
without traveling through swine, that caught the disease from humans.

Another pandemic of H1N1 influenza virus (although in a different
strain version, consequence of a reassortment of bird, swine and human
previous strains) happened in 2009, but it was not even comparable with
the Spanish flu for incidence of the infections, virulence and mortality
[43].

In pigs, in which influenza viruses H1N1 are primarily enzootic and
H3N2 are either enzootic or periodically introduced from human, reas-
sortants possessing the H1N2 virus have been also detected in Japan,
proving that genetic reassortment can occur between influenza A viruses
in pigs. Serological studies on slaughterhouse workers also demonstrates
that swine influenza viruses can be transmitted to humans with high
frequency (20% of workers had antibodies to swine influenza viruses
[31]). As already said, this is the only interspecies transmission ever
proved, although there are many factors suggesting other interspecies
transmissions to be happened.

Influenza viruses in horses and other species

The first isolation of influenza virus in horses was made in 1956.
Since then, two different subtypes of influenza virus has been detected
in horses: H3N8 and H7N7.

Phylogenetic studies indicate that the common equine H3 HA gene
(part of the H3N8 virus) was, once again, introduced into horses from
birds long ago [31], [39]. These studies, on the other hand, show that,
compared to frequent interspecies transmission involving pigs, exchange
of influenza virus genes between horses and other species is very limited.
Taking into account that the H7N7 virus is now thought to be extinct
[37], horses may be an isolated and so a dead-end reservoir for influenza
A viruses.

Influenza viruses isolated in seals (H7N7 and H4N5), whales (H13N2,
H13N9 and H1N3) and mink (H10N4) were all recognized to be of
avian origin, as shown by genetic analysis, as competitive RNA-RNA
hybridization [31]. In particular the H7N7 virus in seals provide one
of the strongest evidences that a strain deriving all of its genes from
an avian influenza virus can produce severe disease in mammalians, en-
forcing the hypothesis that at least some human influenza viruses could
be derived directly from avian ones and demonstrating that interspecies
transmission is possible and occurs mainly from birds to other species.
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1.3.2 Why these hosts and these viruses?

As just seen, influenza viruses in nature exhibit some sort of host
range restriction: subtypes of the virus more common in some hosts
are relatively rare in others, and vice versa. Specific reasons for these
restrictions are not yet understood. Although it is possible that any of
the influenza virus gene products has its own role in this restriction, some
proteins/genes are probably more determinant than others, like HA and
NA, the first and the second major surface antigen of the virion: HA has
a a primary role in host cell recognition and attachment (penetration
inside the cell by membrane fusion), so that especially for receptor-
binding sites host specificity is of primary importance for the success of
the infection; changes in NA protein can also alter virulence properties
of the virus and its ability to form viral plaques (at least in cell culture).

In any case, beyond these general considerations, we do not know
which unrecognized features are promoted by specific choices of NA and
HA gene products and why these features make the virus well adapted
for growth in some animals while not in others. Any kind of prediction
about the virulence of a novel reassortant virus in an alternate host is
very difficult (if not impossible). Although no simple linkage between
NA and HA subtypes is known, it is interesting to notice that, compared
to the total number of possible HA/NA subtypes combinations (126),
only few of them are much more common than all the other ones, and
45 of them have not even been found in nature [31].

Host range restriction (lack of infectivity of a virus in new hosts)
combined with isolation of host species (caused by different ecologies)
allow independent host-specific evolution of virus strains and separation
of the virus gene pool into host-specific ones. This subdivision of host
populations provides great heterogeneity to the virus population and
enhances the maintenance of a large number of virus subtypes.

1.4 Evolution of influenza A virus

In the previous section we have tried to give the reader a schematic
idea about the ecology of influenza viruses in different hosts. Despite
some observations about subtypes genes, we have mainly talked about
influenza virus as a single evolving unit. However, each virus gene may
evolve differently from others, because of different selective pressures
and specific evolutionary constraints: while surface protein genes, like
HA and NA, are subject to strong selective pressure by neutralizing an-
tibodies of host immune system, genes coding for internal proteins (M1,
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NP) undergo a slower evolution process, where instead of the compulsive
mutations present in the former proteins (necessary to escape to host
immune response) there may be a long term host-specific adaptive evo-
lution. For this reason, talking about phylogenetic history of influenza
A viruses in general does not make much sense and it is more meaningful
to analyze separately the evolution of influenza virus genes. However,
this is not worth to our aim, since we will deal in the following only
with the 4th segment of the viral genome, the one encoding for hemag-
glutinin. Furthermore, being HA the first surface antigen of influenza
A virus, evolution of HA gene is highly representative of the evolution
of the whole virus and for this reason has been subject of many studies
[26]. Hence, before moving on to the next chapters and entering the
physical core of the current work, we want to close this biological sec-
tion saying few important things about specific evolutionary features of
hemagglutinin protein gene, on which is based our study.

1.4.1 HA gene phylogeny and evolutionary features

As said before, being the primary surface antigen of influenza virus
and because of immune selection pressure, HA protein is expected to
evolve more rapidly and to be replaced by reassortment more frequently
than the other proteins: viruses with new genes for HA protein have
a selective advantage over the parent virus to which the host has had
already antigenic exposure. In fact every one or two years, new epidemic
strains of influenza A arise by introduction of selected point mutations
within the surface proteins, especially hemagglutinin [38]. These usu-
ally small and permanent mutations in the antigenicity of influenza A
viruses are called antigenic drift. For human influenza viruses in par-
ticular, the H3 HA protein (which is the subject of our study) evolves
much more rapidly than the internal ones (PB1, PB2, PA, NP and M1):
silent mutations7 in the former are about 57% of the total, while in in-
ternal proteins vary from 81 to 96% [31]. If the new viruses emerged
from mutations in HA protein gene are sufficiently infectious, they can
cause pandemics and replace the previous strains. For this reason, sur-
face protein genes are not expected to have a long evolutionary history
within hosts (like humans) having high immune selection pressure.

An extensively studied and evident feature of the evolution of HA

7Silent mutations (sometimes also called synonymous mutations) are nucleotide
mutations that leave unchanged the correspondent amino acids. This is possible
because of genetic code degeneracy: there are 43 = 64 nucleotide triplets combination
and only 20 amino acids.
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gene is its punctuated pattern: there are periods of relative stasis (called
antigenic clusters), separated by cluster transitions, which occur every
few years and produce most of the antigenic adaptation [30], [26]. Clus-
tering has also been observed in temporal distribution of amino acids
fixation in HA protein gene [29], [26]. The explanation proposed for this
particular evolution pattern is not unique: some authors has described
it by a model of episodic evolution, in which antigenic clusters corre-
spond to periods of neutral evolution and positive selection is restricted
to cluster transitions [28]; others, as Lässig and Strelkowa [26], explain
it using the so-called clonal interference, a mode of evolution in which
high supply of beneficial mutations generates competition between coex-
isting clones, i.e., simultaneous competitive strains, so that also during
antigenic clusters there is positive selection: although many beneficial
changes reach substantial frequencies, only a fraction of them are fixed.
A visual representation of the differences between the two models is
shown in figure 1.4.

In order to demonstrate the plausibility of clonal interference evo-
lution, in [26] many other features of HA evolution are also shown and
analyzed using a sample of 2033 HA1 sequences of influenza A H3N2.
They proved that antigenic sites are subject to a higher rate of non-
synonymous beneficial mutations: 56% of the antigenic amino acids sub-
stitutions are strongly beneficial mutations and 44% are neutral, against
70% of mutations under negative selection in non-antigenic sites. They
extract, using phylogenetic trees, that lifetime to fixation of a beneficial
mutation is on average 2.9 years, so that the population of virus strains
contains at least 3 simultaneous beneficial mutations on average (com-
petition between strains under positive selection — in order to be the
one to fix in the population — represent exactly the clonal interference
evolution).

One of the crucial points of their discussion is the measure of genetic
association inside HA1 domain. Genetic association is the codependency
between mutations in couples of sites of a given genetic sequence. High
genetic association means that, for example, mutation in one of the two
sites is strictly related to mutation (or non-mutation) in the other one.
If this happens, selection acts on genotypes level and not on individual
mutations level, which is a demonstration of the pure asexual repro-
duction of influenza A virus and a well known prerequisite for clonal
interference [27]. In [26] they define genetic association using normal-
ized correlation in double-sites mutation frequencies, i.e. the difference
between double-sites mutation frequency and the product of single-site
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mutation ones

Cij =
fij − fifj
Nij

, (1.1)

where i and j run over sequence sites, fi and fij are single and double
site mutation frequencies and Nij is a normalizing factor. In this way,
Cij = 0 means statistical independence and Cij = 1 complete genetic
association (and they found, for HA1 domain of H3N2 influenza virus,
a mean correlation of C̄ = 0.96).

The problem in using correlations, however, is well known when
dealing with a protein gene finite sample of sequences [3], [4], [1]. Cor-
relation between two sequence sites mutations may arise from direct
contribution, i.e., effective codependency between the two amino acids
in these sites (consequence of some kind of physical interaction), as well
as from indirect ones, i.e., codependency mediated by interactions with
others amino acids, that constitute some sort of connection link between
the first two. So far, even if the amino acids in two sites of the sequence
are not related by any kind of functional bond, correlation between the
two sites may arise from a web of even small interactions with sur-
rounding sites. Traditional correlations are thus unable to distinguish
between direct and indirect contributions and hence are not very infor-
mative about the real interaction between sequence sites, giving only a
rough estimation of them (used in HA1 domain for example, as stated in
[26], correlation analysis lead to the conclusion that every site is deeply
interdependent with every one else).

The aim of the work presented in the following chapters is to dis-
entangle these correlations (calculated for HA entire gene) in direct and
indirect, relevant and irrelevant ones, being the former strong constraints
to arbitrary mutations — in order to obtain positive selected ones —
and hence crucial in conditioning the direction of influenza virus future
evolution.
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Figure 1.4: Representation of clonal interference evolution (A) and episodic
selective sweeps evolution (B). Mutations are mapped on individual branches of
the tree, all fixed changes appear on the trunk of the tree (thick line). The hori-
zontal coordinate D counts the number of mutations from the root to its strain
sequence, and the vertical coordinate Φ represent the sum of their selection
coefficients. Upward (green) and downward (red) arrows indicate individual
branches under positive and negative selection, respectively. In clonal inter-
ference mode (A), high supply of beneficial mutations generates competition
between coexisting clones: many beneficial changes reach substantial frequen-
cies within the population, but only a fraction of them are fixed (thick green
arrows on the trunk), while others are eventually outcompeted (thin green
arrows off the trunk). Besides, in episodic swipe mode (B), low supply of ben-
eficial mutations generates selective sweeps interspersed with extended periods
of neutral evolution (horizontal branches); all beneficial mutations reaching a
substantial frequencies in the population are fixed (all green arrows are on the
trunk). Picture taken from [26].



Chapter 2

Dataset

In this brief chapter, we introduce the dataset used for our study,
consisting of several thousands of HA protein sequences. We start by
presenting the database established at National Center for Biotechnol-
ogy Information, from which our sequences have been extracted; we then
discuss the guidelines followed to select the sequences, the adjustments
needed to prepare them to further analysis (alignment and randomiza-
tion of ambiguous letters) and the known systematic biases affecting our
data sample.

2.1 Influenza Virus Resource at NCBI

As we already stressed in the first chapter, influenza disease is one
of the major infectious diseases in humans, causing every year hundreds
of thousands of deaths worldwide. Understanding its evolution and its
molecular biology, and so conceiving new antiviral drugs and vaccines,
represents an unavoidable challenge for both public health and science.
To address this challenge, researchers must have free access to viral se-
quences in a timely fashion and need to use a unique, organized and
formalized platform, where data can be exchanged and results easy con-
trolled and compared. However, in contrast to these necessities, the
number of influenza virus sequences in public databases has been his-
torically far less than those of some well-studied viruses, such as human
immunodeficiency virus, and the number of complete influenza virus
genomes has been even smaller [41].

For this reason in 2004, the National Institute of Allergy and In-
fectious Diseases (NIAID) launched the Influenza Genome Sequencing
Project, which aims to rapidly sequence influenza viruses from samples
collected all over the world. Viral sequences were indexed and cataloged
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at the National Center for Biotechnology Information (NCBI) and then
deposited in GenBank. In just over 2 years after the beginning of the
project, more than 2000 complete genomes of influenza viruses (A and
B) were stored in the database [41]. To help the research community
to make full use of the wealth of information from such a large amount
of data, which will be increasing continuously, the Influenza Virus Re-
source was created at NCBI in 2004 [42], a simple and clear web interface
where users can make queries, find complete genome sets and download
sequences; database also offers some sequence analysis tools completely
integrated, such as multiple-sequence alignment and clustering of protein
sequences. The NCBI Influenza Virus Sequence Database contains nu-
cleotide sequences of all influenza viruses in GenBank databases, as well
as protein sequences and their encoding regions derived from nucleotide
sequences.

2.2 HA (H3N2) sequences dataset

Our study is based on 3297 amino acids sequences of the 4th seg-
ment of influenza A H3N2 virus subtype. This segment, as already
explained, codes for hemagglutinin protein, the major antigen of in-
fluenza virion. Sequences used are available at Influenza Virus Resource
of NCBI [41]: since NCBI database classification system assigns to ev-
ery sequence stored a unique access code, one can easily find the exact
dataset using our access codes list.

The chosen sequences respect some simple accuracy requirements.
First of all, we include in our dataset only sequences which contain the
full HA coding region. Complete sequences, apart from being more infor-
mative, facilitate the alignment procedure and reduce alignment biases.
We also used only sequences with known location and year of observa-
tion1. Lab strains and marked egg isolates are excluded.

The effective number of sequences obtained using these constraints
is 6573. However, many of these sequences appear identically with some
multiplicity, so that only 3297 of them are independent one to another.

The time span covered by our sequences is 1968 - 2013.

1These information are synthesized in a string of description associated to every
sequence.
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2.3 MSA construction

The sequences of H3 HA protein downloaded form NCBI are in fact
nothing more than strings of letters. Every letter stand for a different
amino acid, following the standard IUPAC amino acids alphabet (table
2.1).

A typical sequence of HA (H3) protein is:

MKTTIALSCILCSILAQKLPGNGDSTATLCLGHHAVPNGTLVKTITDDQIEVTNATELV

HSSSTGRICNSPHQILDGENCTLIDALLGDPNCDGFQNKEWDLFVERSTAYSNCYPYDV

PDYASLRSLVASSGTLEFTKEDFNWIGVTQGGTSNACKRGSDKSFFSRLNWLYQLSHKY

PALNVTMPNNDKFDKLYIWGVHHPSTDRDQISLYAQASGRVIVSTKGKQQTVIPNIGYR

PWVRGVSSIISIYWTIVKPGDVLLINSTGNLIAPRGYFKIRSGESSIMRSDAPIDNCNS

ECITPNGSIPNDKPFQNVNRITYGACPRYVKQNTLKLATGMRNIPEKQTRGIFGAIAGF

IENGWEGMVDGWYGFRHKNSEGTGQAADLKSTQAAINQITGKLNRVIKKTNEKFHQIEK

EFSEVEGRIQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEMNKLFERTRKQLR

ENAEDMGNGCFKIYHKCDNACIESIRNGTYDHDVYRDEALNNRFQIKSVELKSGYKDWI

LWISFATSCFLICVVLLGFIVWACQKGNIRCNICI

The first thing to do is to perform a multiple sequence alignment
(MSA), i.e. aligning the 3297 sequences one to another.

2.3.1 Aligning the sequences

In bioinformatics, a multiple sequence alignment is a way of rear-
ranging the sequences of DNA, RNA, or protein to recognize regions of
similarity that can be slightly shifted in different sequences as a conse-
quence of evolution and experimental issues. Aligned sequences of nu-
cleotide or amino acid residues are typically represented as rows within
a matrix.

During the alignment procedure gaps are inserted between residues
so that identical or similar characters are aligned in successive columns.
Inserting gaps between residues has a penalty cost, so that alignment
algorithms work to optimize the alignment of the sequences, but keeping
low the sum of the penalty costs corresponding to gaps insertion.

Multiple sequence alignment is the starting point for phylogenetic
analysis, but also, as in our case, for techniques of functionally important
sites identification, such as binding sites, active sites, or sites correspond-
ing to other key functions.

Although the alignment procedure between two (or at least three)
very short and similar sequences can be done, with some patience, by
hand, aligning thousand of sequences needs obviously a computational
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Letters Amino acids

A Alanine
C Cysteine
D Aspartic Acid
E Glutamic Acid
F Phenylalanine
G Glycine
H Histidine
I Isoleucine
L Leucine
M Methionine
N Asparagine
P Proline
Q Glutamine
T Threonine
R Arginine
Y Tyrosine
S Serine
V Valine
W Tryptophan
K Lysine
B D or N
J L or I
Z Q or E
X Unknown

Table 2.1: IUPAC code letters and amino acids. The first 20 letters code
for the 20 amino acids; B, J and Z are “ambiguous letters”, used when
is not known which of the two associated amino acids is actually present
in that particular sequence site. X stand for complete ignorance: a site
with a X can correspond to any one of the 20 amino acids. Ambiguities
or complete ignorance about sites occupation are consequences of errors
in the sequence isolation procedure.

algorithm. Since sequence alignment is a key procedure for many bio-
logical and financial data analysis, there are many programs designed to
do it, using different strategies and having different accuracy, computa-
tional velocity and stability.

Multiple alignment of our sequences has been done using MUSCLE
algorithm [22]. MUSCLE (acronym of MUltiple Sequence Comparison
by Log-Expectation) is a public domain, multiple sequence alignment
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software for protein and nucleotide sequences, cited by more than 10000
papers. It’s often used as a replacement for CLUSTALW, since it typ-
ically gives comparable sequence alignments but is also significantly
faster, especially for larger alignments, according to published bench-
mark tests [22], [23]. The reason for its computational efficiency lies
in the particular way the algorithm calculate distances between pair
of sequences, the first step in any alignment algorithm. While other
softwares, as the most common CUSTALW, perform a first alignment
between any pair of sequences, MUSCLE counts the number of short
sub-sequences (known as “k-mers”, “k-tuples” or words) that two se-
quences have in common, without align them.

Since our sequences of HA gene are complete and also very simi-
lar one to another, alignment procedure generates very few gaps. The
length of the resulting aligned sequences is 566 amino acids, i.e., 1701
nucleotide bases (stop codons2 included). The alignment option used
were the default-optimized ones.

2.3.2 Randomizing ambiguous IUPAC letters

Our sequences contain only one of the three possible ambiguous let-
ters, B, standing for ambiguity between Aspargine (N) and Aspartic
Acid (D). Since we have already to deal with a complex 21-alphabet
MSA (21 amino acids letters and one, X, for both gap and unknown
sites), we decided to randomize B letters, giving equal probability 1/2
and 1/2 to have, instead of B, D or N . This procedure does not change
significantly the starting dataset: over 3297 sequences, each one of 566
letters, B appears only 67 times.

2.4 Known systematic biases

Before closing this chapter, let us make some remarks upon sys-
tematic biases affecting this kind of dataset. The analysis described in
the following start from the assumption that sequences just presented
are randomly sampled from influenza virus population and, as we will
see, independent one from another. However, the available influenza se-
quences are not randomly sampled, which would be ideal for any kind
of genetic analysis, nor independent.

The first assumption is weakened by two intrinsic database biases:
yearly variation in sampling depth, because far fewer strains are available

2Stop codons (also called termination codons) are nucleotide triplets that signal
the end of a protein translation. To these triplets is not assigned any amino acid.
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for earlier years than for later years, and regional variation in sampling
depth, since sequence projects — as the New York sequence project
— lead to an over-representation of some geographical areas (US above
all).

The second assumption is violated by the simple fact that these se-
quences are strongly related by a common phylogenetic history, by the
presence of multiple-strain sequencing and because sequences are not
sampled independently during evolution, but through a branching pro-
cess, which introduces a sampling bias [1].

There are different strategies to address these biases and minimize
their effects on the analysis performed in the following; we will present
them time by time.



Chapter 3

Clustering and sampling
regime

As already anticipated in 1.4.1, this work aim to disentangle corre-
lations between HA protein sites in relevant and irrelevant ones, and, as
we will soon see, in order to achieve this task one has to solve a statis-
tical inference problem.

The success of this procedure lies in the informativeness of the sam-
ple on which we are working: does it contain enough statistics to make
inference about the system? Following the guidelines of a recent work
by Marsili et al. [7], here we try to answer that question. Since, as we
will demonstrate in the following, information contained by a sample on
the system behavior can be quantified by the entropy of the frequency
with which different states occur [7], we need first of all to cluster our
sequences by similarity.

In this chapter we present the algorithm used to cluster our MSA
(the program performing the algorithm has been written in C++ and can
be found in Appendix A), we then briefly explain the theoretical frame-
work used to understand clustering results and the conclusion drawn
from them about the information content of our sample.

3.1 Affinity propagation

3.1.1 Introduction

Clustering procedure consists in finding in a given dataset a subset
of representative exemplars, such that the sum of a customary defined
distance between data points and their nearest exemplar is small. Clus-
ters are then in 1 to 1 correspondence with exemplars, since they are
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defined as the ensembles of data points close to each one of them.
To cluster our sequences we used Affinity Propagation, a message

passing algorithm developed by Frey and Dueck in 2007 [13].
Message-passing algorithms operate exchanging “messages” between

the edges of a graph, and updating them recursively through local com-
putations done at the vertices. They rely on belief propagation theory,
a very powerful framework developed independently in several different
contexts, such as statistical physics, coding theory and artificial intelli-
gence (although with different names) [16], [19].

Affinity Propagation uses this technique to efficiently and rapidly
cluster a starting dataset in view of data similarity, avoiding the typi-
cal problems that affect usual clustering algorithms. The most popular
ones, in fact, begin with an initial set of randomly chosen exemplars
and iteratively refine this set so as to decrease the sum of the distances
[21]. However, this approach is quite sensitive to the initial exemplars
choice, so that usually one has to rerun the algorithms many times with
different initializations in an attempt to find a good result. It is clear
that the sustainability of this procedure relies on the dimension of the
dataset and in the number of clusters one is interested to find.

By contrast, Affinity Propagation simultaneously considers all data
points as potential exemplars. By viewing each data point as a node
on a graph, it recursively transmits real-valued messages along its edges
until a good set of exemplars and the corresponding clusters emerges.
This procedure finds clusters with higher accuracy than other methods
and in less than one-hundredth the time [13].

3.1.2 About algorithm derivation

Since complete algorithm derivation can be found in the supplemen-
tary information of reference [13], here we just give the fundamental
conceptual hints, without reporting all the (long) calculations.

The derivation consists in minimizing a score function depending
on the exemplars selection. Calling c = (c1, . . . , cN ) the (unknown)
exemplars to which the N points belongs, the algorithm search for con-
figuration c that minimizes the score function

E(c1, . . . , cN ) = −
N∑
i=1

s(i, ci), (3.1)

where s(i, ci) is the similarity between a data point i and its exemplar
ci (the reason for this choice is self-evident).

However, not all the possible configuration c are allowed, since if
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for some i ci = j then it must be that cj = j. For this reason, instead
of minimizing (3.1), is simpler to maximize the so-called net similarity
S, defined as the opposite of the score function (3.1), plus a constraint
potential enforcing valid configurations:

S(c) = −E(c) +
N∑
k=1

δk(c), (3.2)

where the potential is

δk(c) =

{
−∞ if ck 6= k ∧ ∃ i | ci = k

0 otherwise
(3.3)

The solution of this maximization problem can then be found rep-
resenting equation (3.2) with a factor graph, in which functions and
variables of (3.2) correspond to “function nodes” and “variable nodes”
of the graph, and where connections, i.e., the edges of the graph, ex-
ist only between variables and functions depending on them, following
standard graph theory [16]. In this way, S(c) is the so called global func-
tion of the factor graph just described and can be maximize using the
max-sum algorithm, that is the log-domain version of the well known
max-product algorithm [16]1.

3.1.3 The algorithm

Input

Affinity Propagation takes as input the N × N symmetric matrix
s(i, k) of real-valued similarities between the N data points to be clus-
tered, where similarity s(i, k) is a measure of how well the data point k
is suited to be the exemplar for data point i2.

Rather than requiring, as other algorithms do, the number of clusters
to be set by hand at the beginning, Affinity Propagation needs as in-
put parameters only the so-called “preferences”, i.e., the auto-similarity
s(i, i).

When the similarity matrix is computed starting from the actual

1Factor graph theory is a powerful instrument to represent and solve complex
equations and logical problems. Since it is not the main subject of the present work
and since it is a quite extended subject, it cannot be explained here. If the reader is
interested, besides the exhaustive book by Mezard and Montanari [16], a very clear
but shorter introduction to factor graph theory is [17].

2For a practical example, see 3.3, where we explain how s(i, k) can be computed
between two amino acids sequences i and k.
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sequences, diagonal elements s(i, i) are obviously equal to 1, since any
element is identical to itself, so that diagonal entries of the similarity
matrix do not carry any information. Besides, looking at the updating
rule (3.5) in 3.1.3, one sees that, for any i, s(i, i) is in fact used to enforce
the i element probability to be chosen as an exemplar. For this reason,
one has to replace them with real numbers within the interval [0, 1], in-
dicating how every data point i is likely to be chosen as an exemplar.
The number of clusters (equal to the number of exemplars) depends,
of course, on the preferences chosen, but also emerges freely from the
message-passing procedure.

Since we don’t have any a priori information about which sequences
are more likely to be exemplars, we have set a common value s(i, i) = α
for every i. Changing this value sets the “granularity” of the clustering
procedure. As suggested in [13], a good choice for a common value α is
the minimum between the entries of the similarity matrix.

Initialization

The algorithm works exchanging two kinds of messages between data
points, each one of them takes into account a different kind of compe-
tition: there is responsibility r(i, k), sent from data point i to the can-
didate exemplar k, reflecting how k is well-suited to be the exemplar
for i, taking into account the other potential exemplars for i; and the
availability a(i, k), sent from the candidate exemplar k to data point i,
reflecting how available is k to be the exemplar for i, taking into account
all the other data points interested in having the same k as exemplar.

Initialization consists in setting the availabilities to zero:

a(i, k) = 0 ∀ i, k. (3.4)

Updating rules

Once availabilities have been initialized, the iterative procedure be-
gins, respecting the presented order:

1. responsibilities are updated, following3

r(i, k)← s(i, k)−max
k′ 6=k
{a(i, k′) + s(i, k′)}; (3.5)

3In (3.5), (3.6) and (3.7) the arrows ← indicate that the quantity on the left is
replaced by the quantity on the right.
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2. availabilities with i 6= k are updated, as

a(i, k)← min{0, r(k, k) +
∑
i′ 6=i,k

max[0, r(i′, k)]}; (3.6)

3. self-availabilities a(k, k) are updated, but following the different
rule

a(k, k)←
∑
i′ 6=k

max{0, r(i′, k)}. (3.7)

The physical meaning of the updating rules just presented is simpler
than it might appears at first sight.

During the first iteration (3.5), for example, because availabilities
are all equal to zero, the responsibility r(i, k), i.e., how k is well-suited
to be the i exemplar, is simply equal to the similarity between i and
k minus the largest of the similarities between i and other candidate
exemplars. Hence, this first update is completely determined by the
initial data. In later iterations, however, when some points have been
already assigned to other exemplars (different from k) the relative avail-
abilities will became negative because of the second updating rule and
this negative availabilities will decrease the similarities s(i′, k), removing
the corresponding candidate exemplars from competition.

Similarly the availability a(i, k) of the point k as a candidate ex-
emplar for i is set, in (3.6), to its “self-responsibility” r(k, k), reflecting
accumulated evidence that point k is an exemplar, plus positive responsi-
bilities received from other points. If, for instance, the self-responsibility
r(k, k) is negative (thus k appears to be not suitable as exemplar, maybe
as a consequence of a small auto-similarity s(k, k)), the availability of k
can be increased by the presence of other points that see k as a good
exemplar. And so on.

Convergence and iteration stop

For any point i, the point k that maximizes the sum a(i, k) + r(i, k)
identifies the data point that is the exemplar for point i (obviously if
k = i, i is itself an exemplar). This can be done at any iterative step,
viewing how clusters emerge from the starting data points during the
procedure. In fact, the two messages a(i, k) and r(i, k) converge after
some iterations, although with the help of a dumping factor λ used
to avoid oscillations: at every step messages are set to λ times their
previous value plus (1− λ) times the current one. The algorithm stops
when the message updates fall below a customary threshold.
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3.2 Sampling regime

In this section we introduce some fundamental theoretical issues con-
cerning complex systems and their predictability, in a very general fash-
ion. Explaining these theoretical issues here, we will not have to discuss
them later and in the following section the clustering results presented
will be immediately clear to the reader.

The final goal of this section is the identification of some simple
instruments allowing us to understand if a sample of a given complex
system (in our case an MSA collecting different realizations of HA pro-
tein sequence) is representative of the real system, i.e., if it contains
enough information about the latter.

3.2.1 Introduction and definitions

Complex systems are systems that we are able to represent, at best,
with models that are not only approximate, but incomplete. Within
these models, in addition to variables we know we are neglecting, there
are unknown unknowns we do not even know they exist and have an
effect. Here a complex system is defined as a system assumed to maxi-
mize an objective function U(s) depending on a large number of variables
s = (s1, . . . , sn), a part of which are unknown.

For our application, this assumption is quite well suited with reality:
we expect that for a given protein, the amino acids sequence realizations
respond to the request of minimizing the energy function depending on
chemical bonds, maximizing the entropy, or, more in general, optimizing
the fulfillment of a specific task.

However, although the objective function of a given complex system
depends on all the variables s = (s̃, ŝ) = (s1, . . . , sñ, sñ+1, . . . , sn), only
ñ of them are known to the modeler (s̃) (being the other variables ŝ
unknown), as well as only the part of the objective function, us̃, that
depends exclusively on them.

We can then split the whole U(s) function in two parts

U(s) = us̃ + v(s̃,ŝ), (3.8)

the known one, depending only on the known variables, and the un-
known one, depending, a priori, on all the variables s.

Formally one can define the observed part us̃ as the objective func-
tion averaged over the unknown variables:

us̃ = Eŝ[U(s)], (3.9)
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where Eŝ[. . . ] is the expected value with respect to an a priori distri-
bution p(v) on the dependence of U(s) on ŝ; in other words, we are
assuming that the unknown function v(s̃,ŝ) is randomly and indepen-
dently drawn for each s from a given distribution p(v).

In this framework, the behavior of the real system is represented by

s∗ = (s̃∗, ŝ∗) = arg max
s

U(s), (3.10)

while the behavior predicted by the model, relying only on the known
variables, is represented by

s̃0 = arg max
s̃

us̃. (3.11)

Hence, the predictability of the model can be defined as the proba-
bility that the known variables maximizing the known function are the
same needed to maximize the whole objective function:

P (s̃0 = s̃∗) ≡ Eŝ[δs̃0,s̃∗ ]. (3.12)

Besides the abstract definition of (3.12), one can derive the proba-
bility distribution ps̃ for a generic configuration s̃ to be the true maxi-
mum s̃∗, from which probability (3.12) is obtained as ps̃0 = P (s̃0 = s̃∗),
under very general conditions. It takes the form of a Gibbs-Boltzmann
distribution.

3.2.2 The Gibbs-Boltzmann distribution

If we assume all the moments of the p(v) distribution to be finite

Eŝ[v
m
(s̃,ŝ)] ∀m > 0 (3.13)

and we take the thermodynamic limit n → ∞, we are able to obtain
straightforward the distribution

ps̃ ≡ P (s̃ = s̃∗), (3.14)

i.e., the probability distribution that a generic observed configuration s̃
is the true maximum s̃∗.

This can be done simply using the maximum entropy principle. In
fact, on the true maximum s̃∗ the known function us̃ will be, by defini-
tion, less than or equal to the one evaluated on the predicted maximum
s̃0: us̃∗ ≤ us̃0 . In statistical mechanics, since energy is an extensive
quantity, can be shown that imposing the constraint Es̃[us̃] ≤ us̃∗ gives
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the same result as imposing Es̃[us̃] = us̃∗ . Assuming this conclusion to
be valid also in this context4, ps̃ distribution can be searched as the max-
imum entropy distribution with the constraint Es̃[us̃] = us̃∗

5. As well
known ([11],[12]), this distribution is the Gibbs-Boltzmann distribution

ps̃ =
exp(βus̃)

Z(β)
, (3.15)

where Z(β) is the partition function

Z(β) =
∑
s̃′

exp(βus̃′). (3.16)

Jaynes derivation of Gibbs-Boltzmann distribution using maximum
entropy principle, however, give no information on the nature of the
generalized β constant, while extreme value theory [14] shows a precise
relation between β and the number (n− ñ) of unknown variables ŝ. In
fact, one can find ([14],[7]) that if the asymptotic behavior of p(v) for
v →∞ is ln p(v) ∼ −|v|γ , then

β = [(n− ñ) ln 2]
1− 1

γ . (3.17)

Equation (3.17) is quite surprising. It tells us that for p(v) decay-
ing faster than exponential, i.e., for γ > 1 (as for Gaussian variables),
β diverges with the number of unknowns and the predictability of the
model ps̃0 = P (s̃0 = s̃∗) grows. Keeping the number of known variables
ñ finite, for (n− ñ)→∞ we have that ps̃0 → 1.

This non-trivial behavior suggests that models are predictable only
when the number of unknown variables is large enough, or, conversely,
when the number of relevant known variables is less than a critical
threshold [7]. Although this conclusion may seem counter-intuitive, if
it wasn’t true, scientific approach on complex system would simply be
impossible.

3.2.3 Sample information

We have seen that, for a given known objective function us̃, the
probability to observe a certain state s̃ of a complex system follows the
distribution (3.15). Bearing in mind what we just found, we can now

4In fact ps̃ distribution can be derived as a Gibbs-Boltzmann distribution also
using extreme value theory [7], so that this assumption can be justified a posteriori.

5Here Es̃[. . . ] is the mean value calculated with respect to ps̃ distribution, differ-
ently from Eŝ[. . . ] of equation (3.13), evaluated with respect to p(v) distribution.
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work on the inverse situation, i.e., we observe some states of a complex
system and we want to extract from them information about the function
us̃, now unknown.

In fact, we can think to a sample of N observations of the state
of a complex system (s̃1, . . . , s̃N ) as N independent realizations of the
Gibbs-Boltzmann distribution (3.15) with some function us̃.

If we call Ks̃ the number of times the s̃ configuration appears in
our sample

Ks̃ =
N∑
j=1

δs̃j ,s̃, (3.18)

then the observed frequency Ks̃/N samples the distribution ps̃ and so
gives us a rough estimate of the function

us̃ ≈ a+
1

β
lnKs̃, (3.19)

for some constant a. From this one can argue that is the multiplicity
Ks̃ with which s̃ appear in our sample to bring information about the
system, rather than s̃ itself. This can be shown in a more formal and
interesting way using the two entropies associated to the distribution of
s̃ and Ks̃ as random variables.

Since a priori all the N realizations of the sample should have the
same probability 1/N , we have for s̃ the already presented distribution
P (s̃i = s̃) = Ks̃/N , and for Ks̃ the distribution P (Ks̃i = k) = kmk/N ,
where

mk =
∑
s̃

δk,Ks̃ (3.20)

is the number of times we encounter, within our sample, a state s̃ ap-
pearing exactly k times in the sample.

The respective empirical6 entropies associated to these distributions
are

H[s̃] = −
∑
s̃

Ks̃

N
ln

(
Ks̃

N

)
= −

∑
k

kmk

N
ln

(
k

N

)
(3.21)

H[K] = −
∑
k

kmk

N
ln

(
kmk

N

)
= H[s̃]−

∑
k

kmk

N
ln(mk), (3.22)

where, besides the misleading notation, H[K] is a function of {mk} and
where the second equality of (3.21) follows from the definition of mk in

6The term “empirical” is referred to the fact that these entropies are computed
using the finite data sample (s̃1, . . . , s̃N ).
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(3.20).
Because of (3.19) one can conclude that the information contained

in our sample of data (s̃1, . . . , s̃N ) on the behavior of the system, i.e., on
the function us̃, is quantified by the entropy H[K] and not by H[s̃] [7].

This conclusion can be better understood in two simple and extreme
examples: the situation in which each state appears in the sample at
most one time (so that Ks̃ = 1 for all states s̃ in the sample and Ks̃ = 0
otherwise, m1 = N and mk = 0 ∀k 6= 1); and the opposite situation, in
which our sample is composed by only one state t̃ appearing N times
(so that Ks̃ = Nδs̃,t̃, mN = 1 and mk = 0 ∀k 6= N). In both these
examples we cannot extract any information upon the function us̃ and
in both these examples H[K] = 0, while H[s̃] = lnN in the first and
H[s̃] = 0 in the second.

Since all the other situations stand between these two extreme cases,
for the former we expect H[s̃] to take an intermediate value in [0, lnN ]
and we expect to have a positive amount of information H[K] > 0 on
the system behavior.

Let us show more in detail what happens in these intermediate cases.

3.2.4 H[K] vs H[s̃] curve and Zipf’s law

In order to solve this problem, instead of seeing ps̃ distribution (3.15)
as the maximal entropy distribution subject to the constraint Es̃[us̃] =
us̃∗ , we think to it as the distribution of maximal Es̃[us̃] =

∑
s̃ ps̃us̃ but

with fixed information content, i.e., fixed entropy H̄. This gives us a
natural upper bond for empirical entropy over states s̃, i.e., H[s̃] ≤ H̄,
as a consequence of the asymptotic equipartition property [15].

We are then interested to search among the possible distributions
m = {mk, k > 0} respecting this inequality, the ones for which H[K] is
maximal

m∗ = arg max
m, H[s̃]≤H̄

H[K] (3.23)

with the constraint
∑

k kmk = N . Furthermore, being Ks̃ a function of
s̃, data processing inequality [15] implies also that H[K] ≤ H[s̃].

In the H[k] < H[s̃] region, the solution (3.23) can be found following
the approximation used in [7], where mk, instead of being considered a
positive integer number, is treated as a positive real one, and maximizing
the mk function

H[K] + µ(H[s̃]− H̄) + ν(
∑
k>1

kmk −N), (3.24)
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where µ and ν are Lagrange multipliers related to the two conditions
H[s̃] = H̄ and

∑
k kmk = N .

Substituting (3.21) and (3.22) in (3.24), and taking the derivative
with respect to mk, one obtains the power law function

m∗k = zk−(1+µ), (3.25)

where z > 0 is a normalizing constant and where, obviously, k ∈ [1, N ].
Substituting the solution (3.25) in (3.21) and (3.22), and comput-

ing both the entropies for different values of µ, one obtains a curve in
the H[s̃] × H[K] plane that gives, for any value of H[s̃], the maximal
value of the entropy H[K]. Empirical samples of data generate points
(H[s̃], H[K]) standing below this maximal curve. Two examples of this
curve are shown in the right side of figure 3.1.

Figure 3.1: Maximal H[K] versus H[s̃] for N = 3297 (green) and N =
6573 (red). Empirical samples of data generate points (H[s̃], H[K])
standing below this maximal curve (physical region). The linear part of
the red curve is hidden behind the green one.

The right part of the curve corresponds to the under sampled regime
region, because H[K] < H[s̃]. The points of the curve in this region
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represent possible N -sized samples of the system, with different distri-
butions: in fact, to any point is associated a different couple of entropies
H[s̃] and H[K] and corresponds to a different value of the µ parameter,
that describes different power law distributions (3.25) of the data.

If we start from the non-informative point with (H[s̃], H[K]) =
(lnN, 0) at the extreme right of the curve, with µ = ∞ (corresponding
to the distribution mk = Nδk,1), we can climb over the curve towards
the peak decreasing µ. In fact, at any point of this curve, −µ represents
the slope of the line tangent to that point: again from (3.21) and (3.22),
using the solution (3.25), one can obtain with few trivial passages that
H[K] = −µH[s̃].

At the peak, the entropy H[K], derived maximizing (3.24), reaches
the value of H[s̃] (H[K] = H[s̃]), the slope of the curve becomes µ = −1
and the power law describing mk distribution over k is the Zipf’s law

mk ∼ k−2. (3.26)

Since, for the data processing inequality, we have thatH[K] ≤ H[s̃],
for µ < −1 the solution of the maximization problem (3.25) is no longer
valid. Hence, at the left of the peak (see figure 3.1) the curve is simply
the line H[K] = H[s̃]. Points in this region correspond to samples where
every state s̃ appears a different number of times with respect to any
other, so that knowing the frequency Ks̃/N one can recognize the state
s̃ itself: their distributions are equivalent.

Summarizing: in the under sampled regime, where H[K] < H[s̃],
distributions with the largest information content show a power law
behavior7; in particular, the distribution with the highest information
content coincides with the Zipf’s law, which appears at the crossover
between the under sampled regime and the regime where H[K] coincides
with H[s̃].

3.3 Clustering HA sequences

We can now put together the clustering algorithm presented in the
first section and the theoretical instruments illustrated in the second:
with the clustering program we are able to split our sample in clusters
of similar sequences; taking the number mk of clusters of size k we can

7It is interesting to notice that power laws, that have the fundamental property
of being scale invariant, are deeply related in statistical physics to critical points of
phase transition diagrams.
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calculate the entropies H[s̃] and H[K] using (3.21) and (3.22) (this has
been done directly within the clustering program, see Appendix A); then,
interpolating the (k,mk) points, we can also obtain an estimate of the
power law exponent −(1 + µ). Repeating this procedure several times,
while coarse-graining the clustering, gives some interesting results.

However, since the outcome of the algorithm presented in 3.1.3 is
very stable over the input parameter α = s(i, i) ∀i (whose coherent val-
ues are between the smallest similarity matrix entry and 1), to change
the grain of the clustering we have to construct and gives to the algo-
rithm different similarity matrix, calculated with a measure of similarity
that became more and more “permissive”. A simple way to do that is
looking only at the most conserved sites over the sample of sequences.

3.3.1 Clustering over most conserved sites

The idea is to set a reference value X ∈ (0, 1) for the frequencies
and then to consider as most conserved sites, within the total number
of sites n = 566, the sequence positions i for which

∃ A | fi(A) =
1

N

N∑
j=1

δ
A,Aji

≥ X, (3.27)

where j runs over the N sequences of the sample and Aji is the amino
acid at position i of the j sequence. For a definite value of X, there will
be a precise number of sites ñX ≤ n for which (3.27) is verified. To gain
intuition, we can look at the extreme cases X = 0 and X = 1: for the
first, obviously, ñ0 = n; in the second, ñ1 is the number of sites showing
over the sample always the same amino acid.

Cluster the sequences looking only at the most conserved sites means
to cluster the sequences using as input a similarity matrix where similari-
ties between sequences are computed looking only at the most conserved
sites. For different values of X, we can calculate the similarity s(i, k)X
between the sequences i and k as [1 − d(i, k)X ], where d(i, k)X is the
normalized humming distance between the two sub-sequences composed
only of the ñX most conserved sites

d(i, k)X =

ñX∑
j=1

δ(Aik, A
k
j )

ñX
, (3.28)

being ñX the sub-sequences length and Aij the amino acid in position j
of the i sequence; j runs over the most conserved sites.
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Obviously taking high value of X means to compare sequences look-
ing at a small amount ñX of sites, where, moreover, there is an amino
acid A that has high frequency f(A) ≥ X. For this reason, for high
X, we are telling the algorithm to see as very similar sequences that
can be, in fact, very different in the least conserved sites. For example,
with X = 1, every sequence is identical to any other (where i and k
sequences are identical if s(i, k) = 1), so that the clustering algorithm
becomes useless, i.e., putting X = 1 we directly reduce all the sample
to a unique cluster of size N (mN = 1), reaching the point (0,0) of the
entropy curve. With X = 0, besides, we compare sequences using their
complete length, so that we maximize the distances (3.28) between the
sequences, and, conversely, we lower down the similarities, obtaining a
large number of small clusters and reaching the extreme right of the
entropy curve.

We expect, raising the value of X from 0 to 1, to climb the empirical
version of the curves in figure 3.1 towards the peak from the right and
then to climb it down along the left side. And that is, in fact, what
happens.

3.3.2 Clustering results

The procedure explained above has been repeated for 21 values of
X, between 0.5 and 1. Plotting H[K] and H[s̃] for every clustering
outcome, one obtains the curve of points in figure 3.2. As expected, em-
pirical points stand below the maximal curve, but reproduce quite well
its shape, and this is not an obvious result. In fact, lacking data sam-
ples are not able to reproduce the curve and their clustering entropies
draw hills flattened to the axis H[K] = 0; very good data samples, on
the contrary, are expected to generate high hills, closer to the maximal
curve.

We know that, in the under sampled regime, high information con-
tent samples are related to power law distribution of the data, with
an exponent that approaches −2 for distributions with highest infor-
mation content. In order to show, in our sample, the emergence of a
similar behavior, we looked at two distributions of our data: the “nat-
ural” distribution, where with “natural” we mean “obtained comparing
the sequences looking at a large number of sites ñX ≈ n”, i.e., using a
low threshold X; and the distribution related to the top of the curve in
figure 3.2. We aspect to obtain power law behavior in both cases, but
with −(1 + µ) exponent decreasing between the first and the second, in
which, in particular, it has to be close to −2.
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In figure 3.3 are plotted the point (ln k, lnmk) (where mk is the
number of clusters of size k), for two value of X: X = 0.78 (green dots),
corresponding to a point on the low right side of the curve in figure 3.2;
and X = 0.97 (red points), corresponding to the top of the curve, i.e.,
to the point with maximal information content H[k].

They show, as expected, a linear dependency, with slope (the expo-
nent of the power law (3.25)) close to −3 in the first (green) case and to
−2 in the second (red), as shown by figure 3.4 and 3.5.

Figure 3.2: Maximal H[K] over H[s̃] curve for N = 3297 (red); empir-
ical points (H[K], H[s̃]) for 21 different values of X threshold (green).
As expected, empirical points stand below the maximal curve, but re-
produce quite well its shape.

8Since our sequences show high conservation (as a consequence of the fact that
they represent a specific subtype of a specific protein) values of the threshold X must
stand in the interval [0.6, 1] in order to see some changing in clustering “granularity”.
For this reason 0.7 can be considered a small value of X, in fact the relative number
of sites to look is ñ0.7 = 531.
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Figure 3.3: (ln k, lnmk) points for X = 0.7 (green) and X = 0.97 (red)
frequency threshold; mk is the number of clusters of size k resulting
from a clustering procedure that starts from the input matrix s(i, k)X
defined through equation (3.28) and with s(i, i)X = α ≡ minj,k[s(j, k)X ],
as explained in 3.1.3.
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Figure 3.4: (ln k, lnmk) points for X = 0.7 clustering (red); reference
line ln(mk) = −3 ln(k) + 9 (green).

Figure 3.5: (ln k, lnmk) points for X = 0.97 clustering (red); reference
line ln(mk) = −2 ln(k) + 9 (green).
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3.3.3 Final observations

We have just seen that our sample behaves as theoretically predicted,
showing power law distribution in frequencies and being able to climb
the entropy curve H[K] over H[s̃] if we coarse-grain the clustering proce-
dure. However, using the frequency threshold X (and hence the number
of most conserved sites ñX) to change the clustering granularity allows
us to look at these results also from another perspective.

An HA sequence is composed by n = 566 amino acids, hence it
can be represented by a vector of n components s = (s1, . . . , sn), every
one of them coding for the amino acid in the corresponding position.
s = (s1, . . . , sn) are, in fact, the variables describing our system (the
protein). A statistical physicist can argue that within the n amino acids,
i.e., the n variables s, there may be a fraction ñ of them (s̃) more rel-
evant for describing the protein and its functional role, and others (ŝ)
less relevant.

Looking at the ñX most conserved sites for increasing values of X, in
fact, one restricts the number of relevant variables useful to describe the
system. Since doing that the entropy H[K] climbs the curve in figure 3.2
and reaches the point of highest informativity for X = 0.97, correspond-
ing to a number of relevant sites ñ0.97 = 431 < n, one can argue that
our sample contains enough statistics to let us recognize, with respect to
a specific issue, more informative variables (ñ0.97) and less informative
ones (n− ñ0.97).

Such a conclusion is both interesting and reassuring, since in the
next chapters we are going to address this variables-discerning work on
the same sample of data, although, as we will soon see, with a different
focus: correlations.



Chapter 4

DCA and SCA inference
methods

Once the information content of the data sample presented in chapter
2 has been analyzed using the instruments illustrated in chapter 3, we
can proceed in the attempt of successfully extracting such information.

As a large number of recent studies suggests ([1], [2], [3], [4], [5]),
in order to infer information from a multiple sequence alignment (MSA)
about the structure of the relative protein, natural quantities to look
at are statistical pair-wise correlations between amino acids at different
positions in the MSA1.

Several methods have been developed in order to recognize, starting
from correlations and studying their patterns, the existence of specific
interactions2 between sites of the sequences, i.e., between amino acids
of the protein.

Since these interactions are of key importance in order to ensure the
functionality of the protein, they constitute evolutionary constraints to
free and independent single site mutations [1]. Knowing them allows us
to better understand past and future evolution of a protein, as, in this
specific case, the influenza virus HA protein.

In this chapter we briefly present the two methods we tried (the
first with no success) to apply to our HA protein sequences, while first

1In fact, single abundances and pair-wise correlations correspond to the first two
moments of the unknown distribution representing the system; higher moments, al-
though useful to characterize the distribution, cannot be properly quantified using
the (poor) statistics offered by a typical sample of protein sequences.

2With interactions, here, we don’t mean only 3D contacts between amino acids
in the folded configuration of the protein, but also other types of functional relations
and interdependencies.
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results (of the second method) will be presented in the final section.
These two methods, called DCA — Direct Couplings Analysis — and
SCA — Statistical Couplings Analysis — start from the same point,
the matrix of empirical correlations, but proceed in different directions:
while the first has been mainly conceived in order to infer, from an MSA,
the 3D contacts of the folded protein and hence tries to obtain, as we will
see, 1 to 1 interactions between single sites of the sequences, the second
method searches for more collective interactions, i.e., aims to find bigger
ensembles of interacting sites along the sequence called sectors.

4.1 Direct Coupling Analysis

Direct Coupling Analysis has been implemented by its authors using
different strategies: a message-passing algorithm [5], pseudo-likelihoods
maximization [4] and by means of a mean field approximation [3]. We
chose to apply to our MSA the last algorithm, since it is the simplest
one and presents the same (sometimes better [3]) predictive accuracy of
the others.

4.1.1 Input

Mean field DCA algorithm takes as input a multiple sequence align-
ment (MSA), that is, as explained in 2.3, a rectangular N × L array

A = Aai ; i = 1, . . . , L; a = 1, . . . , N (4.1)

where L is the protein length, N is the number of sequences and Aai
is the amino acid in position i of the a sequence, i.e., a letter of the
IUPAC alphabet in table 2.1. For simplicity, it is useful to translate
the 20 amino acids plus 1 gap IUPAC alphabet into q = 21 consecutive
numbers 1, . . . , q.

4.1.2 Single and double site frequencies

In order to build up the correlation matrix, one has first to compute
single and double site frequencies, where the first gives the fraction of
sequences showing amino acid B3 in position i

fi(B) =
1

N

N∑
b=1

δB,Abi
(4.2)

3From now on, to represent a generic amino acid we use a Latin capital letter.
There is no relation between these letters and the IUPAC code in table 2.1.
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and the latter the fraction of sequences showing at the same time amino
acid B in position i and C in position j

fij(B,C) =
1

N

N∑
b=1

δB,Abi
δC,Abj

, (4.3)

with, obviously, i, j ∈ [1, L] and B,C ∈ [1, q].
From a theoretical point of view, DCA relies, as will be clearer in

the following, on the assumption that MSA sequences are drawn inde-
pendently from the same distribution. However, this is certainly not
true: biological sequence data show a strong sampling bias due to phy-
logenetic relations, multiple strain sequencing and bias in the selection
of the strains which are currently sequenced. For all these reasons and
because the present method has to deal with a huge number of parame-
ters, in [3] some possible corrections are proposed, i.e., the introduction
of multiplicities and of the so-called pseudo-counts.

For the former, the idea is to count for every sequence Aa the num-
ber ma of similar sequences Ab for which the overlap between the two
sequences

L∑
i=1

δAai ,Abi
≥ xL, (4.4)

with 1 ≤ b ≤ N and where x ∈ [0, 1] is a similarity threshold : two
sequences overlapping in a number of positions larger than xL are con-
sidered to carry almost the same information. Note that ma ≥ 1 ∀a,
since sequence Aa itself is also included.

Once multiplicities ma have been computed, one can re-weigh the
frequency counts (4.2) and (4.3) assigning weight 1 to sequences without
similar sequences within the MSA and down-weighting sequences featur-
ing ma similar sequences in the MSA with a factor 1/ma. In this way,
one gives smaller weight to strains which are more densely sampled and
a higher weight to strains less densely sampled. If one takes x = 1 (as
we have done) the effect is simply to remove repeats in the MSA (and
hence, for our sample, to reduce the size from N = 6573 to N = 3297).

Besides, adding pseudo-counts (λ) to the empirical frequency counts
(4.2) and (4.3), as in (4.5) and (4.6), is the same as adding extra obser-
vations to the real ones, in order to increase the size of the dataset. This
is a standard tool in biological sequence analysis and can be justified in
terms of Bayesian inference, under the hypothesis of having an a priori
knowledge on sites occupations represented by a Dirichlet distribution4.

4See Appendix B for details.
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Putting together these two corrections, one obtains for single and
double sites frequencies

fi(B) =
1

λ+Nind

(
λ

q
+

n∑
b=1

1

mb
δB,Abi

)
(4.5)

fij(B,C) =
1

λ+Nind

(
λ

q2
+

n∑
b=1

1

mb
δB,Abi

δC,Abj

)
(4.6)

where a good choice for pseudo-counts is λ = Nind [3] and where Nind =∑n
b=1(mb)−1 is the effective number of independent sequences.

Since for statistically independent positions i and j, fij(A,B) =
fi(A)fj(B), to quantify correlation between i and j sites one can intro-
duce [3] the Mutual Information

MIij =
∑
A,B

fij(A,B) ln

(
fij(A,B)

fi(A)fj(B)

)
, (4.7)

measuring how much of the information contained in fij(A,B) is not
already captured by single frequencies fi(A)fj(B).

4.1.3 A statistical inference problem

However, statistical correlations between sites emerge as a conse-
quence of direct interactions as well as from indirect ones, i.e., interac-
tions mediated through different amino acids in other sites. To disen-
tangle these contributions, the main idea proposed in [3] is to infer, from
the actual MSA, a global statistical model, sampled by our MSA, from
which one can obtain direct interactions.

This model is defined by the probability distribution P (A1, . . . , AL)
of having a (A1, . . . , AL) sequence. In order to reproduce correctly the
actual data sample, single and joint probability distributions are con-
strained to reproduce empirical single and double frequencies (4.5) and
(4.6), i.e.,

Pi(Ai) ≡
∑

{Ak|k 6=i}

P (A1, . . . , AL) = fi(Ai) (4.8)

Pij(Ai, Aj) ≡
∑

{Ak|k 6=i,j}

P (A1, . . . , AL) = fij(Ai, Aj). (4.9)

It is straightforward to see that the simplest model P (A1, . . . , AL)
respecting these constraints (via Lagrange multipliers) and maximizing
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the entropy

S = −
∑
{Ak}

P (A1, . . . , AL) lnP (A1, . . . , AL), (4.10)

is the 21-states Potts model

P (A1, . . . , AL) =
1

Z
exp

∑
i<j

eij(Ai, Aj) +
∑
i

hi(Ai)

 (4.11)

where

Z =
∑
{Ai}

exp

∑
i<j

eij(Ai, Aj) +
∑
i

hi(Ai)

 (4.12)

is the partition function. This is what expected, since, equivalently, one
can notice that fi(A) = 〈δA,Ai〉, and the maximal entropy distribution
with such a constraint, as already seen in 3.2.2, is a Gibbs-Boltzmann
distribution.

Parameters hi(Ai) and eij(Ai, Aj), introduced as Lagrange multipli-
ers, can be interpreted respectively as local fields and coupling strengths
and have to be tuned such that the constraints (4.8) and (4.9) are re-
spected.

The number of these parameters is

L(L− 1)

2
q2 + Lq. (4.13)

However the two conditions (4.8) and (4.9) are not independent and
our probability distribution is normalized, i.e.,∑

A

fi(A) = 1 (4.14)

for every position i = 1, . . . , L and∑
B

fij(A,B) = fi(A) (4.15)

∑
A

fij(A,B) = fj(B) (4.16)

for every couple of position (i, j) of the inequivalent L(L−1)/2. So that,
holding these relations between the frequencies, one has to constrain only
(q − 1) Pi(A) for every i, and (q − 1)2 Pij(A,B) for every couple (i, j).
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Hence, the number of independent parameters hi(Ai) and eij(Ai, Aj)
is only

L(L− 1)

2
(q − 1)2 + L(q − 1), (4.17)

and one can fix uniquely the solution of the model choosing arbitrary

eij(A, q) = eij(q,A) = hi(q) = 0, (4.18)

∀i, j = 1, . . . , L and ∀A = 1, . . . , q [3].
Since the explicit computation of the marginal probability con-

straints (4.8) and (4.9) would require an exponential time, which grows
like qL, in order to successfully solve this inverse statistical problem we
have to introduce an approximation.

4.1.4 Plefka expansion

Plefka expansion ([9],[10]) is nothing more than a Taylor expansion
of the Hamiltonian of the Potts model (4.11) around zero couplings, i.e.,
treating the couplings eij(Ai, Aj) as a perturbative term in the Potts
model Hamiltonian

H(α) ≡ −α
∑
i<j

eij(Ai, Aj)−
∑
i

hi(Ai), (4.19)

where α is the perturbative parameter varying in [0, 1]. If α = 0 we get
an independent variable model, since couplings are neglected, while if
α = 1 we get back to the original Potts-model.

As anticipated at the beginning of this section, we are interested in
the mean field approximation of this expansion. For practical purpose,
we apply it to the Gibbs potential G(α), the Legendre transform of the
free energy F (α) = − lnZ(α), rather than directly to F (α). The rea-
son for this choice is simply that, while the free energy is a function of
the couplings eij(A,B) and of the fields hi(A), the Gibbs potential is
a function of the couplings eij(A,B) and of the conjugate variables of
the fields hi(A), i.e., the probabilities Pi(A)5, so that the first constraint
(4.8) is satisfied for any value of α.

5This follows from the fact that

∂F

∂hk(C)
= Pk(C).
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Summarizing, the idea is to expand, around α = 0, the Gibbs po-
tential G(α), that has the explicit form

G(α) = − ln[Z(α)]−
L∑
i=1

q−1∑
B=1

hi(B)Pi(B)

= − ln

 ∑
{Ai|i=1,...,L}

e−H(α)

− L∑
i=1

q−1∑
B=1

hi(B)Pi(B).

(4.20)

Truncating its expansion

G(α) = G(0) +
∂G(α)

∂α

∣∣∣∣
α=0

α+ o(α2) (4.21)

at the leading order in α, we obtain the mean field approximation

GMF (α) = G(0) +
∂G(α)

∂α

∣∣∣∣
α=0

α. (4.22)

Hence, the mean field approximation simplifies the problem to the com-
putation of G(0) and of ∂G(α)/∂α|α=0 terms.

The first is the negative entropy of an ensemble of L uncoupled 21-
states spins A1, . . . , AL of fixed marginal probabilities Pi(Ai) and has
the well-known form:

G(0) =
L∑
i=0

q∑
A=1

Pi(A) lnPi(A). (4.23)

Deriving (4.20) with respect to α one obtains

∂G(α)

∂α
= −

∑
{Ai}

∑
i<j

eij(Ai, Aj) +
∑
i

dhi(Ai)

dα

 e−H(α)

Z(α)

+
∑
i

q−1∑
A=1

dhi(A)

dα
Pi(A).

= −
∑
{Ai}

∑
i<j

eij(Ai, Aj)e
−H(α)

Z(α)

= 〈−
∑
i<j

eij(Ai, Aj)〉α.

(4.24)
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Then, since for α = 0 the joint probabilities Pij(A,B) factorize:

∂G(α)

∂α

∣∣∣∣
α=0

= 〈−
∑
i<j

eij(Ai, Aj)〉α
∣∣∣∣
α=0

= −
∑
A,B

∑
i<j

eij(A,B)Pi(A)Pj(B).
(4.25)

Putting together these two terms, and remembering that we have
chosen the gauge (4.18), we can write the Gibbs potential in the mean
field approximation as:

G(α)CM =

L∑
i=1

[
q−1∑
A=1

Pi(A) lnPi(A)+

+

(
1−

q−1∑
A=1

Pi(A)

)
ln

(
1−

q−1∑
A=1

Pi(A)

)]
+

−

∑
i<j

∑
A,B

eij(A,B)Pi(A)Pj(B)

α.
(4.26)

We can now use equations6

hi(A) =
∂G(α)

∂Pi(A)
(4.27)

and

(C−1)ij(A,B) =
∂hi(A)

∂Pj(B)
=

∂2G(α)

∂Pi(A)∂Pj(B)
, (4.28)

to obtain, within the approximation G(α) ≈ G(α)MF , for α = 1, the
fields and the couplings for our Potts model (4.11).

Without reporting all the calculations (standard, but quite long),
making the derivatives in (4.27) and (4.28), one finds for the fields

hi(A) = ln

(
Pi(A)

Pi(q)

)
−
∑
i 6=j

q−1∑
C=1

eij(A,C)Pj(C), (4.29)

6Following from the equivalent equations for the conjugate variables of F (α):

∂ lnZ

∂hi(A)
= −Pi(A);

∂2 lnZ

∂hi(A)∂hj(b)
= −Pij(A,B) + Pi(A)Pj(B).
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and, deriving again with respect to Pj(B), one gets to the fundamental
result for the couplings:

(C−1)ij(A,B) =
∂hi(A)

∂Pj(B)

=

{
−eij(A,B) i 6= j
δA,B
Pi(A) i = j

.

(4.30)

Hence, following the approach just presented, we are able to solve
our complex inference problem only in one step: starting from the
matrix of empirical correlations of the MSA, Cij(A,B) = fij(A,B) −
fi(A)fj(B), we just need to invert it to obtain the couplings parameters
eij(A,B) for every couple of positions i and j and their respective states
A and B.

4.1.5 Direct interaction

If one is then interested in obtaining, for fixed (i, j), a single scalar
quantity DIij [3] from the (q−1)×(q−1) matrix eij(A,B), representing
the strength of the interaction between the two sites, one possible choice
is to isolate these sites and build the two-sites model

P dirij (A,B) =
1

Zij
exp

{
eij(A,B) + h̃i(A) + h̃j(B)

}
, (4.31)

where the couplings eij(A,B) are the ones just inferred, Zij is a re-
duced partition function and the fields h̃i(A) and h̃j(B) follow from the
conditions

fi(A) =

q∑
B=1

P dirij (A,B), (4.32)

fj(B) =

q∑
A=1

P dirij (A,B). (4.33)

DIij can be then defined as the mutual informationMIij (4.7) associated
to the reduced model (4.31), i.e., as:

DIij =

q∑
A,B=1

P dirij (A,B) ln

(
P dirij (A,B)

fi(A)fj(B)

)
, (4.34)

measuring only the strength of the direct couplings and omitting any
indirect effect.
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4.1.6 Concluding remarks

In agreement with the assumption that the MSA sequences sample
the Potts model (4.11), the couplings eij(A,B) represent direct interac-
tions between couple of amino acids and all the statistical correlations
Cij(A,B) emerge as an effect of this direct interactions. For this reason,
MIij , for some value of i and j, can have a not-negligible value even if
DIij is small; by contrast for high value of DIij , we expect to have also
high mutual information MIij , i.e., high correlations between the two
sites.

Hence, within this theoretical framework, the parameters eij(A,B)
contain all the information on the system, i.e., on the protein sampled
by the MSA, information hidden within the empirical correlations.

Although this method has been developed in order to infer 3D con-
tacts between amino acids in i and j positions that show an high value
of DIij , typically there are high values of DIij that do not correspond
to any 3D contact of the protein [3] and so must be the results of other
type of strong functional interactions, different than physical contact.
As already explained, for our purpose all the high values of DIij are
interesting. In fact, discrepancies between high DIij and effective i-j
3D contacts, seen as a weakness by the authors of DCA method, for us
could be of remarkable importance, since an high value of interaction
DIij that do not correspond to any 3D contact brings information we
cannot find looking at the 3D structure of the protein, already synthe-
sized and known.

4.2 Statistical Couplings Analysis

Statistical couplings analysis method (SCA) [2] takes as input the
same quantities of DCA, i.e., the single and double sites frequencies fi(A)
and fij(A,B). These frequencies can be weighted using exactly the same
corrections of DCA [1], so to obtain again (4.5) and (4.6). Instead of
using them to compute the simple matrix of correlation Cij(A,B) =
fij(A,B) − fi(A)fj(B), the main idea is to build up a conservation-
weighted correlation matrix, corresponding to the classical matrix of
correlations Cij(A,B) but rescaled by a functional of the positional con-
servations Di(A) and Dj(B). Let us define these quantities.

4.2.1 Positional conservation

Positional conservation Di(A) measures the divergence between the
observed frequency fi(A) of having amino acid A at position i from the
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background frequency q(A):

Di(A) ≡ fi(A) ln

[
fi(A)

q(A)

]
+ [1− fi(A)] ln

[
1− fi(A)

1− q(A)

]
, (4.35)

where the background frequency q(A) is the mean frequency of having
A in any site of a sequence

q(A) ≡ 1

L

L∑
i=1

fi(A). (4.36)

Di(A), as it is clear from (4.35), corresponds, in information theory,
to the relative entropy between the two empirical distribution fi(A)
and q(A) [18], and its actual meaning as a measure of conservation can
be better understood following its derivation in this particular context:
under the assumption that A has independent probability q(A) to appear
at a site i in each of the N sequences, the probability PN [fi(A)] of
observing fi(A) in an MSA of N sequences is

PN [fi(A)] =
q(A)Nfi(A)(1− q(A))N(1−fi(A))N !

[Nfi(A)]![N(1− fi(A))]!
, (4.37)

that for N sufficiently large, using Stirling approximation, takes the form

PN [fi(A)] ≈
[
q(A)

fi(A)

]Nfi(A) [ 1− q(A)

1− fi(A)

]N(1−fi(A))

= e−NDi(A), (4.38)

where Di(A) is defined as in (4.35).
Significant frequencies fi(A) are the ones with low probability (4.38),

i.e., frequencies fi(A) emerging from the background frequency q(A).
For these frequencies Di(A) is maximal, so that the value of Di(A) indi-
cates how unlikely the observed frequency of amino acid A at position i
would be if A occurred randomly with probability q(A); for this reason
Di(A) provides a definition of position-specific conservation.

4.2.2 Re-weighted correlation matrix

The conserved correlation matrix C̃ij(A,B) is then defined as:

C̃ij(A,B) ≡ φ(Di(A))φ(Dj(B))Cij(A,B), (4.39)

where the function φ(Di(A)) is given by

φ(Di(A)) =
∂Di(A)

∂fi(A)
= ln

[
fi(A)(1− q(A))

q(A)(1− fi(A))

]
. (4.40)
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This choice for φ(Di(A)) is only one of the possible choices ([2],[6]), since
DCA matrix is, in general, a weighted correlation matrix that measures
the significance of amino acid correlations using the conservation of the
residues involved. In fact, (4.40) has been chosen because it gives a func-
tional that rises even more steeply than Di(A) as the frequency fi(A)
approaches one, a property that reduces correlations arising from weakly
conserved amino acids (since the gradient of Di(A) approaches zero as
fi(A)→ q(A)), and emphasizes conserved correlations.

Since C̃ij(A,B) matrix is a qL× qL matrix, with rows and columns
that run both over site positions and possible amino acid states, and
since we are interested in finding relations between sites along the se-
quence (and not between couples (i, A) of sites and amino acids showed
at that sites), one can introduce the reduced L× L matrix C̃ij :

C̃ij ≡

∑
A,B

C̃ij(A,B)2

1/2

, (4.41)

indexed only by physical positions i and j along the sequences.

4.2.3 Spectral decomposition and noise-undressing

Besides these initial definitions and the weighting choices, one can
take in order to build a matrix with the correct statistics, the present
method relies, from a more fundamental and physical point of view, on
a simple spectral decomposition.

The idea is to diagonalize C̃ij matrix and to compare its eigenval-
ues with the ones one can obtain from a random correlation matrix,
built using a random MSA generated respecting the real MSA frequen-
cies fi(A)7. Doing that one sees that the bulk of the C̃ij spectrum
can be attributed to noise, since the same distribution of eigenvalues is
obtained for the random matrix (the so-called Marchenko-Pastur dis-
tribution [25]). This comparison procedure of the two spectra, called
noise-undressing [2], indicates in fact that only few eigenvalues (3,4 or
5; for our MSA, for example, 5) emerge from the noise bulk, i.e., have
values above the cutoff established by the random matrix spectrum, and
hence are really informative.

7A practical choice is to shuffle independently the elements along the starting
MSA columns.
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4.2.4 A coherent uninformative mode

Let us suppose that after the noise-undressing procedure, as in our
case (see section 4.3), only 5 eigenvalues emerge from the noise bulk.
Among them, the highest one, the first mode, has a distinctive prop-
erty: it describes a coherent correlation of all positions, probably due
to a common phylogenetic history, so that it does not carry any infor-
mation about the structure of the protein and the relations between its
sites.

In order to show this, one can take advantage of the fact that the
first mode makes the dominant contribution to C̃ij .

As a first order approximation, correlation matrix C̃ij can be writ-
ten, using Si =

∑
j C̃ij , as:

C̃
(1)
ij =

SiSj∑
k Sk

, (4.42)

a matrix that shows only one non-zero eigenvalue:

λ(1) =

∑
i S

2
i∑

k Sk
, (4.43)

with an associated eigenvector
∣∣λ(1)

〉
, whose components are

〈
i
∣∣∣λ(1)

〉
=

Si

(
∑

k S
2
k)1/2

, (4.44)

where |i〉 is the vector with all but the i-th component equal to zero, so
that

〈
i
∣∣λ(1)

〉
is the i-th component of

∣∣λ(1)
〉
.

Computing (4.43) and (4.44) for an empirical C̃ij , one can see that
these expressions are in fact good approximations of the first eigenvalue
and the first eigenvector of the same complete correlation matrix C̃ij .
This is due to the fact that the first mode has an high value and gives
the dominant contribution to the matrix. Hence, the first eigenvector
(4.44) gives the contribution of each position of the sequence to the total
correlation. Since each position contributes with the same sign to that
first eigenvector [2], one can conclude that it corresponds to a global,
coherent mode, whose origin is purely historical. Giving no contribution
to the grouping procedure of sequence sites in sectors, the first mode
can be disregarded.
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4.2.5 Sectors identification

Disregarding the first mode and bearing in mind that only the first
five8 modes are relevant, one can look at the correlation matrix along
these relevant modes, built as a projective operator using the eigenvec-
tors |k〉 of C̃ij for k = 2, 3, 4, 5, i.e.,

C̃ '
5∑

k=2

λk |k〉 〈k| , (4.45)

where λk is the eigenvalue relative to eigenvector |k〉 and where Dirac
notation has been used for right and left eigenvectors. Following the
same notation, elements of the matrix can be written as

C̃ij '
5∑

k=2

λk 〈i | k〉 〈k | j〉 , (4.46)

where, as before, |i〉 is the vector with all but the i-th component equal
to zero, so that 〈i | k〉 is the i-th component of the k-th eigenvector, or,
conversely, can be seen as the weight of position i along k mode.

Thinking to the correlation matrix in its diagonalized and relevant-
modes approximation (4.46), one can define sectors as positions i having
relevant weight 〈i | k〉 along a specific eigenvector.

Let us explain more in detail the procedure used to detect these
positions [2], although it will be clearer looking at its application in the
next section.

4.2.6 The projection procedure

Firstly one has to select, among the principal modes corresponding
to eigenvectors |2〉, |3〉, |4〉 and |5〉 those couples showing more clearly
the separation9 of site weights along specific modes.

In fact, if one plot the weights along k-eigenvector 〈i | k〉 versus the
weights 〈i | k′〉 along k′-eigenvector for every possible couple of (k, k′) ∈
(2, 3, 4, 5) one sees that most of positions i cluster near the origin, i.e.,
have components 〈i | k〉 and 〈i | k′〉 almost zero, but some of these posi-
tions form distinct groups (sectors) emerging, in the plot, along charac-
teristic directions. The couple of modes k and k′ providing the clearest
basis for sector identification, i.e., whose plot shows more clearly sectors

8Here we are following, for simplicity, our case (results in section 4.3) as an
example.

9See fig. 4.4.
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separation, is chosen and used in the following.
Once the couple (k, k′) has been selected, we can split positions

along the sequence in three sectors10: the first is defined as the positions
i for which 〈i | k〉 > ε and 〈i | k〉 > 〈i | k′〉; the second sector as those for
which 〈i | k〉 < −ε and 〈i | k〉 < −| 〈i | k′〉 | and the third one as those for
which 〈i | k′〉 > ε and 〈i | k′〉 > | 〈i | k〉 |.

The threshold ε is selected in order to separate significant weights
along the eigenvectors from statistical noise and follows from the com-
parison between components of random correlation matrix eigenvector
and the real ones: plotting random eigenvector components one obtains
a Gaussian distribution centered on zero with a width of approximately
2ε, so that only components of the actual eigenvectors whose absolute
value is above ε are distinct from noise.

4.2.7 Concluding remarks

SCA method, as explained by its authors ([2],[1]), is an application to
protein biophysics of instruments already successfully used in financial
analysis in order to extract nonrandom correlations of stock performance
over a finite time window [24]. Such studies show that only a small frac-
tion of observed correlations are relevant, because most of them arise
simply as a consequence of the limited period of time over which stock
prices are sampled. Furthermore, as for protein sectors, the remaining
significant correlations are organized in a few collective modes that de-
compose the economy into business sectors, group of business entities
whose performance fluctuates together over time.

In [2], using S1A protein family, two main characteristics of protein
sectors are identified: statistical independence and physical connectivity
in the tertiary structure of the protein. Therefore the concept of business
sectors in economy, translated in this different context, i.e., the study of
coevolving elements in proteins, appears to be again meaningful.

As we have seen, DCA and SCA methods are really different in their
principles as well as in their aims and results. Besides the fact that the
first method is theoretically more elegant and intriguing for a statisti-
cal physicist (since it uses a Potts model distribution and a mean field
approximation in order to obtain a simple one-step algorithm), it is not
very versatile from a practical point of view: the starting dataset (the
MSA) has to be very large and well sampled in order to infer the large
number of parameters of the Potts model. Otherwise, SCA method is
less ambitious but more powerful and versatile.

10See fig. 4.4.
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In fact, analyzing influenza A HA protein, for which available se-
quences are less than those available for the protein families used in [3],
DCA method fails, because of over-parametrization, while SCA gives
some interesting preliminary results.

4.3 First results

Probably because the HA protein MSA available is not big enough,
nor sufficiently diversified with respect to the bacterial protein families
MSAs (upon which the method has been tested [3]), DCA algorithm,
when applied to our dataset, is not able to give meaningful results.
In fact, the correlation matrix Cij(A,B), even using pseudo-counts or
different threshold x for the multiplicities definition, shows only few
eigenvalues different from zero. This is due to the fact that our sequences
are far fewer than qL2. Since doing the pseudo-inverse of such a matrix,
in order to search for the couplings, is meaningless, and performing a
spectrum analysis is addressed by SCA method, in this final section we
discuss only the application of the latter11.

We start showing why binary approximation for SCA cannot be
completely justified and hence used for our MSA (where with binary
approximation we mean the translation of the original 21-alphabet MSA
to a reduced one, presenting only two possible state, i.e., an Ising model)
and then briefly present the first, preliminary results of SCA analysis.

4.3.1 Binary approximation discussion

Binary approximation corresponds to translate any of the N amino
acid sequences of the MSA in a binary array of dimension L, showing
1 or 0 in positions where, respectively, the original sequence shows the
most frequent amino acid Ãi or any other amino acid. More formally

Iai ≡ δAai ,Ãi , (4.47)

where I is the binary MSA and a runs over the N sequences.
In 4.2.1 we introduced the positional conservation Di(A) (4.35). In

fact, one can also introduce in a similar way the overall conservation Di:
in the assumption that any amino acid A ∈ (1, . . . , 21) has independent
probability q(A) to be present at site i in each of the N sequences, we

11The method has been implemented using a combination of C++ and Mathemat-
ica.
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can write the probability of observing jointly at position i the amino
acids frequencies (fi(1), . . . , fi(21)) as

PN [fi(1), . . . , fi(21)] =
N !q(1)Nfi(1) · · · q(21)Nfi(21)

(Nfi(1))! · · · (Nfi(21))!
≈ e−NDi , (4.48)

where now the overall conservation Di is

Di =

21∑
A=1

fi(A) ln

(
fi(A)

q(A)

)
. (4.49)

The idea, in order to understand if binary approximation holds, is
to compare the overall conservation Di with the positional conservation
Di(Ãi) of the most frequent amino acid at position i.

As a general rule Di(A) ≤ Di. Since Di(A) is maximal for A = Ãi
and both Di(Ãi) and Di are non-linear functions of fi(A) that rise more
and more steeply as fi(A) approaches one, Di(Ãi) can, sometimes, be
used as an approximation for Di. If this is true, plotting Di(Ãi) over Di,
one must obtains points close to the line Di(Ãi) = Di, which justifies the
use of binary approximation. Otherwise, the passage from 21-alphabet
to the binary one generates a loss of conservation-related information.

Figure 4.1: Most frequent amino acid conservation in position i, Di(Ãi)
(y-axis), versus total conservation in position i, Di (x-axis). Especially
for low conserved positions Di ∈ [1, 2.5], points fall far below the line
y = x: we choose not to use binary approximation.
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Our situation, in fact, is the latter, as can be argued looking at figure
4.1, especially at sites with low overall conservation Di ∈ [1, 2.5].

Since working with all the 21-alphabet is not problem from a com-
putational point of view, SCA analysis, in the following, is performed
without using binary approximation.

4.3.2 Influenza HA protein sectors

Conservation-weighted correlation matrix built for our HA protein
MSA, the one presented in chapter 2 and whose information content has
been studied in chapter 3, is shown in figure 4.2 in the reduced form of
equation (4.41).

Figure 4.2: Reduced conservation-weighted correlation matrix C̃ij for
HA protein MSA. As one can see, almost all correlations are close or
equal to zero. A site with row (and hence column) completely blue, i.e.,
showing correlations equal to zero with respect to every other site, is a
site showing always the same amino acid in all the sample, so that the
pattern of horizontal (and vertical) blue lines indicates that there are
many conserved positions in our sample.
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The spectrum of this matrix is compared with three random correla-
tion matrix spectra in figure 4.3, where, as already explained, a random
matrix of correlation is a matrix constructed using again (4.41) but on a
random MSA, built shuffling independently elements along the columns
of the original MSA. From this spectra comparison one can see that only
four informative eigenvalues emerge from the bulk of noisy eigenvalues
(the first mode (λ1 ≈ 118) has been already removed from the plot in
figure 4.3, since, following the discussion of 4.2.4, can be ignored in the
sectors identification procedure).

Figure 4.3: Reduced conservation-weighted correlation matrix C̃ij spec-
trum (red) compared with three random correlation matrix spectra (or-
ange). Without taking into account the first one (λ1 ≈ 118, not shown),
there are only 4 eigenvalues emerging from the bulk of the spectrum.
The latter, in fact, is well reproduced by the random matrix spectrum
and hence can be attributed to noise (finite-size of the sampling).

Plotting the components of the four eigenvectors associated to the
other four relevant modes λ2, λ3, λ4 and λ5, as explained in 4.2.5, one
finds that the couple of modes (2, 3) is the one that shows more clearly
sectors separation along different modes, as testified by figure 4.4.

Using these two modes, looking at figure 4.4, one can identify the
first sector as the ensemble of positions i for which 〈i | 2〉 > ε and
〈i | 2〉 > | 〈i | 3〉 |; the second sector as the ensemble of positions i for
which 〈i | 2〉 < −ε and 〈i | 2〉 < −| 〈i | 3〉 |; and the third sector as the en-
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semble of positions i for which 〈i | 3〉 > ε and 〈i | 3〉 > | 〈i | 2〉 |. ε = 0.025,
here, is the value above which the frequency of random correlation ma-
trix eigenvector components fall below 1% and is used here as a cutoff to
distinguish relevant components 〈i | 3〉 and 〈i | 2〉 from the ones related
to noise.

Figure 4.4 shows that while the first and the second sector sites are
clearly disposed along distinct directions, the first and the third sectors
have many sites close to the line 〈i | 3〉 = 〈i | 2〉. Following the rules just
described these sites have been forcedly collocated in one of the two sec-
tors. However, as a consequence of the “ambiguous” positions of these
sites, we expected that the first and the third sectors will be partially
correlated.

- 0.15 - 0.05 0.05 0.15
<i È2 >

- 0.05

0.05

0.15

<i È3 >

Figure 4.4: 〈i | 3〉 versus 〈i | 2〉 eigenvectors |3〉 and |2〉 components. Blue
points represent the first sector, for which 〈i | 2〉 > ε and 〈i | 2〉 > | 〈i | 3〉 |;
red points represent the second sector, for which 〈i | 2〉 < −ε and 〈i | 2〉 <
−| 〈i | 3〉 |; green points represent the third sector, for which 〈i | 3〉 > ε
and 〈i | 3〉 > | 〈i | 2〉 |. ε = 0.025, as explained in 4.2.5, is the cutoff
used to distinguish relevant components 〈i | 3〉 and 〈i | 2〉 from the ones
generated by noise. While the first and the second sector sites are clearly
disposed along distinct directions, the first and the third sectors have
many sites close to the line 〈i | 3〉 = 〈i | 2〉. Following the rules described
these sites have been collocated in in one of the two sectors. However, as
a consequence of the “ambiguous” positions of these sites, we expected
that the first and the third sectors will be partially correlated.
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The sectors so obtained are composed by, respectively, 59, 20 and
35 positions; these positions are not consecutive positions along the se-
quence (in fact they can be very distant one from another).

One can visualize the three sectors plotting the matrix

C̃23 = λ2 |2〉 〈2|+ λ3 |3〉 〈3| (4.50)

only for the sites belonging to the sectors, the ones showed in figure 4.4.
This has been done in figure 4.5. As expected, while the first and the
second sectors are completely uncorrelated one respect to the other, this
is not strictly true for the first and the third.

Figure 4.5: SCA matrix for HA protein MSA after removal of statistical
noise, global and coherent correlations, and trimming the 114 positions
that show significant weights along the eigenvectors |2〉 and |3〉. As
expected looking at figure 4.4, first (green) and third (blue) sectors are
not completely uncorrelated one respect to the other, while this is true
for the other two couples of sectors.





Conclusions and further
work

Starting from the selection of the richest sequences dataset of in-
fluenza A HA protein available at the time, the present work has achieved
some interesting results.

Firstly, information content of the dataset has been investigated us-
ing theoretical instruments derived from information theory and statisti-
cal physics of complex systems. Looking how the clusters distribution of
the sample behaves at different clustering scales, it has been concluded
that the dataset contains enough statistics to let us infer, starting from
it, the behavior of the actual system (the protein), at least partially.

This procedure, explained in chapter 3, is very general and can be
applied to any data sample, simply using the clustering program written
in C++ and presented in Appendix A. In fact, this program implements
Affinity Propagation algorithm and computes the entropies needed for
the information content discussion taking as input a very general matrix
of normalized similarities s(i, k) between elements of the data sample.
These elements can be protein sequences, word sentences, picture (seen
as arrays of pixels) and so on. One just needs to define a consistent
measure of similarity between these objects, as we have done for protein
sequences in (3.28).

After this preliminary study, two very different inference methods
have been presented, compared and applied to the starting dataset, DCA
and SCA. The results reached with the second method, despite being
just preliminary, show that the direction taken is the right one and sug-
gest the presence within HA protein of co-evolving sub-structures, the
sectors, whose physical and biological role in HA protein has to be inves-
tigated; this investigation constitutes the natural following step of the
present work.

Furthermore, as the financial origin of the SCA method testifies,
these inference methods can be used in other fields different from the
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biophysical one and also not belonging to physics at all. This is a con-
sequence of the fact that these methods take as input an MSA, i.e., a
rectangular array of characters built putting together N linear arrays,
each one of them represents a different realization of the same object.
In the present work, the object represented and studied is the HA pro-
tein of influenza A virus and the N linear arrays of letters stand for the
possible amino acids sequences that represent different realization of the
same HA protein. Any time one has an object that can be described, in
principle, using an array of letters, one can translate a sample of realiza-
tions of this object in an MSA and so apply the methods here discussed.

Finally, since the sectors are ensemble of sites along the HA amino
acids sequence showing strongly correlation within their self and almost
no correlation with outer sites, one can think to build a model of dynam-
ical evolution for the HA protein of influenza A in which sites belonging
to the same sector are constrained to co-evolve. Hopefully, such a model
will be able to better describe past evolution of the HA protein of in-
fluenza A virus.



Appendix A

Here we present the clustering program, written in C++, that imple-
ments Affinity Propagation algorithm and calculates the entropies (3.21)
and (3.22) related to the clustering outcome.

#include <math.h>

#include <fstream>

#include <stdlib.h>

#include <iostream>

#include <stdio.h>

#define n 3297

#define nc 3297

double sim[n][n]={0}, ava[n][n]={0}, dist[n][n]={0},

res[n][n]={0}, avaold[n][n]={0}, resold[n][n]={0},

pi[n]={0}, pim[nc]={0}, molt[n]={0};

double mu, eps, damp, sum[n][n]={0},massimo,

grad, minimo, smax,hk, hs, r;

int i, j, k, t, tmax, nclust, differ, control, dim, c,

dim2, tot, decision, jmassimo;

int clu[n]={0}, oldclu[n]={0};

using namespace std;

int main()

{

cout << "--------------------" << endl;

cout << "AFFINITY PROPAGATION" << endl;

cout << "--------------------" << endl;

cout << "What strategy for computing mu?

(tap 0 for minimum, 1 for direct input)"

<< endl;

cin >> decision;

if(decision==1){

cout << "Tap the value for mu: ";
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cin >> mu;

}

cout << "Reading distance matrix, please wait." << endl;

//READING FILES

FILE * distance;

distance=fopen("distances.txt","r");

for(j=0;j<n;j++){

for(i=0;i<n;i++){

fscanf(distance, "%lf", &dist[i][j]);

sim[i][j]=1-dist[i][j];

}

}

fclose(distance);

FILE * mol;

mol=fopen("moltep.txt","r");

for(j=0;j<n;j++){

fscanf(mol,"%lf",&molt[j]);

}

fclose(mol);

cout << "Controlling data..." << endl;

tot=0;

for(j=0;j<n;j++){

for(i=0;i<n;i++){

if(dist[i][j]==0){tot=tot+1;}

}

}

if(tot==n){cout << "Done." << endl;}

else{cout << "ERROR!" << endl;}

if(decision==0){

minimo=sim[0][1];

for(j=1;j<n;j++){

if(minimo>sim[0][j]){minimo=sim[0][j];}

}

for(i=1;i<n;i++){

for(j=i+1;j<n;j++){

if(minimo>sim[i][j]){minimo=sim[i][j];};

}

}

mu=minimo;

cout << "mu from minimum between similarities: "

<< mu << endl;

}

for(i=0;i<n;i++){sim[i][i]=mu;}

cout << "Initialising a and r..." << endl;

damp=0.90;

tmax=100000;
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eps=0.0001;

grad=5;

//ALGORITHM

//Initializing responsibilities and availabilities

for(i=0;i<n;i++){

for(j=0;j<n;j++){

ava[i][j]=0;

res[i][j]=0;

}

clu[i]=i;

}

// Starting clustering process

control=0;

cout << "Starting clustering..." << endl;

for(t=0;t<tmax and (grad/eps)>10;t++){

for(j=0;j<n;j++){

for(i=0;i<n;i++){

avaold[i][j]=ava[i][j];

resold[i][j]=res[i][j];

sum[i][j]=ava[i][j]+sim[i][j];

}

oldclu[j]=clu[j];

}

// updating responsibilities

for(i=0;i<n;i++){

massimo=sum[i][0];

jmassimo=0;

for(j=1;j<n;j++){

if(massimo<sum[i][j]){

massimo=sum[i][j];

jmassimo=j;

}

}

for(k=0;k<n;k++){

if(k!=jmassimo){

res[i][k]=damp*resold[i][k]+

(1-damp)*(sim[i][k]-massimo);

}

if(k==jmassimo){

if(k!=0){

massimo=sum[i][0];

for(j=1;j<n;j++){

if(massimo<sum[i][j] and j!=k){

massimo=sum[i][j];}

}

}
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if(k==0){

massimo=sum[i][1];

for(j=2;j<n;j++){

if(massimo<sum[i][j]){

massimo=sum[i][j];

}

}

}

res[i][k]=damp*resold[i][k]+

(1-damp)*(sim[i][k]-massimo);

}

}

}

//updating availabilities

for(k=0;k<n;k++){

smax=0;

for(j=0;j<n;j++){

massimo=0;

if(massimo<res[j][k] and j!=k){

massimo=res[j][k];

}

smax=smax+massimo;

}

for(i=0;i<n;i++){

minimo=0;

if(i!=k){smax=smax-res[i][k];}

if(minimo>(res[k][k]+smax)){

minimo=res[k][k]+smax;

}

if(k!=i){

ava[i][k]=damp*avaold[i][k]+(1-damp)*minimo;

}

if(k==i){

ava[i][k]=damp*avaold[i][k]+(1-damp)*smax;

}

}

}

for(i=0;i<n;i++){

k=0;

massimo=ava[i][0]+res[i][0];

for(j=1;j<n;j++){

if(massimo<ava[i][j]+res[i][j]){

massimo=ava[i][j]+res[i][j];

k=j;

}

}
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clu[i]=k;

}

grad=0;

for(i=0;i<n;i++){

for(j=0;j<n;j++){

grad=grad+(ava[i][j]-avaold[i][j])*

(ava[i][j]-avaold[i][j])+

(res[i][j]-resold[i][j])*

(res[i][j]-resold[i][j]);

}

}

grad=sqrt(grad)/n;

// controlling advance

differ=0;

for(i=0;i<n;i++){

if(clu[i]!=oldclu[i]){differ=differ+1;}

}

cout << "differ: " << differ << " grad/eps: "

<< grad/eps << " tempo: " << t << endl;

}

//END OF THE ALGORITHM

//Statistics and outputs

ofstream results;

ofstream results2;

ofstream results3;

ofstream results4;

results.open("clusters.txt");

results2.open("numOnsize.txt");

results3.open("numOnsizeMolt.txt");

results4.open("sim.txt");

nclust=0;

//number of clusters

for(i=0;i<n;i++){

if(clu[i]==i){nclust=nclust+1;}

}

results << "# Number of clusters: " << nclust << endl;

cout << "Number of clusters: " << nclust << endl;

results << "Exemplar | size cluster |

size cluster with molt | " << endl;

for(i=0;i<n;i++){

dim=0;

dim2=0;

control=0;

for(k=0;k<n;k++){

if(clu[k]==i){

dim=dim+1;
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dim2=dim2+molt[k];

control=1;

}

results4 << sim[k][i] << "\t";

}

results4 << endl;

if(control==1){

results << i << "\t" << dim << "\t"

<< dim2 << endl;

pi[dim]=pi[dim]+1;

pim[dim2]=pim[dim2]+1;

if(clu[i]!=i){cout << "Error! Sequence: "

<< i << endl;}

}

}

results2 << "# Size | Num of clusters" << endl;

results3 << "# Size | Num of clusters

(counting multiplicities)" << endl;

for(i=0;i<nc;i++){

if(i<n){

if(pi[i]!=0){

results2 << i << "\t" << pi[i] << endl;

//r=i;

//hs=hs-r*pi[i]/n*log(r/n);

//hk=hk-r*pi[i]/n*log(pi[i]*r/n);

}

}

if(pim[i]!=0){

results3 << i << "\t" << pim[i] << endl;

r=i;

hs=hs-r*pim[i]/nc*log(r/nc);

hk=hk-r*pim[i]/nc*log(pim[i]*r/nc);

}

}

results3 << endl << "# mu | hs | hk | nclust

| n | nc" << endl;

results3 << mu << "\t" << hs << "\t" << hk << "\t"

<< nclust << "\t" << n << "\t" << nc;

results.close();

results2.close();

results3.close();

results4.close();

return 0;

}
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As already said, pseudo-counts λ added to the empirical frequency counts
in (4.5) and (4.6) can be seen as extra observations added to the real ones in
order to increase the size of the dataset. Let us show more in detail what does
it means.

Suppose to have N sequences. Among those, nA show amino acid A at
some specific i position, where, as before, A ∈ (1, . . . , q). If plenty of data are
available, i.e., if N is large enough, the probability θA to have a sequence show-
ing at position i amino acid A is well represented by the observed frequencies:

θA ≈
nA
N
, (4.51)

with N =
∑
A nA. This is the maximum likelihood solution.

For small values of N , this is no longer true. If, for example, N = 2, with
n1 = 2 and nA = 0 ∀A 6= 1, one cannot say that the probability of having
amino acid A = 3 at position i is zero. In a similar case, one would like to
assign some probability to the other residues and not rely entirely on so few
observations. Since there are no more observations, these probabilities must be
determined from prior knowledge. This can be done via Bayesian statistics.

The idea is to choose for the a priori distribution of the probabilities θA
the Dirichlet distribution

D(θ|α) =
1

Z(α)

q∏
A=1

θαA−1
A , (4.52)

where αA are constant parameters that characterize the distribution, Z(α) is
the normalizing factor

Z(α) =

∫ q∏
A=1

θαA−1
A dθ =

∏q
A=1 Γ(αA)

Γ(
∑q
A=1 αA)

, (4.53)

and θA, being probabilities, respect the conditions 0 ≤ θA ≤ 1 and
∑
A θA = 1.

Then, for given θ, the probability of getting n = (n1, . . . , nq) counts is
described by the multinomial distribution

P (n|θ) =
1

M(θ)

q∏
A=1

θnA

A , (4.54)
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where the normalizing factor M(θ) is

M(θ) =

∏
A nA!

(
∑
A nA)!

. (4.55)

We can now use Bayes theorem

P (θ|n)P (n) = P (n|θ)D(θ|α), (4.56)

to write

P (θ|n) =
P (n|θ)D(θ|α)

P (n)

=

∏
A θ

nA+αA−1
A

M(n)P (n)Z(α)

=
Z(n+α)

M(n)P (n)Z(α)
D(θ|n+α),

(4.57)

where the last two equalities follow from the definitions (4.52) and (4.54).
Since all the distribution introduced are normalized, we must have

Z(n+α)

M(n)P (n)Z(α)
= 1, (4.58)

so that the posterior distribution of θ is again, as the prior one, a Dirichlet
distribution

P (θ|n) = D(θ|n+α), (4.59)

but with parameters αA + nA.
Using this distribution, one can compute the posterior mean values for θA:

〈θA〉 =

∫
θAD(θ|n+α)dθ

=
1

Z(n+α)

∫
θA
∏
B

θnB+αB−1
B dθ.

(4.60)

Then, bringing θA inside the product, and using the vector δA (δAA = 1, δAB = 0
∀ B 6= A), we write

〈θA〉 =
Z(n+α+ δA)

Z(n+α)

=

∏
B Γ(nB + αB + δAB)

Γ[
∑
B(nB + αB + δAB)]

·
Γ[
∑
B(nB + αB)]∏

B Γ(nB + αB)

=

∏
B(nB + αB + δAB − 1)!

[
∑
B(nB + αB + δAB)− 1]!

·
[
∑
B(nB + αB)− 1]!∏
B(nB + αB − 1)!

=
nA + αA∑
B nB + αB

=
nA + αA
N + λ

,

(4.61)
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where (4.53) has been used and where λ =
∑
A αA.

Hence, considering prior knowledge is like adding extra observations (αA)
to the real ones (nA). In (4.5) and (4.6) we used αA = α = λ/q for every amino
acid A.
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