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Abstract

The problem of partitioning isothetic polygons into rectangles, where the goal
is to minimise the total length of the partition, has some applications in VLSI-
circuit design and construction. If these polygons have holes inside, the problem
becomes NP-hard, instead, in the case of hole-free polygons, an optimal partition
can be computed in O(n4) exploiting dynamic programming.

In this thesis, I focus my attention on rectangular partitions of histograms,
which are special cases of hole-free isothetic polygons, using the fact it’s possible
to partition them into histograms in linear time. I’ve used dynamic programming
in order to produce optimal partitions and a parameterised approximation algo-
rithm, a variant of the so called “thickest first” algorithm. Then, I’ve compared
experimentally these two algorithms to check theoretical bounds and to evalu-
ate the goodness of the approximation algorithm, especially on some interesting
histogram shapes like staircase and staircase united with its mirror image.

In parallel, an interactive tool has been implemented, with a graphical repre-
sentation, which can help users to visualise the differences between these methods.
The implementation of the algorithms, the auxiliary structures and the GUI of the
tool have been implemented with C++ and Qt graphics libraries.
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Chapter 1

Introduction

Nowadays optimisation problems represent a huge research field (always mov-
ing). Probably the Traveling Salesman Problem is the most famous example. It
is known that it can be very difficult, if not impossible, to find optimal solution
which minimise or maximise certain object functions for larger inputs. It may be
prohibitive searching among all possible combinations in order to find the best
solution. Maybe it is possible to obtain it, but with a cost too high to sustain (i.e.,
the computation time).

In VLSI circuit design we want to minimise the length of rectilinear lines that
link pairs of points. The problem of partitioning isothetic polygons into rectangles,
is helpful to reach this aim. In this problem, we want to divide the original polygon
into empty rectangles with the goal to minimise the sum of the lengths of the
segments that we are inserting. These segments are not allowed to overlap except
on their endpoints. In this work I’ve concentrated my attention on a particular
type of isothetic polygons, the histograms. A histogram has all edges parallel to
the x- or the y-axis, but it also has a long edge whose length is equal to the total
length of all its parallel edges.

Particularly, we analysed two algorithms to partition histograms into rectan-
gles. The first algorithms we will present is the optimal algorithm, but as we said
above, it has a high cost to afford. The second one is an approximate method that
manifests a good trade-off between the quality of the solution, and the time used
to obtain it. It is a variant of the thickest method.

In order to understand the differences between the produced solutions of these
methods, a tool with a graphical interface has been developed and used.

1



2 CHAPTER 1. INTRODUCTION

1.1 Thesis objectives

The thesis has the purpose to test the goodness of some theoretical bounds that
haven’t been checked in practice. In particular, we used a dynamic programming
approach to produce optimal partitions. Then we compared these solutions with
those produced by the approximation algorithm, the q-thickest first algorithm (a
modification of the original thickest-first algorithm). The terms we used to evaluate
the validity of q-thickest algorithm are the ratio between partition lengths and the
computation times.

Another goal is to realise a practical implementation of both techniques, cre-
ating a source code as clear as possible, by using simple data structures, without
losses in time performance, in relation with their expected time analysis.

To allow a complete verification, the use of a graphical representation, through
the interactive tool, helped us to visualise what happens. It was necessary when
we were working with polygons defined by tens of vertices, since a manually scan
would have been prohibitive.

1.2 Organisation

Now, I will present a brief description of what each chapter contains.

Chapter 2 In this section, I’ve introduced the problem of partitioning poly-
gons (histograms) into rectangles; then, I explained both algorithms. The first
algorithm is the optimal method. I’ve started defining its dynamic programming
scheme: the definition of minimal sub-problems and its way to build the entire
solution. After that, I have illustrated the implementation of this algorithm and
the data structures I used. As a final step I proved the time and space complexity
associated with my implementation. Afterwards, I illustrated the approximation
algorithm, the q-thickest first method, in the same manner that has been done for
the optimal one. From the complexity analysis, the results are:

Optimal


∈ O(n3) time

∈ O(n2) space
q − thickest


∈ O(n log n) expected time

∈ O(n) space

Chapter 3 For our purpose to test the goodness of the solutions of the approx-
imation algorithm, we have performed several simulations. We have tested the
behaviour of the q-thickest algorithm with histograms which have been generated
with a randomisation technique. We defined three families of histograms: general
histograms, staircase histograms and symmetric histograms. We could imagine
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this last type as a staircase histogram united with its mirror image. They rep-
resents, at the moment, the “worst case” for the approximation method. As an
initial step, we have studied the best values of the q parameter on the different
kinds of histograms. Then, we used these values to compare the two partitioning
algorithms. The terms of comparison are those reported in section 1.1. The data
produced in the simulation tests have been collected, and the final results we have
computed is an average value on them.

The main results are two. The first is that the trend of the lengths of the
approximate solutions follows the trend of the lengths of the optimal ones. The
second result is that the solutions were never close to the theoretical bound of the
q-thickest algorithm. In [9], Levcopoulos proved that every

√
2-thickest partition

has length < (1 +
√

2) ×M(P ), where M(P ) denote the length of the optimal
partition set. The average results for considered cases, are in practice better: we
obtained an upper bound of about 1.1 ×M(P ). In this way, we affirm that the
q-thickest algorithm is preferable, by setting q to a value which indicated by our
test results.

At the end, we also wanted to examine the behaviour of the optimal algorithm
in terms of computation time and number of really solved sub-prolems.

Chapter 4 Inside this chapter, we explain how the GUI tool appears and how
users can make use of it. We show its main features like the possibility to create or
to load histograms and to visualise the information about the solutions produced
by the algorithms.

Chapter 5 In this final chapter, I outlined the results of this work and I dis-
cussed some possible improvements or changes to be done, especially on the study
of the q parameter. I have also introduced the question to extend the results to
other possible related problems.
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Chapter 2

Rectangular partitions of
histograms

2.1 Introduction to the problem

The terms “rectangular partition of a polygon” indicates the process which
finds a set of segments that divides the polygon into empty rectangles. Finding
an optimal partition could be very difficult especially when the polygon has holes
inside; in this case the problem is NP-hard. A partition is optimal when the sum
of the segments’ length is minimal, and it’s denoted by M(P).

Histograms are a special case of isothetic polygons: they have all edges parallel
to x- or y-axis, and additionally they have a distinct edge, the base, whose length
is equal to the total length of all other edges parallel to it. In this thesis, the focus
is on histograms, exploiting the fact that it is possible to partition an isothetic
polygon (without holes) into histograms in linear time (O(n)).

In the following sections, an optimal (O(n3)) and an approximation algorithm
(O(n log n) in the average case) to partition histograms in rectangles are presented,
with the details of the implementation and the associated analysis of the time and
space complexity.

At the end of the chapter the linear time algorithm to divide isothetic polygons
into histograms is described.

2.2 Optimal method

In this section, we describe the method which finds the optimal rectangular
partition of a histogram. The approach that best describes how this method
works, is based on dynamic programming.

5



6 CHAPTER 2. RECTANGULAR PARTITIONS OF HISTOGRAMS

There are two different ways in which dynamic programming could be imple-
mented:

1. Top-down approach. In this variant, there is a global structure where all
subproblems already solved and their solutions are memorized. To solve a
new problem, we split it into all possible subproblems and check if a solution
of these subproblems exists or not. In the first case, we obtain the solution
by accessing the global structure; in the other case, we have to solve the
subproblems and store their solutions. After that, we have to combine the
partial results in order to obtain the solution of the original problem. This
technique is named memoization (and not memorization [4]).

2. Bottom-up approach. In this case, we define a subproblems graph and
start to solve it from the leaves (minimal subproblems) to the root (origi-
nal problem), in a backward order, using the subproblems solution to build
the solution of a bigger one. An intelligent way in the construction of this
topological order may lead to a simple processing scheme.

This last approach has the advantage over the memoization scheme that there’s
no unsuccessful access to the global structure. This is due to the fact that, when
we’re processing a problem, all the possible subproblems are already solved. On
the other hand, finding a topological order may be too complicated; in these cases
the first variant is preferable because it’s easier to implement. In this work, the
second variant has been used to implement the optimal partitioning method. The
reasons will be clearer in the section below.

2.2.1 Description

The starting point is represented by the definition of how a subproblem is
made. Given n, the number of the original vertices that completely describe a
histogram, a minimal subproblem is defined by five consecutive vertices, which
describe a couple of consecutive horizontal edges (e.g., {0,1,2,3,4} and {1,2,3,4,5}
define the leftmost minimal subproblems). When defining a sub-histogram,

We have two possibilities to represent two consecutive horizontal edges: we
could start and finish with even vertices or odd ones. Sometimes the solutions of
these subproblems are the same, sometimes not, so we have to distinguish them
like two separate subproblems (see Fig. 2.2). As explained above, we construct
the original problem solution using the derived subproblems solutions. To compute
subproblems with three consecutive horizontal edges, we recall the previous results:
we split them into minimal subproblems putting a horizontal/vertical edge and
combining the partial results (see Fig. 2.3). Then we continue until we reach
the root of our “topological tree”. That explains why we have chosen the second
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Figure 2.1: Histogram example

(a) even subproblem (b) odd subproblem

Figure 2.2: Example of distinct subproblems and their solutions associated at the
same two horizontal edges

approach of the dynamic programming: to determine the solutions of subproblems
of level i, we use all the results obtained by sub-subproblems of level i+ 1; in this
way there is no access to the global structure without retrieving the solution from
a smaller subproblem (see 2.2.1 details of implementation).

When we solve a subproblem, it suffices to consider two cases:

1. we don’t insert any additional vertical edge in the partition; in this case we
put the highest possible horizontal edge which cuts off the base of the current
subproblem;

2. we insert a vertical edge connecting the base to a vertex. In that case we put
either the leftmost or the rightmost such vertical edge which is in the optimal
partition. In this way we ensure that in one of the resulting subproblems,
if the corresponding base endpoint is not an original vertex of the input
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(a) minimal subproblem 1 (b) minimal subproblem 2 (c) minimal subproblem 3

(d) forcing horizontal edge (e) forcing first vertical edge (f) forcing second vertical edge

Figure 2.3: Example of computation of 3-edges subhistogram using previous result

histogram, then there is no other vertical edge there in the optimal partition
reaching the base, and hence the corresponding part which includes the base
can be cut off as in case (1) above, by the highest possible horizontal edge.

In this way we can also ensure that in the other subproblem, the remaining part of
the base is still “anchored” at the lowest original vertex of the original histogram
which belongs to the subsequence.

It suffices to consider a quadratic number of subproblems, because we don’t
have to consider, for each subproblem, all possible places where the base could
be. We must store solutions for the case when the base of the subproblem is at
a lowest original vertex (i.e., of the original input histogram) at one end of the
associated subsequence of the perimeter.

When defining a sub-histogram with a couple of even or odd vertices, we could
find a histogram whose base is composed by a couple of non-original vertices. In
this case we have a degenerated histogram and we solve it as in the first case (see
Fig. 2.3.c).

In the case both cases find a solution with equal costs, we gave major priority
to the insertion of a vertical segment.
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Listing 2.1: Optimal Method

for i=1 to numEdges−1 {
for j=0 to numEdges−i−1 {

// even case
s t a r t = 2∗ j
s top = 2∗( j+i +1)
h o r i z s o l = put hor i zonta l s egment ( s ta r t , stop )
v e r t s o l = p u t v e r t i c a l s e g m e n t ( s ta r t , stop )
memorize best ( h o r i z s o l , v e r t s o l )
//odd case
s t a r t = 2∗ j +1;
stop = 2∗( j+i +1)+1;
h o r i z s o l = put hor i zonta l s egment ( s ta r t , stop )
v e r t s o l = p u t v e r t i c a l s e g m e n t ( s ta r t , stop )
memorize best ( h o r i z s o l , v e r t s o l )

}
}

Details of the implementation

As usual, when dynamic programming is used, the main idea has been to store
solutions on a matrix in which the (i, j)-element contains the solution of the sub-
histogram induced by vertices in the interval [i, j], in terms of segments inserted,
total partition length and indexes of the associated subproblems. Thereby we use
only the upper triangular part of the matrix. Additionally, since we compute only
sub-histograms induced by even(odd) vertices, a huge amount of space remains
unused (about 3/4 of the matrix). For this reason I’ve used a linear array to
simulate the matrix cells, adding a second array to handle the different offsets
between two neighboring cells in the matrix but distant in the array (see 2.2.2
space complexity).

During the tests to check the correctness and to evaluate the performance
of this implementation, I realized that in the symmetric case (section 3.3), the
algorithm didn’t work as we expected: it took too much time to solve a histogram
like that. The cause was as simple as hidden in the implementation itself: when we
solve a sub-histogram, there are at least two ways to partition it (i.e. see Fig. 2.2
different solution for minimal subproblems), but only the best one is memorized in
the global structure. Therefore, the following situation may arise: assume (wlog)
we have a problem with the lowest original vertex on the left(right) and the best
choice is to put vertical edges for the subproblems associated with the current
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one. If we are putting a vertical edge to partition it, then we have to search if
the solution of the right(left) induced subproblem has a horizontal edge in the
global structure. When we look up the structure and we don’t find a horizontal
but a vertical edge, we have to rebuild the solution for that subproblem with the
constraint of putting a horizontal edge on the right(left) of the currently introduced
vertical edge. An example is shown in fig 2.4: both subproblems presented one
vertical edge as solution (Fig. 2.4.b and .c); when in the bigger problem (Fig.
2.4.a) we try to put the leftmost vertical edge, we don’t find a horizontal edge in
the associated subproblems so we have to recompute an already solved case forcing
the insertion of such an edge (Fig. 2.4.d).

The time-computation increase is an obvious consequence; another time the
trade-off between time and space comes out, we could save computation time by
adding a structure, similar to the global one and with the same dimensions, that
stores only “horizontal solutions”, those which force the inclusion of a first hori-
zontal segment (which however are calculated in the search). A further example
in which this trade-off appears is when we want to put a new segment to the
partition:

• horizontal segment. We have to search whether the highest horizontal edge
which cuts off the base crosses or not more than one original horizontal edges.

• vertical segment. We have to search whether in the subhistogram induced
by the pair of original vertices (start, stop), there exists one or more original
vertices smaller or equal than the start (or stop) vertex in case start is
even (or odd). In that case we are constrained to put the highest possible
horizontal segment.

In the first implementation, both of these cases required a linear-time scan over
the vertices in the range [start, stop] every time we were solving a (sub)histogram;
in the second one I’ve introduced two arrays similar to the global structure to store
this information before the start of computation. In this way, when I need, I can
retrieve them with an easy access to the related structure. To compute and store
this useful information, I’ve used the second dynamic programming approach, as
for the partitioning.

With the aim to have a simpler managing and clearer source code, I’ve divided
the global structure in three separated sub-structures:

• lengths . This structure stores only the total partition length of the associated
subproblem. So, when we’re trying to solve the current problem, we add the
length of the current vertical/horizontal segment to the values related to the
lengths of the induced subproblems;
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(a) current subhistogram

(b) even subproblem associated (c) even subproblem associated

(d) real solution vs previous result

Figure 2.4: Example of re-computation of already solved sub-problem

• segments. It memorizes only new segments inserted in the solution of the
associated (sub)histogram, since the segments of the associated subproblems
are stored in their related cells. If the solution is to insert a vertical edge, it
stores only one segment, else it saves one or more edges (depending on how
many original horizontal edges it passes through);

• previous. It represents the link between current (sub)histogram and its re-
lated subhistograms, it memorizes the indices of associated subproblems in
such a way that, when we want to build the current solution, we use this
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Listing 2.2: recursive procedure to build solution

func t i on getSegments ( segments , prev ious , s o l u t i o n ) {
for i=0 to segments . s i z e ( )

s o l u t i o n . push ( segments [ i ] ) ;
for i=0 to prev ious . s i z e ( ) {

i f ( prev ious [ i ] != −1)
getSegments ( segments [ p rev ious [ i ] ] ,

p r ev ious [ p rev ious [ i ] ] , s o l u t i o n ) ;
}

structure to create a recursive path.

The last two structures are a bit different from the first one, because the cells
of these are not single cells but variable size arrays. The size of a cell depends on
the number of new introduced segments (segments structure) and the number of
related subproblems (previous structure).

Assuming original vertices are numbered in clockwise order starting from lower
left vertex to lower right vertex (the base vertices are the endpoints), the final
best solution is stored in the cell associated to (0, n − 2)-problem or (1, n − 1)-
problem. These cells store the same solution because the define the entire original
histogram, to decrease time computation we can decide to compute only one. In
order to build the segments set which partitions the histogram into rectangles, I’ve
used a recursive procedure similar to the procedure 2.2.

A possible recurrence equation could be described as:

S(i, j) =


∑e′

k=1 sk +
∑m′

w=1 S(iw, jw) if j ≥ i + 6,

s if j = i + 4
(2.1)

in which the terms are:

• S(i, j) is the set of all segments which divide the histogram (induced by the
couple of vertices (i, j)) into rectangles;

• s is the vertical/horizontal segment inserted in a minimal subproblem (de-
fined by two consecutive horizontal edges of the histogram;

• e′ is the number of new introduced segments in the (sub)histogram induced
by (i, j);
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• m′ is the number of resulting subproblems from the current one and whose
indices are stored in the (i, j)-element in previous structure.

Before writing the recurrence relation for length structure, we need other defi-
nitions. When we are trying to put a horizontal edge:

H(i, j) =
m′∑
k=1

lk + L(ik, jk) (2.2)

where lk is the length of the k-th horizontal edge we introduce (if there are more
than one horizontal edges) and L(ik, jk) is the associated subhistogram partition
length. Instead when we want to find the best vertical edge:

V (i, j) = min{[L(k, k) + L(i, k) + L(k, j)],∀k ∈ {i + 2, i + 4, . . . , j − 2}} (2.3)

where L(k, k) is the length of the vertical segment (linking the vertex k to the
base) we want to put, L(i, k) indicates partition length of the left subhistogram
and L(k, j) the partition length of the right one. Now we are able to define the
relation for length structure as:

L(i, j) = min(H(i, j), V (i, j)) j ≥ i + 4 (2.4)

2.2.2 Complexity

Time

As reported above, the time complexity of the optimal algorithm is O(n3). In
this section I’ll show the reason because we expect a cubic complexity.

With a simple and fast analysis, we could note that the sum of the total number
of subproblems we solve is quadratic, and, for each of them, we spend linear time
(up to a multiplicative constant due to accesses to the structure and comparisons
between partial solutions).

With a deeper study we can compute a more precise upper bound. Given n,
the number of the original vertices, with denote with e the number of horizontal
edges excluding the base of the histogram.

e =
n− 2

2
(2.5)

For each (sub-)histogram with i horizontal edges we have to evaluate i associated
situations:

problem of size i =

{
1 we insert a horizontal edge
i− 1 we insert a vertical edge

(2.6)
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and the number of sub-histograms with i consecutive horizontal edges are:

# subhistograms of size i = (e− i + 1) (2.7)

so the total amount of time can be evaluated as:

2
e∑

i=2

(e− 1 + 1)i = ... =
e3 + 3e2 − 4e

3
∈ O(e3) = O(n3) (2.8)

This summation is multiplied by two because we have to keep separate the cases
in which we have a sub-histogram defined by a couple of even or odd vertices.

Space

As described above, using the simplest idea, we can imagine to store all infor-
mation we need in a n× n matrix, using solely a half of the upper triangular part
(about 1/4 of the entire matrix with n→∞ see Fig. 2.5). This is the reason why

Figure 2.5: Example of really used space (black) in a 8-vertices histogram.

I’ve decided to compact this table in a linear array with the addition of a second
array to manage the different offset between two neighboring cells in the matrix.
We can count the number of effective cells we need with the equation below:

# cells = 2

n
2∑

i=0

(
n

2
− i) =

n2 + 2n

4
(2.9)

The offset array stores the number of cells we have to “jump” to position to the
first sub-problem with a fixed start-point.

For example if we want to retrieve information about the sub-histogram induced
by the couple [start, stop] we have to access the element with index defined by:

offset[start] +
stop− start

2
(2.10)
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Figure 2.6: Example of the use of the “offset array”.

In the second version, the auxiliary structures to memorize the “horizontal”
solution of a subhistogram and the information to avoid linear scanning during
the computation of horizontal and vertical edges, use the same amount of space as
the global structure. We continue to have a space complexity ∈ O(n2) but with a
large saving of computation time.

2.3 Thickest first method

As mentioned above, the problem of optimally partitioning polygons with holes
into rectangles is NP-hard [10]. For this class of problems it is difficult to find
a reasonable polynomial-time algorithm that obtains an exact solution, but it’s
possible to find a near-optimal solution in acceptable time. This type of algorithms
is called approximation algorithms and the associated solutions are considered good
enough. Generally, this paradigm exploits a trade-off between the solution quality
(optimality) and runtime (tractability).

Although I treat a special case of hole-free polygons and an optimal method
exists, I’ve implemented a variant of the “thickest first” algorithm, the “locally
q-thickest first” algorithm, studying its behavior in histograms, while changing a
parameter value q.

2.3.1 Description

In order to present this technique, we need some definitions. We say that a
rectangle R is thicker than a rectangle R′ iff the shortest side of R is longer than
the shortest side of R′. A rectangle within P is called maximal iff there is no
other rectangle in P that properly includes it. Then we can say it’s the thickest
rectangle in P iff there isn’t any thicker rectangle within P. R is a locally-thickest
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Listing 2.3: Thickest-first Method

i f P i s a r e c t a n g l e
f i n i s h e d

else {
f i n d the t h i c k e s t maximal r e c t a n g l e R
draw R
continue with the sub−histograms induced by R

}

rectangle iff it’s a maximal rectangle in P and there is no thicker rectangle in P
which overlaps with it.

Given S, a set of segments, we affirm that S is a thickest-first rectangular par-
tition of P iff is composed by disjoint segments, lying inside P and not overlapping
with the boundary of P, except their endpoints and the rectangles that partition
P can be determinated by the procedure 2.3.

In this work, I’ve studied a variant of this algorithm in which q-thickest rect-
angles are considered: a rectangle is called q-rectangle if the ratio between the
length of its horizontal side and the length of its vertical side is equal to q. The
only difference between q-thickest algorithm and the original one is that we search
q-thickest rectangles instead of thickest. For pratical purpose, there’s a linear pre
and post-processing of y-coordinates of original vertices and segments obtained
from partitioning, in which they are multiplied by q. In [9] it is shown that any√

2-thickest rectangular partition is of length < (1 +
√

2) ×M(P ), where M(P)
indicates the optimal partition length.

Details of the implementation

Although a linear time procedure to find a thickest-first partition exists, I’ve
developed another algorithm which uses simple structures at the expense of per-
formance degradation: from O(n) to O(n log n). The main reasons is that we want
to study the goodness of the solution of these method in relation with the optimal
algorithm.

In order to compute this technique, I need some auxiliary structure in which I
can store useful information about the original histogram: for example, how long
a horizontal edge could be extended to the left and to the right. The reason is
that for every horizontal edge I have to find the shortest side of the associated
rectangle, and compare it with the shortest sides of all rectangles associated to
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Listing 2.4: Find edge extension procedure

for i=0 to numEdges
l e f t e x t [ i ] = r i g h t e x t [ i ] = i

push ( f i r s t e d g e )
for i=1 to numEdges {

i f ( edge [ i ] . he ight > top edge . he ight ) // t a l l e r
push ( i )

else {
while ( edge [ i ] . he ight <= top edge . he ight ) {

l e f t e x t [ i ] = l e f t e x t [ top ( ) ]
i f ( edge [ i ] . he ight < top edge . he ight ) {

r i g h t e x t [ top ( ) ] = i−1
pop ( )

}
else

r i g h t e x t [ top ( ) ] = i
}

}
}
for each element in s tack

update l e f t , r i g h t ex tens i on
for each edge

compute l ength extens i on

other edges. With the help of a stack, I get these extensions and their related
lengths with a linear scanning (procedure 2.4). After that, I can afford to start
the locally-thickest method which is similar to the procedure 2.3 with some small
changes: when the locally thickest rectangle is identified I have to modify the
information about edge-extensions (2.5).
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Listing 2.5: Locally q-thickest procedure

push ( [ 0 , numEdges−1]) // t o t a l h is togram
while ( s tack != empty ) {

[ s t a r t , stop ] = top ( )
pop ( )
f i n d q−t h i c k e s t r e c t a n g l e in the histogram

de f ined by [ s t a r t , stop ]
s t o r e p a r t i t i o n i n g segments ( with o r i g i n a l y−value )
update edge−ex t en s i on s
for each induced sub−histogram

push ( [ s t a r t , stop ] )
// s t a r t and s top are the o r i g i n a l numbers o f the
// f i r s t and l a s t edge in the subhis togram

}
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(a) Thickest rectangle (b) subhistograms to
compute

Figure 2.7: Example of first steps in thickest partitioning

As it’s possible to see in the procedure 2.5 and Fig. 2.7, there are some inter-
esting points to specify:

• we number the original horizontal edges (excluding the base) from left (num-
ber 0) to right (number (numEdges− 1));

• we define a (sub-)histogram with the leftmost horizontal edge (start) and
the rightmost one (stop);

• after we’ve found the q-thickest rectangle we insert related segments with
original y-coordinates. So we avoid the final post-processing phase, in which
we should divide by q all the y-coordinates of the segments obtained during
the computation.

In the following section we’ll analyze the time and space complexity.

2.3.2 Complexity

Time

Contrary to the optimal case, with this technique we have to asymptotically
separate the average case from the worst case: in the average case we obtain
a O(n log n) complexity, in the worst case it becomes O(n2), and it fluctuates
depending on the shape of the histogram to partition.

Excluding the case where there are several horizontal edges with the same y-
coordinate, one of the best cases happens when the thickest rectangle partitions
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the histogram into pieces such that the largest piece has about one third of the
vertices. Therefore, we consider the following recurrence relation:

T (e) =


3T (e/3) + Θ(e) if e > 3,

Θ(1) if e ≤ 3
(2.11)

where e is defined as the number of horizontal edges in the original histogram (see
eq. 2.5). With a simple analysis:

1. at level i we have 3i nodes each of them with work Θ(e/3i);

2. the leaves of the tree are at level log3 e− 1.

So if we ignore constant factors, then the total time-complexity would be:

log3 e−1∑
i=0

3i
(
e

3i

)
= e log3 e = Θ(n log n) (2.12)

In order to calculate more precisely the time complexity, we would have to take
into account that in many cases one or two of the resulting subproblems may often
have more than one third of the horizontal edges. However, to obtain an O(n log n)
time upper bound, it would also suffice if the expected number of vertices of the
largest subpolygon, in the partition induced by the thickest rectangle, is smaller
by some constant factor, since this would suffice to show that the expected depth
of the recursion tree becomes O(log n).

Instead, in the worst case, this method deteriorates, because it doesn’t divide
the original histogram into two-three subhistograms of the same size (approxi-
mately) like in the average case. At each step, it is able to “eliminate” the leftmost
edges, so the resulting subhistogram has only one or two horizontal edges less than
the current one, and, to find the locally thickest rectangle, we consume a linear
time scanning. This is the reason the worst case become ∈ O(n2). A possible
recurrence equation that could describe this situation is:

T (e) =


T (e− 2) + Θ(e) if e > 2,

Θ(1) if e ≤ 2
(2.13)

Space

Regarding the implementation space complexity, there’s no difference between
average and worst case. I’ve used a linear array to store the y-coordinates of the
original vertices multiplied by q (Θ(n)) and two linear arrays to memorize the edge
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extensions and their lengths (Θ(n)). During the computation these last arrays are
updated according to the locally thickest rectangle identified. In addition to this
structure there is a stack which stores the endpoints (start and stop edges) of
the next subhistograms to process. In the average case, this stack stores at most
O(2 log3 e− 1) elements simultaneously.

2.4 Extending the result to hole-free polygons

In this section it’s shown how to extend the previous techniques to partition
hole-free polygons. Taken P and e, respectively the hole-free polygon and an edge
of it, we defined HIST(P,e) the set of segments partitioning P we can compute
HIST(P,e) with a recursive approach as in procedure 2.6.

Listing 2.6: HIST(P,e) procedure

H =maximal histogram in P with base e
i f H = P

HIST (P, e) = ∅
else {

P1 . . . Pk r e s u l t i n g subpolygons with P1 = H
si segments where Pi touches P1 with 2 ≤ i ≤ k

HIST(P, e ) =
⋃

2≤i≤k

(
{si} ∪HIST (Pi, si)

)
}

We introduce some notation:

• a vertex is called concave when it’s the corner of an interior angle of 270◦;

• a vertex is called flat when it’s the corner of an interior angle of 180◦;

• a vertex is called convex when it’s the corner of an interior angle of 90◦;

• P is in BAS normal form if, ∀z on the boundary of P, non positioned at a
corner, there’s a flat vertex at z iff an isothetic segment within P links z to
some concave vertex of P ;

• if P is in BAS -form, and v1 and v2 are two distinct vertices of P, then we
call v1 the left neighbor of v2 iff they can be linked by a horizontal segment
lying entirely in P without passing through any other vertices of P.
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When a polygon is in its BAS normal form, we can use a simple structure, called
BAS(P), to traverse it in an easy manner. We use a double-linked structure so that
every vertex of P (including flat vertices) has a pointer to all its neighbors. There
is a method to compute this structure in linear time ([1] and [3]). Now we are
able to compute HIST(P,e), using this BAS(P) structure, in the same recursive
way it’s defined: given two neighbouring vertices vi and vj we can compute the
maximal histogram in any direction with a simple linear scanning of the original
vertices which lie on the histogram boundary. These vertices are traversed in a
clockwise order beginning on the second vertex of [vi, vj].

When determining the next vertices to traverse with the help of the BAS(P)
structure, it should happen that the segments which link two neighbouring vertices
vk and vl is a part of H but disjoint from P. In this case the segment is inserted
into the set of segments to be output and pushed on the stack to later compute
the maximal histogram with base [vk, vl] with the appropriate direction.

It’s clear that at most two histograms can share the same vertex, so the total
time is O(n).



Chapter 3

Experimental results

In this section, we present the results of applying both algorithms presented
above, on different kinds of histograms, which can be grouped in three types:

1. general histograms;

2. staircase histograms;

3. symmetric histograms.

The algorithms and the functions that generate random instances of the three
histogram families are been implemented in C++. Test results, which we obtained
with our implementation on histogram of different sizes (number of vertices), were
carried on a Intel Pentium Core2Quad 2.6/1.3GHz with 2GB of main memory
running Mandriva Linux and GNU gcc 4.3.2.

All the results like execution times, number of subproblems or partition lengths,
are average of many runs on randomly generated histograms. For all three types
of histograms, we started analyzing the q parameter within the q-thickest first
method. When we were doing tests on histograms with a fixed number of vertices,
we have counted how many times a q-value was first, second or third, sorting all
possible values in ascending order on their partition length. The range of possible
values of q was in [0.5, 3] with step = 0.1, while the number of histogram vertices
start from 200 and stop at 6000 with a step = 200. We found three best values
depending on the shape of the histogram, these are 1, 1.2 and 1.5(1.6).

After that, we have compared the optimal method with the q-thickest one,
with only the best values written above. As terms of comparison, we have used
partition lengths and time of computation (this last one was useful only with the
optimal procedure since for thickest method the time was almost negligible).

Then, we’ve also confronted the behavior of the optimal method, in terms of
subproblems solved and time computation on the different types of histograms.

23
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q 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3
1 0 0 0 1 0 1 3 3 17 24 50 55 21 49 52 11 2 7 4 4 0 1 0 0 0 0
2 0 0 0 0 1 0 3 5 2 16 26 43 45 33 59 41 12 7 6 6 4 1 0 0 0 0
3 0 0 0 0 0 0 0 2 2 5 15 23 34 33 60 50 35 20 8 12 4 2 2 1 1 0

Table 3.1: q results general histograms - type 1.

3.1 Random shape histograms

These are common histograms that people imagine when thinking about a
histogram, they have no recurring patterns as the types below, they are made by
frequent “latch” of various lengths. We have created three different types of these
histograms, based on possible features:

1. same fixed maximum length of vertical and horizontal edges;

2. fixed maximum length to horizontal edges and maximum length equal to
base length to vertical edges;

3. “uniform” choice in the range (0, n] of the x- and y- coordinates of vertices.

In order to have maximum uniformity in the choice of the lengths of the edges,
we used the rand() method, provided by C/C++ standard library, initialized with
a seed linked with time and date of the day, in a manner that we don’t have the
same generation on two distinct tests.

3.1.1 Fixed edge lengths

The procedure to build these histograms can be represent as we have done in
procedure 3.1.

q-study

For histograms produced in this manner, the best values of q were 1.6 and 1.9
as we can see in Fig. 3.1 and in table 3.1.

The reason because we have those values is simple. Histograms with this shape
present a feature visible to the naked eye: they have a huge difference between the
long base and maximal height. So, when imposing a value of q > 1, we stretch
the histogram vertically, changing (probably) the first thickest rectangle and, as a
consequence, all the associated subproblems.

Looking at the figure and the table, we don’t see a perfect symmetry centered
on best values. It depends exclusively on the randomly generated histograms and
on the score rules for the best q values for a simulation. For example, q = 1.7 was
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Listing 3.1: procedure.

for ( int i =1; i<numvertices −1; i++) {
// put an h o r i z o n t a l edge
i f ( ho r i z ) {

x += ( rand ( ) % max) + 1 ;
}
// put a v e r t i c a l edge
else {

currY = ( rand ( ) % max) + 1 ;
// Deciding to i n c r e a s e / decrease the h e i g h t
i f ( ( rand ()%2) == 0)

currY = −currY ;
while ( y+currY<=0) {

currY = ( rand ( ) % max) + 1 ;
i f ( ( rand ()%2) == 0)

currY = −currY ;
}
y += currY ;

}
// save v e r t e x ( x , y ) ;
x coor [ i ] = x ;
y coor [ i ] = y ;

}

probably among the best values, but not often among the best three, so its score
has become too low.

Comparison between optimal and q-thickest

We’ve compared optimal method and thickest one using, for the second, the
value {1,1.2,1.6}. We use 1.6 since it’s the value with more “first positions”.

In picture 3.2.a, we can see the behaviors of optimal and thickest partition
lengths in relation to the length of variable size histograms: when optimal method
worsens (the ration between partition and histogram length increases), even the
thickest one worsens, with all possible usable values. Then, in figure 3.2.b, it’s
shown that length differences between optimal and thickest methods are not de-
fined by a constant factor but they are “floating”, due to algorithm’s locally de-
cisions and specific histograms shape. Interesting is the case of histograms with
3600 vertices, for those the average partition length, produced by thickest algo-
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Figure 3.1: q results general histograms - type 1.

(a) Ratio between obtained partitions and his-
tograms lengths

(b) Ratio between q-thickest and optimal parti-
tion lengths

Figure 3.2: comparison optimal-thickest method on general histograms - type 1.

rithm with q = 1, is nearly the perimeter of histograms.
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3.1.2 Semi-fixed lengths

With the aim to balancing the height of a histogram with its base, we considered
histograms defined as in the following procedure:

Listing 3.2: procedure.

//add l o w e s t l e f t v e r t e x
x coor [ 0 ] = 0 . 0 ;
y coor [ 0 ] = 0 . 0 ;
// f i x i n g x−c o o r d i n a t e s
for ( int i =1; i<=numEdges ; i++) {

o ld x = x ;
x += rand ( ) % maxOriz + 1 ;
x coor [2∗ i ] = x ;
x coor [2∗ i −1] = o ld x ;

}
// f i x i n g y−c o o r d i n a t e s
maxVert = x ;
for ( int i =1; i<=numEdges ; i++) {

currY = rand ( ) % maxVert + 1 ;
i f ( rand ()%2 == 0)

currY = −currY ;
while ( y+currY<=0 | | y+currY>maxVert ) {

currY = rand ( ) % maxVert + 1 ;
i f ( rand ()%2 == 0)

currY = −currY ;
}
y += currY ;
y coor [2∗ i ] = y coor [2∗ i −1] = y ;

}
//add l o w e s t r i g h t v e r t e x
x coor [ numvertices −1] = x ;
y coor [ numvertices −1] = 0 . 0 ;

An important feature of histograms produced as described above, is that they
could present a lot of ‘peaks” which influence the decisions rules and results of
both algorithms. Indeed, as we will see in following sections, both techniques are
forced to put horizontal edges and cut off those peaks.
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q 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3
1 0 0 1 3 15 51 62 60 44 31 23 10 4 1 1 1 0 1 0 0 0 0 0 0 0 0
2 0 0 0 0 8 14 49 60 64 38 34 20 20 6 1 1 2 1 1 1 1 1 1 1 0 0
3 0 0 0 0 0 10 15 35 44 64 41 43 32 13 6 3 3 3 3 1 0 1 0 0 1 1

Table 3.2: q results general histograms - type 2.

q-study

From Fig. 3.3 and table 3.2, we can affirm the best value of q, for these
histograms, it’s 1.2.

Figure 3.3: q results general histograms - type 2.

In this case we can note a semi-perfect simmetry centered on best value of q.

Comparison between optimal and q-thickest

To compare optimal and thickest algorithms, we’ve used the values {1,1.2,1.6}.
Differently from previous case, from results illustrated in fig 3.4.a, we see the
decrease of the value of ratio between partition and histograms length (both tech-
niques) with the increase of the number of vertices. This is due to the presence
of the “peaks” which force horizontals segments insertion that cut off them. Ob-
viously, the lengths of these segments are much shorter than the length of the
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(a) Ratio between obtained partitions and his-
tograms lengths

(b) Ratio between q-thickest and optimal parti-
tion lengths

Figure 3.4: comparison optimal-thickest method on general histograms - type 2.

perimeter of the associated peak. From both figure (3.4.a and .b), we can say
there are no difference between optimal and thickest (with different values of q)
algorithms: the length of obtained partitions are almost the same, we have a mul-
tiplication factor of about 1.03 from length of optimal solution to length of thickest
one.

3.1.3 “Uniform” lengths

In the above sections, we’ve built general histograms fixing some maximal
lengths: in type 1 we’ve imposed the same maximal length as for vertical as for
horizontal edges; instead, in type 2 we’ve enforced a fixed maximal length for
vertical edges and a variable length, in relation with total length of the base, for
horizontal edges. Now, we are trying to not forcing a specific length for both kind
of edges.

With the term “uniform” we mean that we fix only possible maximal length
for the base and the height of histograms (otherwise random generator hasn’t a
real limit for extractions), then we’ll extract the values of x - and y-coordinates
in the range [0,maxV alue], with the attention to avoid possible copies of same x
value. We also don’t want the presence of peaks, or we want to limit them, so
we’ve used a “probability” function: y values are defined as numvertices/rand(),
where numvertices is used as maximal value for base and height of the histogram.
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Listing 3.3: procedure.

//add l e f t l o w e s t v e r t i c e s
x coor [ 0 ] = 0 . 0 ;
y coor [ 0 ] = 0 . 0 ;
x coor [ 1 ] = 0 . 0 ;
y coor [ numvertices −1] = 0 . 0 ;
// f i x i n g x−c o o r d i n a t e s
vec to r coorVector ;
while ( coorVector . s i z e ()<numEdges ) {

for i=coorVector . s i z e ( ) to numEdges {
coorVector . push back ( rand ( ) ) ;

}
s o r t ( coorVector ) ;
e l i m i n a t e c o p i e s ( coorVector ) ;

}
//memorize x−c o o r d i n a t e s
for i=1 to numEdges

x coor [2∗ i ] = x coor [2∗ i +1] = coorVector . at ( i −1);
coorVector . c l e a r ( ) ;
// f i x i n g y−c o o r d i n a t e s
while ( coorVector . s i z e ()<numEdges ) {

for i=coorVector . s i z e ( ) to numEdges
coorVector . push back ( numvert ices / rand ( ) ) ;

}
//memorize y−c o o r d i n a t e s
for i=1 to numEdges

y coor [2∗ i ] = y coor [2∗ i −1] = coorVector . at ( i −1);

q-study

For histograms with these features, most suitable values of q are 1 and 1.1 (see
table 3.3 and Fig. 3.5).

q 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3
1 0 0 0 2 51 162 73 11 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 9 45 163 71 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 40 165 77 14 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.3: q results general histograms - type 3.

The reason since 1 and 1.1 are best values for q is simple: histograms built
in this manner are more “balanced”, so there isn’t the need to modify the ratio
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Figure 3.5: q results general histograms - type 3.

between height and extension length of an edge in order to find best thickest
rectangle in current (sub)histogram. In this case, as in the previous one, we can
see a symmetry centered on best values.

Comparison between optimal and q-thickest

In order to compare optimal and thickest algorithms, we’ve used {1,1.2,1.6} as
q values.

As in type-2 histograms, we can see the decrease of the value of ratio between
partition and histograms length (both techniques) with the increase of the number
of vertices. Another time, the presence of some “peaks” forces the insertion of
horizontals segments that cut off them. From both figure (3.6.a and .b), we can
affirm thickest algorithm(with q = 1 or q = 1.2) produces a good approximations
of optimal method: the average ratio between optimal length solution and thickest
length solution is about 1.02.

3.2 Random staircase histograms

In this part, we’ve studied histograms with a shape similar to a staircase, and,
wlog, we’ve considered ascending staircase from left to right. As we’ve done for
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(a) Ratio between obtained partitions and his-
tograms lengths

(b) Ratio between q-thickest and optimal parti-
tion lengths

Figure 3.6: comparison optimal-thickest method on general histograms - type 3.

general shape histograms, we’ve defined two types of staircase histograms:

• with same fixed length as for vertical edges as for horizontal edges;

• “uniform” choice in the range (o, n].

3.2.1 Fixed edge lengths

For these histograms, we have to modify the procedure 3.1, eliminating the
lines where we decide whether to increase or decrease the height of current edge.
The other part of the procedure can remain the same.

q-study

As we observe from figure 3.7 and table 3.4, best values are centered in 1,
showing a good symmetry around it. The reason why q = 1 results to be the best
choice is simple: with a high probability the thickest rectangle is in the “center”
of the stair and, multiply y-coordinates by q, does not change too much the initial
situation and its associated subproblems.

q 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3
1 0 0 0 3 72 148 66 9 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 4 20 45 144 76 7 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 4 38 144 94 11 4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.4: q results staircase histograms - type 1.
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Figure 3.7: q results staircase histograms - type 1.

Comparison between optimal and q-thickest

Differently from previous cases in which we’ve analyzed histograms with general
shape, with staircase histograms we can note a precise behavior of the ration
between partition length (of both techniques) and histogram length: it has a
logarithmic growing trend with the increasing of the number of original vertices
(Fig. 3.8.a).

Another time, with best value of q, results obtained by thickest method come
out very near to those obtained by the application of optimal algorithm: the
average ratio between the length of thickest and optimal solutions is in (1.04÷1.05)
(Fig. 3.8.b).

3.2.2 “Uniform” length

Like for the third type of general shape histogram, with the term “uniform”,
we mean that the only constraint during the histogram construction is to fix a
maximal length of the base and the height of the histogram, in a manner the
coordinates of the vertices are chosen inside the range [0,max]. We can obtain a
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(a) Ratio between obtained partitions and his-
tograms lengths

(b) Ratio between q-thickest and optimal parti-
tion lengths

Figure 3.8: comparison optimal-thickest method on staircase histograms - type 1.

procedure to do this starting with the procedure 3.3, with the addition of a simple
control to avoid same values of any y-coordinates, as we’ve done for x -coordinates.

q-study

For these histograms, the best values of q remain 1 and 1.1, as in the case
above. We can see in Fig. 3.9 and table 3.5 the obtained results from simulation
tests. We can note that q = 1.1 has obtained and higher score even if it was the
best less times than q = 1, due to score rules.

q 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3
1 0 0 2 13 70 107 81 21 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 12 29 39 95 92 26 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 6 5 11 30 96 102 33 10 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.5: q results staircase histograms - type 2.

Comparison between optimal and q-thickest

As with staircase histogram with fixed-length edges, we note (Fig. 3.10.a) that
the ratio between partition length and histogram length has a logarithmic trend,
but in this case it grows more slowly. Unlike the previous case, thickest solution
appear to be less close to the optimal solution: we achieve an average ratio between
thickest and optimal length of 1.07 with q=1 (Fig. 3.10.a and 3.10.a).
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Figure 3.9: q results staircase histograms - type 2.

(a) Ratio between obtained partitions and his-
tograms lengths

(b) Ratio between q-thickest and optimal parti-
tion lengths

Figure 3.10: comparison optimal-thickest method on staircase histograms - type
2.
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3.3 Random symmetric histograms

This represent the last interesting case we’ve token into account. We can
thinking about it as a sort of staircase histogram linked with its mirror image, so,
with a little alteration of the procedure used for “uniform” staircase histograms,
we are able to build histograms with that feature. Instead of generating all vertices
heights, we produce only half of them, because the second half has the same y-
coordinates.

q-study

This last case represents (until now) the worst case for thickest first algorithm.
Levcopoulos in [9] had studied it and he affirmed that with q =

√
2 every q-thickest

partition has a length
(
1 +
√

2
)
×M(p). In our simulations, we’ve obtained like

best values q = {1.4, 1.5, 1.6} (see Fig. 3.11 and tab. 3.6).

Figure 3.11: q results symmetric histograms.

Also in this case, we note a symmetry on the distribution of q values, centered
on best values, but, differently from previous cases, there’s not a big difference
between the best value (q = 1.5) and the values near to it. In the following section
we can see what this results means.
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q 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3
1 0 0 0 0 2 9 17 47 39 52 46 38 27 11 10 1 1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 1 10 19 36 42 52 48 36 28 16 7 1 1 2 1 1 0 0 0 0 0
3 0 0 0 0 1 1 3 12 13 22 39 35 48 52 29 27 10 4 2 1 0 0 1 0 0 0

Table 3.6: q results symmetric histograms.

Comparison between optimal and q-thickest

This time, we change the set of values using q = 1.5 instead of q = 1.6, due
to the fact q = 1.5 results to be better. As we can observe from the figure below
(Fig. 3.12), this case is absolutely the worst: we confirm there are not large
differences using different values of q parameter, and the average ratio between
thickest solution length and optimal one is about 1.10, only with general histograms
of type 1 (fixed length of the edges) we have obtained a measure similar to this. A
positive point is that, conversely from staircase histograms, we can note that the
ratio between partition length and histogram perimeter is around 0.4.

(a) Ratio between obtained partitions and his-
tograms lengths

(b) Ratio between q-thickest and optimal parti-
tion lengths

Figure 3.12: comparison optimal-thickest method on symmetric histograms.

3.4 Synthesis

In table 3.7 we have summarized the obtained results.

As we’ve already written in section 3.1.1, in all the cases we have considered,
the trend of the thickest-first algorithm follows the trend of the optimal technique:
when optimal method worsens (the ration between partition and histogram length
increases), even the thickest one worsens.
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Thickest ÷ Optimal Thickest / Histogram Optimal / Histogram

q min max average average max average max

FIXED 1,6 1,062 1,087 1,077 0,832 0,956 0,772 0,880

GENERAL SEMI-FIXED 1,2 1,016 1,036 1,023 0,017 0,087 0,016 0,085

UNIFORM 1 1,016 1,024 1,019 0,074 0,116 0,072 0,114

STAIRCASE
FIXED 1 1,041 1,069 1,048 2,022 2,345 1,930 2,250

UNIFORM 1 1,063 1,088 1,072 1,941 2,267 1,812 2,125

SYMMETRIC 1,5 1,052 1,109 1,089 0,389 0,410 0,357 0,370

Table 3.7: Synthesis of the results.

The interesting point is the fact that, for each type of histograms we considered,
the approximation algorithm obtained good results not too far from those obtained
by the optimal method. In worst cases, represented by general histograms of type
1 and symmetric histograms, we have a multiplication factor equals to 1.1. Due
to this obtained result, we can affirm that in practical situations, and in average
cases, the bound

(
(1 +

√
2)×M(p)

)
is an over-stimation we have never reach.

3.5 Optimal comparison

In this section we analyze the different behaviors of the optimal algorithm in
relation with the shapes of the histograms. We focus our attention on the number
of subproblems it really solves1, the computation time2 and the ratio between
length of the obtained partition and the length of the original histograms3(even if
this last is already shown in section above). All the values in tables 3.8 and 3.9,
are an average of several tests on histograms with different sizes and with different
shapes.

If we consider the ratio between the lengths of the solutions and the lengths of
the histograms shapes, the worst cases are represented by the staircase histograms.
With these polygons the ratio has a logarithmic trend increasing with the size of
the problem. Interesting is the fact that with symmetric histograms, the ratio is
almost constant. Instead, with general histogram of type 1, the trend tends to a
slight increase.

Analysing the other two parameters, the computation time and the number
of really solved subproblems, we note immediately the following fact: histograms
with staircase and symmetric shapes, present a similar behaviour, especially on
the number of subproblems. We can interpolate the curves in figure 3.13 using 3-

1Prob in tables 3.8 and 3.9.
2Time in tables 3.8 and 3.9.
3Opt/Hist in tables 3.8 and 3.9.
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GENERAL HISTOGRAMS

Fixed Semi-Fixed Uniform

N Opt/Hist Time Prob Opt/Hist Time Prob Opt/Hist Time Prob

200 0,631 0,052 4,79E+04 0,085 0,052 3,60E+04 0,114 0,048 3,80E+04
400 0,571 0,260 2,40E+05 0,049 0,212 1,59E+05 0,089 0,204 1,45E+05
600 0,585 0,630 5,48E+05 0,040 0,478 3,33E+05 0,091 0,496 3,38E+05
800 0,736 1,304 1,62E+06 0,030 0,886 6,21E+05 0,087 0,896 6,30E+05
1000 0,667 1,682 1,48E+06 0,025 1,396 9,41E+05 0,071 1,466 9,67E+05
1200 0,755 3,414 4,04E+06 0,021 2,086 1,44E+06 0,091 2,154 1,44E+06
1400 0,722 4,484 4,60E+06 0,019 3,006 2,05E+06 0,072 3,060 1,92E+06
1600 0,742 6,538 7,15E+06 0,018 3,888 2,46E+06 0,090 4,084 2,47E+06
1800 0,746 8,676 9,87E+06 0,016 5,012 3,04E+06 0,081 5,170 3,08E+06
2000 0,761 10,312 1,26E+07 0,015 6,454 4,01E+06 0,069 6,626 4,00E+06
2200 0,787 12,028 1,41E+07 0,013 7,694 4,71E+06 0,076 8,162 4,97E+06
2400 0,797 14,702 1,74E+07 0,013 9,468 5,57E+06 0,086 9,494 5,48E+06
2600 0,788 18,642 2,22E+07 0,012 11,312 7,22E+06 0,067 11,596 6,94E+06
2800 0,772 24,190 2,97E+07 0,011 12,732 7,43E+06 0,069 13,512 7,97E+06
3000 0,846 24,810 3,45E+07 0,010 14,814 8,76E+06 0,073 15,378 8,86E+06
3200 0,824 29,472 3,96E+07 0,010 16,824 9,70E+06 0,071 17,740 1,02E+07
3400 0,802 34,374 4,33E+07 0,010 19,442 1,18E+07 0,058 19,722 1,11E+07
3600 0,880 35,684 5,24E+07 0,009 21,892 1,31E+07 0,075 22,796 1,34E+07
3800 0,853 41,408 5,52E+07 0,009 24,726 1,40E+07 0,049 25,348 1,44E+07
4000 0,853 48,718 6,33E+07 0,008 26,800 1,53E+07 0,080 28,454 1,68E+07

Table 3.8: Optimal method synthesis - General Histograms.

degree polynomial interpolation lines. While, with general histograms, we obtain
a 2-degree interpolation line. Even if the staircase and symmetric cases are the
worst we encountered, they are far below from the maximal theoretical bound (see
Fig. 3.13.c). The small difference between these cases respect the computation
time, is probably due to the managing of the insertions of horizontal segments. In
symmetric case, for each horizontal edges we have another edge with same height.
To govern this situation, the current implementation requires some additional
controls and, of consequence, additional time.

STAIRCASE HISTOGRAMS
SYMMETRIC HISTOGRAMS

Fixed Uniform

N Opt/Hist Time Prob Opt/Hist Time Prob Opt/Hist Time Prob

200 1,076 0,078 1,76E+05 0,993 0,076 1,76E+05 0,336 0,106 1,84E+05
400 1,310 0,462 1,37E+06 1,199 0,458 1,37E+06 0,364 0,674 1,40E+06
600 1,448 1,436 4,59E+06 1,336 1,398 4,59E+06 0,356 2,202 4,66E+06
800 1,543 3,184 1,08E+07 1,431 3,110 1,08E+07 0,369 5,042 1,09E+07
1000 1,621 5,958 2,11E+07 1,509 5,792 2,11E+07 0,363 9,612 2,13E+07
1200 1,678 9,914 3,64E+07 1,579 9,646 3,64E+07 0,358 16,414 3,66E+07
1400 1,734 15,244 5,77E+07 1,628 14,846 5,76E+07 0,361 25,686 5,80E+07
1600 1,783 22,168 8,60E+07 1,666 21,618 8,60E+07 0,370 37,996 8,65E+07
1800 1,830 31,214 1,22E+08 1,699 30,274 1,22E+08 0,369 53,702 1,23E+08
2000 1,862 41,962 1,68E+08 1,748 41,128 1,68E+08 0,357 73,696 1,68E+08
2200 1,899 55,358 2,23E+08 1,781 54,250 2,23E+08 0,340 97,390 2,24E+08
2400 1,920 71,110 2,89E+08 1,816 69,676 2,89E+08 0,343 126,610 2,90E+08
2600 1,956 90,136 3,68E+08 1,831 88,064 3,67E+08 0,358 161,134 3,69E+08
2800 1,984 111,828 4,59E+08 1,858 107,722 4,59E+08 0,378 207,042 4,60E+08
3000 2,005 136,848 5,65E+08 1,881 132,060 5,64E+08 0,254 252,272 5,66E+08
3200 2,028 166,414 6,85E+08 1,903 159,588 6,84E+08 0,396 309,974 6,86E+08
3400 2,050 198,452 8,22E+08 1,923 191,318 8,21E+08 0,355 375,486 8,22E+08
3600 2,073 234,162 9,75E+08 1,948 226,098 9,75E+08 0,303 452,066 9,73E+08
3800 2,088 275,596 1,15E+09 1,972 264,734 1,14E+09 0,371 541,016 1,15E+09
4000 2,108 322,338 1,34E+09 1,983 306,468 1,34E+09 0,326 639,064 1,34E+09

Table 3.9: Optimal method synthesis - Staircase and Symmetric Histograms.
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(a) Time analysis.

(b) Ratio between lengths of partitions and lengths of histograms.

(c) Number of really solved subproblem.

Figure 3.13: Optimal method results.
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3.6 Examples of partitions

The figures in this section are examples of how both algorithms work on the
different kinds of histograms we have studied above.

In each example, we can note three different colours. These colours are the
same as those used in the tool and they have been associated with the algorithms:

• cyan is the colour of the segments produced by the optimal method;

• red is the colour of the segments produced by the q-thickest method;

• violet is the colour of the common segments.

Figure 3.14: Example of partition on general histograms - type 1.

Figure 3.15: Example of partition on general histograms - type 2.
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Figure 3.16: Example of partition on general histograms - type 3.

Figure 3.17: Example of partition on staircase histograms - type 1.
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Figure 3.18: Example of partition on staircase histograms - type 2.

Figure 3.19: Example of partition on symmetric histograms.
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Chapter 4

GUI tool

In this section, we will describe how the GUI tool we have implemented appears
to users and how to use it.

The tool is an important part of the thesis work. We used it especially to test
the validity of both implementations of the algorithms. In the initial step, we tested
our source code by outputting simple text messages: we printed some information
like the inserted segments or where is the position of the thickest rectangle, in
each step. Using simple examples of histograms with few vertices, we computed
the solutions by hand and checked if they overlapped; when testing histograms
with tens of vertices, producing and testing hand solutions was impossible. This
is the reason why the GUI tool was very helpful in the test phase. It was equally
helpful in the second phase where we were studying the effect of choosing different
q-values on histograms of various shapes. It was developed and utilized more in
first part of my work, in parallel with the implementations of the methods. In the
phase in which we have produced experimental results, we had to elaborate more
simulations, so we created a few test files to do it automatically.

How to use the tool

The GUI tool appears like in figure 4.1. It’s possible to define five areas; each
of them has a different utility.

The canvas stands at the center of the tool. It’s used to visualize the histograms
we want to compute and the sets of segments produced by the algorithms.

On the top there are Models folder and Results folder buttons. The first button
gives the possibility to set the folder in which histograms can be stored for later
use; the second one allows to fix the folder where the computed solutions have to
be saved. The descriptions of the histogram have to be in a specific form: on the
top any kind information about them can be included but, in the beginning of

45



46 CHAPTER 4. GUI TOOL

Figure 4.1: How the GUI tool appears.

each line, there has to be a character # (indicating it’s a comment line); the first
line used to read the model contains an integer which indicates the total number
of vertices. After that there is the list of x and y coordinates of the vertices,
separated by an empty space. Result files are similar to model files, but after a
line with some information (commented) there is the list of the coordinates of the
segments’ endpoints in the partition set. Every time the GUI tool is opened, the
paths of these folders are set to the path where the GUI tool itself resides.

The left zone is completely dedicated to the creation of a histogram. We have
four possibilities:

• Set Point Version. It gives the chance to insert the vertices by “hand”; the
first step is to set the number of original vertices of the histogram (it must be
odd and positive). Then the user inserts the coordinates of the vertices. The
points have to be inserted in clockwise order, starting with the left vertex
of the base (0, 0). The right endpoint is automatically detected with the
coordinates of the penultimate one.

• Interactive Version. With this option, the user fixes the vertices with the
use of the mouse, directly inside the canvas. In this case he sets the number
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of horizontal edges instead of the number of original vertices. After that, the
base of the histogram appears on the canvas and the user has to click with
the mouse at the place of right endpoint of each single edge. For the last
edge, only its height can be decided, since the right endpoint is obvious.

• Random Version. This way gives the user the possibility to create a random
histogram only setting up the number of original vertices he wants. The user
can choose the type of histogram he wishes. The types are those we have
studied in the third chapter.

• Load Model. This version allows to load a model of a histogram. The user
has only to search the path of the model he wants to compute through the
use of a window that appears when he pushes the load button.

When a histogram is made, the associated model is automatically created and
stored in the Models folder. The name of the model will be like version numVertex.hist.
There is also a label where the user can set the value of the q parameter used in
the thickest method. If an histogram is painted in the canvas, pressing the set
button the tool (re)compute the q-tickest partition with the value just inserted.

At the bottom, there are five buttons: Equal,Compute, Optimal, q-thickest and
Delete. From second to fifth, the buttons explain themselves: Compute (Optimal
and q-thickest) serves to start the partitioning of the current histogram painted
on the canvas; when a partition set is determined, a result file named partition-
Type modelName.ris will be created. Delete is utilized when the user wants to
clear the canvas and the information on the right, and also to free the memory
from the structures used by the methods. The Equal button allows the user to
change the display scale of the canvas; by default there is the same scale on x-
and y-axis, equal to the maximum value between the base and the height of the
histogram. Unfortunately, when there’s a big difference between these two values,
we may have a histogram which looks too narrow or too flat. When it happens,
it’s difficult too see the shape of the histogram and its partition set. With this
button, we use two different scales for the x- and y-axis, based respectively on the
base and on the height of the histogram.

The right column provides some information about the current histogram and
its partitions obtained by the optimal and q-tickest algorithms. They are given in
the following order:

• the length of the perimeter of the current histogram;

• the length of the optimal partition;

• the time spent to find the optimal partition;
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• the number of subproblems really solved;

• the length of the q-thickest partition;

• the time spent to find the q-thickest partition;

• the ratio between the lengths of q-thickest and optimal partition.

As we can see the words “OPTIMAL PARTITION” and “q-THICKEST PAR-
TITION” are coloured; it was a choice taken to be able to differentiate the set of
segments produced by the first method from that produced by the second one. In
the canvas, we use the same colours to draw the segments associated with one of
two algorithms. We may note a third colour (which is the union of the other two)
that highlights the common segments (see Fig. 4.2).

Figure 4.2: Example of GUI with solved histogram.
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Conclusions and future work

In this work, I have treat the problem of partitioning histograms in rectangles.
A histogram is a special case of the family of hole-free isothetic polygons. I studied
and compared two algorithms which can partition histograms defined by n vertices.
The two algorithms are the optimal method and q-thickest first method. Both
based themselves on a simple idea: divide the original problem into sub-problems.
The optimal method starts from the subproblems (minimal subproblems) with the
aim of build the original solution using solutions of smaller problems. Instead, the
q-thickest first technique, tries to find the solution splitting the original histogram
into subhistogram with smaller size (in best case it divides the polygon in three
sub-polygons with the same size, about one-third o the original size). I have
implemented this algorithms in C++ language and I’ve tried to explain, as clearly
as possible, the choices made during their development. The target of these choices
was to restrict the space e and computation time united with the use of simple
structures.

The time complexities, resulting from the implementation and theoretically
studied are:

optimal method: ∈ O(n3)
q-thickest method: ∈ O(n log n)1

while the space complexities (specific to this implementation) are:

optimal method: ∈ O(n2)
q-thickest method: ∈ O(n)

1this result must be associate in the average case, on worst case we obtain O(n2).

49
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In the third chapter, I analysed the trend of the q-thickest method varying
the value of the q parameter in the range [0.5, 3] on histograms with different
shapes and sizes. Then, I compared the results of this method with the results
obtained with optimal method. In this way, I was able to verify the goodness
of the solutions obtained by the approximation algorithm, in terms of the ratio
between the partitions lengths. The most interesting results are the following:

• the trend of q-thickest method proceeds as the trend of optimal one;

• all our experiments, we never reached the upper bound proposed in [9].

For this reasons, we can affirm that the q-thickest partition algorithm, with the
appropriate q-value, produces a good approximation of the solution defined by
optimal method2.

At the end, I wanted to test the behaviour of the optimal method. I focused
my attention on the computation time and the number of solved subproblems,
with the aim to find the most problematic situation.

Future work

In problems like this one, where the goal is to minimise (or maximum) an
objective function, there always are a lot things that can be improved or modified.

One of the crucial points has been when I was studying the q-value that best
fit with a histogram of specific shape. In some cases, i.e., general histograms of
type-2 (section 3.1.2), we have obtained a specific value for the parameter, but the
cause is not clear. A possible future work will be understand these reasons, maybe
changing the score rules used to decide best values of q or using a completely
different approach.

Another point that can be investigated, it is to check the real behaviour of
the approximation algorithm. In sub-section 2.3.2, I have proposed the possible
recurrence equation for q-thickest algorithm (eq. 2.11). Even if the experimental
results were good, it would be stimulating find a model that is as close as possible
to the action of the algorithm. In this work I’ve analysed six types of histograms,
maybe there are other amusing cases which can lead to unexpected and new results.

Maybe, it is possible to look for some relation of this problem with the minimum
Manhattan network problem where every pair of input points has to be linked with
a rectilinear path of minimum length, and the objective function is to minimise
the total length. This is an NP-complete problem.

Regarding the implementation of the algorithm, a possible work is to use other
structures with the aim to speed up the time-computation, especially for optimal

2from average results obtained in simulations on histograms with different shapes.
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method. For example, instead of the array it could be introduced a hash table. In
this way the couple [i, j] (indicating the sub-histogram induced by the vertices i
and j) can be used as the index of its position in the table.

The GUI tool could be also improved adding some features as the possibility
to zoom some specific areas of the histograms. Useful, it may be enlarge the GUI
to polygons, in order to have an idea on how good the algorithms work.
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