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ABSTRACT

  The thesis work has the purpose of describing the theories and of applying them on the

implementation of a tool useful for the preliminary design of a helicopter. This tool is a

software  developed  in  Matlab  language and executes  the  calculations  based on two

different theories: momentum and blade element. With this tool the flight performances

can be calculated, from hover to maximum forward speed, of three types of helicopter:

conventional, coaxial and tandem. For the sizing of each rotor configuration, the power

required for the flight, the necessary forward velocities, the range and the endurance can

be easily calculated. 

Keywords:  Conventional,  Coaxial,  Tandem,  Momentum  Theory,  Blade  Element

Theory,  Hover,  Level  Flight,  Power,  Range,  Endurance,  Design,  Configuration,

Validation, Helicopter, Rotor
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SOMMARIO

   Lo scopo del lavoro svolto per la tesi è di descrivere le teorie e di applicarle per

implementare uno strumento utile per la progettazione preliminare di un elicottero. Tale

strumento è un software sviluppato in linguaggio Matlab ed esegue i calcoli basati su

due differenti  teorie:  del  momento  e  dell'elemento  di  pala.  Con questo  strumento  è

possibile calcolare le prestazioni in volo, dal sostentamento alla massima velocità di

avanzamento,  di tre tipologie di elicottero: convenzionale,  coassiale e tandem. Per il

dimensionamento di ciascuna configurazione di rotori, sono stati implementati i calcoli

della potenza richiesta per il volo, le velocità di avanzamento necessarie, l'autonomia ed

il tempo di autonomia.

Parole  chiave:  Convenzionale,  Coassiale,  Tandem,  Teoria  del  Momento,  Teoria

dell'Elemento di Pala, Sostentamento, Volo Orizzontale, Potenza,  Autonomia, Tempo

di Autonomia, Progettazione, Configurazione, Validazione, Elicottero, Rotore
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CHAPTER 1

INTRODUCTION

         

           The helicopter is one of the most important and interesting aircraft created by

the human being. This kind of aircraft is very useful because of its characteristics of

hovering, forward flying and, of course, vertical take-off and landing. Almost all of the

aircrafts  can't  hover  and  they  need  a  landing  strip.  These  characteristics  of  the

helicopter  allow them to be used in the most extreme situations  by military,  police,

firefighters, medical services, emergency services. Also, they can be used for delicate

works  of  transportation  big  and  not  standard  cargos,  working  with  big  weights  in

faraway places, where other vehicles can't be used.

        Modern helicopters are becoming more and more complex. They are characterized

by many issues concerning with physical size, performance, safety standards, noise level

etc. It is difficult to satisfy all of these issues, because of the conflicts that occur between

each other.

      It's easy to understand how much work and how much time the engineers need to

design such an aircraft. The earlier projects took a lot of expensive and complicated
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experiments,  using  wind  tunnels  and  flight  tests  to  be  able  to  introduce  new

configurations and so to obtain some progress. With the invention of the computer, the

engineers tried to create methods that are easy and fast to apply in order to have a

preliminary design and, of course, to eliminate possible errors.      

     On the other hand, design studies using the performance equation are very important.

These simple analytical equations can provide the designer with an excellent method for

doing first cuts in the preliminary helicopter sizing. The most important thing is the

impressive reduction of time, of  cost and of computational cost.

       Helicopters were not able to evolve so rapidly as the fixed wing but this is not so

important, as underlined by Dr.Alexander Klemin (1925) ([1] pag. 159):

         “The future of the helicopter...  therefore lies not in competition with the

airplane, but in the ability to perform certain functions which the airplane cannot

undertake.”
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1.1 Objectives

     This thesis focuses on the development of a software which delivers the general

elements and features required for the preliminary design process of a helicopter. This

program  treats  the  three  most  common  military/commercial  configurations  of

helicopters: the conventional, the coaxial and the tandem.

     The objectives are to create the script using two theories: the momentum theory and

the blade element theory. So the three configurations of the helicopter can be studied

from the both points of view. 

      This script calculates, for each configuration in dependence of the theory and the

inputs inserted, the total power needed and it will plot the variation of it in function of

the forward speed. The script will also calculate other important parameters like the

endurance and the range of the helicopter chosen. 

      An objective is also to do the comparison between the results of the momentum

theory and the blade element theory for each configuration. The next step is to compare

the  three  configurations,  giving  the  same  values  to  the  input  variables  of  each

configuration.

     The preliminary design program is written in Matlab, simple and friendly to use for

designers. 

1.2 Helicopter configurations

    The most common configurations of helicopters are the conventional, the coaxial and

the tandem.

    The conventional helicopter is one of the first designs in the history adopted to obtain

a hover machine. In fact Sikorsky, the great russian engineer migrated to USA, used, in

practice, this configurations for all his concepts and created flying machines that created

the history of the helicopters. In a helicopter with a single main rotor, as the engine

moves the rotor it's creating a torque effect that make the body of the helicopter to rotate

in the opposite direction of the rotor. To counteract this effect, an anti-torque has to be

applied. This allows the helicopter to maintain the fuselage steady and will ensure the
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yaw control. The most common control systems are the tail rotor, the NOTAR [2] and

the Fenestron (or Fantail) [3].

    The tail rotor is a smaller rotor mounted at the end of the tail at a precise distance

from the  center  of  gravity of  the rotorcraft.  The  tail  rotor  provide the  thrust  in  the

opposite direction of the main rotor's rotation, in this way the torque effect created by

the main rotor can be controlled. The pitch of the tail rotor blades is controlled by the

pilot with the anti-torque pedals and this allows the rotation of the helicopter around its

vertical axis. An example of a conventional helicopter is represented in the Figure 1.1:

         

Figure 1.1 A conventional helicopter: HX-1 (helicopter)/Sikorsky S-76 [4]

       

     The coaxial configuration is more compact because the fuselage is entirely functional

and doesn't  need a  long boom for  a  tail  rotor  for  the rotor  separation.  This  tipe of

helicopter carries no rotor torque reactions because the rotors turn in opposite directions

and therefore one cancels the torque of the other.

    The control system is more effective and the configuration consists of less vulnerable

area of critical components. Also the wetted area of the coaxial design, on the same

payload basis, is much smaller than the tail rotor or the tandem configurations.

    The absence of a tail rotor permits all of the engine power to be used by the rotor

system for lifting. In comparison with a tail rotor configuration, the useful load of the

coaxial  design  is  higher  [5].  The  coaxial  configuration,  compared  to  an  equivalent

engine of a tail  rotor configuration and to a similar tandem configuration, has lower

weight and lower power losses in the transmission and in the shaft. In cross winds the
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handling  of  the  coaxial  helicopter  is  much  simpler  than  any  other  type.  The

characteristic only of the coaxial design, due to symmetry of the coaxial rotor system, is

the same aerodynamic efficiency and controllability in every direction of the flight [5].

  Another advantage of the coaxial configuration is the reduced noise, that is associated

with  conventional  helicopters  where  the  noise  derives,  usually,  from the  interaction

between the airflows of the main and tail rotors [6]. Another benefit is increased safety

on the ground because of the absence of a tail rotor, so result less injuries and fatalities

to ground crews.  An example is exposed in the Figure 1.2:

   

Figure 1.2 A coaxial helicopter: the Kamov Ka-52 Alligator attack helicopter [7]

      

   The tandem helicopters use counter-rotating rotors, like the coaxial one, with each

canceling the other's torque. So all the power provided by the engines is used for lift.

The two rotors are spaced and, usually have the same diameter.  The two rotors are

connected by a transmission that let the rotors be synchronized and don't hit each other

if a failure occure.

    The advantages of the tandem system are a larger range for the center of gravity

position and good longitudinal stability. The tandem helicopters have the advantage to

hold more weight with shorter blades and tend to have a lower disk loading than single

rotor  helicopters.  Also the tandem rotor  helicopters,  typically,  require  less  power to

hover [8]. An example of a tandem helicopter is represented in the Figure 1.3:
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  Figure 1.3  A tandem helicopter: CH-47 Chinook [9]

   

1.3 State of art

    

   There are several projects, research programs and professional tools for a  preliminary

tool design, but not all are easy to get or to work with. Below are some examples of

them.

   The Preliminary Helicopter Design Program Ver.1 (PHD-1) [10], typed in C++, is a

program that performs the functions of helicopter design. In the PHD-1 program, the

user have to insert as input the hover capability, the maximum payload, the range, the

maximum level flight speed, the climb performance and other details. The PHD-1 will

provide necessary data for the sizing of the rotor, the engine, for the determination of

the weight of the helicopter and the power needed for every flight conditions. In the

PHD-1  work,  principally,  the  momentum  theory  was  used,  so  it  is  good  for  a

preliminary  design  process.  This program  can  be  applied  to  conventional  type

helicopters with a single main rotor, single tail rotor and and gas turbine engine. 

      An another tool is: RAPID / Rate: Rotorcraft Analysis for Preliminary Design /

Rand Technologies & Engineering [11], it is still not freely accessible, but the results
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seem to be accurate and complete. It was developed and is maintained by Prof. Omri

Rand Technion from Israel Institute of Technology.

    In  the  paper  “Determination  of  a  Light  Helicopter  Flight  Performance  at  the

Preliminary Design Stage” [12], of the University of Belgrade, some of the calculation

procedures  used  for  the  preliminary  flight  performance  of  the  light  conventional

helicopter design are presented. In the work empirical relations, based on experimental

data, are used with the momentum theory. It was developed at the Aeronautical Institute

of the Belgrade Faculty of Mechanical Engineering.

     Another aeromechanical analysis tool of helicopters and rotorcraft is CAMRAD II

[13]. This very sofisticated program is used for the design, testing, and evaluation of all

the steps of the project: the conceptual design, the detailed design, and the development

of the project. The software uses multibody dynamics, non linear finite elements, the

computational  fluid  dynamics,  the  rotorcraft  aerodynamics  and  wakes  (Momentum

Theory).  This program can be used to design the conventional,  tandem, coaxial  and

tilting proprotor aircrafts. CAMRAD II results very efficient and complete, but it's still

expensive and too complicated for a preliminary design.

     The  power  estimation  algorithm  in  HCDO  (Helicopter  Conceptual  Design

Optimization), upgraded in the reference paper [14], consider the compound rotorcraft

with a lift offset. The HCDO program predicts the required power of a rotorcraft. The

performance analysis in this design program are based on the simple momentum theory

with  empirical  corrections.  To  improve  the  power  estimation  accuracy,  the  blade

element rotor aerodynamics and the trim analysis were integrated. The HCDO program

provides design capabilities for a conventional, coaxial or a tandem rotor helicopter.   

      In the thesis work of Roman Vasyliovych Rutskyy of Instituto Superior Técnico of

Lisbon [15],  a  preliminary  design  tool  for  conventional  helicopters  was  developed.

Using  statistics  a  great  amount  of  available  data  of  conventional  helicopter  were

analyzed to describe the main parameters. Empirical formulas to estimate the main and

the tail rotor diameters, the tip speed, the rotors chord were applied. In this work two

different  theories  are  applied  in  order  to  obtain  the  total  power  required  by  the

helicopter: the linear momentum theory and the blade element momentum theory.
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1.4 Structure of the thesis 

 

     The thesis is made of the exposition of the theory used to describe the performances

of a helicopter like: the power needed to the various conditions of flight, the specific

velocities, the efficiency in terms of the endurance and the range of the helicopter etc

(Chapter  2).  The program code,  that  is  the aim of this  thesis,  was developed using

certain  assumptions  and  simplifications  of  the  theory  (Chapter  3).  The  three  most

important configurations of helicopters: the conventional, the coaxial and the tandem

are presented and discussed. 

    Two theories are presented, the Momentum Theory and the Blade Element Theory

(Chapters 2.1, 2.2). These are the most simple ones used to describe a rotor. The two

theories were used separately to be able after to compare the results and to verify how

different are the two approaches.

    The program was made applying the various equations and relations from the two

theories  to  calculate,  with  certain  precautions,  the  numerical  behavior  of  the  each

configuration of the helicopter. To have a preliminary design tool there have to be made

certain choices in the both theories, that makes the program be simpler and faster.

   A very important step is the validation of the results (Chapter 3.5). This means to

compare the results obtained from the program with the experimental data collected in

the wind tunnel of real models.  

    An another point of the thesis is to choose certain input values, the same to all the

configurations of the helicopter,  and to analyze the progress of the output results in

comparison to each other. In fact this step is the creation of a preliminary design of a

new helicopter. So in this phase can be compared three different configurations using

two different theories (Chapter 4).
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CHAPTER 2

 

THEORETICAL ANALISIS

2.1 The Momentum Theory

     The Momentum Theory is used to analize the rotor flow field problem using the

three basic conservation laws of fluid mechanics: mass, momentum and energy. This

method was proposed first time by Rankine in 1865 to study the marine propellers, the

following progress in this direction was made by Froude and Betz, and further formally

generalized by Glauert in 1935 [16].

    The most simple mathematical model of a rotor is an actuator disk. The rotor is

approximated  by an infinitesimally thin disk,  over  which pressure differences  exist,

producing an instantaneous change in the momentum of the flow. The application of the

fluid conservation  laws on a  control  volume results,  in this  case,  a solution for the

uniform induced velocity at the uniformly loaded rotor disk. The control volume, as

illustrated in Figure 2.1 [17], is the surrounding area of the thrust carrying disk and it’s

wake.

    This one-dimensional method provides only a first order global estimation of the

rotor thrust and power. It doesn't include load distributions and non-linearities in the

flow environment (for example: tip losses).
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2.1.1 The conventional helicopter

    

     The power required by the helicopter is given by the following expression:

                                        
                                           P = Pi + P0 + Pp + Ptr+ Pc,                                        (1)

where P is the total power, Pi is the induced power, P0 is the profile power due to the

trawling in the main rotor blades force, Pp is the power resulting from the fuselage drag

force due to the horizontal movement of the helicopter, Ptr is the power required by the

tail rotor and Pc is the power consumed by the helicopter to climb up.

2.1.1.1 Hover Regime

      Pi is described by the expression (2), where PI is the power ideally consumed by the

helicopter and k (typical value being about 1.15) is the induced power factor which is

introduced to consider the non-ideal  physical  effects  (for example:  finite  number of

blades, tip losses, wake swirl, nonuniform inflow):

                                                                 Pi = k ⋅ PI,                                                          (2)

 
                                                                                                                                          (3) 
                                                                                                                                              
                                                                                            
 
where the weight of the entire helicopter was assumed to be equal to the thrust required

by the main rotor to allow the hover condition, ρ is the local air density and A is the

area described by the blades of the main rotor.                                                   

     The expression (3) can be deduced, considering the Figure 2.1, in the following way.

The applied force equals to the variation of the linear momentum:

                                                          T = ṁ ⋅ w – 0,                                                     (4)
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where ṁ is the mass flow and w is the “far” wake or thr slipstream velocity (plan ∞).
     Here is considered  ṁ0 = ṁ∞ = ṁ1 = ṁ2 = ṁ (the mass conservation) and A1 = A2. From
this results that vi1 =  vi2 =  vi. Therefore, there is no speed variation through the rotor disc.
    The power, at the same time, is equal to the force (the thrust) multiplied per the velocity
and to the energy variation rate:

                                                                                                                                                  (5)
                                                                          

From the relations (4) and (5) results: 

                                                                        w = 2  ⋅vi = 2  ⋅vh                                                    (6)

where vh is the induced speed for the hover regime.
So results:

                                                   ṁ = ṁ1 = ṁ2 = ρ  ⋅vh  A⋅                                                  (7)

from the next combination of the relations:

                         T =  ṁ  w = ⋅ ṁ  (⋅ 2  ⋅vh) =  ρ  ⋅vh  A  (⋅ ⋅ 2  ⋅vh) = 2  ⋅ρ  A ⋅  ⋅vh
2                 (8)

we obtain the relation of  vh:

                            

                                                                                                                                 (9)

From the relations  (5) and (9) result  the following expression for the ideal  induced

power:

                                                                                                                                (10)

So the induced power of the helicopter results:

                                                                 

                                                                                                                                (11)
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Figure 2.1 Flow Model for momentum theory analysis of a rotor in hovering flight,

taken from Leishman [17]

   The profile power, that derives from the blade element theory (see relations (109) –

(112)), has the following expression:

                                                                                                                                 (12)

                                                                                                                                 

where  σ is the solidity of the main rotor, which is the ratio between the area of the

blades of the main rotor and the area of the entire main rotor, Cd0 is the aerodynamic

drag coefficient of the main rotor blade profile with zero lift and Vtip is the speed of the

blade tip.

   The local solidity σ is expressed by ([1] pag. 81):

                                                                                                                                (13)

                                                                                                                                  

where Nb is the number of blades of the main rotor, c is the chord of the blade when it

is rectangular, if not, is chosen an average value of the chord.  R is the radius of the

main rotor.

      Pp is the power required to overcome the drag force on the fuselage, and in the case

of hovering is null:
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                                                                Pp = 0                                                     (14)

          

     Pc represents the part of the power needed to climb. If there is no climb velocity:

                                                               

                                                                Pc = 0                                                      (15)

      Ptr, the power consumed by the tail rotor, for the first steps is considered around

10% of the total power required for the main rotor. 

   A good approximation of the density of the air that changes in function of the altitude

is given by ([15] eq.16):

                                                                                                                                (16)

2.1.1.2 Horizontal flight regime with a given altitude

    

Figure 2.2 Illustrates the horizontal flight regime of a helicopter, with a certain speed at

a given altitude [18] 
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    The expression (1) is also used in forward flight regime. In this case there is no climb

velocity so  Pc equals zero too. The power required from the tail rotor,  Ptr, as in the

hover case, can be consider to be around 10% of the power needed for the main rotor

and it will be exposed below.

     So the expression (1) reduces to:

                                                   P = (Pi + P0 + Pp+ Ptr)                                       (17)

    Introducing μ as the ratio between the forward speed (free stream velocity) and the

blade tip speed, or called the dimensionless forward speed of the helicopter, for  very

small α results:

                                                                                                                                (18)

     The expression of the induced power Pi, valid for any value of vi (can be simplified

for μ >0.15) results:

                                                           Pi = k  T  vi⋅ ⋅                                                        (19)

     The induced velocity vi, is given by ([1] pag. 65):

                                                                                                                     

                                                                                                                             (20)

    The solution for the inflow ratio λ can be obtained from the relation([1] pag. 65 eq.

2.102 and eq. 2.106):

                                                                                                                             (21)

where λh is the inflow ratio from the hover case and is given by the equation ([1] pag.

65 eq. 2.104):

                                                                                                                              (22)

    Note that λ appears on both sides of the expression (21), so, for the generical case,

has  to  be  applied  a  numerical  procedure  to  solve  for  λ,  for  example,  the  Newton-

Raphson method.
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   The coefficient of induced power Cpi (valid for μ>0.15) is given by the expression

([1] pag. 164, eq. 5.18):

                                                                                                                                  (23)

where Ct is the coefficient of thrust of the helicopter. So the induced power results:

   

                                                                                                                                  (24)

where vi is the induced velocity: 

                                                                                                                                  (25)

    For the calculation of the profile power P0 the formula is (see [19] pag. 219 eqs. 5.26

- 5.29):

                                                                                                                                  (26)

where K is  a  parameter  that  varies,  in  base  of  the  various  assumptions  and

approximations made, from 4.5 in hover to 5 at μ = 0.5. Stepniewski (1973) suggests to

use an average value of K = 4.7 ([1] pag. 165).

    The parasitic power Pp can be given by the expression ([1] p. 166, eq. 5.24):

                                                                                                                                  (27)

where f is the equivalent flat plate area of the fuselage. The value of f varies from about

0.93m2 for a smaller helicopter to 4.65m2 for a large utility helicopter design ([1] pag

166).  f is defined by the formula: 

                                                                                                                                  (28)

                                                                                                                                   

where Df is the fuselage drag.
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2.1.1.3 Tail rotor power of a conventional helicopter

  

  The tail rotor is needed in a convetional helicopter to create a thrust that has to balance

the main rotor torque reaction on the fuselage. The thrust required by the tail rotor Ttr is

([1] pag. 167 eq. 5.28):

                                                                                                                            (29)

where dtr, theoretically, is the distance from the tail rotor shaft to the center of mass of

the helicopter, but was assumed that the position of the center of mass is on the main

rotor shaft axis.  Ω is the angular velocity of the main rotor. The interference between

the main rotor and the tail rotor is usually neglected in the preliminary design analysis.

      The power of the tail rotor is calculated  in a similar way to the main rotor:

                                              Ptr = Pitr + P0tr                                            (30)

where Pitr is the induced power of the tail rotor and P0tr is the profile power of the tail

rotor.

      The induced power of the tail rotor is calculated, as in the previous relation (19) for

the main rotor, for the thrust Ttr (29):

                                                        Pitr = k  Ttr  vitr⋅ ⋅                                                    (31)

                                              

where vitr is the induced speed of the tail rotor (for small α, as for the main rotor):

                                                                                                                                  (32)

where Rtr,  Ωtr and λtr are respectively the radius, the angular velocity and the inflow

ratio  of  the  tail  rotor.  The inflow ratio  of  the  tail  rotor  λtr,  for  the  level  flight,  is

calculated as in the expression (21) for the main rotor:

                                                                                                                                 (33)
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      For the hover case the inflow ratio of the tail rotor is found with the relation (22),

where the coefficient of thrust of the tail rotor Cttr is calculated by the formula:

                                                                                                                                 (34)

where Atr = π  Rtr⋅ 2 is the area of the tail rotor, Vtiptr is the blades tip speed of the tail rotor

and the dimensionless forward speed of the tail rotor is given by:

                                                                                                                                             (35)

To semplify the calculations we considered Vtiptr = Vtip.

  λtr appears on both sides of the expression (33), so a numerical solution can be the

Newton-Raphson method, as in the case of the main rotor.

     The induced power of the tail rotor is calculated, as in the relation (24) for the main

rotor, with the thrust Ttr (see relation (29)):

                                                                                                                                   (36)

The induced velocity of the tale rotor results in this case:

                                                                                                                                   (37)

    For the calculation of the profile power of the tail rotor, P0tr, the expression is the

same for the main rotor (26):

                                                                                                                                  (38)

where Cd0tr is the aerodynamic drag coefficient of the tail rotor blade profile with zero

lift. As for the main rotor (13), the solidity of the tail rotor is given by the expression:

                                                                                                                                   (39)

where Nbtr is the number of blades of the tail rotor and ctr is the chord length of the tail

rotor blades (rectangular).
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2.1.2 The coaxial rotor

    The coaxial rotor configuration has some advantages, for example, there is no tail

rotor required for the anti-torque purposes, the net size of the rotors is reduced (for a

given rotorcraft weight) because each rotor creates thrust. But one of the problems is

that the lower rotor is in the wake of the upper rotor and this generates a much more

complicated  flow  field  than  for  a  single  rotor  design.  This  can  be  simplified  by

assuming that the interference is simulated with a loss of power.

2.1.2.1 Hover regime

The total power, in hover, of the coaxial helicopter is:

                                                            P = Pi + P0                                                    (40)

because the parasitic power Pp and the climb power Pc are null in hover.

    If the rotor plans are assumed sufficiently close and each rotor creates a thrust equal

to  T/2,  the  total  thrust  generated  by the helicopter  results  T.  The  effective  induced

velocity for the hover, in this case, will be ([1] pag.69 eq.2.124):

                                                                                                                                  (41)

    So the ideal induced power for the coaxial design, PI, in hover condition, results ([1]

pag.69 eq.2.125):

                                                                                                                                  (42)

   

    If each rotor is considered separately,  the induced power per single rotor results

(T/2)  vi⋅ . So the ideal induced power of the coaxial configuration is given by:
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                                                                                                                              (43)

   The induced power interference factor between the rotors, kint, can be defined from

the ratio between the relations (42) and (43) ([1] pag.70 eq.2.127):

                                                                                                                             (44)

     From the relation (44) results that there is an increase of 41% in the induced power

needed to operate  the  coaxial  configuration  respect  to  the configuration  of  the  two

isolated rotors. Usually the two rotors of the coaxial configuration are spaced enough to

make the lower rotor work in a fully developed slipstream of the upper rotor.

   So  with  the  momentum  theory,  kint  =  1.41  calculted  assuming  the  rotors  not

separated,  is  changed  to  kint  =  1.28 found  assuming  the  rotors  enough  vertically

separated (see [19] pag. 103). From the experiments, for example Dingledein (1954),

was deduced a kint = 1.16 (used in all this thesis), that still overpredicts the value ([1],

pag. 70). 

       The induced power of the coaxial helicopter in hover results:

                             

                                                                                                                                 (45)

where k is assumed the same for each rotor.

    The profile power of the coaxial helicopter in hover has the expression:

                                                                                                                                 (46)

    There  is 2  ⋅ σ  because  the  profile  power  considers  both  rotors  of  the  coaxial

configuration. The experimental data and the momentum theory are in a good agreement
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and suggest that  the coaxial rotor can be considered as a system of two isolated rotors

with an induced interference between them ([1] pag. 71).

2.1.2.2 Horizontal flight regime with a given altitude

   The following expression is for the induced power Pi (valid for any value of vi):

                                                                                                                                      (47)

where vi  is the induced velocity ([1] pag. 65):

                                                                                                                             

                                                                                                                            (48)

   The solution for the inflow ratio, λ is:

                                                                                                                           (49)

    As for the conventional helicopter (21), to solve for λ can be used, for example, the

Newton-Raphson method.     

    The inflow ratio for the hover case λh results:

                                                                                                                          (50)

    The coefficient of thrust for the coaxial design is:

                                                                                                                                (51)

where  A and  Vtip  are the area of each rotor and the blade tip speed of the coaxial

helicopter.

    The coefficient of induced power Cpi of the coaxial system (valid for μ>0.15) results

(see the relation for the conventional helicopter (23)):
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                                                                                                                                (52)

   So the induced power is given by the expression:

                                                                                                                               

                                                                                                                                

                                                                                                                                (53)

where  the  last  equality  is  the  expression  (47).  So  the  induced  velocity  vi can  be

expressed: 

                                                                                                                                (54)

    For the calculation of the profile power P0 for the coaxial design the formula is:

                                                                                                                               

                                                                                                                                (55)

  

  The  expression  of  the  parasitic  power  Pp is  the  same  as  for  the  coventional

configuration given by the relation (27).

2.1.3 The tandem rotor

        

    

  The  momentum theory  can  be  applied  also  to  an  overlapping  tandem rotor.  The

tandem configuration, as the coaxial, doesn't need a tail rotor, so all of the rotor power

is used to create lift. But the induced power of the partly overlapping tandem results

higher respect to the two isolated rotors, like for the coaxial design, because one of the

rotors has to work in the slipstream of the other one. This problems were studied by

Stepniewsky & Keys (1984) ([1] pag. 71). 
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2.1.3.1 Hover Regime

    As Payne (1959) suggests ([1] pag. 71), the overlapping rotors are studied with the

momentum theory using the "overlapping areas". 

                                                           

                                                               Aov =  m  ⋅A                                               (56)

where Aov, described in the Figure 1.6, is the overlap area.

    As Payne (1959) suggests, the overlapping rotors are studied with the momentum

theory using the "overlapping areas" and the two rotors are thought to have the verical

spacing null, see Figure 2.3 below. 

Figure 2.3 Flow model used for tandem rotor analysis, with the consideration that the

two rotors are in the same plane ([19] pag. 145 fig. 2.32)

    Using the geometry, Figure 2.3 left, results ([1] pag. 72 eq.2.130):

                                                                       where                                                (57)

     If T1 and T2 are the thrusts of the two rotors, that can be also equal, results that the

thrust of the overlapped region is m  (T⋅ 1+T2). Assuming that the inflow is uniform, the

induced power on each of the three areas (Figure 2.3 left) described by the rotors is:

                 

                                                                                                                                 (58)
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                                                                                                                                 (59)

                                                   

                                                                                                                                 (60)

where the ideal induced power of the tandem design is:  (PI)tot =  P1 + P2 + Pov.

   If the two rotors are isolated,  m  goes to zero and the ideal induced power of the

system results ([1] pag. 72 eq.2.131):

                                                                                                                                 

                                                                                                                                (61)

    The induced power overlap factor, kov, for the tandem design, as for the coaxial case

with kint, is deduced from the ratio:

                                                                                                                                 (62)

    If T1 = T2 means that the two rotors create equal thrust and results:

                                                                                                                                 (63)

where m is defined in the relation (57).

   Another approximation of kov was proposed by Harris (1999) ([1] pag. 72 eq. 2.135):

                                                                                                                                (64)

where  d is the spacing between the two rotors axes and  D is the rotor diameter (Fig.

2.3).

     For m → 1 in the equation (63), that is the coaxial case, results kov → √2. If m → 0,

when the two rotors are isolated and don't present overlap, results kov → 1.
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    In the Figure 2.4, is plotted the variation of  kov in function of the ratio  d/D. So,

bigger is the distance between the two rotor shafts, more isolated result the two rotors

and kov is going close to one. 

Figure  2.4  Tandem  rotor  overlap  induced  power  correction,  that  derives  from  the

momentum theory and compared to measurements ([19] pag. 106 fig. 2.31) 

      

   The total induced power needed for the hover (valid also for the forward flight) for a

tandem configuration helicopter is described by ([19] pag. 107 eq. 2.168):

                                                                                                                                (65)

where   T1  + T2 = 2⋅T (in this case is considered  T1 = T2 = T = W/2, where  W is the

weight of the helicopter) is the total system thrust generated by the two rotors and A is

the area  of  each of the rotors.  Was assumed the same  k for each rotor in  order  to

semplify the model.

      The profile power of the tandem helicopter in hover, like for the coaxial case (46),

has the following expression:

                                                                                                                               (66)

There is 2  ⋅σ because the profile power considers both rotors of the tandem configuration.
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2.1.3.2 Horizontal flight regime with a given altitude

   The induced power for hover/level-flight for a tandem configuration can be expressed

as in relation (65), but in this work we prefered the following relation ([1] pag. 177 eq.

5.51):

                                            Pi = k  ⋅Tf  vif  + kov  ⋅ ⋅k  Tr  vir⋅ ⋅                                    (67)

  Where  Tf and  vif are  the  thrust  and  the  induced  speed  of  the  front  rotor,  and,

respectively,  Tr and  vir  are the thrust and the induced speed of the rear rotor.  The

induced power overlap factor kov, assumed for the rear rotor, was considered in all this

thesis equal to 1.14.

    In this work we considered that Tf = Tr = T/2 (= W/2), as for the coaxial case. Each

rotor provides equal thrust, the tip speeds of the rotors are considered equal  Vtipf =

Vtipr and results vif = vir.

    Summarizing the induced power Pi of the tandem case (valid for any value of  vi)

results:

                                                                                                                                       (68)

where vi  is the induced velocity for small values of α ([1] pag. 65):

                                                                                                                     

                                                                                                                          (69)

    From the following expression can be obtain the solution for the inflow ratio λ :  

                                                                                                                          (70)

where λh is the inflow ratio from the hover case:

                                                                                                                         (71)
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    The coefficient of thrust for the tandem design, as for the coaxial design, is:

                                                                                                                                (72)

where A and Vtip are the area of the each rotor and the blade tip speed of the tandem

helicopter.

    As for the conventional helicopter (21), to solve for λ can be used, for example, the

Newton-Raphson method.         

   The expression of the induced power of the tandem configuration (valid for any value

of vi), similar to the coaxial case (24) is:

                                                                                                                              

                                                                                                                                  (73)

    From the relation (73) can be expressed the the induced velocity vi : 

                                                                                                                                  (74)

   

   For the calculation of the profile power P0 for the tandem design, as for the coaxial

case (55), the formula is:

                                                                                                                                (75)

   The parasitic  power  Pp for all  the cases of helicopters,  previously given (27) to

explain the expression of the trust of the tail rotor of a conventional helicopter (29), is

recapitulated below ([1] p. 166, eq. 5.24):

                                                                                                                                (76)

   So the total power in horizontal flight of the coaxial and the tandem helicopters is

given by the expression:

                                                       P = (Pi + P0 + Pp)                                             (77)
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2.2 The Blade Element Theory

     

    The Blade Element Theory (or the Strip Theory), was first proposed by Drzewiecki

in 1892 to study the marine and later the airplane propellers [16]. The method consists

of dividing the blade elements (strips) in the radial direction. The idea is to assume the

each  element  to  act  as  a  two-dimensional  airfoil  that  produces  moments  and

aerodynamic forces.

    The rotor is influenced by the wake and there results a non-uniform induced velocity

distribution. This is represented by an induced component of the angle of attack at each

element (Figure 2.5.b). 

    The integration of the contributions from all the elements, along the blade radius, can

be use to obtain predictions of the performance of a certain rotorcraft.

    The blade element theory divides the rotor blade into infinitesimally small, uniformly

distributed, blade elements as represented in the Figure 2.5.a. The blade element at the

rotor disk plane are influenced by the velocity components, UT and UR.

2.2.1 Hover regime

       The blade element theory used for the hover analysis considers the blade elements

as 2-D airfoil sections that provide aerodynamic forces and moments.  UR is negleted

since it is a 2-D analisys and it has no influence on the aerodynamic characteristics of

the blade element.

                                                         UT = Ω  y⋅ ,  UR ≈ 0                                           (78)

where y = R  r⋅ .
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(a) Top view

(b) Blade element

Figure 2.5 Velocities and aerodynamic forces at a typical blade element ([16] fig. 2.2)

      The Figure 2.5.b illustrates the geometry, the velocities and the aerodynamic forces

at  the airfoil  section  plane of the blade  element.  The blade is  considered  rigid and

undeformed. Considering the climb velocity Vc null, in the Figure 2.5.b is represented

the vertical component of the velocity, UP, and is given by:

                                                UP = Vc + vi = λ  ⋅Ω  ⋅r                                           (79)

where λ is the induced inflow ratio at the blade element, calculated using by choosing

the inflow model. 
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     The resultant of the velocity at the blade element is:

                                                                                                                                 (80)

   The relative inflow angle (or the induced angle of attack) at the blade element, also

shown in the Figure 2.5, for small angles results:

                                                                                                                                 (81)

so also we have that sinϕ = ϕ and cosϕ = 1. The relation (81) is not valid for small UT

(near  the blade  root).  But  since this  is  the  root  cut-out  zone this  zone  is  normally

neglected.

  Now,  considering  θ as  the  pitch  angle  at  the  blade  element,  the  effective  –

aerodynamic angle of  attack is given by:

                                                                                                                                 (82)

    The elemental  aerodynamic  forces per unit  span on the blade,  dL and  dD,   are

defined as normal and parallel to the velocity vector, respectively, and described below:

 

                                                                                                                                 (83)    

 

where Cl and Cd are the lift and drag coefficients per blade section, taken from specific

airfoil tables. c is the local blade chord.

    The aerodynamic forces can be solved, represented in Figure 2.5, perpendicular and

parallel  to the plane of the rotor disk, respectively.  The equations,  that describe the

forces  dFz and  dFx,  employ the  local  lift  and drag  forces  (Eq.  (83))  using  simple

geometric transformation:

                                                                                                                                  (84)

 

    The thrust, the torque, and the power contribution from a blade element at a radial

station r is expressed like below:
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                                                                                                                                  (85)

                                                                                                                                  (86)

                                                                                                                                  (87)

where y = R  r⋅  and dy = R  dr⋅  (see Figure 2.5.a). 

    Using the equations (85), (86), 87), and the expressions for the lift and drag for the

blade element,  given in Eq. (83), the thrust, the torque, and the power can be non-

dimensionalized in the next way ([16] eqs. 2.14, 2.15, 2.16):

                                                                                                                                  (88)

                                                                                                                                  (89)

                                                                   

                                                                                                                                  (90)

where σ is the local solidity, defined previously (13).

   The local blade lift coefficient, based on the linearized aerodynamics, is expressed by:

                                      Cl = Clα  ⋅ (α – α0) =  Clα  (θ – ⋅ α0 – ϕ)                           (91)

where  Clα is the 2-D lift-curve-slope of the airfoils of the rotor blades and  α0 is the

zero-lift angle.  

   To obtain the total coefficient of thrust and of power/torque,  Ct and  Cp = Cq, the

contributions of each element are integrated over the entire blade:

                                                                

                                                              and                                                             (92)

In this work was not considered a root cut-out of the blades. 

    The rotor incremental power can be written  as ([1] pag. 84 eq. 3.27):
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                                                                                                                                 (93)

Using the relation λ = ϕ  r⋅  and expanding the previous expression (93), results:

                                                                                                                                 (94)

                                                                                                                                 (95)

where dCpi is the induced power and dCp0 is the profile power.

     From the relation (91), where the lift coefficient is expressed, results:

                                                                                                                                (96)

where  θ = θ0 because the blade,  in this  work,  is  considered untwisted and  α0 = 0

because the airfoils are assumed  symmetric. Due to the small angle approximation, Cd

is assumed to be equal to Cd0, the profile (viscous) drag coefficient of the airfoils of the

rotor blades.

    The pitch angle θ0, in terms of thrust, is given by the relation ([1] pag. 83 eq. 3.24):

                                                                                                                                 (97)

     The first term is the pitch of the blade needed to create thrust and the second term is

the additional pitch that compensates the inflow created by this thrust.

    Recapping and putting together all the relations (96, 97), the power coefficient dCp

needed for a helicopter can be expressed as follows:

                                                                                                                                    (98)

                                                                                                                                    (99)
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   And results  the integral  made  of  three therms,  the  first  two terms  stand for  the

induced power and the last one stands for the profile power:

                                                                                                                                   (100)

      In the transition from hover to forward flight (0.0 ≤ μ ≤ 0.15) of a rotor, the induced

velocity in the plane of the rotor is not uniform. But for a higher forward flight velocity

(μ > 0.15) the inflow becomes more linear so an approximation of the induced inflow

ratio of the rotor, proposed by Glauert (1926), is given ([1] pag. 116 eq. 3.165):

                                                                                                                                  (101)

where  λ0  is the mean  induced inflow ratio at the center of the rotor, as given by the

momentum theory ([1] pag. 116 eq. 3.166):

                                                                                                                                (102)

   

   An approximation of the weighting factors, proposed by Coleman (1945) and Johnson

(1980) is to use the rigid cylindrical vortex wake theories. So kx can be expressed  in

the following way:

                                                                                                                                (103)

where χ is the angle of the wake skew and expressed as:

                                                                                                                                

                                                                                                                               (104)

where  μx and  μz are  the  advance  ratios  (Figure  2.6),  respectively,  parallel  and

perpendicular to the disk of the rotor.

    From the Figure 2.6, for  μ>0.2, the wake starts to be flat and results that for high

forward  speed  kx reaches  1. In this  work,  the  contribution  of  μz will  be  neglected

because, in the relation (104) μx is much higher than μz. 
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Figure 2.6 Variation in the rotor wake skew angle with the coefficient of thrust Ct and

the advance ratio μ ([19] pag. 160 fig. 3.28)

   

        Also other authors suggested an approximation of kx, listed in the Table 2.1 ([19]

pag. 160 Table 3.1):

Table 2.1 Estimated values of the first harmonic inflow

where kx and ky represent the deviation of the inflow from the value predicted with the

momentum theory. As told in the relation (101), the Coleman (1945) model was used in

this work, but if Drees (1945) model is used, for example, the expression of induced

inflow ratio λi (101) uses also ky and becomes:
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                                                                                                                               (105)

   So  recapping,  the  expression  of  the  λi,  (101),  can  be  completed  using  the  last

consideration done:

                                                                                                                                (106)

so λi results:

                                                                                                                               (107)

   And  now,  the  induced  inflow  ratio  λi,  is  used  to  calculate  the  integral  of  the

coefficient of power of the rotor in the relation (100). The expression (107) has on the

both sides  λi, so it  has to be calculated iteratively,  for example,  with the Newton –

Raphson  method.  Inside  the  relation  (107)  r  and  ψ  are  also  present,  that  are  the

variables along which the integral of dCp is made.  

    Since an average over the azimuthal angle is needed, the next expression has to be

divided by 2π. So, summarizing,  for the one rotor helicopter, the coefficient of power

for hover is given by (100):

                                                                                                                               

                                                                                                                               (108)

or better:

                                                                                                                               (109)

And the power of the one rotor helicopter in hover is given by:

                                                                                                                                (110)

where Vtip = Ω  R⋅ .
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      For an one rotor helicopter in forward flight, the parasitic power of the fuselage also

appears, and it is expressed with the same relation as for the momentum theory (76). So

the total power of the one rotor helicopter in forward flight becomes:

                                                                                                                                   

                                                                                                                                

                                                                                                                                 (111)

2.2.1.1 Conventional helicopter

   In a conventional helicopter the tail rotor is present, so it's attached to a single rotor

helicopter, described by the relation (111) and, like for the momentum theory (29), the

thrust provided by the tail rotor is given by:

                                                               

                                                                                                                                 (112)

and the coefficient of thrust of the tail rotor, like for momentum theory (34), results:

                                                                                                                                 (113)

   The pitch angle θ0 of the tail rotor, in terms of thrust, is given by the relation, like for

the mai rotor (97), is:

                                                                                                                                 (114)

   The coefficient of power of the tail rotor is calculated with the same formula used for

the main rotor (108), where all the variables are of the tail rotor, and results:

                                                                                                                                 

                                                                                                                                 (115)
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and, finally, results, like for the main rotor (109):

                                                                                                                                  

                                                                                                                                 (116)

     The power of the tail rotor is given by:

                                                                                                                                 

                                                                                                                                (117)

   In this work, to simplify the calculations, it is considered that the tip speed of the tail

rotor is equal to the tip speed of the main rotor Vtiptr = Vtip  (see relation (35)) and due

to the relation (18) results that  μ =  μtr. In case the two tip speeds are different, the

program developed,  in this  thesis,  take it  into account for calculations  by using the

relation (35).

   The total power of a conventional helicopter in forward flight, like in the momentum

theory (17), is given by the following relation:

                                    P = (Pi0 + Ptr + Pp) = (Pi + P0 + Ptr + Pp)                     (118)

2.2.1.2 Coaxial/Tandem helicopters

   The coefficient of thrust of the coaxial/tandem configurations, like for the momentum

theory (52), (72), is given by the relation:

                                                                                                                                (119)

   The pitch angle θ0, in terms of thrust, is given by the relation (97):

                                                                                                                                 (120)
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   The coefficient of thrust for hover of each rotor of a coaxial helicopter, as for the one

rotor helicopter (109), is given by: 

                                                                                                                                  

                                                                                                                                 (121)

where  kint is  the  induced  power  interference  factor  between  the  rotors,  described

previously in the momentum theory. 

      So the total power of the coaxial system, in forward flight, is given by:

                                                                                                                                 (122)

where the sum of the induced power and the profile power for one rotor, given from the

formula (110), is multiplied per two because there are two rotors and they are on the

same axis. 

    The coefficient of thrust, for hover, of the front rotor of a tandem helicopter, as for

the one rotor helicopter (109), is given by: 

                                                                                                                                  

                                                                                                                                 (123)

     The coefficient of thrust, for hover, of the rear rotor of a tandem helicopter, as for

the front rotor (123), is given by: 

                                                                                                                                  

                                                                                                                                 (124)

where  kov is  the  induced  power  overlap  correction between  the  rotors,  described

previously in the momentum theory.

       So the total power of the tandem system, in forward flight, is given by:
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                                                                                                                                   (125)

and, finally, results:

                                                                                                                                    (126)

     The parasitic power, Pp, has the same expression, (76), for all the designs and for

the both theories used in this thesis, momentum theory and blade element theory. 

     All  the  variables  present  in  the  previous  relations  are  caracterizing  the  each

helicopter  design.  Certain variables  are  considered as an input,  like the masses,  the

altitude, the number of blades ect, that has to be provided. But the other variables are

calculated from empirical formulas that will be provided below.

2.2.2 Horizontal flight regime with a given altitude

   

   The coefficient of the power of the rotor (see relation (93)), for the horizontal flight

regime, can be developed in the next way: 

                                                                                                                                 (127)

where:

- dL and  dD are given by the relation (83), 

-  for small angles results sinϕ = ϕ and cosϕ = 1,

- A = π · R2, the area of the rotor, 

- y = R ∙ (r +μ ∙ sinψ) and results dy = R∙ (1+μ ∙ cosψ)∙ dr ∙ dψ ,

-  from the  relations  (78)  and  (80),  neglecting  Ur  and  considering  Up  null  for  the

horizontal fight results: U = UT = Ω ∙ y  = Ω ∙ R ∙ (r +μ∙ sinψ),

     And results:
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                                                                                                                                  (128)

where:

- σ is given by the relation (13),

-  from the relation (96)  the lift coefficient is given by: Cl =  Clα  (θ – α0 – ϕ)⋅ , where

 θ = θ0 because the blade is considered untwisted and α0 = 0 because the airfoils are 

assumed symmetric,                                                             

- Cd = Cd0, as for hover condition,

- the relative inflow angle (or the induced angle of attack) at the blade element, see

(Figure 2.5), for small angles given in the relation (81) in this case:

                                                                                                                                 (129)

and results:

                                                                                                                                 (130)

                                                                                                

-  the inflow rate λ is given by the relation (107),

    And the lift coefficient for forward flight condition results:

                                                                                                                                 (131)
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    Summarizing, the relation (128), can be expressed in the next way:

                                                                                                

                                                                                                       

                                                                                                                                  (132)

    

    So the relation (109), for the forward flight condition, results:

                                                                                                                               

                                                                                                                                 (133)

   

   As for hover condition, the first two terms of the expressions (132) and (133) are

characterising the induced power and the last term stays for the profile power of the

rotor. 

2.3 Important advance velocities

    Many important characteristics of the helicopter in forward flight, like the climb or

the autorotation, can be estimated from the curves of the power in function of the level

flight speed, see the next figure. From these curves, the airspeed for maximum rate of

climb and endurance can be obtained, as well as the vertical velocity of the helicopter

for the maximum rate of climb and endurance, the airspeed for the maximum range, the

maximum level flight speed, etc.
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Figure 2.7 The representation, with the torque (power) curve, of the speed to fly for

maximum rate of climb, maximum range and maximum level flight speed ([19] pag.

235 fig. 5.17)

2.3.1 Velocity for minimum power, Vmp

   

   Vmp is the forward velocity for the minimum power of a helicopter, also called the

forward velocity for which the climb rate is maximum at that height. This situation is

verified at a relatively low speed, in the range of 60-80 kts (110-150 km/h), see Figure

2.7.

   The maximum possible rate of climb is also the optimum speed to fly for minimum

autorotative rate of descent. In this case, if a mechanical failure occurs, the pilot is able

to translate the potential energy stored into the translational kinetic energy and so to

save the machine and the crew. This is possible because the autorotative rate of descent

results lower. In this thesis was not used the condition of the autorotation, this can be an

objective to treat in a possible future improvement.
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     The velocity for the minimum power  Vmp determines also the airspeed ratio to

obtain the maximum flying time of the helicopter, the endurance.

    To estimate  Vmp, the expression of the coefficient of power of the helicopter ([1]

pag. 172 eq. 5.37), is used where λc = 0, so to look for the point of minimum power and

the point of minimum P/Vinf. In the relation (134) is added also the contribution due to

the tail rotor for the convetional design:

                                                                                                                                 

                                                                                                                                 (134)

where Cpmr is the coefficient of power of the main rotor plus the parasitic power and

Cptr is the coefficient of power of the tail rotor.

And results:

                                                                                                                               

                                                                                                                                (135)

where Ct  = Cw  is the coefficient of weight and equals the thrust needed by the main

rotor:

                                                                                                                               

                                                                                                                                (136)

    where W is the weight of the helicopter at takeoff. Cttr is the coefficient of thrust due

to the tail rotor and is given by the relation (29), so using the first three terms of the

relation (135), results:

                                                                                                                               

                                                                                                                              

                                                                                                                                

                                                                                                                                (137)
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where P is the power of the main rotor plus the parasitic power of the helicopter.

                                                                                                                                (138)

 Differentiating the expression (135) respect to μ results:

 

                                                                                                                                (139)

that equals to zero to obtain a minimum.

   The fourth member of the relation (139) can be developed in the next way:

                                                                                                                                (140)

    Where Z results to be:

                                                                                                                                (141)

                                                                                                                                

   Ymp results from doing the square of the quadrinomial, multiplying per k/(2μ) and

after  differentiating for µ the relation:

                                                                                                                                (142)

    For the coaxial/tandem configurations, in the relation (134), Cptr = 0 because there

is no a tail rotor.  Cw results in this case:
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                                                                                                                                (143)

because it's considered that each rotor has to counteract a half of the weight.

     For a coaxial helicopter the relation (139) results:

                                                                                                                                  

                                                                                                                                (144)

     

     For a tandem helicopter the relation (139) results:

                                                                                                                                   

                                                                                                                                (145)

where  kint  and  kov are, respectively,  the induced power and the overlap interference

factors.

   The equations (139), (144) and (145) can be solved numerically for μ, for example,

with Newton Raphson method.

   And the maximum rate of climb of a helicopter, Vmp, results:

                                                         Vmp =  μ   Vtip⋅                                              (146)

where  μ is  the  advance  ratio  corresponding  to  the  minimum  power,  calculated

previously in the relation, respectively, (139), (144) and (145). Vtip is the speed of the

blade tip of the helicopter design chosen.

2.3.2 Vertical velocity for minumum power, Vvmp

       

   If  λc  ≠ 0, the vertical  velocity for minimum power is not null any more.  So the

coefficient of power, from the relation (134), can be expressed this way:
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                                                                                                                                (147)

and the induced inflow ratio for the minimum power λc is given by:

                                                                                                                                (148)

and, finally, the vertical velocity for the maximum rate of climb and endurance, Vvmp,

results:

                                                          Vvmp = λc  Vtip⋅                                             (149)

    The coefficient  of weight,  Cw,  for the conventional  and for the coaxial/tandem

helicopters are defined, respectively, in the previous relations (136) and (143).

      Cpmax is the coefficient of the power installed on the helicopter and is given by the

formula ([19] pag. 67 eq. 2.33):

                                                                                                                                (150)

where  Pinstalled is  the power of the engines  installed  on the aircraft,  specified by the

constructor.

      Cpfly changes for every configuration of helicopters, so summarizing results:

- for the conventional helicopter:

                                                                                                                              

                                                                                                                                   (151)

where Cttr is given by the relation (137).

- for the coaxial helicopter:

                                                                                                                                   

                                                                                                                                   (152)

- for the tandem helicopter:
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                                                                                                                                  (153)

where the  advance  ratio  for  the  maximum rate  of  climb  and endurance, μ,  for  the

conventional,  coaxial  and tandem designs  is  found,  respectively,  from the  relations

(139), (144), (145).

2.3.3 Velocity for maximum range, Vmr

    

    The range of an aircraft  is the maximum distance the aircraft  can fly at a given

takeoff weight and a given quantity of fuel. The best range can be obtained at the speed

when the ratio P/V results the minimum, this means that the aircraft has the best lift-to-

drag ratio. The speed for maximum range  Vmr can be obtained from the  P/V curve

(Figure 2.7) using the line drawn through the origin and tangent to the P/V curve. The

speed for maximum range is usually higher than the speed for minimum power.

   The ratio  P/V,  for the conventional  design, can be approximated by dividing the

relation (138) per μ:

                                                                                                                            

                                                                                                                                  (154)

 

where Cw is given by the relation (136) and Cttr by the relation (137).  

    Differentiating this expression respect to μ results:

                                                                                                                                  (155)

that equals to zero to obtain a minimum.

    The fourth member of the previous relation (155) can be developed in the next way:
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                                                                                                                                  (156)

 So  developing  Z,  given  by  the  relation  (141),  multiplying  per k/(2μ2) and

differentiating, the next expressione called Ymr, results:

                                                                                                                                   (157)

   For a coaxial helicopter, the relation (155), results:

                                                                                                                                       

                                                                                                                                  (158)  

   

For a tandem helicopter, the relation (156), results:

                                                                                                                                       

(159)  

where Cw, for the coaxial/tandem configurations, is given by the relation (143). 

  The  equations  (155),  (158)  and  (159)  can  be  solved  numerically  for  μ,  like  the

relations (139), (144) and (145), with Newton Raphson method.

     And the airspeed for maximum range of a helicopter, Vmr, results:

                                                         Vmr =  μ  Vtip⋅                                                (160)

where  μ is the advance ratio corresponding to the power obtained by using the line

through the origin and tangent  to  the  P/V curve.  μ  is  calculated  from the previous

relations (155), (158) or (159).
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2.3.4  Range and Endurance

   

  The maximum range and the maximum endurance of a helicopter  depends of the

characteristics  of the engine.  The power required varies with the gross mass of the

helicopter and with the density altitude. McCormick (1995) proposed an analysis of the

range for an aircraft, that can be also applied for a helicopter. So the next differential

formula expresses the fuel flow rate dMf respect the range R ([1] pag. 174 eq 5.48):

                                                                                                                                 (161)  

where SFC is the specific fuel consumption of the engine(s). 

    The mass Mf decreases as the fuel is burned during the flight, so the equation (161)

has to be integrated to obtain the range. The mass of the fuel is, usually, a small part of

the entire  gross  mass  and the specific  range results  linear  respect  the mass,  so the

equation (161) can be applied, as approximation, at the moment of the cruise of the

helicopter when the gross mass is:

                                                                                                                                 (162)

so the range for the mass Mgtow – Mf/2 can be found from the next formula ([1] pag. 174

eq 5.49):                                                                                                     

                                                                                                                                 (163)

and the endurance for the mass Mgtow – Mf/2 results ([1] pag. 174 eq 5.50):

                                                                                                                          

                                                                                                                                 (164)

   P(Vmr) and P(Vmp) are the total power of the helicopter calculated, respectively, for the

velocity for maximum range Vmr (160) and for the velocity for minimum power Vmp

(146).  These  power  are  calculate  for  the  mass  M given  by  the  relation  (162),

respectively,  with the momentum theory or with the blade element theory.  Mf is the

mass of the fuel present in the tanks of the helicopter.
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CHAPTER 3

IMPLEMENTATION OF THE PROGRAM

   

   The program was written in Matlab and uses the theory exposed in the previous

chapter (the momentum theory and the blade element theory). 

3.1 Empirical formulas

   In the program were used empirical formulas for certain parameters that describe the

helicopter.  This  formulas  were  studied  and  developed,  for  the  conventional

configuration, in the work of  Rand Omri and Khromov Vladimir, at the Technion –

Israel Institute of Technology [20]. The studies are based on a database for more than

180 conventional  rotor helicopter  configurations  and for  the analysis  was used The

Multiple Regression Analysis.

    Each regression expression is multiplied by the adjustment coefficient Kh, which can

be changed by the user and have values around 1. The units of all quantities present in

the regressions are in SI units.

   The main rotor diameter, in [m], is described by:
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                                                                                                                                (165)

where Vmax is the maximum speed of the helicopter in [km/h].

    The average chord of the main rotor, in [m], is described by:

                                                                                                                                (166)

where Nb is the number of blades of the mai rotor and M is the mass of the helicopter in

[kg].

    The angular speed of the main rotor (see Figure 3.1) :

                                                                                                                                (167)

where Ω is expressed in [rpm] and the diameter of the main rotor D in [m]. 

Figure 3.1 Main & tail rotor angular velocities in function of the rotor diameter ([20]

pag. 13)

    The tip speed of the blades of the main rotor, in [m/s], is described by (Figure 3.2):

                                                                                                                                (168)

    The diameter of the tail rotor, in [m], is described by:

                                                                                                                                (169)
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D = K h⋅ 9.133⋅M 0.380⋅ (Vmax)−0.515

c̄ = K h⋅ 0.0108 ⋅M 0.539 ⋅ Nb−0.714

Ω = Kh ⋅ 2672.881⋅ D−0.829

Vtip = Kh ⋅ 140⋅ D0.171

Dtr = K h⋅ 0.0895⋅M 0.391



 

where M is the mass of the helicopter in [kg].

    The average chord of the tail rotor, in [m], is described by:

                                                                                                                                (170)

    The angular speed of the tail rotor, in [rpm], is given by (Figure 3.1):

                                                                                                                                (171)

    The tip speed of the blades of the tail rotor is, in [m/s], described by (Figure 3.2):

                                                                                                                                (172)

  

Figure 3.2 Main & tail rotor tip speeds of the blades in function of the rotor diameter

([20] pag. 15)

      

    The empirical formulas for the main rotor previously exposed (165 - 168), can be

used for the coaxial and tandem helicopters. In this thesis, for the coaxial design, the

formulas (165 – 168) are used to define the rotor diameter, the chord of the blades, the

angular speed of the rotors and the tip speed of the blades. 

   For  the  tandem  design,  in  this  work,  was  decided  to  create  a  formula  that

approximates linearly the diameter of the rotors in function of the mass. The next graph

was created from data of already existing tandem helicopters (Figure 3.3, blue graphic)
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c̄tr = K h⋅ 0.0058 ⋅M 0.506⋅ Nbtr−0.72

Ωtr = K h ⋅ 3475⋅ Dtr−0.828

Vtiptr = K h⋅ 182⋅ Dtr 0.172



([21] - [27]). In the figure are plotted the mass of the helicopters in function of the

diameter of the rotors.

Figure 3.3 Curves of the mass at take-off of the tandem helicopter in function of the

diameter of the rotors (blue: data of existing helicopters, red: linear approximation of

the blue curve)

    

    The highest point in the blue graph represents the particular tandem helicopter CH-47

Chinook (Boeing) [26], that has a particularly big take-off mass for a relatively small

diameter of the rotors. And the first blue point represents one of the smallest tandem

helicopter realized,  in terms of take-off mass and dimension of the rotor, the MC-4

(McCulloch) [21].

    The idea is to approximate the blue graph with a straight line:

                                                                                                                                (173)

                                                                                               

where  x is the diameter of the rotors to find and, respectively,  x0 the optimal initial

diameter of the rotors. x0, in this case, was chosen of the HUP Retriever (Piasecki) [22].

y is  the  mass  at  take-off  of  the  tandem  helicopter  that  is  designing  and  y0 is,

respectively,  the  optimal  initial  mass  at  take-off  of  the  helicopter,  that  is  the  HUP

Retriever (Piasecki) [22]. m is the the angular coefficient of the straight line needed for

the approximation.  

    Rewritting the relation (173) results:
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y −y0 = m ⋅ ( x −x0)



                                                                                                                                  (174)

where m is given by the relation:

                                                                                                                                (175)

where “21” is the diameter, in meters, of the helicopter associated to the last point of

the blue curve [27]. The mass of this helicopter (Yak-24, Yakovlev [27]) is 15830kg ,

but to obtain a better inclination of the red straight line (represented in the Figure 3.3)

this number was increased to 20000 in the relation (175).

    So summarizing the relations (174) and (175), the diameter of the rotors of the

tandem helicopter is given by:

                                                                                                                                (176)

       

     To obtain the length of the chord, the angular speed and the tip speed of the rotors of

the  tandem  configuration  are  used  the  same  formulas  of  the  main  rotor  in  the

conventional case,  (166), (167) and (168).

3.2 Numerical solutions

3.2.1 Numerical solution to inflow equation for the momentum theory

    A common numerical approach to solve for λ the inflow equation, the relation (21), is

a Newton – Raphson procedure ([19] pag. 97 eq. 2.134). The advantage, for example

respect to a simple fixed – point approach, is that for the price of calculating the first

derivative the convergence is much faster. The iteration procedure consists of:

                                                                                                                                 (177)
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M −2608 = m⋅ (Dtandem + 10.67)

m =
( x −x0)

( y −y0)
=

(20000 −2608)
(21 −10.67)

= 1.6836⋅ 103

Dtandem =
(M −2608)

(1.6836⋅ 103
)
+ 10.67

λ
(n+1) = λ

(n)
−[

( f (λ))
( f ' (λ))

]
n



where “n” is the iteration number.  The equation (21) can be rearranged in the form

f(λ)=0 and results:                   

                                                                                                                                 (178)

    Differentiating this relation results:

                                                                                                                                 (179)

   The Newton – Raphson approach can be sensitive to the initial conditions, usually the

hover value λ0 =  λh (see the relation (22)), gives good results, with only 3-4 iterations.

In fact, with the fixed – point approach up to 10 more iterations are required to reach

the tolerance.

3.2.2 Numerical solution to inflow equation for the blade element theory

  To find the induced inflow ratio  λi used for the blade element theory (see relation

(107))  the Newton – Raphson procedure, exposed in the relation (177), can be used.

The equation (107) can be rearranged in the form f(λ) = 0 and results:

                                                                                                                                 (180)

   Differentiating this relation results:

                                                                                                                                 (181)

where μz is neglected and μ = μx.
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f (λ)= λ −
(λh)

2

(√( μ2
+λ2

))
= λ −

Ct

(2 ⋅ √( μ2
+ λ2

))
= 0

f ' ( λ)= 1 +
Ct
2
⋅ ( μ2+λ2)

−(
3
2

)

⋅ λ = 0

f ' ( λi) = 1 −λ0⋅ (1+ (tan (
1
2
⋅ tan−1

(
μ
λi

)))
2

⋅ ( 1

(1+(
μ
λi

)
2

)

)⋅ (−μ
λi

))⋅r ⋅cosψ = 0

f (λi)= λi −λ0⋅ (1+ tan(
1
2
⋅ ( tan−1

(
μ
λi

))))⋅r ⋅cosψ = 0



3.2.3 Numerical solution to the dimensionless airspeed for minimum power

   

  To  find  the  dimensionless  airspeed  for  minimum  power  the  Newton  –  Raphson

procedure, exposed in the relation (177), can be used and results:

                                                                                                                                 (182)

     The equations (139), (144), (145) can be rewritten in the form  f(μ) = 0: 

- for the conventional configuration:

                                                                                                                                 

                                                                                                                                 (183)

 

where the fourth element of the expression (183) was developed in the relation (140)

and results:  

                                                                                                                                 (184)

where Z is given by (141) and by Ymp (142).

     Differentiating the relation (183) results:

                                                                                                                                 (185)

                                                                                                                               

where the fourth element of this expression results:

                                                                                                                                 (186)
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so Ymp' results:

                                                                                                                                 (187)

- for the coaxial configuration:

                                                                                                                                   

                                                                                                                             

                                                                                                                                 (188)

Differentiating this relation results:

                                                                                                                               (189)

- for the tandem configuration:

                                                                                                                                   

                                                                                                                                (190)

Differentiating this relation results:

                                                                                                                                  

                                                                                                                               (191)
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3.2.4 Numerical solution to the dimensionless airspeed for the maximum range

   To find the dimensionless airspeed for the maximum range was used the Newton –

Raphson procedure exposed in the previous relation (177).

    The equation (155), (158) and (159) can be rewritten in the form  f(μ) = 0:

- for the convetional configuration:

                                                                                                                                   

 

                                                                                                                                 (192)

where the fourth term of the relation  (192),  expressed already in the relation (156)

results:

                                                                                                                                (193)

where Z is given by (141) and Ymr is given by (157).

    Differentiating this relation results: 

                                                                                                                               

                                                                                                                                 (194)

                                                                                                                                

the fourth term of the relation (192) results:

                                                                                                                                 (195)
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so Ymr' is given by:

      

                                                                                                                                 (196)

- for the coaxial configuration:

                                                                                                                                (197)

    Differentiating this relation results: 

                                                                                                                                (198)

- for the tandem configuration:

                                                                                                                          

                                                                                                                                (199)

    Differentiating this relation results: 

                                                                                                                                (200)

    Cw for the conventional case is given by (136) and Cw for the coaxial/tandem cases

is given by (143). 
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3.3 Geometrical technique to find the airspeed ratios for minimum power and for

maximum  range

Figure 3.4 Power curve of a helicopter in level flight

   

  If the power curve for a level flight of a helicopter is given, for example,  by the

previous  graph,  where  the  triangles  are  the  points  that  can  be  calculated  with  the

momentum  or  the  blade  element  theories,  to  find  the  the  airspeed  ratios  for  the

minimum power and for the maximum range a geometrical approach can be used. 

   To find the airspeed ratio of the minimum power, it's enough to choose the point in

the  graph  that  has  the  minimum  y  value  (in  this  case  the  power  in  kW),  so

automatically, the respective x value, or the airspeed needed is found. In the program

code, developed in this work, is easy to do this operation because all the coordinates of

the  power  points  are  saved  in  two  different  vectors,  that  stands  for  the  x  and,

respectively, for the y axes. So once found the minimum value in the y vector, using the

function “find”, can be found the position of this value in the y vector. As soon as, the

two vectors, x and y, have the same length, results that for the position found in the y

vector corrisponds a value in the x vector, that is exactly the airspeed ratio needed.

    To find the airspeed for the maximum range, as defined in the chapter 2.3,  Figure

2.7, can be obtained from the P/V curve (in this case the P/μ curve) using the line drawn

through the origin and tangent to the  P/V curve (P/μ curve). In our possesion are a

group of points that aproximate the power curve of the helicopter in level flight. So in
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this case the goal is to find the right point from this group that will be the closest to the

point in which  the line drawn through the origin is tangent to the  P/μ curve. In the

Figure 3.5 are drawn the lines from the origin to the point of minimum power and the

parallel to this line that passes through the next point.

Figure 3.5 Power curve of a helicopter in level flight and two parallel curves needed to

find the airspeed ratio for maximum range

    

   The Figure 3.6, which is the zoom of Figure 3.5, is a graphical rappresentation behind

the reason for this point. 

Figure 3.6 The zoom of  the Figure 3.5 where is  rappresented  the angle that  is  the

graphical condition to find the airspeed for the maximum range of the helicopter
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   The line that passes for the origin and the point A was called r. A and B, in this work,

are the start points of the search of the airspeed ratio for maximum range. So the first A,

for simplicity, was chosen to be the point for minimum power, exposed at the begining

of this chapter.

                                                                                                                                 (201)

   The line parallel to r and which passes through the next point, B, was called s.

                                                                                                                                 (202)

   The angular coefficient m of the two lines is the same, so expressing for m the relation

(201) and substituting it in the expression of the line s, results:

                                                                                                                                (203)

   So expressing for q the relation (203), results:

                                                                                                                                (204)

  Using the formula of the distance between a point and a line, to find the distance

between the point A and the point C on the line s, and substituting the relation (204)

inside results:

                                                                                                                                 (205)
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    Using the relation of the distance between two points results:

                                                                                                                                 (206)

    And now to find the angle between the line r and the vector AB or the line s and the

vector  AB it's  enough to  do  the  sine  function  between the  two distances  from the

relations (205) and (206):

                                                                                                                                (207)

    And expressing for γ results:

                                                                                                                                (208)

   So to find the airspeed ratio for maximum range it's enough to find the minimum

angle γ between the AB vector and the line r. As soon as the γ vector, in the program,

has the same length as the μ (the airspeed ratio) vector, determining the position, with

the  function  “find”,  of  the  minimum  γ value  in  the  γ vector,  for  this  position

corresponds a value of μ in the μ vector, that is the airspeed ratio needed.

3.4 Blade element theory implementation

    

      For a numerical implementation of the blade element theory (see Chapter 2.2), this

work  divides  the  rotor  blade  into  a  finite  number  of  uniformly  distributed  blade

elements,  while  integration  along the blade span is  approximated numerically  using

summation. The key component in blade element analysis lies in modeling the induced

velocity on the rotor disk.
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3.5 Validation

   

   To test the program code of this thesis and to validate it experimental data of real

helicopter rotors are used. For the single rotor, coaxial and tandem configurations are

used  the  data  from the  technical  note  of  Richard  C.  Dingeldein  [28],  in  which  is

described  the  work  done  at  the  Langley  fullscale  tunnel.  The  research  program

described in the paper treats the different rotor arrangements on the basis of relative

aerodynamic efficiency and involve measuring for various flight conditions the power

required,  the blade  motions,  the flow angles  in  the rotor  wake,  and the  rotor  static

stability.

3.5.1 Coaxial rotor

   

  The  coaxial  rotor  system,  represented  in  the  Figure  3.7,  was  part  of  an  actual

helicopter and has a diameter of 25 feet (7.62 m) and a rotor spacing equal to 19 percent

of  its  radius.  Each  rotor  has  two  blades,  and  the  total  solidity  of  the  coaxial

configuration, based on the projected area, is 0.054. For this small coaxial helicopter is

used  an  equivalent  flat-plate  parasite-drag  area  of  10  square  feet  (0.92903  square

metres). Were used a profile drag coefficient Cd0 = 0.0087 and a curve slope of the

profile of the blades Cα = 5.73. The coefficient  of thrust and the tip speed for the

coaxial experiment are Ct = 0,0048 and Ω ∙ R = 469 FPS (142.95 m/s).

Figure 3.7 Coaxial rotor configuration tested ([28], pag. 8)
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   From early flow-visualization studies and also from the general rotor theory is known

that the air flow through and around rotors operating near one another can be a lot

different from what happens for a single rotor. In the Figure 3.8 is represented the flow

through  a  coaxial  rotor  model  in  the  hovering  condition.  To  define  the  flow lines

associated  with the blade-tip-vortex filaments  were introduced in the air,  above the

rotors, the dust of balsa-wood. Can be noticed that the lower rotor, from about 0.8 of

the radius, is affected by a strong downflow. 

Figure 3.8 Air flow through a coaxial rotor model in static thrust ([28], pag. 8, fig. 2)

   

   So the tips of the lower rotor may stall  at  higher thrust coefficients.  Due to the

unsymmetrical  downflow over  the  lower  rotor,  the  single-rotor  theory  results  more

complicated and need corrections to study a performance analysis of this configuration. 

   The power required for a coaxial helicopter in function of the tip-speed ratio µ, using

the rotor system tested in the wind tunnel, is represented in the Figure 3.9. The system

is operating in level flight mode, at a constant rotor thrust coefficient and tip speed

(values indicated higher).
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Figure 3.9 Level - flight performance with coaxial and single rotors ([28], pag.10, fig.5)

   

  The  next  graph  gives  the  power  curves  of  the  coaxial  configuration  with  the

momentum (green curve) and blade element (blue curve) theories, used in the program.

The red points in the Figure 3.10 are the measured power points in function of the tip

speed ratio,  made in the wind-tunnel  of the coaxial  rotor model,  the squares in  the

Figure 3.9.

Figure 3.10 Momentum and blade element theories resulting curves of coaxial helicoter

design

   From the Figure 3.10 results that, for the true airspeed μ ≤ 0.16, the blade element

theory (blue curve) overestimates the experimental values of the power arriving to a
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maximum  error  of  14.5%  around  μ  =  0.  For  μ  >  0.16  the  blade  element  theory

underestimates the power necessary for the level flight arriving to a maximum error of

17.5% around  μ = 0.24. 

   The momentum theory (green curve) overestimates the power for small values of the

airspeed  ratio   μ,  and  around   μ  =  0 shows  a  maximum  error  of  9.7%.  Between

0.04<μ<0.08 occure the change from the overestimation to the underestimation of the

power  using  the  momentum theory.  For  μ>0.08  the  inclination of  the  green  curve

changes less fast respect to the inclination of the red experimental points, so around

μ=0.24 can be noticed the maximum error  of 32%. It's  interesting  to notice that  at

μ=0.12, where the experimental red point is placed between the two curves, the error

due to the overestimation of the blade element theory value results of 7.6% and the

error due to the underestimation of the momentum theory value results of 15.3%.

3.5.2 Single - rotor

    

   In the Figure 3.9 is represented also the power curve of the single-rotor design in

function of the tip speed ratio. The input variables are the same of the coaxial rotor

configuration tested in the wind tunnel. Changes only the solidity  σ = 0.027 and the

thrust coefficient that is half of the coaxial case Ct = 0.0024. 

Figure 3.11 Momentum and blade element theories curves for single rotor 
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    The red points in the Figure 3.11, are the measured power points in function of the

tip speed ratio, made in the wind-tunnel of the single rotor model, the circles of the

lower curve  in  the Figure  3.9.  From the Figure  3.11 can be  observed that  the two

theories are in a good agreement with the experimental values (red points). From the

graph  can  be  intuited  that,  for  μ  <  0.07,  the  blade  element  theory  (blue  curve)

underestimates the power needed for the level flight with a maximum error of 6.5%

around μ = 0. For  μ ≥ 0.07 the blade element theory overestimates the power needed

with a maxium error of 17.6% verified around μ = 0.24. 

     The momentum theory (green curve), for μ < 0.19, underestimates the power needed

with a maximum error of 14.6% around  μ = 0. For  μ  ≥ 0.19 the momentum theory

overestimates the power with a maximum error of 11% around μ = 0.24. 

    It's interesting to notice that, for 0.14 < μ < 0.16, the two theories result to have the

same error respect the experimental points and arrive at a balanced value of 8.5% of

error around μ = 0.15. 

3.5.3 Tandem rotor

    The tandem configuration model used to validate the software developed for this

thesis has the rotor-shafts spaced 3 percent greater than the rotor diameter and the rotors

lie in the same plane. The tandem model (see Figure 3.12) has two rotors with two

blades each and the diameter of the rotors is 15 feet (4.57 meters). The rotor shafts are

parallel  and the solidity  of  each  rotor  is  0.054.  The blades  used are  untwisted  and

untapered and the airfoil section are NACA 0012. 

Figure 3.12 Tandem rotor configuration tested ([28], pag. 8) 
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   The tandem system has no rotor overlap or vertical  offset,  but the rotors can be

moved toward each other to mesh the blades up to 75 percent of the radius and can be

offset vertically. The thrust coefficient, for this tandem design case, is around 0.0034

and the equivalent flat-plate parasite-drag used in this test is 2 square feet (0.186 square

meter).

Figure 3.13 Level flight performance with tandem and single rotors ([28], pag.10, fig.6)

    

    The curve of the forward flight performance obtained by using the tested tandem

rotor configuration, as well as a loss of the power absorbed by the front and rear rotors,

are represented in the Figure 3.13.

    The agreement is excellent for the single rotor. The measured performance of the

tandem rotor is much better  than that for the single rotor. The circles designate the

points obtained with one of the rotors removed. 

Figure 3.14 Momentum and blade element theories resulting curves for tandem rotor

design 
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   The red points in the Figure 3.14, are the measured power points in function of the tip

speed ratio of the tandem rotor model, the diamonds in the Figure 3.13. The two curves,

green and blue, in the Figure 3.14 are obtained with the momentum and, respectively,

blade element theories. The idea is to use the experimental values of tandem model

presented to verify and to validate the program code developed. The momentum theory

curve  (green),  overestimates  the  power  needed  for  small  airspeed  ratios  with  a

maximum  error  of  21.8%  at  μ  =  0.  For  μ  >  0.06 the  momentum  theory  curve

underestimates the power and the maximum error of 27% is verified around μ=0.14. 

  The  blade  element  theory  overestimates  the  power,  needed  by  the  tandem

configuration and presents a maximum difference from the experimental data of 28.3%,

verified at  μ = 0.  For  0 < μ  ≤ 0.8 the difference decreases to a minimum of 3.1%

around μ = 0.08. For μ > 0.8 the difference from the experimental points oscillates and

rises to a value of 17.8% at  μ = 0.28.     

3.5.4 Conventional rotor helicopter:

 

   For the validation of the conventional design case are used the data of the helicopter

model in level flight mode described in the book of J. Gordon Leishman, “Principles of

helicopter aerodynamics”([19], pag.227). Are assumed the mass at takeoff of 7256kg

and a the maximum operating altitude of 1585m of the helicopter. The equivalent flat-

plate area, f, is 2.137 square meters. Are also assumed, for the both main and tail rotors,

that k = 1.15 and Cd0 = 0.008 and the distance between the rotors is 9.9m. In the Figure

3.15 the points represented are the experimental values, measured in the wind tunnel, of

the total power of the conventional helicopter model. 

   The theoretical curves present in the Figure 3.15 are the induced, profile, parasitic and

tail-rotor powers that compound the total power needed by the helicopter for the level

flight. The Figure 3.16 presents the resulting momentum theory (green) and the blade

element  theory  (blue)  curves,  in  comparison  with  the  flight  test  data  of  the  same

helicopter model. The red points in the Figure 3.16 are the black dots from the Figure

3.15.
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Figure 3.15 Level  flight performance of a conventional  rotor design ([19],  pag.227,

fig.5.10)

      

  As soon in the reference of the experimental data are not specified some variables

needed,  using  the  input  data  given  of  the  aircraft,  and  introducing  them  into  the

empirical  equations  (165),  (166),  (168),  (169),  (170)  and  (172),  can  be  obtained

reasonable diameters, chords and tip speeds needed for the calculations. The number of

the blades is chosen to be  three for the main rotor and two for the tail rotor. So the

diameters of the main and tail rotors result to be 14.23m and, respectively, 2.9m. The

chords of the main and tail  rotors result  to be 0.59m and, respectively,  0.32m. The

values of the blade tip speed of the main rotor  Vtip and of the tail rotor  Vtiptr  result

220.5 [m/s] and, respectively, 218.5 [m/s]. 

Figure 3.16 Momentum and blade element theories resulting curves for conventional

rotor design
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   The momentum theory (green curve), predicts the power very well for low airspeed

ratios, except around  μ = 0.07,  where the error is about 18%. For  0.1<μ<0.25,  the

green curve passes very close to the experimental values with a maximum error of 9.5%

around μ = 0.12 and μ = 0.218. For μ > 0.2 the momentum theory curve has a lower

variation of the inclination respect to the sequence of the experimental points, so the

difference continues to rise till a value of 35% for μ = 0.37. 

   The  blade  element  theory  (blue  curve)  overestimates  the  power  needed  by  the

conventional configuration for μ ≤ 0.34. The maximum error of 37% is verified around

μ = 0.12. For μ > 0.34, the blade element theory underestimates the power necessary

for the level flight of the conventional design and the maximum error, of 16.3%, is

verified for μ = 0.37. It's interesting to notice how, around μ = 0.3, the difference of the

two theories respect the experimental values results to be around 14.5%.
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CHAPTER 4

THE DESIGN OF A HELICOPTER WITH THE

DEVELOPED PROGRAM 

4.1 Input values in common

   After validating the program code, the next idea of this thesis work is to create and

test  three  helicopter  configurations.  It's  also important  to chose right  the input  data

because the main object is to compare the three designs between them, from the point

of view of the power required (the two theories), the specific velocities, the endurance

and the range. The common input data for all the configurations and the two theories

are:

• The maximum mass at take-off: M = 11000 [kg],

• The maximum speed: Vmax = 80 [m/s],

• The step of variation of Vmax: dv = 2 [m/s],

• The coefficient of drag of the rotor: Cd0 = 0.008,

• The number of blades of each rotor: Nb = 3,

• The flat plate parasitic drag: f = 3.5,

• The height from the sea level: h = 0 [m],

• The parameter (varies from 4 in hover, to 5 at mu = 0.5): K = 4.7,

• The induced power factor: k = 1.15,

• The adjustment coefficient: Kh = 1,

• The chord of the blades of the rotor: c = 0.74 [m],

• The tip speed of each rotor: Vtip = 200 [m/s],

• The curve slope of the profile of the blades of the rotor: Clalpha = 5.73,
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• The step of integration of the adim. blade length in the blade element theory: 

dr = 0.05,

• The step of integration in the blade element theory due to the azimuthal angle: 

dxi = 0.628,

• The power installed: Pintstalled = 2500 [kW],

• The specific fuel consumption: SFC =  1.3609e-04  [kg/(W∙s)],

• The mass of the fuel present onboard: Mf = 2000 [kg],

4.2 Conventional configuration:

    The additional input data for the conventional helicopter are:

• The diameter of the main rotor: D = 22 [m],

• The diameter of the tail rotor: Dtr = 3 [m],

• The chord of the blades of the tail rotor: ctr = 0.29 [m],

• The distance between the two rotor shafts: dtr = 13 [m],

    In the Figure 4.1 is represented the power in function of the airspeed ratio required

by the conventional helicopter. The green curve is obtained with the momentum theory

and the blue one with the blade element theory.

Figure 4.1 Output power curves of conventional helicopter with momentum and blade

element theories
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   From the Figure 4.1 it results that for the hover condition (μ = 0), the difference

between the blade element  theory curve and the momentum theory curve is around

7.7%, for μ = 0.18 arrives to a maximum difference of 35.5% and decrease to 18.6% for

μ  = 0.4.

4.3 Coaxial configuration:

    

   The additional input data for the coaxial helicopter are:

• The diameter of the rotors: D = 16 [m],

• The induced power interference factor between the rotors: kint = 1.16,

• The stall of the blade tips starts: rtiploss = 1,

    In the next figure is represented the power in function of the airspeed ratio required

by the coaxial helicopter:

Figure  4.2  Output  power  curves  of  coaxial  helicopter  with  momentum  and  blade

element theories

  From the Figure 4.2 results that for the hover condition (μ = 0), the difference between

the  blade  element  theory  curve  (blue)  and  the  momentum  theory  curve  (green)  is

around 8.1%, for μ = 0.18 arrives to a maximum difference of 37.4% and decrease to

18% for μ  = 0.4.
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4.4 Tandem configuration:

   The additional input data for the coaxial helicopter are:

• The diameter of the rotors: D = 16 [m],

• The induced power overlap factor between the rotors: kov = 1.14,

   In the next figure is represented the power in function of the airspeed ratio required

by the tandem helicopter. 

Figure  4.3  Output  power  curves  of  tandem  helicopter  with  momentum  and  blade

element theories

  From the Figure 4.3 results that for the hover condition (μ = 0), the difference between

the  blade  element  theory  curve  (blue)  and  the  momentum  theory  curve  (green)  is

around 8.3%, for μ = 0.18 arrives to a maximum difference of 36.6% and decrease to

16.9% for μ  = 0.4.

4.5 Momentum theory:

   

   In the Figure 4.4 are grouped the power curves of the conventional (triangles), coaxial

(sqares) and tandem (diamonds) helicopters, that are found with the momentum theory
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(green colour). The Figure 4.4 aims to put in comparison the three configurations from

the point of view of the momentum theory, to see the shape of the curves and also to

notice the differences in the power required between each design.

Figure  4.4  Power  curves  of  conventional/coaxial/tandem  designs  with  momentum

theory

    From the Figure 4.4 can be noticed that coaxial configuration requires more power

respect  the  tandem  and  the  conventional  configurations.  Results  also  that  the

configuration that needs less power for the flight is the conventional one. It's interesting

to notice that the tandem design curve assumes, for small μ, a shape close to that of the

conventional design with a minimum difference of 1.95%. From μ > 0.07 the tandem

design  curve  is  getting  close  to  the  coaxial  design  curve,  reaching  a  minimum

difference of 0.8% for μ=0.4. 

    From the Figure 4.4 results also that for the hover condition (μ = 0), the difference

between the coaxial  configuration curve and the conventional configuration curve is

around 8.1%, for μ = 0.18 arrives to a maximum difference of  14.6% and decreases to

8.7% for μ  = 0.4. Can also be noticed that for  μ = 0.18, the difference in the power

between the coaxial and the tandem cases is about 3.6% and between the tandem and

the conventional cases is about 11.4%.

    The other important results, needed to study and to compare the various designs, are:

• The velocity for the minimum power: Vmp,

• The vertical velocity for the minimum power: Vvmp,

• The velocity for the maximum range: Vmr,
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• The range of the helicopter,

• The endurance of the helicopter, 

   The velocities Vmp and Vmr are calculated with the momentum theory (see Chapters

2.2 and 3.2). The Vvmp, the range R and the endurance E are found with the relations

(149), (163) and, respectively (164). In the Table 4.1 are represented in comparison the

output data of each helicopter configuration:

Table 4.1 Results table of conventional/coaxial/tandem designs with momentum theory

    The results, obtained with the momentum theory and represented in the Table 4.1,

show how the tandem and the coaxial  configurations  have similar  behaviors with a

difference in range of 4%.

   Can also be noticed that the conventional design has the best results in terms of range

and of endurance. The conventional configuration represents an increase in range of

12.3% respect  the coaxial  case and  8.6% respect the tandem case.  Results  also an

increase in endurance of 10.6% respect the coaxial case and 10.3% respect the tandem

case. 

  The  results  of  the  velocity  for  maximum  range  Vmr  (Table  4.1)  of  the  three

configurations result to be very similar, but anyaway the lowest value is verified for the

tandem helicopter and the highest for the conventional helicopter and the difference is

of 2.8%. The Vmr values of the coaxial and of the tandem designs differ from the value

of the conventional case about 1.4%.

   The  highest  value  of  the  velocity  for  minimum power  Vmp is  verified  for  the

conventional helicopter, in fact, is higher about 8.9% respect the coaxial configuration

and about 10.9% respect the tandem configuration.  The lowest value of the vertical

velocity for the minimum power Vvmp is verified for the conventional configuration.

The  values  of  Vvmp  of  the  coaxial  and  tandem  designs  are  higher  respect  the

conventional design about 42.4% and, respectively, 43.9%.    
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4.6 Blade element theory:

  

   From the Figure 4.5, as in the Figure 4.4, can be noticed that coaxial configuration

(square  points)  requires  more  power  respect  the  tandem  and  conventional

configurations. Also with the blade element theory (blue curve) results that the design

that requires less power is the conventional one (triangle points).  

   

   In the next figure are represented the power curves of the conventional (triangles),

coaxial  (sqares)  and  tandem (diamonds)  helicopters,  that  are  found  with  the  blade

element theory (blue colour). As in the Figure 2.17, the next figure put in comparison

the three helicopter configurations but, in this case, from the point of view of the blade

element theory.

Figure 4.5 Power curves of conventional/coaxial/tandem designs with blade element

theory

  

    Can be noticed, as for the momentum theory case (Chapter 4.5), that the tandem

design curve, for small  μ, passes close to the curve of the conventional design with a

minimum difference of 2.52% at μ = 0. For μ > 0.04 the tandem design curve is starting

to  get  close  to  the  coaxial  design  curve  (square  points)  and  reaching  a  minimum

difference of  2.04% for μ = 0.4. 

    From the Figure 4.5 results also that for the hover condition (μ = 0), the difference

between the coaxial  configuration curve and the conventional configuration curve is

around 8.5%, for μ = 0.18 arrives to a maximum difference of 17.2% and decreases to

8% at μ  = 0.4. 

    It's interesting to noticed from the Figure 4.5 that, for μ = 0.18, the difference in the

power between the coaxial and the tandem cases results to be about 4.8% and between

the tandem and the conventional cases results to be about 13%. In the next Table 4.2, as

in the Table 4.1, are represented the velocities Vmp, Vvmp, Vmr, the range and the
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endurance  of  each  helicopter  configuration  calculated  for  the  blade  element  theory

curves (Figure 4.5). The velocities for minimum power and for maximum range are

found with the “geometric technique” exposed in the Chapter 3.3.      

   The Vvmp, and the range/endurance are, as for the momentum theory, calculated with

the relations (149), (163) and (164).

Table  4.2  Results  table  of  conventional/coaxial/tandem designs  with  blade  element

theory

   

    The results obtained with the blade element theory, represented in the Table 4.2, are

in agreement  with the results obtained with the momentum theory (Table 4.1). The

conventional  design  still  has  best  results,  from  the  point  of  view  of  range  and

endurance,  respect  the  coaxial  and tandem designs.  The  conventional  configuration

represents an increase in range of 7.7% respect the coaxial case and 2.3% respect the

tandem case. Results also an increase in endurance of 12.8% respect the coaxial case

and 7.3% respect the tandem case. 

   The results of the velocity for maximum range Vmr (Table 4.2) of the coaxial and

tandem configurations result to be equal. The value of Vmr of the conventional design

is lower then the coaxial/tandem designs of 6.1%. 

   The results of the velocity for minimum power Vmp of the conventional and tandem

configurations result to be equal. The value of Vmp of the coaxial design is higher then

the conventional/tandem designs of 5%. 

   The lowest value of the vertical velocity for the minimum power Vvmp, as for the

momentum  theory  (Table  4.1),  is  verified  for  the  conventional  configuration.  The

values of Vvmp of the coaxial and tandem designs are higher respect the conventional

design and results to be close to the values found with the momentum theory (see Table

4.1).  The differences  from the conventional  case are  41% for the coaxial  case and,

respectively,  42.2% for the tandem case.  The value of Vvmp of the tandem case is

higher then the coaxial case of 2.04%.
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CHAPTER 5

CONCLUSIONS AND POSSIBLE IMPROVEMENTS

5.1 Conclusions

    

   The main objective of creating a program code as a tool for a preliminary design of a

helicopter is reached. The tool can be used to design three kind of configurations of

helicopter:  the conventional,  the coaxial  and the  tandem.  For this  aim are used the

momentum and the blade element theories. The program calculates the power required

by the helicopter chosen for the flight with the theory chosen, and plots it in function of

the airspeed ratio. The program calculates and displays also the range, the endurance,

the velocity  for  maximum range,  the  velocity  for  minimum power and the  vertical

velocity for minimum power. Depending on the input parameters of the helicopter to be

designed and with the two theories used for this purpose the tool gives as output the

power required curve and the five output parameters. 

   Was made the validation  of  the program by using data  collected  in  wind-tunnel

experiments on the three configurations treated in this work. In fact the results are close

to the experimental values with acceptable errors.

    To study and to see the differences between the three configurations a test was made

by giving the compatible inputs to each helicopter design and were put in comparison

94



from the point of view of the momentum theory and, respectively, the blade element

theory. It was noticed that the conventional helicopter gives the best results in terms of

power requirement for the flight, of the range and of the endurance. On the other side

the coaxial configuration shows the highest power consumption and the lowest values

of the range and  endurance. The tandem configuration results, in terms of the power,

range and endurance, lie between the conventional and coaxial configuration values.

    Was also noticed that the blade element theory has a much higher time per simulation

than the momentum theory.

     

5.2 Possible improvements

    

    For future applications and for a more complete tool for a preliminary designing of a

helicopter can be improved or, at least included, some aspects:

• the power for the vertical flight,

• the fuselage drag due to the rotor wake (or the vertical drag),

• the retreating blade with the reverse flow,

• the twisting along the blade,

• the tapering along the blade,

• the variation of the profile of the blade along the blade,

• the root cut-out of the blades,

• for the conventional configuration, the interaction of the tail rotor and the vertical fin,

• the  load distributions and non-linearities in the flow environment (for example: tip

losses),

• the deviation of the inflow from the value predicted with the momentum theory ky and

the other values of the first harmonic inflow (see Table 2.1),

• the autorotation,

• the compressibility of the air,

• the control of the helicopter for a more complicated mision profile then the level flight

(from the hover to the maximum speed),

• a more friendly program interface for the insertion and variation of the input variables

by the user,

• the application of the theories to multirotor helicopters,
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APPENDIX

DESCRIPTION OF THE SOFTWARE

     When the program is launched, in the “Command Window” appears a string that

asks which configuration of helicopter is wanted:

Figure A.1 The choice of the configurations of the helicopter

      After choosing one of the three configurations, for example typing “1” for the

conventional one, appears a new question that asks to choose the theory that is wanted

to be applied:

 Figure A.2 The choice of the theory

        Typing “1” is chosen the momentum theory and results:

Figure A.3 The input of data in the momentum theory
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   At this point, the user is asked to insert the next input values, needed to realize the

calculations:

• the maximum mass at take-off M, in [kg];

• the maximum speed Vmax, in [m/s];

• the step of variation of the Vmax, dv, in [m/s];

• the coefficient of drag of the main rotor, Cd0;

• the coefficient of drag of the tail rotor, Cd0tr;

• the number of blades of the main rotor, Nb;

• the number of blades of the tail rotor: Nbtr;

• the distance between the two rotor shafts, dtr, in [m];

• the flat-plate parasite-drag, f;

• the height from the sea level, h, in [m];

• the parameter (varies from 4 in hover, to 5 at mu = 0.5) K;

• the induced power factor k;

• the adjustment coefficient, Kh

• the diameter of the main rotor, D, in [m];

• the diameter of the tail rotor, Dtr, in [m];

• the chord of the blades of the main rotor, c, in [m];

• the chord of the blades of the tail rotor, ctr, in [m];

• The blades tip speed of the main rotor, Vtip: [m/s];

• The blades tip speed of the tail rotor, Vtiptr: [m/s];

    If is typed “2”, so is chosen the blade element theory:

Figure A.4 The input of data in the blade element theory
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    For the blade element theory are also required the next variables:

• the curve slope of the profile of the blades of the main rotor, Clalpha;

• the curve slope of the profile of the blades of the tail rotor: Clalphatr;

• the step of integration of the adim. blade length, dr;

• the step of integration due to the azimuthal angle, dxi, in [rad];

     For all the variables that are asked, except for the mass at take-off M, exist a default

value that was set previously in the program and can be used just  pushing ENTER

when the respective variable is asked. In particular for the diameters, the chords and the

tip speed of the rotors,  as default,  are  used the empirical  formulas  provided by the

relations, respectively, (165), (166), (168), (169), (170) and (172). 

    For the coaxial and tandem configurations for both theories the program requires a

single value for Cd0, Nb, D, c, Vtip, Clalpha because in these designs is not present a

tail rotor and the two rotors of the coaxial/tandem designs are considered identical. 

   For the calculations of the power in the coaxial design are required also the next input

data:

•  the induced power interference factor between the rotors: kint, 

•  the dimensionless radius at which the blade tips start to stall due to the tip losses:

rstall,

   For the calculations of the power in the tandem design are required also the next input

data:

• the induced power overlap factor between the rotors: kov,

    So when the program asks the inputs, the user must insert the value of the mass at

take-off of the rotorcraft but for the other input variables can be chosen an own value or

used the default one. 

   At this point the program calculates and plots the power (in [kw]) required by the

helicopter in function of the dimensionless forward speed μ. Next the program aks:

Figure A.5 The question about the calculation of the endurance and the range

    If is chosen “1” the program calculates the endurance and the range of the helicopter

configuration chosen (see Figure A.2) with the theory, respectively, chosen (see Figure
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A.3).  Also are displayed the velocity for maximum range, the velocity for minimum

power and the vertical velocity for minimum power.    

    The program requires the next inputs:

• the power installed on the helicopter, Pinstalled, in [kwatts];

• the specific fuel consumption, SFC, in [kg/(W⋅s)];

• the mass of the fuel, Mf, in [kg];

   As for the previous input values, also for Pinstalled,  for SFC and for Mf are set

default values, so the user can choose to insert the proper data or to use the already

present ones.  

   After the display of the results or when the user just doesn't want to calculate the

range, the endurance and the velocities by pressing “2” in Figure A.5, the program asks:

Figure A.6 The question about the repeat of the calculation in the same config/theory

   If the user wants to repeat the calculation of the same configuration of the rotorcraft

and with the same theory, he has to select “1”. So when the user changes the value of

some input data in the new iteration, he can easily compare the results with the previous

calculation.  If  the  user  doesn't  want  to  repeat  the  calculation  and to  quit  from the

present configuration/theory he has to select “2”. 

    In the “Command Window” appears the question:

Figure A.7 The question to start a new session of calculations

    If the user wants to start a new calculation session he has to select “1”. Next appears

the same message in Figure A.1, where the user can switch to a different design of

helicopter or re-enter to the same configuration to proceede with the different theory. It

is  comfortable  in  this  way  to  compare  the  graphs  and  the  results  of  different

configurations of the helicopter and with different theories. If the user want to quit the

program he has just to select “2” at this point. 
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