
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics

Final Dissertation

A worldsheet description of black hole microstates

Thesis supervisor Candidate

Dr. Stefano Massai Giuseppe Sudano

Academic Year 2021/2022





Contents

Introduction v

1 The toolkit: string theory 1

1.1 The bosonic string theory in Minkowski spacetime . . . . . . . . . . . . . . . . . . 1

1.1.1 An action for strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Closed and open strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Lightcone gauge quantization of the relativistic string . . . . . . . . . . . . 4

1.2 Conformal field theories in 2 dimensions . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 2-dimensional CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Classical Noether currents for conformal transformations . . . . . . . . . . . 10

1.2.4 Ward identity and the primary operators . . . . . . . . . . . . . . . . . . . 11

1.2.5 Virasoro algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.6 Vertex operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 The path-integral quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Polyakov path integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 BRST quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 The superstrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1 A worldline theory for fermions . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Super Riemann surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.3 Superstring theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.4 A conformal field theory for fermions and the ghosts . . . . . . . . . . . . . 30

1.5 Strings on a curved background and their effective actions . . . . . . . . . . . . . . 33

1.5.1 Dualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Black holes in supergravity 39

2.1 Black holes thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Laws of thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.2 Hawking radiation and the information paradox . . . . . . . . . . . . . . . 40

2.2 Supersymmetric black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Three-charge black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.2 Four-charge black hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 First counting of black hole microstates . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 The fuzzball proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 One example of displacement . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 A worldsheet theory for microstates 55

3.1 Wess-Zumino-Witten model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Branes on a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 The supergravity calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.2 The gauged WZW model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 The round supertubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

iii



CONTENTS CONTENTS

3.3.1 Supergravity solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 WZW description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 The spectrum of the worldsheet theory 69

4.1 A quantum treatment of Wess-Zumino-Witten models . . . . . . . . . . . . . . . . 69
4.1.1 The current algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2 The Sugawara construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 The affine algebra and representations . . . . . . . . . . . . . . . . . . . . . 71

4.2 The group manifold for the fuzzball microstate . . . . . . . . . . . . . . . . . . . . 72
4.2.1 SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 SL(2, R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Rt × S1
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Introduction

From their conception in the first decades of the twentieth century, General Relativity and Quan-
tum Mechanics have made possible the most significant achievements in the description of our
Universe. The explanation of a considerable number of physical phenomena at the largest scales
has been possible only within the framework of General Relativity. On the other hand, Quantum
Mechanics provides an indispensable tool when attempting to understand the laws of nature at the
atomic and subatomic scales. Both of these theories succeed when Classical Physics fails and have
nowadays passed plentiful experimental tests. However, we still lack a unified theory of Quantum
Gravity, that could encompass both Quantum Mechanics and General Relativity. Remarkably,
without such a theory, the full understanding of some physical objects is not possible: for instance,
in the study of black holes, we cannot disregard any of the two theories. For this reason, black
holes are a sizeable part of the studies aiming to get an insight into Quantum Gravity.
Briefly, black holes are classical solutions of the Einstein’s equations, characterized by a region of
spacetime, the interior of black holes, into which particles can fall, but no more exit. This region
is surrounded by a surface called event horizon. As pointed out for the first time by Bekenstein
and Hawking, black holes exhibit thermodynamic properties: Quantum Mechanics comes into play
when trying to understand them. For instance, an entropy can be defined for black holes. Due
to the Boltzmann equation we expect that it increases with the growing of the number of mi-
crostates. Black holes turn out to have a very large entropy, but in General Relativity they are
fully characterized by just a few quantities (mass, charge and angular momentum), which do not
suffice to predict the huge number of expected microstates. Furthermore, black holes have some
temperature and are then, supposed to radiate: the emission of the so-called Hawking radiation is
not possible at the classical level and requires a semi-classical approach. On top of that, through
Hawking emission, a black hole can fully evaporate, leaving just thermal radiation in its place.
A pure state (black holes are completely determined by the aforementioned parameters of mass,
charge and spin) has given rise to a mixed state as a remnant. Therefore, the process in between
has caused the loss of part of the initial information and cannot be unitary: this conflicts with
Quantum Mechanics, which would only allow unitary evolution. This inconsistency is known as
the information paradox.
A sound unified theory of Quantum Gravity has to explain these issues and String Theory is the
most promising candidate. As a matter of fact, Strominger and Vafa [1] performed the counting
of microstates for a particular black hole configuration arising in string theory. As a result, they
reproduced the Bekenstein-Hawking prediction through the Boltzmann equation. Mathur [2,3], in-
stead, designed peculiar string configurations for microstates, which were dubbed ’fuzzballs’. Their
most remarkable property consists in the replacement of the horizon with a completely smooth
structure across which radiation is emitted unitarily.
All these progresses have been achieved within the low energy effective field theory for strings, i. e.
supergravity. The purpose of this thesis is to discuss black hole microstates from another perspec-
tive. Indeed, we employ an exactly solvable model to construct the worldsheet string theory of a
particular realization of the fuzzball microstates. This tool is known as the Wess-Zumino-Witten
model [4–6], which allows to describe the dynamics of strings on curved backgrounds. The suitable
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vi INTRODUCTION

manifold for our study is the coset G/H, with

G = SL(2,R)× SU(2)× R
t × S1 × T

4, H = U(1)L × U(1)R.

The Lie group G has twelve dimensions. The gauging of the H subgroup reduces them down
to the critical ten dimensions. This way, we can not only reproduce the already known results
of supergravity but most importantly, obtain new information about the spectrum of the theory.
In particular, the BRST quantization procedure enables us to find some constraints, which once
solved, provide the physical vertex operators.

Outline of the thesis

In Chapter 1 we review the most general aspects of the bosonic string theory, including the lightcone
gauge quantization. We dwell on what is more useful in the following: conformal field theories
in two dimensions with particular focus on the Virasoro algebra and the vertex operators, the
Polyakov path integral and the BRST quantization. Then, after a small detour about supersym-
metry for point-like particles and a brief description of the superspace, the superstring theory is
treated. The Clifford algebra, the action of the theory in the superconformal gauge and the spec-
trum are outlined, together with a pause upon the conformal field theories for fermions and ghosts,
with attention to the BRST quantization and the bosonization for the superstrings. Eventually,
the non-linear sigma model and the different superstring theories are introduced, highlighting the
dualities that link them.
Chapter 2 is devoted to the description of black holes in the framework of supergravity. Their
thermodynamic properties are discussed, then we deal with two BPS configurations of strings and
branes, which are stable due to supersymmetry: the three-charge black hole (D1-D5-P in IIB su-
pergravity or M2-M2-M2 in 11 dimensional supergravity, according to the duality frame) and the
four-charge black hole (D2-D2-D2-D6 in IIA-supergravity). Their entropy is computed through
the Bekenstein-Hawking formula, after we have determined the area of the event horizon. Then,
in the regime of very small string coupling, we count the number of microstates giving rise to
the same macrostate in the three-charge black hole. In particular, we have to count the differ-
ent ways in which the momentum units can be divided among open strings stretching between
the D1 and the D5 branes. Then we apply the Boltzmann equation: the result coincides with
the Bekenstein-Hawking prediction. Finally, the fuzzball proposal is introduced for the NS1-P
system in IIB-type supergravity: the momentum charge can be regarded as the propagation of a
transverse displacement profile along the string. The set of all the possible displacement profiles
constitutes the statistical ensemble of microstates giving rise to the same macrostate. At the end,
one particular displacement whose shape is a helix, is treated in full details.
The worldsheet theory for this particular microstate is constructed in Chapter 3. After illustrat-
ing the general features of the Wess-Zumino-Witten model, we deal with the configuration of NS5
branes in IIB theory, disposed on a circle. Its metric is found first with supergravity techniques and
then with the gauged Wess-Zumino-Witten model on the manifold G defined above. The results
exactly coincide. When these branes are given some momentum, we end up with the structure
of a round supertube, whose metric can be equivalently computed in supergravity and within the
Wess-Zumino-Witten model.
In Chapter 4, some aspects of the spectrum of the theory are analyzed. For this purpose, the
fundamental properties of the current algebra and the Sugawara construction are illustrated both
in the general theory and for each of the factors of the group manifold for our fuzzball microstate.
Then the reparametrization and the gauging ghosts are introduced, with which we can construct
the full BRST charge. Requiring the BRST invariance, we obtain the constraints that the physical
vertex operators must satisfy in the Neveu-Schwarz sector and the solutions are then reported.
This is the main result of this thesis.



Chapter 1

The toolkit: string theory

1.1 The bosonic string theory in Minkowski spacetime

The fundamental objects in string theory are not pointlike particles, but the one-dimensional
relativistic strings, propagating in some ambient or target space as the time flows. In this chapter
the ambient space is identified with the D-dimensional Minkowski spacetime, with metric ηµν =
diag(−,+,+, ...,+).

1.1.1 An action for strings

The motion of the relativistic string can be understood as the extension of the dynamics of the
relativistic point-particle when one parameter is added. In some coordinate framework xµ, the
one-dimensional path travelled by a relativistic particle can be written as Xµ = Xµ(τ), where τ is
the only (dimensionless) parameter needed and µ = 0, 1, ..., D − 1. In this writing time and space
are on equal footing and the explicit Poincaré invariance of the equations can be accomplished.
We also require the physical quantities not to depend on the choice of the parameter τ of the
worldline. The simplest action for a relativistic point-particle would then read

Spp = −m
∫

dτ(−ηµνẊµẊν)1/2, (1.1)

where a dot denotes the derivative with respect to τ . Up to the mass of the particle as a pre factor,
this is nothing but the proper time along the particle’s worldline. In order to deal with massless
particles, we introduce the einbein e(τ) = (−gττ (τ))1/2, where gττ is the one-dimensional metric
on the wordline, and the action becomes

S ′
pp =

1

2

∫

dτ(e−1ηµνẊ
µẊν − em2). (1.2)

For massive particles, this can be proved to be equivalent to (1.1) after integrating the einbein out.
(1.2) is invariant under reparametrization and is Poincaré invariant as well. Compared to (1.1), it
works for massless particle and its quantization within the pah-integral formalism leads to easier
computations.

The string extends in one spatial dimension, then it sweeps out a two-dimensional worldsheet in
the target space, Xµ(τ, σ), parametrized by a time-like coordinate τ (completely analogous to the
parameter for the particle’s worldlines) and a further space-like coordinate σ identifying the points
along the string. These two coordinates are dimensionless and as a whole, they are usually named
σa = (τ, σ). The action for the string needs to be invariant under Poincaré transformations on
the D-dimensional Minkowski spacetime (global transformation on the worldsheet) and diffeomor-
phisms on the worldsheets, i.e. σa → σ̃a(σ) reparametrizations (gauge, i.e. local transformations
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2 1. The toolkit: string theory

on the worldsheet). Exactly as the action (1.1) is proportional to the length of the worldline,
we expect the action for the string to be proportional to the area of the worldsheet. The latter
depends on the induced metric, i.e. the pull-back of the flat metric on the Minkowski spacetime,
on the worldsheet

γab =
∂Xµ

∂σa
∂Xν

∂σb
ηµν

and reads

SNG = −T
∫

M
d2σ

√

− det γ, (1.3)

which is the Nambu-Goto action for the relativistic string. Here, M denotes the worldsheet and
the pre-factor T goes under the name of tension of the string and has the dimensions of energy
per length unit. By historical reasons, it can be alternatively expressed as

T =
1

2πα′
(1.4)

where α′ is the universal Regge slope and is linked to the string length scale ls through the identity

α′ = ls
2.

The equation of motion for Xµ arising from the Nambu-Goto action is

∂a(
√−γγab∂bXµ) = 0. (1.5)

The path-integral formalism for the string quantization can be more easily performed if (1.3) is
exchanged with the Polyakov action

SP = − 1

4πα′

∫

M
d2σ

√−ggab∂aXµ∂bX
νηµν . (1.6)

Here gab is a dynamical metric on the worldsheet, exactly as e(τ) in (1.2), and has its own equations
of motion (differently from γab which is completely determined by the equations of motion for Xµ).
These can be found varying the Polyakov action with respect to the metric:

gab =
1

gcd ∂cX · ∂dX
∂aX · ∂bX ≡ 2f(σ) ∂aX · ∂bX = 2f(σ) γab, (1.7)

where the dot denotes the Minkowski scalar product. The function f is a conformal factor between
γab and gab; its argument σ for the function f is a compact notation for σa = (τ, σ): if not otherwise
specified, this convention is going to be kept throughout this chapter.
The equation of motion for Xµ instead, reads

∂a(
√−ggab∂bXµ) = 0 (1.8)

and due to (1.7) is equivalent to (1.5). Both the actions (1.3) and (1.6) lead to the same equations of
motion for theXµ fields and hence (as (1.1) and (1.2)), they are classically equivalent. Nonetheless,
the Polyakov action exhibits a further gauge symmetry on the worldsheet, compared to the Nambu-
Goto one: as a matter of fact, it is invariant under

gab(σ) → Ω(σ)2gab(σ),

which is the so-called Weyl symmetry. Exploiting the latter and the reparametrization invariance,
we completely fix the degrees of freedom of the worldsheet metric which in fact, can be set to be
ηab. In this gauge, the Polyakov action reduces to the action for D scalar fields

S = − 1

4πα′

∫

M
d2σ ∂aX · ∂aX. (1.9)
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The equation of motion for Xµ is the free wave equation

∂a∂
aXµ = 0, (1.10)

whereas in this gauge, (1.7) can be recast in terms of the stress-energy tensor Tab:

Tab ≡ − 2

T

1√−g
δSP
δgab

= ∂aX · ∂bX − 1

2
ηabη

cd ∂cX · ∂dX = 0. (1.11)

This equation can be regarded as a constraint (also known as Virasoro constraint) on the solutions
of (1.8) and explicitly reads

T01 = Ẋ ·X ′ = 0, T00 = T11 =
1

2
(Ẋ2 +X ′2) = 0, (1.12)

where Ẋ = ∂τX and X ′ = ∂σX.
Introducing the lightcone coordinates on the worldsheet σ± = τ ± σ, (1.10) reads

∂+∂−X
µ = 0, (1.13)

whose most general solution can be written in terms of left-moving and right-moving modes

Xµ(σ, τ) = Xµ
L(σ

+) +Xµ
R(σ

−). (1.14)

The constraint equations (1.12) are, instead, written as

∂+X
µ∂+Xµ = 0 = ∂−X

µ∂−Xµ. (1.15)

1.1.2 Closed and open strings

Strings can be closed or open. Regardless of this distinction, the dynamics of each point along
the string only depends on local physics and is ruled by the Polyakov action and its equation of
motion. The only difference lies in the behaviour at the boundaries.

When the periodicity condition
Xµ(σ, τ) = Xµ(σ + 2π, τ) (1.16)

holds, we are dealing with the closed strings. In this case, the two addends of the general solution
(1.14) can be Fourier expanded as

Xµ
L(σ

+) =
1

2
xµ +

1

2
α′pµσ+ + i

√

α′

2

∑

n 6=0

1

n
α̃µne

−inσ+

,

Xµ
R(σ

−) =
1

2
xµ +

1

2
α′pµσ− + i

√

α′

2

∑

n 6=0

1

n
αµne

−inσ−

.

(1.17)

Let us notice that these are not individually periodic in σ, while the sum is, as it should. xµ and
pµ can be identified as respectively the position and the momentum of the center of mass of the
string. Since Xµ(τ, σ) fields are real-valued,

αµn = (αµ−n)
∗, α̃µn = (α̃µ−n)

∗.

If the condition (1.16) is not fulfilled, open strings, whose endpoints are not bound together, come
into play. Let us suppose the worldsheet parameters to be σ ∈ [0, π] and τ ∈ [τi, τf ]. By varying
the Polyakov action in conformal gauge (1.9), we get

δS = − 1

2πα′

∫ τf

τi

dτ

∫ π

0
dσ ∂αX

µ∂αδXµ =

=
1

2πα′

[

∫

d2σ
(

∂α∂αX
µ
)

δXµ +

∫ π

0
dσ ∂τX

µδXµ −
∫ τf

τi

dτ ∂σX
µδXµ

]

.



4 1. The toolkit: string theory

We employ the principle of least action, i.e. we require δXµ(τi) = δXµ(τf ) = 0. Therefore, in
order to come up with the equation of motion (1.10) for the open strings, we need to demand that
either ∂σX

µ = 0 for σ = 0, π (Neumann boundary condition) or δXµ = 0. Whereas in the former
case, the boundaries are free to move, in the latter, they are stuck at some constant position in
the µ - th coordinate. In the most general case, both kinds of boundary conditions are imposed in
different spacetime coordinates, that is,

∂σX
A = 0 for A = 0, . . . , p; XI = cI for I = p+ 1, . . . , D − 1. (1.18)

since of course X0 is a timelike coordinate and cannot be fixed (otherwise we get the so-called
instantons). The endpoints of the open strings are then constrained to lie on a (p+1)-dimensional
hypersurface, which is named Dp-brane (D stands for Dirichlet whilst p is the number of spacelike
dimensions of the brane). A splitting of the original Lorentz group also occurs

SO(1, D − 1) → SO(1, p)× SO(D − p− 1).

As for closed strings, we can perform a mode expansion of the general solution (1.14):

Xµ
L(σ

+) =
1

2
xµ +

1

2
α′pµσ+ + i

√

α′

2

∑

n 6=0

1

n
α̃µne

−inσ+

,

Xµ
R(σ

−) =
1

2
xµ +

1

2
α′pµσ− + i

√

α′

2

∑

n 6=0

1

n
αµne

−inσ−

.

(1.19)

Imposing (1.18) we find out that only one set of oscillators is independent. Indeed, for the Neumann
boundary conditions we have that

αAn = α̃An , (1.20)

whereas for Dirichlet boundary conditions,

xI = cI , pI = 0, αIn = −α̃In. (1.21)

1.1.3 Lightcone gauge quantization of the relativistic string

The quantization of the relativistic string can be accomplished exploiting one of the usual equivalent
methods that make gauge theories quantum: covariant quantization (the analogue of Gupta-Bleuler
quantization for QED), light-cone gauge quantization and the path-integral quantization. In this
section we focus on the second choice, in which we first solve the constraints and then quantize
the physical degrees of freedom. The third procedure will be instead, followed in Section 1.3. The
quantizations of open and closed strings are fairly similar: we first devote to the closed string and
eventually, will highlight the slight differences between the two cases.

Let us first notice that the Weyl and diffeomorphism symmetries do not completely fix the metric
gab. Indeed, transformations of the kind

σ+ → σ̃+(σ+), σ− → σ̃−(σ−) (1.22)

bring some overall prefactor to the flat worldsheet metric in lightcone coordinates

ds2 = −dσ+dσ−. (1.23)

A Weyl rescaling can bring the worldsheet metric again in the form (1.23). This residual gauge
symmetry surviving the gauge fixing is a zero-measure subset of all possible gauge transformations.
Nonetheless it has to be considered in the counting of the degrees of freedom. As a matter of fact,
the general solution of (1.13) is made up of left and right-moving waves then in total 2D functions.
These are however, constrained by (1.15) and then only 2D − 2 are actual degrees of freedom.
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Eventually fixing the redundancy given in (1.22), reduces the number of independent functions to
2(D−2): these remaining degrees of freedom are the physical transverse fluctuations of the string.

We can define the analogue of the lightcone coordinates on the D-dimensional Minkowski spacetime:

X± =
1√
2
(X0 ±XD−1), (1.24)

where we have selected one particular spacelike direction. At the classical level, this is harmless as
far as Poincaré symmetry in the ambient spacetime is concernerd, but when lifting to a quantum
theory this might really spoil the Poincaré invariance.
In the new coordinate frame, the Minkowski metric gets

ds2 = −2dX+dX− +

D−2
∑

i=1

dXidXi. (1.25)

The gauge redundancy (1.22) can be fixed identifying, up to some prefactors and a constant, τ
with X+:

X+(τ, σ) = x+ + α′p+τ. (1.26)

This gauge choice is exactly the lightcone gauge. x+ cannot be thought as an actual physical
coordinate since it can be reabsorbed through a shift in τ . Furthermore, imposing the Virasoro
constraints in the form (1.15) we get to know that

2∂+X
−∂+X

+ =

D−2
∑

i=1

∂+X
i∂+X

i, 2∂−X
−∂−X

+ =

D−2
∑

i=1

∂−X
i∂−X

i. (1.27)

Using (1.26) and the expressions (1.14) and (1.17), the former of these equations leads to

α̃−
n =

√

1

2α′

1

p+

+∞
∑

m=−∞

D−2
∑

i=1

α̃in−mα̃
i
m,

α′

2
p− =

1

2p+

D−2
∑

i=1

(1

2
α′pipi +

∑

n 6=0

α̃inα̃
i
−n

)

(1.28)

and analogously, from the second one, we learn that

α−
n =

√

1

2α′

1

p+

+∞
∑

m=−∞

D−2
∑

i=1

αin−mα
i
m,

α′

2
p− =

1

2p+

D−2
∑

i=1

(1

2
α′pipi +

∑

n 6=0

αinα
i
−n

)

(1.29)

Let us notice that due to the constraints, except the integration constant x−, all fields determining
X−, i.e. p−, α−

n and α̃−
n are fully determined by the αin’s and the α̃in’s, which are the actual

physical modes. As a support for this statement, we can compute the mass of a closed string using
(1.28) or (1.29):

M2
cl = −pµpµ = 2p+p− −

D−2
∑

i=1

pipi =
4

α′

D−2
∑

i=1

∑

n>0

αi−nα
i
n =

4

α′

D−2
∑

i=1

∑

n>0

α̃i−nα̃
i
n, (1.30)

which indeed only depends on the transverse 2(D − 2) modes. The fact that the same quantity
can be expressed both in terms of right-moving or left-moving oscillator modes is also known as
level matching. It implies that the number of excitations in the right-moving sector has to be equal
to those of the left-moving sector. In the end, the actual physical quantities are the transverse
oscillator modes.

The light-cone gauge quantization for the closed string is carried out on just the physical degrees of
freedom, i.e. the transverse oscillator modes, xi, pi, p+ and x−. The non-vanishing commutation
relations are given by

[xi, pj ] = iδij , [x−, p+] = −i, [αin, α
j
m] = [α̃in, α̃

j
m] = nδijδn+m,0. (1.31)
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The Hilbert space for the excitations of a single string is just the Fock space built upon a vacuum
state |0; p〉, defined such that

p̂µ |0; p〉 = pµ |0; p〉 , αin |0; p〉 = α̃in |0; p〉 = 0 for n > 0.

All the other states originate from acting on this vacuum with the raising operators αi−n or α̃i−n,
n > 0, In the lightcone gauge quantization, the issue of negative-normed states has been implicitly
healed while identifying the physical states, therefore there are no ghosts to deal with. Let us
notice that |0; p〉 is not a zero-string state, but rather a state with one single string of momentum
pµ and no transverse oscillations: the raising and lowering operators do not create or destroy
strings but excitations on the transverse directions. As an aside, the string is not supposed to live
in the X0−XD−1 plane, thus ”transverse” oscillations might not be transverse to the string itself.

In the framework of a quantum theory, the identifications (1.28) and (1.29) do not lead to the
mass-shell condition (1.30): due to the commutation relations (1.31), indeed,

1

2

D−2
∑

i=1

∑

n 6=0

αi−nα
i
n =

1

2

D−2
∑

i=1

∑

n<0

αi−nα
i
n +

1

2

D−2
∑

i=1

∑

n>0

αi−nα
i
n =

=
1

2

D−2
∑

i=1

∑

n<0

[

αinα
i
−n − n

]

+
1

2

D−2
∑

i=1

∑

n>0

αi−nα
i
n =

=
D−2
∑

i=1

∑

n>0

αi−nα
i
n +

D − 2

2

∑

n>0

n.

The normal-ordering, then, has given rise to some further constant compared to (1.30). This is
clearly divergent: its renormalization was first devised by Ramanujan and gives

∑

n>0

n = − 1

12
.

Therefore, the mass of the closed string in the quantum theory is

Mcl
2 =

4

α′

(

N − D − 2

24

)

=
4

α′

(

Ñ − D − 2

24

)

, (1.32)

where we have defined

N =

D−2
∑

i=1

∑

n>0

αi−nα
i
n, Ñ =

D−2
∑

i=1

∑

n>0

α̃i−nα̃
i
n. (1.33)

These are akin to the number operators of two harmonic oscillators, with the difference that the
αin and α̃in satisfy the commutation relations (1.31) instead of the standard [an, a

†
m] = δmn. As a

consequence, N and Ñ count the number of excitations weighted with the corresponding n and
not just the number of excitations.

The lowest-energy state in the spectrum corresponds to the level N = 0 = Ñ , i.e. the string with
no excitations. The squared-mass of this state results to be negative, hence we are dealing with a
tachyon, which is a moot point for the bosonic string theory. However, when fermions are added
to the worldsheet, tachyons do not appear: the superstring overcomes this problem.
Due to the level matching condition, states of level N = Ñ = 1 need to have one excitation both
in the right and in the left-moving sectors:

ξij(X)α̃i−1α̃
j
−1 |0; p〉 , (1.34)

where the pre-factor ξij(X) is the polarization two-tensor. Since i, j run from 1 to D − 2, (1.34)
represents (D−2)2 different excitations. This is also the number of degrees of freedom of ξij which
is indeed, a generic (D − 2)× (D − 2) tensor. Using (1.32), we learn that in this case

M2
cl. =

4

α′

(

1− D − 2

24

)

. (1.35)
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We would like the states (1.34) to sit in some representation of the Lorentz symmetry SO(1, D−1),
which the choice of lightcone coordinates (1.24) seems to have spoiled. Resorting to Wigner’s
classification of representations of the Poincaré group, we go to the rest-frame of a massive particle,
where the momentum is pµ = (p, 0, . . . , 0): a state for a massive particle should then transform in
some representation of SO(D− 1) little group of the full Lorentz group. Since we cannot package
(D − 2)2 states in any representation of SO(D − 1) we shift to massless particles, which lack a
rest frame and hence we choose pµ = (p, . . . , p). This time the little group is SO(D − 2), whose
(D − 2)2-dimensional representation is the double vector representation. Therefore, level-1 state
of string excitations must be massless. Imposing that the mass (1.35) vanishes, we can determine
the dimension of the ambient space such that Lorentz invariance is preserved at the quantum level,
known as critical dimension:

D = 26. (1.36)

This upshot forbids quantum anomalies of the Poincaré group, as could be more rigorously proven
using Lorentz generators. In Section 1.3, instaed, we are providing a further alternative proof by
employing tools borrowed from conformal field theory. Higher level states are massive and fit some
representation of SO(D−1) (for instance level-2 states sit in its traceless symmetric representation)
with no other requirements about the dimension.

The states (1.34) transform then in the ~24 ⊗ ~24 representation and can be decomposed in three
irreducible representations: one symmetric traceless, one anti-symmetric and one singlet referring
to the trace. Accordingly the polarization two-tensor can be decomposed in one symmetric trace-
less part Gµν(X), an antisymmetric one Bµν(X) and a one-dimensional trace part Φ(X). Both
properties of the first field are common to classical gravitational waves and by a theorem of Wein-
berg’s, it can be identified with the the metric of the spacetime or the graviton in the quantum
theory. Bµν is named Kalb-Ramond field and since antisymmetric, is a 2-form. It can be regarded
as a gauge potential, whose field strength H = dB is invariant under

B → B + dΛ,

with Λ one-form. Φ(X) is instead, the dilaton and is a scalar field under Poincaré transformations.

The quantization of the open strings is quite the same, once the physical degrees of freedom have
been identified and promoted to operators: since (1.21) fixes xI and pI and with (1.20) selects just
one set of harmonic oscillators, the physical degrees of freedom are xa, pa and αµn. The spacetime
lightcone coordinates are defined to be

X± =
1√
2
(X0 ±Xp)

and the mass for the states gets

M2
op =

1

α′

(

p−1
∑

i=1

∑

n>0

αi−nα
i
n +

D−1
∑

i=p+1

∑

n>0

αi−nα
i
n −

D − 2

24

)

The SO(1, p) × SO(D − p − 1) invariance is preserved for the quantum theory if D = 26, which
is the critical dimension for the closed string as well. The ground state |0, p〉op of the spectrum of
the open strings is again a tachyon since its square mass is negative. The first excited states are
massless. αA−1 |0, p〉op, with A = 1, . . . , p−1, transform under SO(1, p) on the brane can be regarded

as excitations of a gauge field living on the brane. αI−1 |0, p〉op transform under SO(D− p− 1) and
are instead scalars under SO(1, p) and can be physically thought as transverse fluctuations of the
D-brane. D-branes are, indeed, dynamical objects.

1.2 Conformal field theories in 2 dimensions

In the last decades, conformal field theories (CFT) have witnessed increasing interest and attention
in different sectors of Theoretical Physics, such as Statistical Mechanics and High Energy Physics.
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In particular, conformal field theories are defined on the worldsheets of strings and play a crucial
role in the AdS-CFT correspondence. In this Section, after reviewing some general aspects, we are
discussing the most remarkable classical and quantum features of 2-dimensional CFTs.

1.2.1 General properties

Given a d-dimensional space with a metric gµν in a certain frame of coordinates, a conformal
transformation is a change of coordinates x→ x′ such that

gµν → g′µν(x
′) = Ω(x)gµν(x). (1.37)

These transformations do not preserve the lengths, but the angles between vectors in the spacetime:
v · w

√

(v2w2)
,

where v ·w = gµνv
µwν . For an infinitesimal coordinate transformation xµ → xµ+εµ(x), the metric

transforms according to
gµν → gµν − (∂µεν + ∂νεµ), (1.38)

where we have stopped at first order in ε. In order that (1.37) is fulfilled by this transformation,
we have to require δgµν ∝ gµν , which in particular reads

∂µεν + ∂νεµ =
2

d
(∂αε

α)gµν ≡ f(x)gµν . (1.39)

From here on out, we specialize to the flat metric with Euclidean signature, i.e. gµν = δµν ; the
treatment is analogous for a Minkowski metric, except the explicit form of gµν . By applying an
extra derivative ∂ρ on both sides of (1.39), permuting the indices and combining the results linearly,
we get

2∂µ∂νερ = ηµρ∂νf + ηνρ∂µf − ηµν∂ρf. (1.40)

Contracting with δµν we arrive at
2 �εµ = (2− d)∂µf.

We apply ∂ν on both sides of this equation and � on both sides of (1.39) to get

(2− d)∂µ∂νf = δµν�f,

which upon contraction with δµν , eventually reads

(d− 1)�f = 0.

Therefore, we can infer that in d = 1 any transformation is conformal: trivially, no notion of angles
can exist in this case. In d ≥ 3, instead, f(x) will be allowed to be at most linear in the coordinates
and thus, the most general coordinate variation will be

εµ = aµ + bµνx
ν + cµνρx

νxρ, cµνρ = cµρν , (1.41)

with all the coefficients independent on x.
We can recognize the meaning of each addend in (1.41). The first term generates spacetime trans-
lations. The linear term gives rise to finite dilations and rigid rotations (in Minkowski spacetime,
these would be rigid Lorentz transformations)

x′µ = αxµ, α ∈ R x′µ =Mµ
ν x

ν , Mµ
ν ∈ SO(d).

Eventually, (1.40) the quadratic term takes us to the special conformal transformations whose fnite
expression is

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
.

From the equivalent writing
x′µ

x′2
=
x′µ

x′2
− bµ,

we can infer that these transformations are but a particular inversion preceeded and followed by a
translation.
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1.2.2 2-dimensional CFT

We deal with 2-dimensional CFTs in more detail. This is why we shift from the general Greek
indices µ, ν to the two Latin indices a, b = 1, 2 from here on along this section. Although on
a worldsheet the metric has a Minkowskian signature, we keep the metric Euclidean: the link
between the two choices is nothing but a Wick rotation.

In two dimensions, equation (1.39) reads

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1,

which are the Cauchy-Riemann equations identifying a holomorphic function ε(z) = ε1 + iε2 and
its antiholomorphic counterpart ε̄(z̄) = ε1 − iε2, in the complex coordinates

z = x1 + ix2, z̄ = x1 − ix2. (1.42)

In these coordinates, the derivatives are usually denoted as

∂ ≡ ∂z =
1

2
(∂1 − i∂2), ∂̄ ≡ ∂z̄ =

1

2
(∂1 + i∂2)

and the components of the vectors are analogously given by

vz =
1

2
(v1 − iv2), vz̄ =

1

2
(v1 + iv2). (1.43)

The flat Eucidean metric is given by
ds2 = dzdz̄. (1.44)

Its components will be denoted as gzz̄ = gz̄z = 1
2 , gzz = gz̄z̄ = 0. The integration measure will

be dzdz̄ = 2dx1dx2 and the delta function is defined such that
∫

d2zδ(z, z̄) = 1. The Levi-Civita
anti-symmetric tensor is defined employing the Jacobian and hence εzz̄ =

1
2 i. This is a full-fledged

tensor, then its indices are raised and lowered using the metric (1.44).
A general two-dimensional conformal transformation will be just the holomorphic change

z → f(z), z̄ → f̄(z̄) : (1.45)

under this change of coordinates, indeed,

ds2 = dzdz̄ →
∣

∣

∣

∂f

∂z

∣

∣

∣

2

dzdz̄.

The infinitesimal version of z → f(z) is

z → z + ε(z), ε(z) =

+∞
∑

n=−∞

cnz
n+1, (1.46)

where the second expression is the Laurent expansion around z = 0. Something completely
analogous also holds for the anti-holomorphic transformation in (1.45). We can therefore identify
the generators of a conformal transformation:

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄ (1.47)

which satisfy the commutation relations

[lm, ln] = (m− n)lm+n, [l̄m, l̄n] = (m− n)l̄m+n, [lm, l̄n] = 0, (1.48)

which is the so-called Witt algebra. Due to the last equation, {ln} and {l̄n} are two independent
algebras, hence we can regard z and z̄ as two independent coordinates.
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To define a global conformal field theory, we have to verify that the vector fields generating the
holomorphic transformations

v(z) =
+∞
∑

n=−∞

cnz
n+1∂z

are well-defined over all the Riemann sphere S2 = C ∪ ∞: to avoid issues with singularities at
z → 0, we have to impose n ≥ −1. With the transformation z = − 1

w we get

v(z) =
+∞
∑

n=−∞

cn

(

− 1

w

)n+1( dz

dw

)−1
∂w =

+∞
∑

n=−∞

cn

(

− 1

w

)n−1
∂w,

which is well-defined at z → +∞, i.e. w → 0, for n ≤ 1. The global conformal algebra is then
generated by {l−1, l0, l1}, {l̄−1, l̄0, l̄−1}: l−1 and l̄−1 generate the translations, l0 + l̄0 and i(l0 − l̄0)
generate respectively the dilations and rotations, whereas l1 and l̄1 generate the special conformal
transformations. A general global conformal transformation will be given by

z → az + b

cz + d
, (1.49)

with a, b, c, d ∈ C. With no other constraints on the parameters, this map would be in GL(2,C).
However, (1.49) is left invariant by (a, b, c, d) → λ(a, b, c, d): to identify the not redundant degrees
of freedom we can impose ad − bc = 1, i.e. we restrict to SL(2,C). Nonetheless, (a, b, c, d) →
(−a,−b,−c,−d) still leads to the same map: the final group of transformations like (1.49) is then,
PSL(2,C) = SL(2,C)/{I,−I}.

1.2.3 Classical Noether currents for conformal transformations

Global translations xa → xa + εa are conformal, so for CFTs we can define the corresponding
conserved current, i.e. the stress-energy tensor T ab. It can be derived by promoting the constant
parameter εa to a local variable εa(x). By definition of a conserved current under translations, if
S is the action of our CFT,

δS =

∫

d2xT ab∂aεb. (1.50)

Indeed, since δS = 0 for any ε, ∂aT
ab = 0. The action is also invariant for local symmetries,

hence we can infer that its vanishing variation under this kind of transformations is the sum of the
variation under the coordinate change and the variation under the metric change (1.38). Therefore
the variation with respect to the coordinates must be opposite to the variation with respect to
the metric. In our case, even though promoting ε to a local variable, we are actually dealing with
a global change of coordinates; anyway we expect the variation of the action to have the same
expression as if we worked with local coordinate transformations. Then,

δS = −
∫

d2x
∂S
∂gab

δgab = 2

∫

d2x
∂S
∂gab

∂αεβ (1.51)

where (1.38) has been used. By comparing with (1.50) and fixing some normalization constant,
we end up with

Tab = − 4π√
g

∂S
∂gab

, (1.52)

which coincides with the definition (1.11).
Moreover, invariance under scale transformations of the metric (no coordinates involved) constrains
the stress-energy tensor to be traceless. Indeed, under a scale transformation, δgab = εgab

δS =

∫

d2σ
∂S
∂gab

δgab = − 1

4π

∫

d2σ
√
gεTαα = 0 ⇒ Tαα = 0.
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Notice that, consistently, (1.11) is traceless. This property implies that

Tzz̄ = Tz̄z = 0

and by the conservation equation ∂aT
ab = 0, we get

∂̄Tzz = 0, ∂Tz̄z̄ = 0.

Thus the two non-vanishing components of the stress-energy tensor are respectively holomorphic
and anti-holomorphic. In the folowing we are going to label them as Tzz(z) ≡ T (z) and Tz̄z̄ = T̄ (z̄).

The stress-energy tensor also allows to define the Noether current for any infinitesimal conformal
change of coordinates

z → z + ε(z), z̄ → z̄ + ε̄(z̄).

By employing again the compensating metric trick of (1.51) we arrive at

δS = −
∫

d2x
∂S
∂gab

δgab = − 1

2π

∫

d2xTab∂
αδxβ = − 1

2π

∫

d2x(T ∂̄ε+ T̄ ∂ε̄), (1.53)

wihch of course vanishes when ε is holomorphic and ε̄ is antiholomorphic (as expected since we are
dealing with a symmetry). Since z and z̄ variables are independent, let us focus on the symmetry
δz = ε(z), δz̄ = 0. Exactly as done in (1.51), we perform the promotion ε(z) → ε(z, z̄) = ε(z)f(z̄).
Consequently, from the vanishing of we can identify the holomorphic and the antiholomorphic
currents

J(z) = T (z)ε(z), J̄(z̄) = T̄ (z̄)ε̄(z̄) (1.54)

with J̄ arising from the analogous procedure for the symmetry δz = 0, δz̄ = ε̄(z̄).

1.2.4 Ward identity and the primary operators

Turning to the quantum theory the conservation of a current gets expressed inside correlation
functions in the so-called Ward identity. In the path-integral approach to quantum field theories,
the invariant object under a symmetry is the partition function

Z =

∫

Dφ e−S[φ],

where φ(x) is a short notation for all fields. Let us work with the correlation function

〈O1(x1) . . .On(xn)〉 =
1

Z

∫

Dφ e−S(φ)O1(x1) . . .On(xn), (1.55)

where Ja(x) is the classically conserved current and Oi(xi) are local operators depending on the
fields φ. Under a certain infinitesimal symmetry,

φ′ = φ+ εδφ, O′
i = Oi + εδOi,

with ε independent on x. By the standard promotion of this parameter to a local variable, imposing
ε to be supported only away from the insertions of Oi operators (so that they do not vary under
this symmetry), (1.55) gets

1

Z ′

∫

Dφ′ e−S[φ′]O1(x1) . . .On(xn) =

∫

Dφ exp
(

−S[φ]− 1

2π

∫

d2x Ja∂aε
)

O1(x1) . . .On(xn) =

=

∫

Dφ e−S[φ]
(

1− 1

2π

∫

d2x Ja∂aε
)

O1(x1) . . .On(xn),

where we have exploited the definition of the variation of the action in terms of a Noether current,
with 1/2π just a convention. Imposing the correlator to be invariant under this symmetry, we end
up with the conservation equation

〈∂aJa(x)O1(x1) . . .On(xn)〉 = 0
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To evaluate this expression when x approaches the insertion of one operator, w.l.o.g. O1(x1), we
choose the support of ε to also include x1, for instance ε constant in its support and vanishing in
the outside. The same procedure, stopping at the first order in ε, leads to the Ward identity

− 1

2π

∫

ε
d2x∂a 〈Ja(x)O1(x1) . . .On(xn)〉 = 〈δO1(σ1) . . .〉 , (1.56)

with the integral calculated on the support of ε.
This can be specialized to conformal symmetries. Denoting by n̂a = (dx2,−dx1) the normal unit
vector to the boundary of the support of ε, the Stokes’ theorem allows to write

∫

ε
d2x ∂aJ

a(x) =

∮

∂ε
Jan̂

a =

∮

∂ε

(

J1dx
2 − J2dx

1
)

= −i
∮

∂ε

(

Jzdz − Jz̄dz̄
)

.

where in the last step we have used the definitions (1.42) and (1.43). We insert this in (1.56) and
use the Cauchy residue theorem. Splitting the holomorphic and the antiholomorphic components
of the transformations

δO1(x1) = −Res[Jz(z)O1(x1)] = −Res[ε(z)T (z)O1(x1)]

δO1(x1) = −Res[J̄z̄(z̄)O1(x1)] = −Res[ε̄(z̄)T̄ (z̄)O1(x1)]
(1.57)

where the last expression holds using the conserved currents under the conformal transformations
(1.54).
These residues can be easily read off from the operator product expansion (OPE) between the cur-
rent and the operator or, analogously, from the OPE of the stress-energy tensor and the operator.
OPEs between two local fields in CFT are defined as the expansion

Oi(z, z̄)Oj(w, w̄) =
∑

k

Ckij(z − w, z̄ − w̄)Ok(w, w̄), (1.58)

where the coefficients can only depend on the separation between the two points, due to transla-
tional invariance. In quantum field theory, operators are always meant to stay inside correlator,
hence we are implictily assuming that in (1.58), operators are time-ordered. Therefore, we expect
that Oi(z, z̄)Oj(w, w̄) = Oj(w, w̄)Oi(z, z̄), at most with a ”-” in front of the right-hand side, if we
are dealing with Grassmannian variables.
OPE can also come in handy for identifying the so-called primary operators, which by definition,
are such that their OPEs with the stress-energy tensor have at most second-order poles:

T (z)O(w, w̄) = h
O(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w
+ . . .

T̄ (z̄)O(w, w̄) = h̃
O(w, w̄)

(z̄ − w̄)2
+
∂̄O(w, w̄)

z̄ − w̄
+ . . . .

(1.59)

where . . . stand for non-singular terms which we are not interested in. Because of (1.57) (consid-
ering only δz = ε(z), but for the antiholomorphic part, the reasonings are the same)

δO(w, w̄) = −Res
[

ε(z)
(

h
O(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w
+. . .

)]

= −hε′(w)O(w, w̄)−ε(w)∂O(w, w̄), (1.60)

where in the last step we have Taylor-expanded ε(z) around z = w and computed the residue.
By integrating, we get the transformation rule of a primary operator under a finite conformal
transformation (z, z̄) → (z̃, ¯̃z)

O(z, z̄) → Õ(z̃, ¯̃z) =
(∂z̃

∂z

)−h(∂ ¯̃z

∂z̄

)−h̃
O(z, z̄), (1.61)

where we have also added the piece referring to the antiholomorphic transformation. h and h̃ are
real numbers, named conformal weights of the operator. They can be identified as the eigenvalues
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with respect to the generators l0 and l̄0 of the global conformal algebra, of some state corresponding
to O. Thereafter, the spin s = h− h̃ and the scaling dimension ∆ = h+ h̃ (nothing but the naive
dimension of the operator in classical field theory) are the eigenvalues of the same eigenstate,
with respect to rotations and dilations. As we are going to prove in the next Section, unitarity
constrains them to be h, h̃ ≥ 0.

Conformal weights do not charachterize only primary fields, but all fields whose OPE with the
stress-energy tensor has the form (1.60) plus some higher order singularity. One example is the
stress-energy tensor, which has conformal dimension 2 (its integral over a one-dimensional space
is an energy) and spin 2 as well (it is a symmetric 2-tensor). Hence, the component T has weight
(2, 0) and T̄ has weight (0, 2) and the most general TT OPE will be

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . (1.62)

The first and second-order pole coefficients arise from the conformal weight of T. ∝ (z − w)−3

contribution would violate the commutation property of the OPE, thus it does not appear, whereas
the coefficient of the fourth order pole is dimensionless (so that each addend has dimension 4) and
is named central charge: as long as it does not vanish, the stress-energy tensor cannot be a
primary field. Higher order singularities cannot be written since in unitary CFTs, h, h̃ ≥ 0 and
then operators with negative dimension, necessary to provide the possible higher-order singularity
terms with the correct dimension, cannot exist.

Let us recall that local operators in OPEs are implicitly assumed to appear in correlators and
hence they are time-ordered. A time-ordered product of operators can be computed exploiting the
Wick theorem

T (O1(x1), . . . ,On(xn)) =: O1(x1) . . .On(xn) : +
∑

contractions (1.63)

where the sum is over all contractions, i.e. over all possible ways to substitute one, two or more
pairs of operators in the normal-ordered product, with the propagator of their two fields. Normal-
ordered terms are regular and usually omitted in OPEs, since this operation erases singularities.
Let us discuss whether Xµ fields are primary or not. The propagator is given by

〈Xµ(x1)X
ν(x2)〉 = −δµν α

′

2
ln (x1 − x2)

2. (1.64)

We can prove this by considering the action for these fields in conformal gauge (1.9) in the Euclidean

S =
1

4πα′

∫

M
d2x ∂aX

ρ∂aXσδρσ. (1.65)

Since total derivatives in the path-integral vanish, we get

0 =

∫

DX δ

δXµ(x1)

[

e−SXν(x2)
]

=

∫

DX
[ 1

2πα′
∂2Xµ(x1)X

ν(x2) + δ(x1 − x2)
]

,

which gives (1.64), remembering that

∂2 ln(x1 − x2)
2 = 4πδ(x1 − x2).

Due to Wick’s theorem, the propagator is the only singular part in the OPE, hence

Xµ(x1)X
ν(x2) = −δµν α

′

2
ln(x1 − x2)

2

Since Xµs along different directions do not give rise to singular terms, we just focus on one
direction. Shifting to complex coordinates and only cosidering the left moving part of the solution
X(z, z̄) = X(z) + X̄(z̄) we get the OPEs

X(z)X(w) = −α
′

2
ln(z − w) + . . . , ∂X(z)∂X(w) = −α

′

2

1

(z − w)2
+ . . . (1.66)
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The stress-energy tensor for just one direction (normal-ordered so that its v.e.v. vanishes)

T (z) = − 1

α′
: ∂X(z)∂X(z) : (1.67)

satisfies the OPE

T (z)∂X(w) = − 1

α′
: ∂X(z)∂X(z) : ∂X(w) ∼ − 2

α′
∂X(z)

(

−α
′

2

1

(z − w)2

)

=
∂X(w)

(z − w)2
+
∂2X(w)

z − w
,

which is computed using the Wick’s theorem (”∼” means up to non-singular terms, such as the
normal-ordered product). The prefactor 2 refers to the number of possible contractions and in the
last step we have Taylor expanded ∂X(z) around z = w. We learn thus, that ∂X is a primary
field with conformal weights (1, 0). Moreover,

T (z)T (w) =
1

α′2
: ∂X(z)∂X(z) :: ∂X(w)∂X(w) :

∼ 2

α′2

(

−α
′

2

1

(z − w)2
)2 − 4

α′2

α′

2

: ∂X(z)∂X(z) :

(z − w)2
=

=
1/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

and we find again what we already knew from general arguments: the holomorphic component of
the stress-energy tensor is not a primary field and has conformal weight (2, 0). The central charge
for each Xµ(z) field is c = 1.

The only other conformal field in the free bosonic model is the normal ordered exponential of
Xµ(z, z̄). The corresponding conformal weights are given by h = h̃ = α′k2/4, as we can read off
from the OPE with the stress-energy tensor (1.67) and its antiholomorphic counterpart. Indeed,

∂X(z) : eikX(w) : =

+∞
∑

n=0

(ik)n

n!
∂X(z) : X(w)n : ∼

∼
+∞
∑

n=1

(ik)n

(n− 1)!
: X(w)n−1 :

(

−α
′

2

1

z − w

)

=

= − iα
′k

2

: eikX(w) :

z − w

(1.68)

and then

T (z) : eikX(w) : = − 1

α′
: ∂X(z)∂X(z) :: eikX(w) :=

=
α′k2

4

: eikX(w) :

(z − w)2
+ ik

: ∂X(z)eikX(w) :

z − w
=

=
α′k2

4

: eikX(w) :

(z − w)2
+
∂w : eikX(w) :

z − w
,

(1.69)

as expected for a conformal field of weight h = α′k2/4. Analogous OPEs also hold in the antiholo-
morphic sector.

1.2.5 Virasoro algebra

The quantization of a CFT can be accomplished through the so-called radial quantization. Let us
name (τ, σ) the coordinates of the the Euclidean plane where the theory is defined. We can then
get a cylinder by compactifying one direction (which after Wick rotating, can be identified with
the spacelike component in the plane with Minkowski metric) σ ∼ σ + 2π. After that, we can
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perform a map between this cylinder (parametrized by w) and the complex plane (parametrized
by z):

w = σ + iτ, z = e−iw, σ ∈ [0, 2π[.

Accordingly, τ → −∞ on the cylinder corresponds to the point z = 0. On the cylinder the states
live on slices of constant σ and evolve with H = ∂τ . On the complex plane, this operator coincides
withD = z∂+z̄∂̄, the generator of the dilations: constant τ closed lines on the cylinder corresponds
to constant radius circles on the complex plane.
Let us name T (z) and T̄ (z̄) the components of the stress-energy tensor on the complex plane: they
are respectively holomorphic and antiholomorphic thereafter we can write their Laurent expansions

T (z) =
+∞
∑

m=−∞

Lm
zm+2

, T̄ (z̄) =

+∞
∑

m=−∞

L̃m
z̄m+2

. (1.70)

If we choose a contour of constant radius and only containing z as operator insertion, the coefficients
of these expansions can be written as

Ln =
1

2πi

∮

dzzn+1T (z), L̃n =
1

2πi

∮

dz̄z̄n+1T̄ (z̄). (1.71)

Recalling (1.54), we have but constant-time integrals (on the cylinder) of the conserved currents
under the conformal transformation δz = zn+1, hence these can be identified as conserved charges.
We can meaningfully calculate their algebra on the complex plane:

[

Lm, Ln
]

= LmLn − LnLm =
(

∮

dz

2πi

∮

dw

2πi
−
∮

dw

2πi

∮

dz

2πi

)

zm+1wn+1T (z)T (w).

As usual in quantum theories, products such LmLn sit inside correlators and are time-ordered. On
the comlex plane this amounts to radially order the operators: in the first addend we are implicitly
assuming |z| > |w| and viceversa in the second one. By deforming the contours we eventually get

[Lm, Ln] =

∮

dw

2πi

∮

w

dz

2πi
zm+1wn+1T (z)

=

∮

dw

2πi
Res

[

zm+1wn+1
( c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . .

)]

=

=

∮

dw

2πi
wn+1

[

wm+1∂T (w) + 2(m+ 1)wmT (w) +
c

12
m(m2 − 1)wm−2

]

=

= (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

(1.72)

where in the last step we have integrated the first term by parts and recognized for the first two
terms the expression for Lm+n. This is the Virasoro algebra, which can be thought as the quantum
version of the Witt algebra (1.48). We recall that on the worldsheet the residue symmetry was
the succession of a coordinates reparametrization and a Weyl rescaling: the extra term in (1.72)
compared to (1.48) is exactly due to this Weyl rescaling. Hence a CFT is defined on the worldsheet,
whose symmetries are the compositions of a coordinate change and a Weyl rescaling. They are
gauge symmetries.
Let us notice that the subalgebra of L−1, L0 and L1 is

[L±1, L0] = ±L±, [L1, L−1] = 2L0,

which means that the global conformal group SL(2,C) generated by L−1,0,1 is a symmetry group
at the quantum level as well.
In order to study the representation of the Virasoro algebra let us start from |ψ〉, common eigenstate
of L0 and L̃0 (which exists since these operators commute)

L0 |ψ〉 = h |ψ〉 , L̃0 |ψ〉 = h̃ |ψ〉 , (1.73)
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where h and h̃ are the energy eigenvalues. Using (1.72), we get that for any n,

L0Ln |ψ〉 = (LnL0 − nLn) |ψ〉 = (h− n)Ln |ψ〉 ,

so Ln operators raise or lower the energy of the state, respectively when n < 0 or n > 0. If the
spectrum is bounded from below, we are able to find some states whose energy cannot be lowered,
i.e. such that

Ln |ψ〉 = L̃n |ψ〉 = 0 for n > 0. (1.74)

These states are named primary or in the language of representation theory, highest weight states,
since mathematicians usually invert the sign of L0. All the other states of the representation of
the Virasoro algebra arise acting on the primary states with the raising operators L−n, for n > 0:
these states are named descendants and they make up the so-called Verma module of the given
primary state. This is an irreducible representation of the Virasoro algebra and the spectrum of
the primary states suffices to know the spectrum of the thorough theory. We can identify the
vacuum as the primary state of minimum energy. As we are going to show in this Subsection,
h, h̃ ≥ 0, so the minimum energy is achieved when h = h̃ = 0: the vacuum state is then such that

Ln |0〉 = 0 = L̄n |0〉 for n ≥ 0.

Moreover, the regularity of

T (z) |0〉 =
+∞
∑

n=−∞

Lnz
−n−2 |0〉

(we are using (1.71)) at z = 0 requires that

Ln |0〉 = 0 for n ≥ −1,

which contains the property that the vacuum is invariant under the global conformal group
SL(2,C). We can exploit the definition of adjoint of the local operator A(z, z̄)

[A(z, z̄)]† = A
(1

z̄
,
1

z

) 1

z̄2h
1

z2h̄
(1.75)

to infer that Ln = L†
−n.

1 As a consequence,

〈0|T (z) |0〉 = 0 = 〈0| T̄ (z̄) |0〉 .

The Virasoro algebra also allows to show that h, h̃ ≥ 0 and in any non-trivial theory c ≥ 0. Indeed,
due to unitarity of the Hilbert space of the quantum conformal field theory the descendant field
L−1 |ψ〉, with |ψ〉 primary, has to satisfy the condition

∣

∣L−1 |ψ〉
∣

∣

2
= 〈ψ|L+1L−1 |ψ〉 = 〈ψ| [L+1, L−1] |ψ〉 = 2h 〈ψ|ψ〉 ≥ 0

and since 〈ψ|ψ〉, h ≥ 0. By the same reason, h̃ ≥ 0. Again imposing the unitarity of the Hilbert
space, for n > 0,

|L−n |0〉 |2 = 〈0| [Ln, L−n] |0〉 =
c

12
n(n2 − 1) ≥ 0

therefore c > 0 (c = 0 is the trivial theory with only the vacuum as a state).
In a CFT, an isomorphism between states and local operators holds, despite the former live on a
spatial slice at fixed time and the latter at a fixed point in time and also in space. The identification

1Indeed, from (1.75) and (1.71), we see that

T
†(z) = T

(1

z̄

) 1

z̄4
⇒

+∞
∑

m=−∞

L†
m

z̄m+2
=

+∞
∑

m=−∞

Lm

z̄−m−2

1

z̄4
=

+∞
∑

m=−∞

L−m

z̄m+2
.
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is possible because the far past on the cylinder can be mapped to the origin of the complex plane:
states defined at the infinite past, then, can be matched with local fields at the origin. Therefore,
the in-states of the theory can be defined as

|φin〉 = lim
z,z̄→0

φ(z, z̄) |0〉 , (1.76)

where φ(z, z̄) is a local operator. For the out-states τ → +∞ and then z → +∞ or analogously
w = 1/z → 0. One can prove that

〈φout| = |φin〉† ,
where the Hermitean conjugation for the local field in (1.76), is defined as in (1.75). When φ(z, z̄)
is a primary field of conformal weights (h, h̃), we get that the state

|h〉 = φ(0, 0) |0〉 (1.77)

is primary. Let us show this for the holomorphic part. Making use of the OPEs (1.59), we get that

[Ln, φ(w)] =

∮

dz

2πi
zn+1T (z)φ(w) = h(n+ 1)wnφ(w) + wn+1∂φ(w)

and then, since Ln |0〉 = 0,

L0 |h〉 = h |h〉 , Ln |h〉 = 0 for n > 0,

which are the conditions (1.73) and (1.74) for primary states. Primary states are then tightly
linked to primary operators and the labels h and h̃ in (1.59) and (1.73) coincide meaningfully.
Moreover, we can organize the local operators of a conformal field theory in families which are
the operator analogue of Verma modules: they indeed, contain one primary operator and a set of
secondary fields which are its descendants.

1.2.6 Vertex operators

The primary operators appearing in (1.77) are also named vertex operators. However, in order
to preserve the gauge invariance for diffeomorphisms (which from the active perspective, are dis-
placements of the insertion points along the worldsheet), we expect them not to be defined on a
specific point, but rather, to be integrated over the whole worldsheet:

V ∝
∫

d2z φ(z, z̄). (1.78)

Moreover, the conformal weights of vertex operators have to be (1, 1) so that the Weyl symmetry
of V is preserved.
Vertex operators allow to recover the spectrum of conformal field theories. For instance, let us
focus on the Xµ fields for the closed bosonic string. The vertex operator for the lowest-energy
state is given by : eik·X(z,z̄) :, then the tachyon state can be written as

|0; k〉 =: eik·X(0,0) : |0〉 . (1.79)

In order that the conformal weights h = h̃ = α′k2/4 are equal to one, we need to impose the further
condition that M2

cl = −k2 = −α′

4 which is the already known mass for a tachyon. Moreover, by
using one expression of the momentum operator as a contour integral and the OPE (1.68), we can
compute

pµ |0; k〉 = 2

α′

∮

dz

2πi
i∂Xµ(z) : e

ik·X(0,0) : |0〉 = kµ |0; k〉 .

The first excited state is given by

|k, ξ〉 = − 2

α′
ξµν(k) lim

z,z̄→0
: ∂Xµ(z)∂̄X̄ν(z̄)eik·X(z,z̄) : |0〉 ,
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with ξµν polarization tensor. From the OPE

T (z) : ξµν(k)∂X
µ(w)∂̄X̄ν(w̄)eik·X(w,w̄) : ∼ − iα

′

2

kµξµν
(z − w)3

: ∂̄νX̄(w̄)eik·X(w,w̄) : +

+
[ α′

4 k
2 + 1

(z − w)2
+

∂w
z − w

]

ξµν(k) : ∂X
µ(w)∂̄X̄ν(w̄)eik·X(w,w̄) :,

we infer the conditions so that the vertex operator is primary and with conformal weight one:

kµξµν(k) = 0, M2
cl = −k2 = 0,

i.e. we recover the transversality of the polarization tensor and the mass-shell condition for the
first excited states, which we already knew to be massless.

1.3 The path-integral quantization

The central charge is linked to the so-called Weyl anomaly, i.e. the fact that non-trivial quantum
conformal field theory do not mantain Weyl invariance. This is quantified by

〈Tαα〉 = − c

12
R. (1.80)

The Ricci scalar is not gauge invariant since a Weyl scaling changes the metric: this v.e.v. stops
being a physical quantity as we would instead demand for conformal field theories. This issue can
be healed by introducing the ghost fields.

1.3.1 Polyakov path integral

The dynamical fields for the Polyakov action in the Euclidean ((1.6) with ηµν = δµν and no ”-” in
front) are the coordinates Xµ and the metric gab. The partition function, then, reads

Z =
1

Vol

∫

DgDXe−SP [X,g]. (1.81)

Gauge symmetries on the worldsheet are the diffeomorphisms and the Weyl invariance, whose
general transformation can be written as

gab(σ) → gζab(σ
′) = e2ω(σ)

∂σc

∂σ′a
∂σd

∂σ′b
gcd.

The prefactor in (1.81) is the volume of the so-called gauge orbits, i.e. the curves in the configura-
tion space collecting all gauge-equivalent metrics: we want to path-integrate just on the physically
inequivalent degrees of freedom, i.e. one representative ĝ on each orbit. Let us fix some metric g:
there exists exactly one gauge transformation ζ such that g = ĝζ . We can thus define

∫

Dζ δ(g − ĝζ) = ∆−1
FP [g] (1.82)

where ∆FP [g] is named Faddeev-Popov determinant and can be thought as the Jacobian of the
expression inside the δ functional. Let us notice that the measure Dζ is gauge invariant as well as
∆FP [g]. We can calculate the partition function for the physical metric ĝ:

Z[ĝ] =
1

Vol

∫

DζDXDg ∆FP [g]δ(g − ĝζ)e−SP [X,g]

=
1

Vol

∫

DζDX ∆FP [ĝ
ζ ]e−SP [X,ĝζ ]

=
1

Vol

∫

DζDX ∆FP [ĝ]e
−SP [X,ĝ]

=

∫

DX ∆FP [ĝ]e
−SP [X,ĝ].

(1.83)
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In the second step we have exploited the gauge invariance of the action, the metric and ∆FP . In
the last step we have simply noticed that nothing depends on ζ anymore and Vol =

∫

Dζ. The
Faddeev-Popov determinant can be expressed in function of some Grassmannian-valued scalar
fields, which are also known as ghosts: the traceless symmetric worldsheet tensor bab and c

α. In
the Euclidean

∆FP [g] =

∫

DbDc e−Sghost[b,c,ĝ], (1.84)

thereafter

Z[ĝ] =

∫

DXDbDc ∆FP [ĝ]e
−SP [X,ĝ]−Sghost[b,c,ĝ].

The action for ghosts reads

Sghost =
1

2π

∫

d2σ
√
gbab∇acb. (1.85)

We choose to work in the conformal gauge ĝab = e2ωδab ad in complex coordinates. Since bab is
traceless and symmetric, bzz̄ = 0. We also notice that

Γzz̄α =
1

2
gzz̄

(

∂z̄gαz̄ + ∂αgz̄z̄ − ∂z̄gz̄α
)

= 0 = Γz̄zα

and then the ghost action in complex coordinates is

Sghost =
1

2π

∫

d2z
(

bzz∇z̄c
z + bz̄z̄∇zc

z̄
)

=
1

2π

∫

d2z
(

bzz∂z̄c
z + bz̄z̄∂zc

z̄
)

=
1

2π

∫

d2z
(

b∂̄c+ b̄∂c̄
)

.

(1.86)

In the last step we have renamed the variables:

b = bzz, b̄ = bz̄z̄, c = cz, c̄ = cz̄.

b and c are holomorhic, b̄ and c̄ are anti-holomrphic. Indeed their equations of motion are

∂̄b = ∂b̄ = ∂c̄ = ∂̄b = 0. (1.87)

Along with the definition (1.52), the action (1.85) allows to compute the stress energy tensor in
the conformal gauge. The tracelessness of bab and the equations of motion (1.87) have to be used
and eventually we arrive at

T = 2 : ∂cb : + : c∂b :, T̄ = 2 : ∂̄c̄b̄ : + : c̄∂̄b̄ :, (1.88)

where the normal ordering has been implemented as well.
In order to discover the central charge of the ghost system, we determine the OPEs.

0 =

∫

DbDc δ

δb(σ)

[

e−Sghostb(σ′)
]

=

∫

DbDc
[

− 1

2π
∂̄c(σ)b(σ′) + δ(σ − σ′)

]

,

therefore, by using ∂̄(1/z) = 2πδ(z, z̄), we end up with

b(z)c(w) =
1

z − w
+ . . . , c(w)b(z) =

1

w − z
+ . . . . (1.89)

The second OPE arises from the Fermi statistics. Furthermore, again using Wick’s theorem,

T (z)c(w) = 2 : ∂c(z)b(z) : c(w)+ : c(z)∂b(z) : c(w) = − c(w)

(z − w)2
+
∂c(w)

z − w
,

T (z)b(w) = 2 : ∂c(z)b(z) : b(w)+ : c(z)∂b(z) : b(w) =
2b(w)

(z − w)2
+
∂b(w)

z − w
.

As a consequence, c has conformal weight -1, whereas b has conformal weight 2. These could also
be deduced by the tensor structure of the ghosts under diffeomorphism: the ghosts are indeed,
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neutral under Weyl transformations.
To infer the central charge of ghosts, we compute

T (z)T (w) = 4 : ∂c(z)b(z) :: ∂c(w)b(w) : +2 : ∂c(z)b(z) :: c(w)∂b(w) :

+ 2 : c(z)∂b(z) :: ∂c(w)b(w) : + : c(z)∂b(z) :: c(w)∂b(w) :=

=
−4

(z − w)4
+

4 : ∂c(z)b(w) :

(z − w)2
− 4 : b(z)∂c(w) :

(z − w)2
+

− 4

(z − w)4
+

2 : ∂c(z)∂b(w) :

z − w
− 4 : b(z)c(w) :

(z − w)3
+

− 4

(z − w)4
− 4 : c(z)b(w) :

(z − w)3
+

2 : ∂b(z)∂c(w) :

z − w
+

− 1

(z − w)4
− : c(z)∂b(w) :

(z − w)2
+

: ∂b(z)c(w) :

(z − w)2
=

=
−13

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . .

(1.90)

and we can read off that
c = −26.

Avoiding the Weyl anomaly is possible if we add any kind of matter degrees of freedom whose
central charge amounts to cm = 26. For instance, in the free theory, each coordinate Xµ is such
that c = 1 and hence we should add D = 26 of these: we have gained an alternative determination
of the critical dimension of the ambient space. On the other hand, this is just an example and any
other choice cancelling the central charge of ghosts is allowed.

1.3.2 BRST quantization

Compared to the covariant and the lightcone gauge instances, the Polyakov quantization intro-
duces new degrees of freedom, the ghosts, and involves all Xµ fields, without distinguishing be-
tween transverse and longitudinal polarizations. In this subsection, we focus on the tool properly
conceived in order to identify the physical states within the path-integral quantization of theories
with local gauge symmetries: BRST quantization. Generally speaking, the generators of the gauge
symmetries make up a finite dimensional Lie algebra g

[Ki,Kj ] = ifij
kKk, i, j, k = 1, . . . dimg, (1.91)

where fij
k are the structure constants of the Lie algebra. We can introduce the anticommuting

fields ci and bi, collectively named ghosts, such that

{ci, cj} = 0, {bi, bj} = 0, {ci, bj} = δij . (1.92)

They enter the BRST charge, a conserved operator which acts on all fields as a fermionic trans-
formation and reads

Q = ci
(

Ki −
1

2
fij

kcjbk

)

= ci
(

Ki +
1

2
Kb,c
i

)

. (1.93)

The fields ci replace the gauge parameters, whereas the fields bi are needed so that the charge is
nilpotent. Indeed, due to the anticommutation relations (1.92),

Q2 = ci
(

Ki −
1

2
fij

kcjbk

)

cl
(

Kl −
1

2
flm

ncmbn

)

=

=
1

2
fmil c

iclKm − 1

2
fkijc

icj{bk, cl}Kl +
1

4
fij

kflm
ncicjbkclcmbn =

=
1

4
fij

lflmnc
icjcmbn − 1

4
fijkflmnc

icjclbkcmbn =

=
1

2
fij

lflmnc
icjcmbn +

1

4
fijkflmnc

icjclcmbkbn =

=
1

2
f[ij|

lfl|m]nc
icjcmbn = 0,
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where the last step is due to the Jacobi identity of the structure constants. As long as ghosts
and Ki generators are Hermitian then Q is Hermitian as well. Moreover, one can define the ghost
number operator

Ng = −
dimg
∑

i=1

bic
i, (1.94)

according to which ci and Q have ghost number +1 whilst bi has ghost number −1. BRST invariant
states |φ〉 are BRST-closed, i.e. such that

Q |φ〉 = 0, (1.95)

are gauge invariant and then they could be physical states. Due to the nilpotency of Q, states of
the kind |φ〉 = Q |χ〉 satisfy the condition (1.95). but at the same time, they have vanishing norm
as Q is Hermitian and nilpotent. As a consequence, the physical states have to be BRST-closed
but not BRST-exact, that is, they have to be such that

Q |φ〉 = 0, |φ〉 6= Q |χ〉 . (1.96)

If two states |φ〉 and |φ′〉 are such that

|φ〉 = |φ′〉+Q |χ〉 ,

they are physically equivalent. The BRST equivalence classes are named BRST cohomology classes
and S-matrix elements will be independent on the representative chosen for each class. For vertex
operators Φ(z, z̄), such that |φ〉 = limz,z̄→0Φ(z, z̄) |0〉, the condition (1.96) for states translates
into [Q,Φ] = 0: operators satisfying this condition describe physical states.

In the case of the bosonic string theory, the gauge Lie algebra is the infinite dimensional Virasoro
algebra. The ghosts can be expanded in modes as

c(z) =
+∞
∑

n=−∞

cnz
−n+1, b(z) =

+∞
∑

n=−∞

bnz
−n−2 (1.97)

with Hermicity conditions bn
† = b−n and cn

† = c−n. Identifying cm = c−m the BRST charge
mimics (1.93) and can written as

Q =
∑

m

: c−m

[

LXm +
1

2
Lb,cm

]

: (1.98)

The normal ordering has been introduced to avoid any singular term. Moreover, the superscripts
X and b, c refer respectively to the matter and to the ghosts sectors. By exploiting the expansions
(1.70) and (1.97) we can verify that this definition of the BRST charge is equivalent to the contour
integral

Q =

∮

C0

dz

2πi
: c(z)

[

TX(z) +
1

2
T b,c(z)

]

:=

∮

C0

jBRST (z). (1.99)

The BRST current jB(z) is defined up to a harmless total derivative and its most general expression
is

jBRST = cTX +
1

2
: cT b,c : +k∂2c = cTX +

1

2
: bc∂c : +k∂2c. (1.100)

The dimension and the ghost number of the last summand is indeed consistent with the first two.
Moreover, by defining the total stress-energy tensor as T = TX + T b,c, we can calculate the OPE

T (z)jB(w) ∼
D/2− 6k − 4

(z − w)4
+

(3− 2k)∂c(w)

(z − w)3
+

jB(w)

(z − w)2
+
∂jB(w)

(z − w)
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we can fix the constant k requiring the BRST current to be a primary field of conformal weight
one: the vanishing of the third and fourth order poles leads to

k = 3/2, D = 26,

then we have found again the requirement of a critical dimension 26. In addition, this is necessary
to ensure the nilpotency of the BRST charge. Indeed,

jB(z)jB(w) ∼ − D − 18

2(z − w)3
c(w)∂c(w)− D − 18

4(z − w)2
c(w)∂2c(w)− D − 26

12(z − w)
c(w)∂3c(w) (1.101)

and then

Q2 =
1

2
{Q,Q} =

1

2

∮

Cw

dz

2πi
jB(z)jB(w) = 0

only if the residue of (1.101) vanishes, i.e. D = 26.
In order to identify physical states in the bosonic string theory we need to implement the condition
(1.96), which in terms of local vertex operators2 |φ〉 = φ(0) |0〉 demands that the commutator

[

Q,φ(z)] =

∮

Cz

dw

2πi
jB(w)φ(z)

vanishes or is a total derivative: indeed, vertex operators are integrated over the insertion points.
Therefore, since φ(z) is a conformal field of weight h,

[Q,φ(z)] =

∮

Cz

dw

2πi
jB(w)φ(z) =

=

∮

Cz

dw

2πi
c(w)T φ(w)φ(z) =

=

∮

Cz

dw

2πi
c(w)

[ hφ(z)

(w − z)2
+
∂φ(z)

w − z

]

=

= h∂cφ(z) + c∂φ(z),

which is a total derivative if h = 1. We have recovered the known condition that local vertex
operators must have conformal weight one. In the ghost sector, instead, we have two degenerate
vacua, |↑〉 and |↓〉, such that

c0 |↑〉 = 0, b0 |↓〉 = 0, b0 |↑〉 = |↓〉 , c0 |↓〉 = |↑〉 .

Moreover, if |0〉 is the invariant vacuum under SL(2,C),

c1 |0〉 = |↓〉 , c0c1 |0〉 = |↑〉 .

States can be then built starting from one of these two ground states for ghosts. However, for each
BRST cohomology class we can choose a representative of the form

|ψ〉 = |φ〉X ⊗ |↓〉 = |φ〉X ⊗
(

c1 |0〉
)

(1.102)

with |φ〉X a highest weight state of the Virasoro algebra for matter. Indeed, for this kind of states,
we have BRST invariance, i.e.

Q |ψ〉 =
(

c0(L
X
0 − 1) +

∑

n>0

c−nL
X
n

)

|ψ〉 = 0

if the already known conditions for physical states hold:

(LX0 − 1) |φ〉X = 0, LXn |ψ〉X = 0 for n > 0.

2Let us focus on the holomorphic sector, in the antiholomorphic case the procedure is completely analogous.
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States built on the other ghost vacuum instead, would lose the first condition since c0 |↑〉 = 0:
physical states are then such that b0 |ψ〉 = 0. Lastly, we have to demand BRST closure but not
exactness of states: this amounts to further require the mass condition (1.32), which had already
been found in the framework of lightcone gauge quantization.
Let us notice that by (1.97), c1 = c(0). Vertex operators of physical states (1.102) are then

ψ(z) = c(z)φ(z).

Since the vertex operator of the matter sector has conformal weight one, we find that

[Q,ψ(z)] = (h− 1) : ∂ccφ(z) := 0

This is not a total derivative and integration over the insertion points is not needed to have BRST
invariance. Adding the antiholomorphic part, we end up then, with two kinds of vertex operators:
the integrated ones, defined in (1.78) as

∫

d2zφ(z, z̄) and such that

[Q,φ(z, z̄)] = ∂(cφ)(z, z̄), [Q̄, φ(z, z̄)] = ∂̄(c̄φ)(z, z̄)

and the unintegrated ones, which are given by

ψ(z, z̄) = c(z)c̄(z̄)φ(z, z̄) (1.103)

and are such that

[Q,ψ(z, z̄)] = 0, [Q̄, ψ(z, z̄)] = 0.

1.4 The superstrings

Roughly speaking, supersymmetry (SUSY) is a symmetry exchanging bosons and fermions, which
can be employed when aiming at adding fermionic excitations on the worldsheet. The theories
obtained matching SUSY with the bosonic string theory already presented in the above chapter,
are dubbed superstring theories and most of them are tachyon-free, i.e. not affected by instability
of the vacuum. Superstring theories will be discussed in Subsection 1.4.3. The first two subsections
are instead, thought as a preliminary study.

1.4.1 A worldline theory for fermions

A first insight into the worldline fermionic theory can be gained when trying to infer the dynamics
of fermionic point-like relativistic particles from the bosonic one. The latter is described by the
action (1.1), in which time and space are on the same footing in order that Lorentz invariance
is ensured. The invariance under reparametrizations can be identified as the gauge symmetry
necessary in order that despite the further degree of freedom linked to the time, only D−1 degrees
of freedom are the actual physical ones. In the Hamiltonian formalism, the canonical momenta

pµ =
∂L

∂Ẋµ
=

mẊµ√
−ẋ2

(1.104)

satisfy the constraint

H ≡ pµp
µ +m2 = 0. (1.105)

Thereafter, we are working with a Hamiltonian constrained system, whose dynamics can solely
take place on the hypersurface determined by (1.105). Introducing the Lagrange mutliplier e(τ)
to implement the constraint, (1.1) gets

Spp[xµ(τ), pµ(τ), e(τ)] =
∫

dτ
(

pµẊ
µ − e

2

(

pµp
µ +m2

)

)

(1.106)
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and indeed the e.o.m. for e(τ) is nothing but (1.105). In this framework, H = 0 is a first class
constraint : H is indeed, a generator of gauge symmetries i.e. its orbits lie on the constraint
hypersurface and are sets of physically equivalent points that can be identified one with another.
Furthermore, the canonical Hamiltonian of this system vanishes hence the constraint H is invariant
under time evolution and the constraint hypersurface is time invariant.
The Hamiltonian constrained systems can be quantized in three ways:

❼ imposing some gauge-fixing conditions Fα = 0, besides the constraint Cα = 0, so that one
representative for each orbit is chosen and performing the standard covariant quantization
on the outcoming further reduced phase space;

❼ the Dirac method, in which the constraint functions Cα are promoted to operators selecting
the physical states |ψphys〉 as such that

Ĉα |ψphys〉 = 0 for all α

or in the weaker form

〈ψphys| Ĉα |ψ′
phys〉 = 0;

❼ BRST method in the path-integral approach, with the introduction of ghosts and selecting
the physical states as belonging to the cohomology of the real, anticommuting and nilpotent
BRST charge.

Since the Hamiltonian vanishes, the Schrödinger equation gets

iℏ
∂

∂τ
|φ〉 = 0.

Let us choose the second method to quantize (1.106). The physical states of the quantum theory
for a relativistic point-particle are demanded to fulfill (1.105) at the operator level

(

p̂µp̂µ +m2
)

|φ〉 = 0

which working in terms of the wave function φ(x) = 〈xµ|φ〉 is the Klein-Gordon equation

(

−∂µ∂µ +m2
)

φ(x) = 0.

The e.o.m. for the canonical momenta is

pµ = e−1Ẋµ,

which once inserted in (1.106) gives (1.2). Let us notice that the Lagrange multiplier coincides
with the einbein and can be consistently written as e(τ).

In order to deal with spin-1/2 relativistic particles starting from relativistic scalar point particles,
we introduce the real anti-commuting superpartners ψµ of the bosonic fields Xµ. For massless
particles, the first class constraint (1.105) extends to

H =
1

2
p2, Q = pµψ

µ, (1.107)

generating the gauge transformations on the hypersurface. Using the Poisson brackets

{xµ, pν} = δµν , {ψµ, ψν} = −iδµν , (1.108)

we end up with N = 1 susy algebra, given by

{Q,Q} = −2iH. (1.109)
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The symplectic structure (1.108) naturally arises from the action describing spin-1/2 realtivistic
massless particles

S =

∫

dτ
(

pµẊ
µ +

i

2
ψµψ̇

µ − eH − iχQ
)

(1.110)

where the constraints are implemented introducing the Lagrange multipliers (e, χ), which are
named respectively einbein (commuting) and gravitino (anticommuting). The variation of the
action with respect to e and χ leads to the e.o.m.

H = 0, Q = 0.

The quantization takes place promoting the phase space variables (x, p, ψ) to operators; in the
framework of the covariant quantization, from the Poisson brackets (1.108), we can get the
(anti)commutation relations

[x̂µ, p̂ν ] = iδµν , {ψ̂µ, ψ̂ν} = ηµν , (1.111)

with all the others vanishing. Let us notice that the second expression in (1.111) is nothing but
the Clifford algebra once we identify

ψ̂µ → 1√
2
γµ. (1.112)

The Hilbert space of physical states |Ψ〉 can be determined via the Dirac method, imposing the
constraints at the operator level

Q̂ |Ψ〉 = p̂µψ̂
µ |Ψ〉 = 0, (1.113)

which for 〈xµ|Ψ〉 = Ψ(x) reads

γµ∂µΨ(x) = 0,

i.e. the Dirac equation for a massless field. The constraint Ĥ |Ψ〉 = 0, giving

∂µ∂
µΨ(x) = 0

is already guaranteed by (1.113) as Q̂2 = Ĥ, due to (1.109).
For massive pointlike particles, instead, the action is given by

S =

∫

dτ
(

pµẊ
µ +

i

2
ψµψ̇

µ +
i

2
ψ5ψ̇5 − e

2

(

pµp
µ +m2

)

− iχ
(

pµψ
µ +mψ5

)

)

.

In D = 4, the identification ψ̂5 = γ5 can be made and hence at the quantum level, the SUSY
constraint gives

(

−iγµ∂µ +mγ5
)

Ψ(x) = 0. (1.114)

Upon recognizing an equivalent set of gamma matrices γ̃µ = −iγ5γµ which fulfil the Clifford
algebra, we get the Dirac equation for massive fields

(

γ̃µ∂µ +m
)

Ψ(x) = 0.

In the final analysis, we have obtained the dynamics of fermionic point particles from that of
bosonic particles.

1.4.2 Super Riemann surfaces

Supersymmetric strings can be studied in total analogy with the bosonic strings, except the fact
that the gauge symmetry on the worldsheet shifts from the conformal invariance to the superconfor-
mal invariance. Accordingly, the sum over Riemann surfaces involved in the scattering amplitudes
becomes a sum over super Riemann surfaces, also known as superspaces or supermanifolds. Let
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us focus on one-dimensional complex supermanifolds: these are locally described by the superco-
ordinates z = (z, θ), where θ is an anticommuting Grassmann coordinate such that θ2 = 0 and
representing the fermionic degrees of freedom. Let us define the superderivatives

D =
∂

∂θ
+ θ

∂

∂z
, D̄ =

∂

∂θ̄
+ θ̄

∂

∂z̄
, (1.115)

such that D2 = ∂
∂z and D̄2 = ∂

∂z̄ . Super holomorphic functions fulfill the condition D̄f = 0 and
can be expanded as f(z) = f0(z)+θf1(z). Let us restrict to this kind of fields: the same procedure
can be carried out for super antiholomorphic fields, too.
Super analytic maps z → z̃(z) = (z̃(z, θ), θ̃(z, θ)) transforming superderivatives homogeneously,
i.e.

D = (Dθ̃)D̃,

are named superconformal transformations and can be identified as the transition functions be-
tween coordinate patches within the supermanifold. Primary superfields φ(z) are the supersym-
metric counterpart of primary fields and under supeconformal transformations change according
to

φ(z) = φ̃(z̃)(Dθ̃)2h, (1.116)

where h is the superconformal weight of the field. As well as super analytic functions, super-
conformal fields can be expanded as φ(z) = φ0(z) + θφ1(z), where φ0 and φ1 are primary fields
with weights h and h + 1/2, respectively (the consistency of these weights is granted by the fact
that [θ] = −1/2). At the quantum level, φ0 shares the same statistics as φ, whilst φ1 follows the
opposite one. Under the infinitesimal superconformal transformation

z → z̃ = z + δz, δz = v(z) = δz + θδθ, (1.117)

superconformal fields transform according to the infinitesimal version of (1.116)

δvφ =
(

v∂ +
1

2
DvD + h∂v

)

φ. (1.118)

The integration over the Grassmannian coordinate is given by
∫

dθ θ = 1,

∫

dθ 1 = 0 (1.119)

and the integral

f(z1, z2) =

∫

z1

z2

dz ω(z)

is by definition such that

f(z2, z2) = 0, D1f(z1, z2) = ω(z1).

Superconformal symmetries also include supertranslations: suitable coordinates for super transla-
tion invariant functions are

θ12 = θ1 − θ2 =

∫

z1

z2

dz, z12 = z1 − z2 − θ1θ2 =

∫

z1

z2

dz

∫

z

z2

dz′.

The quantum superconformal transformations are generated by the super stress-energy tensor

T (z) = TF (z) + θTB(z), (1.120)

where TB stands for the holomorphic component of the bosonic stress-energy tensor whilst TF
is its super partner of conformal dimension (3/2, 0). Indeed, we get that under superconformal
transformations, any field changes as follows:

δvφ(z2) =
1

2πi

∮

C
dz1v(z1)T (z1)φ(z1), (1.121)
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where the integral is performed over a closed contour turning once around z2. By comparison with
(1.118) and exploiting the super Cauchy formulas

1

2πi

∮

C
dz1 f(z1)θ12z

−n−1
12 =

1

n!
∂n2 f(z2),

1

2πi

∮

C
dz1 f(z1)z

−n−1
12 =

1

n!
∂n2D2f(z2)

with C winding once around z2, we arrive at the OPE

T (z1)φ(z2) ∼
θ12
z212

hφ(z2) +
1/2

z12
D2φ+

θ12
z12

∂2φ. (1.122)

Moreover, the super stress energy tensor is a non-primary superfield of weight 3/2. Its TT OPE
are

T (z1)T (z2) ∼
c

4

1

z312
+

3

2

θ12
z212

T (z2) +
1/2

z12
D2T (z2) +

θ12
z12

∂2φ(z2) (1.123)

where c is the central charge. The decomposition (1.120) allows to write the OPE for each com-
ponent

TB(z1)TB(z2) ∼
3c/4

(z1 − z2)4
+

2

(z1 − z2)2
TB(z2) +

1

z1 − z2
∂2TB(z2),

TB(z1)TF (z2) ∼
3/2

(z1 − z2)2
TF (z2) +

1

z1 − z2
∂2TF (z2),

TF (z1)TF (z2) ∼
c/4

(z1 − z2)3
+

1/2

z1 − z2
TB(z2),

among which the first one coincides with (1.62). As done in (1.70) we can expand both the
components in the Laurent series

TB(z) =
+∞
∑

m=−∞

Lm
zm+2

, TF (z) =
+∞
∑

m=−∞

Gm

2zm+3/2
, (1.124)

where the coefficients satisfy the so-called Ramond algebra

[Lm, Ln] = (m− n)Lm+n +
c

8
(m3 −m)δm+n,0,

[Lm, Gn] =
(1

2
m− n

)

Gm+n

{Gm, Gn} = 2Lm+n +
1

2
c
(

m2 − 1

4

)

(1.125)

(let us notice that the first relation is nothing but the Virasoro commutation relation (1.72)).

1.4.3 Superstring theories

Superstring theories arise when a fermionic sector is added to the bosonic Polyakov action (1.6).
The characters of this new sector are the 2-dimensional worldsheet spinors, which are vectors of
the representation space of any representation of the Clifford algebra

{γa, γb}AB = 2ηabIAB, (1.126)

with the worldsheet metric given by ηab. Since they are worldsheet indices, a, b = 0, 1, whereas
the range of values for the spinor indices A and B depends on the dimension of the representation
of the Clifford algebra. Spinors transform under the spinorial representation of the Lorentz group,
i.e.

ψA → SABψB, SAB =
[

exp
(

iωab
i

4
[γa, γb]

)]

AB
. (1.127)
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Let us consider the 2-dimensional representation of the Clifford algebra generated by

γ0 =

(

0 1
−1 0

)

, γ1 =

(

0 1
1 0

)

.

If both the components of the spinor

ψ =

(

ψ+

ψ−

)

are real, then we have a Majorana spinor. Furthermore, if γ = γ0γ1,

γ

(

ψ+

0

)

=

(

ψ+

0

)

, γ

(

0
ψ−

)

= −
(

0
ψ−

)

, (1.128)

so the two components of ψ have definite chirality and are then Weyl spinors.
The action for the fermionic sector of superstrings arises building the supersymmetric correspon-
dent of the Polyakov action (1.6). The supersymmetric partners of Xµ are the fields ψµ, Weyl-
Majorana spinors whose components are Grassmann-valued spacetime vectors. Exactly as done
in the point-particle case of Subsection 1.4.1, the zweibein and the gravitino Lagrange multipliers
are added to the worldsheet in order to impose some constraints fixing the reparametrization in-
variance. We can fix this redundancy by imposing some gauge fixing condition, for instance the
superconformal gauge. With this choice the full action gives

S = SB + SF = − 1

4π

∫

d2σ
[ 1

α′
∂aX

µ∂aXµ + iψ̄µAγ
a
AB∂aψµ,B

]

, (1.129)

with the first addend given by the Polyakov action (1.9) in the gauge with flat metric. In the
worldsheet lightcone coordinates σ± = τ ± σ, (1.129) gets

S =
1

2π

∫

d2σ
[ 2

α′
∂+X

µ∂−Xµ + i
(

ψµ+∂−ψ+,µ + ψµ−∂+ψ−,µ

)

]

. (1.130)

This is invariant under the residual symmetry

√

2

α′
δXµ = i(−ε−ψµ+ + ε+ψ

µ
−), δψµ± = ±

√

2

α′
ε∓∂±X

µ, (1.131)

provided that the components of the infinitesimal Majorana spinor εA satisfy the conditions

∂+ε+ = 0, ∂−ε− = 0, (1.132)

i.e. they are chiral, in the sense that ε+ = ε+(σ−) and ε− = ε−(σ+). (1.131) is a supersymmetry
because it relates bosonic and fermionic degrees of freedom.
The classical dynamics of the bosonic sector exactly coincides with that of the bosonic string. For
the fermionic sector, instead, let us consider the variation of (1.130) under a small variation of the
fermionic fields ψ,

δS = δSF =
i

2π

∫

d2σ
(

δψ+∂−ψ+ + ψ+∂−δψ+ + δψ−∂+ψ− + ψ−∂+δψ−

)

=

=
i

2π

∫

d2σ
[

δψ+

(

∂−ψ+ + ∂−ψ+

)

+ ∂−
(

ψ+δψ+

)

+ δψ−

(

∂+ψ− + ∂+ψ−

)

+ ∂+
(

ψ−δψ−

)]

=

=
i

2π

∫

d2σ
[

2δψ+∂−ψ+ + 2δψ−∂+ψ− +
1

2
∂σ

(

ψ−δψ− − ψ+δψ+

)

+
1

2
∂τ

(

ψ−δψ− + ψ+δψ+

)]

.

The first addend vanishes once the equations of motion are identified to be

∂−ψ+ = 0, ∂+ψ− = 0. (1.133)
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The Weyl spinors are then chiral also in the sense that ψ± = ψ±(σ
±). The third addend vanishes,

since the variational principle imposes that at time boundaries the variations of the fields vanish.
The second term, instead, reads

i

4π

∫

dτ
[

ψ−δψ− − ψ+δψ+

]∣

∣

σ=l

σ=0
. (1.134)

In the closed string sector, this vanishes as long as

ψ+δψ+ − ψ−δψ−

∣

∣

σ=0
= ψ+δψ+ − ψ−δψ−|σ=l,

which is fulfilled if

ψ±(σ + l) = e2πiφ±ψ±(σ), φ± = 0, 1/2.

In the case φ = 0 we are dealing with the Ramond sector for closed strings, whereas φ = 1/2 is
the so-called Neveu-Schwarz sector. Thereafter, we end up with 4 different sectors, since each of
the two Weyl components can assume one or the other value for φ.
In the open string sector, instead, for both the boundaries we need to impose

ψµ+(σ) = ±ψµ−(σ), σ = 0, σ = l.

This requirement must be invariant under the supersymmetry (1.131). To ensure this, the bound-
ary conditions for the fermionic fields must be properly chosen for each direction µ according to
the Neumann or Dirichlet boundary conditions for the bosonic fields Xµ at the two endpoints. In
any case, for each direction periodicity or antiperiodicity of the fermionic fields is allowed and the
two possibilities give rise to the Ramond or the Neveu-Schwarz sectors respectively.

The flat metric on the worldsheet is just one gauge possibility: when the worldsheet metric is
the general hab, we really end up with a theory of gravity on the worldsheet, coupled with super-
symmetry, which is called supergravity. This theory is invariant under the local supersymmetry,
i.e. supersymmetry along with invariance under local diffeomorphisms and Weyl transformations.
Once the metric is fixed to be flat, super-conformal transformations represent the only remaining
symmetry and are such that the supersymmetry is only chiral (as highlighted in (1.132)). The
conserved currents under super-conformal transformations are the stress-energy tensor Tab and the
super-current Ja. On them, super-Virasoro constraints must be imposed:

T±± = 0, J± = 0.

These allow to perform the covariant quantization in lightcone gauge of the superstrings and
determine their spectrum. Within this framework, the critical dimension of the superstring theories
can be determined, with the upshot

D = 10. (1.135)

The light-cone gauge quantization also provides the spectrum for both the open and the closed
strings in the Neveu-Schwarz and the Ramond sectors. For the open strings in the NS sector,
the lowest-mass state is a tachyonic spacetime scalar of SO(9). The first excited level is massless
and is an eight-dimensional vector along the eight transverse directions of the spacetime. States
with higher energy are massive bosons in tensor representation of SO(9). In the Ramond sector,
instead, the ground state is already massless and tachyon-free. It is made up of two Weyl spinors
with opposite chirality, which are Lorentz vectors in SO(8). States with higher energy are massive
spinors in some irreducible representation of SO(9).
With respect to closed strings, instead, we have to recall that the left and the right-moving sectors
are completely independent, up to the level matching condition

α′

4
M2 = (N − a) = (Ñ − a),



30 1. The toolkit: string theory

with the normal-order constant a = 0, 1/2 respectively for the Ramond and Neveu-Schwarz sectors
and N and Ñ the number operators of left and right-moving modes. For both kinds of modes, we
can choose Ramond or Neveu-Schwarz boundary conditions and two states (labelled with ±) of
the so-called G-parity, accounting for the number of fermionic excitations and the chirality of the
Weyl spinors. We would expect, then, 16 possible combinations. Nevertheless, the level matching
condition allows only the coupling (NS−, NS−) (standard notation with the first member referring
to right-moving modes and the second one to left-moving ones) and all the possibile combinations
reduce to 10. The ground state is in the (NS−, NS−) sector and is a tachyon of mass M2 = − 2

α′ .
All possible couples of sectors, except the latter, contain a massless state. In principle, all sectors
may appear or not in a superstring theory, hence leading to 210 different theories. However, the
GSO projection (named after Gliozzi, Scherk and Olive) selects only some of them. In fact, on
grounds of the absence of tachyons (tachyons would lead to an instable vacuum, promptly decaying
and being then irrelevant) and CFT consistency (absence of branch cuts in the Ramond sector
and modular invariance for the loop amplitudes), we can identify four types of theories: IIA, IIA’,
IIB and IIB’. In Table 1.1, we list the sectors appearing in IIB and IIA superstring theories, also
writing the massless fields of their spectrum.

Theory Sector Fields

IIB (NS+, NS+) Φ, Bµν , Gµν
(R+, R+) C0, C2, C4

(NS+, R+) λa, ψ
µ
a

(R+, NS+) λa, ψ
µ
a

Theory Sector Fields

IIA (NS+, NS+) Φ, Bµν , Gµν
(R+, R−) C1, C3

(NS+, R+) λ̃a, ψ̃
µ
a

(R+, NS+) λa, ψ
µ
a

Table 1.1: Sectors and spectrum of IIB, IIA superstring theories

The massless fields of the (NS+, NS+) sector are nothing but the tensors of the first excited state
of the closed strings: the dilaton, the Kalb-Ramond 2-form and the graviton. The (R,R) sector,
instead, shows bosonic antisymmetric forms, whose dimension is written as a subscript (notice that
since they live in the transverse 8 dimensional space, C4 is self-dual). The (R,NS) sector, instead,
counts two massless fermions: λa is the spin-1/2 dilatino, whilst ψia is the spin-3/2 gravitino,
i.e. the super-partner of the graviton. The two possible Weyl chiralities are distinguished by the
presence or lack of the tilde. Two independent gravitinos give rise to two independent SUSY
algebras: this is why these theories are type II. IIB superstring model is chiral, since left and
right movers in the (R,R) sector share the same chirality. This does not hold for IIA superstring
theory, which is indeed not chiral. Two equivalent models for superstrings are IIB’ and IIA’, which
arise respectively from IIB and IIA, exchanging R+ with R−. Other 10-dimensional superstring
theories are Type I theory and two heterotic string theories. A further supersymmetric theory, the
M-theory, is instead, 11-dimensional.

1.4.4 A conformal field theory for fermions and the ghosts

The result of (1.135) can be alternatively inferred making use of the conformal field theory for the
free Majorana fermion Ψ(σ) (spinorial indices are understood and not explicit in this case) defined
on the worldsheet. We just need to discover the central charge, following the analogous procedure
adopted in the bosonic instance. The dynamics is determined by the action

SF =
1

2
g

∫

d2σ Ψ†γ0γa∂aΨ, a = 0, 1, (1.136)

where the g is a general pre-factor that may appear. This is the form of the action which was
used in (1.129), for D fermions instead of one. We shift to the coordinates (z, z̄). Due to the
equations of motion the two real components of the Majorana spinor Ψ = (ψ, ψ̄)T are respectively
holomorphic and antiholomorphic. Through the calculation of the propagators between each of
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these components we get the OPEs

ψ(z)ψ(w) ∼ 1

2πg

1

z − w
, ψ(z)ψ̄(w̄) ∼ 0, ψ̄(z̄)ψ̄(w̄) ∼ 1

2πg

1

z̄ − w̄
. (1.137)

Moreover, the holomorphic component of the stress-energy tensor for this action reads

T (z) = −πg : ψ(z)∂ψ(z) : (1.138)

We first compute

T (z)ψ(w) = −πg : ψ(z)∂ψ(z) : ψ(w) ∼
1
2ψ(w)

(z − w)2
+

∂ψ(w)

(z − w)
,

which allows to deduce that the conformal weight of T (z) is 1/2. Hence, we can calculate

T (z)T (w) = π2g2 : ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) :∼ 1/4

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
.

By comparison with (1.62), we learn that the central charge for free Majorana fermions is 1/2.

To consider all fields appearing in the superstring theory, we must take care of the ghosts arising in
the fermion sector. In the path-integral quantization, indeed, we have to fix the invariance under
superconformal transformations: in the boson sector this issue is already healed by the ghost
system (b, c) and in the spirit of supersymmetry, the same should be performed for the fermions.
For later convenience (cf. Subsection 4.3) the following treatment for ghosts aims to be as general
as possible: the specialization to the fermionic sector of superstrings will take place at the end.
The general action for the ghost system (b, c), in the holomorphic sector, is given by

S =
1

π

∫

d2z b∂̄c. (1.139)

The bold notation is adopted in order to represent a general ghost system, not to be necessarily
identified with the (b, c) ghosts of 1.3. Moreover, let us notice that the action for the latter system
is equivalent to (1.139), as shown in (1.86). The fields (b, c) have conformal weight respectively λ
and 1− λ and can be either fermions or bosons. Their OPEs are

c(z)b(w) ∼ 1

z − w
, b(z)c(w) ∼ ε

z − w
(1.140)

with ε = +1 for fermions and ε = −1 for bosons. The stress-energy tensor reads

T g = −λb∂c+ (1− λ)∂(b)c, (1.141)

and we can compute the OPE

T g(z)T g(w) ∼ −ε(6λ2 − 6λ+ 1)

(z − w)4
+

2T g(w)

(z − w)2
+
∂T g(w)

z − w
(1.142)

Then, defining Q = ε(1− 2λ), the central charge for any ghost system is given by

cg = −2ε(6λ2 − 6λ+ 1) = ε(1− 3Q2). (1.143)

The properties of the ghost system (b, c) are recovered once we fix λ = 2, ε = +1. The ghosts
(β, γ) for the fermionic sector instead, are commuting fields, then they are such that ε = −1 and
λ = 3/2. As a consequence, Qβγ = 2 and cβγ = 11. Summing this result to cbc = −26 we get
that cghosts = −15. As a consequence, the Weyl anomaly is removed whenever the matter system
consists of degrees of freedom whose central charge sums to 15. In a fully supersymmetric system,
we expect the number of bosonic fields Xµ (c = 1) to equate the number of fermionic fields ψµ
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(c = 1/2). In order to cancel the Weyl anomaly, we must impose that D
(

1
2 +1

)

= 15, getting that
the critical dimension of the superstrings is indeed, D = 10.
As in the case of the bosonic string, the BRST procedure allows to identify the physical states or
equivalently, the physical vertex operators of the superstring theory. The generalization of (1.99)
to a supersymmetric framework is

Q =

∮

C0

dz

2πi

[

c(z)
(

TX,ψ(z) +
1

2
T b,c,γ,β(z)

)

− γ(z)
(

TX,ψF (z) +
1

2
T b,c,β,γF (z)

)]

. (1.144)

The bosonic stress-energy tensor for the fields Xµ and ψµ is the sum of (1.67) and (1.138) (with
g = 1/2π), whereas the supercurrent is given by

TX,ψF = i

√

2

α′
ψµ∂Xµ. (1.145)

From (1.141) we have that

T b,c = −2b∂c− (∂b)c, T β,γ = −3

2
β∂γ − 1

2
(∂β)γ.

For a general supersymmetric system (b, c, β, γ) of ghosts, the supercurrent is

T gF =
1

2
bγ + (1− λ)(∂β)c− (λ− 1

2
)β∂c, (1.146)

with the parameter λ corresponding to (b, c). Hence, since in our case λ = 2,

T b,c,β,γF =
1

2
bγ − (∂β)c− 3

2
β∂c. (1.147)

As a consequence, the BRST charge (1.144) can be split into three parts:

Q = Q0 +Q1 +Q2, (1.148)

with

Q0 =

∮

C0

dz

2πi

(

cTX,ψ,β,γ + c(∂c)b
)

, Q1 = −
∮

C0

dz

2πi
γTX,ψF . (1.149)

In this definition, Q0 is exactly the BRST charge of the bosonic theory (the commuting ghosts β and
γ are included as extra matter fields) and Q1 is the generator of the superconformal transformations
with parameter γ. Therefore,

Q3 =

∮

C0

dz

2πi

[

− c
2
T βγ +

c

2
T b,c − γ

2
T b,c,β,γF

]

=

=

∮

C0

dz

2πi

[

− c
2

(

−3

2
β∂γ − 1

2
∂βγ

)

+
c

2

(

−2b∂c− ∂bc
)

− γ

2

(

−∂βc− 3

2
β∂c+

1

2
bγ

)]

=

=

∮

C0

dz

2πi

[

−1

4
bγ2 +

3

4
∂(cbγ) =

=−
∮

C0

dz

2πi

1

4
bγ2,

(1.150)

since the contour integral of an exact differential vanishes.

Let us discuss one final point. In Subsection 1.3.2 we could not use |0〉, the invariant vacuum
under SL(2,C), as a vacuum for ghosts. This is in general due to the following properties of the
ghost modes

bn |0〉 = 0 for n ≥ 1− λ,

cn |0〉 = 0 for n ≥ λ.
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Then, according to λ, the energy of the vacuum |0〉 could be lowered by ghosts. This happens both
for (b, c) and (β, γ). The energy spectrum is then unbounded both above and below and the choice
of the vacuum is arbitrary. This is nothing new for fermionic field theories, where the vacuum gets
fixed once the level of the Fermi - sea is specified. In this framework, we have further, to fix the
level of the Bose - sea. The possible vacua of the theory are denoted by |q〉 and are such that

bn |q〉 = 0 for n > q − ελ,

cn |q〉 = 0 for n ≥ −εq + λ.

The vertex operator producing the q - vacua from |0〉 is given by : eqφ(z) :. Indeed,

|q〉 = eqφ(0) |0〉 ,

with φ(z) a holomorphic field such that for fermionic ghosts,

c(z) = eφ(z), b(z) = e−φ(z) (1.151)

whereas for bosonic ghosts

c(z) = eφ(z)η(z), b(z) = e−φ(z)∂ξ(z). (1.152)

In the latter instance, we need to add other fermionic fields since e±φ are always fermions. More-
over, the following OPEs hold:

φ(z)φ(w) ∼ − ln (z − w), ξ(z)η(w) ∼ 1

z − w
.

Finally, the conformal weight of the vertex operator : eqφ(w) : is 1
2εq(q +Q), as we deduce from

T (z) : eqφ(w) :∼
[ 1
2εq(q +Q) : eqφ(w) :

(z − w)2
+
∂w : eqφ(w) :

z − w

]

. (1.153)

1.5 Strings on a curved background and their effective actions

The Polyakov action (1.6) can be naturally generalized when strings propagate in a target space
with the general metric Gµν(X):

S =
1

4πα′

∫

d2σ
√
ggab∂aX

µ∂bX
νGµν(X). (1.154)

If we write it as Gµν(X) = ηµν + hµν(X), we can infer that the metric fluctuation just arises from
a coherent superposition of the gravitons appearing in the string spectrum. Furthermore, Gµν can
be used to determine the coupling constants of the fluctuations of the bosonic fields Xµ. As a
matter of fact, let us impose gab = ηab and consider the quantum fluctuations around the classical
solution Xµ = x̄µ:

Xµ(σ) = x̄µ +
√
α′Y µ(σ),

with Y << 1. The Lagrangian density of (1.154) gets

Gµν(X)∂Xµ∂Xν = α′
[

Gµν(x̄) +
√
α′Gµν,ω(x̄)Y

ω +
α′

2
Gµν,ωρ(x̄)Y

ωY ρ
]

∂Y µ∂Y ν , (1.155)

with Gµν,ω =
∂Gµν

∂Xω ∼ 1
rc
. rc is a characteristic radius of curvature and the corrections start being

important as soon as √
α′

rc
∼ 1,
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which is the loop-expansion parameter in (1.155).
In the spectrum of bosonic closed strings, also the Kalb-Ramond field and the dilaton appear and
we expect analogous couplings of the strings to these background fields. This will be given by

S =
1

4πα′

∫

d2σ
√
g
[

Gµν(X)∂aX
µ∂bX

νgab +Bµν(X)∂aX
µ∂bX

νεab + α′Φ(X)R(2)
]

, (1.156)

with R(2) the worldsheet Ricci scalar. This kind of action is usually called non-linear sigma model.
The coupling to the B field is exactly modelled on the interaction action of a charged object and
a gauge field, e.g. an electrically charged point particle and the e.m. gauge field. In (1.156), the
interaction term is invariant under the gauge transformation

Bµν → Bµν + ∂µCν − ∂νCµ

and hence all the physics is encoded in the gauge invariant field strength H = dB.
The coupling to the dilaton, instead, seems to spoil Weyl symmetry, since the Ricci scalar is not
invariant under Weyl transformations. Anyway, the presence of α′ in front of this term hints that
loop contributions arising from the first two couplings may somehow compensate this breaking
of Weyl invariance. In quantum field theories, Weyl invariance takes place provided that the β-
functions of the couplings vanish. In (1.156) the couplings are expressed in terms of the fields Gµν ,
Bµν and Φ, hence what is expected to vanish are β-functionals like

βµν(G) ∼ µ
∂Gµν(X;µ)

∂µ
,

where µ is the energy scale at which the interactions take place. Moreover, in CFTs, the breakdown
of Weyl invariance is quantified by the v.e.v. of the trace of the stress-energy tensor, which for the
non-linear sigma model (1.156) reads

〈Tαα〉 = − 1

2α′
βµν(G)g

ab∂aX
µ∂bX

ν − 1

2α′
βµν(B)εab∂aX

µ∂bX
ν − 1

2
β(Φ)R(2). (1.157)

At one loop, the β-functionals are:

βµν(G) = α′Rµν + 2α′∇µ∇νΦ− α′

4
HµλκHν

λκ,

βµν(B) = −α
′

2
∇λHλµν + α′∇λΦHλµν ,

β(Φ) = −α
′

2
∇2Φ+ α′∇µΦ∇µΦ− α′

24
HµνλH

µνλ,

where Rµν is the Ricci tensor for the background metric and ∇µ is the covariant derivative for the
Levi-Civita connection of the same metric. In order to preserve Weyl invariance, we expect

βµν(G) = βµν(B) = β(Φ) = 0.

These can be regarded as the equations of motion for the background where strings propagate and
arise from the action

S1 =
1

2κ02

∫

d26X
√
−Ge−2Φ

(

R− 1

12
HµνλH

µνλ + 4∂µΦ∂
µΦ

)

, (1.158)

with κ0
2 ∼ ls

24 This is the low-energy effective action for spacetime fields, since in its e.o.m., the
β-functionals at one loop level (so at high curvature radius) appear. Furthermore, (1.158) holds
in the so-called string frame. The Einstein frame, with the standard Einstein-Hilbert term for
the background metric and a canonical normalization for the dilaton, is achieved performing the
relabelling

G̃µν(X) = e−4Φ̃/(D−2)Gµν(X),
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Here, Φ̃ = Φ− Φ0, with Φ0 the asymptotic value of the dilaton. Therefore,

S̃1 =
1

2κ2

∫

d26X
√

−G̃
(

R̃ − 1

12
e−Φ̃/3HµνλH

µνλ − 1

6
∂µΦ̃∂

µΦ̃
)

,

with κ226 = κ0
2e2Φ0 ∼ ls

24g2s . On grounds of consistency with Einstein’s General Relativity, we
demand

8πGN = l24p = κ2

hence a weak string coupling gs << 1 means that ls >> lp, i.e. quantum gravity effects are not
important from a string viewpoint.

In the framework of superstrings, the effective action describes the dynamics of massless fields
only. Focussing on type IIB and IIA superstrings,

SIIA/IIB = S1 + SR + SCS ,

with S1 describing the background fields in 10 dimensions, SR the forms of the Ramond-Ramond
sector and SCS a topological (i.e. independent on the metric) Chern-Simons term. In particular,

S1 =
1

2κ20

∫

d10X
√
−Ge−2Φ

(

R− 1

12
HµνλH

µνλ + 4∂µΦ∂
µΦ

)

is the same for both theories. Switching to a more compact writing for forms, in type IIA theory
we have

SR + SCS = − 1

4κ02

∫

d10X
[

F2 ∧ ∗F2 + F̃4 ∧ ∗F̃4

]

− 1

4κ02

∫

d10XB2 ∧ F4 ∧ F4,

with

F2 = dC1, F4 = dC3, F̃4 = F4 − C1 ∧ F3.

In type IIB theory, instead, we have

SR + SCS = − 1

4κ02

∫

d10X
[

F1 ∧ ∗F1 + F̃3 ∧ ∗F̃3 + F̃5 ∧ ∗F̃5

]

− 1

4κ02

∫

d10X C4 ∧H3 ∧ F3,

with

F1 = dC0, F3 = dC2, F5 = dC4, F̃3 = F3 − C0 ∧H3, F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3.

Another example of supergravity theory is that arising from the M-theory. SUSY constrains the
possible objects, fields and couplings of the theory. In this case, the action looks far simpler:

S =

∫

d11X
√
−G

(

R+ FµνρσF
µνρσ

)

,

where Fµνρσ are the components of the field-strength of a 3-potential C3. As a point particle de-
scribing a 1-dimensional worldline is electrically coupled to the e.m. 1-potential, an object sweeping
a 3-dimensional surface couples electrically to C3. It is the M2-brane, with a 3-dimensional world-
volume Σ, whose coupling with the potential is

SM2
= NM2

∫

Σ
C012dx

0dx1dx2.

In this expression, without loss of generality, the membrane is thought to extend in the directions
x0, x1, x2. The correct interpretation for NM2

, instead, is the number of M2-branes. Also some-
thing akin to magnetic monopoles live in M-supergravity. In total analogy to magnetic monopoles
in the electromagnetic theory, their charge can be found integrating the field strength over a sphere
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of a proper dimension: in e.m. we integrate Fµν over S2 since it is a 2-form, whilst in the present
instance,

gM =

∫

S4

Fµνρσdx
µdxνdxρdxσ, (1.159)

since the field-strength is a 4-form. S4 is a hypersurface of R
5: the magnetic monopole takes

up the remaining non-transverse spacelike directions, hence is a (5 + 1)-dimensional object called
M5-brane.
The objects living in the IIA supergravity can be determined from the quantization of the IIA
string: the fundamental strings F1, NS5-branes and D-branes with an even number of spacelike
directions appear. IIB supergravity displays the same zoo, with the difference that in this case,
D-branes must have uneven space dimensions. As an alternative, the objects populating IIA super-
gravity arise from those of the 11-dimensional supergravity, upon compactification of one spacelike
direction, e.g. x11. The whole spacetime, then, appears with one dimension less and objects
extending in this direction, will have worldvolumes with one dimension lower. For instance, the
fundamental strings of IIA theory can originate after compactifying M2-branes of 11-dimensional
supergravity whose worldvolume also stretches in x11 direction. M5-branes in 11 dimensions which
do not extend along x11 give rise to IIA NS5 branes upon compactification. Lastly, IIA particles
emerge from momentum waves propagating along the compact direction in 11d-supergravity (the
momentum is quantized since the direction gets a circle). The potentials of IIA supergravity are
obtained from C3 or the metric Gµν as

Bµν = Cµν11, Cµ = Gµ11.

The other components of Cµνρ give rise to C3 in 10 dimensions, as well as the other components
of Gµν coincide with the components of the metric in 10 dimensions. The fields and the related
charged objects are collected in Table 1.2: a p-potential is electrically coupled to (p-1)-branes and
magnetically coupled to (7-p)-branes. Indeed, the (p+1)-dimensional field strength of a p-potential
has to be integrated on a (p+1)-dimensional sphere, which lies in a (p+2)-dimensional transverse
space. The worldvolume of the magnetic charge will take up 9− p− 2 = 7− p space dimensions.

IIA IIB

Potential B C1 C3 B C0 C2 C4

Electric F1 D0 D2 F1 D(-1) D1 D3
Magnetic NS5 D6 D4 NS5 D7 D5 D3

Table 1.2: Potentials and corresponding charged objects in IIA and IIB supergravity

Let us underline that D3-branes are both electrically and magnetically charged objects: they are
therefore, dyons. This is related to the fact that the dual field strength of F5 = dC4, whose
components read

F̃µ1...µ5 =
1

5!

√−gεµ1...µ5µ6...µ10Fµ6...µ10 ,

coincides with F5. Moreover, D(-1)-branes are also known as instantons, i.e. objects localized both
in time and space.

1.5.1 Dualities

Superstring theories were devised independently one on another. Only in the 90s, physicists noticed
that they were all equivalent and could be thought as limits of one more general theory. The maps
between the different theories are called S and T dualities. We are going to dwell on those of their
realizations which turn out to be useful in the following.
For instance, S-duality matches the type-I superstring theory to the SO(32) heterotic string theory
and the type IIB superstring theory to itself. Nonetheless, let us focus on the latter case: S-duality
exchanges the B field and the C2 field, leaving C4 invaried. Accordingly, F1 branes are paired up
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with D1 branes and NS5 branes with D5 branes. Moreover, S-duality is such that the coupling of
the IIB theory gets

g → g′ =
1

g
.

Consequently, all parameters of the theory transform according to their dimension, i.e.

A→ A′ =
A

g−[A]/2
,

where [A] is the energy dimension of the parameter A.
Besides linking the two heterotic superstring theories, the T-duality connects the IIB and the IIA-
type string theories. Let us consider a IIA fundamental string wrapped on a circle of radius R.
On it, winding modes are defined as quanta contributing to the total mass of the string. Given
that the string twists around the circle n1 times and its tension is TF1

= 1/2πl2s , its mass will be

M =
2πn1R

2πl2s
=
n1R

l2s

and this mass comes in units of the fundamental mass R/l2s . On top of that, the string can be
provided with momentum excitations, that on the compact direction come in quanta of 1/R. As far
as the supergravity fields are concerned, T-duality along one direction interchanges the momentum
and winding modes of IIA and IIB theories, i.e.

P ↔ F1,

as well as their spectra
R/l2s ↔ 1/R̃, R̃/l2s ↔ 1/R,

with R̃ the radius of the circle in IIB. T-duality hence, allows to choose the proper duality-frame
in which to perform perturbative string theory calculations. As long as R >> ls in IIA, the stringy
nature of the theory is not manifest and the dynamics can be easily determined in the Supergravity
framework. In the opposite case, a perturbative approach is nomore allowed, unless we shift to
IIB theory, where R̃ >> l2s and perturbation theory can be safely employed. Additionally, let
us consider a Dp-brane in IIA (IIB) with one of the directions of the worldvolume compactified
on a circle. A T-duality along this compact direction will cancel this direction and give rise to a
D(p-1)-brane living in IIB (IIA). Conversely, a T-duality along one transverse direction will add
a new dimension to the worldvolume of the Dp-brane, which now gets a D(p+1)-brane. T-duality
turns a continuous distribution of D-branes on the compact direction into a localized distribution
of D-branes one on top of the other (since the direction of the smearing is nomore transverse
after the duality) and viceversa. Ultimately, a T-duality along the compact direction with the
identification y ∼ y + 2πR, the string coupling of the theory transform as

g′s =

√
α′

R
gs.
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Chapter 2

Black holes in supergravity

Black holes are classical solutions to the Einstein’s equations of General Relativity. They are
spacetimes characterized by a region from which no causal signals can reach an asymptotic observer
sitting at infinity. The boundary of this region is named event horizon. Furthermore, classical black
holes are characterized by a curvature singularity, where General Relativity breaks down. This
singularity is always cloaked by an event horizon: “naked singularities” are thought to be non-
physical. Furthermore, black holes have thermodynamic properties. A thorough understanding
of this aspect cannot be acquired in a classical framework, hence black holes have proved to be a
playground for Quantum Gravity theories.

2.1 Black holes thermodynamics

2.1.1 Laws of thermodynamics

The thermodynamic behaviour of black holes was for the first time highlighted by Bekenstein.
His insight arose from the firm belief that thermodynamics laws are to be preserved in every
physical system. As a matter of fact, black holes are the outcome of the collapse of matter
carrying some entropy. An asymptotic observer would state that the total entropy of the universe
decreases as matter disappears behind the event horizon, unless black holes are thought to have
their own entropy. The demand for some entropy for black holes can be understood considering
that despite these solutions are completely determined by a few parameters, such as mass, angular
momentum and electric charge (”black holes have no hair”), several microstates can produce the
same macroscopic state.
A first hint of what the entropy of black holes depends on, arose from Hawking’s area theorem,
according to which, under some conditions, in any physical process the area A of the event horizon
of a black hole cannot decrease:

∆A ≥ 0. (2.1)

This was compared by Bekenstein to the second law of thermodynamics, stating that any physical
process is such that that the total entropy of the Universe cannot decrease:

∆S ≥ 0. (2.2)

Therefore, Bekenstein guessed that the entropy should be a monotonic function of A/l2P (the Planck
length in the denominator is inserted for dimensional reasons). A rough calculation can confirm
this first intuition. Indeed, let us suppose that N quanta are thrown into a Schwarzschild black
hole, giving rise to a certain macrostate. The number of the corresponding microstates will grow
exponentially with N (e.g. if quanta are spin-1/2 particles, then we will have 2N microstates).
Additionally, to fit behind the horizon, the energy of each quantum should be at least 1/rS , where

39
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rS = 2GM is the Schwarzschild radius. Thereafter, due to Boltzmann law,

dS ∼ dN ∼ rSdM ∼ rSdrS
G

∼ dA

G
.

(2.1) is also known as the second law of thermodynamics for black holes. Actually, all the other
laws of thermodynamics have an analogue in the framework of black holes. For instance, the
zeroth law of thermodynamics claims that the temperature is everywhere the same in a system in
equilibrium. A quantity which remains constant in black holes is the surface gravity on a Killing
horizon1. Therefore, we can identify the surface gravity and the temperature of the black hole.
Furthermore, given a system of temperature T rotating with angular velocity Ω and in a potential
Φ, its variation of the energy will arise from the first law of thermodynamics

dE = TdS + dW = TdS +ΩdJ +ΦdQ, (2.3)

where dJ and dQ are the infinitesimal variations of the angular momentum and the charge. If,
instead, we focus on a stationary black hole with mass M , angular momentum J and electric
charge Q, under an infinitesimal transformation, the mass will vary according to

dM =
κ

8π
dA+ΩHdJ +ΦHdQ, (2.4)

with ΩH the angular velocity of the horizon and ΦH the co-rotating electric surface potential. (2.4)
is regarded as the black hole version of the first law of thermodynamics. By comparing the latter
with (2.3), we can identify

T = α
κ

8π
, S =

A

α
,

confirming the intuitions about the zeroth and the second thermodynamics laws. Here, α is just a
constant but exact calculations performed by Hawking allow to fix α = 4 and the correct physical
constants, getting

S = kB
A

4l2P
, T =

~

ckB

κ

2π
(2.5)

with l2P = G~/c3. Ultimately, the third thermodynamics law states that a thermal system cannot
reach zero temperature in a finite number of physical processes. Hence, a finite number of physical
processes cannot render a black hole extremal, i.e. such that κ = 0.

2.1.2 Hawking radiation and the information paradox

Classically, nothing can escape the event horizon, radiation included. Hence, in a classical frame-
work, black holes should be regarded as zero temperature objects and their thermodynamical
properties are nothing more than a formal suggestion. Nonetheless, the presence of the Planck
constant in (2.5), both for the entropy and the temperature turns out to be a hint that these two
quantities can be fully understood in a quantum description of gravity. As a matter of fact, the
computation of black hole microstates in [1] showed that String Theory, the current most promising
candidate among quantum gravity theories, can explain the Bekenstein-Hawking entropy from a
microscopic viewpoint. Furthermore, in 1974 Hawking proved that black holes truly radiate and a
distant observer sees the emitted particles as a thermal distribution whose temperature is exactly
(2.5). If this did not happen, a violation of the second law of thermodynamics would occurr.
Indeed, let us consider a black hole immersed in a thermal bath with temperature Tbath < TBH .
Due to the enregy conservation, if there is no change in the angular momentum and in the charge
of the black hole,

TBHdSBH + TbathdSbath = 0 ⇒ Tbath = −TBHdSBH
dSbath

. (2.6)

1The surface gravity κ of a Killing horizon N can be identified as the acceleration of a static particle near the
horizon as measured at the spatial infinity. If ξµ is a Killing vector orthogonal to N , then ξν∇νξ

µ = κξµ.
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If matter can only fall into the black hole and not exit, dSBH > 0 and dSbath < 0. Hence, plugging
(2.6) into Tbath < TBH , we end up with TBH(dSBH + dSbath) < 0 and then the total entropy of
the Universe decreases. If instead, the black hole can radiate, dSBH < 0 and dSbath > 0 and we
end up with TBH(dSBH + dSbath) > 0 and the second thermodynamics law is preserved. In the
last analysis, the entropy and the temperature of a black hole are actually physical quantities,
describing a radiation emitting black body. Their expressions (2.5) hold for any values of mass,
angular momentum and electric charge and in any spacetime dimension.
The emission from a black hole is named Hawking radiation and is due to quantum effects. A
quantitative description was proposed by Hawking, who resorted to a semiclassical approach to
the QFT of particles in the curved background sourced by the black hole. For a Schwarzschild
black hole, κ ∼ 1/M and then T ∼ 1/M : the smaller the mass of a black hole is, the speedier the
radiation emission runs. Small black holes emit more than they might absorb, for instance, from
CMB. In the end, a small enough black hole fully evaporates leaving just thermalized radiation
in its place. From the pure state of matter collapsing beyond the horizon and feeding the black
hole, a mixed state of thermalized particles is left: the process of blak hole evaporation does not
preserve information and is then not unitary. This issue is called information paradox.

2.2 Supersymmetric black holes

Some solutions of supergravity exhibit the typical features of black holes, namely a singularity
and an event horizon covering it. They are sourced by stable configurations of branes, sitting in
different points of the transverse space. Indeed, D-branes have some tension, hence give rise to a
metric, and as already highlighted for instance in Table 1.2, they couple to massless R-R fields. A
further field sourced by D-branes is the dilaton φ. As an example, a D2-brane stretching on the
directions 0, 1 and 2 will produce the fields

g = Z−1/2
(

−dx20 + dx21 + dx22
)

+ Z1/2
(

dx23 + · · ·+ dx29
)

, C012 = Z−1, eφ = Z1/4.

The metric is Lorentz invariant along the D2-brane directions and rotational symmetric in the
transverse ones. Z is a function of spacetime coordinates obeying the Poisson equation in the
transverse space R

7:

∆7Z = ρD2
, (2.7)

where ρD2
represents the density of D-branes. The general solution for (2.7) in a n-dimensional

transverse space only depends on r = |~x|, where ~x is the n-dimensional vector. More precisely, it
reads

Z(r) =
A

rn−2
+ C.

In the case of a stack of D2-branes sitting on a point in the transverse space (w.l.o.g., chosen to
be the origin of coordinates), n = 7 and ρD2

= ND2
δ(~r7), thereafter

Z = C +
ND2

r5
. (2.8)

The parameter C can be set to one with a change of coordinates. If other stacks of branes are
added in the transverse spacetime, then the different solutions sum up due to the linearity of the
Poisson equation. From (2.8), we can infer that the metric coefficients diverge for r = 0: this is in
fact, an actual singularity since the energy associated to the C-field blows up.

Charged point particles, like electrons, would fly apart when placed in some points of the space,
due to the electric repulsion. Configurations of branes, instead, are stable due to supersymmetry,
if they satisfy the so-called BPS bound (after Bogomolny-Prasad-Sommerfeld), such that

M = Q, (2.9)
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Figure 2.1: The same worldsheet between two parallel D-branes can be interpreted as an exchange of a
closed string or a loop in open string theory. The image is taken from [19].

where M is the total mass of the brane and Q is its charge under the corresponding gauge R-R
field and is defined as in (1.159) (manifestly, changing the dimension of the field strength according
to the dimension of the D-branes involved). For any charged object, the relation M ≥ Q holds
and (2.9) can be regarded as its limiting case. The latter is a consequence of the invariance of
the system under certain supersymmetry transformations. Objects satisfying the BPS bound are
said extremal: their temperature vanishes and hence they do not radiate. Multi-center solutions
are then stable since they do not lose energy: their gravitational attraction exactly compensates
their electrostatic repulsion. This is illustrated in Figure 2.1. The two diagrams represent two
parallel branes (a case we are going to deal with in Chapter 3), whose interaction has a twofold
interpretation: the exchange of a closed string, meaning gravitational interaction, or a loop of
open strings, i.e. vacuum fluctuations which is the analogue of the Casimir energy for a photon
field. As already stressed, these two kinds of interactions exactly cancel in order that the stability
of multi-center solutions is granted. The dual intepretation of this diagram is at the root of the
gauge/gravity duality.

We are going to deal with some examples of supersymmetric black holes. Their entropy is turning
out to be independent on the coupling g2s of closed strings with open strings or D-branes, hence
we choose to work in the limit gs << 1, such that the quantum effects due to the stringy nature
of black holes can be safely neglected. Nonetheless, the actual coupling of N D-branes with the
closed strings is gsN : D-branes can therefore, modify the spacetime metric if gsN is finite, despite
gs << 1. Furthermore, the area of black hole horizons depends on gsN : if gsN << 1, it is small
in string units and the horizons could not be studied in the supergravity framework. In order to
study black holes close to the horizon, then, we need to impose gsN >> 1. Anyway, we choose
to work in the gsN << 1 regime, so that a free classical theory for D-branes and open or closed
strings can be employed to compute the entropy.

2.2.1 Three-charge black hole

Let us work in the IIA-type theory and a NS1 string wrapping around a compact S1, whose
direction is labelled as y:

y ∼ y + 2πR.

The supergravity solution will be given by

g = H−1
1

(

−dt2 + dy2
)

+

8
∑

i=1

dxidxi, e2φ = H−1
1 , H1 = 1 +

Q1

r6
,

where the exponent in the last expression is due to the 8 dimensions of the transverse space.
As r → 0, the dilaton field approaches −∞ and hence the Einstein length of the compact circle
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vanishes. In a more physical view, this is a consequence of the string tension (or the tension of
the corresponding M2-brane in the M-theory), which leads the circle on which it is wrapped, to
collapse. Moreover, since the only hypersurface candidate to be a horizon is determined by r = 0,
its Einstein area can only vanish. To stabilize the dilaton, we could add a NS5-brane wrapping
around the y compact direction and the torus T 4. In this case, indeed,

H1 = 1 +
Q1

r2
, H5 = 1 +

Q5

r2
, e2φ =

H5

H1
→ Q5

Q1
for r → 0.

Nevertheless, since both the string and the brane wind around y, this direction is again squeezed
to zero and the black hole has no horizon area.
Finally, a stable black hole is built up once another charge is added to this system: a momentum
P along the compact S1. A three-charge black hole has then appeared. After a T-duality along
one direction of the torus and a S-duality, we get:

NS1NS5P (IIA)
T→ NS1NS5P (IIB)

S→ D1D5P (IIB).

This is one of the equivalent writings of the three charges in different duality frames and also
arises starting from the configurations with three orthogonal M2 branes in the 11d-supergravity.
x1, ..., x6 directions are compact and when not extended along, the branes are smeared along these
compact directions:

M21 0 1 2 - - - -
M22 0 - - 3 4 - -
M23 0 - - - - 5 6

The transverse space is then 4-dimensional and the harmonic functions are

Z1 = 1 +
Q1

r2
, Z2 = 1 +

Q2

r2
, Z3 = 1 +

Q3

r2
.

These enter the supergravity solution one independently on the other since we deal with a super-
symmetric configuration:

ds2 =− (Z1Z2Z3)
−2/3dt2 + (Z1Z2Z3)

1/3
(

dx27 + · · ·+ dx210
)

+

+

(

Z2Z3

)1/3

Z1
2/3

(

dx21 + dx22
)

+

(

Z1Z3

)1/3

Z2
2/3

(

dx23 + dx24
)

+

(

Z1Z2

)1/3

Z2
2/3

(

dx25 + dx26
)

,

which for large r is the product of a 5-dimensional Minkowski spacetime and a six-torus with
constant radii, i.e. the compactification of the flat 11-dimensional spacetime to a Minkoswki 5-
dimensional spacetime. r → 0, instead, is an actual curvature singularity, which is to be identified
with the horizon. Close to r → 0, the metric gets

ds2 =− r4
(

Q1Q2Q3

)2/3
dt2 +

(

Q1Q2Q3

)1/3dr2

r2
+
(

Q1Q2Q3

)1/3
dΩ2

3+

+

(

Q2Q3

)1/3

Q1
2/3

(

dx21 + dx22
)

+

(

Q1Q3

)1/3

Q2
2/3

(

dx23 + dx24
)

+

(

Q1Q2

)1/3

Q2
2/3

(

dx25 + dx26
)

.

(2.10)

By imposing ρ = r2, we can realize that the near-horizon geometry is AdS2 × S3 × T 6, with T 6 a
torus of constant radii. Furthermore, from the gauge 3-potentials

C012 = Z−1
1 , C034 = Z−1

2 , C056 = Z−1
3 ,

we can infer the parameters Qi. Let us focus on the harmonic function for the first brane. We have
that the only non-vanishing component of the field-strength (up to permutations of the indices) is

F012r = ∂rC012 = ∂rZ
−1
1 =

2r

Q1
.
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Labelling as θ1, θ2, θ3 the three angles of S3, the only non vanishing components (up to permuta-
tions) of the corresponding Hodge dual F̃7 = ⋆11F4 are

F̃3456θ1θ2θ3 =
√−gε3456θ1θ2θ3012rg00g11g22grrF012r = 2Q1,

where the metric (2.10) has been employed. F̃7 can be integrated on the 7-dimensional transverse
space of the M2-brane Σ = T 4

3456 × S3, giving the number of M2-branes:

(

2πlP
)6
N1 =

∫

Σ
dx3dx4dx5dx6dΩ3 F̃3456θ1θ2θ3 = (2π)6L3L4L5L6Q1,

where Li are the radii of the circles of the 6-dimensional torus and we have used

∫

dΩ3 = 2π2.

Finally,

Q1 =
N1(lP )

6

L3L4L5L6
, Q2 =

N2(lP )
6

L1L2L5L6
Q3 =

N3(lP )
6

L1L2L3L4
. (2.11)

The entropy of this black hole can be computed using the Bekenstein-Hawking formula (2.5), after
imposing ~, c, kB = 1:

S =
A

4GN
.

This formula holds for any spacetime dimension D, provided that GN has the proper expression

16πGN = (2π)D−3lD−2
P .

The area of the horizon can be computed resorting to the near-horizon metric (2.10) for fixed time
and radius r = 0:

A =

∫

S3×T 6

√
g =

∫

S3

√
gS3

∫

T 6

√
gT 6 =

=
√

Q1Q2Q3

∫

dΩ3

∫

dx1 . . . dx6 =

= 2π2
√

Q1Q2Q3

6
∏

i=1

Li =

= 2π2(2π)6(lP )
9
√

N1N2N3.

In the last step, we have exploited (2.11) formulae, which indeed, have been obtained using the
near-horizon geometry. Ultimately, using the Newton constant for D = 11, the entropy reads

S = 2π
√

N1N2N3. (2.12)

As already alluded before this subsection, the entropy of the black hole does not depend on
couplings or the parameters of the torus upon which the compactification takes place: different
black holes with different parameters can have the same entropy. This feature is a consequence
of extremality and ultimately, on supersymmetry. Accordingly, T-dualities changing the torus
parameters would lead to different black holes with the same entropy. After reduction to the IIA-
type theory along x6, we get a D2-D2-F1 system. Then, performing three T-dualities along x1, x2
and x5 we end up with the three-charge black hole in IIB-type theory

D1 0 - - - - 5
D5 0 1 2 3 4 5
P 0 - - - - 5
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Thereby, (2.12) is the entropy of the three charge black hole D1-D5-P, after the proper relabelling:

S = 2π
√

N1N5Np (2.13)

. The metric sourced by this configuration in the framework of IIB-supergravity is

ds2 =
(

Z1Z5

)−1/2
Z−1
P

(

−dt2 + dx25
)

+ Z
1/2
1 Z

−1/2
5

(

dx21 + ...+ dx24
)

+
(

Z1Z5

)1/2(
dx27 + ...+ dx210

)

,

with Zi = 1 + gsNi/r
2. The two-charge version D1-D5 arises when ZP = 1. We get again a black

hole with a horizon at r = 0. The near-horizon geometry reads

ds2 = r2
(

−dt2 + dx25
)

+
dr2

r2
+ dΩ2

3 +N
1/2
1 N

−1/2
5

(

dx21 + ...+ dx24
)

.

As already argued, the horizon area vanishes:

A
∣

∣

r=0
=

∫

R×S3×T 4

√
g = 2π2(2π)4

N1

N5

∫

R

rdx5 = 0.

2.2.2 Four-charge black hole

Another noteworthy supersymmetric black hole is the four-charge black hole which can be con-
structed in IIA-supergravity and counts three orthogonal D2-branes and a D6-brane stretching
along the worldvolumes of the former. Additionally, the D2-branes are smeared in their four
transverse directions belonging to worldvolume of the D6-brane. More explicitly, the setup is the
following:

D21 0 1 2 - - - -
D22 0 - - 3 4 - -
D23 0 - - - - 5 6
D64 0 1 2 3 4 5 6

and consequently the metric is

ds2 =−
(

Z1Z2Z3Z4

)−1/2
dt2 +

(

Z1Z2Z3Z4

)1/2(
dx27 + dx28 + dx29

)

+

+

(

Z2Z3

)1/2

(

Z1Z4

)1/2

(

dx21 + dx22
)

+

(

Z1Z3

)1/2

(

Z2Z4

)1/2

(

dx23 + dx24
)

+

(

Z1Z2

)1/2

(

Z3Z4

)1/2

(

dx25 + dx26
)

.
(2.14)

As in the three-charge case, each of the branes contribute to the metric independently on one
another on grounds of supersymmetry. Due to these smearings, the harmonic functions for the
D2-branes do not depend on x1, ..., x6 directions, as well as the harmonic function for the D6-brane.
In particular, the transverse space is 3-dimensional and then

∆3Zi = 0, Zi = 1 +
Qi
r
.

Hence, we can compactify these directions in a six-torus T 6. A T-duality along each of x1, ..., x6
leads to another duality framework in which the four charges are D4 - D4 - D4 - D0.
The extremality of the solution (2.14) can be read in its asymptotic version, which is nothing but
the compactification of a 10-dimensional supergravity theory to . For large r, indeed,

gtt = 1− 1

2

Q1 +Q2 +Q3 +Q4

r
.

With the ADM (Arnowit, Deser, Misner) prescription in mind, we compare the last expression
with the Schwarzschild’s gtt = 1−GNM/2r. Hence,

GNM = Q1 +Q2 +Q3 +Q4,
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which is exactly the BPS bound (2.9) defining the extremal black holes. Supersymmetry, then,
ensures the stability of the configuration of branes producing the metric (2.14).
For small radii, the four-charge black hole metric reads

ds2 =− r2

R2
dt2 +

R2

r2
(

dx27 + dx28 + dx29
)

+

(

Q2Q3

)1/2

(

Q1Q4

)1/2

(

dx21 + dx22
)

+

+

(

Q1Q3

)1/2

(

Q2Q4

)1/2

(

dx23 + dx24
)

+

(

Q1Q2

)1/2

(

Q3Q4

)1/2

(

dx25 + dx26
)

=

=− r2

R2
dt2 +R2dr

2

r2
+R2dΩ2

2 + ds2
(

T 6
)

,

where T 6 represents the six-torus of constant radii in the compact directions x1, ... x6. The
four-charge geometry arising for r → 0 is then AdS2 × S2 × T 6. Besides, the r = 0 hypersurface
is such that gtt → 0 and can be thus identified as a black hole horizon: we are really dealing with
an extremal black hole in four dimensions. Moreover, in the particular case in which the charges
of all the branes are equal, i.e.

Qi = Q, Zi = Z,

the metric (2.14) becomes

ds2 = −Z−2dt2 + Z2dr2 + Z2r2dΩ2
2 + ds2(T 6), (2.15)

which neglecting the non-physical dimensions wrapped on T 6, can be identified as a four-dimensional
charged and not spinning black hole: the Reissner-Nordström solution of Einstein’s equations. In-
deed, the latter reads

ds2RN = −
(

1− 2M

Q
+
Q

ρ

)2
dt2 +

(

1− 2M

ρ
+
Q

ρ

)−2
+ ρ2dΩ2

2,

which in the exremality limit M = Q, boils down to

ds2RN = −
(

1− Q

ρ

)2
dt2 +

(

1− Q

ρ

)−2
dρ2 + ρ2dΩ2

2.

This metric is equivalent as can be proved imposing

r = ρ−Q.

In the ”isotopic coordinate” ρ, the horizon r = 0 lies at ρ = Q and then the entropy of the black
hole is

S ∼ 4πρ2 = 4πQ2 ∼ 4π
√

Q1Q2Q3Q4,

where the last expression is the generalization to the case in which all charges are different from
one another. Let us finally notice that the coordinate r > 0 for the transverse space is nomore
useful to investigate the black hole behind the horizon, where one has instead, to resort to the
isotropic ρ to get from the horizon ρ = Q down to the singularity ρ = 0.

2.3 First counting of black hole microstates

One of the most astonishing achievements of the string theory was the explanation of the micro-
scopic origin of the Bekenstein-Hawking entropy (2.5). This was pointed out for the first time
by Strominger and Vafa [1]. In this Section, we are showing this for the three-charge black hole
in IIB-type theory D1-D5-P, with D1 and P on one of the directions of the worldvolume of the
D5-brane, e. g. x5, which is compactified on a circle S1 of radius R. We will focus on a set of
open strings stretching between D1 and D5 (the contribution of open strings with both endpoints
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either on D1 or D5 is subleading). In the regime gs ≪ 1 and E ≪Ms we just have point particles
moving along the circle. Furthermore, if gsN ≪ 1, open strings are free and their total momentum
P is described by the wavefunction

ψ(x5) =
∑

n

e−nx5/R, (2.16)

where x5 is the coordinate along the circle and n is the number of momentum units. Besides, let
us name x(1) and x(5) the x5 coordinates of both the endpoints of one open strings, respectively
lying on D1 and D5. If D1 wraps N1 times and D5 wraps N5 times around S1, in order that the
wavefunction of a single open string is single-valued, we must require that 2

ψ(x(1), x(5)) = ψ(x(1) + 2πN1N5R, x
(5) + 2πN1N5R).

Hence the unit of the quantized momentum for each string is 1/RN1N5 and

ψ(x5) ∼
∑

n

e−nx5/(RN1N5).

Given a total momentum p = Np/R we would like to count the number of ways it can be partitioned
among the open strings stretching between D1 and D5, that is to say, in how many ways we can
choose the number of open strings nm for each momentum m/RN1N5, m positive integer, such
that

∞
∑

m=1

nmm

N1N5R
=
Np

R
.

The issue amounts to counting the partitions of the integer

M ≡ N1N5Np =

∞
∑

m=1

nmm

and can be solved using the partition function

Z = (1 + q + q2 + ...)(1 + q2 + q4 + ...)(1 + q3 + q6 + ...)(...) =
∞
∏

m=1

1

1− qm
, (2.17)

where the second expression holds when q < 1. Indeed,

Z = 1 + q + 2q2 + 3q3 + ...

and one may realize that the coefficient in front of each monomial is the number of partitions
of the corresponding exponent. Each bracket in (2.17) represents the sum over all the possible
numbers of momentum excitations nm for each level m, which are supposed to be any positive
integer. Actually, when dealing with fermionic string excitations, only nm = 0, 1 are allowed. The
fermionic partition function then reads

Z =
∞
∏

m=1

(1 + qm). (2.18)

A further partitioning occurs among the different bosonic and fermionic modes, whose number c
is equal for both statistics due to supersymmetry. The thorough partition function, then, is

Z =
[

∞
∏

m=1

(1 + qm

1− qm

)]c
. (2.19)

2This is really correct provided that N1 and N5 are coprime. If they are not, we can anyway choose m << N1, N5

such that N1 −m and N5 are coprime and the leading contribution to the entropy will be due to N1 and N5.
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In the canonical ensemble,

q = e−β

and thus (2.17) and (2.18) are really partition functions since we are summing the Boltzmann
factors for each energy eigenvalue, weighted with the corresponding multiplicity. In the canonical
ensemble, the entropy reads

S = logZ + β 〈m〉 , (2.20)

where 〈m〉 is the expectation value for the momentum level. Due to (2.19) and working in the
high-temperature limit such that β << 1, we get

logZ = c

∞
∑

m=1

(

log(1 + qm)− log(1− qm)
)

=

= c
∞
∑

m=1

∞
∑

k=1

((−1)k−1(qm)k

k
+

(qm)k

k

)

=

= 2c
∞
∑

k=1

1

2k − 1

∞
∑

m=1

(q2k−1)m =

= 2c
∞
∑

k=1

1

2k − 1

q2k−1

1− q2k−1
,

where in the second step the Taylor expansion for log(1 + x) has been exploited. In the high-
temperature limit,

q ∼ 1− β, q2k−1 ∼ 1− (2k − 1)β

and accordingly 3,

logZ ∼ 2c
∞
∑

k=1

1

(2k − 1)2
1− 2kβ + β

β
∼ 2c

β

∞
∑

k=1

1

(2k − 1)2
=

2c

β

π2

8
.

In the canonical ensemble,

〈m〉 = − ∂

∂β
logZ =

cπ2

4β2
,

which in the case 〈m〉 =M , can be inverted giving

β =

√

cπ2

4M
.

Additionally, the strings between D1 and D5 are such that c = 4, exactly as the number of
dimensions of T 4 in which the strings can show excitations. Finally the entropy (2.20) reads

S =
2π2

β
= 2π

√
M = 2π

√

N1N5Np

and we have really reproduced the entropy (2.13) of the three-charge black hole.

3Let us recall the value of the Riemann ζ-function ζ(2) =
∑∞

k=1
1

k2 = π2

6
and then

∞
∑

k=1

1

k2
=

∞
∑

k=1

1

(2k − 1)2
+

∞
∑

k=1

1

(2k)2
=

∞
∑

k=1

1

(2k − 1)2
+

1

4

∞
∑

k=1

1

k2
⇒

∞
∑

k=1

1

(2k − 1)2
=

3

4

∞
∑

k=1

1

(k)2
=

π2

8
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2.4 The fuzzball proposal

The counting of the microstates exactly predicting the Bekenstein-Hawking entropy is one sensa-
tional success of the string theory. Nonetheless, the resolution of other issues such as the infor-
mation paradox, requires the knowledge of what these microstates really look like. The fuzzball
proposal by Mathur [2] is one remarkable hypothesis about the nature of these microstates.

In order to grasp the main features of this microstate description, let us focus on two-charge
supergravity solutions. A two-charge black hole may be regarded as a three-charge black hole with
one vanishing charge, for instance N5 = 0: consequently, one could expect that due to (2.13),
the entropy of these black holes vanishes. However, a counting of the microstates can be also
performed for two-charge black holes, with the nonzero upshot S ∼

√

N1Np. To solve this issue,
we define u = t+ y, v = t− y and write the naive metric of NS1-P

ds2 = Z−1
[

−dudv +Kdv2
]

+
4

∑

i=1

dxidxi +
9

∑

a=6

dzadza, (2.21)

with za the four compact directions of NS5-worldvolume (besides the compact y), xi the transverse
directions and

Z = 1 +
Q1

r2
, K =

Qp
r2
.

This metric was found imposing N5 = 0 in the NS1-NS5-P solution, but is not a trustable descrip-
tion for NS1-P, since it only holds provided that the sources are fixed at r = 0 in the transverse
space. As a matter of fact, if a NS1 string wraps N1 times along a circle and a momentum wave
propagates across the same direction, the momentum P appears as vibration modes of the string,
necessarily along the eight transverse directions and the sources will not sit on a fixed position
as the wave goes by. We only take care of displacements parallel to the non-compact transverse
directions xi, which in general can be different for each strand (s) of the string (but all carrying

momentum in the direction y): we label ~F (s)(t−y) the displacement and Q
(s)
1 = Q1/N1 the charge

of each strand. If all strands are mutually BPS, we end up with the metric

ds2 = Z−1
[

−dudv +Kdv2+2Aidxidv
]

+
4

∑

i=1

dxidxi +
9

∑

a=6

dzadza,

Z = 1 +

N1
∑

s=1

Q1

|~x− ~F (t− y)|2
, K =

N1
∑

s=1

Q1| ~̇F (t− y)|
|~x− ~F (t− y)|2

, Ai =

N1
∑

s=1

− Q1| ~̇F (t− y)|
|~x− ~F (t− y)|2

.

(2.22)

In the limit in which neighbouring strands have very similar displacement profiles, they will give
very close contributions to the harmonic functions and the sums in (2.22) can be substituted with
an integral:

N1
∑

s=1

→
∫ N1

s=0
ds =

∫ 2πRN1

y=0

ds

dy
dy =

1

2πR

∫ LT

v=0
dv,

where in the last step we have exploited that v = t − y hence the integral can be equivalently
computed over v. Apart from that, we have used the knowledge that y = 2πRs is the position
of the final endpoint of each strand and LT = 2πRN1 is the total length. As a consequence, the
harmonic functions in (2.22) become

Z = 1+
Q1

LT

∫ LT

0

dv

|~x− ~F (v)|2
, K =

Q1

LT

∫ LT

0

dv(Ḟ (v))2

|~x− ~F (v)|2
, Ai = −Q1

LT

∫ LT

0

dvḞi(v)

|~x− ~F (v)|2
. (2.23)

We can finally perform a chain of dualities, mapping this NS1-P (IIB) solution to D1-D5 (IIB) (at
every step, we remain in IIB-type supergravity since we perform a S-duality or an even number of
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T-dualities):

NS1(5) P (5)
S→ D1(5) P (5)

T6789→ D5(56789) P (5)
S→

S→ NS5(56789) P (5)
T56→ NS5(56789)NS1(5)

S→ D5(56789)D1(5),

where the numbers in brackets refer to the directions of the worldvolume of each object involved
(x6, ...x9 are the directions of the torus T 4 on which D5 winds, x1, ..., x4 are the directions of the
transverse space, whereas y = x5 is the compact dimension of the starting NS1 and P). We are
going to track the transformation under these dualities, of some parameters: the coupling gs, the
scale Q1 appearing in the harmonic functions (2.23), the radii R and R6 of the compact dimensions
x5 and x6 and the volume (2π)4V of the torus T 4.













g
Q1

R
R6

V













S→













1/g
Q1/g
R/

√
g

R6/
√
g

V/g2













T6789→













g/V
Q1/g
R/

√
g√

g/R6

g2/V













S→













V/g
Q1V/g

2

R
√
V /g√

V /R6

V













T56→













R6/R
Q1V/g

2

g/(R
√
V )

R6/
√
V

R2
6













S→













R/R6

Q1V R/(g
2R6)

g/(
√
RR6V )

√

R6R/V
R2













≡













g′

Q′
5

R′

R′
6

V ′













.

After dualities, the charge Q1 has been renamed Q′
5 since it is now the charge of the D5-branes.

The harmonic function for the NS1 string (at large r, since close to the NS1 string we should rely
on (2.22) or (2.23))

Z ≈ 1 +
Q1

r2

after dualities becomes

Z ≈ 1 +
Q′

5

r2
,

with

Q′
5 =

V R

g2sR6
Q1 ≡ µ2Q1. (2.24)

[Q] = −2 and after this duality chain, all lengths gets scaled by a factor µ. Moreover,

Q′
5 = µ2Q1 = µ2

g2sN1

V
= g′N1

as expected for brane sources. In the end, after all these dualities, the metric (2.22) with the
harmonic functions (2.23), gives

ds2 =

√

H

1 +K

[

−(dt−Aidx
i)2 + (dy +Bidx

i)2
]

+

√

1 +K

H

4
∑

i=1

dxidxi +
√

H(1 +K)

9
∑

a=6

dzadza,

Z = 1 +
µ2Q1

µLT

∫ µLT

0

dv

|~x− µ~F (v)|2
, K =

µ2Q1

µLT

∫ µLT

0

dv(µ̇F (v))2

|~x− µ~F (v)|2
, Ai = −µ

2Q1

µLT

∫ µLT

0

dvµḞi(v)

|~x− µ~F (v)|2
,

(2.25)

where
dB = − ⋆4 dA. (2.26)

On the other hand, the naive geometry for the D1-D5 system (again arising after the same duality
chain on the naive metric (2.21)) reads

ds2naive =
1

√

(1 +
Q′

1

r2
)(1 +

Q′
5

r2
)
[−dt2+dy2]+

√

(1 +
Q′

1

r2
)(1 +

Q′
5

r2
)dxidxi+

√

√

√

√

1 +
Q′

1

r2

1 +
Q′

1

r2

dzadza. (2.27)

A remarkable hypersurface in the tranverse space is given by |~x| =
√
α′. In the outer part, the

metric (2.25) for the D1-D5 system boils down to (2.27): for instance both are flat at infinity.
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Figure 2.2: On the left, the naive geometry of the D1-D5 system with the singularity after the throat, on
the right the actual geometry with a sketch of the hair over the smooth ”cap”. The dashed line represents
the |~x| =

√
α′ hypersurface. The image is taken from [2].

However, in the inner part, different features appear. Indeed, as depicted in Figure 2.2, the
latter comes up with a singularity for r = 0 after a throat and a horizon, whereas the former
is completely regular: the points on the curve ~x = µ~F (v) in the transverse space represent just
coordinate singularities. As a matter of fact, if we choose to parametrize the four-dimensional
transverse space with the spherical coordinates (ρ, θ, φ) for the space orthogonal to the curve and,
once we fix ~x0 = µ~F (v0) the coordinate

z ≈ µ|Ḟ (v0)|(v − v0)

labels the point along the curve, one can show that the metric ends in a smooth ’cap’ for r = 0
and not in a singularity. All the different profile functions ~F (v) will give rise to different shapes
of the caps which all together make up the statistical ensemble responsible for the entropy of the
two-charge black-hole. We have then identified the hair that distinguishes the microstates giving
rise to the same macrostate and this is why in this framework, black holes are fuzzballs. These
lack a horizon in the traditional sense, but their entropy can be anyway calculated through the
Bekenstein-Hawking formula, if the horizon is identified with the hypersurface |~x| =

√
α′: the result

agrees with the prediction S ∼
√

N1Np. All the differences between microstates disappear, instead,

when probing physics at higher length scales than
√
α′: this coarse-grained view is tantamount to

the traditional description of black holes with a horizon covering a singularity. In this sense, also
the lack of the horizon for fuzzballs can be understood. As a matter of fact, due to the Bekenstein-
Hawking formula, horizons are always thought to be linked to entropy. However, entropy is a
statistical quantity and would be meaningless for a single profile of the cap, as we may define the
entropy for a macrostate of a gas of particles, but not for a single microstate with particles with
definite positions and momenta {~xi, ~pi}. As a final benefit, the emission of the Hawking radiation
from black holes is a unitary process, without information loss.

2.4.1 One example of displacement

Let us choose one particular case of vibration profile for the string in the NS1-P duality frame:

F1 = â cosωv, F2 = â sinωv, F3 = F4 = 0. (2.28)

This represents a uniform helix in the
(

x1, x2, y
)

space. With the angular velocity

ω =
1

N1R
,

each point on the string turns around the circle in (x1, x2) just once. Hence the wavelength is
maximum and all the energy of the wave is stored in the minimum energy possible. Let us make
use of the polar coordinates in the ~x space:

x1 + ix2 = zeiφ̃, x3 + ix4 = weiψ̃, with z = r̃ sin θ̃, w = r̃ cos θ̃
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and compute the harmonic functions (2.23). For instance, if we define ξ = ωv, we get

Z = 1 +
Q1

2π

∫ 2π

0

dξ

(x1 − â cos ξ)2 + (x2 − â sin ξ)2 + x23 + x24
=

= 1 +
Q1

2π

∫ 2π

0

dξ

z2 + w2 + â2 − 2zâ cos(ξ − φ̃)
=

= 1 +
Q1

[(z2 + w2 + â2)− 4z2â2]
=

= 1 +
Q1

[(r̃2 + â2)2 − 4r̃2 sin2 θ̃â2]
,

(2.29)

where the integration has been performed exploiting

∫ 2π

0

dα cosn α

1 + a cosα
=

2π√
1− a2

(

√
1− a2 − 1

a

)n
.

After the redefinition

r̃ =
√

r2 + â2 sin2 θ, cos θ̃ =
r cos θ

√

r2 + â2 sin2 θ
,

the harmonic function (2.29) yields

Z = 1 +
Q1

r2 + â2 cos2 θ
.

With analogous steps we obtain

K =
â2

N1R2

Q1

(r2 + â2 cos2 θ)
≡ Qp

(r2 + â2 cos2 θ)
, Aφ̃ =

∂x1

∂φ̃
Ax1+

∂x2

∂φ̃
Ax2 = −Q1â

2

RN1

sin2 θ

(r2 + â2 cos2 θ)
.

With the duality chain to the D1-D5 system, lengths scale up by the factor µ defined in (2.24).
The displacement profile hence, becomes µ~F and the harmonic functions can be written as

Z ′ = 1 +
Q′

5

(r2 + â2 cos2 θ)
, K ′ = µ2

Qp
(r2 + â2 cos2 θ)

=
Q′

1

(r2 + â2 cos2 θ)
,

where Q′
5 coincides with what defined in (2.24), Qp has changed subscript since through dualities

the momentum gets a D1-brane, the last parameter Bi has been found using (2.26). In the end,
using (2.25) and identifying

f = r2 + a2 cos2 θ, a ≡ µâ =
Q′

1Q
′
5

R′
. h =

[(

1 +
Q′

1

f

)(

1 +
Q′

5

f

)]1/2
,

we can write the metric for the D1-D5 system with this particular choice of string vibrations:

ds2 = −1

h
(dt2 − dy2) + hf

(

dθ2 +
dr2

r2 + a2

)

− 2a
√

Q′
1Q

′
5

hf

(

cos2 θdydψ + sin2 θdtdφ
)

+ h
[(

r2 +
a2Q′

1Q
′
5 cos

2 θ

h2f2

)

cos2 θdψ2 +
(

r2 + a2 − a2Q′
1Q

′
5 sin

2 θ

h2f2

)

sin2 θdφ2
]

+

√

Q′
1 + f

Q′
5 + f

dzadza.

(2.30)

As expected, this is asymptotically flat. Instead, for r ≪ (Q′
1Q

′
5)

1/4, the metric is given by

ds2 =
√

Q′
1Q

′
5

[

−(r′2 + 1)
dt2

R2
+ r′2

dy2

R2
+

dr′2

r′2 + 1

]

+

+
√

Q′
1Q

′
5

[

dθ2 + cos2 θdψ′2 + sin2 θdφ′2
]

+

√

Q′
1

Q′
5

dzadza,

(2.31)
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where the following identifications have been used:

r′ = r − a, ψ′ = ψ − a
√

Q′
1Q

′
5

y, φ′ = φ− a
√

Q′
1Q

′
5

t.

The geometry of the metric (2.31) is locally that of AdS3×S3×T
4. In the following Chapter, this

peculiar instance of microstate will be described in the full worldsheet theory. However, instead
of D1-D5 we will focus on the duality frame in which the charges are NS5-P.
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Chapter 3

A worldsheet theory for microstates

The fuzzball description of black holes was devised in the framework of supergravity, which only
involves the massless excitations of strings. However, we expect that a UV complete theory with
the full spectrum of string modes should exist for the different displacement profiles. In this
Chapter, the gauged Wess-Zumino-Witten model of strings propagating on group manifolds are
proved to furnish this worldsheet theory for a particular microstate: the focus is kept on the special
example introduced in Subsection 2.4.1.

3.1 Wess-Zumino-Witten model

The target space in which string propagate can be a flat Minkowski spacetime or a more general
manifold with any metric and curvature. In the latter case, the action describing the dynamics of
strings is the non-linear sigma model (1.156). The realization of this for group manifolds or Lie
groups, is the so-called Wess-Zumino-Witten model. The treatment of its main aspects both in
this Section and in Section 4.1, follows [26].

Let us consider a quantum field theory defined on the Riemann sphere S2 provided with the
Euclidean metric. A generic field g(z, z̄) is a smooth map from points of the sphere to a Lie group
G:

g : S2 → G. (3.1)

We choose some representation of the Lie group, so g(z, z̄) can be thought as a matrix-valued
field. When G is semi-simple, that is to say, it can be written as the product of simple Lie groups,
a non-degenerate and invariant trace can be defined on the corresponding Lie algebra g and the
scalar product for any X,Y ∈ g is defined as

〈X,Y 〉 = Tr(X,Y ).

Given a real parameter λ, we can define the action of the principal chiral model

S0 =
1

4λ2

∫

S2

d2z Tr
(

g−1∂µgg
−1∂µg

)

, (3.2)

where g−1∂µg belongs to the Lie algebra and the trace is then well defined. This action is the
natural generalization for group manifolds, of the component (1.154) of the non-linear sigma model.
Since the coupling λ is dimensionless, (3.2) defines a conformal field theory at the classical level.
Moreover, this theory is invariant under the global symmetry

G×G : g(z, z̄) → gLg(z, z̄)g
−1
R . (3.3)

We calculate the equation of motion through the variational principle. Making use of

δ
(

gg−1
)

= 0 ⇒ δg−1 = −g−1δgg−1

55
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and of the ciclicity of the trace, we get

δS0 =
1

2λ2

∫

S2

d2zTr
(

(−g−1δgg−1∂µg + g−1δ∂µg)g
−1∂µg

)

=

=
1

2λ2

∫

S2

d2zTr
(

(∂µg
−1δg + g−1∂µδg)g

−1∂µg
)

=

=
1

2λ2

∫

S2

d2zTr
(

∂µ(g
−1δg)g−1∂µg

)

=

= − 1

2λ2

∫

S2

d2zTr
(

g−1δg∂µ(g
−1∂µg)

)

,

(3.4)

where in the last step we have integrated by parts. The trace is non-degenerate, therefore the
vanishing of δS0 for each variation of the field implies the classical equation of motion

∂µ
(

g−1∂µg
)

= 0, (3.5)

which is the statement of the conservation of the current Jµ = g−1∂µg. Moreover, (3.5) implies
that

0 = g∂µ
(

g−1∂µg
)

g−1 = ∂µ
(

∂µgg−1
)

,

therefore J̃µ = ∂µgg−1 is conserved as well. Jµ and J̃µ are the conserved currents respectively
corresponding to the right and to the left multiplication symmetry in (3.3). We can write the
equation of motion (3.5) in complex coordinates (using the flat Euclidean metric (1.44) to lower
the indices):

∂Jz + ∂̄J z̄ = ∂Jz̄ + ∂̄Jz = 0 (3.6)

If the two addends vanished separately, then Jz and Jz̄ would be respectively holomorphic and
antiholomorphic and the theory would be conformal at the quantum level as well. However, this
does not occur, since the vanishing of both terms in (3.6) is equivalent to require that

∂Jz̄ − ∂̄Jz = ∂µ
(

εµνJν
)

= 0.

On the other hand, let us realize that Jµ can be regarded as the gauge potential for the gauge
group G, in case Aµ = 0: it is a pure gauge potential, then its field-strength vanishes

∂µJν − ∂νJµ + [Jµ, Jν ] = 0.

As a consequence,

∂µ
(

εµνJν
)

=
1

2
εµν

(

∂µJν − ∂νJµ
)

= −1

2
εµν

[

Jµ, Jν
]

,

which is zero only for Abelian Lie algebras. In the most general case, the conformal invariance of
the principal chiral model is spoiled at the quantum level.

A new term was added to (3.2) in order to recover conformal invariance at the quantum level [4–6].
It is known as Wess-Zumino-Witten term and reads

Γ = − i

12π

∫

B
d3y εαβγ Tr

(

g−1∂αgg−1∂βgg−1∂γg
)

. (3.7)

In this expression, B is a three-dimensional manifold such that ∂B = S2. Accordingly, g has to
be regarded as an extension of the smooth maps appearing in (3.2) defined on the boundary S2,
which only in this paragraph we choose to call ĝ. G is a semi-simple Lie group and then each
transformation ĝ is in the null second fundamental group: in other words it is homotopic to the
constant map. Constant maps on S2 can be always extended in the interior B, but this extension
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is not unique: homotopies can provide small perturbations in g without changing the value at the
boundary. However, under this local variation

δΓ = − i

4π

∫

B
d3y εαβγ Tr

(

(−g−1δgg−1∂αg + g−1∂αδg)g−1∂βgg−1∂γg
)

=

= − i

4π

∫

B
d3y ∂αTr

(

g−1δgg−1∂βgg−1∂γg
)

=

= − i

4π

∫

S2

d2x εαβ Tr
(

g−1δgg−1∂αgg−1∂βg
)

=

= − i

4π

∫

S2

d2x εαβ Tr
(

g−1δg∂α(g−1∂βg)
)

,

(3.8)

where the second step is due to Stokes’ theorem. In the end, since δg = 0 on S2, then also δΓ = 0.
The three-dimensional interior where to define the extension can globally change as well: a compact
two-dimensional space delimits two distinct three-manifolds which in our instance we name B and
B̃. Given the two extensions (g,B) and (g̃, B̃), we can glue them along the common boundary and
define

(g, g̃) : (B ∪ B̃)/∂B ≈ S3 → G

Maps of this kind are classified up to homotopy by the third homotopy group π3(G). A theorem by
Bott states that any map S3 → G, with G simple and compact, is homotopic to S3 → SU(2) ∼= S3,
where SU(2) is a subgroup of G. In practice we are thus working with maps S3 → S3, which are
classified up to homotopy by π3(S

3) = Z, i. e. according to the number of times S3 wraps around
itself. The variation of (3.7) under the two different choices of the manifold B is the integral

∆Γ = Γ[g]− Γ[g̃] =

∫

B
(...)−

(

−
∫

B̃
(...)

)

=

∫

B
(...) +

∫

B̃
(...) =

∫

B∪B̃=S3

(...),

with the dots standing for the integrand of (3.7). The crucial ’-’ sign in front of the integral in
Γ[g̃] is due to the fact that S2 bounds B̃ with an orientation opposite to B. We can focus on the
identity map

g(y) = y0 − iykσk,

with y ∈ S3 ⊂ R
4 and σk the Pauli matrices. g(y) wraps once around S3. Then, g−1∂kg = −iσk

and since the integrand gets independent on the coordinates y, we can substitute the the integral
with the volume of S3:

∆Γ = − i

12π

∫

S3

d3y εαβγ Tr
(

g−1∂αgg−1∂βgg−1∂γg
)

=

= − i

12π
(−i)32π2

∑

i,j,k

εijk Tr
(

σiσjσk
)

=

=
π

12

∑

i,j,k

εijk Tr([σ
i, σj ]σk)

=
π

12
2i

∑

i,j,k

εijk Tr(ε
ijlσlσk) =

=
iπ

6

∑

k

2Tr(σkσk) = 2πi.

Let us define the full action of the model

S[g] = S0[g] + kΓ[g], (3.9)

with the real coupling k. This action is then not invariant under global topological transformations,
because Γ gets shifted. However, in a quantum theory, the Boltzmann weight e−S[g] is what really
matters: since ∆Γ = 2πi, it will be single-valued as long as k ∈ Z. The coupling k is called the
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level of the model and is then quantized for compact Lie groups (for non-compact groups, this
reasoning does not hold and there might not be any quantization of the level).
The equation of motion of (3.9) is found varying both terms in the action. Summing up the results
in (3.4) and (3.8), we get that

0 =− 1

2λ2
∂α

(

g−1∂αg
)

− i

4π
εαβ∂

α(g−1∂βg) =

=
(

1 +
kλ2

2π

)

∂(g−1∂̄g) +
(

1− kλ2

2π

)

∂̄(g−1∂g),

(3.10)

since gzz̄ = gz̄z = 2 and εzz̄ = −εz̄z = i/2. The Wess-Zumino-Witten model really arises when
imposing

λ2 =
2π

k
. (3.11)

This choice implies that k ∈ Z0: k < 0 would cause some issues with the convergence of the path-
integral. Apart from that, the calculation of the β-function at one-loop level shows that under
(3.11), the action (3.9) describes a conformal field theory. When (3.11) does not hold, the coupling
λ, despite dimensionless, would be scale-dependent at the quantum level (not k, which is a fixed
integer) and the theory could not be conformal (it is asymptotically free). This way, we infer the
existence of one antiholomorphic current and one holomorphic current:

J̄ = kg−1∂̄g, J = −k∂gg−1. (3.12)

The former is promptly read off from (3.10), whereas the latter is a consequence:

∂̄
(

∂gg−1
)

= g∂(g−1∂̄g)g−1 = 0.

These holomorphic and antiholomoprhic currents correspond to the new local symmetry

G(z)×G(z̄) : g(z, z̄) → gL(z)g(z, z̄)g
−1
R (z̄). (3.13)

3.2 Branes on a circle

The purpose of this Section is the study of one single kind of charge, showing for the first time
how the Wess-Zumino-Witten model just introduced, can be a powerful tool to recover in a stringy
fashion the supergravity results.

3.2.1 The supergravity calculation

Let us work in the framework of the 10-dimensional IIB-type supergravity theory, with n5 parallel
NS5-branes. The transverse space is the Euclidean 4-dimensional space E4, in which the positions
of the branes are named ~x = ~xm, m = 0, ..., n5 − 1. The tranverse directions to the branes are
labelled as i = 1, ..., 4, whereas the parallel directions are xµ, with µ = 0, 5, ..., 9. The mth brane
sources a deformation in the spacetime metric, given by

ds2 = ηµνdx
µdxν + Zm(~x)dx

idxi, (3.14)

where ηµνdx
µdxν stands for the Minkowski metric in the parallel directions, dxidxi for the Eu-

clidean one in the transverse directions. Zm(x
i) is a harmonic function with respect to the trans-

verse E4:

Zm(~x) = 1 +
α′

|~x− ~xm|2
, (3.15)

where α′ has been written for completeness, but from here on it is set to α′ = 1. A generic
choice of the positions ~xm breaks the SO(4) symmetry of the transverse space, but we require
that the branes sit on a circle of radius a lying on the plane (x1, x2) in the positions ~xm =
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(a cosφm, a sinφm, 0, ..., 0), with φm = 2πm/n5. SO(4) symmetry is then broken but a SO(2)×Zn5

symmetry survives. We factorize the transverse space as E4 = R
2×R

2 ≃ C×C and due to linearity,
the full harmonic function of the system can be written as

Z5(~x) = 1 +

n5−1
∑

m=0

1

|x1 + ix2 − aeiφm |2 + |x3 + ix4|2
. (3.16)

For the two complex planes we choose the parametrization

x1 + ix2 = reiφ, x3 + ix4 = Reiψ. (3.17)

Therefore

Z5(~x) = 1 +

n5−1
∑

m=0

1

R2 + r2 + a2 − 2ar cos(2πm/n5 − φ)
=

= 1 +
1

2ar

n5−1
∑

m=0

1

coshχ− cos(2πm/n5 − φ)
,

where we have defined

coshχ =
R2 + r2 + a2

2ar
. (3.18)

This is a consistent definition since R2+r2+a2−2ar = R2+(r−a)2 ≥ 0, then R2+r2+a2 ≥ 2ar

and R2+r2+a2

2ar ≥ 1. Remembering that cos(z) = cosh(iz) and exploiting the generalization of
prosthaphaeresis formulas to hyperbolic functions we obtain that

Z5(~x) = 1 +
1

2ar

n5−1
∑

m=0

1

2 sinh(χ+i(2πm/n5−φ)
2 ) sinh(χ−i(2πm/n5−φ)

2 )
,

which by the generalized Dirichlet series

csch(z) =
1

sinh z
= 2e−z

∞
∑

n=0

e−2nz, z ∈ C,Re z > 0, (3.19)

gets

Z5(~x) = 1 +
e−χ

ar

∞
∑

n,l=0

n5−1
∑

m=0

e−(n+l)χei(n−l)(2πm/n5−φ) =

= 1 +
e−χ

ar

∞
∑

n,l=0

e−(n+l)χe−i(n−l)φ
n5−1
∑

m=0

ei(n−l)(2πm/n5).

(3.20)

The finite sum over m vanishes, except for n− l = sn5, with s ∈ Z. In this case,

n5−1
∑

m=0

ei(n−l)(2πm/k) =

n5−1
∑

m=0

ei2πsm = n5.

The set of all (n = l + sn5, l) pairs with n, l positive integers and s ∈ Z can be considered as the
union of the sets of pairs with s = 0, s > 0 and s < 0. The latter can be obtained from the second
one with the transformation

(n = α+ sn5, l = α) → (n = β − sn5 = α, l = β), α, β, s > 0.
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This map exchanges the two elements of each pair: n + l = 2α + sn5 in both cases, whereas the
difference n− l = sn5 → −sn5. Therefore,

Z5(~x) = 1 +
n5e

−χ

ar

∞
∑

n,l=0

e−(n+l)χe−i(n−l)φ

= 1 +
n5e

−χ

ar

(

∞
∑

α=0

e−2αχ +
∞
∑

α=0

e−2αχ
∑

+,−

∞
∑

s=1

e−sn5χ±isn5φ
)

= 1 +
n5

2ar sinhχ
Λn5

(χ, φ),

(3.21)

where we have used again (3.19). We have also defined

Λn5
(χ, φ) ≡ 1 +

∑

+,−

∞
∑

s=1

e−sn5χ±isn5φ

=
1

2

(

1 + 2

∞
∑

s=1

e−sn5χ−isn5φ + 1 + 2

∞
∑

s=1

e−sn5χ+isn5φ
)

=
1

2

(

coth
(n5
2
(χ+ iφ)

)

+ coth
(n5
2
(χ− iφ)

)

)

,

(3.22)

since the Dirichlet generalized series for the hyperbolic cotagent is

coth(z) =
1

tanh z
= 1 + 2

∞
∑

n=1

e−2nz, z ∈ C,Re z > 0. (3.23)

We can further simplify (3.22):

Λk(χ, φ) =
cosh

(

n5

2 (χ+ iφ)
)

sinh
(

n5

2 (χ− iφ)
)

+ cosh
(

n5

2 (χ− iφ)
)

sinh
(

n5

2 (χ+ iφ)
)

2 sinh
(

n5

2 (χ+ iφ)
)

sinh
(

n5

2 (χ− iφ)
)

=
sinh(n5χ)

cosh(n5χ)− cos(n5φ)
,

(3.24)

where in the last step we have employed the addition formula and the generalization of the Werner
formulas for hyperbolic functions.
We can eventually parametrize the radii (r,R) introduced in (3.17) as

r = a cosh ρ sin θ, R = a sinh ρ cos θ, (3.25)

with r ≥ 0, 0 ≤ θ ≤ π/2. This leads to

(2ar sinhχ)2 = (2ar coshχ)2 − (2ar)2

= (R2 + r2 + a2)2 − (2ar)2

= a4
[

(sinh2 ρ cos2 θ + cosh2 ρ sin2 θ + 1)2 − 4 cosh2 ρ sin2 θ
]

= a4(cosh2 ρ− sin2 θ)2.

where in the second step the definition (3.18) has been exploited. Then, working in the NS5-brane
decoupling limit, we drop the one in the harmonic function Z5(~x) and we end up with:

Z5(~x) =
n5

a2(cosh2 ρ− sin2 θ)
Λn5

(χ, φ), Λn5
(χ, φ) =

sinh(n5χ)

cosh(n5χ)− cos(n5φ)
, (3.26)

ds⊥
2 = Z5(~x)dx

idxi

= Z5(~x)(dr
2 + dR2 + r2dφ2 +R2dψ2)

= Z5(~x) a
2(cosh2 ρ− sin2 θ)

[

dρ2 + dθ2 +
tanh2 ρdφ2 + tan2 θdψ2

1 + tan2 θ tanh2 ρ

]

= n5Λn5
(dρ2 + dθ2) + a2Z5

(

sin2 θ cosh2 ρ dφ2 + cos2 θ sinh2 ρ dψ2
)

.

. (3.27)
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In the case in which the NS5-branes are smeared on the circle, i.e. n5 → +∞,

Λn5
(χ, φ) =

sinh(n5χ)

cosh(n5χ)− cos(n5φ)
≈ en5χ

en5χ
= 1

and the transverse metric gets

ds⊥
2 = n5(dρ

2 + dθ2) +
n5

(cosh2 ρ− sin2 θ)

(

sin2 θ cosh2 ρ dφ2 + cos2 θ sinh2 ρ dψ2
)

. (3.28)

3.2.2 The gauged WZW model

The metric for a continuous distribution of branes on a circle can be alternatively calculated making
use of the Wess-Zumino-Witten model. The target space of the model is the 10+2-dimensional
group manifold

(

SL(2,R)× SU(2)
)

×
(

Rt × S1
ỹ × T

4
)

. (3.29)

The last three factors refer to the worldvolume of the NS5-branes: the five space dimensions are
wrapped on circles. For later purposes, one of them, ỹ, is separately highlighted.
Let us focus on the first two factors

G = SL(2,R)× SU(2) ∼= SU(1, 1)× SU(2).

These describe the transverse space. However, they form a 6-dimensional manifold: in order to
recover the 4-dimensional transverse space and its metric (3.28), we are required to identify the
points on a 2-dimensional manifold subset of G, employing an extension of the WZW theory: the
gauged Wess-Zumino-Witten model.

Let us package the elements of G as G = diag(g′, g) ∈ G. Using (3.2), (3.7) and (3.11) then the
action of the WZW model (3.9) for the target space G is given by

SWZW =
k

8π

∫

S2

d2z Tr[G−1∂µGG−1∂µG]−
ik

12π

∫

B
d3y εαβγTr[G−1∂αGG−1∂βGG−1∂γG], (3.30)

where k is the quantized level of the model. The elements of both factors of the target space can
be expressed via the Euler angle parametrization:

g′ = ei
σ3
2
Φ̃Le

σ1
2
Sei

σ3
2
Φ̃R , g = ei

σ3
2
ΦLei

σ1
2
Ωei

σ3
2
ΦR . (3.31)

Moreover, G is diagonal, thus we can treat the two group factors separately. Let us focus on SU(2)
and calculate the expression of (3.30) in the Euler angle parametrization. We have to multiplicate
two or three factors of the form

g−1∂µg = e−i
σ3
2
ΦRe−i

σ1
2
Ωe−i

σ3
2
ΦL

[

i
σ3
2
∂µΦLe

i
σ3
2
ΦLei

σ1
2
Ωei

σ3
2
ΦR + ei

σ3
2
ΦLi

σ1
2
∂µΩe

i
σ1
2
Ωei

σ3
2
ΦR+

+ ei
σ3
2
ΦLei

σ1
2
Ωi
σ3
2
∂µΦRe

i
σ3
2
ΦR

]

and compute the traces. Most of these vanish, except those of the kind:

Tr
[

e−i
σ3
2
ΦRe−i

σ1
2
Ωe−i

σ3
2
ΦLi

σ3
2
∂µΦLe

i
σ3
2
ΦLei

σ1
2
Ωei

σ3
2
ΦRe−i

σ3
2
ΦLe−i

σ1
2
Ωe−i

σ3
2
ΦRi

σ3
2
∂µΦLe

i
σ3
2
ΦLei

σ1
2
Ωei

σ3
2
ΦR

]

=

= −1

4
Tr[I2] ∂

µΦL∂µΦL = −1

2
∂µΦL∂µΦL;

Tr
[

e−i
σ3
2
ΦRe−i

σ1
2
Ωe−i

σ3
2
ΦLi

σ3
2
∂µΦLe

i
σ3
2
ΦLei

σ1
2
Ωei

σ3
2
ΦRe−i

σ3
2
ΦRe−i

σ1
2
Ωe−i

σ3
2
ΦLei

σ3
2
ΦLei

σ1
2
Ωi
σ3
2
∂µΦRe

i
σ3
2
ΦR

]

=

= −1

4
Tr[e−i

σ1
2
Ωσ3e

i
σ1
2
Ωσ3] ∂

µΦL∂µΦR =

= −1

4
Tr

[(

cos
(Ω

2

)

I2 − i sin
(Ω

2

)

σ1

)

σ3

(

cos
(Ω

2

)

I2 + i sin
(Ω

2

)

σ1

)

σ3

]

∂µΦL∂µΦR =

= −1

4
Tr

[

cos2
(Ω

2
)I2 − sin2

(Ω

2

)

I2

]

∂µΦL∂µΦR = −1

2
cosΩ ∂µΦL∂µΦR;
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Tr
[

e−i
σ3
2
ΦRe−i

σ1
2
Ωe−i

σ3
2
ΦLi

σ3
2
∂αΦLe

i
σ3
2
ΦLei

σ1
2
Ωei

σ3
2
ΦRe−i

σ3
2
ΦRe−i

σ1
2
Ωe−i

σ3
2
ΦLei

σ3
2
ΦLi

σ1
2
∂βΩLe

i
σ1
2
Ωei

σ3
2
ΦR×

× e−i
σ3
2
ΦRe−i

σ1
2
Ωe−i

σ3
2
ΦLei

σ3
2
ΦLei

σ1
2
Ωi
σ3
2
∂γΦRe

i
σ3
2
ΦR

]

=

= −1

8
Tr[e−i

σ1
2
Ωσ2e

i
σ1
2
Ωσ3] ∂

αΦL∂
βΩ∂γΦR =

= −1

8
Tr

[(

cos
(Ω

2

)

I− i sin
(Ω

2

)

σ1

)

σ3

(

cos
(Ω

2

)

I+ i sin
(Ω

2

)

σ1

)

σ3

]

∂αΦL∂
βΩ∂γΦR =

= −1

8
Tr

[

2 cos
(Ω

2
) sin

(Ω

2

)

I

]

∂αΦL∂
βΩ∂γΦR = −1

4
sinΩ ∂αΦL∂

βΩ∂γΦR.

As a consequence, for the SU(2) factor we get that

k

8π

∫

S2

d2z Tr[g−1∂µgg−1∂µg] =
k

8π

∫

S2

d2z
[

−1

2
∂µΦL∂µΦL−

1

2
∂µΩ∂µΩ−

1

2
∂µΦR∂µΦR−cosΩ ∂µΦL∂µΦR

]

and

− ik

12π

∫

B
d3y εαβγTr[g

−1∂αgg−1∂βgg−1∂γg] =
6ik

12π

1

4

∫

B
d3y εαβγ sinΩ ∂αΦL∂

βΩ∂γΦR =

=
ik

8π

∫

B
d3y εαβγ∂

γ(cosΩ ∂αΦL∂
βΦR) =

=
ik

8π

∫

S2

d2z εαβ∂
αΦL∂

βΦR cosΩ.

where in the last line we have exploited the Stokes’ theorem. Summing the two contributions
up and expressing the full result in the coordinates (z, z̄) on the Riemann sphere (remembering
gzz̄ = 2 = gz̄z, gzz = 0 = gz̄z̄ and εzz̄ =

i
2), we get

SWZW [g] =
k

8π

∫

S2

d2z
[

−1

2
∂µΦL∂µΦL − 1

2
∂µΩ∂µΩ− 1

2
∂µΦR∂µΦR − cosΩ

(

∂µΦL∂µΦR − iεαβ∂
αΦL∂

βΦR
)]

= − k

4π

∫

S2

d2z
[

∂ΦL∂̄ΦL + ∂Ω∂̄Ω+ ∂ΦR∂̄ΦR + 2 cosΩ∂̄ΦL∂ΦR].

(3.32)

We choose to change the parametrization in (3.31) in the following way:

g′ = ei(τ+σ)
σ3
2 eρσ1ei(τ−σ)

σ3
2 , g = ei(ψ+φ)

σ3
2 eiθσ1ei(ψ−φ)

σ3
2 . (3.33)

Accordingly,
ΦL = ψ + φ, Ω = 2θ, ΦR = ψ − φ

and then

SWZW [g] = − k

4π

∫

S2

d2z
[

(∂ψ + ∂φ)(∂̄ψ + ∂̄φ) + 4∂θ∂̄θ + (∂ψ − ∂φ)(∂̄ψ − ∂̄φ)+

+ 2 cos(2θ)(∂̄ψ + ∂̄φ)(∂ψ − ∂φ) =

= − k

4π

∫

S2

d2z
[

4∂θ∂̄θ + 2(1− cos(2θ))∂φ∂̄φ+ 2(1 + cos(2θ))∂ψ∂̄ψ

− 2 cos(2θ)(∂φ∂̄ψ − ∂ψ∂̄φ)
]

=

= −k
π

∫

S2

d2z
[

(∂θ∂̄θ + sin2 θ∂φ∂̄φ+ cos2 θ∂ψ∂̄ψ)− cos2 θ(∂φ∂̄ψ − ∂ψ∂̄φ)
]

,

(3.34)

where we have neglected a constant contribution in the last term which can be identified as the
component of a 2-form potential.
The same procedure for the SU(1, 1) factor leads to the full WZW action

SWZW = SWZW [g′]− SWZW [g] =

=
k

π

∫

S2

d2z
[

(∂ρ∂̄ρ+ sinh2 ρ ∂σ∂̄σ − cosh2 ρ ∂τ ∂̄τ)− cosh2 ρ(∂τ ∂̄σ − ∂σ∂̄τ)+

+ (∂θ∂̄θ + sin2 θ ∂φ∂̄φ+ cos2 θ ∂ψ∂̄ψ)− cos2 θ(∂φ∂̄ψ − ∂ψ∂̄φ)
]]

,

(3.35)
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where the sign between the contributions of the two group factors relies on the requirement of one
timelike (τ) and five spacelike directions.

Let us notice that the action (3.35) is invariant under the symmetries associated to four Killing
vectors: ∂τ , ∂σ, ∂ψ and ∂φ. We can consider the combinations

ξ1 =
(

∂τ − ∂φ
)

+
(

∂σ − ∂ψ
)

, ξ2 =
(

∂τ − ∂φ
)

−
(

∂σ − ∂ψ
)

,

which are Killing vectors as well. These generate the subgroup U(1)L ×U(1)R of the target space
and when identifying the points sitting along these directions, we really obtain a four-dimensional
transverse space. In practice, we identify all points on G linked by the transformation

(

g, g′
)

→
(

e
i
2
λσ3ge

i
2
ξσ3 , e−

i
2
λσ3g′e

i
2
ξσ3

)

. (3.36)

Due to the gauging of the Lie group, we can define two U(1)-gauge fields, denoted as A and Ā,
whose gauge transformation is

A → A+ ∂ξ Ā → Ā+ ∂̄λ. (3.37)

These couple to the conserved currents

Jsl = −ikTr[T3∂gg−1] = k
(

cosh2 ρ ∂τ − sinh2 ρ ∂σ
)

,

J̄sl = −ikTr[T3g−1∂̄g] = k
(

cosh2 ρ ∂̄τ + sinh2 ρ ∂σ
)

,

Jsu = −ikTr[T3∂g′g′−1
] = k(cos2 θ ∂ψ + sin2 θ ∂φ),

J̄su = −ikTr[T3g′−1
∂̄g′] = k

(

cos2 θ ∂̄ψ − sin2 θ ∂̄φ
)

,

(3.38)

defined according to (3.12). In all definitions, T3 = σ3/2, which is the generator of both subgroups
U(1)L and U(1)R in (3.36). The currents (3.38) are calculated exploiting the very analogous
reasoning that led to (3.32). Finally, the gauge action reads

Sgauge =
1

π

∫

S2

d2z JµAµ =
1

π

∫

S2

d2z
[

A(J̄sl − J̄su) + Ā(Jsl + Jsu) +B(A, Ā)
]

, (3.39)

where the ”-” sign for J̄su is due to the different sign between the two groups, in the exponent
for the U(1)L transformation in (3.36). The term B(A, Ā) is added to ensure the actual gauge
invariance.
The total action of the gauged WZW model is then

Stot = SWZW + Sgauge, (3.40)

where

Sgauge = Sgauge[g
′] + Sgauge[g] =

=
k

π

∫

S2

d2z
[

A
(

cosh2 ρ ∂̄τ + sinh2 ρ ∂̄σ
)

+
(

cosh2 ρ ∂τ + sinh2 ρ ∂σ
)

Ā − cosh 2ρ

2
AĀ+

−A
(

cos2 θ ∂̄ψ − sin2 θ ∂̄φ
)

+
(

cos2 θ ∂ψ + sin2 θ ∂φ
)

Ā − cos 2θ

2
AĀ

]

.

(3.41)

In order to show this action is honestly gauge invariant, we choose to impose λ = α+β, ξ = α−β,
with α = α(z, z̄) and β = β(z, z̄). Accordingly, the gauge transformations of the Euler angles of
the parametrization (3.33) and of the gauge fields become

ψ → ψ − β, φ→ φ− α, τ → τ + α, σ → σ + β,

A → A+ ∂(α− β) Ā → Ā+ ∂(α+ β)
(3.42)
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and we can calculate the variation of the total action under this transformation, for each subgroup.
For this proof, we employ the second expression of the WZW action given in (3.34) and not the
last one which was used to write (3.35). Thus

δStot[g] = −δSWZW [g] + δSgauge[g] =

=
k

π

∫

S2

d2z
[

sin2 θ (−∂α∂̄φ− ∂̄α∂φ+ ∂α∂̄α) + cos2 θ (−∂β∂̄ψ − ∂ψ∂̄β + ∂β∂̄β)+

− 1

2
(cos2 θ − sin2 θ)(−∂φ∂̄β − ∂α∂̄ψ + ∂α∂̄β + ∂β∂̄φ+ ∂ψ∂̄α− ∂β∂̄α)+

−A(− cos2 θ∂̄β + sin2 θ∂̄α)− (cos2 θ(∂̄ψ − ∂̄β)− sin2 θ(∂̄φ− ∂̄α))(∂α− ∂β)+

− cos2 θ ∂βĀ − ∂α sin2 θĀ+ (∂̄α+ ∂̄β)(cos2 θ(∂ψ − ∂β) + sin2 θ(∂φ− ∂α))+

− 1

2
(cos2 θ − sin2 θ)(∂α− ∂β)Ā − 1

2
(cos2 θ − sin2 θ)A(∂̄α+ ∂̄β)+

− 1

2
(cos2 θ − sin2 θ)(∂α− ∂β)(∂̄α+ ∂̄β)

]

=

=
k

π

∫

S2

d2z
[sin2 θ

2

(

−∂α∂̄α− ∂φ∂̄β − ∂β∂̄φ+ ∂φ∂̄β − ∂α∂̄ψ + ∂ψ∂̄α− ∂β∂̄β
)

+

+
cos2 θ

2

(

−∂α∂̄α− ∂β∂̄β − ∂α∂̄ψ + ∂ψ∂̄α− ∂β∂̄φ+ ∂φ∂̄β
)

+
A
2

(

∂̄β − ∂̄α
)

+
Ā
2

(

−∂β − ∂α
)

]

=

=
k

2π

∫

S2

d2z
[

(

−∂α∂̄α− ∂β∂̄β − ∂α∂̄ψ + ∂ψ∂̄α− ∂β∂̄φ+ ∂φ∂̄β
)

+A
(

∂̄β − ∂̄α
)

+ Ā
(

−∂β − ∂α
)

]

=

=
k

2π

∫

S2

d2z
[

−∂α∂̄α− ∂β∂̄β +A
(

∂̄β − ∂̄α
)

+ Ā
(

−∂β − ∂α
)

]

,

where in the last step four terms have netted out to zero since they can be pairwise identified after
integrating by parts.
Following the same steps for the other subgroup we obtain

δStot[g′] = δSWZW [g′] + δSgauge[g′] =

=
k

π

∫

S2

d2z
[

sinh2 ρ (∂β∂̄σ + ∂σ∂̄β + ∂β∂̄β)− cosh2 ρ (∂α∂̄τ + ∂τ ∂̄α+ ∂α∂̄α)+

− 1

2
(cosh2 ρ+ sinh2 ρ)(∂τ ∂̄β + ∂α∂̄β + ∂α∂̄σ − ∂β∂̄τ − ∂σ∂̄α− ∂β∂̄α)+

+A(cosh2 ρ ∂̄α+ sinh2 ρ ∂̄β) + (cosh2 ρ (∂̄τ + ∂̄α) + sinh2 ρ(∂̄σ + ∂̄β))(∂α− ∂β)+

+ (cosh2 ρ ∂α− sinh2 ρ ∂β)Ā+ (∂̄α+ ∂̄β)(cosh2 ρ(∂τ + ∂α)− sinh2 ρ(∂σ + ∂β))+

− 1

2
(cosh2 ρ+ sinh2 ρ)(∂α− ∂β)Ā − 1

2
(cosh2 ρ+ sinh2 ρ)A(∂̄α+ ∂̄β)+

− 1

2
(cosh2 ρ+ sinh2 ρ)(∂α− ∂β)(∂̄α+ ∂̄β)

]

=

=
k

π

∫

S2

d2z
[sinh2 ρ

2

(

∂β∂̄τ − ∂τ ∂̄β + ∂α∂̄σ − ∂σ∂̄α− ∂α∂̄α− ∂β∂̄β
)

+

− cosh2 ρ

2

(

∂β∂̄τ − ∂τ ∂̄β + ∂α∂̄σ − ∂σ∂̄α− ∂α∂̄α− ∂β∂̄β
)

+
A
2

(

∂̄α− ∂̄β
)

+
Ā
2

(

∂β + ∂α
)

]

=

=
k

2π

∫

S2

d2z
[

∂α∂̄α+ ∂β∂̄β +A
(

∂̄α− ∂̄β
)

+ Ā
(

∂β + ∂α
)

]

,

which exactly cancels with δStot[g]: (3.40) is thus an actual gauge invariant action.

Finally, we can integrate the gauge fields out, performing the standard top-down procedure of
effective field theories. The equations of motion of each component of the gauge field can be found
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varying (3.41) with respect to the other component:

A =
2

cosh 2ρ+ cos 2θ

[

cosh2 ρ ∂τ − sinh2 ρ ∂σ + cos2 θ ∂ψ + sin2 θ ∂φ
]

,

Ā =
2

cosh 2ρ+ cos 2θ

[

cosh2 ρ ∂̄τ + sinh2 ρ ∂̄σ − cos2 θ ∂̄ψ + sin2 θ ∂̄φ
]

.

(3.43)

Substituting these expressions in (3.41) and working in the gauge such that τ = 0 = σ we get the
effective action

S =
n5
π

∫

S2

d2z
[

∂ρ∂̄ρ+ ∂θ∂̄θ + sin2 θ ∂φ∂̄φ+ cos2 θ ∂ψ∂̄ψ − cos2 θ
(

∂φ∂̄ψ − ∂ψ∂̄φ
)

+

+
2

cosh 2ρ+ cos 2θ

(

cos2 θ ∂ψ + sin2 θ ∂φ)(sin2 θ ∂̄φ− cos2 θ ∂̄ψ
)]

,

where we have fixed the level of the model k = n5. Since

cosh 2ρ = 2 cosh2 ρ− 1, cos 2θ = 1− 2 sin2 θ,

the action eventally turns out to be

S =
n5
π

∫

S2

d2z
[

∂ρ∂̄ρ+ ∂θ∂̄θ + sin2 θ
(

1 +
sin2 θ

cosh2 ρ− sin2 θ

)

∂φ∂̄φ+ cos2 θ(1− cos2 θ

cosh2 ρ− sin2 θ

)

∂ψ∂̄ψ

+ cos2 θ
(

1 +
sin2 θ

cosh2 ρ− sin2 θ

)(

∂ψ∂̄φ− ∂φ∂̄ψ
)]

=

=
n5
π

∫

S2

d2z
[

∂ρ∂̄ρ+ ∂θ∂̄θ +
n5
Σ

(

sin2 θ cosh2 ρ ∂φ∂̄φ+ cos2 θ sinh2 ρ ∂ψ∂̄ψ
)

+
n5 cos

2 θ cosh2 ρ

Σ

(

∂ψ∂̄φ− ∂φ∂̄ψ
)]

,

(3.44)

where we have defined
Σ = n5(cosh

2 ρ− sin2 θ). (3.45)

The metric appearing in (3.44) exactly coincides with (3.28), which was got in the supergravity
framework.

3.3 The round supertubes

In order to get a two-charge black hole, we should add another charge to the system of NS5-branes
on a circle. This is accomplished once a momentum is added along the compact direction ỹ. This
momentum arises together with an angular momentum, after a boost-like transformation. These
systems of rotating branes are called round supertubes. This way, we are dealing with a NS5-P
black hole, which under a T-duality along ỹ gets a NS5-NS1 black hole, exactly the perturbation
profile giving the particular microstate subject of attention in 2.4.1.

3.3.1 Supergravity solutions

Let us call Rỹ the radius of the compactification of ỹ. We can implement twisted boundary
conditions along this compact direction, for the transverse dimensions:

~xm(v + 2πRỹ) = ~xσ(m)(v).

Here σ represents a cyclic permutation of the centres where branes sit, labelled withm: it consists of
a shift by k positions around the circle in (x1, x2) as ỹ completes a turn around S1

ỹ . Then, in short,
the branes wrap around the (ỹ, φ) torus. In order that a brane reaches its starting mth place after



66 3. A worldsheet theory for microstates

a certain number of full laps of ỹ (i.e. completes a path along both circles of the torus), a shift of
lcm(k, n5) positions is needed. In the meanwhile, the branes have described lcm(k, n5)/k rotations
around S1

ỹ . This is exactly the number of times that a single brane crosses a surface at fixed ỹ.
The number of independent strands making up the supertube is then n5k/lcm(n5, k) = gcd(n5, k).
Trivially, when k and n5 are coprime, there is a single strand wrapping n5 times around the circle.
Figure 3.1 shows an example of supertube.

Figure 3.1: A supertube generated by n5 = 6 NS5-branes in the case k = 9. The number of independent
strands is gcd(n5, k) = 3.

The profile of supertubes in the transverse space is described by

x1m + ix2m = aeiφm , φm =
k

n5

t+ ỹ

Rỹ
+

2πm

n5
(3.46)

and of course x3m = 0 = x4m. The supergravity solution depends on the harmonic function Z5

defined in (3.16), with the difference that the expression for the angle φ is that given in (3.46).
The upshot is

Z5 = 1 +
n25
a2Σ

Λn5
, Zp =

k2

n5RỹΣ
Λn5

.

Here Σ is given by (3.45) and the correct expression for Λn5
is (3.24) with the substitution φ →

φ + k(t + ỹ)/(Rỹn5). We work in the smeared limit n5 → +∞, such that anyway, Λn5
≈ 1. The

supergravity solution turns out to be

ds2 = −dudv + n5

(

dρ2 + dθ2
)

+
n25
Σ

[

sin2 θ cosh2 ρdφ2 + cos2 θ sinh2 ρdψ2+

+
2k

n5Rỹ
sin2 θdvdφ+

k2

n25Rỹ
dv2

]

+ dzadz
a,

e2Φ =
n25g

2
s

a2Σ
, Bψφ =

n25 cos
2 θ cosh2 ρ

Σ
, Bψv =

n5k cos
2 θ

RỹΣ
,

(3.47)

which is nothing but the metric (2.30) in the duality frame where the system is NS5-P.

3.3.2 WZW description

The solution (3.47) can be obtained availing of the gauged WZW model. Let us work in the case
such that ỹ is opened up and is not compact. It suffices to extend the gauge action (3.41) with a
second term representing the spiralling of the fivebranes around the ỹ−φ cylinder. The (t, ỹ) part
of the action then reads

Stỹ =
1

2π

∫

d2z
[

−
(

∂u∂̄v + ∂v∂̄u
)

+ 2α
(

A∂̄v + Ā∂v
)

]

. (3.48)
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Let us notice that in the coordinates defined in (3.17) and (3.25), the circle where branes sit is
identified imposing ρ = 0, θ = π/2. In this case the action (3.41) is nomore quadratic, but linear in
the gauge fields, which can be now regarded as Lagrange multipliers defining a constraint. When
also adding (3.48) to the gauge action, this constraint reads

n5dφ+ αdv = 0, (3.49)

which is exactly what we need to ensure a shift of branes in the φ coordinate.
As well as in the static configuration of branes, we can integrate out the gauge fields, to get

S =
1

2π

∫

d2z
[

−∂u∂̄v − ∂v∂̄u
]

+
n5
π

∫

d2z
[

∂ρ∂̄ρ+ ∂θ∂̄θ+

+
n5
Σ

(

sin2 θ cosh2 ρ ∂φ∂̄φ+ cos2 θ sinh2 ρ ∂ψ∂̄ψ
)

+
n5 cos

2 θ cosh2 ρ

Σ

(

∂ψ∂̄φ− ∂φ∂̄ψ)+

+
α

Σ

(

sin2 θ(∂φ∂̄v + ∂v∂̄φ) + cos2 θ(∂ψ∂̄v − ∂v∂̄ψ)
)

+
α2

n5Σ
∂v∂̄v

]

.

(3.50)

The parameter Σ coincides with the coefficient of the quadratic term in AĀ and is again

Σ = n5(cosh
2 ρ− sin2 θ).

When ỹ is again compact, we can choose

α =
k

Rỹ
(3.51)

and the dynamics (3.46) is obtained. The action (3.50), then, gives rise to a metric and a Kalb-
Ramond field coinciding with (3.47).

The Wess-Zumino-Witten model also allows to recover the supergravity solution arising from (2.31)
after a S-duality is performed and the NS5-NS1 system is then obtained. To carry out this task,
we just need a T-duality along ỹ, so that Rỹ → Ry = 1/Rỹ and the NS5-P supertube becomes a
NS5-NS1 supertube. In this second instance, the (t, y) action reads

Sty =
1

2π

∫

d2z
[

−
(

∂u∂̄v + ∂v∂̄u
)

+ 2α
(

A∂̄u+ Ā∂v
)

− 2α2AĀ
]

. (3.52)

The coefficient of the quadratic piece in the gauge fields now changes and gets

Σ = α2 + n5
(

cosh2 ρ− sin2 θ
)

.

We can again integrate out the gauge fields, finally obtaining the action

S =
1

2π

∫

d2z
[

−∂u∂̄v − ∂v∂̄u
]

+
n5
π

∫

d2z
[

∂ρ∂̄ρ+ ∂θ∂̄θ+

+
cos2 θ(α2 + n5 cosh

2 ρ)

Σ

(

∂ψ∂̄φ− ∂φ∂̄ψ
)

+
sin2 θ

Σ
(α2 + n5 cosh

2 ρ)∂φ∂̄φ+

+
cos2 θ

Σ
(α2 + n5 sinh

2 ρ)∂ψ∂̄ψ +
α cos2 θ

Σ

(

∂ψ∂̄u− ∂v∂̄ψ
)

+
α sin2 θ

Σ
(∂φ∂̄u+ ∂v∂̄φ) +

α2

n5Σ
∂v∂̄u

]

,

(3.53)

which can be identified with the NS5-branes decoupling limit of the NS5-NS1 supergravity solution.

The three instances of gauge actions (3.41), (3.41) + (3.48) and (3.41) + (3.52) can be regarded
as three different specific realizations of the most general U(1)L × U(1)R gauge theory obtained
making use of the currents

U(1)L : I = l1J
sl + l2J

su + l3∂t+ l4∂y,

U(1)R : Ī = r1J̄
sl + r2J̄

su + r3∂̄t+ r4∂̄y.
(3.54)
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Moreover, we impose that these currents are null, i. e.

n5
2

(

−l21 + l22
)

− 1

2
l23 +

1

2
l24 = 0,

n5
2

(

−r21 + r22
)

− 1

2
r23 +

1

2
r24 = 0. (3.55)

as we explain in (4.52).

The gauge action to be added to the Wess-Zumino-Witten one is indeed

Sgauge =
1

π

∫

S2

d2z [AĪ + ĀI − ΣAĀ], (3.56)

with

Σ =
1

2

[

n5
(

l1r1 cosh 2ρ− l2r2 cos 2θ
)

+ l3r3 − l4r4
]

.

Different choices of the parameters ri and li satisfying the null condition (3.55), lead to different
configurations of supertubes, as illustrated in [30–32]. For example, the static NS5-branes are
obtained for

l1 = l2 = 1, l3 = l4 = 0, r1 = −r2 = 1, r3 = −r4 = 0, (3.57)

the rounding branes in the NS5-P duality frame correspond to

l1 = l2 = 1, l3 = −l4 = − k

Rỹ
, r1 = −r2 = 1, r3 = −r4 = − k

Rỹ
, (3.58)

whereas the rounding branes in the NS5-NS1 duality frame, arise from

l1 = l2 = 1, l3 = l4 = −kRy, r1 = −r2 = 1, r3 = −r4 = −kRy, (3.59)

where Ry =
1
Rỹ

is the radius of the compact circle after the T-duality (α′ = 1). The most general

choice consistent with (3.55), allows to recover the already known supergravity solutions for the
three-charge black holes, whose horizon is macroscopic and not of the order of the string length.



Chapter 4

The spectrum of the worldsheet
theory

Wess-Zumino-Witten models are conformal field theories also at the quantum level and we can
determine their spectrum of states. The purpose of this Chapter is to determine the vertex oper-
ators giving rise to the states in the worldsheet theory so far developed for the particular studied
microstate.

4.1 A quantum treatment of Wess-Zumino-Witten models

4.1.1 The current algebra

For the Wess-Zumino-Witten models, (3.12) defines the left and right-moving currents

J = JaT a = −k∂gg−1 J̄ = kg−1∂̄g. (4.1)

where T a, a = 1, ..., dim g, are the generators of the Lie algebra satisfying the algebra

[T a, T b] = ifabcT c. (4.2)

We see that, since k is dimensionless, J and J̄ have conformal weight (1, 0) and (0, 1).
Let us study the algebra for the current components. The fields gL(z) and gR(z̄) appearing in the
local gauge transformations (3.13)

G(z)×G(z̄) : g(z, z̄) → gL(z)g(z, z̄)g
−1
R (z̄) (4.3)

are valued in the Lie group G. Therefore, at the infinitesimal level,

gL = 1 + waT a, gR(z̄) = 1 + w̄aT a,

with wa and w̄a respectively holomorphic and antiholomorphic and (4.3) is given by

g → g + δwg + δw̄g = g + wg − gw̄ = −k∂w + [w, J ]. (4.4)

Let us focus on the left-moving part:

δwJ = −k
[

∂(wg)g−1 − ∂gg−1(wg)g−1
]

= −k∂w + [w, J ],

which in components is equivalent to

δwJ
a = −k∂wa + ifabcwbJc.

69
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Moreover, the Ward identity (1.57) implies that

δwJ
a = −

∮

C0

dz

2πi
wb(z)J

b(z)Ja(0).

Comparing these last two expressions, we end up with the OPE

Ja(z)Jb(w) ∼ kηab

(z − w)2
+
ifabcJ

c

(z − w)
, (4.5)

which is the current algebra we were looking for. Here, ηab is the Killing invariant tensor of the
Lie algebra. The antiholomorphic counterpart is instead given by

J̄a(z̄)J̄b(w̄) ∼ kηab

(z̄ − w̄)2
+
ifabcJ

c

(z̄ − w̄)
. (4.6)

4.1.2 The Sugawara construction

For any quantum conformal field theory, the stress-energy tensor satisfies the OPE (1.62)

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
, (4.7)

with c central charge. We want to prove that a stress-energy tensor satisfying the OPE (4.7)
can be also defined for Wess-Zumino-Witten models and then we would like to determine the
corresponding central charge. The procedure we follow is known as the Sugawara construction.
The classical stress-energy tensor for a WZW model is given by

T (z) =
1

2k
ηabJ

a(z)Jb(z),

where as usual, k is the level of the model. In the quantum theory, the normal ordering is required
in order to avoid the short-distance singularities. Then the most general form of the stress energy
tensor reads

T (z) = γηab : J
a(z)Jb(z) :=

γ

2πi

∮

Cz

dx

x− z
Ja(x)Ja(z), (4.8)

with the integration only selecting the constant part and removing singularities and γ s a generic
prefactor we are going to determine. (4.8) is also known as the Sugawara stress-energy tensor. The
first OPE to compute is

Ja(z)T (w) =
γ

2πi

∮

Cw

dx

x− w
Ja(z) : Jb(x)Jb(w) :=

∼ γ

2πi

∮

Cw

dx

x− w

[( kηab

(z − x)2
+
ifabcJ

c(x)

z − x

)

Jb(w) + Jb(x)
( kδab
(z − w)2

+
ifabc
z − w

)]

=

=
γ

2πi

∮

Cw

dx

x− w

[kηabJb(w)

(z − x)2
+

kηabJb
(z − w)2

+

+
ifabc
z − x

( if cbdJ
d(w)

x− w
+
(

JcJb
)

(w)
)

+
ifabc
z − w

( if bcdJ
d(w)

x− w
+
(

JbJc
)

(w)
)]

=

= γ
(2kηabJb(w)

(w − z)2
− fabcf

cb
dJ

d(w)

(w − z)2

)

,

where in the last step, the antisymmetry of the structure constants has been exploited to cancel the
fourth and the sixth terms. In group theory, the quadratic Casimir of the adjoint representation
is the double of the so-called dual Coxeter number h∨ Then,

fabcf
bc
d = 2h∨ηad
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and accordingly,

T (z)Ja(w) = Ja(w)T (z) ∼ 2γ(k + h∨)
Ja(z)

(w − z)2
= 2γ(k + h∨)

( Ja(w)

(z − w)2
+
∂Ja(w)

z − w

)

. (4.9)

As already stressed, the holomorphic current has conformal weight (1, 0) and this does not change
at the quantum level. Then, we have to impose that

γ =
1

2(k + h∨)
(4.10)

and we finally obtain

T (z)Ja(w) ∼ Ja(w)

(z − w)2
+
∂Ja(w)

z − w
.

Finally, in order to verify that the theory is indeed conformal, we calculate

T (z)T (w) =
1

4πi(k + h∨)

∮

Cw

dx

x− w

(

T (z) : Ja(x)Ja(w) :
)

∼

∼ 1

4πi(k + h∨)

∮

Cw

dx

x− w

[( Ja(x)

(z − x)2
+
∂Ja(x)

z − x

)

Ja(w) + Ja(x)
( Ja(w)

(z − w)2
+
∂Ja(w)

z − w

)]

∼

∼ (3− 2 + 0 + 0)kdimg

2(k + h∨)
+

2T (w)

(z − w)2
+
∂T (w)

z − w
,

which really coincides with (4.7) as long as the central charge is identified as

c =
k dimg

k + h∨
. (4.11)

This also prove that WZW models are conformal field theories at the quantum level as well.

4.1.3 The affine algebra and representations

Focussing on the left moving sector, the holomorphicity of currents allows their Laurent expansion
around the origin:

Ja(z) =
∑

n∈Z

Janz
−n−1 (4.12)

The expansion modes satisfy the following algebraic relation:

[Jam, J
b
n] =

1

(2πi)2

(

∮

C0

dz

∮

C0

dw −
∮

C0

dw

∮

C0

dz
)

zmwnJa(z)Jb(w) =

=
1

(2πi)2

∮

C0

dw

∮

Cw

dz zmwn
( kηab

(z − w)2
+
ifabcJ

c

(z − w)

)

=

=
1

2πi

∮

C0

dw
(

kmηabwm+n−1 + ifabcJ
c(w)wm+n

)

=

= kmηabδm+n,0 + ifabcJ
c
m+n.

(4.13)

In the first step, the radial ordering (i.e. time ordering on the cylinder) is understood and we have
used the same trick of contour deformation introduced in (1.72). This relation defines the affine
Kac-Moody algebra associated to the Lie algebra g and usually denoted as gk or ĝk(k represents
the level). The Kac-Moody algebra is not an actual symmetry of the theory, due to the additional
central term compared to the standard symmetry algebra. Only the zero-modes are such that

[Ja0 , J
b
0 ] = ifabcJ

c
0 .
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The right-moving modes make up an analogous algebra to (4.13). Since [Jan , J̄
b
m] = 0, the two

algebras are independent. As a final remark, since the stress-energy tensor is holomorphic, we can
expand it in a Laurent series, whose modes can be expressed as

Lm = γ
∑

n∈Z

ηab : J
a
nJ

b
m−n := γηab

(

∑

n≤−1

JanJ
b
m−n +

∑

n≥0

Jam−nJ
b
n

)

. (4.14)

These satisfy the Virasoro algebra (1.72)

[Lm, Ln] =
c

12
m(m2 − 1)δm+n,0 + (m− n)Lm+n, (4.15)

with the central charge exactly coinciding with (4.11). Moreover, the Virasoro generators are
linked to the modes of the Ja currents by the algebraic relation

[Lm, J
a
n ] = −nJam+n. (4.16)

One sometimes refers to the affine Kac-Moody algebra as spectrum generating algebra, since it
plays a central role in the representations of the states of the WZW model. Indeed, for compact
Lie groups (e. g. SU(2)), we can define a primary or highest weight state |j〉, such that

Jan |j〉 = 0 for n > 0, (4.17)

exactly as in the case of the representations of the Virasoro algebra. All the states of the Hilbert
space of the theory are obtained once we act with the modes Ja−n, n > 0 and so we get the Verma
module

{Ja1−n1
. . . J

ap
−np

|j〉}, (4.18)

corresponding to the highest weight state |j〉. In this expression, p = dimg is the finite dimension
of the Lie algebra. Primary states transform under a representation of the Ja0 , which as already
stated satisfy the standard Lie algebra and are then generators: primary states then transform
under some representation of the Lie group. As a last remark, let us calculate the weight of the
highest weight state, acting with L0 on it:

L0 |j〉 =
1

2(k + h∨)

(

∑

n≤−1

JanJ
a
−n +

∑

n≥0

Ja−nJ
a
n

)

|j〉 =

=
1

2(k + h∨)
Ja0 J

a
0 |j〉 =

=
C(j)

2(k + h∨)
|j〉

(4.19)

where C(j) denotes the quadratic Casimir of the zero-mode representation. Moreover, due to
(4.16), each time we act with some Jan on some state, its weight increases by n units and then, a
general state in the Verma module will have weight given by

L0

(

Ja1−n1
. . . J

ap
−np

|j〉
)

=
( C(j)
2(k + h∨)

+

p
∑

m=1

nm

)

|j〉 .

4.2 The group manifold for the fuzzball microstate

The Lie group where the dynamics of the microstate geometry of Chapter 3 takes place, is given
by the coset G/H, with1

G =
(

SL(2,R)× SU(2)
)

×
(

Rt × S1
ỹ × T

4
)

, H = U(1)L × U(1)R. (4.20)

1Let us notice the change of notation compared to (3.29), where G represents just the first two group manifolds.
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In this Section, we focus on G: the gauging procedure is explained and carried out in the following.
The conserved currents Jasl and J

a
su (together with their right-moving counterparts), generate the

affine algebras for the first two factors. These are exactly the generalization of (3.38) (except for
some harmless pre-factor), for any component:2

Ja = n5Tr
[

T aDgg−1
]

, J̄a = n5Tr
[(

T a
)∗
Dgg−1

]

, (4.21)

where the generators can alternatively correspond to the algebra su(2) or sl(2,R). Furthermore,
the level has been fixed to be the level of the model, i. e. the number n5 of the NS5-branes along
the circle. We choose to work in a supersymmetric framework, hence the standard derivatives
have been replaced by the superderivatives defined in (1.115). Then for each current Ja, one
supersymmetric partner ψa is defined.
In this Section we collect the current algebras and the representations of each of the factors of the
Lie group G in (4.20), in order that in the following, we are able to deal with the spectrum of our
worldsheet model.

4.2.1 SU(2)

The structure constants of this group are given by fabc = εabc. We choose to work in the basis
{J± = J1 ± iJ2, J3} and then the current algebra (4.5) becomes

Jasu(z)J
b
su(w) ∼

n5

2 δ
ab

(z − w)2
+
iεabcJ

c
su(w)

z − w
. (4.22)

The OPE of fermions mimics (1.137) (except one pre-factor we are going to discuss):

ψasu(z)ψ
b
su(w) ∼

n5

2 δ
ab

z − w
. (4.23)

In these expressions, we notice the appearance of one factor of 1/2 in front of the level, as usual
when choosing this new basis. Moreover, iε+−3 = 2 and the Cartan-Killing form in this basis is
such that δ+− = 2 and δ33 = 1. The signature is (+ + +) since we lack time-like directions along
this manifold. In supersymmetric models, the components Ja are usually written in terms of two
independent contributions:

Jasu = jasu + ĵasu, ĵasu = − i

n5
εabcψ

b
suψ

c
su.

We can exploit the OPE (4.23) to calculate

ĵasu(z)ĵ
b
su(w) ∼

δab

(z − w)2
+
iεabcĵ

c
su(w)

z − w
, jasu(z)j

b
su(w) ∼

n5−2
2 δab

(z − w)2
+
iεabcj

c
su(w)

z − w
.

The latter arises simply so that the total current Jasu satisfies (4.22) (jsu and ĵsu are indeed
independent and have vanishing OPE). We see then, that the currents jasu generate a bosonic
Wess-Zumino-Witten model of level n5 − 2, whereas the model generated by the currents ĵasu has
level 2. In the supersymmetric framework, the stress-energy tensor can be written as in (1.120).
For the Lie group SU(2), the bosonic part of the super stress-energy tensor

T su =
1

n5

[

δabj
a
suj

b
su − δabψ

a
su∂ψ

b
su

]

(4.24)

arises from (4.8) and (1.138), whereas the supercurrent reads

Gsu =
2

n5

[

δabψ
a
suj

b
su −

i

3n5
εabcψ

aψbψc
]

. (4.25)

2Indeed, let us notice that the definition (3.38) only involved the third component of the current.
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Let us state that for SU(2), dimg = 3 and the dual Coxeter number is h∨ = 1. Moreover, the three
added fermions are free, each with central charge +1/2. Therefore, from (4.11), if k = n5 − 2, the
central charge associated with the matter fields in the SU(2) factor is

csu =
3(n5 − 2)

n5
+

3

2
. (4.26)

Eventually, let us write the Kac-Moody algebra for the SU(2) Wess-Zumino-Witten model of level
n5 − 2 in this basis:

[j3su,m, j
3
su,n] =

n5 − 2

2
mδm+n,0,

[j3su,m, j
±
su,n] = ±j±su,n+m,

[j+su,m, j
−
su,n] = (n5 − 2)mδm+n,0 + 2j3su,m+n.

(4.27)

The highest weight states for the bosonic theory SU(2)n5−2 have to fulfil (4.17) and to sit in a
unitary irreducible representation of jasu,0. This kind of representations are labelled by the quantum
numbers j′, positive and half-integer, and m′ = −j′,−j′ + 1, . . . , j′. In particular,

jasu,n |j′,m′〉 = 0 for n > 0,

j3su,0 |j′,m′〉 = m′ |j′,m′〉 .
(4.28)

Due to the algebraic rules (4.27), the operators j±su,0 are such that they respectively raise or lower
the quantum number m′ by one unit. The particular chosen normalization is given by

j±su,0 |j′,m′〉 = (±m′ + j′ + 1) |j′,m′ ± 1〉 . (4.29)

Eventually, the states |j′, j′〉 and |j′,−j′〉 are such that

j+su,0 |j′, j′〉 = 0, j−su,0 |j′,−j′〉 = 0. (4.30)

Let us notice that these two states do not fulfil the condition (4.29). Moreover, on grounds of
(4.19), we can infer that the weight of all these highest weight states is j(j + 1)/n5. This is also
the weight of the primary vertex operator giving rise to this state. Let us name Φsuj′,m′,m̄′(w, w̄)
the vertex operators giving rise to these states: in this writing, we are also adding the label m̄′

just to recall that the same procedure can be performed for the antiholomorphic part. Then the
requirements (4.28) and (4.29) can be rephrased in terms of the OPEs

j3su(z)Φ
su
j′,m′,m̄′(w, w̄) ∼

m′Φsuj′,m′,m̄′(w, w̄)

z − w
, (4.31)

j±suΦ
su
j′,m′,m̄′(w, w̄) ∼

(±m′ + j′ + 1)Φsuj′,m′±1,m̄′(w, w̄)

z − w
, (4.32)

T su(z)Φsuj′,m′,m̄′(w, w̄) ∼ j′(j′ + 1)

n5

Φsuj′,m′,m̄′

(z − w)2
+
∂Φsuj′,m′,m̄′

z − w
. (4.33)

4.2.2 SL(2, R)

The procedure that led to the collection of properties of the previous Subsection can be also
followed to infer the analogous relations for the factor SL(2,C) that we are going to illustrate.
Nonetheless, some minor differences emerge and they are going to be stressed in the following.
The structure constants are fabc = εabc. Working again in the basis {J± = J1 ± iJ2, J3}, the
current algebra (4.5) and the OPE (1.137) give

Jasl(z)J
b
sl(w) ∼

n5

2 η
ab

(z − w)2
+
iεabcJ

c
sl(w)

z − w
, ψasl(z)ψ

b
sl(w) ∼

n5

2 η
ab

z − w
. (4.34)
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In this basis, iε+−3 = 2 and the Cartan-Killing form is such that η+− = 2 and η33 = −1. The
different signature compared to SU(2) is due to the presence of one time-like direction along the
manifold. The usual decomposition of supersymmetric frameworks is again performed:

Jasl = jasl + ĵasl, ĵasl = − i

n5
εabcψ

b
slψ

c
sl.

The fermionic OPE (4.34) allows to compute

ĵasl(z)ĵ
b
sl(w) ∼ − ηab

(z − w)2
+
iεabcĵ

c
sl(w)

z − w
, jasl(z)j

b
sl(w) ∼

n5+2
2 δab

(z − w)2
+
iεabcj

c
sl(w)

z − w
.

Then, in this instance, the Wess-Zumino-Witten model generated by the currents ĵasu has level −2
and consequently the bosonic model generated by jasl has level n5 + 2. The bosonic stress-energy
tensor and the supercurrent are given by

T sl =
1

n5

[

ηabj
a
slj

b
sl − δabψ

a
sl∂ψ

b
sl

]

, Gsl =
2

n5

[

ηabψ
a
slj

b
sl −

i

3n5
εabcψ

a
slψ

b
slψ

c
sl

]

. (4.35)

Due to the different level, the central charge is now

csl =
3(n5 + 2)

n5
+

3

2
. (4.36)

In the chosen basis, the affine algebra for the bosonic SU(2) Wess-Zumino-Witten model of level
n5 + 2

[j3sl,m, j
3
sl,n] = −n5 + 2

2
mδm+n,0,

[j3sl,m, j
±
sl,n] = ±j±sl,n+m,

[j+sl,m, j
−
sl,n] = (n5 + 2)mδm+n,0 − 2j3sl,m+n.

(4.37)

In full generality, since the Cartan-Killing metric is not positive definite, states with negative
energy might appear in the spectrum of SL(2,R) as well as states with negative norms. However,
in some representations, the eigenvalues of L0 are all bounded from below: this is the case of the
positive energy representations, which follow the description in the Subsection 4.1.3. Indeed, some
states are annihilated by all j3,±n (n ≥ 1) and are then identified as the highest weight states. All
the other states of the Hilbert space arise acting on these highest weight states with the current
modes j3,±−n . The primary states are in an irreducible unitary representation of the zero modes
jasl,0. We know two discrete and two continuous representations of this kind (besides the trivial
one). We adopt the discrete ones:

❼ Principal discrete representations (lowest weight): the Hilbert space of this kind of represen-
tations is

D+
j = {|j,m〉 : m = j, j + 1, j + 2, . . . },

such that
j−sl,0 |j, j〉 = 0, j3sl,0 |j,m〉 = m |j,m〉 .

Unitarity requires that j is real and positive. For representations of SL(2,R), j has to be a
half integer and such that 0 ≤ j ≤ n5/2.

❼ Principal discrete representations (highest weight): the Hilbert space of this kind of repre-
sentations is

D−
j = {|j,m〉 : m = −j,−j − 1,−j − 2, . . . },

such that
j+sl,0 |j, j〉 = 0, j3sl,0 |j,m〉 = m |j,m〉 .

Unitarity requires that j is real and positive. For representations of SL(2,R), j has to be a
half integer and again, 0 ≤ j ≤ n5/2.
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The Casimir of all the unitary representations of SL(2,R) is −j(j − 1). Then, the expression
(4.19), suggests that the weight of all these primary states (and then of the corresponding vertex
operators) is −j(j − 1)/n5. Let us name Φslj,m,m̄(w, w̄) the vertex operators giving rise to these
states: then the properties listed up to now can be expressed in terms of the OPEs

j3sl(z)Φ
sl
j,m,m̄(w, w̄) ∼

mΦslj,m,m̄(w, w̄)

z − w
, (4.38)

j±slΦ
sl
j,m,m̄(w, w̄) ∼

(m∓ (j − 1))Φslj,m±1,m̄(w, w̄)

z − w
, (4.39)

T sl(z)Φslj,m,m̄(w, w̄) ∼ −j(j − 1)

n5

Φslj,m,m̄
(z − w)2

+
∂Φslj,m,m̄
z − w

. (4.40)

4.2.3 Rt × S
1
ỹ × T

4

The coordinates for this last factor are (t, ỹ, zi) with i = 1, . . . , 4 since zi are the coordinates of
the torus, can be grouped into the unique set Y i, with i = 0, . . . , 5, such that

Y 0 = t, Y 1 = ỹ Y i = zi ≡ ~Y , for i = 2, . . . , 5.

The corresponding fermionic coordinates are named λi and we can employ the corresponding OPEs
of flat space for free fields, i. e. (1.66) and (1.137) (we are imposing α′ = 1 and the pre-factor of
the action (1.136) to be g = 1/π):

∂Y i(z)∂Y j(w) ∼ 1

2

ηij

(z − w)2
, λi(z)λj(w) ∼ 1

2

ηij

z − w
, (4.41)

with ηij the Minkowski metric in Cartesian coordinates. The bosonic stress energy tensor coincides
with the sum of (1.67) and (1.138):

TR = ∂Y i∂Yi − λi∂λi, (4.42)

whereas the supercurrent is

GR = iλi∂Yi. (4.43)

Since wee are dealing with six bosonic and six fermionic free fields, the central charge will be

cR = 6× 1 + 6× 1

2
= 9. (4.44)

Finally, the vertex operator for the lowest energy state is : eikiY
i
:, as we can read from (1.79). We

can compute the OPE

i∂Y i(z) : eikjY
j(w) : ∼ ki

2(z − w)
: eikjY

j(w) :, (4.45)

from which we derive

TR(z)eikiY
i(w) ∼ k2

2

: eikjY
j(w) :

(z − w)2
+ iki

: ∂Y ieikjY
j(w):

z − w
. (4.46)



4.3 The need for the ghosts and the coset 77

4.3 The need for the ghosts and the coset

A consistent quantization of strings demands the cancellation of the Weyl anomaly, which in turn,
requires the vanishing of the total central charge of the studied system. The central charges of the
matter sector were found in the previous Section (cf. equations (4.26), (4.36) and (4.44)). Their
sum is

cm = csl + csu + cR = 18, (4.47)

then we need something with negative central charge: the further fields to add are the ghosts.
Nonetheless, the worldsheet reparametrization ghosts are not sufficient: their central charge is
indeed, cg = −15. The second set of ghosts arises from the gauging of some directions of the
spacetime. As in the reparametrization case, we have two ghost systems: the anticommuting fields
(ĉ, b̂) and the commuting (γ̂, β̂). The parameters λ have to be respectively λ = 1 and λ = 1/2. The
properties of each of the four ghost systems (anticommuting and commuting reparametrization and
gauge ghosts) arise from the discussion in the Subsection 1.4.4. In particular the central charge of
the two systems of gauging ghosts can be calculated through (1.143), giving

cg,gauge = cĉ,b̂ + cγ̂,β̂ = −2− 1 = −3.

The gauging of the target group of the Wess-Zumino-Witten model is then necessary in order to
erase the Weyl anomaly: this is nothing but the requirement that the dimension of the ambient
spacetime has to be critical. As a final remark, let us state the conformal weights of the vertex
operator for the Bose systems. For the reparametrization bosonic ghosts (β, γ), we have λ = 3/2
and then, by (1.153) and the definition of the parameter Q within (1.143), the conformal weight is

h =
1

2
εq(q +Q) = −1

2
q(q + 2), (4.48)

whereas for the gauging commuting ghosts (β̂, γ̂), since λ = 1/2, we obtain

ĥ =
1

2
εq(q +Q) = −1

2
q2. (4.49)

The target space for the worldsheet description of the fuzzball microstates is not the whole G given
by (4.20), but the coset G/H, with H subgroup of G such that

H = U(1)L × U(1)R. (4.50)

In a more geometrical perspective, we are obtaining a ten-dimensional space, identifying all the
points along two directions of the manifold G, which in the current description of the Lie group,
are determined by the currents (both in the bosonic and in the fermionic sectors)

U(1)L : I = l1J
3
sl + l2J

3
su + il3∂t+ il4∂y,

U(1)R : Ī = r1J̄
3
sl + r2J̄

3
su + ir3∂̄t+ ir4∂̄y,

U(1)L : Ψ = l1ψ
3
sl + l2ψ

3
su + l3λ

t + l4λ
y,

U(1)R : Ψ̄ = r1ψ̄
3
sl + r2ψ̄

3
su + r3λ̄

t + r4λ̄
y.

(4.51)

Let us notice a change of notation compared to the notation of 4.2.3. Here and till the end of
the Chapter, y is still compact. Moreover, a conventional i appears in front of ∂t, ∂y, ∂̄t and
∂̄y, compared to (3.54). This also changes some signs in (4.52) compared to (3.55). The objects
appearing in these currents, with all their properties, are defined in Section 4.2. These currents
generate the gauge transformations U(1)L×U(1)R. We impose that these currents have to be null
with respect to the scalar product generated for each sector by the corresponding Cartan-Killing
metric:

〈I, I〉 = l21 〈J3
sl, J

3
sl〉+ l22 〈J3

su, J
3
su〉+ l23 〈∂t, ∂t〉+ l24 〈∂y, ∂y〉 =

n5
2

(

−l21 + l22
)

+
1

2
l23 −

1

2
l24 = 0,

〈Ī, Ī〉 = r21 〈J̄3
sl, J̄

3
sl〉+ r22 〈J̄3

su, J̄
3
su〉+ l23 〈∂̄t, ∂̄t〉+ l24 〈∂̄y, ∂̄y〉 =

n5
2

(

−r21 + r22
)

+
1

2
r23 −

1

2
r24 = 0.

(4.52)
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This way the left and right gaugings are independent and the gauge anomalies disappear.

The action of the null gauged Wess-Zumino-Witten model with the coset G/H as a target space,
is then given by (3.40):

S[g,A, Ā] = S0[g] + Sgauge[g,A, Ā], (4.53)

such that the first summand coincides with the full Wess-Zumino-Witten action (3.9)3 for the
factors SL(2,R) and SU(2) of G (in the Euler parametrization), whereas we have the trivial
superstring theory on R

t × S1 × T
4. The second term in (4.53) is instead (3.56):

Sgauge =
1

π

∫

S2

d2z [AĪ + ĀI − ΣAĀ]. (4.54)

In the coordinates of the Euler parametrization (3.33), we have that

Σ =
1

2

[

n5
(

l1r1 cosh 2ρ− l2r2 cos 2θ
)

+ l3r3 − l4r4
]

. (4.55)

Since we deal with a supersymmetric system, the integration coordinate z has been promoted to
the supercoordinate z = (z, θ). The same should be understood in the Wess-Zumino-Witten term,
together with the condition that all derivatives should become superderivatives. The symbols A
and Ā denote the gauge fields for U(1)L and U(1)R respectively.

4.4 Path integral analysis

The gauged Wess-Zumino-Witten model (4.53) can be quantized with the help of the path integral.
The fields in the game are g ∈ G and the two gauge fields A and Ā, therefore the partition function
reads

Z =

∫

[dg][dA][dĀ] exp[−n5S(g,A,A)]. (4.56)

The gauge fields can be parametrized as

A = hDh−1, Ā = h̄D̄h̄−1, (4.57)

with h ∈ U(1)L, and h̄ ∈ U(1)R. At this point, one formula comes in handy:

S(g,A, Ā) = S0(h
−1gh̄)− S0(h

−1h̄). (4.58)

It is easier to prove the latter by working with the general gauged Wess-Zumino-Witten action

I(g,A) = I0(g) +
1

π

∫

d2zTr
[

−AD̄gg−1 + Āg−1Dg + g−1AgĀ − AĀ],

= I0(g) +
1

π

∫

d2zTr
[

−hDh−1D̄gg−1 + h̄D̄h̄−1g−1Dg + g−1hDh−1gh̄D̄h̄−1 − hDh−1h̄D̄h̄−1
]

,

(4.59)

with I0(g) representing the WZW action (3.9) and where in the second step the parametrization
(4.57) has been used. Making use of the Polyakov-Wiegmann identity

I0(gh) = I0(g) + I0(h)−
1

π

∫

d2zTr[g−1DgD̄hh−1], (4.60)

we obtain that

I(h−1h̄) = I(h−1) + I(h̄) +
1

π

∫

d2zTr
[

hDh−1h̄D̄h̄−1
]

,

I(h−1gh̄) = I(h−1) + I(g) + I(h̄)− 1

π

∫

d2zTr
[

g−1DgD̄h̄h̄−1 + hDh−1D̄gg−1 + hDh−1gD̄h̄h̄−1g−1
]

3Notice the change of notation: from here on out, S′ is the action of the ungauged WZW model and no more just
the action of the principal chiral model (3.2)
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Subtracting the latter from the former, we find (4.59), thus proving (4.58). We insert this identity
into the partition function and express it in terms of the fields h and h̄. This leads to

Z =

∫

[dg][dh][dh̄] detD det D̄ exp[−n5S0(h
−1gh̄)] exp[n5S0(h

−1h̄)].

The two determinants are the Jacobian of the transformation and as usual, can be written in terms
of a ghost action:

Z =

∫

[dg][dh][dh̄][dB̂][dĈ] exp[−n5S0(h
−1gh̄)] exp[n5S0(h

−1h̄)] exp[−Sgh(B̂, Ĉ)].

The fields B̂ and Ĉ are nothing but a compact notation for the gauging ghosts that were introduced
in the previous Section:

Ĉ = ĉ+ θγ̂, B̂ = β̂ + θb̂. (4.61)

We write the action for both the left-moving and the right-moving sectors, using the extension to
the supersymmetric case of (1.139):

Ŝgh(B̂, Ĉ) =
1

π

∫

d2z
[

B̂D̄Ĉ − ¯̂
BD

¯̂
C
]

. (4.62)

We can now fix the gauge by choosing a transformation such that h is the identity. Moreover,
since we are dealing with a null subgroup, S0(h̄) = 0. We add the action for the reparametrization
ghosts packaged in the manner of (4.61) and we end up with the partition function

Z =

∫

[dg][dB][dC][dB̂][dĈ] exp[−n5S0(g)− Sgh(B,C)− Ŝgh(B̂, Ĉ)]. (4.63)

4.5 The spectrum

4.5.1 BRST constraints on the vertex operators

The BRST prescription allows to identify the physical states and then the spectrum of the Wess-
Zumino-Witten model. For each of the two kinds of redundancies to fix, we have to introduce one
BRST charge. For the reparametrization invariance, this is given exactly by (1.148):

Q = Q0 +Q1 +Q2, (4.64)

with the three pieces given by (let us recall that G denotes the supercurrent according to the
conventions of 4.2):

Q0 =

∮

C0

dz

2πi

(

cTX,ψ,β,γ + c(∂c)b
)

, Q1 = −
∮

C0

dz

2πi
γG, Q3 = −

∮

C0

dz

2πi

1

4
bγ2. (4.65)

For the gauging, instead, the BRST charge is

QI =

∮

C0

dz

2πi
[ĉI + γ̂Ψ]. (4.66)

This is a nilpotent charge. Indeed,

Q2
I =

1

2
{QI , QI} =

1

2

∮

Cw

dz

2πi

[

ĉ(z)ĉ(w)I(z)I(w) + γ̂(z)γ̂(w)Ψ(z)ψ(w)
]

.

Moreover, exploiting the OPEs collected in Section 4.2 we can compute

I(z)I(w) ∼
n5

2 (−l21 + l22) +
1
2 l

2
3 − 1

2 l
2
4

(z − w)2
,
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which vanishes due to the condition of null gauging subgroup (4.52). The same also holds for the
OPE Ψ(z)Ψ(w).
To identify the physical states we work at the level of vertex operators V(z, z̄). In order that they
give rise to physical states, they must belong to the cohomology class of both the BRST charges
we have defined, i. e. they are BRST invariant

[Q,V(z, z̄)] = 0, [QI ,V(z, z̄)] = 0, (4.67)

but they have not to be BRST exact. The general vertex operator of the theory in the Neveu-
Schwarz sector can be written as

Vq = e−qφP (ψ, j, . . . )P̄ (ψ̄, j̄, . . . )Φslj,m,m̄Φ
su
j′,m′,m̄′eiEteiPyei

~k·~Y (4.68)

In particular, P (ψ, j, . . . ) denotes a generic polynomial depending on the fields of the theory,
Φslj,m,m̄ and Φsuj′,m′,m̄′ are bosonic primary operators of the string theory on SL(2,R) and SU(2).

The exponentials are the vertex operators of the bosonic string theory on R × S1 × T
4 and e−qφ

represents the vertex operator creating the q-vacuum state for reparametrization ghosts from the
SL(2,C) invariant vacuum. We choose to work in the q = −1 picture.
The simplest state to study is the tachyon, which does not include any excitation of fields, hence
it is just the vertex operator

V−1 = e−φΦslj,m,m̄Φ
su
j′,m′,m̄′eiEteiPyei

~k·~Y . (4.69)

The conditions (4.67) have to be satisfied by the physical tachyon vertex operator. The first
condition is equivalent to require that the conformal weight of V−1 is 1. From the expression
(4.48), we deduce that the conformal weight of the vertex operator for reparametrization ghosts,
when q = −1, is 1/2. We read the conformal weights of the other bosonic primaries from the OPEs
(4.33), (4.40) and (4.46). Summing all contributions we end up with

−j(j − 1)

n5
+
j′(j′ + 1)

n5
− 1

2
E2 +

1

2
P 2
y +

1

2
|~k|2 + 1

2
= 1. (4.70)

This is the mass-shell condition for tachyons. Indeed, when there are no excitations on SL(2,R)
and SU(2) we end up with a mass-square −1/2, which really coincides with the mass of the tachyon
(in α′ = 1 units). The second condition in (4.67), instead, imposes that

l1m+ l2m
′ +

l3
2
E +

l4
2
Py = 0,

r1m̄− r2m̄
′ +

r3
2
E +

r4
2
Py = 0,

(4.71)

where we have used the OPEs (4.31), (4.38) and (4.45). Let us notice that in principle, we should
have two different momentum eigenvalues on the left and the right-moving sectors. Indeed, since
the direction y is compact, the momentum is quantized along that. In general, its eigenvalues
would be

Py,L/Ry =
ny
R

± wyRy,

where ny is the number of momentum units, wy the number of winding modes along this compact
direction and Ry is the radius of S1

y . However, we impose wy = 0 and then the two momentum
eigenvalues coincide.

In order to identify the constraints arising when fermions are present, let us write the vertex
operator as

V−1 = e−φV, V = Vsl + Vsu + VR. (4.72)

The studied states involve the appearance of a twelve-dimensional polarization tensor ξµ in front of
the vertex operators, together with the fermionic excitations. The components of the polarization
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tensor are split among the different factors of the spacetime in the following manner (we just focus
on the holomorphic side):

Vsl = ξslb ψ
b
slΦ

sl
j,m−b,m̄Φ

su
j′,m′,m̄′eiEteiPyei

~k·~Y ,

Vsu = ξslb ψ
b
suΦ

sl
j,m,m̄Φ

su
j′,m′−b,m̄′eiEteiPyei

~k·~Y ,

VR = ξiλ
iΦslj,mm̄Φ

su
j,m′,m̄′e

iEteiPyei
~k·~Y

(4.73)

In particular, b = +,−, 3 represents the components of the fermions, whilst the index i = 0, . . . 5
refers to the directions of the six-dimensional Rt × S1

ỹ × T
4. In the following we focus only on the

holomorphic part and then the right moving indices will not be written.
For instance, we can impose that excitations only take place on AdS3 and compute the physical
constraints. Let us focus then, just on

Vsl =
(

ξsl+ψ
+
slΦ

sl
j,m−1 + ξsl−ψ

−
slΦ

sl
j,m+1 + ξsl3 ψ

3
slΦ

sl
j,m

)

Φsuj′,m′eiEteiPyei
~k·~Y (4.74)

and impose the conditions (4.67). Due to the invariance of the vertex operators under the BRST
charge for reparametrizations we obtain two pieces, respectively arising from the summand Q0 and
Q1. The former is again the mass-shell condition

−j(j − 1)

n5
+
j′(j′ + 1)

n5
− 1

2
E2 +

1

2
P 2
y +

1

2
|~k|2 + 1

2
=

1

2
. (4.75)

The further 1/2 (compared to (4.70)) in the left-hand side represents the weight of the fermion.
We can notice that when the excitations on SL(2,R) and SU(2) disappear, we really have the
vanishing mass for the first excited state. For the BRST invariance under Q1, we must compute
the OPEs of (4.74) with the supercurrent (4.35) of the SL(2,R) factor

Gsl =
2

n5

[

ηabψ
a
slj

b
sl −

i

3n5
εabcψ

a
slψ

b
slψ

c
sl

]

. (4.76)

However, each term of the vertex operator already contains one fermion field. Therefore, when
computing the OPEs of the vertex operator with the second addend in the supercurrent, we would
get some first-order pole, not important in our computation. The relevant part of the supercurrent
is then, just

G̃sl =
2

n5
ηabψ

a
slj

b
sl =

2

n5

[1

2

(

ψ+
slj

−
sl + ψ−

slj
+
sl

)

− ψ3
slj

3
sl

]

.

We focus on the second-order pole of the OPE Ĝsl(z)Vsl(w) (for shortness we avoid writing the

spectator operators Φsuj′,m′eiEteiPyei
~k·~Y ):

2

n5

[1

2

(

ψ+
slj

−
sl + ψ−

slj
+
sl

)

−ψ3
slj

3
sl

]

(z)
[

(

ξsl+ψ
+
slΦ

sl
j,m−1 + ξsl−ψ

−
slΦ

sl
j,m+1 + ξsl3 ψ

3
slΦ

sl
j,m

)

]

(w) ∼

∼ ξsl+(m− j) + ξsl−(m+ j) +mξsl3
(z − w)2

,

(4.77)

where we have used (4.34), (4.38) and (4.39). Imposing that its coefficient vanishes we end up
with the constraint

ξsl+(m− j) + ξsl−(m+ j) +mξsl3 = 0. (4.78)

We can now impose the invariance under the reparametrization BRST charge for the other two
vertex operators in (4.73). This allows to get the constraints for the other components of the
polarization tensor:

ξsu+ (j′ +m′) + ξsu− (j′ −m′) +m′ξsu3 = 0, (4.79)

+
1

4

[

−ξtE + ξyP + ~k̇~ξ
]

= 0, (4.80)
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which hold respectively when we have excitations only on SU(2) or on SL(2,R). The general
vertex operator, however, contains excitations on any factor of the Lie group where the dynamics
takes place: in this case, just the sum of the three contributions in (4.78), (4.79), (4.80) and not
each single term, is required to vanish.
For the BRST invariance under the gauging, we have to look at the OPE of the BRST charge QI

given in (4.66). It is made up of two terms, which yield two linearly independent OPEs (the two
terms involve different gauging ghosts). We only need, then, look at the first-order pole of the
OPEs of the currents I and Ψ with the full vertex operator V , sum of the three contributions in
(4.73):

I(z)(Vsl + Vsu + VR)(w) ∼
l1m+ l2m

′ + l3E/2 + l4Py/2

z − w
(Vsl + Vsu + VR)(w)

Ψ(z)(Vsl + Vsu + VR)(w) ∼
−n5

2 l1ξ
sl
3 + n5

2 l2ξ
su
3 − 1

2 l3ξt +
1
2 l4ξy

z − w
Φslj,mΦ

su
j′,m′e−iEteiPyei

~k·~Y .

(4.81)

For the computation of the first OPE we have just used (4.34), (4.22) and (4.41). For the compu-
tation of the first OPE, besides (4.45), we have considered that V sl and V su are such that

J3
sl,0V

sl = mV sl, J3
su,0V

su = mV su. (4.82)

This can be calculated explicitly by splitting J3 = j3 + ĵ3. For instance, we find that:

j3sl(ξ
sl
+ψ

+
slΦ

sl
j,m−1) = (m− 1)ξsl+ψ

+
slΦ

sl
j,m−1,

where we have again neglected the spectator operators and

ĵ3sl(ξ
sl
+ψ

+
slΦ

sl
j,m−1) = Res

[

− 2i

n5
ε3+−(ψ

+
slψ

−
sl)(z)(ξ

sl
+ψ

+
slΦ

sl
j,m−1)(w)

]

= (ξsl+ψ
+
slΦ

sl
j,m−1),

where we have used the fact that −iε3−− = 1 and (4.34). Accordingly, we impose the two residues
in (4.81) to be zero:

l1m+ l2m
′ + l3E + l4P = 0,

−n5
2
l1ξ

sl
3 +

n5
2
l2ξ

su
3 − 1

2
l3ξt +

1

2
l4ξy = 0.

(4.83)

4.5.2 The solutions for the constraints

The first two vertex operators in (4.73) are representations of the tensor product 1⊗ j of the three
fermion vertex operators and the bosonic primaries Φslj,m or Φsuj′,m′ respectively. As suggested by
(4.82), these vertex operators can be seen as representations of the current algebras of SL(2,R)
and SU(2) with m as eigenvalue of the third component. For instance, for SL(2,R), they satisfy

J3
sl,0V

sl
h,m = mV sl

h,m,

J±
sl,0V

sl
h,m = (m∓ (h− 1))V sl

h,m±1,
(4.84)

where besides m, the first quantum number h of the current algebra has been associated to the
vertex operator. The allowed values for h are j − 1, j, j + 1 and the Clebsch-Gordan coefficients
allow to express a representation V sl

h,m of this current algebra in terms of the elements of the tensor
product with quantum number m. If, for example, h = j − 1,

V sl
j−1,m = amψ

3
slΦ

sl
j,m + bmψ

+Φslh,m−1 + cmψ
−Φslh,m+1. (4.85)

Let us notice, comparing with (4.73), that the components of the polarization tensor are exactly
the Clebsch-Gordan coefficients am, bm, cm. The procedure to determine them is the same for each
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h and also for SU(2). We illustrate it for the vertex operator V sl
j−1,m. We apply J−

sl = j−sl + ĵ−sl to
both sides of (4.85):

J−
slV

sl
j−1,m = (m+ j − 2)V sl

j−1,m−1 = (m+ j − 2)
(

am−1ψ
3
slΦ

sl
j,m−1 + bm−1ψ

+
slΦ

sl
j,m−2 + cm−1ψ

−
slΦ

sl
j,m

)

,

J−
slV

sl
j−1,m = (am(m+ j − 1) + 2bm)ψ

3
slΦ

sl
j,m−1 + bm(m+ j − 2)ψ+

slΦ
sl
j,m−2 + (am + cm(m+ j))ψ−

slΦ
sl
j,m.

Furthermore, let us consider (4.85) for Vj−1,m−1. If we act on both sides with J+
sl = j+sl + ĵ+sl we

get that:

J+
slV

sl
j−1,m−1 = (m− j + 1)V sl

j−1,m = (m− j + 1)
(

amψ
3
slΦ

sl
j,m + bmψ

+
slΦ

sl
j,m−1 + cmψ

−
slΦ

sl
j,m+1

)

,

J+
slV

sl
j−1,m−1 = (am−1(m− j)− 2cm)ψ

3
slΦ

sl
j,m +

(

bm−1(m− j − 1)− am−1)ψ
+
slΦ

sl
j,m−1+

+ cm−1(m− j + 1)ψ−
slΦ

sl
j,m+1.

We can equate the corresponding coefficients of both the expressions for J−
slV

sl
j−1,m and perform

the same identification for J+
slV

sl
j−1,m−1: we find a system of six equations for the six unknown

quantities am, bm, cm, am−1, bm−1, cm−1. The found values can be inserted in (4.85), which up to
an overall rescaling reads

V sl
j−1,m = ψ3

slΦ
sl
j,m − 1

2
ψ+
slΦ

sl
j,m−1 −

1

2
ψ−
slΦ

sl
j,m+1. (4.86)

Once we have determined all the Clebsch-Gordan coefficients we end up with:

V sl
j+1,m = (j +m)(j −m)ψ3

slΦ
sl
j,m +

1

2
(j +m)(j +m− 1)ψ+

slΦ
sl
j,m−1 +

1

2
(j −m− 1)(j −m)ψ−

slΦ
sl
j,m+1,

V sl
j,m = mψ3

slΦ
sl
j,m − 1

2
(j − 1 +m)ψ+

slΦ
sl
j,m−1 +

1

2
(j − 1−m)ψ−

slΦ
sl
j,m+1,

V sl
j−1,m = ψ3

slΦ
sl
j,m − 1

2
ψ+
slΦ

sl
j,m−1 −

1

2
ψ−
slΦ

sl
j,m+1,

V su
j′+1,m′ = = ψ3

suΦ
su
j′,m′ − 1

2
ψ+
suΦ

su
j′,m′−1 +

1

2
ψ−
suΦ

su
j′,m′+1,

V su
j′,m′ = m′ψ3

suΦ
su
j′,m′ +

1

2
(j′ + 1−m′)ψ+

suΦ
su
j′,m′−1 +

1

2
(j′ + 1 +m′)ψ−

slΦ
sl
j′,m′+1,

V su
j′−1,m′ = (j′ −m′)(j′ +m′)ψ3

suΦ
su
j′,m′ +

1

2
(j′ −m′)(j′ −m′ + 1)ψ+

suΦ
su
j′,m′−1+

− 1

2
(j′ +m′)(j′ +m′ + 1)ψ−

slΦ
sl
j′,m′+1.

(4.87)

Let us focus on the instance in which there are no excitations both on Rt × S1
y and on the torus.

Starting from the expansions above, we would like to identify the physical vertex operators. The
Clebsch-Gordan coefficients of V sl

j+1,m and V sl
j−1,m satisfy the constraint (4.78), as well as the

coefficients of V su
j′+1,m′ and V su

j′−1,m′ fulfil (4.79). As a consequence, these are physical vertex
operators when considered singularly, as long as the other constraints, i. e. (4.75) and (4.83),
are also fulfilled. The states arising only from V sl

j,m or V su
j′,m′ are not physical since they are

not consistent respectively with (4.78) and (4.79). Indeed, if we call εslb and εslb respectively the
Clebsch-Gordan coefficients of V sl

j,m or V su
j′,m′ , we obtain:

εsl+(m− j) + εsl−(m+ j) +mεsl3 = j(j − 1),

εsu+ (j′ +m′) + εsu− (j′ −m′) +m′εsu3 = j′(j′ + 1).
(4.88)

However, let us notice that the vertex operator Ṽ = V sl
j,m − V su

j′,m′ is a good candidate as a vertex
operator. As a matter of fact, when the further requirement

j = j′ + 1 (4.89)
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holds, the difference of the two constraints in (4.88) vanishes. This is a realization of the necessary
and sufficient condition for the invariance of aV sl + bV su under the BRST charge Q1: the linear
combination of (4.78) and (4.79) with the same coefficients a and b, has to vanish and not each
of the constraints singularly. In addition to this, we notice that requiring the validity of (4.75)
with excitations on AdS3 × S3 only, is equivalent to require (4.89): any other combination of the
vertex operators V sl

j,m and V su
j,m would have violated the mass shell condition. However, as explained

in [35], this vertex operator is not physical: it is BRST exact and then it does not belong to the
cohomology.
We can move, instead, to the case in which there are fermionic excitations on the R

t × S1
y sector.

We know Py = ny/Ry and then, due to the mass-shell condition for these massless excitations,
E = ny/Ry as well. In the following we impose Ry = 1. The vertex operators, then, read

V ±
ty =

(

λt ± λy
)

e−iny(t−y). (4.90)

We want to determine the corresponding physical vertex operators. The invariance under the
BRST charge Q1 amounts to calculate the OPE

GR(z)V ±
ty (w) ∼ − i

4(z − w)2
(E ± ny)e

−iny(t−y), (4.91)

where the supercurrent GR is given by (4.43) and the OPEs (4.41) have been used. Since E = ny,
we have that V +

ty cannot be BRST invariant. Nonetheless, the physical vertex operators will be
constructed defining

Ṽ sl = 2nyV
sl
j,m − j(j − 1)V +

ty , Ṽ su = 2nyV
su
j′,m′ − j′(j′ + 1)V +

ty . (4.92)

This way, when considering the total supercurrent G = Gsl +Gsu +GR, we get that

G(z)Ṽ sl(w) ∼ 2ny
[

εsl+(m− j) + εsl−(m+ j) +mεsl3
]

− 2nyj(j − 1)

(z − w)2
= 0,

where we have used (4.77), (4.88) and (4.91). Therefore, Ṽ sl and, for the analogous reason, Ṽ su

are invariant under the reparametrization BRST operator. Let us shift to the constraints arising
from the BRST gauging invariance. In particular, we would like to find combinations of the vertex
operators so far defined, such that

Ψ(z) · V (w) = 0. (4.93)

In this expression, Ψ is given by (4.51) and the dot in between is a short notation for the residue
of the OPE. Let us define

c1 = Ψ · V sl
j+1,m = −l1

n5
2
(j +m)(j −m), c2 = Ψ · V sl

j−1,m = −l1
n5
2
,

c3 = Ψ · V su
j′−1,m′ = l2

n5
2
(j′ +m′)(j′ −m′), c4 = Ψ · V su

j′+1,m′ = l2
n5
2
,

c5 = Ψ · Ṽ sl = −nyn5ml1 −
1

2
j(j − 1)(l3 − l4), c6 = Ψ · Ṽ su = nyn5m

′l2 −
1

2
j′(j′ + 1)(l3 − l4).

(4.94)

To calculate these residues we have made use of the algebra for the fermions of the three factors
and of the Clebsch-Gordan coefficients in (4.87). The physical vertex operators, BRST invariant
but not exact, are then given by

W sl
1 = V sl

j+1,m − c1
c5
Ṽ sl, W sl

2 = V sl
j−1,m − c2

c5
Ṽ sl,

W su
1 = V su

j′+1,m′ − c4
c6
Ṽ su, W su

2 = V su
j′−1,m′ − c3

c6
Ṽ su.

(4.95)

In particular, in the two-charge supertube case, the parameters li and ri are given by (3.58) or
(3.59) according to the duality frame. In this instance, then, the vertex operators are determined
by (4.95), with the cis calculated through (4.94) and imposing the condition (3.58) or (3.59).



Conclusions

The purpose of this thesis has been the study of a particular realization of the fuzzball microstates
in a full worldsheet theory. In order to accomplish this goal, we have analyzed the most helpful as-
pects of String Theory: conformal field theories, Polyakov path integral, BRST quantization both
for the bosonic and the supersymmetric strings. Furthermore, the non-linear sigma model has
been introduced, together with the effective actions for the different types of superstring theories.
The dualities have been illustrated in order to show the equivalence between all these theories.
After a discussion about the thermodynamic properties of black holes and some linked inconsisten-
cies, the area of the horizon has been calculated in some black holes solutions in supergravity: the
three-charge and four-charge BPS configurations. Through the Bekenstein-Hawking formula, then,
we have determined the corresponding entropy. For the three-charge black hole the same outcome
has been recovered with a suitable counting of the microstates producing the same macroscopic
state and then applying the Boltzmann equation: this is one of the major successes of String
Theory as a Quantum Gravity candidate. We have then, introduced the fuzzball microstates for
the two-charge black holes, which in this framework emit the Hawking radiation unitarily.
One particular realization of fuzzballs has been described through the gauged Wess-Zumino-Witten
model, an exactly solvable theory describing the dynamics of strings on a curved background. The
latter used in the studied instance is the coset G/H of two properly chosen Lie groups. We have
verified that the results coincide with the supergravity predictions, both in the case of one charge,
i. e. NS5-branes on a circle, and of two charges, i. e. supertubes of NS5-branes. In this instance,
however, the results have been obtained from the viewpoint of a worldsheet theory. The spec-
trum can be then constructed. We have outlined the fundamentals of the current algebra and
the Sugawara stress-energy tensor, which have been adapted to the three factors of the Lie group
G. We have performed the path-integral quantization of the worldsheet theory and then focussed
on the Neveu-Schwarz sector of the spectrum. We have written the constraints for the physical
vertex operators, arising from the reparametrization and gauge invariance of the theory and we
have eventually found solutions for them. One possible extension of this topic would deal with the
Ramond sector of the spectrum.

Compared to the supergravity approach, the worldsheet theory widens the knowledge of the fuzzball
microstates and opens up the way for further progress. In particular:

❼ it allows to study the dynamical properties of the fuzzballs, for instance the absorption and
the emission processes;

❼ it could be unavoidable in order to find typical microstates for three-charge black holes, which
still lack a supergravity description;

❼ using the vertex operators determined for the two-charge black holes, correlators can be
computed and compared with protected correlators in the dual D1-D5 conformal field theory.
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