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Preface

Don’t disturb my circles!

Archimedes

Topological data analysis (TDA) is a young field that has been rapidly grow-
ing over the last years and which blends algebraic topology, statistics and computer
science. It arises motivated by the fact that the topology of a space gives useful infor-
mation about it. In particular, when working with scientific data, information about
their internal structure may provide important properties about the phenomena that
it represents or its behaviour. And sometimes this information is topological. The
goal of topological data analysis is to provide well-founded mathematical, statistical
and algorithmic methods to infer the topological structure underlying the data.

The aims of this thesis are two. On the one hand, to introduce this field and
its mathematical tools, focusing on persistent homology and its representation by
persistence diagrams. On the other hand, the study of the latter using techniques
from optimal transport, proposing a vectorization based on transport maps. The
thesis is divided into 6 chapters as follows.

In chapter 1 we introduce topological data analysis and its relation with sim-
plicial complexes, which allow to turn data into geometric objects. The homotopy
equivalence between these complexes and the internal structure of the data is stud-
ied through the Nerve (1.2.1) and Reconstruction theorems (1.3.8). Here we will
follow basically [1], [2] and [3].

In chapter 2 we present the theory of persistent homology, the main tool of TDA.
To this aim we introduce persistence modules, a mathematical object designed to
carry topological information about a data set at many different scales simultane-
ously. This information can be compactly represented by persistence diagrams. We
will focus on the case of decomposable persistence modules.

In chapter 3 the definition of persistence diagram is extended to non-decomposable
modules, by taking a measure-theoretical point of view. The main goal is to intro-
duce persitence diagrams for the general case of q-tame modules. The main reference
for these last two chapters is [4].

In chapter 4 we focus on the study of persistence diagrams and their stability
properties. Notice that, since scientific data almost always depends on a probability
distribution, it is important to know the statistical behaviour of these methods. To
this end, distances between persistence diagrams are introduced. In particular, the
bottleneck distance and the p-th or Wasserstein distance. For this, we refer again
to [1] and [4]. Moreover, persistence diagrams can be seen as point measures. This
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let us present the metric space of persistence diagrams with the optimal transport
distance. We follow [5] and [6].

In chapter 5 we introduce a series of vectorizations for persistence diagrams,
which are necessary in order to perform linear tasks with them. In particular, linear
representations are studied [6]. These are easy to handle vectorizations for which,
using results of chapter 4, we can deduce continuity characterizations. Moreover,
they include usual TDA vectorizations as persistence surfaces, silhouettes and Betti
curves. Persistence landscapes [1] are also introduced. We finish by proposing a new
vectorization based on transport maps.

Finally, so as to exemplify the theory, computations of the notions introduced are
made. They are included, together with their representations, in a Python Jupyter
Notebook. We summarize it in chapter 6. The data set used was taken from GUDHI
TDA tutorial.

Furthermore, two appendixes are added for the sake of completeness. The first
is a reminder of the basics of simplicial complexes and simplicial homology. The
second one is a summary of the principal results on measure theory that are needed
through the text.

https://github.com/claraisl/Numerical_results_TDA/blob/main/Numerical%20computations%20on%20real%20data.ipynb
https://github.com/claraisl/Numerical_results_TDA/blob/main/Numerical%20computations%20on%20real%20data.ipynb
https://github.com/GUDHI/TDA-tutorial
https://github.com/GUDHI/TDA-tutorial
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Chapter 1

Introduction to topological data
analysis

The recent field of topological data analysis (TDA) has its roots in various works
in applied algebraic topology and computational geometry. The most important ones
are the works due to Edelsbrunnet et al. (2002) [7] and Zomorodian and Carlsson
(2005) [8]. TDA exploits the fact that topological information of a space provides
important properties, characteristics and invariants. Therefore, it may be used to
study scientific data sets in order to obtain information about their global structure.

In this chapter we provide an introduction to the mathematical methods used in
TDA to infer the topological information encoded in data. We will follow basically
[1], [2] and [3]. It should be pointed out that computational aspects are crucial in
TDA, and mentioned throughout the text. Indeed, robust and efficient algorithms
are implemented and available, for instance, in the GUDHI library.

1.1 Introduction

Let X be a data set, i.e, a finite set of points with a notion of distance (or similarity)
between them. It will be considered as a metric space on its own or a sample of a
metric space, with the induced metric. For example, X may be a noisy sampling
of some geometric structure, spatial coordinates obtained from some phenomena or
discrete orbits of some dynamical system. Notice that we are not asking for the
data to be embedded into an euclidean space, just a notion of distance.

Data sets are studied in order to obtain as much information as possible about
their underlying structure. In particular, topological information might provide sig-
nificant features. Nevertheless, point clouds are totally disconnected spaces with
extremely simple topology. We need to assemble these discrete points into a global
structure where we can study relevant topological features, and that still gives us
information about the underlying shape of the data. The most obvious way to trans-
form points X in a metric space into a global object is to use them as the vertices
of a graph, whose edges are determined by proximity. Such a graph, while showing
connectivity, ignores plenty of higher order features as cycles, voids, etc. Hence,
simplicial complexes are built instead (see appendix A). As a result, we end up with
non-topologically trivial spaces that hopefully retain the topological properties of
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2 CHAPTER 1. INTRODUCTION TO TDA

the original space where the data comes from.

Given a data set X on a metric space (M,ρ), there are many ways of connecting
n-tuples of points in order to build simplexes of dimension n and form a simplicial
complex. Note that, in practice, we will only deal with finite abstract simplicial
complexes. The most used in TDA are the followings. Let α > 0 be a real number.

Definition 1.1.1. The Vietoris-Rips complex Ripsα(X) is the collection of sim-
plexes {x0, . . . , xk} where xi ∈ X are such that ρX(xi, xj) < α for all (i, j). That
is, {x0, . . . , xk} is a simplex if the open balls Bρ(xi, α/2), for i = 0, . . . , k, have
nonempty pairwise intersection.

Definition 1.1.2. The Čech complex Čechα(X) is the set of simplexes {x0, . . . , xk}
where xi ∈ X are such that Bρ(x0, α) ∩ · · · ∩Bρ(xk, α) 6= ∅.

The Čech complex is just a particular case of the nerve simplicial complex (ex-
ample A.1.8) for the open cover {Bρ(xi, α)}xi∈X.

Notice that, even if X ⊂ Rm, both complexes can have higher dimension. They
are related by

Ripsα(X) ⊆ Čechα(X) ⊆ Rips2α(X). (1.1)

α α

Figure 1.1: Čech complex Čechα(X) (left) and Rips complex Rips2α(X)(right) .

Remark 1.1.3. Despite having in general more simpleces, the Rips complex Ripsα
is computationally cheaper than the corresponding Čech complex Čechα/2. Indeed,
in order to compute the Čech complex we must remember either the entire complex
and its boundary operator (i.e. the number of simpleces of each kind and how
to glue them through the boundary operator) or the distances between vertices.
Meanwhile, the Rips complex is a flag complex: it is maximal among all simplicial
complexes with the given 1-skeleton. Consequently, it is completely determined by
the 1-skeleton and can be stored as a graph and reconstituted. Since this text is
not focused on the computational aspects, for forms of storage and reconstruction
of simplicial complexes we refer to [9], with the simplex tree structure, and to [10]
with the tidy set, especially designed for flag complexes. The drawback of Rips
complexes is that homotopy equivalence results are not as immediate as those for
Čech complexes, as it will be shown. ♦
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1.1.1 Mapper algorithm

Another possibility when constructing the simplicial complex associated to a data
set X is to consider subsets of points as vertices, instead of each point being a vertex
of the complex. The use of covers and their corresponding nerve complexes is perfect
for this. A well chosen cover is able to highlight certain areas of interest, and the
associated nerve complex provides a compact description of the relationships be-
tween these areas through their intersection patterns. This is useful when data sets
are huge and we want to obtain a low dimensional representation easy to understand.

In order to chose a cover according to our needs we can proceed as follows. In
the general framework, given a topological space X select a continuous function
f : X → Z, where Z is called parameter space, and U = {Ui}i∈I an open cover
of f(X). Consider the open cover of X given by the inverse images of these open
subsets {f−1(Ui)}i∈I , which is called the pull back cover induced by (f,U). Then,
if a wise choice of Z, f and U has been made, the refined pull back cover, which
is the collection of connected components of the open sets f−1(Ui) for i ∈ I, provides
a nerve complex which summarizes the required information.

f

Figure 1.2: The mapper algorithm on a point cloud.

To adapt this to the case in which X is a point cloud, the Mapper algorithm
has been developed in [11]. Let f : X→ Rm for m ≥ 1, a function called filter. In
addition, consider a cover U of f(X) and compute the pull back cover. The partition-
ing of the opens of this cover into their connected components has to be substituted
for some clustering of the inverse images. Then, we compute the nerve complex
generated by these clusters. For a well chosen cover the nerve will be a graph, which
has nodes corresponding to clusters in the data, but of course this method could
provide higher dimensional complexes. All in all, this algorithm receives as input a
data set X, a function f : X→ Rm and a cover U and outputs a simplicial complex.
Observe that it does not need the data to be embedded into an Euclidean space.

Some examples of functions f used in the literature are density estimates (may
help to understand the structure of high density areas) and distance functions to a
given point.

On the other hand, if f : X→ R, a standard cover choice is a finite collection of
intervals {Ij}j∈J . It can be parametrize by the length and the percentage overlap
between successive intervals. For each of them, the inverse image is computed Xj :=
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f−1(Ij) = {x ∈ X : f(x) ∈ Ij}, providing a cover of X. Then, for each set Xj, we
find clusters {Xjk} and compute the nerve complex of these clusters. That is, each
cluster is a vertex and an edge exists between them if Xjk ∩ Xlt 6= ∅. This method
can be generalized for f : X→ Rm with m > 1.

Finally, notice that when working with data sets a third choice is needed, the
clustering method.

Remark 1.1.4. Small changes in the cover can dramatically change the output of
the Mapper algorithm, which makes this method inestable. This could be solved by
studying some range of the parameters of the cover and selecting the ones that turn
out to provide the better output from the user perspective. ♦

1.2 Nerve theorem

All in all, the discrete set of points X has been transformed into a higher dimensional
topological space from which we can obtained topological properties. It would be
ideal if both are related, so that the topological features of the simplicial complex
lead us to properties of the data set and its underlying structure. The following
general statement holds, whose proof can be found in section 4G of [12].

Theorem 1.2.1 (Nerve Theorem). Let U = {Ui}i∈I be an open cover of a para-
compact space X such that the intersection of any finite subcollection of the Ui’s is
either empty or contractible. Then, X and the nerve N(U) are homotopy equivalent.

Obviously if U consists of convex open subsets, the nerve theorem follows. That
is the case of open balls in (Rm, || · ||q), with 1 ≤ q ≤ ∞. Hence, if X ⊂ Rm for some
m > 0, Čechα(X) is homotopy equivalent to the union of balls

⋃
x∈XB(x, α). We

expect that, for some radius α, this union reflects the underlying structure of the
data set. However, choosing the right radius is not an easy task. If α is too small no
new information is obtained, whereas if it is too large all the balls will overlap. As
a consequence, the best approach is not to chose just a value for α but some range
of values and study how the cover and the simplicial complex evolve.

With the same idea, for a well chosen cover, the mapper algorithm also preserves
the topological structure of the original space.

The following extension of the nerve theorem will be needed.

Theorem 1.2.2 (Persistent Nerve Theorem). Let X ⊆ X ′ be two paracompact
spaces and let U = {Ui}i∈I and U ′ = {U ′j}j∈J be two open covers, of X and X ′

respectively. Suppose that these covers satisfy that the intersection of any finite
subcollection of open subsets is either empty or contractible. Assume moreover that
they are based on finite parameter sets I ⊆ J such that Ui ⊆ U ′i for all i ∈ I.

Then, the homotopy equivalences N(U) → X and N(U ′) → X ′ provided by the
nerve theorem commute with the canonical inclusions X ↪→ X ′ and N(U) ↪→ N(U ′)
at homology level.

The proof is similar to the one of the nerve theorem, noticing that the canonical
inclusions commute with the homotopy equivalences defined there. Anyway, it can
be found in Lemma 3.4 of [13].
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α

Figure 1.3: Sequence of Čech complexes with increasing radius α.

1.3 Reconstruction theorem

Assume that the data set X is a finite discrete subset of Rm, with the euclidean
distance d, sampled i.i.d according to a probability measure µ with compact support
M ⊂ Rm. If X and M are close we expect to be able to infer topological features of
M from X. This notion of closeness between compact sets is formalized as follows.
Let (A, ρ) be a metric space and, for every K ⊂ A, consider the distance function
ρK : A → R+ defined by ρK(x) = infy∈K ρ(x, y).

Definition 1.3.1. The Hausdorff distance between two compact subsets K,K ′

of a metric space (A, ρ) is defined as

dH(K,K ′) = max{ sup
x′∈K′

ρK(x′), sup
x∈K

ρK′(x)}

= sup
x∈A
|ρK(x)− ρK′(x)| = ||ρK − ρK′ ||∞.

From the previous section, the cover of X by open balls centered on the points
of the data set is homotopy equivalent to the Čech complex. We are going to see
that, under some regularity assumptions on M , one can relate the topology of this
union of balls to the one of M . Therefore, by studying the Čech complex of X we
may obtain topological properties of M .

Definition 1.3.2. Let K ⊂ A be a compact subset of a metric space (A, ρ) and
r > 0 a real number. The union of closed balls of radius r centered on K is called
the r-offset of K and denoted by

Kr =
⋃
x∈K

B̄ρ(x, r).
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Notice that Kr is just the r-sublevel set of the distance function. That is,

Kr = {x ∈ A : ρK(x) ≤ r} = ρ−1
K ([0, r]).

Let {B(x, α)}x∈X be a cover of the finite set X by open balls for the euclidean
distance d. In general, it is possible to find 0 < r < α close enough to α such
that the two subsets ∪x∈XB(x, α) and ∪x∈XB̄(x, r) are homotopy equivalent and,
moreover, define the same Čech complex. But the latter union is just Xr. As a
result, the Čech complex of X is homotopy equivalent to Xr. Hence, if we relate the
r-offsets of M with those of X, just by studying the Čech complex of the data set
we could obtain topological information about M .

All in all, it seems useful to understand the topological behaviour of the r-sublevel
sets of distance functions of compact subsets. In fact, the statements are true in a
more general framework.

Definition 1.3.3. A continuous function φ : Rm → R+ is distance-like if it is
proper, i.e. the preimage of any compact set is a compact set, and φ2 is semiconcave,
i.e. x 7→ ||x||2 − φ2(x) is convex.

For any compact set K ⊂ Rm the distance function dK is distance-like.

Remark 1.3.4. Due to semiconcavity distance-like functions have a well defined
(but not continuous) notion of gradient ∇φ : Rm → Rm. This is essential to in-
troduce the next notions. However, the study of semiconcave and distance-like
functions is outside the scope of this text. Hence, we refer to [14] and [15] for more
information. ♦
Definition 1.3.5. Let φ be a distance-like function and let φr = φ−1([0, r]) be the
r-sublevel set of φ.

• A point x ∈ Rm is α-critical if ||∇xφ|| ≤ α. The corresponding value φ(x)
is said to be an α-critical value. A 0-critical point (value) is simply called a
critical point (value).

• The weak feature size of φ at r, denoted by wfsφ(r), is the maximum r′ > 0
such that φ does not have any critical value between r and r + r′.

• For any 0 < α < 1 the α-reach of φ, denoted by reachα(φ), is the maximum
r such that φ−1((0, r]) does not contain any α-critical point. The reachα(φ) is
always a lower bound for the weak feature size with r = 0.

A relevant result involving distance-like functions is the ensuing isotopy lemma,
which is proven in [16], proposition 1.8.

Definition 1.3.6. Let X, Y ⊆ Rm. We say that they are ambient isotopic if
there exists a continuous map H : [0, 1] × Rm → Rm such that Ht = H(t, ·) is a
homeomorphism for every t ∈ [0, 1], H0 = idRm and H1(X) = Y .

Lemma 1.3.7 (Isotopy Lemma). Let φ be a distance-like function and r1 < r2

two positive real numbers such that φ does not have critial points in the subset
φ−1([r1, r2]). Then, all φr are isotopic for r ∈ [r1, r2]. In particular, inclusions
φr ↪→ φr

′
for r < r′, r, r′ ∈ [r1, r2], are homotopy equivalences.
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Therefore, the topology of the r-sublevel sets of distance-like functions only
changes when r crosses a critical value. Then, all the sublevel sets of φ between
r and r+wfsφ(r) have the same topology.

Once we have this, the next step is to obtain a connection between the sublevel
sets of two different distance-like functions, in our case dM and dX.

Theorem 1.3.8 (Reconstruction Theorem [17]). Let φ, ψ be two distance-like func-
tions such that ||φ − ψ||∞ ≤ ε and reachα(φ) ≥ R for some ε > 0 and α ∈ (0, 1).
Then, for every r ∈ [4ε/α2, R− 3ε] and every η ∈ (0, R), if ε < R

5+4/α2 , the sublevel
sets ψr and φη are homotopy equivalent.

We need these previous results to prove the Reconstruction theorem.

Proposition 1.3.9 ([17]). Let φ, ψ be two distance-like functions such that ||φ −
ψ||∞ ≤ ε. Assume that the weak feature sizes satisfy wfsφ(r) > 2ε and wfsψ(r) > 2ε
for some r > 0. Then, φη and ψη have the same homotopy type for all η ∈ (r, r+2ε].

Proof. Consider δ > 0 such that wfsφ(r) > 2ε + δ and wfsψ(r) > 2ε + δ. Then,
||φ− ψ||∞ ≤ ε provides the following diagram, where each map is an inclusion.

φr+δ φr+δ+ε φr+δ+2ε

ψr+δ ψr+δ+ε ψr+δ+2ε

f0 f1

d

g0 g1

c

Moreover, it is commutative, being the horizontal arrows f0, f1, g0, g1 homotopy
equivalences thanks to the isotopy lemma 1.3.7. Denote their homotopic inverses
by f ′1, f

′
1, g
′
0, g
′
1 respectively. Then, a straightforward computation shows that c :

ψr+δ+ε → φr+δ+2ε is a homotopy equivalence with inverse g′1 ◦ d ◦ f ′1. �

Proposition 1.3.10 ([17]). Let φ, ψ be two distance-like functions such that ||φ −
ψ||∞ ≤ ε. Given x any α-critical point of φ, there exist x′ an α′-critical point of φ
such that

||x− x′|| ≤ 2
√
εφ(x), α′ − α ≤ 2

√
ε/φ(x).

In addition, if reachα(φ) ≥ R for some α, then ψ has no critical values in the interval
[4ε/α2, R− 3ε].

Proof of Reconstruction theorem 1.3.8. First of all, notice that

ε <
R

4/α2 + 5
<

R

4/α2 + 3
⇔ 4ε

α2
< R− 3ε,

so the interval for r is nonempty. By definition of α-reach (0, R] does not contain
critical values for φ. Applying the isotopy lemma this means that all φη have the
same homotopy type for η ∈ (0, R]. Therefore, it suffices to prove the result for a fix
η. Let us choose η = 4ε/α2. It is clear that wfsφ(η) ≥ R− 4ε/α2. Using proposition
1.3.10, ψ does not have critical values in the interval [4ε/α2, R− 3ε], which implies
that wfsψ(η) ≥ R − 3ε − 4ε/α2. Again, isotopy lemma states that all ψr have the
same homotopy type for r ∈ [4ε/α2, R− 3ε]. This means that, in order to finish the
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proof, it is enough to show that φr
′

and ψr
′

are homotopy equivalent for some r′ in
the given range.

Indeed, because of how we have chosen ε > 0, it satisfies

5ε+ 4ε/α2 < R⇔ R− 3ε− 4ε/α2 > 2ε.

By proposition 1.3.9 we can conclude that φr
′

is homotopy equivalent to ψr
′

for
every r′ ∈ (η, η + 2ε] ⊂ (4ε/α2, R− 3ε). �

In our setting φ = dM and ψ = dX. This means that if M and X are close
with respect to the hausdorff distance, for well chosen values of r and η, Mη is
homotopy equivalent to Xr, which is again homotopy equivalent to Čechr(X). All in
all, with the nerve theorem and the reconstruction theorem we are able to infer the
topology of a compact space M from a simplicial complex Čechr(X) build on top of
an approximate finite sample X of it. This is what we were looking for. However,
there are some practical problems:

• The condition reachα(φ) = reachα(dM) ≥ R, which could be interpreted as a
regularity condition, may not always be satisfied.

• The choice of r is left to the user.

• Although the Čech complex provides an accurate topological summary of the
data, it is not well-suited for data processing, as we have already mentioned
in remark 1.1.3.

To overcome this last problem we only need to find topological descriptors that are
simpler to handle and which could be easily computed from a complex. Algebraic
topology, specially homology and, in particular, persistent homology, due to its bal-
ance between ease of computation and topological resolution is the answer. We will
only consider homology groups over fields. For more information about computa-
tional aspects we refer to [7] and [8]. Besides, as it will be seen in the next chapter,
this also let us overcome the second problem: persistent homology is able to handle
homology at different scales simultaneously.

Having our eye on homology we recover the practical setting where X ⊂ Rm

is any finite set of points. Whenever Xr and Čechr(X) are homotopy equivalent
their homology groups are isomorphic, and hence they have same Betti numbers.
Therefore, the reconstruction theorem can be reformulated.

Theorem 1.3.11 ([1]). Consider M ⊂ Rm be a compact set such that reachα(dM) ≥
R > 0 for some α ∈ (0, 1). Let X be a finite set of points such that

ε = dH(M,X) <
R

5 + 4/α2
.

Then, for every r ∈ [4ε/α2, R − 3ε] and every η ∈ (0, R), the Betti numbers of
Čechr(X) are equal to the Betti numbers of Mη.
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Proof. The hypothesis are just the ones from the reconstruction theorem with φ =
dM , ψ = dX and dH(M,X) = ||φ − ψ||∞ = ε. Then, we use the fact that being
homotopy equivalent implies having isomorphic homology groups. �

Although it may happen that the homology groups of the sublevel sets Mη are
different from those of M , this is a rare behaviour which does not included most
practical cases. Hence, the above theorem provides a method to estimate the Betti
numbers of M .

We still have to deal with the problem of the condition on the α-reach of M and
the computation of the Čech complex. The following theorem gives a response to
this. Basically, the condition on the α-reach is exchanged for a similar condition on
the weak feature size, less strict in terms of regularity, and Rips complexes substitute
Čech complexes. In the following denote Xα =

⋃
x∈XB(x, α) = d−1

X ((−∞, α)).
Recall that, by the nerve theorem, the homology group of Xα is isomorphic to that
of Čechα(X). The latter is a finite simplicial complex, so it has a finite dimensional
homology group.

Theorem 1.3.12 ([13]). Let M ⊂ Rm be a compact set such that wfs(M) =
wfsdM (0) ≥ R > 0 and let X be a finite set of points such that dH(M,X) < ε
for some ε < 1

9
wfs(M). Then, for any α ∈

[
2ε, 1

4
(wfs(M)− ε)

]
and any η ∈ (0, R),

βn(Mη) = rk(j∗) ∀n ∈ N, (1.2)

where

j∗ : Hn(Ripsα(X))→ Hn(Rips4α(X))

is the homomorphism induced by the canonical inclusion j : Ripsα(X) ↪→ Rips4α(X).

We need two previous lemmas, being the first one a linear algebra standard
result.

Lemma 1.3.13. Given a sequence A→ B → C → D → E → F of homomorphisms
between finite dimensional vector spaces, if rk(A → F ) = rk(C → D), then it is
also equal to rk(B → E). Analogously, if A → B → C → D → E is a sequence of
homomorphisms such that rk(A→ E) = dimC, then rk(B → D) = dimC.

Lemma 1.3.14 ([13]). Let M ⊂ Rm be a compact set and X ⊂ Rm a finite set
of points such that dH(M,X) < ε for some ε < 1

4
wfs(M). Then, for all α, α′ ∈

[ε,wfs(M) − ε] such that α′ − α ≥ 2ε, and for all η ∈ (0,wfs(M)) we have the
isomorphism

Hn(Mη) ' im(i∗) ∀n ∈ N,

where i∗ : Hn(Xα)→ Hn(Xα′) is the homomorphism induced by the canonical inclu-
sion i : Xα ↪→ Xα′.

Proof. Observe that by hypothesis 4ε < wfs(M), so the interval [ε,wfs(M)−ε] does
contain values α, α′ that are at distance greater than 2ε. Without loss of generality
assume that ε < α < α′ − 2ε < wfs(M) − 3ε. Notice that this is always possible,
since we can change ε for any other ε′ ∈ (dH(M,X), ε) and, once proven for this case,
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the statement for ε follows. The inequality dH(M,X) = ||dM − dX||∞ < ε provides
a sequence of inclusions

Mα−ε ↪→ Xα ↪→Mα+ε ↪→ Xα+2ε ↪→ Xα′ ↪→Mα′+ε. (1.3)

This sequence transforms into a sequence of homomorphisms between homology
groups, which are vector spaces. Thanks to the isotopy lemma and the fact that
α′ + ε < wfs(M), all the inclusions between Mα−ε,Mα+ε and Mα′+ε induce isomor-
phisms. Hence, for any n ∈ N,

rk(Hn(Mα−ε)→ Hn(Mα′+ε)) = dimHn(Mα′+ε) = dimHn(Mα+ε). (1.4)

In addition, the homology groups of Xα,Xα′ are finite dimensional. We can use then
lemma 1.3.13 and deduce from equality (1.4) that

rk(i∗) = rk(Hn(Xα)→ Hn(Xα′)) = dimHn(Mα+ε).

However, for any η ∈ (0,wfs(M)) isotopy lemma gives an homotopy equivalence
between Mη and Mα+ε. That is, dimHn(Mη) = dimHn(Mα+ε) and then equal to
rk(i∗). By finiteness of these vector spaces we can conclude that im(i∗) ' Hn(Mη).

�

Proof of theorem 1.3.12. First of all notice that ε < 1
9
wfs(M) guarantees that the

interval [2ε, 1
4
(wfs(M) − ε)] is nonempty. Fix α in this interval. By equation (1.1)

we have the next sequence of inclusions

Čechα/2(X) ↪→ Ripsα(X) ↪→ Čechα(X) ↪→ Čech2α(X) ↪→ Rips4α(X) ↪→ Čech4α(X),
(1.5)

which turns into a sequence of homomorphisms between finite vector spaces at the
homology level. Consider the pairs (α1, α2) given by (α/2, 4α) and (α, 2α). By the
persistent nerve theorem 1.2.2 we have the commutative diagrams

Hn(Čechα1(X)) Hn(Čechα2(X))

Hn(Xα1) Hn(Xα2)

k∗

i∗

where the vertical arrows are isomorphisms and the horizontal ones are induced by
inclusions. Since ε ≤ α1 < α2 ≤ wfs(M) − ε and α2 − α1 ≥ 2ε, lemma 1.3.14
can be applied for the pairs (α1, α2). As a result, for any n ∈ N and η ∈ (0, R),
dimHn(Mη) = rk(i∗) = rk(k∗), where the last equality follows from the commutative
diagram. In particular, for the pairs of parameters chosen we obtain

rk(Hn(Čechα/2(X))→ Hn(Čech4α(X))) = dimHn(Mη)

= rk(Hn(Čechα(X))→ Hn(Čech2α(X)))

This, together with the sequence of homomorphisms that comes from (1.5) and
lemma 1.3.13, leads to dimHn(Mη) = rk(Hn(Ripsα(X)) → Hn(Rips4α(X))) as
wanted. �
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Notice that j∗ relates the homology of two Vietoris-Rips complexes of the same
data set but on different scales. In fact, Ripsα(X) ⊆ Rips4α(X). Therefore, our next
step should be to study the homology groups of nested simplicial complexes, for
several values of r, and how they are related. This connects also with the problem
of the choice of the scale r: it is a better strategy to consider some range of values. If
we could encode this information we would be able to explain how homology evolves
throughout the sequence of complexes: homology classes are born, can merge, split,
die or persist, some are essential (those that persist over a significant parameter
range), others might be omitted (those that die just after being born), ....
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Chapter 2

Persistent homology

The main objective of this chapter is to explain how we can encode multiscale
topological properties of a nested family of simplicial complexes by using the corre-
spondent sequence of homology groups. The study of homology at different scales
simultaneously is called persistent homology and it is done using persistence mod-
ules. This information can be summarized and visualized easily by introducing
persistence diagrams or barcodes. Although the main works on persistent theory
([7], [18], [8]) assume finiteness on the nested family of simplicial complexes, which
is understandable from a computational point of view, that restriction can be lifted.
One of the reasons why a contiuous approach is desirable is that, ideally, the persis-
tent homology of a sample will be an approximation to the persistent homology of
its continuous underlying structure. We will focus on this last approach by following
[4].

2.1 Filtrations

Definition 2.1.1. A filtration of a topological space X is a nested family of sub-
spaces (Xr)r∈T , where T ⊆ R, such that for any r, r′ ∈ T with r ≤ r′, then Xr ⊆ Xr′ .
Moreover, X = ∪r∈TXr.

In particular, when X is a simplicial complex, the subspaces Xr are considered
to be subcomplexes. The usual filtrations are the following families.

1. When working with a data set X, families of Vietoris-Rips complexes (Ripsr(X))r∈R
and Čech complexes (Čechr(X))r∈R. We assume Ripsr(X) = Čechr(X) = ∅ for
r < 0. The parameter r could be understood as the scale at which we consider
the data.

2. In general, given a topological space X and a continuous map f : X → R, the
family of sublevel sets Xr = f−1((−∞, r]).

3. In the case of a simplicial complex K, with set of vertices V , the sublevel set
filtration can be defined as follows. Let f : V → R be a map defined on the
vertices and extend it to all simplexes of K by f([p0, . . . , pn]) = max{f(pi) :
i = 0, . . . , n}. Then, the family of subcomplexes given by the r-sublevel sets
of f defines a filtration (Kr)r∈R, Kr = {σ ∈ K : f(σ) ≤ r}.

13
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Given a filtration, when the parameter r changes the homology of the subspaces
Xr changes too. For example, concerning the zero homology groups (which are
directly related to the number of path connected components), while r changes
new path connected components could appear or existing ones could disappear (e.g.
when two of them merge into one). We could say that the life of a path connected
component C begins when it appears in the filtration and ends when it merges with
a previous one. If this happens at Xr1 and Xr2 respectively, we say that the life time
of C is the interval [r1, r2). As a result, the information about the zero homology
groups of the filtration is encoded as a set of intervals. This is called a persistent
barcode. Moreover, these intervals can be interpreted as points in R2 obtaining
a multiset1 called persistence diagram. Obviously, this could be made for higher
dimensional homology groups, tracking the changes of cycles and boundaries.

This idea of persistence barcodes and diagrams can be formally and rigorously
defined in an algebraic framework using persistence modules.

2.2 Persistence modules

Let (T,≤) be any poset and k a field.

Definition 2.2.1. A persistence module V over T is functor from T , considered
a category in the usual way, to the category of vector spaces.

Thus, it consists of an indexed family of k-vector spaces (Vt)t∈T and a doubly-
indexed family of linear maps (vst : Vs → Vt)s≤t that satisfy vst ◦ vls = vlt, whenever
l ≤ s ≤ t, and vtt = idVt .

Vl Vt

Vs

vlt

vls vst

In general, T ⊆ R. When T is finite {t0 < t1 < · · · < tn} the persistence module
can be expressed as the sequence Vt0 → Vt1 → · · · → Vtn .

Note that, given any filtration of a topological space X, a persistence module can
be obtained by applying to it any functor from the category of topological spaces
to the category of vector spaces. In particular, Hn(·, k) for k a field and any n ∈ N,
obtaining a persistence module of homology groups.

Definition 2.2.2. Consider a filtration (Xt)t∈T of a topological space X. Fix n ∈ N.
For any s < t, the (s,t)-persistent homology group of X is

Hs→t
n (X) = im(Hn(Xs, k)→ Hn(Xt, k)) =

Zn(Xs, k)

Zn(Xs, k) ∩Bn(Xt, k)
.

Its dimension is called persistence Betti number βst := dimHs→t
n (X).

1A multiset is a set where points can be repeated.
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A homology class in Hn(Xt) is said to persist if its image in Hn(Xt+1) is also
nonzero; otherwise it is said to die. A homology class in Hn(Xt) is said to be born
when it is not in the image of Hn(Xt−1). Hence, βst can be interpreted as the number
of independent homology classes of Hn(Xt) born before Hn(Xs).

Remark 2.2.3. It can happen that, given a persistence module (Vt)t∈T , the vector
spaces change only for some finite values of t, and they stay the same between these
values. That is, if these values are t1 < t2 < · · · < tn, which are called critical
values, then

Vt = Vt1 , t ≤ t1,

Vt = Vti , ti−1 < t ≤ ti for i ∈ {2, . . . , n},
Vt = Vtn , t ≥ tn.

Then, all the information is contained in the finite sequence Vt1 → Vt2 → · · · →
Vtn . ♦

Definition 2.2.4. A homomorphism φ between two persistence modules V and
U over T is a natural transformation between functors. That is, a collection of linear
maps (φt)t∈T where φt : Ut → Vt and such that φt ◦ ust = vst ◦ φs for all s ≤ t.

Us Ut

Vs Vt

ust

φs φt

vst

(2.1)

Remark 2.2.5. Thanks to the above definition we can consider the category of
persistence modules, which is actually an abelian category. ♦

Example 2.2.6. Let X ⊂ (Rm, || · ||q) be a finite set of points and consider the
filtration given by the Čech complexes (Čechα(X))α∈R+ . For each n ∈ N their n-th
homology groups define a persistence module (Hn(Čechα(X)))α∈R+ , where the linear
maps are induced by the inclusions. Consider also the filtration (Xα)α∈R+ for Xα =⋃
x∈XB(x, α). Likewise, the n-th homology groups and the induced homomorphisms

from the inclusions define a persistence module (Hn(Xα))α∈R+ . Then, the persistent
nerve theorem 1.2.2 gives an isomorphism between them. ♦

In order to define persistence diagrams, and to measure the life time of the
appearing features, we need to introduce a special kind of persistence modules called
interval modules.

Definition 2.2.7. An interval in a totally ordered set T is a subset J ⊆ T such
that, if r ∈ J and t ∈ J with r < s < t, then s ∈ J too.

Definition 2.2.8. Given an interval in a totally ordered set J ⊆ T , the interval
module I over T , denoted by kJT or simply kJ , is the persistence module defined by

It =

{
k t ∈ J,
0 otherwise,

ist =

{
idk s, t ∈ J,
0 otherwise.
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Remark 2.2.9. When T is a finite set {t0 < t1 < · · · < tn} intervals over T are
normally written as J = [ti, tj]. Hence, kJ is usually denoted by k[ti, tj]. It can be
visualized as the sequence

0t0 → · · · → 0ti−1
→ kti → kti+1

→ · · · → ktj → 0tj+1
→ · · · → 0tn .

♦
This type of persistence modules may be interpreted as the life time of a feature,

which persists over the interval J and nowhere else. Consequently, if a persistence
module could be decompose into interval modules, this decomposition would give
us an idea of the life time of the different features of the module. These and the fol-
lowing results related to interval modules entitle them to be considered the building
blocks of persistence.

Definition 2.2.10. Given two persistence modules U and V over T , we can define
the direct sum W = U ⊕ V (over T ) as Wt = Ut ⊕ Vt and wst = ust ⊕ vst . We
say that W is idecomposable if the only decompositions are the trivial ones, i.e.
W = W⊕ 0 = 0⊕W.

This generalizes to arbitrary direct sums.

Proposition 2.2.11 ([4]). Let J ⊆ T be an interval and I = kJT an interval module
over T . Then,

1. End(I) = k.

2. Interval modules are idecomposable.

Proof. 1. Let φ be an endomorphism of I. For each nonzero It = k, i.e. t ∈ J ,
φt ∈ End(k) so it acts on It by scalar multiplication. Besides, it also satisfies
φt ◦ ist = ist ◦ φs for all s ≤ t. If both s, t ∈ J then ist = idk, which implies that
it is the same scalar for each t ∈ J . All in all, End(I) = k.

2. Suppose that I decomposes as U⊕V. Consider the projections U⊕V→ U⊕V
onto U and V. It is clear that they are idempotent2 endomorphisms of U⊕V =
I. However, we have just proved that End(I) = k, where the only idempotent
elements are zero and the identity. We conclude that I can only decompose as
I⊕ 0 or 0⊕ I, so it is idecomposable.

�

Given an indexed family of intervals (Jl)l∈L we can define the persistence module

V =
⊕
l∈L

kJl , (2.2)

which can be thought as having an independent feature for each l ∈ L that persist
over the interval Jl. We could say then that each feature appears in the filtration
at time inf(Jl) and disappears at time sup(Jl). That is why the left endpoint is also
called birth time, while the right endpoint is called death time.Therefore, the next
step is to study which persistence modules can be decompose as (2.2). Hereinafter
all persistence modules will be considered over subsets of the real numbers R.

2An endomorphism f is idempotent if f ◦ f = f .
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Theorem 2.2.12 ([4]). Let V be a persistence module over T ⊆ R. It can be
decomposed as a direct sum of interval modules if one of the following is satisfied:

1. T is a finite set,

2. each Vt is finite-dimensional.

In that case, we say that V is decomposable.

Proof. We are going to sketch the proof for the case of persistence modules of finite
type over N. That is, V where each Vi is finite dimensional and there exists N ∈ N
such that, for all i ≥ N , vii+1 are isomorphisms. It can be found in [8]. The extension
to infinite-dimensional modules follows from [19]. On the other hand, the general
proof of the second statement is fully developed in [20].

Let V be a persitence module of finite type over N. Equip k[t] with the standard
grading. A graded module M over a graded ring R is a module such that M '⊕

iMi, i ∈ Z, and the action of R on M is defined by Rn ⊗Mm → Mn+m. We say
that M is non-negatively graded if Mi = 0 for all i < 0. Then, we can associate to
V the following graded module over k[t],

α(V) =
∞⊕
i=0

Vi,

where the k-module structure is simply the sum of the structures on the individual
components and the action of k[t] is given by

t · (u0, u1, . . .) = (0, v0
1(u0), v1

2(u1), . . .).

That is, it shifts elements up in the gradation thanks to the linear maps vii+1. By
Artin-Rees theory in commutative algebra, the correspondence α defines an equiv-
alence of categories between the category of persistence modules of finite type over
k and the category of finitely generated non-negatively graded modules over k[t].
Since k is a field, k[t] is a PID and we can apply the structure theorem of graded
modules over graded PID. This theorem states that, given M a graded module over
D a PID, it decomposes uniquely as(

n⊕
i=1

ΣβiD

)
⊕
(

m⊕
j=1

ΣγjD/djD

)
,

where dj ∈ D are homogeneous elements so that dj|dj+1; βi, γj ∈ Z and Σβ denotes
a β-shift upward in the grading. In our case, the only graded ideals of k[t] are
homogeneous of the form (ti) = ti · k[t], i ≥ 0, so we can conclude that α(V)
decomposes as (

n⊕
i=1

tβik[t]

)
⊕
(

m⊕
j=1

tγjk[t]/(tnj)

)
.

Finally, notice that, for interval modules, α(k[i,∞)) decomposes in the form tik[t],
while α(k[i, j)) does as tik[t]/(tj−i). �
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Remark 2.2.13. The first part of the proof, up to the application of the structure
theorem, is still true if we consider persistence modules V where each Vi is an R-
module (R a commutative ring). Then, α(V) is a graded module over R[t]. However,
R[t] is not a PID, so we cannot apply the structure theorem and the classification
of R[t] graded modules is not simple. ♦

Lastly, we state and important property of decomposable modules: the multiset
of intervals (Jl)l∈L is an invariant of V, it does not depend on the decomposition
chosen. It is deduced from the Krull-Remak-Schmidt-Azumaya theorem, that we
introduce first.

Theorem 2.2.14 (Krull-Remak-Schmidt-Azumaya Theorem [21]). Let M be a mod-
ule and suppose it is decomposable into a direct sum of idecomposable submoduli Mλ,

M '
⊕
λ∈Λ

Mλ.

In addition, suppose that the sum of any two non-automorphisms of Mλ is also a non-
automorphism. Then, given a second direct decomposition of M into idecomposable
submodules

M '
⊕
δ∈∆

Nδ,

there exists a one-to-one mapping σ : Λ 3 λ 7→ σ(λ) ∈ ∆ such that Mλ is isomorphic
to Nσ(λ) for each λ ∈ Λ.

Theorem 2.2.15 ([4]). Let V be a persistence module over T ⊆ R which can be
expressed as a direct sum of interval modules in two different ways⊕

m∈N

kKn ' V '
⊕
l∈L

kJl .

Then, there is a bijection σ : L→ N such that Jl = Kσ(l) for all l ∈ L.

Proof. Notice that in our case V is decomposed as a direct sum of interval modules.
We have seen that End(I) = k. Since the only non-isomorphism is the zero map, the
condition on the non-automorphisms of Krull-Remak-Schmidt-Azumaya theorem is
satisfied for both decompositions. We conclude that there exists a bijection σ : L→
N , l 7→ σ(l), such that kJl is isomorphic to kKσ(l) . Nevertheless, it is clear that if
two interval modules are isomorphic kJ ' kK , then J = K. All in all, σ : L→ N is
a bijection such that Jl = Kσ(l) for each l ∈ L. �

2.2.1 Persistence barcodes and diagrams

Let V be a decomposable persistence module over T ⊆ R. As we have already
pointed in remark 2.2.9, when the module is defined over a finite set T , the intervals
can be written as closed intervals. However, in the general case, we have to distin-
guish between closed, open or half-open intervals. In order to keep a clear exposition
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we introduce the following notation

(b−, d−) := [b, d),

(b−, d+) := [b, d],

(b+, d−) := (b, d),

(b+, d+) := (b, d],

(2.3)

where b, d ∈ R and b+, d− could be infinite. These real numbers with a superscript
are called decorated reals and they form a totally order set by establishing

b− < b < b+ < d− < d < d+, (2.4)

whenever b < d. Usually, b∗ means b+ or b−. Using this, a general decomposable
persistence module is represented as⊕

l∈L

k(b∗l , d
∗
l ).

Thanks to the invariance of the multiset of intervals, given by theorem 2.2.14,
the following notions are well-defined.

Definition 2.2.16. The persistence barcode of a decomposable module V is the
collection of intervals of the decomposition.

Since the order of the intervals does not matter, one typically orders them in
terms of the left endpoint (birth time) in increasing order.

Definition 2.2.17. The decorated persistence diagram is the multiset

Dgm(V) = Int(V) = {(b∗l , d∗l ) : l ∈ L},

while the undecorated persistence diagram is defined to be the multiset

dgm(V) = int(V) = {(bl, dl) : l ∈ L} −∆,

where ∆ = {(r, r) : r ∈ R}.

Remark 2.2.18. Isomorphic decomposable persistence modules have the same
persistence diagrams. ♦

Observe that the persistence homology module obtained from filtrations of finite
simplicial complexes satisfies the hypothesis of theorem 2.2.12. Hence, persistence
barcodes and diagrams of such filtrations are always well-defined. The later are
denoted by Dgmn and dgmn when they correspond to the n-th homology groups.
Notice that distinct choices of the field k can lead to different persistence diagrams
and barcodes.

Example 2.2.19. Let X ⊂ (Rm, || · ||q) be a finite set of points and consider the
persistence modules (Hn(Čechα(X)))α∈R+ and (Hn(Xα))α∈R+ , where Xα is the union
of balls of radius α centered on the points of X. Then, they have the same persistence
barcode and diagram. ♦
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When finite, persistence barcodes and diagrams can be represented in the plane.
For persistence barcodes, intervals J are ploted as {(r1, r2) ∈ R2 : r1 ∈ J} for some
fix r2 ∈ R. If we are studying the persistence modules obtained from homology, one
represents the zero homology barcode first, followed by the first homology barcode
and so on. An example is shown in figure 2.2. In the case of presistence diagrams
(figure 2.3), the intervals are represented as a multiset of points in the extended
upper half-plane

R̄2
≥ = {(r1, r2) ∈ R2 : r2 ≥ r1} ∪ {−∞} × R ∪ R× {+∞} ∪ {(−∞,+∞)}.

For decorated persistence diagrams ticks pointing into the quadrant suggested by
the superscripts are added, as it is shown in figure 2.1 and 2.4.

(b+, d−)

(b+, d+)

(b−, d−)

(b−, d+)

Figure 2.1: Decorated points of the plane and the associated ticks.

Example 2.2.20 ([4]). Consider a loop X in the plane, represented in figure 2.4,
and the continuous map g : X → R given by the projection onto the y-coordinate.
Consider the sublevel set filtration Xr = g−1((−∞, r]). For each n ≥ 0 this defines a
persistence module Vn given by V n

r = Hn(Xr, k) and vsr = Hn(isr), where isr : Xs ↪→
Xr is the inclusion. Let us see how they decompose into interval modules.

• For n = 0, the zero homology group is related to the path connected compo-
nents of the topological space. In this case,

H0(Xr, k) '



0 r ∈ (−∞, a),

k r ∈ [a, b),

k2 r ∈ [b, c),

k r ∈ [c, d),

k2 r ∈ [d, e),

k r ∈ [e,∞).

Notice that there are five critical values of r at which the vector spaces change.
Therefore, it is enough to consider the 5-term persistence modules obtained
by restricting V0 to those five values

0→ k
vab−→ k2 vbc−→ k

vcd−→ k2 vde−→ k.

In order to decompose the persistence module, we need to specify the homo-
morphisms of the above sequence. Let pa be a point of the path connected
component born at r = a, pb a point of the one born at r = b and analogously
for pd and the one born at r = d. Then, when r = c the fusion of the two
components into one implies the equality of homology classes [pa] = [pb] in
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Figure 2.2: Example of persistence barcodes associated to the Rips filtration
(Ripsα(X))α∈[0,α′] of a data set of points X (left) at different scales: α′ = 1, 1.2, 2.
The red intervals correspond to the zero homology, while the blue ones correspond
to the first homology. The x-coordinate indicates the length of the interval.

H0(Xc, k). The same happens when r = e, and in this case [pa] = [pb] = [pd].
Hence, the homomorphisms between vector spaces can be expressed as follows

0 → k[pa] → k[pa]⊕ k[pb] → k[pa] → k[pa]⊕ k[pd] → k[pa]
[pa] 7→ ([pa], 0) 7→ [pa] 7→ ([pa], 0) 7→ [pa]

(0, [pb]) 7→ [pa]
(0, [pd]) 7→ [pa].

We can rewrite this so that the persistence module is the direct sum of interval
modules, where remember that the maps between vector spaces could only be
direct sums of the identity and zero map,

0 → k[pa] → k[pa]⊕ k([pb]− [pa]) → k[pa] → k[pa]⊕ k([pd]− [pa]) → k[pa]
[pa] 7→ ([pa], 0) 7→ [pa] 7→ ([pa], 0) 7→ [pa]

(0, [pb]− [pa]) 7→ 0
(0, [pd]− [pa]) 7→ 0
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Figure 2.3: Example of persistence diagram. Red points correspond to the zero
homology groups, blue to the first homology groups and the green one to the second
homology group.

All in all, we have three persistence intervals

k[a,+∞) :0→ k[pa]→ k[pa]→ k[pa]→ k[pa]→ k[pa],

k[b, c) :0→ 0→ k([pb]− [pa])→ 0→ 0→ 0,

k[d, e) :0→ 0→ 0→ 0→ k([pd]− [pa])→ 0,

and

V0 ' k[a,+∞)⊕ k[b, c)⊕ k[d, e).

• For n = 1, the homology groups are

H1(Xr, k) '
{

0 r ∈ (−∞, f),

k r ∈ [f,∞).

Therefore, in this case we already have a persistence interval, since all vector
spaces are zero for r < f and equal to k when r ≥ f , with the identity as
connecting homomorphism. Consequently,

V1 ' k[f,∞).

• For n ≥ 2 all homology groups are zero.

The decorated persistence diagram can be found in figure 2.4. Let us see what
information can be obtained about X from it. For the zero homology group, fig-
ure 2.4 shows that it decomposes into three interval modules. One of them persists
and the other two are born and die later, the last one at r = e. This implies that
H0(Xr, k) ' k for r > e. Meanwhile, the first homology group only has one interval,
which begins at f and persists. Therefore, H1(Xr, k) ' k for r > f . Any higher
homology group is zero. Hence, X is path connected and there is a loop. ♦

Recall that each interval of a decomposition may be interpreted as the time that
certain feature persists in the filtration. In this situation, long bars in a barcode,
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Figure 2.4: On the left, a loop X in the plane for which we consider the projection
onto the y-coordinate. On the right, the decorated persistence diagram and barcode
for the sublevel set filtration of X. The points and intervals corresponding to the
zero homology groups are in red. The ones of the first homology group, in blue.

or points away from the diagonal in a the persistence diagram, represent topolog-
ical features that persist through a large range of indexes, generally considered as
being more significant. Meanwhile, short bars or points close to the diagonal are
topological properties that appear and disappear almost instantly.

This gives us an idea of the importance of a barcode or a persistence diagram
representation, due to its capability to capture significant features. In fact, we can
establish a connection between the ranks of the homomorphisms of a decomposable
persistence module and the barcode/diagram representation.

Assume that V is a persistence module, with finite dimensional vector spaces Vt,
which is decomposable

V '
⊕
l∈L

k(b∗l , d
∗
l ) = W.

Since V and W are isomorphic, the rank of vst : Vs → Vt for s ≤ t is equal to the rank
of wst : Ws → Wt. Recall that the latter are defined as direct sums of identity and
zero maps. Therefore, rk(wst ) is the number of summands k of Ws that persist until
Wt, i.e. that are not sent to zero. Notice that a summand satisfies this if and only if
it belongs to an interval module kJ such that [s, t] ⊂ J . Therefore, rk(wst ) is equal
to the number of interval modules kJ such that J contains [s, t]. In a persistence
barcode representation this corresponds to the number of intervals that contain [s, t].
For a decorated persistence diagram this is equal to the number of points, counted
with multiplicity, that belongs, together with their ticks, to R = [−∞, s] × [t,∞].
Indeed, an interval J ⊂ R is represented by a point and a tick in R if and only
if J = [s, t]; J = (b, t] or [b, t], with b < s; J = [s, d) or [s, d], with d > t; or any
possible interval with endpoints b < s ≤ t < d. It is clear that an interval J contains
[s, t] if and only if it is one of the above.

When working with homology persistence modules, βst = dim(Hs→t
n (X)) is the

rank of vst . As a consequence, the persistence Betti number βst is equal to the number
of intervals in the barcode containing [s, t] or, equivalently, to the cardinality of
Dgmn ∩ ([−∞, s]× [t,∞]) counted with multiplicity.

Remark 2.2.21. This relation between ranks and cardinality of the persistence
diagram restricted to a rectangle can be generalized, as we will see when studying
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q-tame persistence modules in chapter 3 (see (3.9)). ♦

Going back to theorem 1.3.12, the homology of Mη can be recovered from the
interval decomposition, the persistence barcode or the persistence diagram of the
Rips complex filtration, since

βn(Mη) = rk(j∗) = dim(Hr→4r
n (Rips(X))) = βr4r.

To sum up, we have managed to transform a set of complex observations into a
collection of persistence diagrams (that are basically multisets in the extended upper
half-plane), which are easier to handle and might be used to produce statistical
analysis. In the next chapter we will extend the definition of persistence diagrams
to persistence modules that are not necessarily decomposable into intervals.



Chapter 3

Q-tame persistence modules

It is possible to define persistence diagrams from the point of view of measure
theory. In this framework, a persistence module over T ⊂ R defines an integer-
valued measure on rectangles of R2, called persistence measure. When the measure
is finite it is concentrated at a discrete set of points. These points, taken with
their multiplicities, constitute the persistence diagram. It will be seen that this
let us define persistence diagrams for certain persistence modules without assuming
an interval decomposition, as it is the case of q-tame modules. For decomposable
modules both definitions agree (theorem 3.1.4). The theory developed in this chapter
can be found in chapter 3 of [4].

3.1 Persitence measures

This section is dedicated to introduce the principal aspects of this measure theory
framework, before moving to q-tame modules. But first of all, some notation.

Persistence modules indexed over finite sets {t0 < t1 < · · · < tn} are going
to be understood as representations of quivers, due to their simplicity and clarity.
Set theoretically, a quiver is a multigraph. A representation of a quiver consists in
assigning a vector space to each vertex and a linear map to each edge. Therefore,
the persistence module

Vt0 → Vt1 → · · · → Vtn

is a representation of the quiver

• → • → · · · → •.

By theorem 2.2.12 (1.), these persistence modules decompose as a finite sum of
interval modules. So as to visualize the interval decomposition in the quiver diagram,
we add the indexes t ∈ T to the circles and we agree to use empty circles when the
vector space associated is the zero one. Therefore, a map between two filled circles
is always the identity; whereas all other maps are necessarily zero. We then write
just − instead of arrows. For instance,

k[t0, t2] = •t0 − •t1 − •t2 , k[t0, t1] = •t0 − •t1 − ◦t2 .

25
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Definition 3.1.1. The measure µV associated to a persistence module V is a func-
tion defined on rectangles R = [a, b] × [c, d] ⊂ R2, with a < b ≤ c < d, and given
by

µV(R) = 〈◦a − •b − •c − ◦d|V〉,
where 〈◦a − •b − •c − ◦d|V〉 is defined as the number of copies of k[b, c] to occur in
the decomposition of the finite indexed persistence module

Va → Vb → Vc → Vd.

Notice that, since we are considering a finite subset of indices, the interval de-
composition exists and the above is well-defined. In general, for a finite index set
T = {t0 < · · · < tn}, the restricted persistence module Vt0 → · · · → Vtn is denoted by
VT . The number of copies of an arbitrary interval summand I in the decomposition
of VT is written as 〈I|VT 〉.

Obviously, two isomorphic persistence modules have the same associated mea-
sure.

Remark 3.1.2. 1. Consider the linear map vab : Va → Vb. Then, the following
is satisfied

rank(vab ) = 〈•a − •b|V〉,
nullity(vab ) = 〈•a − ◦b|V〉,

conullity(vab ) = 〈◦a − •b|V〉.

In fact, using Zorn’s lemma when needed, choose a basis B1 of ker(vab ) and P2

a basis of im(vab ). Let B2 consist of preimages of the elements of P2 (choose
one preimage per element). Then, B1∪B2 is a basis of Va and we can complete
P2 to a basis of Vb, P2∪P3. For each e1 ∈ B1, e2 ∈ B2 (which is sent to l2 ∈ P2

by vab ) and l3 ∈ P3 we have that

(span(e1)→ 0), (span(e2)→ span(l2)), (0→ span(l3)),

are respectively isomorphic to •a − ◦b, •a − •b and ◦a − •b, which are the only
three tipes of interval modules over {a, b}. This proves the assertion since, for
instance, for the first one it implies that the cardinality of B1 is equal to the
number of copies of •a − ◦b that occur in the decomposition of Va → Vb.

2. Let a < b ≤ c < d such that rbc := rk(vbc) <∞. Then,

µV(R) = 〈◦a − •b − •c − ◦d|V〉 = rbc − rac − rbd + rad.

In order to prove this let us see first that, for any finite index sets S ⊂ T it is
true that

〈I|VS〉 =
∑
J

〈J|VT 〉, (3.1)

where the sum is over those intervals J ⊆ T such that they restrict over S to I.
In fact, any interval decomposition of VT induces and interval decomposition
of VS. Then, in the latter, an interval summand is of certain type I if and only
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if it comes from a summand J of VT which restricts over S to I. Therefore, the
number of copies of I in VS is equal to the sum, over those J, of the number
of copies of J in VT , proving (3.1). In the current case, T = {a, b, c, d} and it
follows that

rbc = 〈[b, c]|V{b,c}〉 = 〈[a, c]|VT 〉+ 〈[a, d]|VT 〉+ 〈[b, c]|VT 〉+ 〈[b, d]|VT 〉,
rac = 〈[a, c]|V{a,c}〉 = 〈[a, c]|VT 〉+ 〈[a, d]|VT 〉,
rbd = 〈[b, d]|V{b,d}〉 = 〈[b, d]|VT 〉+ 〈[a, d]|VT 〉,
rad = 〈[a, d]|V{a,d}〉 = 〈[a, d]|VT 〉.

Being rbc < ∞ implies that the other three ranks are finite too. We can
then compute rbc − rac − rbd + rad. On the right hand side all terms except
〈[b, c]|VT 〉 = 〈◦a − •b − •c − ◦d|V〉 cancel.

♦

The function µV is called a measure because it is additive with respect to splitting
a rectangle into two rectangles, i.e.

µV([a, c]× [d, f ]) = µV([a, b]× [d, f ]) + µV([b, c]× [d, f ]),

µV([a, c]× [d, f ]) = µV([a, c]× [d, e]) + µV([a, c]× [e, f ]),
(3.2)

whenever a < b < c ≤ d < e < f .

R S T

U
V

Figure 3.1: Vertical and horizontal splitting of a rectangle.

This is easy to prove using (3.1). We do it in quivers notation.

µV([a, c]× [d, f ]) = 〈◦a −− •c − •d − ◦f |V〉
= 〈◦a − •b − •c − •d − ◦f |V〉+ 〈◦a − ◦b − •c − •d − ◦f |V〉
= 〈◦a − •b −− •d − ◦f −|V〉+ 〈− ◦b − •c − •d − ◦f |V〉
= µV([a, b]× [d, f ]) + µV([b, c]× [d, f ]),

µV([a, c]× [d, f ]) = 〈◦a − •c − •d −− ◦f |V〉
= 〈◦a − •c − •d − ◦e − ◦f |V〉+ 〈◦a − •c − •d − •e − ◦f |V〉
= 〈◦a − •c − •d − ◦e − |V〉+ 〈◦a − •c −− •e − ◦f |V〉
= µV([a, c]× [d, e]) + µV([a, c]× [e, f ]).

As a consequence, µV satisfies the following properties.

Lemma 3.1.3 ([4]). Consider rectangles R0, . . . , Rk all of them of the form [ai, bi]×
[ci, di] with ai < bi ≤ ci < di:
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1. Finitely additive: if R0 can be written as a union R0 = R1 ∪ · · · ∪ Rk of
rectangles with disjoint interiors, then µV(R0) = µV(R1) + · · ·+ µV(Rk).

2. Monotone: if R0 ⊆ R1 then µV(R0) ≤ µV(R1).

3. Subadditivity: if R0 ⊆ R1 ∪ · · · ∪Rk, then µV(R0) ≤ µV(R1) + · · ·+ µV(Rk).

Proof. 1. By induction and (3.2) the proof is immediate for product decompo-
sitions. Then, it suffices to consider a product decomposition of R by which
each Ri is itself product-decomposed.

2. It is possible to decompose R1 into finite rectangles with disjoint interiors such
that R0 is one of them. Then the result follows by finite aditivity and the fact
that µV ≥ 0.

3. Let us denote by α1 < α2 < · · · < αm all the x-coordinates of the corners of
the rectangles. Do the same with β1 < β2 < · · · < βn and the y-coordinates.
It is clear that all pieces [αl, αl+1] × [βt, βt+1] have disjoint interiors and that
each Ri is a union of some of those pieces. By finite aditivity, the measure of
Ri is the sum of the measure of the pieces. As R0 is contained in R1∪· · ·∪Rk,
each of its pieces must belong, at least, to one of the Rj, for j = 1, . . . , k.
Hence, µV(R0) ≤ µV(R1) + · · ·+ µV(Rk).

�

The next theorem links the measure µV to the decorated persistence diagram
defined for decomposable persistence modules.

Theorem 3.1.4 ([4]). Suppose V is a decomposable persistence module over R

V =
⊕
l∈L

k(b∗l , d
∗
l ).

Then

µV(R) = card(Dgm(V)|R) (3.3)

for every rectangle R = [a, b]× [c, d] ⊂ R2 with a < b ≤ c < d.

Remark 3.1.5. Seeing that points of Dgm(V) are decorated points, the restriction
of this set to R consists of (b∗l , d

∗
l ) ∈ Dgm(V) ∩ R. In general, given a rectangle

R = [a, b]× [c, d] with a < b and c < d, we say that (b∗l , d
∗
l ) ∈ R if and only if

a < b∗l < b & c < d∗l < d,

in the total order of (2.4). By studying the different cases of (2.3) it is easy to see
that this is equivalent to the point with tick (b∗l , d

∗
l ) lying in the closed rectangle R,

as figure 3.2 shows. ♦



3.1. PERSITENCE MEASURES 29

Figure 3.2: Different decorated points in a rectangle.

Proof. By decomposing each k(b∗l , d
∗
l ){a,b,c,d} into interval modules and putting them

together we obtain an interval decomposition of V{a,b,c,d}. In addition, with this
construction the number of copies of k[b, c] in the latter is equal to the sum of the
number of copies of k[b, c] in each k(b∗l , d

∗
l ) decomposition. That is,

µV(R) = 〈[b, c]|V{a,b,c,d}〉 =
∑
l∈L

〈[b, c]|k(b∗l , d
∗
l ){a,b,c,d}〉.

On the other hand, since k(b∗l , d
∗
l ){a,b,c,d} is an interval module or zero, the number

〈[b, c]|k(b∗l , d
∗
l ){a,b,c,d}〉 is 0 or 1. Moreover, it is 1 if and only if

k(b∗l , d
∗
l ){a,b,c,d} = ◦a − •b − •c − ◦d,

that is, a < b∗l < b and c < d∗l < d, or equivalently (b∗l , d
∗
l ) ∈ R by remark 3.1.5. All

in all, µV(R) is equal to the number of decorated points (b∗l , d
∗
l ) ∈ Dgm(V) that also

belong to R. �

Given V decomposable such that rbc is finite, equality (3.3) and remark 3.1.2 lead
to

card(Dgm(V)|R) = rbc − rbd − rac + rad.

In the case of persistent homology these ranks are the persistence Betti numbers.
Thus, if the corresponding persistence module is decomposable and βbc is finite, we
have that

card(Dgm(V)|R) = (βbc − βbd)− (βac − βad). (3.4)

This can be interpreted as the number of independent homology classes born be-
tween Hn(Xa) and Hn(Xb) that die between Hn(Xc) and Hn(Xd).

Theorem 3.1.4 gives us an idea of how to define the persistence diagram when
we do not have a decomposition into interval modules. Once the measure µV as-
sociated to the persistence module is known, we look for a multiset A ⊂ R2 which
satisfies (3.3) for all rectangles. In order to have a well-defined notion, we need
to prove that such a multiset exists and is unique. Once this is done, the above
corollary shows that both, this new definition and the old one, agree in the case of
decomposable persistence modules.

Until now, we have restricted ourselves to finite rectangles. Nevertheless, we
have seen that, even in the case of decomposable persistence modules, persistence
diagrams can have points at infinity. Therefore, we should extend the measure µV
and give a definition for infinite rectangles.
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Definition 3.1.6. Let V be a persistence module and −∞ ≤ a < b ≤ c < d ≤ +∞.
Then,

µV([a, b]× [c, d]) = 〈◦a − •b − •c − ◦d|V〉,
where V−∞ = 0 = V+∞.

This extended version of µV satisfies the same properties as before: additivity,
monotonicity and subadditivity. There is also an analogue of remark 3.1.2,

µV([−∞, b]× [c,+∞]) = rbc,

µV([a, b]× [c,+∞]) = rbc − rac , (if rac <∞)

µV([−∞, b]× [c, d]) = rbc − rbd (if rbc <∞).

(3.5)

Theorem 3.1.4 extends too.

Corollary 3.1.7 ([4]). Given a decomposable persistence module V, the measure
µV(R) of any rectangle R in the extended half-plane R̄2

≥ is equal to the number of
interval summands corresponding to decorated points (b∗l , d

∗
l ) which lie in R.

Proof. Straightforward extension of the proof of theorem 3.1.4. �

3.2 Rectangle measures

In this section we will introduce the notion of diagram of a given measure, in particu-
lar a rectangle measure. The measures µV are just a particular case on the extended
half-plane. For simplicity, we start working in R2. Later, we will expand the theory
to the extended plane R̄2.

Definition 3.2.1. Given S a subset of R2, define

Rect(S) = {[a, b]× [c, d] ⊂ S : a < b & c < d}.

Definition 3.2.2. A rectangle measure or r-measure on S is a function µ :
Rect(S)→ {0, 1, 2, . . .} ∪ {∞} which is additive under vertical and horizontal split-
ting, as in (3.2).

Seeing that the proof of lemma 3.1.3 only uses vertical and horizontal additivity,
it is also true for rectangle measures. Hence, they are finite additive, monotonous
and subadditive.

Definition 3.2.3. The r-interior of a region S ⊆ R2 is

S× = {(b∗, d∗) : ∃R ∈ Rect(S) such that (b∗, d∗) ∈ R}.

In particular, R× = {(b∗, d∗) : (b∗, d∗) ∈ R} for any rectangle R ⊂ R2. The interior
in the classical sense may be defined as

S◦ = {(b, d) : ∃R ∈ Rect(S) such that (b, d) ∈ R◦},

where R◦ is the usual interior.
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The relation between rectangle measures and multisets of R2 is stated by the
following equivalence theorem.

Theorem 3.2.4 (Equivalence Theorem [4]). Let S ⊆ R2. There is a bijective
correspondence between:

1. Finite r-measures µ on S, i.e. µ(R) <∞ for every R ∈ Rect(S).

2. Locally finite multisets A in S×, i.e. card(A|R) <∞ for every R ∈ Rect(S).

Any pair (µ,A) given by this correspondence satifies for all R ∈ Rect(S) the equality

µ(R) = card(A|R), (3.6)

Equivalently,

µ(R) =
∑

(b∗,d∗)∈R

n(b∗,d∗),

where n : S× → {0, 1, 2, . . .} is the multiplicity function for A. Therefore, the
measure can be expressed as

µ =
∑
x∈A

nxδx, (3.7)

where δx denotes the Dirac mass located at {x}.

Proof. Let A be a locally finite multiset in S× and define the function µ : Rect(S)→
{0, 1, . . .}∪{∞} as µ(R) = card(A|R). Since A is locally finite, µ is finite. In order to
conclude that it is a rectangle measure, it suffices to prove additivity under splitting.
Hence, consider R ∈ Rect(S) and split it vertically (horizontally) into two rectangles
R1, R2. Note that every decorated point (b∗, d∗) ∈ R belongs to exactly one of the
Ri. Consequently,

µ(R) = card(A|R) = card(A|R1) + card(A|R2) = µ(R1) + µ(R2).

For the reverse implication we refer to theorem 3.12 of [4]. �

Thanks to this theorem we can finally define diagrams in the case of finite r-
measures in R2.

Definition 3.2.5. Let µ be a finite rectangle measure on a region S ⊆ R2. The
decorated diagram of µ is the unique locally finite multiset Dgm(µ) in S× such
that

µ(R) = card(Dgm(µ)|R),

for every R ∈ Rect(S). The undecorated diagram of µ is the corresponding
locally finite multiset in S◦

dgm(µ) = {(b, d) : (b∗, d∗) ∈ Dgm(µ)} ∩ S◦.
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These notions can be generalized for non-finite rectangle measures and regions
S ⊆ R̄2 in the extended plane. In this case, rectangles are of the form R = [a, b]×
[c, d] ⊂ R̄2, with −∞ ≤ a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞. The r-interior of R is
defined analogously, whereas the interior R◦ is the relative interior of the rectangle
as a subspace of the extended plane. This is done so as to not lose the points at
infinity when we pass from a decorated diagram to its undecorated counterpart. A
rectangle measure on a subset S of R̄2 is defined likewise. The same happens with
the r-interior and interior of S. It can be proven as before that these measures are
finite additive, monotonous and subadditive.

Example 3.2.6. For any persistence module V, the measure µV is an r-measure
on R̄2

≥. ♦

To obtain an analogue of theorem 3.2.4 these two notions are required.

Definition 3.2.7. The finite r-interior of a rectangle measure µ on S ⊂ R̄2 is

F×(µ) = {(b∗, d∗) : ∃R ∈ Rect(S) such that (b∗, d∗) ∈ R, µ(R) <∞}.

The finite interior is defined as

F◦(µ) = {(b, d) : ∃R ∈ Rect(S) such that (b, d) ∈ R◦, µ(R) <∞}.

Notice that, whether µ is finite, then F×(µ) = S× and F◦(µ) = S◦.
The following lemma will be needed in order to prove the next theorem.

Lemma 3.2.8 ([4]). Let µ be a rectangle measure on S ⊂ R̄2 and consider any R ∈
Rect(S). Then, R× ⊆ F×(µ) if and only if µ(R) <∞.

Proof. Sufficiency is trivial. In order to prove necessity, let R ∈ Rect(S) such that
R× ⊆ F×(µ). Consider (b, d) ∈ R. If it is an interior point, then the four decorations
(b∗, d∗) belong to R×, and hence to F×(µ) by hypothesis. The definition of the finite
r-interior implies that, for each of those decorations, there is a rectangle in Rect(S)
of finite measure that contains the decorated point. Then, the union of these four
rectangles contains a neighborhood of (b, d). It is clear that we can take a rectangle
S ⊂ R contained in these union with (b, d) in its relative interior, with respect to R.
By subadditivity, S has finite measure. The same can be done for non-interior points.
The only difference is that there will be only two or one decorations contained in
R×, and then we will only need two or one rectangles of finite measure.

As a consequence, for each (b, d) ∈ R we are able to find a rectangle S ⊂ R of
finite measure containing the point (b, d) in its relative interior. The rectangle R is
contained in the union of all these rectangles. However, it is compact, so we can
reduce it to a finite union. Again, subadditivity implies R has finite measure. �

Theorem 3.2.9 ([4]). Let µ be an r-measure on S ⊂ R̄2. Then there is a uniquely
defined locally finite multiset Dgm(µ) in F×(µ) such that

µ(R) = card(Dgm(µ)|R), (3.8)

for every R ∈ Rect(S) with R× ⊆ F×(µ).
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Proof. Firstly, consider the case S ⊂ R2. For each rectangle R contained in S of
finite measure, theorem 3.2.4 can be applied. This provides a multiset in R× such
that equation (3.8) holds. By the uniqueness from 3.2.4, multisets of rectangles that
overlap should agree on the intersection. Note that the union of all the R× of finite
measure is exactly F×(µ). As a result, we obtain a uniquely defined multiset in
F×(µ) satisfying (3.8) for any R ∈ Rect(S) whose µ-measure is finite. Applying
lemma 3.2.8 we conclude the proof.

Secondly, let S ⊂ R̄2. Consider the embedding

ϕ : R̄2 → R2; (x, y) = (arctan x, arctan y)

It transforms homeomorphically the extended half-plane into the rectangle [−π/2, π/2]2

contained in R2. Notice that the statements of theorem 3.2.4 and of the first proven
part are invariant under ϕ. Indeed, consider ϕ#µ defined as ϕ#µ(R) = µ(ϕ−1(R))
for any R ∈ Rect(ϕ(S)), where ϕ−1 : [−π/2, π/2]2 → R̄2 is the inverse of ϕ.
This is well-defined since ϕ−1(Rect(ϕ(S))) = Rect(S). Moreover, this last equality
also implies that, for every R ∈ Rect(ϕ(S)), there exists R′ ∈ Rect(S) such that
ϕ−1(R) = R′. Therefore, ϕ#µ(R) = µ(R′) and ϕ#µ is a rectangle measure on
ϕ(S) ⊆ [−π/2, π/2]2 ⊂ R2. Applying the first part of this proof to ϕ#µ, there
is a unique locally finite multiset Dgm(ϕ#µ) in F×(ϕ#µ) such that ϕ#µ(R) =
card(Dgm(ϕ#µ)|R), for all R ∈ Rect(ϕ(S)) with R× ⊆ F×(ϕ#µ).

However, it is easy to see that ϕ−1(F×(ϕ#µ)) = F×(µ) and card(A|R) =
card(ϕ−1(A)|ϕ−1(R)). All this, together with the fact that ϕ is a homeomorphism
onto [−π/2, π/2]2, implies that ϕ−1(Dgm(ϕ#µ)) is a locally finite multiset in F×(µ)
which satisfies the statement of the theorem. Moreover, it is unique. �

We can finally present the wanted definitions.

Definition 3.2.10. The decorated and undecorated diagrams for an r-measure
on S ⊂ R̄2 are the ordered pairs

(Dgm(µ),F×(µ)), (dgm(µ),F◦(µ)),

where Dgm(µ) is given by the previous theorem and dgm(µ) is

dgm(µ) = {(b, d) : (b∗, d∗) ∈ Dgm(µ)} ∩ F◦(µ).

It should be pointed out that all the important information of µ is encoded in
the persistence diagram. Indeed, the measure of any rectangle R with R× ⊆ F×(µ)
is recovered by counting decorated points of Dgm(µ), and any other rectangle has
infinite measure, as lemma 3.2.8 shows.

Remark 3.2.11. All in all, undecorated persistence diagrams dgm(µ) of rectangle
measures are locally finite multisets in F◦(µ). If these multisets do not have points
at infinity, they can be described by measures of the form ν =

∑
x∈dgm(µ) nxδx

supported on F◦(µ) ∩ R2, where nx ∈ N is the multiplicity of the point x and δx
is the Dirac mass located at x ∈ R2 (recall equality (3.7)). Note that ν is a Borel
measure finite on compact sets of F◦(µ) ∩ R2, i.e. a Radon measure. In fact, any
compact set K of F◦(µ) ∩ R2 can be covered by finitely many open rectangles R◦
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such that µ(R) <∞, by definition of the finite interior and by compactness. Then,
by lemma 3.2.8 and theorem 3.2.9, card(Dgm(µ)|R) coincide with µ(R), which is
finite. Therefore, so is the cardinality of dgm(µ) on each of those rectangles. As
a result, ν(K) is finite. This measure theory viewpoint has huge benefits when
studying the properties of the space of persistence diagrams and it will be used in
section 4.2. ♦

3.3 Measure persistence diagrams for persistence

modules

As already mentioned in example 3.2.6, the persistence measure µV of any persis-
tence module V is an r-measure on the extended half-plane R̄2

≥. Consequently, its
decorated diagram Dgm(µV) is defined in the subset of R̄2

≥ over which µV is finite,
the finite r-interior. In general, it does not have to be the whole extended half-plane.
Notice that dgm(µV) is contained in R̄2

> = {(r1, r2) ∈ R̄2 : r1 < r2}.

Definition 3.3.1. Let V be a persistence module. Its measure persistence dia-
grams are the decorated and undecorated diagrams

Dgm(V) = (Dgm(µV),F×(µV)), dgm(V) = (dgm(µV),F◦(µV)),

Remark 3.3.2. Since two isomorphic persistence modules define the same mea-
sure, their persistence diagrams coincide. ♦

The following relationship between the two definitions of persistence diagrams is
then clear.

Proposition 3.3.3 ([4]). If V is a decomposable persistence module, then Int(V)
(the persistence diagram defined from the decomposition in 2.2.17) agrees with the
measure persistence diagram Dgm(µV) where the latter is defined, that is, on F×(µV).

Proof. By corollary 3.1.7 we have that µV(R) = card(Int(V)|R) for all rectangles
contained in the extended half-plane. On the other hand, by theorem 3.2.9 we also
have µV(R) = card(Dgm(µV)|R) for all rectangles with finite measure. Uniqueness
implies that Int(V) and Dgm(µV) must be the same multiset when restricted to
F×(µV). �

Remark 3.3.4. Neither definition strictly outperforms the other. There are de-
composable persistence modules for which Dgm is not defined but Int is. For in-
stance, if V =

⊕
l∈L k(b∗l , d

∗
l ) with (bl, dl) forming a dense subset of R̄2

≥, Int(V) is
defined but Dgm(µV) is not, since µV(R) is infinite for every rectangle. Moreover,
there are persistence modules not decomposable for which Dgm is defined almost
everywhere (see example 3.31 of [4]). ♦

3.3.1 Persistence diagrams for q-tame modules

An interesting type of persistence modules for which persistence diagrams are well-
defined are the q-tame modules.
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Definition 3.3.5. A persistence module V over T ⊂ R is q-tame if rst := rk(vst ) is
finite, whenever s < t.

By remark 3.1.2 this implies that µV(R) is finite for every R = [a, b]× [c, d] ⊂ R̄2
≥

not touching the diagonal, i.e. a < b < c < d. That is, µV is a finite r-measure
on R̄2

> and F◦(µV) = R̄2
>. Therefore, the measure persistence diagram of a q-

tame module is well-defined as a locally finite multiset on R̄2
>, given by dgm(V).

Nevertheless, Dgm(V) might have points in the diagonal (some rectangle touching
the diagonal may have finite measure). For several reasons, which will become clear
in the next chapter, we will not consider these points and therefore we will work with
undecorated diagrams. Moreover, we will add to dgm(V) the diagonal with infinite
multiplicity. This will allow us to define distances between persistence diagrams.
Summarizing:

Theorem 3.3.6 ([1]). If V is a q-tame persistence module, then it has a well-
defined persistence diagram. Such a persistence diagram is the union of points in
∆ = {(r, r) : r ∈ R}, counted with infinite multiplicity, and a locally finite multiset
dgm(V) in R̄2

>. That is, for any rectangle R = [a, b]× [c, d] with a < b < c < d, the
number of points of dgm(V) contained in R, counted with multiplicity, is finite.

Last but not least, the case of simplicial complexes is recovered and some results
concerning their persistence modules at the homology level are stated.

Definition 3.3.7. A filtration (Xt)t∈T of topological spaces or simplicial complexes
is tame if, for any integer n, the persistence module (Hn(Xt, k))t∈T is q-tame. If
this filtration consists of sublevel sets of some function f : X → R, we say that f is
tame.

In these cases, due to (3.5) and as long as b < c, the following equivalence
between persistence Betti numbers and measures of rectangles R = [−∞, b]× [c,∞]
is satisfied

βbc = µV(R) = card(Dgm(V)|R). (3.9)

This is the same relation we obtained before remark 2.2.21 for decomposable per-
sistence modules.

Lastly, some examples of tame filtrations are given.

Example 3.3.8. The filtrations of finite simplicial complexes are always tame. ♦
Proposition 3.3.9 ([4]). Let X be a compact polyhedron. That is, X is the reali-
sation of a finite simplicial complex K as a topological space. Consider f : X → R
a continuous function. Then, f is tame.

Proof. Consider b < c. By successive barycenter subdivision, X can be represented
as the realisation of a finite simplicial complex where no simplex meets both f−1(b)
and f−1(c). Let Y be the union of the closed simpleces which meet Xb = f−1(−∞, b].
Then, by construction, we have the inclusions Xb ⊆ Y ⊆ Xc. For any n ∈ N, this
translates into the commutative diagram

Hn(Xb, k) Hn(Xc, k)

Hn(Y, k)
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Since Y is the realisation of a finite simplicial complex, Hn(Y, k) has finite dimen-
sion. Therefore, the rank of Hn(Xb, k) → Hn(Xc, k) is finite. This proves that the
homology persistence module is q-tame. �

Corollary 3.3.10 ([4]). Let X be a locally compact polyhedron. That is, X is the
realisation of a locally finite1 simplicial complex K. Consider f : X → R a proper
continuous funtion which is bounded below. Then, f is tame.

Proof. Analogously to the previous proposition, we have to prove that, for any b < c,
the rank of the homomorphism Hn(Xb, k) → Hn(Xc, k) is finite. Notice that, if we
find a compact subpolyhedron Y of X that contains Xc (Xb ⊆ Xc), then we finish
by applying the preceding proposition in Y . By hypothesis, f is bounded below, so
Xc = f−1[min(f), c]; and proper, so Xc is compact. Therefore, any open cover of
Xc by open neighborhoods of its points, has a finite subcover. Since K is locally
finite, those neighborhoods can be chosen such that they only intersect finitely many
closed simplices. As a result, there are only finitely many closed simplices meeting
Xc. The union of them gives Y . �

This is the case of distance functions, whence the homology persistence modules
obtained from offsets of compact sets are q-tame too.

1A collection of subsets of a topological space X is said to be locally finite if each point in the
space has a neighborhood that intersects only finitely many of the sets in the collection.



Chapter 4

Metrics on the space of
persistence diagrams

In previous chapters it has been shown that persistence diagrams are hugely helpful
tools to encode and interpret topological information of filtrations. It is clear that,
in order to study this information, it would be extremely useful to compare them.
We will focus on q-tame modules, whose persistence diagrams are well-defined and
which include relevant practical cases. All in all, the objective of this chapter is to
endow the set of persistence diagrams with a metric structure, i.e. to give a distance
between them. The main reference is [6].

4.1 Bottleneck and p-th distances

Throughout this section we will consider persistence diagrams associated to q-tame
modules. Owing to theorem 3.3.6, they consist of a locally finite multiset, in the
open extended half-plane R̄2

>, and the diagonal ∆ = {(r, r) : r ∈ R}, with infinite
multiplicity. Therefore, in order to define a distance between them, we need to
specify the distance between any pair of points in R̄2

> and between any point and
the diagonal. The standard way of doing this is the bottleneck distance d∞, that we
introduce below. This distance is related to the interleaving distance between two
persistence modules U, V. The latter is defined as

di(U,V) = inf{δ ≥ 0 : U,V are δ-interleaved}, (4.1)

where two modules are δ-interleaved if, for all t, there are linear maps φt : Ut → Vt+δ
and ψt : Vt → Ut+δ such that the following diagrams commute for all s ≤ t

Us Ut

Vs+δ Vt+δ

ust

φs φt

vs+δt+δ

Us−δ Us+δ

Vs

us−δs+δ

φs−δ ψs

37
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Vs Vt

Us+δ Ut+δ

vst

ψs ψt

us+δt+δ

Vs−δ Vs+δ

Us

vs−δs+δ

ψs−δ φs

In fact, the isometry theorem (theorem 5.14 of [4]) asserts that these two distances
are equal for q-tame persistence modules and their undecorated persistence diagrams

d∞(dgm(U), dgm(V)) = di(U,V). (4.2)

It should be pointed out that the interleaving distance is not a true metric, di(V,U)
does not imply V ' U (see example 5.2 of [4])

Let then dgm1 and dgm2 be two persistence diagrams with locally finite multisets
X and Y in R̄2

>, respectively. Recall that, even though a multiset may have the same
point repeated several times, all these repetitions are considered as different points
of the set.

Definition 4.1.1. A partial matching between dgm1 and dgm2 is a subset γ ⊆
(X ∪ ∆) × (Y ∪ ∆) such that any x ∈ X (y ∈ Y ) appears exactly once as a first
(second) coordinate in γ.

Denote by Γ(dgm1, dgm2) the set of all partial matchings between dgm1 and
dgm2. Notice it is nonempty, since we can always match all points to ∆.

Remark 4.1.2. To define a distance between persistence diagrams based in pairing
points, it is essential to add the diagonal with infinite multiplicity, as we did in
theorem 3.3.6. In this way, if they have different number of off-diagonal points, we
can find a match for the remaining ones, which could be countable. ♦

Definition 4.1.3. The bottleneck distance d∞ between two persistence diagrams
dgm1 and dgm2 is

d∞(dgm1, dgm2) = inf
γ∈Γ(dgm1,dgm2)

(
max

(x,y)∈γ
||x− y||∞

)
.

We can interpret max(x,y)∈γ ||x − y||∞ (the length of the longest edge in the
matching) as the cost of γ, so that the bottleneck distance is defined as the minimal
cost that can be achieved by matchings between both diagrams. A partial matching
that realizes this infimum is said to be optimal. Indeed, there always exists an
optimal matching.

Theorem 4.1.4. Let X, Y be two locally finite multisets in the extended half-plane.
Assume that, for every η > δ, there exists a partial matching between X and Y with
cost less or equal than η. Then, there exists a partial matching with cost less or
equal than δ.

Proof. For every integer n ≥ 1 let γn be a matching with cost less or equal than
δ+1/n. Each of these matchings defines an indicator function χn : X×Y → {0, 1}.
The proof is based on constructing an indicator function χ : X × Y → {0, 1} which
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is the limit of the χn. Then, check that this χ actually defines a matching with cost
less or equal than δ. This is the matching we were looking for. The proof can be
found in theorem 5.12 of [4]. �

Remark 4.1.5. Although in the standard definition of the bottleneck distance
|| · ||∞ is used, any norm || · ||q may be used instead, where 1 ≤ q ≤ ∞. Due
to the equivalence of norms in R2, this change has almost no consequences on the
results. ♦

Given a partial matching γ notice that, if (x, y) ∈ γ where x ∈ X has finite
coordinates and y ∈ ∆, matching x with its orthogonal projection onto the diagonal
instead would only reduce the cost. Hence, we can always assume y to be the
orthogonal projection of x. Similarly, the points of the diagonal can always be
matched to themselves with a null cost.

Remark 4.1.6. The definition of bottleneck distance can also be applied to the
decorated persistence diagram of a q-tame module, adding to it the diagonal with
infinite multiplicity. However, in this case, the persistence diagram Dgm(V) may in-
clude diagonal points. Therefore, Dgm1 and Dgm2 with the same off-diagonal points,
but with different diagonal ones, would satisfy d∞(Dgm1,Dgm2) = 0, whereas
Dgm1 6= Dgm2. By considering undecorated diagrams this problem is avoided.
From a practical point of view it is also understandable to forget about boundary
points, since they represent features that do not persist in the filtration. ♦

Furthermore, persistence diagrams may contain points of the form (b,+∞) or
(−∞, d). The set of these points is called essential part of the diagram and they
are compared in the expected way

||(−∞, d)− (−∞, q)||∞ = |d− q|,
||(b,+∞)− (p,+∞)||∞ = |b− p|,

||(−∞,+∞)− (−∞,+∞)||∞ = 0,

||(b, d)− (−∞, q)||∞ =∞,
||(b, d)− (p,+∞)||∞ =∞.

Hence, if the cardinalities of the essential parts of two persistent diagrams differ, the
bottleneck distance would be infinite. That is, it would not define a true metric. To
be finite we need

card(dgm1|{−∞}×R) = card(dgm2|{−∞}×R),

card(dgm1|R×{+∞}) = card(dgm2|R×{+∞}),
card(dgm1|{−∞}×{+∞}) = card(dgm2|{−∞}×{+∞}),

and that the points of the essential parts are matched with each other. It is easy
to see that an optimal matching consists in sorting the points with respect to their
finite coordinate and then using increasing matching. We can conclude that the
essential parts behave independently of the rest of the diagram. Whence, in the
following persistence diagrams with empty essential parts will be considered. This
means that dgm will be contained in {(r1, r2) ∈ R2 : r1 < r2}.
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Remark 4.1.7. When computing persistence diagrams with numerical tools, fil-
trations need to be finite. As a consequence, it may happen that essential points
are not such, and they disappear when larger filtrations are consider, or that they
have not been studied yet, and will appear if we study a larger filtration. ♦

A distance between persistence diagrams is also useful to study how perturba-
tions of the data set affect them. Obviously, these perturbations can change the
filtration and, consequently, the persistence module and persistet homology, and
they will be visible in the diagram. We would like that persistence diagrams are
stable under some perturbations. That is, that two close data sets induce close
diagrams in the bottleneck distance. Regarding this we have the two results below.

Theorem 4.1.8 ([1]). Let M be a topological space and f, g : M → R two real-valued
functions. Suppose they are tame. Then, for any n ∈ N,

d∞(dgmn(f), dgmn(g)) ≤ ||f − g||∞ = sup
x∈M
|f(x)− g(x)|,

where dgmn(f) is the persistence diagram associated to the persistence module
(Hn(f−1((−∞, r])))r∈R. In particular, the operator f 7→ dgmn(f) is 1-Lipschitz.

Proof. Denote δ = ||f − g||∞. Then, for any r ∈ R, we have

Fr = f−1(−∞, r] ⊆ g−1(−∞, r + δ] = Gr+δ,

Gr = g−1(−∞, r] ⊆ f−1(−∞, r + δ] = Fr+δ.

For every s ≤ t this yields to the following commutative diagrams, where all maps
involved are inclusions

Fs Ft

Gs+δ Gt+δ

φs

Fs−δ Fs+δ

Gs

Gs Gt

Fs+δ Ft+δ

Gs−δ Gs+δ

Fs

It is clear then that the induced commutative diagrams between n-th homology
groups imply that the corresponding persistence modules (Hn(Fr, k))r∈R and (Hn(Gr, k))r∈R
are δ-interleaved. Moreover, by hypothesis, these modules are q-tame. Therefore,
the isometry theorem of (4.2) provides the inequality

d∞(dgmn(f), dgmn(g)) = di(Hn(Fr, k), Hn(Gr, k)) ≤ δ = ||f − g||∞.

�

If we consider simplicial complexes built on top of point clouds, the above state-
ment transforms as follows.
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Theorem 4.1.9 ([22]). Let (X, dX) and (Y, dY) be two finite metric spaces. Then,
for any n ∈ N,

d∞(dgmn(X), dgmn(Y)) ≤ 2dGH(X,Y),

where dGH is the Gromov-Hausdorff distance and dgmn(X), dgmn(Y) are the persis-
tence diagrams of the Vietoris-Rips or Čech filtrations.

Definition 4.1.10. The Gromov-Hausdorff distance between two compact met-
ric spaces (M1, d1), (M2, d2) is

dGH((M1, d1), (M2, d2)) = inf
ϕM1

,ϕM2
,M
dH(ϕM1(M1), ϕM2(M2)),

where the infimum is taken over all isometric embeddings ϕM1 , ϕM2 of M1,M2 into
some same metric space (M,d). Indeed, this infimum is a minimum. When both
compact spaces belong to the same metric space, dGH = dH .

Proof. Let δ = dGH((X, dX), (Y, dY)). By definition, there is a metric space (M,dM)
and two isometric embeddings ϕX : X→M and ϕY : Y→M such that

dH(ϕX(X), ϕY(Y)) = dGH((X, dX), (Y, dY)) = δ.

It is a standard result that any finite metric space of cardinality m can be isomet-
rically embedded into (Rm, l∞), where l∞ is the distance defined by the infinity
norm. Since both X and Y are finite, so is the isometric embedding ϕX(X) ∪ ϕY(Y)
in M . Denote by m its cardinality. Then, there exists an isometric embedding
ϕ : (ϕX(X) ∪ ϕY(Y), dM)→ (Rm, l∞). It is clear that it satisfies

dH(ϕ ◦ ϕX(X), ϕ ◦ ϕY(Y)) = dH(ϕX(X), ϕY(Y)) = δ.

Recall that, by definition of Hausdorff distance 1.3.1, the left hand side is equal to
||l∞ϕ◦ϕX(X) − l∞ϕ◦ϕY(Y)||∞, so

||l∞ϕ◦ϕX(X) − l∞ϕ◦ϕY(Y)||∞ = δ.

On the other hand, consider the filtration given by (l∞ϕ◦ϕX(X))
−1((−∞, r)), which is

just the union of open l∞-balls of radius r centered on points of ϕ◦ϕX(X). Note that
these balls are convex sets. Therefore, we can apply the persistent nerve theorem
as in examples 2.2.6 and 2.2.19. We conclude that this filtration defines a homology
persistence module isomorphic to the one of the Čech filtration, Čechr(ϕ ◦ ϕX(X)).
In particular, both filtrations are tame and have identical persistence diagrams. The
same can be deduced for ϕ◦ϕY(Y). Being tame filtrations implies that, using similar
argument to those of the previous theorem, we can prove the following inequality

d∞(dgm(l∞ϕ◦ϕX(X)), dgm(l∞ϕ◦ϕY(Y))) ≤ ||l∞ϕ◦ϕX(X) − l∞ϕ◦ϕY(Y)||∞ = δ.

Having the same persistence diagrams means that the diagrams of the Čech fil-
trations of ϕ ◦ ϕX(X) and ϕ ◦ ϕY(Y) are also at bottleneck distance δ. As ϕ, ϕX
and ϕY are isometric embeddings, they preserve distances. Consequently, Čechr(ϕ ◦
ϕX(X), l∞) = Čechr(X, dX). The same equality is deduced for Y. All in all, the Čech
filtrations of X and Y are at bottleneck distance δ, as wanted.
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Lastly, by lemma 2.9 of [22], Čech complexes of parameter r coincide with Rips
complexes of parameter 2r in (Rm, l∞). Therefore, the filtration Čechr(ϕ◦ϕX(X)) is
exactly the same as Rips2r(ϕ ◦ ϕX(X)). Arguing as before, the latter coincide with
Rips2r(X, dX). Consequently, the persistence diagrams of all these filtrations are the
same. Proceeding analogously with Y we conclude that persistence diagrams of the
Rips filtrations of X and Y are at bottleneck distance 2δ, as wanted. �

As a consequence, similar point clouds have similar persistence diagrams. If
we interpret persistence diagrams as multiscale topological features, it means that
these features are robust with respect to perturbations of the data in the Gromov-
Hausdorff metric. Indeed, the lower bound provided by theorem 4.1.9 can be used
for classification tasks, as done in [22].

Although the bottleneck distance is extremely useful when studying the stability
properties of persistence diagrams, it only depends on the largest distance among
pairs of the matching. Hence, the closeness of the remaining points is not taken into
account. As a consequence, if γ is an optimal matching, any other matching that
does not change the distance between the furthest pair is also optimal. In particular,
optimal matchings are not unique in general. Likewise, a perturbation that leaves
the length of the longest edge of the matching intact will not be detected by the
bottleneck distance. This is not desirable, since discriminating information used in
applications may lie in these undetected properties. All in all, a new distance must
be introduced.

Definition 4.1.11. The p-th distance, or Wasserstein distance, between two
persistence diagrams dgm1 and dgm2 is defined as

dp(dgm1, dgm2) =

 inf
γ∈Γ(dgm1,dgm2)

∑
(x,y)∈γ

||x− y||pq

 1
p

,

where 1 ≤ p <∞.

The infimum is also attained in this case (propositions 4.3.9 and 4.3.10). Now,
the cost of a partial matching involves all the edges of the matching, solving the
previous problems. For simplicity we will denote both distances as dp for 1 ≤ p ≤ ∞.

There is also a weaker stability result for the p-th distance. Before the statement
we need some definitions.

Definition 4.1.12. Given a persistence diagram dgm, the total persistence of
parameter p is

Persp(dgm) = dp(dgm, 0)p, if 1 ≤ p ≤ ∞,
Pers∞(dgm) = d∞(dgm, 0)

where 0 denotes the empty diagram (which consists only of the diagonal points with
infinite multiplicity).
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Definition 4.1.13. Let M be a triangulable, compact metric space. It is said to
imply a bounded degree-q total persistence, with 1 ≤ q <∞, if there exists a
constant CM such that

Persq(dgmn(f)) ≤ CMLip(f)q,

for every tame Lipschitz function f : M → R.

Example 4.1.14 ([23]). Sn implies bounded degree-q total persistence for q =
n + δ, for any δ > 0. In particular, whether n = 1, 2, it implies bounded degree-n
total persistence. ♦
Theorem 4.1.15 ([23]). Let M be a triangulable, compact metric space that implies
bounded degree-q total persistence for some real number 1 ≤ q < ∞. Consider
f, g : M → R two tame Lipschitz functions.

Then, there exists a constant DM , that depends on M , such that for all p ≥ q
and for any n ∈ N

dp(dgmn(f), dgmn(g)) ≤ C1/p||f − g||1−
q
p

∞ ,

where C = DM max{Lip(f)q,Lip(g)q}.
Proof. Consider without loss of generality the p-th distance with the infinity norm.
Let γ be a matching that realizes the bottleneck distance

d∞(dgmn(f), dgmn(g)) = max
x∈dgmn(f)

||x− γ(x)||∞,

where γ(x) is the point of dgmn(g) paired with x. Denote ε = ||f − g||∞. Applying
theorem 4.1.8 we obtain maxx∈dgmn(f) ||x − γ(x)||∞ ≤ ε. Therefore, for every x ∈
dgmn(f) we have that

||x− γ(x)||∞ ≤ ε. (4.3)

Moreover, it is possible to assume that all these points also satisfy

||x− γ(x)||∞ ≤ ||x−∆x||∞ + ||γ(x)−∆γ(x)||∞, (4.4)

where by ||x − ∆x||∞ we mean the distance between a point and its orthogonal
projection onto the diagonal. Indeed, if a point x ∈ dgmn(f) does not satisfy
inequality (4.4), then

||x−∆x||∞ + ||γ(x)−∆γ(x)||∞ < ||x− γ(x)||∞,
which implies that ||x −∆x||∞ < ||x − γ(x)||∞ and ||x −∆γ(x)||∞ < ||x − γ(x)||∞.
But then, matching x and γ(x) with their projections costs less than pairing x with
γ(x). Thus, without risking optimality, we can assume (4.4) is satisfied for every
x ∈ dgmn(f). Then, given any p ≥ q and using inequalities (4.3) and (4.4), we can
write

dp(dgmn(f),dgmn(g))p ≤
∑

x∈dgmn(f)

||x− γ(x)||p∞ ≤
∑

x∈dgmn(f)

εp−q||x− γ(x)||q∞

≤ εp−q
∑

x∈dgmn(f)

(
||x−∆x||∞ + ||γ(x)−∆γ(x)||∞

)q
= 2qεp−q

∑
x∈dgmn(f)

( ||x−∆x||∞ + ||γ(x)−∆γ(x)||∞
2

)q
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For q ≥ 1 the map ϕ(u) = uq is convex in [0,∞), thus

ϕ

(
u+ v

2

)
≤ ϕ(u) + ϕ(v)

2
.

Applying this we obtain

dp(dgmn(f),dgmn(g))p ≤ 2qεp−q
∑

x∈dgmn(f)

1

2
(||x−∆x||q∞ + ||γ(x)−∆γ(x)||q∞)

= 2q−1εp−q

 ∑
x∈dgmn(f)

||x−∆x||q∞ +
∑

x∈dgmn(f)

||γ(x)−∆γ(x)||q∞


= 2q−1εp−q (Persq(dgmn(f)) + Persq(dgmn(g))) .

The last equality follows from the fact that an optimal matching between a per-
sistence diagram and the empty one for the infinite norm consists in pairing each
point with its orthogonal projection onto the diagonal. By hypothesis on the space
M and definition 4.1.13, there exists a constant CM such that

dp(dgmn(f), dgmn(g))p ≤ 2q−1εp−qCM [Lip(f)q + Lip(g)q]

≤ 2qεp−qCM max{Lip(f)q,Lip(g)q}

Finally, recalling that ε = ||f − g||∞, we get

dp(dgmn(f), dgmn(g)) ≤ C1/p||f − g||1−
q
p

∞ ,

where C = 2qCM max{Lip(f)q,Lip(g)q}. �

Note that this theorem just establishes Hölder continuity, not Lipschitz. More-
over, a constant upper bound is obtained only when p = 1 (and hence q = 1).

4.2 The space of persistence diagrams

So far, we have studied persistence diagrams of q-tame modules, which consists of
a locally finite multiset of {(r1, r2) ∈ R2 : r1 < r2} together with the diagonal with
infinite multiplicity. Recall that the essential part has been removed, since it can be
treated separately when comparing diagrams. Let us introduce the notation

Ω := {(r1, r2) ∈ R2 : r1 < r2}, ∂Ω := {(r, r) : r ∈ R}.

Recovering the measure-theoretic point of view of remark 3.2.11, these persistence
diagrams can be expressed as point measures supported on Ω

ν =
∑
x∈X

nxδx,

where nx ∈ N is the multiplicity of the point, δx denotes the Dirac mass located
on {x} and X are the points of the locally finite multiset dgm(V) ∩ Ω, counted
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without multiplicity. Furthermore, most of the definitions and results of the previous
subsection are general enough to be applied to any point measure on Ω. Indeed,
partial matchings between point measures are well-defined, considering the locally
finite sets X counted with multiplicity. Hence, so are distances dp for 1 ≤ p ≤
∞, where the infimum is also attained. As a consequence, given two persistence
diagrams of q-tame modules dgm1 and dgm2 and their associated point measures
µ1 and µ2, we have that dp(dgm1, dgm2) = dp(µ1, µ2), for any 1 ≤ p ≤ ∞.

In conclusion, it is possible to work in the more general framework of point mea-
sures, with dp distances between them. Until the end of this chapter we will adopt
this measure-theoretic viewpoint. As happened with persistence modules, this gen-
eralization will lead to interesting results useful in the practical case of studying a
data set.

Firstly, some notions must be introduced.

Definition 4.2.1. The set D is the set of all point measures supported on Ω. Its
elements will be called persistence diagrams too.

As we have explained before, this definition is consistent with persistence dia-
grams of q-tame modules without their essential parts.

Definition 4.2.2. The space of persistence diagrams of parameter p is defined
by

Dp = {µ ∈ D : Persp(µ) <∞},
where 1 ≤ p ≤ ∞. The total persistence of µ of parameter p, Persp(µ), is defined as
in definition 4.1.12.

Observe that, given µ =
∑

x∈X nxδx, for 1 ≤ p <∞ and q ≥ 1, we have

Persp(µ) =
∑
x∈X

nx||x− ∂Ω||pq ,

where ||x− ∂Ω||q denotes the distance between x ∈ Ω and its orthogonal projection
onto the diagonal. If p =∞,

Pers∞(µ) = sup
x∈X
||x− ∂Ω||q.

Therefore, Dp is the set of persitence diagrams that are at finite dp distance
from the empty diagram. As we will see, this ensures that the space of persistence
diagrams is a metric space.

Remark 4.2.3. In practice, persistence diagrams coming from data sets are finite,
so they belong to Dp. However, not all persistence diagrams of q-tame modules do.
For instance, V =

⊕
n∈N k[n, 2n] is q-tame, but its persistence diagram consists of all

the points (n, 2n) ∈ R2. Hence, it is not at finite distance from the empty diagram
if p <∞. ♦

Lemma 4.2.4. (Dp, dp) is a metric space, where 1 ≤ p ≤ ∞.
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Proof. Given two persistence diagrams µ, ν ∈ Dp, it is clear that a subset γ of
(X ∪ ∂Ω) × (Y ∪ ∂Ω) is a partial matching between µ and ν if and only if, as a
subset of (Y ∪ ∂Ω) × (X ∪ ∂Ω), it is a partial matching between ν and µ. Hence,
dp(µ, ν) = dp(ν, µ).

Let us show that dp(µ, ν) = 0 if and only if µ = ν. On the one hand, if µ = ν
we can always take the partial matching γ = {(x, x) : x ∈ X ∪ ∂Ω}. Since
||x− x||q = 0 and dp(µ, ν) ≥ 0, we conclude that dp(µ, ν) = 0. On the other hand,
suppose dp(µ, ν) = 0. That means there exists a partial matching γ ∈ Γ(µ, ν) such
that ||x− y||q = 0 for every (x, y) ∈ γ. That is, x = y and hence µ = ν.

For the triangle inequality, consider three persistence diagrams µ, ν, τ ∈ Dp
with locally finite multisets X, Y and Z respectively. Given any partial match-
ings γµ,ν , γν,τ , between µ and ν and between ν and τ respectively, we can build a
partial matching γµ,τ between µ and τ . Indeed, for any x ∈ X (points are counted
with multiplicity) there exists a unique pair (x, yx) ∈ γµ,ν . If yx ∈ ∂Ω, take it as
unique pair of γµ,τ with x in the first coordinate. If yx ∈ Y , there exists a unique
(yx, zyx) ∈ γν,τ . Choose then (x, zyx) as the x-pair of γµ,τ . For the remaining z ∈ Z
that do not appear in any chosen pair for γµ,τ , repeat the process in the other di-
rection. There is a unique (yz, z) ∈ γν,τ . If yz ∈ ∂Ω, take it as z-pair. If not, it
exists a unique pair (xyz , yz) ∈ γµ,ν . Then, take (xyz , z) ∈ γµ,τ . By this construction
any x ∈ X and z ∈ Z appears exactly once in the chosen pairs. Therefore, γµ,τ is a
partial matching.

Let γµ,ν and γν,τ be optimal partial matchings. In the case of the bottleneck
distance, for any (x, z) ∈ γµ,τ we can write

||x− z||∞ ≤ ||x− y||∞ + ||y − z||∞
≤ max

(x,y)∈γµ,ν
||x− y||∞ + max

(y,z)∈γν,τ
||y − z||∞ = d∞(µ, ν) + d∞(ν, τ).

Therefore,
d∞(µ, τ) ≤ max

(x,z)∈γµ,τ
||x− z||∞ ≤ d∞(µ, ν) + d∞(ν, τ),

as wanted. For 1 ≤ p <∞, a similar result is obtained using Minkowski inequality

dp(µ, τ) ≤

 ∑
(x,z)∈γµ,τ

||x− z||pq

1/p

≤

 ∑
(x,y)∈γµ,ν

||x− y||pq

1/p

+

 ∑
(y,z)∈γν,τ

||y − z||pq

1/p

= dp(µ, ν) + dp(ν, τ).

The assumption on the total persistence ensures that dp(µ, ν) is finite for any
µ, ν ∈ Dp. Indeed,

dp(µ, ν) ≤ dp(µ, 0) + dp(0, ν) = Persp(µ)1/p + Persp(ν)1/p <∞.

All in all, dp : Dp ×Dp → [0,∞) is a metric and (Dp, dp) is a metric space. �

Whence, we equip the space Dp with the distance dp.
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Remark 4.2.5. Consider a data set and the induced q-tame module at the ho-
mology level. Its persistence diagram is an element of Dp. Therefore, we have
managed to map the entiere data set to a single point in a metric space. As a result,
qualitative information (topology) has transformed into quantitaive (distances). ♦

Proposition 4.2.6 ([24]). For 1 ≤ p < ∞ the space (Dp, dp) is a Polish metric
space, i.e. is complete and separable in the metric dp.

Proof. Completness can be found in theorem 6 of [24]. Let us prove separability.

In order to show this, we have to find a countable dense subset in Dp. Denote
by |µ| the cardinality of the off-diagonal part of a persistence diagram µ ∈ Dp. For
α > 0, consider the map uα : Dp → Dp such that x ∈ uα(µ) if and only if x ∈ µ and
||x− ∂Ω||q ≥ α. Observe that, since Persp(µ) <∞, the cardinality of uα(µ) is finite
for every α > 0. Similarly, define lα : Dp → Dp, where x ∈ lα(µ) if and only if x ∈ µ
and ||x− ∂Ω||q < α. Now, let

S = {µ ∈ Dp : |µ| <∞, x ∈ Q2 ∀x ∈ µ}.

Notice that S =
⋃∞
m=0 Sm, where Sm = {µ ∈ S : |µ| = m}. Each Sm is isomorphic

to a subset of Q2m, so countable. Hence, S is countable. We just have to prove that
it is dense in Dp for the p-th distance. That is, given ν ∈ Dp, for all ε > 0 we have
to find µ ∈ S such that dp(ν, µ) < ε.

Fix ν =
∑

x∈X nxδx and ε > 0. Notice that

dp(lα(ν), 0)p =
∑

{x∈X:||x−∂Ω||q<α}

||x− ∂Ω||pq .

Therefore, there exists α > 0 such that dp(lα(ν), 0) < ε/2. Since the points of
uα(ν) belong also to ν, a possible matching between uα(ν) and ν is to pair together
the commom points and the remaining ones (i.e. lα(ν)) with the projection onto
the diagonal. Note that the cost of this matching is equal to dp(lα(ν), 0). When
computing the p-th distance we search for the minimum, so

dp(ν, uα(ν)) ≤ dp(lα(ν), 0) < ε/2.

On the other hand, the persistence diagram uα(ν) can be seen as a point in R2|uα(ν)|

(recall |uα(ν)| is finite). As Q2|uα(ν)| is dense in R2|uα(ν)| , we can find a point
in the former, which corresponds to a persistence diagram µ ∈ S and, such that
dp(µ, uα(ν)) < ε/2. All in all,

dp(ν, µ) ≤ dp(ν, uα(ν)) + dp(uα(ν), µ) < ε/2 + ε/2 = ε,

as wanted. �

In spite of the fact that persistence diagrams must remain locally finite and
have finite total persistence, they may have infinitely many points. Indeed, this
assumption is necessary for Dp to be complete, as the next example shows.
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Example 4.2.7. The limit of a sequence of finite persistence diagrams can have
infinitely many points. Consider µn =

∑n
k=1 δ(0,2−k). This is a Cauchy sequence

because dp(µn, µm) ≤∑m
k=n+1 2−k = 2−n−2−m and the sequence {2−k}k∈N is Cauchy.

However, the number of off-diagonal points in µn grows to infinity as n→∞. That
is, in the limit we have

∑
k≥1 δ(0,2−k) which has infinitely many points, though it

belongs to Dp. ♦
Remark 4.2.8 ([6]). Although the space (D∞, d∞) is complete (corollary 4.3.16),
it is not separable for the bottleneck distance. In fact, let I ⊂ N and define the
persistence diagram aI =

∑
i∈I δ(i,i+1). For all I ⊂ N, aI ∈ D∞. Consider the

uncountable family A = {aI : I ⊂ N} ⊂ D∞. Notice that d∞(aI , aI′) =
√

2/2
for any two distinct I, I ′ ⊂ N, as an optimal matching consists in pairing all points
with the diagonal. Then, let S be an arbitrary dense subset in D∞. By density, for
each aI ∈ A there exists µI ∈ S such that d∞(µI , aI) <

√
2/4. However, for any

I ′ 6= I, d∞(µI , aI′) ≥ d∞(aI , aI′)− d∞(aI , µI) >
√

2/4. Therefore, inside S we must
find a different persistence diagram µI for each aI . This implies that S cannot be
countable, so D∞ is not separable. ♦

4.3 Optimal transport

The natural next stage is to introduce distances between more general measures
(not only pointed ones) and use them to compare persistence diagrams. To this
aim, we will present a distance based on optimal transport. Firstly, the idea behind
optimal transport and the formulation that concerns us are explained. After this
brief introduction, we will deal directly with the case which allows us to compare
persistence diagrams. For further reading we refer to [25], [5] and [6].

4.3.1 Unbalanced optimal transport

Intuitively, two measures µ and ν represent two ways of distributing mass. Consider
the case where transporting mass from the first configuration to the second has
some cost. The goal is to find the optimal way of transporting the mass from the
first to the second configuration, minimizing this cost. The classical formulation
of the transport problem is the Kantorovich formulation: consider X and Y two
Polish spaces and µ, ν two Borel non-negative finite measures supported on X ,Y ,
respectively. Let c : X × Y → R+ be a lower-semicontinuous non-negatively valued
cost function. The optimal transport problem reads

inf
π∈Π(µ,ν)

(∫
X×Y

c(x, y)dπ(x, y)

)
, (4.5)

where
Π(µ, ν) = {π measure on X × Y : p1#π = µ, p2#π = ν} ,

is the set of transport plans between µ and ν, for p1 : X × Y → X and p2 :
X × Y → Y the natural projections. The pushforward conditions are equivalent to
the fact that, for any Borel subset A ⊂ X , B ⊂ Y ,

π(A× Y) = µ(A), π(X ×B) = ν(B).
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Observe that both measures are forced to have the same mass

µ(X ) = p1#π(X ) = π(X × Y) = p2#π(Y) = ν(Y).

As a matter of fact, transport plans always exist, it is enough to consider the product
measure 1

µ(X )
µ⊗ν. The advantage of this formulation is that optimal transport plans

do always exist, i.e. the minimum is attained (see theorem 4.1 of [25]). Besides, in
some important situations, optimal transport plans and maps coincide, as stated in
theorem 9.4 of [25].

Theorem 4.3.1. Consider two probability measures ρ, µ in R2 with finite second
moment and let c(x, y) = ||x − y||2 be the cost function. Assume ρ is absolutely
continuous with respect to the Lebesgue measure. Then, the optimal transport plan
π ∈ Π(ρ, µ) is unique and it is induced by a transport map. That is, there exists a
measurable map Tµ : R2 → R2, which is the gradient of a convex function Tµ = ∇φ,
such that π = (id, Tµ)#ρ.

With this formulation, distances between measures can be defined, e.g. the p-
Wasserstein distance, where the cost function is d(x, y)p,

Wp(µ, ν) =

(
inf

π∈Adm(µ,ν)

∫
X×X

d(x, y)pdπ(x, y)

)1/p

. (4.6)

Nevertheless, persistence diagrams may have different number of off-diagonal points,
and even infinite. Therefore, Kantorovich formulation is not enough for us, since
it is only capable of comparing measures of same finite mass. Although some tries
have been made in order to extend this theory to measures with different mass, the
more interesting is the one developed by Figalli, A. in [5], since it also deals with
Radon measures of infinite mass and so overcomes the two problems. This approach
is developed for Radon measures supported on a bounded open proper subset X
of Rm. The idea is to consider this set together with its boundary X̄ = X t ∂X .
Intuitively, when transporting the mass from the first configuration to the second,
we can use ∂X as an infinite reservoir. In this way, we can take as much mass
as we wish from the boundary or give it back, as long as we pay the cost. The
formulation of this optimal transport problem is as follows: given µ, ν two Radon
measures supported on X , the problem reads

inf
π∈Adm(µ,ν)

(∫
X̄×X̄

c(x, y)dπ(x, y)

)
, (4.7)

where Adm(µ, ν) is the set of admissible transport plans defined as

Adm(µ, ν) =
{
π measure on X̄ × X̄ : p1#π|X = µ, p2#π|X = ν

}
,

being pi : X̄ × X̄ → X̄ the natural projections. Again, the pushforward restrictions
are equivalent to the fact that, for any Borel sets A,B ⊂ X ,

π(A× X̄ ) = µ(A), π(X̄ ×B) = ν(B). (4.8)
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It is always possible to define an admissible transport plan, the trivial one which
sends all mass of µ and ν to the boundary. In addition, optimal plans always exists
too, as shown in [5]. Similarly to Kantorovich formulation and the p-Wasserstein
distance, it is also possible to define a distance between measures using (4.7), which
is called optimal transport distance.

Notice that the approach taken in [5] is developed for X bounded, while per-
sistence diagrams are supported on Ω, obviously not bounded. Luckily for us, this
optimal transport problem can be extended to Ω with additional care. This is done
in the next subsection for a larger set of measures, not only Dp. Of course, implica-
tions of the results obtained will be highlighted for the particular case of persistence
diagrams. Consequently, it will be possible to compare the optimal transport dis-
tance with the dp distances defined in the previous sections.

4.3.2 Optimal transport distance

Given Ω the open half-plane and ∂Ω the diagonal {(r, r) : r ∈ R}, consider Ω̄ =
Ωt∂Ω. Denote by d : Ω̄×Ω̄→ [0,∞) the metric || · ||q on Ω̄ with 1 ≤ q ≤ ∞, though
other distances may be used. Consider p∂Ω : Ω→ ∂Ω the orthogonal projection onto
the diagonal. Letting M(Ω) be the set of non-negative Radon measures supported
on Ω, we introduce the following notion.

Definition 4.3.2. Given µ ∈M(Ω) the total persistence of parameter p is defined
as

Persp(µ) =

∫
Ω

d(x, ∂Ω)pdµ(x), if 1 ≤ p <∞,

and1

Pers∞(µ) = sup
x∈spt(µ)

d(x, ∂Ω), if p =∞.

Remark 4.3.3. Let µ be a Borel measure on Ω satisfying Persp(µ) < ∞, where
1 ≤ p <∞. Then, for any Borel set A ⊂ Ω such that d(A, ∂Ω) := infx∈A d(x, ∂Ω) >
0, we have

µ(A)d(A, ∂Ω)p ≤
∫
A

d(x, ∂Ω)pdµ(x) ≤
∫

Ω

d(x, ∂Ω)pdµ(x) = Persp(µ) <∞. (4.9)

This implies that µ(A) < ∞. In particular, µ is automatically a Radon measure,
because for any compact set K of Ω, d(K, ∂Ω) > 0. ♦

Definition 4.3.4. The space of persistence measures of parameter p, with 1 ≤
p ≤ ∞, is the space of non-negative Radon measures supported on Ω that have
finite total persistence, i.e.

Mp =Mp(Ω) = {µ ∈M(Ω) : Persp(µ) <∞} .
1The support of a measure µ are the points x such that if Ux is any open neighborhood of x,

then µ(Ux) > 0.
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Notice that Dp, the space of persistence diagrams of parameter p given by defini-
tion 4.2.2, is the subspace ofMp consisting only of point measures. As it happened
with Dp, the finiteness assumption on the total persistence of µ ∈ Mp will ensure
that the optimal transport distance, defined below, is finite.

Definition 4.3.5. The optimal transport distance between two measures µ, ν ∈
Mp, with 1 ≤ p <∞, is

OTp(µ, ν) =

(
inf

π∈Adm(µ,ν)

∫
Ω̄×Ω̄

d(x, y)pdπ(x, y)

)1/p

=

(
inf

π∈Adm(µ,ν)
Cp(π)

)1/p

.

For p =∞, given two measures µ, ν ∈M∞ we define

OT∞(µ, ν) = inf
π∈Adm(µ,ν)

(
sup

(x,y)∈spt(π)

d(x, y)

)
= inf

π∈Adm(µ,ν)
C∞(π).

Admisible transport plans for which the infimum is attained are called optimal.
The set of these optimal transport plans is denoted by Optp(µ, ν).

Observe that OTp is defined for Radon measures of infinite mass, as long as their
total persistence is finite.

Remark 4.3.6. Consider a finite collection of finite point measures {νi}ni=1 on
Ω (e.g. comes from the computation of the persistence diagrams of a collection
of samples). Thanks to finiteness, an open bounded subset Y of Ω containing the
support of all the measures can be obtained. It is possible to choose Y as a triangle
with one of the boundaries on ∂Ω and such that d(x, ∂Y) = d(x, ∂Ω) for all x that
belongs to the supports. This choice implies that, computing the optimal transport
distance between νi and νj as in [5] (using all the boundary ∂Y as a reservoir)
gives the same result and same optimal admissible transport plan as computing the
optimal transport in Ω following definition 4.3.5, since sending mass to ∂Y ∩ ∂Ω
is the cheapest. Hence, when analyzing data sets, persistence diagrams may be
considered as finite point measures on a bounded subset Y of Ω and results from [5]
may be directly applied. ♦

Optimal admissible transport plans π ∈Optp(µ, ν) can be assumed to be sup-
ported on EΩ := Ω̄× Ω̄\∂Ω× ∂Ω. That is, π|∂Ω×∂Ω = 0. Indeed, it is easy to check
that the measure π − π|∂Ω×∂Ω is also an admissible transport plan for µ and ν. For
example, for any A ⊆ Ω Borel set

(π−π|∂Ω×∂Ω)(A×Ω̄) = π(A×Ω̄)−π((A×Ω̄)∩(∂Ω×∂Ω)) = π(A×Ω̄)−π(∅) = µ(A).

Moreover, it is clear that Cp(π − π|∂Ω×∂Ω) ≤ Cp(π) for any 1 ≤ p ≤ ∞.
A relevant characteristic of this formulation is that optimal admissible transport

plans always exist.

Proposition 4.3.7 ([6]). Let µ, ν ∈ Mp with 1 ≤ p ≤ ∞. Then, Optp(µ, ν) is
nonempty.
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Proof. Assume for the moment that Adm(µ, ν) is sequentially compact (1) for the
vague topology and Cp : Adm(µ, ν)→ R is lower semicontinuous w.r.t vague topol-
ogy (2). Let {πn}n be a minimizing sequence of admissible plans, i.e.

lim inf
n→∞

Cp(πn) = OTp
p(µ, ν).

Since Adm(µ, ν) is sequentially compact, there exists a subsequence {πnk}k that
converges vaguely to an admissible plan π. By lower semicontinuity of Cp, we have
that

Cp(π) ≤ lim inf
k→∞

Cp(πnk) = OTp
p(µ, ν).

But the optimal transport distance is defined as the infimum of the Cp(π). Therefore,
OTp

p(µ, ν) = Cp(π), and then π ∈ Optp(µ, ν). To finish the proof we need to show
the assumptions we made at the beginning:

1. Admissible transport plans may be assumed to be supported on EΩ, so it is
enough to prove sequentially compactness there. We first show that Adm(µ, ν)
is relatively compact for the vague topology, using proposition B.0.10. Sec-
ondly, we prove that it is closed. This concludes the proof.

Let K ⊂ EΩ be an arbitrary compact set. It is easy to see that there always
exist two compact sets K1, K2 ⊂ Ω such that K ⊂ (K1 × Ω̄) ∪ (Ω̄×K2). Let
π ∈ Adm(µ, ν). Then,

π(K) ≤ π((K1 × Ω̄) ∪ (Ω̄×K2))

≤ π(K1 × Ω̄) + π(Ω̄×K2) = µ(K1) + ν(K2) <∞. (4.10)

Therefore,
sup{π(K) : π ∈ Adm(µ, ν)} <∞

is satisfied for any compact set K of EΩ. By proposition B.0.10 we conclude
that Adm(µ, ν) is relatively compact.

On the other hand, let {πn}n ⊂ Adm(µ, ν) such that πn
v−→ π ∈ M(EΩ). In

order to prove that π is admissible, we need to verify that both marginals of
π on Ω are still µ and ν. Notice that p1#πn|Ω = µ for all n ∈ N. Thus, if
p1#πn|Ω converges vaguely to p1#π|Ω inM(EΩ), then p1#π|Ω = µ as wanted.
By (B.2) we just have to show that, given any f ∈ Cc(Ω),

lim
n→∞

ϕf (p1#πn|Ω) = ϕ(p1#π|Ω).

In fact, since πn converges vaguely to π, using (B.2) again we get

lim
n→∞

ϕf (p1#πn|Ω) = lim
n→∞

∫
Ω

f(x)d(p1#πn|Ω)(x) = lim
n→∞

∫
EΩ

f(x)dπn(x, y)

=

∫
EΩ

f(x)dπ(x, y) =

∫
Ω

f(x)d(p1#π|Ω)(x) = ϕf (p1#π|Ω).

Analogously we obtain that the second marginal of π on Ω is ν. All in all, π ∈
Adm(µ, ν) and the set of admissible transport plans is closed in M(EΩ).
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2. We start proving lower semicontinuity for p ∈ [1,∞). Let {πn}n ⊂ Adm(µ, ν)
such that πn

v−→ π. We have seen that π ∈ Adm(µ, ν). Consider the measure
on Ω̄× Ω̄ given by

π′n(A) =

∫
A

d(x, y)pdπn(x, y).

Indeed, we can assume πn ∈M(EΩ), so π′n is also supported on EΩ. Moreover,
it is a Radon measure. This is deduced from the fact that, for any compact
set K ⊂ EΩ, since K is bounded and inequality (4.10) is satisfied,

π′n(K) =

∫
K

d(x, y)pdπn(x, y) ≤ Dπn(K) <∞.

All in all, π′n ∈M(EΩ) for every n ∈ N. Notice that

π′n(EΩ) = Cp(πn), π′(EΩ) = Cp(π).

Using the characterization of vague convergence (B.2) we have that, for any
bounded Borel set A ⊂ EΩ such that π(∂A) = 0,

lim
n→∞

π′n(A) = lim
n→∞

∫
A

d(x, y)pdπn(x, y) = lim
n→∞

∫
EΩ

1Ad(x, y)pdπn(x, y)

=

∫
EΩ

1Ad(x, y)pdπ(x, y) =

∫
A

d(x, y)pdπ(x, y) = π′(A),

being 1A the characteristic function for A ⊂ EΩ. Therefore, Portmanteau
theorem B.0.11 implies π′n

v−→ π′. Note that EΩ is open so, applying again
theorem B.0.11, the following holds

lim inf
n→∞

Cp(πn) = lim inf
n→∞

π′n(EΩ) ≥ π′(EΩ) = Cp(π).

That is, Cp is lower semicontinuous.

For p = ∞, consider as before {πn}n ⊂ Adm(µ, ν) such that πn
v−→ π ∈

Adm(µ, ν). Let r ∈ R which satisfies

r > lim inf
n→∞

C∞(πn). (4.11)

and consider Ur = {(x, y) ∈ EΩ : d(x, y) > r}. Observe that, by definition of
C∞(πn), lim infn→∞ πn(Ur) = 0. Since Ur is open, we can apply Portmanteau
theorem B.0.11 and obtain

π(Ur) ≤ lim inf
n→∞

πn(Ur) = 0.

As a result, the support of π is contained in the complementary of Ur. There-
fore, C∞(π) ≤ r, and this holds for any r ∈ R satisfying (4.11). If C∞ is
not lower semicontinuous, then C∞(π) > lim infn→∞C∞(πn). However, in
that case we can find r ∈ R such that C∞(π) > r > lim infn→∞C∞(πn), in
contradiction with C∞(π) ≤ r.
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After that, the next lemma presents the expected relation between the optimal
transport distance of a measure µ ∈Mp to the zero measure and the total persistence
of µ.

Lemma 4.3.8. For any µ ∈Mp, 1 ≤ p ≤ ∞,

OTp
p(µ, 0) = Persp(µ), OT∞(µ, 0) = Pers∞(µ).

Proof. We begin characterizing the admissible plans between µ and 0. Consider
π ∈Adm(µ, 0). In particular it satisfies

π(Ω× Ω̄) = µ(Ω), π(Ω̄× Ω) = 0.

Notice that Ω̄× Ω = Ω× Ω t ∂Ω× Ω. Therefore, the last equality implies that

π(Ω× Ω) = 0, π(∂Ω× Ω) = 0.

As mentioned before, we assume that π(∂Ω× ∂Ω) = 0. Hence, if we write the total
space as the disjoint union

Ω̄× Ω̄ = Ω× Ω t ∂Ω× ∂Ω t Ω× ∂Ω t ∂Ω× Ω,

we can conclude that π(Ω̄ × Ω̄) = π(Ω × ∂Ω), and this is true for any admissible
plan. Consequently, fixing p ∈ [1,+∞),

OTp
p(µ, 0) = inf

π∈Adm(µ,0)

∫
Ω̄×Ω̄

d(x, y)pdπ(x, y) = inf
π∈Adm(µ,0)

∫
Ω×∂Ω

d(x, y)pdπ(x, y).

On the other hand, being admissible implies

p1#π|Ω = µ, p2#π|Ω = 0,

so that if p∂Ω : Ω̄→ ∂Ω is the orthogonal projection onto the diagonal, we have for
any π ∈Adm(µ, 0),∫

Ω×∂Ω

d(x, p∂Ω(x))pdπ(x, y) =

∫
Ω̄×Ω̄

d(x, p∂Ω(x))pdπ(x, y)

=

∫
Ω̄×Ω̄

(d(·, p∂Ω(·))p ◦ p1)(x, y)dπ(x, y)

=

∫
Ω̄

d(x, p∂Ω(x))pd(p1#π)(x).

Observe that the map d(·, p∂Ω(·))p is zero on the diagonal. Therefore,∫
Ω×∂Ω

d(x, p∂Ω(x))pdπ(x, y) =

∫
Ω

d(x, p∂Ω(x))pd(p1#π)(x) =

∫
Ω

d(x, p∂Ω(x))pdµ.

In particular, it does not depend on π. For any (x, y) ∈ Ω × ∂Ω, d(x, p∂Ω(x))p ≤
d(x, y)p. This implies that∫

Ω

d(x, p∂Ω(x))pdµ =

∫
Ω×∂Ω

d(x, p∂Ω(x))pdπ(x, y) ≤
∫

Ω×∂Ω

d(x, y)pdπ(x, y)
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for any admissible transport plan between µ and 0. That is, it is an inferior bound,
and as a result∫

Ω

d(x, p∂Ω(x))pdµ ≤ inf
π∈Adm(µ,0)

∫
Ω×∂Ω

d(x, y)pdπ(x, y) = OTp
p(µ, 0).

In order to finish the proof we just need to find and admissible transport plan
π̃ ∈Adm(µ, 0) such that∫

Ω×∂Ω

d(x, y)pdπ̃(x, y) =

∫
Ω

d(x, p∂Ω(x))pdµ(x) =

∫
Ω

d(x, ∂Ω)pdµ(x)

To define π̃ consider the following. Equip Ω̄ with the measure µ̃ defined by µ̃(A) =
µ(A∩Ω) for any Borel set A ⊆ Ω̄. Notice that µ̃(∂Ω) = 0. On the other hand, equip
Ω̄ with the measure ν̃ defined on the Borel sets of Ω̄ as ν̃(A) = ν(A ∩ ∂Ω), where ν
is any probability measure on ∂Ω. Notice that in this case ν̃(Ω) = 0. Consider the
map

F : Ω̄× Ω̄→ Ω̄× Ω̄

(x, y) 7→ (p1(x, y), p∂Ω ◦ p1(x, y)),

and the measure π̃ = F#(µ̃⊗ ν̃) on Ω̄× Ω̄, which is given by

π̃(A×B) = µ̃⊗ ν̃(F−1(A×B)) = µ̃⊗ ν̃(p−1
1 (A) ∩ (p∂Ω ◦ p1)−1(B)).

It is an admissible transport plan for µ and 0. Indeed, π̃ ∈ M(Ω̄ × Ω̄), since
µ̃, ν̃ ∈M(Ω̄). Moreover, for any Borel sets A,B ⊆ Ω,

π̃(A× Ω̄) = µ̃⊗ ν̃(p−1
1 (A) ∩ (p∂Ω ◦ p1)−1(Ω̄)) = µ̃⊗ ν̃(A× Ω̄)

= µ̃(A)ν̃(Ω̄) = µ(A)ν(∂Ω) = µ(A),

π̃(Ω̄×B) = µ̃⊗ ν̃(p−1
1 (Ω̄) ∩ (p∂Ω ◦ p1)−1(B)) = µ̃⊗ ν̃(∅) = 0.

All in all, π̃ ∈Adm(µ, 0). Let us see that it is the transport plan we were looking
for. Using the properties of the pushforward and the fact that µ̃|∂Ω = 0 and ν̃|Ω = 0
we obtain∫

Ω×∂Ω

d(x, y)pdπ̃(x, y) =

∫
Ω̄×Ω̄

d(x, y)pdπ̃(x, y) =

∫
Ω̄×Ω̄

d(x, y)pd (F#µ̃⊗ ν̃)

=

∫
Ω̄×Ω̄

(d(·, ·)p ◦ F ) (x, y)d(µ̃⊗ ν̃) =

∫
Ω̄×Ω̄

d(x, p∂Ω(x))pd(µ̃⊗ ν̃)

=

∫
Ω̄

∫
Ω̄

d(x, p∂Ω(x))pdν̃(y)dµ̃(x) =

∫
Ω

∫
∂Ω

d(x, p∂Ω(x))pdν̃(y)dµ̃(x)

=

∫
Ω

d(x, p∂Ω(x))p
(∫

∂Ω

dν̃(y)

)
dµ̃(x) =

∫
Ω

d(x, p∂Ω(x))pdµ̃(x)

=

∫
Ω

d(x, p∂Ω(x))pdµ(x) =

∫
Ω

d(x, ∂Ω)pdµ(x).

The case p = ∞ is very similar. Given π ∈ Adm(µ, 0) we have seen that spt(π) ⊂
Ω × ∂Ω. Notice that, for any x ∈ spt(µ), exists y ∈ ∂Ω such that (x, y) ∈ spt(π).
Therefore,

Pers∞(µ) = sup
x∈spt(µ)

d(x, ∂Ω) ≤ sup
(x,y)∈spt(π)

d(x, ∂Ω) ≤ sup
(x,y)∈spt(π)

d(x, y),
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since d(x, ∂Ω) ≤ d(x, y) for all (x, y) ∈ Ω × ∂Ω. This is true for any admissible
transport plan, so we conclude that

Pers∞(µ) ≤ OT∞(µ, 0).

Analogously to the previous part, to finish we just need to prove that there exists and
admissible transport plan π̃ such that C∞(π̃) = Pers∞(µ). Consider π̃ = F#(µ̃ ⊗
ν̃) as before. Let (x, y) ∈ spt(π̃) and suppose y 6= p∂Ω(x). Then, we can find
neighborhoods U and V in Ω̄, of x and y respectively, such that p∂Ω(U) ∩ V = ∅.
Therefore, p−1

1 (U) ∩ (p∂Ω ◦ p1)−1(V ) = ∅. But this provides the contradiction

0 = µ̃⊗ ν̃(p−1
1 (U) ∩ (p∂Ω ◦ p1)−1(V )) = π̃(U × V ) > 0,

where the right hand side is positive because (x, y) ∈ spt(π̃). All in all, (x, y) ∈
spt(π̃) implies y = p∂Ω(x). Since the projection of a boundary point is itself, we can
write

sup
(x,y)∈spt(π̃)

d(x, y) = sup
(x,y)∈spt(π̃) : x∈Ω

d(x, ∂Ω) = sup
x∈spt(µ)

d(x, ∂Ω),

where the last equality follows from p1#π̃|Ω = µ. �

As we expected, OTp defines a true metric on Mp.

Proposition 4.3.9 ([6]). Let µ, ν ∈Mp with 1 ≤ p ≤ ∞. Then, OTp is a distance
on Mp.

Proof. Let µ, ν, τ ∈ Mp, we divide the proof into two parts according to the value
of p. Firstly, consider 1 ≤ p < ∞. For the symmetry property, note that given
π ∈ Adm(µ, ν) the homeomorphism φ : (x, y) 7→ (y, x) provides an admisible plan
in Adm(ν, µ), and viceversa. Therefore, it is clear that OTp(µ, ν) = OTp(ν, µ).

Assume OTp(µ, ν) = 0. Then, there exists π ∈ Adm(µ, ν) such that∫
EΩ

d(x, y)pdπ(x, y) = 0.

Hence, d(x, y)p = 0 π-a.e. This, together with the fact that d(x, y)p = 0 if and only
if x = y, implies that π is supported on {(x, x) : x ∈ Ω}. Therefore, for any Borel
set A ⊂ Ω,

µ(A) = π(A× Ω̄) = π(A× A) = π(Ω̄× A) = ν(A).

That is, µ = ν. On the other hand, suppose µ = ν. Consider the measure µ̃ on Ω̄
defined by µ̃(A) = µ(A∩Ω). Let F : Ω̄→ Ω̄× Ω̄; F (x) = (x, x). Then, it is easy to
see that π = F#µ̃ defines an admissible transport plan between µ and itself such
that

∫
Ω̄×Ω̄

d(x, y)pdπ(x, y) = 0. Hence, OTp(µ, µ) = 0.
To prove the triangle inequality we need an adaptation of the glueing lemma 2.1

of [5]. In our case it states that, for any π12 ∈ Optp(µ, ν), π23 ∈ Optp(ν, τ) there
exists γ ∈M(Ω̄× Ω̄× Ω̄) such that

p12#γ|EΩ
= π12, p23#γ|EΩ

= π23, (4.12)
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where pij are the canonical projections, and the restrictions are concentrated on
{(x, x) : x ∈ ∂Ω} on ∂Ω× ∂Ω. Define on Ω̄× Ω̄ the measure

η(E) =

∫
(E,x,z)

∫
(Ω̄,y)

dγ(x, y, z).

for any Borel E ⊂ Ω̄× Ω̄. Then, for any Borel subsets A,B ⊂ Ω,

η(A× Ω̄) =

∫
A

∫
Ω̄

∫
Ω̄

dγ(x, y, z) = γ(A× Ω̄× Ω̄) = π12(A× Ω̄) = µ(A),

η(Ω̄×B) =

∫
Ω̄

∫
Ω̄

∫
B

dγ(x, y, z) = γ(Ω̄× Ω̄×B) = π23(Ω̄×B) = τ(B).

Therefore, η ∈ Adm(µ, τ). By the triangle and Minkowski inequality we obtain

OTp(µ, τ) ≤
(∫

Ω̄×Ω̄

d(x, z)pdη(x, z)

)1/p

=

(∫
Ω̄×Ω̄×Ω̄

d(x, z)pdγ(x, y, z)

)1/p

≤
(∫

Ω̄3

d(x, y)pdγ(x, y, z)

)1/p

+

(∫
Ω̄3

d(y, z)pdγ(x, y, z)

)1/p

=

(∫
Ω̄2

d(x, y)pd(p12#γ)(x, y)

)1/p

+

(∫
Ω̄2

d(y, z)pd(p23#γ)(y, z)

)1/p

.

Since on ∂Ω × ∂Ω the measures p12#γ and p23#γ are concentrated on {(x, x) :
x ∈ ∂Ω} (where the distance function is zero) and they satify (4.12), the last two
integrals can be written as

OTp(µ, τ) ≤
(∫

EΩ

d(x, y)pd(p12#γ)(x, y)

)1/p

+

(∫
EΩ

d(y, z)pd(p23#γ)(y, z)

)1/p

=

(∫
EΩ

d(x, y)pdπ12(x, y)

)1/p

+

(∫
EΩ

d(y, z)pdπ23(y, z)

)1/p

= OTp(µ, ν) + OTp(ν, τ).

Secondly, let p =∞. Given π ∈ Adm(µ, ν), the same homeomorphism as before
provides and element of Adm(ν, µ) with the same support as π, and viceversa. It is
clear then that OT∞(µ, ν) = OT∞(ν, µ).

If OT∞(µ, ν) = 0, there exists π ∈ Adm(µ, ν) such that sup(x,y)∈spt(π) d(x, y) = 0.
This implies that spt(π) ⊆ {(x, x) : x ∈ Ω}. We conclude as before µ = ν.
Suppose µ = ν and define π = F#µ as previously. This measure is concentrated on
EΩ ∩ {(x, x) : x ∈ Ω}. Hence, C∞(π) = 0, which implies OT∞(µ, µ) = 0.

For the triangle inequality we proceed analogously. Given π12 ∈ Optp(µ, ν) and
π23 ∈ Optp(ν, τ) we use again the glueing lemma to obtain γ and we define the same
measure η. Notice that, for any (x, z) ∈ spt(η), there exists at least one y ∈ Ω̄ such
that (x, y, z) ∈ spt(γ). Therefore,

OT∞(µ, τ) ≤ C∞(η) = sup
(x,z)∈spt(η)

d(x, z) ≤ sup
(x,z)∈spt(η):(x,y,z)∈spt(γ)

d(x, y) + d(y, z)

≤ sup
(x,y)∈spt(p12#γ)

d(x, y) + sup
(y,z)∈spt(p23#γ)

d(y, z).
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Again, the fact that the marginals of γ are concentrated on the diagonal on ∂Ω×∂Ω
(where d is zero) and equalities (4.12) lead to

OT∞(µ, τ) ≤ sup
(x,y)∈spt(π12)

d(x, y) + sup
(y,z)∈spt(π23)

d(y, z)

= C∞(π12) + C∞(π23) = OT∞(µ, ν) + OT∞(ν, τ).

To finish the proof notice that finite total persistence and triangle ineguality implies
OTp :Mp ×Mp → [0,∞). �

Hence, we equipMp with the optimal transport distance OTp. In the particular
case of persistence diagrams, the following is satisfied.

Proposition 4.3.10 ([6]). For µ, ν ∈ Dp ⊂Mp, with 1 ≤ p ≤ ∞,

OTp(µ, ν) = dp(µ, ν).

That is, the optimal transport distance is an extension of the distance dp.

Proof. Let us sketch the proof when p = ∞. For full arguments we refer to propo-
sition 3.5 and 3.23 of [6].

Let a, b ∈ D∞ such that a =
∑

i∈I δxi and b =
∑

j∈J δyj , where I, J are the sets of
indices, possibly infinite. Consider π ∈ Adm(a, b). It is easy to see that the marginal
constraints imply spt(π) ⊂ {xi}i∈I ∪ ∂Ω × {yj}j∈J ∪ ∂Ω. Moreover, we can always
assume that the mass π({xi} × ∂Ω) (resp. π(∂Ω × {yj}) is sent on the projection
of xi (resp. yj). Therefore, an element of Opt(a, b) can be written as a bystochastic
matrix indexed on (−J ∪ I)× (−I ∪ J). Denoting by S the set of all these matrices
and defining

Cij = d(xi, yj) i, j > 0, Cij = d(xi, p∂Ω(xi)) i > 0, j < 0,

Cij = d(p∂Ω(yj), yj) i < 0, j > 0, Cij = 0 i, j < 0,

it is immediate that OT∞(a, b) = infQ∈S sup{Cij : (i, j) ∈ spt(Q)}. Notice that,
for any Q ∈ S, k ∈ N and different indices {i1, . . . , ik} ⊂ −J ∪ I, we have

k =
k∑

k′=1

∑
j∈−I∪J

Qik′j
=

∑
j∈−I∪J

k∑
k′=1

Qik′j
⇒ Card{j : ∃k′ (ik′ , j) ∈ spt(Q)} ≥ k.

By Hall’s marriage theorem exists a permutation matrix P with spt(P ) ⊂ spt(Q).
Consequently, if S ′ is the set of all permutation matrices indexed on (−J ∪ I) ×
(−I ∪ J),

sup{Cij : (i, j) ∈ spt(Q)} ≥ inf
P∈S′

sup{Cij : (i, j) ∈ spt(P )} = d∞(a, b)

⇒ OT∞(a, b) ≥ d∞(a, b).

Finally, since S ′ ⊂ S we conclude that OT∞(a, b) = d∞(a, b). �



4.3. OPTIMAL TRANSPORT 59

Thanks to the equality OTp = dp on Dp, all stability results for persistence
diagrams developed in section 4.1 are true when using optimal transport distance
instead. Those statements can be seen as an approach to characterize convergence
between persistence diagrams. In the case of the space of persistence measures
that characterization is clearer, and relates vague and weak convergence to optimal
transport convergence.

Theorem 4.3.11. Let {µn}n∈N be a sequence of measures in Mp and µ ∈ Mp,
where 1 ≤ p <∞. Then,

lim
n→∞

OTp(µn, µ) = 0

if and only if

µn
v−→ µ and lim

n→∞
Persp(µn) = Persp(µ).

Proof. Let us prove the direct implication. The proof of the converse implication
can be found in theorem 3.7 of [6].

Assume that limn→∞OTp(µn, µ) = 0. Since OTp is a distance in Mp we can
apply the triangle inequality and obtain

OTp(µn, 0) ≤ OTp(µn, µ) + OTp(µ, 0)⇒ OTp(µn, 0)−OTp(µ, 0) ≤ OTp(µn, µ).

Likewise,

−OTp(µn, µ) ≤ OTp(µn, 0)−OTp(µ, 0).

Therefore,

0 ≤ |OTp(µn, 0)−OTp(µ, 0)| ≤ OTp(µn, µ)→ 0,

which implies

lim
n→∞

OTp(µn, 0) = OTp(µ, 0).

By lemma 4.3.8 we conclude that

lim
n→∞

Persp(µn) = Persp(µ).

To prove the vague convergence of µn to µ it is enough to show that, for any
f ∈ Cc(Ω), limn→∞ ϕf (µn) = ϕf (µ). Let then f ∈ Cc(Ω), with support contained in
some compact set K of Ω. For this compact set K we have that 0 < d(K, ∂Ω) <∞.
Hence, by remark 4.3.3, µn(K) <∞ for every n ∈ N.

Thanks to Stone–Weierstrass theorem, for any ε > 0 there exists a Lipschitz
function fε, with constant Lε, whose support is also contained in K and such that
||f − fε||∞ ≤ ε. Fixing ε > 0,

|ϕf (µn)− ϕf (µ)| =
∣∣∣∣∫

Ω

fdµn −
∫

Ω

fdµ

∣∣∣∣
=

∣∣∣∣∫
Ω

fdµn −
∫

Ω

fεdµn +

∫
Ω

fεdµn −
∫

Ω

fdµ+

∫
Ω

fεdµ−
∫

Ω

fεdµ

∣∣∣∣
≤
∣∣∣∣∫

Ω

(f − fε)dµn
∣∣∣∣+

∣∣∣∣∫
Ω

(fε − f)dµ

∣∣∣∣+

∣∣∣∣∫
Ω

fεdµn −
∫

Ω

fεdµ

∣∣∣∣ .
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Because both f and fε have support contained in K,∣∣∣∣∫
Ω

(f − fε)dµn
∣∣∣∣ =

∣∣∣∣∫
K

(f − fε)dµn
∣∣∣∣ ≤ ∫

K

|f − fε| dµn

≤ µn(K) sup
x∈K
|f(x)− fε(x)| ≤ µn(K)ε.

Proceeding analogously for the term (f − fε)dµ we get

|ϕf (µn)− ϕf (µ)| ≤ µn(K)ε+ µ(K)ε+

∣∣∣∣∫
Ω

fεdµn −
∫

Ω

fεdµ

∣∣∣∣
Suppose supk µk(K) is not finite. Denote 1/δ = d(K, ∂Ω) so that µn(K) ≤

δPersp(µn) by (4.9). Then, for every M > 0 exists n ∈ N such that µn(K) > M .
That is, we can find a subsequence {µnk(K)}k which tends to infinity. But then the
subsequence {Persp(µnk)}k tends to infinity too. However, we have already proven
that the sequence Persp(µn) has finite limit, and the same should satisfy any of its
subsequences. Therefore, we get a contradiction and conclude that supk µk(K) is
finite. Hence,

|ϕf (µn)− ϕf (µ)| ≤ sup
k
µk(K)ε+ µ(K)ε+

∣∣∣∣∫
Ω

fεdµn −
∫

Ω

fεdµ

∣∣∣∣
= (sup

k
µk(K) + µ(K))ε+ An.

(4.13)

Let us study the last termAn more carefully. For each n ∈ N, consider πn ∈Optp(µn, µ).
In particular, πn are admissible plans, hence

p1#πn|Ω = µn, p2#πn|Ω = µ ∀n ∈ N,

where pi : Ω̄× Ω̄→ Ω̄ are the canonical projections. By properties of pushforwards
and knowing that fε|∂Ω = 0, we obtain∫

Ω

fε(x)dµn(x) =

∫
Ω

fε(x)d(p1#πn)(x) =

∫
Ω̄

fε(x)d(p1#πn)(x)

=

∫
Ω̄×Ω̄

(fε ◦ pi)(x, y)dπn(x, y) =

∫
Ω̄×Ω̄

fε(x)dπn(x, y).

Similarly, ∫
Ω

fε(y)dµ(y) =

∫
Ω̄×Ω̄

fε(y)dπn(x, y).

As a result, since fε has support in K and Lipschitz constant Lε, the last term is
bounded by

An =

∣∣∣∣∫
Ω

fεdµn −
∫

Ω

fεdµ

∣∣∣∣ =

∣∣∣∣∫
Ω̄×Ω̄

fε(x)dπn(x, y)−
∫

Ω̄×Ω̄

fε(y)dπn(x, y)

∣∣∣∣
=

∣∣∣∣∫
Ω̄×Ω̄

(fε(x)− fε(y))dπn(x, y)

∣∣∣∣ ≤ ∫
Ω̄×Ω̄

|fε(x)− fε(y)| dπn(x, y)

=

∫
(K×Ω̄)∪(Ω̄×K)

|fε(x)− fε(y)| dπn(x, y) ≤ Lε

∫
(K×Ω̄)∪(Ω̄×K)

d(x, y)dπn(x, y).
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Let us now apply Hölder’s inequality, which is given by

||fg||1 ≤ ||f ||p||g||q, (4.14)

where 1
p

+ 1
q

= 1 and

||f ||p =

(∫
|f |p
)1/p

,

for f, g ∈ Lp2. In our case f = id and g = d(x, y). The inequality for An becomes

An ≤ Lε

(∫
(K×Ω̄)∪(Ω̄×K)

|id(x, y)|p/(p−1)dπn

)1− 1
p
(∫

(K×Ω̄)∪(Ω̄×K)

|d(x, y)|pdπn
) 1

p

= Lε
[
πn((K × Ω̄) ∪ (Ω̄×K))

]1− 1
p

(∫
(K×Ω̄)∪(Ω̄×K)

d(x, y)pdπn

) 1
p

.

On the one hand,

πn((K×Ω̄)∪(Ω̄×K)) ≤ πn(K×Ω̄)+πn(Ω̄×K) = µn(K)+µ(K) ≤ sup
k
µk(K)+µ(K).

On the other hand, due to the optimality of the transport plans πn,(∫
(K×Ω̄)∪(Ω̄×K)

d(x, y)pdπn

) 1
p

≤
(∫

Ω̄×Ω̄

d(x, y)pdπn

) 1
p

= OTp(µn, µ).

All in all,

An ≤ Lε[sup
k
µk(K) + µ(K)]1−

1
pOTp(µn, µ).

Notice that Lε[supk µk(K) + µ(K)]1−
1
p is finite while OTp(µn, µ) tends to zero as n

tends to infinity. As a result, An tends to zero as n → ∞, for fixed ε. Recovering
inequality (4.13), for fixed ε > 0 we have

lim sup
n→∞

|ϕf (µn)− ϕf (µ)| ≤ lim sup
n→∞

[
(sup
k
µk(K) + µ(K))ε+ An

]
= (sup

k
µk(K) + µ(K))ε+ lim

n→∞
An = (sup

k
µk(K) + µ(K))ε.

Taking the limit ε→ 0, and recalling that supk µk(K) <∞, we conclude that

lim sup
n→∞

|ϕf (µn)−ϕf (µ)| = lim
ε→0

lim sup
n→∞

|ϕf (µn)−ϕf (µ)| ≤ lim
ε→0

(sup
k
µk(K)+µ(K))ε = 0.

Consequently,

lim sup
n→∞

|ϕf (µn)− ϕf (µ)| = 0⇒ lim
n→∞

|ϕf (µn)− ϕf (µ)| = 0.

This implies ϕf (µn)→ ϕf (µ) as wanted. �

2Recall that Lp(S) = Lp(S)/ ∼, where f ∼ g if and only if ||f − g||p = 0 and Lp = {f : S →
R : ||f ||p <∞} with 1 ≤ p ≤ ∞
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Due to the previous theorem we can deduce that the topology of the optimal
transport metric is stronger than the vague topology. In the case p = ∞ only one
of the implications holds, whose proof is similar to the one above and can be found
in proposition 3.26 of [6].

Theorem 4.3.12. Let µ, µ1, µ2, . . . ∈M∞. If

lim
n→∞

OT∞(µn, µ) = 0,

then µn
v−→ µ.

Regarding weak convergence, we have the following.

Corollary 4.3.13 ([6]). Consider the measures µ, µ1, µ2, . . . ∈ Mp, with p < ∞.
Then,

lim
n→∞

OTp(µn, µ) = 0,

if and only if µ
[p]
n

w−→ µ[p], where these measures are defined for every Borel subset
A ⊂ Ω as

µ[p](A) =

∫
A

d(x, ∂Ω)pdµ(x).

Proof. Firstly, assume that OTp(µn, µ) converges to zero. By theorem 4.3.11 this is
equivalent to

µn
v−→ µ and µ[p]

n (Ω) = Persp(µn)→ Persp(µ) = µ[p](Ω).

By proposition B.0.6, it is enough to prove µ
[p]
n

v−→ µ[p]. Observe that µ
[p]
n � µn and

µ[p] � µ. Besides, given any compactly supported continuous function f ∈ Cc(Ω),
the map x 7→ d(x, ∂Ω)pf(x) is also continuous and compactly supported. Therefore,
using vague convergence of µn to µ and Radon-Nikodym theorem B.0.13,∫

Ω

f(x)dµ[p]
n =

∫
Ω

f(x)d(x, ∂Ω)pdµn −→
∫

Ω

f(x)d(x, ∂Ω)pdµ =

∫
Ω

f(x)dµ[p],

which, by (B.2), is equivalent to vague convergence.

Conversely, assume µ
[p]
n

w−→ µ[p], which by proposition B.0.6 is equivalent to

µ[p]
n

v−→ µ[p] and µ[p]
n (Ω) = Persp(µn)→ Persp(µ) = µ[p](Ω).

Thanks to theorem 4.3.11, it suffices to prove that µn
v−→ µ. Likewise, given f ∈

Cc(Ω), the map x 7→ f(x)
d(x,∂Ω)p

is continuous and compactly supported. Hence, µ
[p]
n

v−→
µ[p] implies∫

Ω

f(x)dµn =

∫
Ω

f(x)

d(x, ∂Ω)p
dµ[p]

n −→
∫

Ω

f(x)

d(x, ∂Ω)p
dµ[p] =

∫
Ω

f(x)dµ.

By (B.2) this is equivalent to vague convergence. �
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These results on convergence are pretty useful in order to derive characteriza-
tions on the continuity of some vectorizations. As we will see in the next chapter,
vectorizations are used to embed non linear spaces (as the space of persistence di-
agrams) into linear ones. This is necessary if we want to use statistical descriptors
and machine learning techniques, since many of them requiere the input to live in a
finite-dimensional vector space.

Lastly, we present some properties of the metric space of persistence measures
(Mp,OTp). Those are coherent with the ones obtained for the space of persistence
diagrams (Dp, dp).

Proposition 4.3.14 ([6]). The space (Mp,OTp) is a Polish space for 1 ≤ p <∞.

Remark 4.3.15. As we saw in remark 4.2.8, D∞ is not separable. Analogously,
the space (M∞,OT∞) is not separable, although it can be proven to be complete
(proposition 3.24 of [6]). ♦

We recover the following result, which can be seen as a consequence of the optimal
transport topology being stronger than the vague topology.

Corollary 4.3.16 ([6]). For 1 ≤ p ≤ ∞ the subspace Dp is closed in Mp for the
metric OTp. In particular, this implies that:

• If p <∞, (Dp,OTp) = (Dp, dp) is a Polish space.

• If p =∞, (D∞,OT∞) = (D∞, d∞) is complete.

Proof. Let 1 ≤ p ≤ ∞ and consider any sequence {µn}n ⊂ Dp such that it converges
in Mp to a measure µ for the OTp distance. That is, limn→∞ OTp(µn, µ) = 0. To
prove that Dp is closed in Mp we need to show that µ ∈ Dp. By theorems 4.3.11
and 4.3.12 we have convergence in the vague topology µn

v−→ µ. Notice that µn ∈ D
for every n ∈ N. Therefore, proposition B.0.7 implies that µ ∈ D. As it also belongs
to Mp, we conclude that µ ∈ D ∩Mp = Dp as wanted. Hence, Dp is closed in Mp.
Since OTp = dp and taking into consideration proposition 4.3.14 and remark 4.3.15,
this proves that (Dp, dp) is complete for every value of p (a closed subspace of a
complete space is complete). Moreover, we have seen in proposition 4.2.6 that for
p <∞ the space Dp is separable. Therefore, (Dp, dp) is Polish for p <∞. �
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Chapter 5

Vectorizations of persistence
diagrams

For some scientific data sets, particular geometric structures or patterns can be re-
lated to topological features. For example, in the research of structures in chemistry
and biology or in the study of convection in fluid dynamics. In those cases, their
persistence diagrams are on their own enough to interpret and understand important
properties of the phenomena from which the data has been generated.

On the other hand, in general it is necessary further processing in order to
interpret the topological information encoded in persistence diagrams. Nevertheless,
the space of persistence diagrams is not a linear space. That is, there is no simple
way to define the sum of two diagrams, or the multiplication of a diagram by a real
number, such that it is compatible with the bottleneck distance. This represents
a major drawback and could endanger the use of persistence diagrams in practical
applications: many statistical descriptors and machine learning techniques need the
input to be elements of a finite-dimensional vector space.

An almost immediate way to solve this problem is to transform persistence di-
agrams into vectors, with which we can perform linear tasks. This can be done by
embeding the space of persistence diagrams into a linear space using vectorizations.

Definition 5.0.1. A vectorization is a map Φ : D → B from the space of persis-
tence diagrams to some Banach space B.

This chapter is dedicated to introduce the principal vectorizations used in topo-
logical data analysis. The main references are [26] and [6].

In general, what interest us is that the properties encoded in persistence diagrams
are transferred in some way to the vectorizations, and can be used to study the data
set. Moreover, stability with respect to input noise and efficiency in computation are
also important. However, this is not always possible. To begin with, the choice of
the vectorization is arbitrary. Secondly, for the moment it is not known whether, in
general, close diagrams have close representations and vice-versa. Lastly, the inter-
pretability we had with persistence diagrams is lost when using vectorizations. For
example, once the vectorization is applied we can define a mean m. Nervertheless,
a priori m has nothing to do with a notion of mean in D, it may not even be the
image of a persistence diagram.

65
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5.1 Persistence landscapes

Since the aim of vectorizations is to be able to use numerical techniques, we re-
strict ourselves to the practical case of finite persistence diagrams. Hence, let
µ =

∑n
i=1 δxi ∈ D. The persistence landscape is defined as follows (see figure

5.1). Firstly, consider the change of coordinates

h : R2 → R2; h(r1, r2) =

(
r1 + r2

2
,
r2 − r1

2

)
. (5.1)

The outcome of applying h is the rotated and rescaled persistence diagram h(X)
located in {(r1, r2) ∈ R2 : r2 ≥ 0}. The diagonal ∂Ω is sent by h to the r1-axis.
After that, for each xi we tent the point h(xi) by applying the triangle function,
which is given by

Λr : R→ R; Λr(t) = max{0, r2 − |t− r1|}, (5.2)

obtaining a family of continuous functions {Λh(xi)}ni=1. Finally, the persistence land-
scape is defined as

λµ : N× R→ R; λµ(k, t) = kmaxi=1,...,nΛh(xi)(t),

where kmax is the k-th largest value in the set. That is, λµ is a summary of the
arrangement of the piecewise linear curves that are obtained when overlaying the
graphs of the functions {Λh(xi)}ni=1. For each k ∈ N the function λµ(k, ·) : R→ R is
called k-th landscape of µ.

Remark 5.1.1. For any t ∈ R and k ∈ N, λµ(k, t) ≥ 0 and λµ(k, t) ≥ λµ(k+ 1, t).
Moreover, from the fact that ΛP is 1-Lipschitz and the definition of landscape, it is
easy to deduce that k-th landscapes are 1-Lipschitz too. ♦

Figure 5.1: Construction of the persistence landscape (right) from a finite persistence
diagram (left). The first landscape is in blue and the second one is in red. All the
other landscapes are zero.

Notice that there exists k0 ∈ N such that, for any k ≤ k0, the k-th landscape is
zero. Hence, persistence landscapes are elements of the Banach space Lp(N × R),
with the counting measure on N and the Lebesgue measure on R. We can then
define the vectorization µ 7→ λµ, which in fact is injective. As a consequence, the
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representation of persistence diagrams through landscapes does not imply loss of
information. Another advantage of persistence landscapes is that they are easily
invertible. Moreover, they share similar stability properties with persistence dia-
grams.

Proposition 5.1.2. Let X and Y be two finite compact sets. Let λX and λY be the
persitence landscapes associated to the Vietoris-Rips or Čech filtrations. For any
t ∈ R and any k ∈ N, we have

|λX(k, t)− λY(k, t)| ≤ d∞(dgm(X), dgm(Y)).

For the proof of this proposition we refer to theorem 5.2 of [26]
On the other hand, landscapes highlight points far from the diagonal, which

represent persistent features of the data. This implies that secondary and tertiary
features are not given as much importance. However, they are usually useful when
discriminating between data sets.

5.2 Linear representations

In this subsection we will focus on a particular case of vectorizations that are defined
as integrals of certain functions. Indeed, they do not rely on the fact that the measure
must be a persistence diagram, so we will work on the metric space (Mp,OTp), with
1 ≤ p <∞.

Definition 5.2.1. A linear representation is a vectorization Φ :Mp → B of the
form

Φ(µ) = ϕf (µ) =

∫
Ω

f(x)dµ(x),

for some fixed function f : Ω→ B.

Typically B = Rm. One of the reasons why this type of vectorizations are inter-
esting is because they are simple to define and compute. For instance, in the prac-
tical case of finite persistence diagrams, they transform into a sum Φ (

∑n
i=1 δxi) =∑n

i=1 f(xi), where f sends each point of the persistence diagram to an element of the
Banach space. Moreover, they include many vectorization methods of topological
data analysis, as we will see.

Thanks to how Φ is defined, the study of its continuity is directly related with
the vague topology on Mp, and consequently with optimal transport distance.
Therefore, chapter 4 may be used to characterize the continuity of these linear
representations in terms of the function f , as proposition below shows. The map
d : Ω̄× Ω̄→ [0,∞) denotes the metric || · ||q, with 1 ≤ q ≤ ∞.

Proposition 5.2.2 ([6]). Consider a Banach space B and a function f : Ω→ B. Let
Φ :Mp → B be the linear representation defined by Φ(µ) =

∫
Ω
f(x)dµ(x). Then, it

is continuous with respect to the optimal transport distance OTp and the norm || · ||B
if and only if f belongs to the class of functions

C0
b,p =

{
f : Ω→ B : f continuous and x 7→ ||f(x)||B

d(x, ∂Ω)p
bounded

}
.
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Proof. Let f ∈ C0
b,p and consider the measures µ, µ1, µ2, . . . ∈Mp such that OTp(µn, µ)

tends to zero. To prove continuity of Φ we have to check that limn→∞Φ(µn) = Φ(µ).
Thanks to theorem 2 of [27], it is enough to study the case where B = R. Corollary
4.3.13 implies that convergence in optimal transport distance is equivalent to weak
convergence of the measures µ

[p]
n

w−→ µ[p]. By assumption, f(x)
d(x,∂Ω)p

is bounded in Ω,

so thanks to the characterization of weak convergence (B.1),∫
Ω

f(x)

d(x, ∂Ω)p
dµ[p]

n (x)→
∫

Ω

f(x)

d(x, ∂Ω)p
dµ[p](x).

Notice that µ
[p]
n � µn and µ[p] � µ. Applying Radon-Nikodym theorem B.0.13 the

limit above transforms to,

Φ(µn) =

∫
Ω

f(x)dµn(x) =

∫
Ω

f(x)
1

d(x, ∂Ω)p
dµ[p]

n

−→
∫

Ω

f(x)
1

d(x, ∂Ω)p
dµ[p](x) =

∫
Ω

f(x)dµ(x) = Φ(µ),

as wanted.
For the other implication we proceed by contradiction. Suppose first that f :

Ω → B is not continuous at some x ∈ Ω. Then, there exists a sequence of points
{xn}n ⊂ Ω such that xn → x but f(xn) does not converge to f(x). Consider now
the measures µn = δxn and µ = δx, both in Mp. It is clear, by theorem 4.3.11, that
limn→∞OTp(µn, µ) = 0. However, Φ(µn) = f(xn) does not converge to Φ(µ) = f(x).
That is, Φ is not continuous for the optimal transport distance. On the other hand,
assume f is continuous but x → f(x)

d(x,∂Ω)p
is not bounded. This implies that we can

find a sequence {xn}n ⊂ Ω such that

lim
n→∞

∣∣∣∣∣∣∣∣ f(xn)

d(xn, ∂Ω)p

∣∣∣∣∣∣∣∣ =∞.

Consider the persistence measures µn = 1
||f(xn)||δxn . Notice that the above limit

implies

lim
n→∞

OTp
p(µn, 0) = lim

n→∞
Persp(µn) = lim

n→∞

1

||f(xn)||d(xn, ∂Ω)p = 0.

Therefore, in order to be Φ continuous it should satisty Φ(µn) → Φ(0) = 0. But

Φ(µn) = f(xn)
||f(xn)|| , which has norm equal to one for every n ∈ N. �

Remark 5.2.3. Note that proposition 5.2.2 not only provides a method to built
continuous linear representations, but asserts that it is the only way to do so. It
consists in constructing the functions f : Ω→ B as follows. Firstly, a function φ on Ω
with enough good characteristics is considered. Then, this function is weighted with
respect to the distance to the diagonal d(x, ∂Ω)p, obtaining f(x) = φ(x)d(x, ∂Ω)p.
Examples below exhibit that this produces relevant vectorization methods. ♦

Apart from continuity, we would like, as we have said, that this linear represen-
tations satisfies some kind of stability,

||Φ(µ)− Φ(ν)|| ≤ C ·OTp(µ, ν),

for some constant C. Fortunately, that is the case for p = 1.
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Proposition 5.2.4 ([6]). Let T ⊂ R and consider a family (ft)t∈T such that each
ft : Ω̄→ R is a Lipschitz continuous function with Lipschitz constant less than one
and satisfying ft(∂Ω) = 0. Then, the linear representation

Φ :M1 → RT ; Φ(µ) = (ϕft(µ))t∈T =

(∫
Ω

ft(x)dµ(x)

)
t∈T

satisfies for all µ, ν ∈M1

||Φ(µ)− Φ(ν)||∞ := sup
t∈T
|ϕft(µ)− ϕft(ν)| ≤ OT1(µ, ν).

Proof. Let µ, ν ∈ M1 and consider and optimal transport plan π ∈ Opt(µ, ν). For
any t ∈ T , since ft is zero on the boundary and using the marginal constraints of π,

|ϕft(µ)− ϕft(ν)| =
∫

Ω

ft(x)dµ(x)−
∫

Ω

ft(y)dν(y) =

∫
Ω̄

ft(x)dµ(x)−
∫

Ω̄

ft(y)dν(y)

=

∫
Ω̄×Ω̄

ft(x)dπ(x, y)−
∫

Ω̄×Ω̄

ft(y)dπ(x, y)

=

∫
Ω̄×Ω̄

(ft(x)− ft(y))dπ(x, y).

Since ft has Lipschitz constant less than one∫
Ω̄×Ω̄

(ft(x)− ft(y))dπ(x, y) ≤
∫

Ω̄×Ω̄

d(x, y)dπ(x, y) = OT1(µ, ν).

All in all, |ϕft(µ)− ϕft(ν)| ≤ OT1(µ, ν) for every t ∈ T , which implies

||Φ(µ)− Φ(ν)||∞ ≤ OT1(µ, ν).

�

Finally, we present some examples of continuous linear representations that are
used in topological data analysis (figure 5.2). As before, these definitions do not
rely on the fact that we are working with persistence diagrams, and actually are
well-defined for any persistence measure in Mp.

Persistence surfaces For this linear representation a non-negative Lipschitz con-
tinuous bounded function K : R4 → R is chosen. For example,

K(x, y) = exp

(
−||x− y||

2

2

)
.

The map f : Ω → Cb(R2) is defined as f(x) = d(x, ∂Ω)pK(x, ·), so f(x) : R2 → R.
Hence, the persistence surface is

Φ(µ) =

∫
Ω

f(x)dµ(x) =

∫
Ω

d(x, ∂Ω)pK(x, ·)dµ(x),

which sends each persistence diagram to an element of the space of continuous
bounded functions (Cb(R2), || · ||∞). Obviously, K being bounded and f(x) being

proportional to d(x, ∂Ω)p implies that x 7→ ||f(x)||∞
d(x,∂Ω)p

is bounded. Thus, Φ is continu-
ous. In particular, for a finite persistence diagram we obtain

Φ

(
n∑
i=1

δxi

)
=

n∑
i=1

f(xi) =
n∑
i=1

d(xi, ∂Ω)pK(xi, ·).
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Persistence silhouettes In this case consider the function

Λ : Ω× R→ R; Λ(x, t) = Λh(x)(t),

where h and Λr are given by (5.1) and (5.2) respectively. Notice that, for a fixed
x = (x1, x2) ∈ Ω, the map Λ(x, ·) : R → R is bounded. Take f : Ω → Cb(R) as
f(x) = d(x, ∂Ω)p−1Λ(x, ·). Then, the persistence silhouette

Φ(µ) =

∫
Ω

f(x)dµ(x) =

∫
Ω

d(x, ∂Ω)p−1Λ(x, ·)dµ(x),

takes values in the space (Cb(R), || · ||∞). Notice that the maximum value of Λ(x, ·)
is x2−x1

2
, which is proportional to d(x, ∂Ω). Therefore, ||f(x)||∞ is proportional to

d(x, ∂Ω)p. By proposition 5.2.2, Φ is continuous. In the case of finite persistence
diagrams, this representation consists of a weighted sum of the different functions
of the persistence landscape,

Φ

(
n∑
i=1

δxi

)
=

n∑
i=1

f(xi) =
n∑
i=1

d(xi, ∂Ω)p−1Λ(xi, ·).

Weighted Betti curves The construction of the weighted Betti curves is similar
to the previous ones. Let p, p′ ≥ 1 and for each t ∈ R consider the rectangle
Rt = (−∞, t]× [t,+∞). Define the function f : Ω→ Lp′(R) as

x 7→
[
f(x) : t 7→ d(x, ∂Ω)

p− 1
p′ 1Rt(x)

]
,

where 1Rt(x) = 1 if x ∈ Rt and zero otherwise. Observe that, for a given x =
(x1, x2) ∈ Ω, the function f(x)(t) is nonzero if and only if t ∈ [x1, x2]. The linear
representation is then given by

Φ(µ)(t) =

∫
Ω

f(x)(t)dµ(x) =

∫
Ω

d(x, ∂Ω)
p− 1

p′ 1Rt(x)dµ(x),

with Φ(µ) ∈ (Lp′(R), || · ||p′). It is easy to see that ||f(x)||p′ is proportional to
d(x, ∂Ω)p. Indeed,

||f(x)||p′p′ =

∫
R
|f(x)(t)|p′dt =

∫
[x1,x2]

(f(x)(t))p
′
dt =

∫
[x1,x2]

(
d(x, ∂Ω)

p− 1
p′
)p′

dt

=

∫
[x1,x2]

d(x, ∂Ω)pp
′−1dt = d(x, ∂Ω)pp

′−1(x2 − x1).

As noticed before, d(x, ∂Ω) is proportional to x2 − x1. Consequently, we conclude

that ||f(x)||p′p′ is proportional to d(x, ∂Ω)pp
′
. By proposition 5.2.2, Φ is continuous.

When p = 1 = p′ is chosen, this representation is called Betti curve and, in the
finite case, is given by a sum of step functions

Φ

(
n∑
i=1

δxi

)
=

n∑
i=1

f(xi)(t) =
n∑
i=1

1Rt(xi).

For each t ∈ R the sum is equal to the number of points xi of the persistence diagram
that lie in Rt = (−∞, t]× [t,+∞). If the persistence diagram comes from the n-th
homology groups of a filtration (Xt)t∈R, that is equal to the Betti number of Xt.
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Figure 5.2: Examples of vectorizations of the blue persistence diagram in 2.3. From
right to left: the first 3 persistence landscapes, the persistence silhouette and the
Betti curve.

5.3 Point transformations

Let us recover a more applied point of view by letting B = Rm and by considering
only finite persistence diagrams, since those are the ones obtained from any practical
setting. The building method presented in remark 5.2.3 can be generalized. As be-
fore, we begin with a function φ : R2 → Rm, which is called point transformation
because it transforms each point of the persistence diagram to a vector in Rm. Then,
we weight this function, but instead of using the distance to the diagonal, we let the
weight be any map w : R2 → R, called weight function. If we considered the linear
representation associated to this construction f(x) = w(x)φ(x), for any finite per-
sistence diagram µ =

∑n
i=1 δxi we would get a sum

∑n
i=1 w(xi)φ(xi). However, more

general operators may be used in order to construct the vectorization. Hence, let op
be a permutation invariant operator, i.e. op(x1, · · · , xn) = op(xσ(1), · · · , xσ(n)) for
any permutation σ ∈ Sn. Some examples are minimum, maximum, sum, kmax,....
Finally, we define

Φ(µ) = op ({w(xi)φ(xi)}1≤i≤n) ∈ Rm, (5.3)

for any µ =
∑n

i=1 δxi finite persistence diagram.

Remark 5.3.1. Although the continuity provided by proposition 5.2.2 is lost in
general, this setup has relevant properties regarding machine learning techniques,
which will be underlined. ♦

Example 5.3.2. An example of point transformation is the triangle point trans-
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formation, defined as

φΛ(x) = [Λx(t1),Λx(t2), · · · ,Λx(tm)]T ,

where t1, · · · , tm ∈ R and Λx(·) is defined by equation (5.2). The Gaussian point
transformation is given by

φΓ(x) = [Γ(x, y1),Γ(x, y2), · · · ,Γ(x, ym)]T ,

where yi ∈ R2 for 1 ≤ i ≤ m and, for a given σ > 0, the map Γ(x, ·) : R→ R is

Γ(x, y) = exp

(
−||x− y||

2
2

2σ2

)
, (5.4)

♦

The generality of the formalism given by (5.3) lets us recover standard vector-
ization methods.

• Take as point transformation the triangle one with m = 1 composed with the
change of coordinates h : R2 → R2 given in (5.1), i.e. φΛ ◦ h. As weight
function let w = 1 and op = kmax. Then, Φ(µ) gives the k-th landscape
evaluated at t ∈ R.

• Consider again the composition φΛ ◦ h, together with op = sum and an arbi-
trary weight function w. Then, Φ(µ) is equivalent to evaluate the persistence
silhouette, weighted by w, on t1, · · · , tm ∈ R.

• In this case, consider the Gaussian point transformation φΓ, op = sum and
an arbitrary w. Then, Φ(µ) provides the evaluation of the persistence surface,
weighted by w, on y1, · · · , ym ∈ R2 and being K(x, ·) = Γ(x, ·).

Remark 5.3.3. When transforming a persistence diagram into a vector, the weight
function w : R2 → R let us hightlight certain points or areas of the diagram that
are useful to achieve a given task. In the case of linear representations, w(x) was a
power of d(x, ∂Ω), which is greater when the point x ∈ Ω is far from the diagonal,
i.e. it represents a feature that persists more. Hence, those features are weighted
more than the ones who last little in time, and which are represented by points
close to the diagonal in the persistence diagram. Although this provides continuity
of the representation, depending on the setup it may be better to underline other
properties by choosing different w. The formulation presented in this section let the
user choose the weight function that suits him best. ♦

A general drawback of this freedom of choice is that, since the function f has to
be fixed in advance, it might not be optimal to perform a given task. Regarding this
problem, the success of deep neural networks has shown that learning representations
is a strong recommended approach. Actually, the formulation given by (5.3) can be
used to optimize f(x) = w(x)φ(x), constructing a learnable vectorization. In order
to do this we parametrized the weight w = wθ1 and point φ = φθ2 functions, where
(θ1, θ2) ∈ RD. The idea is that the expression of Φ(µ) could be used as a generic
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neural network layer for persistence diagrams and then the parameters could be
learned during a training phase. In practice, this is done by back-propagation,
assuming that we know and can implement the gradients of θ1 7→ wθ1 and θ2 7→ φθ2 .
A network architecture is illustrated in [6]. Besides, approaches towards learning
task-optimal stable representations of persistence diagrams have been studied and
developed, e.g. [28].

5.4 Linearized optimal transport

In the classical transport problem setting, linearized optimal transport provides a
method to embed measures into a vector space. The latter consists in the following.
Consider the Kantorovich formulation (4.5) for two probability measures ρ, µ in
R2 with finite second moment and cost function c(x, y) = ||x − y||2. By theorem
4.3.1, whether ρ is absolutely continuous with respect to the Lebesgue measure, the
optimal thansport plan is unique and induced by a transport map π = (id, Tµ)#ρ,
where Tµ = ∇φ for a convex function φ. If we fix ρ, it is possible to define a
vectorization as µ 7→ Tµ ∈ L2(ρ,R2). Injectivity is clear because in this case Tµ#ρ =
µ, being Tµ the unique optimal transport map between ρ and µ. Besides, stability
results of this vectorization with respect to the Wasserstein distance (4.6) and the
L2(ρ) norm have been proven in [29] and [30].

In this section we mimic this idea using a similar result stated in [5], which
connects optimal admissible transport plans and transport maps. The advantage of
this formulation, as we have seen, is that it can be used with measures that have
different, or even infinite, mass as long as they have finite total persistence. As it
has been done before, we focus on the practical case of finite persistence diagrams,
which are represented as finite point measures on Ω. Following remark 4.3.6, we can
assume them to be supported on a bounded subset Y of Ω and then apply directly
what has been proved in [5].

In particular, the result that concerns us in this section is corollary 2.5 of [5].
We state the general result.

Proposition 5.4.1 (Uniqueness of optimal plans). Consider X a bounded open set
of R2 with the euclidean distance d. Let ρ, µ ∈M2(X ) and fix γ ∈ Opt(ρ, µ).

1. If ρ is absolutely continuous with respect to the Lebesgue measure, then γ|X×X̄
is unique, and it is given by (id, T )#ρ, where T : X → X̄ is the gradient of
a convex function. However, γ as a whole may be not uniquely defined since
there might be multiple ways of bringing the mass from the boundary to µ if
no hypothesis on µ are made.

2. If moreover µ is absolutely continuous with respect to the Lebesgue measure,
then γ is unique.

The proof follows exactly as in the classical transport problem due to the equiv-
alence (i)⇔ (iii) of proposition 2.3 in [5]. The uniqueness of the first case only over
X × X̄ comes from the fact that p1#γ = ρ only on X .
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Since we want to apply this to persistence diagrams, assume from now on that
ν is a finite point measure. By fixing ρ ∈ M2(X ) satisfying 1, it is possible to
associate to each ν the map Tν coming from γν |X×X̄ = (id, Tν)#ρ.

Remark 5.4.2. Observe that, in spite of the fact that for two different measures
ν 6= ν ′ optimal transport plans γν ∈ Opt(ρ, ν) and γν′ ∈ Opt(ρ, ν ′) are also distinct,
a priori, the proposition does not assure us that Tν and Tν′ are not equal. That is,
in general it may happen that γν and γν′ bring in the same way the mass from X
to X̄ , but differ on how they bring the mass from the boundary. In order to obtain
injectivity for the map ν 7→ Tν , let us study if this holds for some choice of ρ. Suppose
ν 6= ν ′ but Tν = Tν′ . Then, for any x ∈ X , γν(X × {x}) = γν′(X × {x}). Recall
that γν(X̄ × {x}) = ν(x) and the same equality holds for γν′ and ν ′. Since ν and ν ′

does not have the same support, this implies the existence of a point x ∈ spt(ν) (or
ν ′) but x 6∈ spt(ν ′) (or ν) such that the optimal transport plan γν does not bring
mass from X to x, i.e. γν(X ×{x}) = 0 and γν(X̄ × {x}) = γ(∂X ×{x}) = 1. As a
result, to have injectivity it is sufficient to choose ρ such that for any ν =

∑n
i=1 δxi

the optimal transport plan satisfies γν(X × {xi}) 6= 0 for all i = 1, . . . , n. If this
happens, Tν = Tν′ implies ν = ν ′. ♦

Henceforth ρ is fixed as the uniform measure. Similar to the classical optimal
transport problem, it can be proven that Tν ∈ L2(ρ,X ). Indeed, for any y ∈ X̄ ,
using Minkowski inequality(∫

X
d2(Tν(x), y)dρ(x)

)1/2

≤
(∫
X
d2(Tν(x), x)dρ(x)

)1/2

+

(∫
X
d2(x, y)dρ(x)

)1/2

.

Because X is bounded and ρ is finite, the second integral is finite too. On the other
hand,∫

X
d2(Tν(x), x)dρ(x) =

∫
X
d2(x, Tν(x))dρ(x) =

∫
X
d2(·, ·) ◦ (id, Tν)(x)dρ(x) =∫

X×X̄
d2(x, y)d((id, Tν)#ρ)(x, y) =

∫
X×X̄

d2(x, y)dγν(x, y).

The space X×X̄ ⊂ R4 is bounded and γν(X×X̄ ) = ρ(X ) = 1. As a consequence, the
initial integral is finite and Tν ∈ L2(ρ,X ). In conclusion, we propose the following
definition.

Definition 5.4.3. Consider finite point measures ν in M2(X ), where X ⊂ Ω is an
open bounded subset of R2, and fix the uniform measure ρ on X . Then, we define
a vectorization

ν ∈ (M2(X ),OT2) 7→ Tν ∈ (L2(ρ,X ), || · ||L2),

where Tν is given by proposition 5.4.1.

Proposition 5.4.4. Given two finite point measures ν1, ν2 ∈ M2(X ) consider the
maps T1, T2 from the above definition. Then,

OT2
2(ν1, ν2) ≤ ||T1 − T2||2L2(ρ) + Pers2(ν1) + Pers2(ν2).
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Proof. Let γ1 ∈ Opt(ν1, ρ) and γ2 ∈ Opt(ρ, ν2). Consider the measure γ ∈ M(X̄ ×
X̄ ) defined as

γ = (T1, T2)#ρ+ γ2|∂X×X̄ + γ1|X̄×∂X ,
It is an admissible plan between ν1 and ν2. In fact, for every A ⊂ X ,

p1#γ(A) = ρ(T−1
1 (A)) + γ2(∂X × X̄ ∩ A× X̄ ) + γ1(X̄ × ∂X ∩ A× X̄ )

= ρ(T−1
1 (A)) + γ1(A× ∂X ),

p2#γ(A) = ρ(T−1
2 (A)) + γ2(∂X × X̄ ∩ X̄ × A) + γ1(X̄ × ∂X ∩ X̄ × A)

= ρ(T−1
2 (A)) + γ2(∂X × A).

On the other hand,

ν1(A) = γ1(A× X̄ ) = γ1(A×X ) + γ1(A× ∂X ) = ρ(T−1
1 (A)) + γ1(A× ∂X ),

ν2(A) = γ2(X̄ × A) = γ2(X × A) + γ2(∂X × A) = ρ(T−1
2 (A)) + γ2(∂X × A).

Thus, they coincide. Therefore,

OT2
2(ν1, ν2) ≤

∫
X̄×X̄

d2(x, y)dγ(x, y) =

∫
X̄×X̄

d2(x, y)d((T1, T2)#ρ)

+

∫
X̄×X̄

d2(x, y)d(γ2|∂X×X̄ ) +

∫
X̄×X̄

d2(x, y)d(γ1|X̄×∂X )

=

∫
X
d2(T1(x), T2(x))dρ(x) +

∫
∂X×X̄

d2(x, y)dγ2(x, y) +

∫
X̄×∂X

d2(x, y)dγ1(x, y)

= ||T1 − T2||2L2(ρ) +

∫
∂X×X

d2(x, y)dγ2(x, y) +

∫
X×∂X

d2(x, y)dγ1(x, y),

where the last equality follows from the fact that any optimal admissible transport
plan can be assumed to satisfy γ|∂X×∂X = 0. Let us now study the last two integrals.
Proposition 2.3 (ii) of [5] states that optimality of γi (for i = 1, 2) implies that they
are concentrated on

{(x, y) ∈ X̄ × X̄ : d2(x, y) ≤ d2(x, ∂X ) + d2(y, ∂X )}.

Consequently,∫
∂X×X

d2(x, y)dγ2(x, y) ≤
∫
∂X×X

d2(y, ∂X )dγ2(x, y)

=

∫
∂X×X

d2(·, ∂X ) ◦ p2(x, y)dγ2(x, y)

=

∫
X
d2(y, ∂X )d(p2#(γ2|∂X×X ))(y)

≤
∫
X
d2(y, ∂X )d(p2#γ2)(y) =

∫
X
d2(y, ∂X )dν2(y) = Pers2(ν2).

Likewise, ∫
X×∂X

d2(x, y)dγ1(x, y) ≤ Pers2(ν1).

�
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Chapter 6

Numerical results

Finally, we include results on real data in order to show computations of the dif-
ferent notions of TDA we have introduced (Rips complexes, persistence barcodes,
diagrams, etc.) and to exemplify the use of vectorizations when performing linear
tasks. In particular, we implement PCA. In the following, we present a summary of
what can be found in this Python Jupyter Notebook.

The data set used for these computations can be found in GUDHI TDA tutorial.
It has been obtained from the walk of 3 persons A, B and C. The walk has been
recorded using the accelerometer sensor of a smartphone in their pocket, giving rise
to 3 time series, each of them representing the 3 coordinates of the acceleration of
the corresponding walker in a coordinate system attached to the sensor. Each series
has been splitted in a list of 100 times series made of 200 consecutive coordinate
points.

We compute a Rips complex for each time series, obtaining 100 complexes per
walker. As maximum radius we choose r = 0.2, not considering simplexes of di-
mension greater than 3. In particular, this means that all n-th homology groups
with n > 3 are zero. Then, from those Rips complexes, we compute the persistence
barcode and persistence diagram. In total, we obtain 300 persistence diagrams, each
of them corresponding to a splitted series of one of the walkers. Figure 2.3 shows
the persistence diagram associated to the first time series of walker A, containing
the first 200 acceleration coordinates.

As we have seen, it is possible to transform each of these persistence diagrams
into a vector. In this case, we obtain the first five landscapes and the Betti curve of
each diagram. The former corresponds to a vector in R5000, whereas the latter is a
vector in R1000. In figure 5.2 we represent the first three landscapes, the Betti curve
and the persistence silhouette associated to the first time series of walker A. That
is, they are the vectorizations of the persistence diagram of figure 2.3.

Due to the high dimensionality of this vectorizations, we execute principal com-
ponent analysis to reduce their dimension and visualize them. After doing this,
we observe whether the three walkers can be differentiated from the information
encoded in the landscapes or the Betti curves. It seems that Betti curves perform
better for this task and that, in both cases, walker C stands out above the other
two, which are more intermingled.
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Appendix A

Simplicial homology

In this chapter we review the bases of homology theory, which is needed to encode
and study the topological features on topological data analysis. We focus on sim-
plicial homology, since it is the one developed specially for simplicial complexes and
used in applications. We refer to [12] and [31] for more details.

A.1 Simplicial complexes

A simplicial complex is basically a generalization of a graph where, instead of con-
necting only pairs of points with edges, freedom is left to define higher n-dimensional
structures connecting n-tuples “properly”.

Definition A.1.1. Given a set {x0, . . . , xn} ⊂ Rd of affine independent points, its
convex hull is called n-simplex and is defined as

σ = [x0, . . . , xn] =

{
n∑
i=0

aixi :
n∑
i=0

ai = 1, ai ≤ 0

}
.

A face of σ is any simplex which can be built by a subset of {x0, . . . , xn}. The
0-simplexes [xi] are called vertices.

Definition A.1.2. A finite geometric simplicial complex K in Rd is a finite
collection of simplexes in Rd such that

1. If a simplex σ ∈ K, then all the faces of σ belong to K;

2. if some simplexes σ, s ∈ K, then σ ∩ s is empty or a common face of both.

In particular, all the vertices belong to K.

Definition A.1.3. Given T ⊂ K, it is a subsimplicial complex or subcomplex
if T is a geometric simplicial complex and for every t ∈ T , t ∈ K.

Remark A.1.4. Notice that simplexes are fully characterized by its vertices. Each
n simplex has n + 1 distinct vertices, and no other n simplex has this same set of
vertices. Thus, K can be described combinatorially as a set V of vertices together
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Figure A.1: Visualization of a simplicial complex and its simplices.

with sets Xn of n-simplixes σn, which are (n + 1)-element subsets of V . The only
requirement is that, each (k+1)-element subset of the vertices of an n-simplex σn in
Xn, is a k-simplex in Xk . From this combinatorial data, and once we have chosen
a partial ordering of the vertices V , K can be constructed. This ordering restricts
to a linear ordering on the vertices of each simplex in Xn. ♦

The dimension of a simplicial complex K is given by

dimK = sup{n : ∃σ ∈ K, σ is a n-simplex}.

Definition A.1.5. Given a finite geometric simplicial complex K, we can associate
to it a topological space

|K| =
⋃
σ∈K

σ ⊂ Rd,

which inherits the topology of Rd.

Note that this topological space is compact. The notion of geometric simplicial
complex can be generalized. By doing this we obtain objects which are purely
combinatorial structures and do not need to be embedded in any Euclidean space,
although it is possible if needed.

Definition A.1.6. Given a set V , an abstract simplicial complex with vertex
set V is a family K̃ of finite nonempty subsets σ of V satisfying:

1. the elements of V belongs to K̃;

2. if σ ∈ K̃, then any subset of σ also belongs to K̃.

These finite subsets σ of V are called abstract simplexes.

In practice, since we are working with data sets which are finite, we will only
have to deal with finite abstract simplicial complexes.

The dimension of an abstract simplex is its cardinality minus one. The dimension
of an abstract simplicial complex is

dim K̃ = sup{dimσ : σ ∈ K̃}.
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Remark A.1.7. Observe that any geometric simplicial complex is an abstract
simplicial complex by its combinatorial description. ♦

As we anticipated, to any finite abstract simplicial complex K̃ it is possible to
associate a topological space |K̃| as a subset of Rd, where d = dim K̃, as follows. We
identify each vi ∈ V = {v0, . . . , vn} with some xi ∈ Rd such that {x0, . . . , xn} ⊂ Rd

are affine independent. Then, abstract simplexes σ = {vi0 , . . . , vik} are identified
with the corresponding simplexes of Rd, [xi0 , . . . , xik ]. The topological space is the
union of all them.

Notice that, if K is a geometric complex whose combinatorial description is the
same as K̃, then |K| is homeomorphic to |K̃|. In this case K is called geometric
realization of K̃. Isomorphic abstract simplicial complexes have homeomorphic
geometric realizations. Thus, we will drop the adjective abstract/geometric from
now on and only write simplicial complex.

Example A.1.8 (Nerve complex). Given a topological space X and U = {Ui}i∈I
an open cover, an important example of abstract simplicial complex is the nerve of
U , denoted by N(U). The set of vertices is V = U and σ = {Ui1 , . . . , Uil} ∈ N(U) if
and only if Ui1 ∩ · · · ∩ Uil 6= ∅. ♦

A.2 Simplicial homology

Homology identifies topological features on a given simplicial complex K: connected
components, loops, cavities, etc. This is done by developing an algebraic structure
on K that encodes this topological information. In order to do it we need to define
an orientation on the simplicial complex.

Definition A.2.1. A simplicial complex K is oriented if there is a partial order on
the set of vertices of K, whose restriction to the vertices of any simplex is a linear
order.

On an oriented simplicial complex K we define the following equivalence relation
between simplexes {p0, . . . , pn} ∈ K:

1. {p0, . . . , pn} = 0 if some vertex is repeated,

2. {p0, . . . , pn} = sgn(π){pπ0, . . . , pπn} where π is a permutation of {0, 1, . . . , n}.

We will denote each class by [p0, . . . , pn], where {p0, . . . , pn} is the element of the
class such that p0 < p1 < · · · < pn. Let k be a field.

Definition A.2.2. If K is an oriented simplicial complex, we define the space of
n-chains Cn(K) with coefficients in k as the set whose elements are the formal
(finite) sums of n-simpleces σ = [p0, . . . , pn] of K. That is, any n-chain can be
written as c =

∑k
i=1 niσi, where σi are n-simplexes and ni ∈ k.

Notice that Cn(K) = 0 for n > dimK. A sum and a product can be defined on
Cn(K), making it a k-vector space.
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Definition A.2.3. The boundary operator ∂n : Cn(K) → Cn−1(K) is defined by
setting

∂n([p0, . . . , pn]) =
n∑
i=0

(−1)i[p0, . . . , p̂i, . . . , pn],

and extending by linearity, where p̂i means to remove the vertex pi.

It can be proven that, whether K is an oriented simplicial complex of dimension
m, the following is a chain complex, i.e. ∂ ◦ ∂ = 0,

0→ Cm(K)
∂−→ · · · ∂−→ C1(K)

∂−→ C0(K)→ 0.

Consider Zn(K) := ker ∂n, which is the group of simplicial n-cycles, and Bn(K) :=
im∂n+1, the group of simplicial n-boundaries. Then, the following is well-defined

Hn(K) =
Zn(K)

Bn(K)
=

ker ∂n
im∂n+1

,

and it is called n-th simplicial homology group. Notice that only finitely many
homology groups are nonzero and that any of them is a finite dimensional k-vector
space (since Cn(K) are finitely generated). The dimension of this vector space is
called n-th Betti number of K,

βn(K) = dimHn(K).

Homology theory can be extended to more general spaces. Namely, given X
topological space, we can consider the continuous map σ : [p0, . . . , pn] → X, where
[p0, . . . , pn] is a geometric realization of a oriented n-simplex. It is called singular
simplex of dimension n. As before, it is possible to define the space of n-chains
as the free abelian group generated by the singular simpleces of X. Therefore,
the notions of boundary operator, cycles, boundaries and homology groups extend
straightforward. In this case, Hn(X) is called singular homology group.

Given any topological spaces X and Y , a continuous map f : X → Y induces a
homomorphism between homology groups

Hn(f) : Hn(X)→ Hn(Y ); Hn(f)([σ]) = [f ◦ σ].

This map f : X → Y is a homotopy equivalence if there exists another continuous
map g : Y → X such that f ◦g is homotopic to idY and g◦f is homotopic to idX . In
that case we say that X and Y are homotopy equivalent. It can be proven that any
homotopy equivalence induces an isomorphism Hn(f) between singular homology
groups.

Theorem A.2.4 ([31]). Let K be an (oriented finite) simplicial complex. Then,
the simplicial homology group Hn(K) is isomorphic to the singular homology group
Hn(|K|).

This implies that Hn(K) is independent of the orientation defined on K. In
addition, it let us talk indifferently about simplicial or singular homology.
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Corollary A.2.5. Let K,K ′ be two finite simplicial complexes such that |K| and
|K ′| are homotopy equivalent. Then, Hn(K) is isomorphic to Hn(K ′).

When studying simplicial complexes it could be useful to subdivide each simplex
into small pieces, so that each of them is totally contained in some required space.
A way of doing this, while preserving the topological properties, is the barycenter
subdivision. After the subdivision we still have a simplicial complex, with more
simpleces than the original but defining the same topological space, and hence having
the same homology.

Definition A.2.6. Let {p0, . . . , pn} be affine independent. Then, the barycenter
of [p0, . . . , pn] is 1

n+1
(p0 + · · ·+ pn)

If {p0, . . . , pn} is affine independent with barycenter b then {b, p0, . . . p̂i, . . . , pn}
is affine independent for each i. In the affine case Rd, the computation of the
barycenter subdivision can be done as we show below.

Definition A.2.7. Let σn be an affine n-simplex. Its barycenter subdivision, de-
noted by Sd(σn), is a family of affine n-simplexes defined inductively on n ≥ 0 as
follows:

1. Sd(σ0) = σ0, i.e. is the identity on vertices;

2. if λ0, λ1, . . . , λn+1 are the faces of dimension n of σn+1 and b is the barycenter
of σn+1, then Sd(σn+1) cosists of all the (n + 1)-simplexes spanned by b and
the n-simplexes in Sd(λi), for each i = 0, . . . , n+ 1.

Notice that each n-simplex of Sd(σn) comes equipped with an orientation induced
by the original ones. This construction can be applied successively, Sdm(σn).

Figure A.2: Successive barycenter subdivision of a simplicial complex. From left to
right, σ, Sd(σ) and Sd2(σ).

In the general case of a simplicial complex we can proceed as follows. For any
simplex σ let bσ denote its barycenter

Definition A.2.8. Given K a simplicial complex, the barycenter subdivision Sd(K)
is defined to be the simplicial complex with Vert(Sd(K)) = {bσ : σ ∈ K} and with
simplexes [bσ0 , . . . , bσn ], where the σi are simplexes in K with σ0 < σ1 . . . < σn.

It can be proven that, for any simplicial complex, |K| = |Sd(K)|. Therefore, K
and Sd(K) have isomorphic homology groups.
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Appendix B

Measure theory

Consider X a locally compact Polish metric space, i.e. a separable, complete, metric
space. Let us introduce some basic notions in measure theory, that will be used
throughout the text.

Definition B.0.1. A Radon measure µ supported on X is a Borel measure such
that µ(K) is finite for every compact set K of X . Denote byM(X ) the space of all
these measures.

The discrete case will be of special interest when studying persistence diagrams.

Definition B.0.2. A point measure on X is a Radon measure with discrete
support and integer mass on each point, i.e. of the form ν =

∑
x∈X nxδx, where

nx ∈ N and X ⊂ X is a locally finite1 set. The space of all point measures on X is
D(X ).

An important notion in measure theory, that is going to be exploit in the last
chapters, is that of pushforward measure.

Definition B.0.3. Let X and Y be two measurable spaces and µ a measure on
X . Consider f : X → Y a measurable map. Then, f#µ(A) = µ(f−1(A)), for any
measurable set A ⊂ Y , defines a measure f#µ on Y , called pushforward measure.

An important property of pushforwards is that a measurable map g on Y is
integrable with respect to f#µ if and only if g ◦ f is integrable with respect to µ.
Moreover, it satisfies ∫

Y
g(y)d(f#µ)(y) =

∫
X
g ◦ f(x)dµ(x).

The space of Radon measures may be equipped with the weak and the vague topol-
ogy.

Definition B.0.4. The weak topology on M(X ) is the coarsest topology such
that, for any f ∈ Cb(X ) in the space of continuous and bounded functions, the
following map is continuous

ϕf :M(X )→ R; µ 7→
∫
X
f(x)dµ(x).

1A collection of subsets of a topological space X is said to be locally finite if each point in the
space has a neighborhood that intersects only finitely many of the sets in the collection.
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Convergence in the weak topology will be denoted by µn
w−→ µ. Observe that it

is equivalent to the convergence of ϕf (µn) to ϕf (µ) for all f ∈ Cb(X ),

µn
w−→ µ⇔ lim

n→∞
ϕf (µn) = ϕf (µ) ∀f ∈ Cb(X ). (B.1)

Definition B.0.5. The vague topology on M(X ) is the coarsest topology such
that the maps

ϕf :M(X )→ R; µ 7→
∫
X
f(x)dµ(x)

are continuous for every f ∈ Cc(X ) continuous function with compact support in
X .

We say that a sequence of measures {µn}n∈N ⊂ M(X ) converges vaguely to µ
if they converge with respect to the vague topology. It will be denoted by µn

v−→ µ.
Likewise,

µn
v−→ µ⇔ lim

n→∞
ϕf (µn) = ϕf (µ) ∀f ∈ Cc(X ). (B.2)

In the following, we present some important results regarding the weak and vague
topology.

Proposition B.0.6. Consider measures µ, µ1, µ2, . . . ∈ M(X ). Then, µn
w−→ µ if

and only if µn
v−→ µ and µn(X )→ µ(X ).

Proposition B.0.7. The set D(X ) is closed in M(X ) for the vague topology

Before the next statements we need some definitions.

Definition B.0.8. A topological space X is said to be sequentially compact if
every sequence has a converging subsequence to a point of X.

Definition B.0.9. A subspace Y of a topological space X is relatively compact
if its closure is compact.

Proposition B.0.10. A set S ⊂M(X ) is relatively compact for the vague topology
if and only if sup{µ(K) : µ ∈ S} is finite for all compact sets K ⊂ X .

Theorem B.0.11 (Portmanteau Theorem). Consider a sequence of measures µ, {µn} ∈
M(X ). Then, µn converges vaguely to µ if and only if one of the following is satis-
fied:

• for all open sets U ⊂ X and all bounded closed sets F ⊂ X ,

lim sup
n→∞

µn(F ) ≤ µ(F ) and lim inf
n→∞

µn(U) ≥ µ(U). (B.3)

• for all bounded Borel sets A with µ(∂A) = 0,

lim
n→∞

µn(A) = µ(A). (B.4)

Last but not least, we recall the Radon-Nikodym theorem.
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Definition B.0.12. Given two non-negative Radon measures on X , µ is said to be
absolutely continuous with respect to ν if ν(A) = 0 implies µ(A) = 0 for any
A ⊂ X Borel set. This is denoted by µ� ν.

Theorem B.0.13 (Radon-Nikodym Theorem). Consider µ, ν two non-negative Radon
measures on X . Assume µ� ν. Then, there exists a measurable non-negatice func-
tion g : X → [0,∞), unique ν-a.e, such that

µ(A) =

∫
A

gdν. (B.5)

This function is denoted by dµ
dν

and is called the Radon-Nikodym derivative of
µ with respect to ν.



88 APPENDIX B. MEASURE THEORY



Bibliography

[1] Chazal, F. and Michel, B. (2017) An introduction to Topological Data Analysis:
fundamental and practical aspects for data scientists. arXiv:1710.04019.

[2] Ghrist, R. (2008) Barcodes: the persistent topology of data. Bull. Amer. Math.
Soc. 45, 61-75.

[3] Ghrist, R. (2018). Homological algebra and data.

[4] Chazal, F., de Silva, V., Glisse, M., Oudot, S. (2016). The Structure and Stability
of Persistence Modules. SpringerBriefs in Mathematics. Springer.

[5] Figalli, A. and Gigli, N. (2010). A new transportation distance between non-
negative measures, with applications to gradients flows with dirichlet boundary
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