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INTRODUCTION  

 

The Amazon burning. Hurricane Laura. East Africa drought. Australian wildfires. These are 

just a few of the many natural disasters that have made it to newspaper headlines, ultimately 

leading to 2019 being labelled as the Year of “climate strike”. It is straightforward, now more 

than ever, that the current economic development is at odds with environmental protection. The 

linkage between economic growth and environmental degradation has been evident since the 

beginning of the Eighteenth-Century Industrial Revolution. Back then, environmental 

degradation would show up in the form of thick layers of smog, blackening buildings and 

damaging people’s health. Despite the fact that the fuel mix and the energy utilization became 

undeniably more efficient through the years, aided by technological developments, the link 

between economic development and environmental pressure is still there. This becomes 

especially relevant during periods of Recession, which, alongside economic degradation, 

generally show a slow-down in emissions growth.  

It is in this last statement that lays the purpose of this work. Indeed, by means of a Kaya 

decomposition into their four driving factors, namely population, energy intensity of GDP, 

carbon intensity of energy, and GDP per capita, changes in energy-related CO₂ emissions will 

be analysed for period 1990-2017 in the World’s top five emitting countries, namely China, 

United States, Europe, India and Russian Federation, where, for Europe, three countries will be 

selected, namely Germany, United Kingdom and Italy. By subdividing the entire time window 

into four subperiods, namely 1990-1999, 2000-2007, 2008-2012, 2013-2017, the interplay 

between the four driving factors across the different subperiods will be analysed in deep. By 

doing so, and accompanying the decomposition with a decoupling analysis, it will be possible 

to discern how, and whether, the relationship between the indicator used for environmental 

degradation, i.e., energy-related CO₂ emissions, and the one used for economic development, 

i.e., GDP per capita, has been affected by the advent of the Great Recession.  

This kind of analysis is relevant now more than ever, since, by entering a crisis whose 

consequences are already proving to be far worse than those of the Great Recession, the issue 

of overcoming an economic downturn without compromising the environment is extremely 

important. As a matter of fact, history seems to be repeating itself. Indeed, during the Great 

Recession, total emissions experienced a significant reduction between 2007 and 2009, caused, 

according to Worland (2015), for more than its 80%, by the economic downturn. In the current 

situation, the lockdowns imposed in many countries worldwide and the consequent drop in 



2 
 

economic activities have already caused, in the short term, major impacts on the environment, 

with greenhouse gas emissions from transportation and industrial activity experiencing major 

drops and IEA estimating 2020 emissions to be 8% lower than in 2019 (OECD, 2020). 

Nevertheless, currently the priority is on overcoming the health crisis and relieving affected 

businesses and workers. It is because of this reason that the OECD (2020) advocates for policy 

regard towards the environmental impact of recovery measures, viewing the current situation 

as an “opportunity to more closely align public policies with climate objectives and limit the 

risk of locking-in carbon-intensive infrastructure”. Indeed, as further explored in this study, a 

process of economic recovery does not need to necessarily compromise the environment, as, to 

some lengths, occurred in the period following the Great Recession, characterized by 

progressive decoupling between environmental degradation and economic growth.   

This work is organized as follows. Chapter 1 presents an overview of the phaenomena of Global 

Warming and Climate change and motivates the choice of focusing on energy-related 

anthropogenic CO₂ emissions. Chapter 2, after a brief literature review on Kaya decomposition 

and the main decomposition techniques, moves on to the LMDI I decomposition analysis of 

energy-related CO₂ emissions in the period 1990-2017 for Germany, United Kingdom, Italy, 

United States, China, India and Russian Federation. After a brief theoretical explanation, a 

Tapio decoupling analysis follows, in order to address the progressive relationship between 

energy-related CO₂ emissions and GDP per capita. Chapter 3 focuses on two driving factors for 

CO₂ emissions, namely energy intensity of GDP and carbon intensity of energy. The former is 

addressed by a Fisher Ideal index decomposition analysis for the years between 2000 and 2016, 

and by an LMDI I decomposition of industrial energy consumption, followed by a Tapio 

decoupling analysis of the same variable. The latter is addressed by analysing the change in the 

fuel mixes of the studied countries in the period 1990-2017. The Final Remarks conclude the 

work, summing up the main findings.  
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CHAPTER 1: FOSSIL FUEL-CO₂ EMISSIONS AND ANTHROPOGENIC 

GHG EMISSIONS 

 

1.1. GHG emissions and the greenhouse gas effect 

 

The Earth is unequivocally warming (Figure 1). The average surface temperature has increased 

by 0.8°C between the 20th and 21st century, with the majority of this change occurring in the 

past thirty years (National Research Council, 2010).  

 

Figure 1 - Global observed change in surface temperature, 1901-2012. Source: IPCC, 2013. 

On top of that, other severe consequences have occurred: ice has been melting, reducing the 

amount of overall glaciers around the world; sea levels have been rising, more so at a faster rate 

in the recent years; wildlife and ecosystems have been affected and extreme weather events 

(e.g. severe floods and droughts) became much more frequent (National Geographic, 2020). All 

those concurring facts have led to scientific consensus regarding the existence of the 

phaenomenon referred to as “Climate Change”, which is defined as the “long-term change in 

the average weather patterns that have come to define Earth’s local, regional and global 

climates”  (NASA, 2020). This term is much broader and, unlike popular beliefs, not a 

synonym, of “Global Warming” as it encompasses both man-made and natural warming, and 

their effects, that include all the previously mentioned impacts.  

Although it is hard to get to the root of this phaenomenon, as many concurring events could 

have contributed to its development, the National Research Council’s work (2010) linked the 

development of Climate Change to human activity. As a matter of fact, there has been a 

concurrency of the warming phaenomenon with an increase in human activities releasing 

Carbon Dioxide (CO₂) and other greenhouse gases (GHGs), and it has been so since the 
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Industrial Revolution in the Eighteenth Century (IPCC, 2013). For instance, Carbon Dioxide 

concentrations increased by 40% since pre-industrial levels, with the oceans absorbing about 

30% of this increase, which resulted in ocean acidification. In this sense, as stated by the 

Intergovernmental Panel on Climate Change (IPCC, 2013), natural and anthropogenic 

substances which alter the Earth’s energy balance, including therefore GHG emissions, are one 

of the main causes of Climate Change. Despite the worldwide deployment of regulations and 

GHG reduction targets, the increase in the emissions of such gases is ongoing, and what appears 

to be the most attainable goal, at this point, is the mere containment in their growth rates.  

GHGs are of particular relevance in the definition of the causes of Climate Change because of 

the fact that they induce the so-called Greenhouse Effect (National Research Council, 2010), 

which consists in solar radiations failing to be reflected back to the atmosphere due to the 

presence of heat-trapping gases, namely GHGs (Figure 2). This is a phaenomenon that exists 

in nature, and is fundamental for life in this planet, as this heat trapping is necessary to maintain 

the Earth’s normal living conditions. However, recent trends in the increase of GHG emissions 

have led this warming effect way beyond the level that would be naturally desirable. This 

caused an amplification of the natural Greenhouse Effect that, as previously highlighted, 

resulted in an increase in Earth’s temperature.  

 

Figure 2 - Greenhouse Effect. Source: Climate Central, 2014. 

However, the scope of what follows is not a thorough explanation of the Greenhouse Effect, 

but rather a focus on its leading causes.  

To begin, the GHGs here tackled are the ones that have been listed in the Kyoto Protocol, 

namely Carbon Dioxide (CO₂), Methane (CH₄), Nitrous Oxide (N₂O) and Fluorinated gases 
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(Yue and Gao, 2018). However, before deepening the explanation of each of these components 

a fundamental distinction must be made, that is the one between natural and anthropogenic 

GHG emissions.  

Indeed, GHGs can be found in nature, and some of their emissions arise from natural 

phaenomena. These are, for instance (Yue and Gao, 2018): 

• Forest fires that, when nature-driven, are caused by droughts, heat and lighting. During 

these events the GHG emissions are huge and, for about 90%, are made up by CO₂. 

These events are the most relevant component of natural GHG emissions, accounting 

for almost 38% of their total.  

• Oceans are an important carbon reservoir. They act, at the same time, as carbon sources 

and sinks and are, as a consequence, essential when dealing with GHGs management.  

• Wetlands that, just like oceans, act as a carbon sink, but are, concurrently, a major 

source of CH₄ emissions, with a contribution to the overall annual emissions of this gas 

that can reach 15-30 percentage points.  

• Permafrost is a natural ecosystem present in regions such as Siberia and Canada. This 

system happens to be a contributor to GHG emissions of, for instance, Carbon 

Monoxide (C), CO₂, CH₄ and N₂O.  

• Volcanic eruptions and intermittent volcanoes are another relevant source of natural 

GHG emissions, mainly of CO₂ and CH₄.  

• Mud volcanoes are volcanoes characterized by the eruption of mud. Their emissions are 

primarily of CH₄, which accounts for an approximate 95% contribution to the overall 

GHG emissions from mud volcanoes. 

• Earthquakes are the last natural cause of GHG emissions here tackled. With the 

occurrence of these events, in fact, GHGs are emitted from the Earth and from the decay 

of animals and plants that are submersed after the earthquake.  

On the other hand, also human activities exert a major contribution to the increase in GHG 

emissions. The explanation of the main emitting sectors that follows is based on the findings of 

the IPCC Working Group I (2013): 

• The Energy Sector is the largest contributor to the increase of anthropogenic GHG 

emissions. In particular, fossil-fuel combustion constitutes the main cause of 

anthropogenic CO₂ emissions, as will be further explored in the following section. In 

general, it can be stated that energy demand has been on the rise, as can be demonstrated 

by the fact that per-capita primary energy use increased by 31% in the period 1971-
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2010, with substantial differences among the developed economies, that experienced a 

much lower increase, and the developing ones. This increased need for energy clearly 

resulted in an increase in energy-related emissions. 

• Another big contributor to anthropogenic GHG emissions is the sector of Agriculture, 

Forestry, and other Land Use, whose emissions increased by 20% in 2010, with respect 

to the 9.9 GtCO₂eq level of 1970. Drivers of emissions in these sectors include increased 

livestock numbers, fertilizer’s use, deforestation, and increased demand for food and 

animal products. 

• The Transportation Sector’s GHG emissions increased hugely (from 2.8 GtCO₂eq to 7 

GtCO₂eq) in the period 1970-2010. This increase has been driven by developed 

economies for the majority, although with a progressively declining contribution (from 

60% in 1970 to 46% in 2010).  

• Of a lower extent was the increase in the Building Sector’s emissions, that went from 

2.5 GtCO₂eq in 1970 to 3.5 GtCO₂eq in 2010. The biggest contributors are still the 

developed economies of OECD-1990, despite a negative growth recorded in recent 

years. 

• Direct GHG emissions from Industry have grown from 5.4 GtCO₂eq/yr in 1970 to 8.8 

GtCO₂eq/yr in 2010. In this case, however, there has been a shift for what regards the 

countries contributing to this increase. In fact, while OECD-1990 countries were the 

biggest contributors, with a 57% share, in 1970, the progressive industrialization of 

developing economies that followed has led to a decline in this number, down to 24% 

in 2010. In this sector, of particular relevance for GHG emissions is the production of 

energy-intensive industrial goods, such as steel, cement and aluminium. 

• The last contributing sector is the one of Waste, whose global emissions almost doubled 

between 1970 and 2010. However, their relative share on the overall anthropogenic 

GHG emissions has remained relatively stable, as in 1970 GHG emissions from waste 

accounted for a 2.6% of the total GHG emissions, whereas in 2010 for a 3%. These 

emissions are connected to population growth, urbanization and affluence.  

In order to give a representation of the relative contributions of each of these sectors, a graph 

from IPCC (2014) is reported below, representing the data of anthropogenic GHG emissions 

by sector for the year 2010.  
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Figure 3 - Anthropogenic GHG emissions by Economic Sector. Source: IPCC, 2014. 

Figure 3 shows that the sector of Electricity and Heat Production accounts for the largest portion 

of the overall anthropogenic GHG emissions, with a 25% share. However, it must be noted that 

most of the electricity and heat produced have the other sectors as beneficiaries. Accounting for 

this consideration, the actual contribution of the energy sector would really be minimal, with a 

mere 1.4% share. 

After providing a definition of the two typologies of GHG emissions, it is useful to give an idea 

of their relative importance. Estimates made by Yue and Gao (2018), based on data collected 

from a number of studies made by entities like IPCC, The Global Carbon Budget and the 

UNFCCC, found that, out of the total annual global GHG emissions of 2016, that are in the 

range between 54.26 and 75.43 GtCO₂eq, the ratio of natural to anthropogenic emissions is 

between 0.5 and 1.09, with a most likely value of 0.8. This seems to point to the fact that the 

two are almost of the same order of magnitude. However, one fundamental distinction must be 

considered, that is the self-balancing property of the natural system. In fact, the carbon 

capturing activity enacted by oceans and vegetation allows for an absorption of the natural GHG 

emissions of roughly the same entity as their generation. This means that anthropogenic GHG 

emissions are the factor that exerts some extra pressure on the Earth’s system and, therefore, 

the one that should be limited.    

A formalization of this fact can be provided by the concept of Radiative Forcing, defined by 

IPCC (2013) as the net change in the Earth’s energy balance caused by changes in “natural and 

anthropogenic substances and processes”. Given that one of Earth’s responses to these energy 
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imbalances is an increase in its temperature, the concept of Radiative Forcing is quite relevant 

when considering the Climate Change phaenomenon. In this sense, by examining satellite 

observations of total solar irradiance changes, the IPCC assessment (2013) concluded that, as a 

whole, radiative forcing from changes in total solar irradiance has been of 0.05 W m⁻² in the 

Industrial Era, i.e., the years from 1750 to 2011. Also, radiative forcing from volcanoes has 

been estimated for -0.11 in the years 2008-2011 when compared to 1750. On the other hand, 

the total anthropogenic radiative forcing for the Industrial Era has been estimated for about 2.3 

W m⁻², which confirms that, even if natural and anthropogenic emissions may be of roughly 

the same order, the overall natural forcing is actually only a small portion of the anthropogenic 

one. This can be easily demonstrated by considering that, in the years between 1980 and 2011, 

the change in the natural forcing caused by the two factors mentioned (i.e. solar irradiance and 

volcanic phaenomena) was almost null, whereas the anthropogenic radiative forcing has 

increased of 1.0 W m⁻² in the same period. More specifically, the natural forcing in the last 15 

years has offset a fraction of about 30% of the anthropogenic one.  

In short, it can be said that anthropogenic emissions are the ones that mostly contribute to the 

phaenomenon of Climate Change, while natural emissions appear to be basically self-balancing. 

For this reason, other than for the fact that measurement of the former type of emissions has 

much lower associated uncertainties, from now onwards, only anthropogenic GHG emissions 

will be considered.    

 

1.2. Anthropogenic GHG emissions 

 

Total anthropogenic emissions have been on the rise from the post-Industrial period, as a 

consequence of the increase in urbanization, human activities and industrialization. The largest 

growth has occurred in the last decades, with total anthropogenic emissions reaching their 

highest levels in history in the years between 2000 and 2010 (IPCC, 2014).  

In particular, it is worth distinguishing among the different types of GHGs that have been listed 

in the previous Section (IPCC, 2014; Olivier and Peters, 2020): 

• Carbon Dioxide (CO₂) accounts for the majority of anthropogenic GHG emissions. 

Furthermore, it is the gas that experienced the largest increase in the most recent years 

among all anthropogenic GHGs, as its emissions more than doubled between 1970 and 

2010. CO₂ is mainly released through fossil fuel combustion, cement production, and 

“forestry and other land use”, a term that basically incorporates “forest fires, peat fires 
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and peat decay” (IPCC, 2014). Specifically, CO₂ emissions from fossil fuel combustion 

and industrial processes make up the largest component of anthropogenic GHG 

emissions, accounting for about 65% of the total in 2010, whereas, in the same year, 

CO₂ emissions from forestry and other land use contributed to a 11% share.      

• Methane (CH₄) is the second most relevant anthropogenic GHG emissions source, with 

a 16% share over the total in 2010. It is mainly originated from: agriculture and 

livestock, fossil fuel production and transmission (i.e. natural gas, oil, coal), and waste 

decay. The majority of CH₄ emissions arises from fossil fuel production and 

transmission, and from livestock, namely from emissions caused by ruminants, 

particularly cattle. In fact, referring to 2018 data collected from Olivier and Peters 

(2020), both of those factors accounted on a standalone basis for about a third of the 

total anthropogenic CH₄ emissions.    

• Nitrous Oxide (N₂O) is the third most relevant source of anthropogenic GHG emissions, 

with a share of 6.2% in 2010. N₂O anthropogenic emissions arise mainly in the context 

of agricultural activities, that, in 2018, made up about 65% of their total. Some activities 

worth mentioning in this area are animal manure droppings and the use of synthetic 

nitrogen fertilizer. Smaller and actually declining contributions come from industrial 

processes, such as chemicals production, where the development of abatement 

technologies brought to a 48% reduction in their global N₂O emissions after peaks 

experienced in 1979, 1997 and 2007.    

• Fluorinated gases (F-gases) include hydrofluorocarbons (HFCs), perfluorocarbons 

(PFCs) and sulphur hexafluoride (SF₆). Although their share on the overall 

anthropogenic GHG is relatively low, accounting for a 2 % contribution in 2010, these 

are known as High Global Warming Potential gases and are therefore still exerting a 

major pressure on the Earth’s balance. The largest source of these gases is their use as 

substitutes of ozone-depleting substances, contributing in 2018 to two thirds of the total 

F-gases anthropogenic emissions. Among them, HFCs and SF₆ are the main F-gases 

deployed, with respective shares of 81% and 13% in 2018. Furthermore, HFCs 

experienced a major increase in the early 1990s, as a consequence of the Montreal 

Protocol-led prohibition of ozone-layer damaging gases such as 

hydrochlorofluorocarbons (HCFCs) and chlorofluorocarbons (CFCs).  

Figure 4 illustrates the shares of the different anthropogenic GHG groups tackled and their 

evolution from 1970 to 2010.  
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Figure 4 - Total annual anthropogenic GHG emissions by group of gases, 1970-2010. Source: IPCC, 2014. 

Figure 4 confirms that the majority of total anthropogenic GHG emissions is made up by CO₂ 

emissions from fossil fuel combustion and industrial processes, and so it has been for the past 

40 years. Moreover, the increase in the atmospheric concentration of CO₂ from 1750 has been 

the largest contributor to total radiative forcing (IPCC, 2013). For these reasons, after having 

ruled out natural GHG emissions from this study, from now on the attention will be focused 

only on CO₂ emissions and, more specifically, on CO₂ emissions from fossil fuel combustion, 

as it is their most relevant component, as has been highlighted above and further underlined 

from the graphic representation reported. 

 

1.3. CO₂ emissions from fossil fuel combustion: world and regional trends 

 

CO₂ emissions from fossil fuel combustion and industrial processes accounted for about 78% 

of the global increase in anthropogenic GHG emissions between 1970 and 2010 (IPCC, 2014). 

The growth of such emissions is ongoing, although at differing rates. In fact, in the 1970-2003 

period, world growth rates were of about 1.6% per year on average, while in the period 2003-

2011, the average annual growth rate spiked to 3.2%, mostly driven by China. Afterwards, these 

figures reduced to roughly the same entity of 1970-2003 between 2012 and 2014, with 

emissions even remaining constant in 2015. However, in the years between 2016 and 2018, 

growth rates have been progressively increasing, reaching 2% in 2018. This increase was owed 

to a new rise in global coal consumption that has been observed in 2017 and 2018, experiencing 
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a 1.4% growth in the year 2018. The increase in CO₂ emissions of 2018, in general, can be 

reconducted to the fact that energy demand for this year has increased of 22 MJ, which were 

met, for one half, by relying on fossil fuels and, for the other half, on nuclear and renewables. 

In order to give, however, a more optimistic view on the matter, it should be pointed out that, 

between 2010 and 2018, the 15% increase in Total Primary Energy Supply (TPES) was met by 

decreasing the share of fossil fuels from 78.3% to 75.1%, and of nuclear from 4.6% to 3.9%, 

while, at the same time increasing the share of renewables from 17.1% to 20.9%.  

When considering this evolution from the single countries’ standpoint, however, further 

significant differences emerge. In fact, for a first level of analysis, the area graph in Figure 5 

allows to make a comparison of fossil CO₂ emissions for OECD and non-OECD countries in 

the years between 1971 and 2017. Figure 5 shows that, while initially developed economies 

(i.e. OECD Countries) were the leaders in fuel combustion related CO₂ emissions, this role 

reversed after the beginning of the new Century. In this sense, non-OECD countries first 

equalled and then surpassed OECD countries’ emissions of CO₂, that even experienced a 

decline in the last years considered in the graph. 

 

Figure 5 – Fossil fuel combustion related CO₂ emissions, OECD and non-OECD breakdown. Source: Author's own 

elaboration, based on IEA data (2019a). 

However, among the various countries considered above, it makes sense to analyse on a 

standalone basis the top emitters’ contribution to emissions, along with its evolution. Indeed, 

Figure 6, shows the million tons of fossil combustion-related CO₂ emissions in China1, the US, 

 
1 From now onwards, by China it is meant People’s Republic of China, excluding Hong Kong. 
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the OECD Europe2 countries as a whole, India, and the Russian Federation, that are the five top 

emitters for the year 2018, with respective shares of 29.9%, 14%, 9%, 6.9%, and 4.6% (Olivier 

and Peters, 2020).  

 

Figure 6 – Fossil fuel combustion related CO₂ emissions in top five emitting countries. Source: Author's own elaboration 

based on IEA data (2019a). 

The steep increase experienced by China’s CO₂ emissions is remarkable, such that, since 2006, 

it even surpassed the US as the world’s largest emitter. However, it is important to note a decline 

in emissions experienced by China during the years 2014 through 2016, followed by a recovery 

in the last year of data considered. This event corresponded to an even greater decline in US 

emissions, which showed a 2.6% decrease in 2015, with this trend continuing up to the last year 

considered. On the other hand, the OECD Europe emissions, after falling in 2013 and 2014, 

started recovering in the following years, with emissions increasing by 0.9% in 2015. Just like 

China, India experienced a major increase in its CO₂ emissions, which is ongoing, as the rapid 

economic growth of this country continues. Lastly, the emissions of the Russian Federation 

have been quite stable after the huge drop caused by the Soviet Union’s fall, but showed more 

recent declines since 2013, barely compensated by a slight recovery in 2017 (Olivier et al., 

2016).  

It is important to underline that the years of data studied in this graph, namely from 1990 to 

2017, are going to be the time window used for the analysis carried out in the following 

Chapters of this work. This interval has been chosen as 1990 represents a benchmark year in a 

 
2 OECD Europe includes: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, 

Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Slovak 

Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, and United Kingdom. 
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number of ways. In fact, on the one hand, it is the base year with respect to the Kyoto 

commitments for the majority of Annex I countries (UNFCCC, 2020). For this reason, it 

represents an important landmark when dealing with the study of CO₂ emissions, as countries 

consider this year’s emissions to set their goals and measure their improvements to ensure their 

compliance with the Kyoto Protocol commitments. On the other hand, 1990 can be viewed as 

the year that, after the Berlin Wall had been demised in 1989, saw the beginnings of the process 

towards the market liberalization of the former Soviet Union’s economies, which led to the 

establishment, among other things, of the Russian Federation in 1991. In this sense, 1990 can 

also be viewed as the year that shaped the world economy as it is known today, as the Central 

Eastern Europe countries moved from central planning economies to market ones. Furthermore, 

this economic transition brought to a huge reduction in emissions in those countries, which was 

linked to the contemporaneous output decline, but that proceeded even successively to the 

economic recovery (Chrimiciu and Dosi, 2011).  

However, after pointing out the trends in the absolute CO₂ emissions, one further aspect should 

be brought to light. In fact, the roles of major contributors appear to be reversed when 

considering CO₂ emissions per capita, which are highlighted, for the same reference years and 

countries, in Figure 7.  

 

Figure 7 - Tonnes of CO₂ emissions per capita in the five top emitting countries. Source: Author's own elaboration based on 

IEA data (2019a). 

By considering per-capita emissions, in fact, the US are the undiscussed leaders among the 

considered countries, even if they experienced an important reduction in the past 20 years. 

China, on the other hand, in this setting, currently ranks as the country with the third highest 

per-capita CO₂ emissions. Lastly, India shows the lowest numbers among the studied countries.  
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From these two simple representations, it is already evident how the analysis of different 

factors, such as the population of an economy, can shed a light on the drivers behind the 

amounts of emissions generated in one country. More specifically, there are four factors which 

contribute to the emissions’ generation, namely population, GDP per capita, energy intensity, 

and carbon intensity (IPCC, 2014).  

A first decomposition3 of world fossil CO₂ emissions’ change into these four factors for the 

years 1990-2017 is proposed in Figure 8. What stands out from the graph is that world’s CO₂ 

emissions appear to have been increasing in all the considered years, with their percentage 

change being quite small in the last period considered, namely from 2013 to 2017, which are 

the years of recovery from the Great Recession.  

The increase in emissions seems to have been mainly driven by economic and population 

growth in the last thirty years, with a substantial reduction of the economic driver experienced 

during the period 2008-2012. In the last period considered, however, economic growth has 

established a more important role as emission driver, whereas population growth’s role has 

remained almost constant, as pointed out also by IPCC (2014). On the other hand, a factor that 

has been pulling back emissions is the energy intensity, namely the ratio between total primary 

energy supply and GDP, which will be object of a thorough analysis in Chapter 3. In fact, 

improvements in this ratio, which have been driven by technological advancements, changes in 

the economic structure and in energy mixes (IPCC, 2014), exerted a negative contribution to 

the growth in CO₂ emissions for all the considered periods, with a significant reduction in this 

role experienced during the crisis period, which seems to suggest a lower commitment to 

“energy efficiency” in periods of crisis.  

Lastly, carbon intensity of energy, which is the ratio of CO₂ emissions over the total primary 

energy supply, went from being a negative contributor to emissions’ growth in the period 1990-

1999, to being a positive one in the years from 2000 to 2012, experiencing another shift in the 

sign of its contribution in the last period analysed, i.e. 2013-2017. The increase observed in the 

central periods has most likely been caused by an increased use of coal with respect to the other 

energy sources between 2000 and 2012 (IPCC, 2014).  

 
3 The decomposition operated in this Paragraph relies on the LMDI I method, developed by Ang et al. (1998), 

and Ang and Liu (2001). The change in CO₂ emissions is decomposed into four drivers (population, GDP per 

capita, energy intensity of GDP, carbon intensity of energy) according to the Kaya Identity. Both the LMDI I 

method and the Kaya identity will be presented in the next Chapter.  
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Figure 8- Decomposition of World’s fossil CO₂ emissions, years 1990-2017. Source: Author's own elaboration based on IEA 

data (2019a). 

This kind of decomposition of CO₂ emissions’ change into its four determinants will be 

performed in the next Chapter for the major emitters outlined above, on a one by one basis, in 

order to get to the root of emissions’ drivers in each of these countries, and analyse their single 

patterns and behaviours.    
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CHAPTER 2: A FIRST LEVEL OF DECOMPOSITION OF FOSSIL 

FUEL-CO₂ EMISSIONS  

 

2.1. The Kaya Identity 

 

When dealing with the topic of environmental degradation, it should always be accounted for 

the fact that three factors are strongly intertwined in the definition of any possible mitigation 

strategy, namely environment, economic development and energy. These have been appointed 

by Kaya (1997) as the three E’s, underlying how, for instance, the energy provision by means 

of fossil-fuel combustion is economically viable, but is also directly connected with 

environmental issues, and, conversely, the reduction in the deployment of this kind of energy 

sources in order to improve environmental quality has clear repercussions on the economy, and 

on energy provision. In this sense, it behoves to set a formal link between these three variables. 

To supply for that, one of the methods mostly deployed by the literature on this topic (see e.g. 

Albrecht et al., 2002; EBRD, 2011; Janssens-Maenhout et al., 2013; Tavakoli, 2017; Chen et 

al., 2018; Zheng et al., 2020) is the Kaya Identity, proposed by Yoichi Kaya at an IPCC seminar 

in 1989. The use of this identity allows to establish a link between energy-related CO₂ 

emissions, energy, economic activity and population in a certain area, for any moment in time. 

In this sense, the definition of such an equation, which is extremely simple from a mathematical 

standpoint, is a useful tool to proceed with the definition of the different components 

contributing to emissions. The mathematical link for a given country in a given year is defined 

as follows: 

𝐶 = 𝑃 ×
𝐺𝐷𝑃

𝑃
×

𝐸

𝐺𝐷𝑃
×

𝐶

𝐸
 

Where: C are the energy-related CO₂ emissions, P is the population, GDP is the Gross Domestic 

Product, which can be computed using exchange rates or purchasing power parity, and E is the 

Total Primary Energy Supply. Given these definitions, the relation can be also seen as: 

𝐶 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐺𝐷𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 × 𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐺𝐷𝑃

× 𝐶𝑎𝑟𝑏𝑜𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐸𝑛𝑒𝑟𝑔𝑦 

That are the four quantities briefly explained at the end of the previous Chapter. In this sense, 

they can be seen as the “driving factors” of energy-related emissions, as they give an indication 

of the size of the country through the population, of its economic activity through the per-capita 

GDP, and of its carbon efficiency through energy intensity, which describes the amount of 
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energy needed to produce a unit worth of economic output, and carbon intensity, which is the 

amount of CO₂ emitted per unit of energy used (Chirmiciu and Dosi, 2011; Tavakoli, 2017).  

The use of the Kaya Identity has been widespread ever since its definition, as it presents a 

number of benefits. Firstly, being an identity, this measure does not carry any residual, and is 

extremely simple in its definition (Janssens-Maenhout et al., 2013; Tavakoli, 2017). Moreover, 

despite its simplicity, it still allows to make precise estimates of CO₂ emissions, as has been 

proven by Tavakoli (2017), who compared real emissions in 215 countries for a span of 20 

years with estimations based on the Kaya Identity. From this comparison, it turned out that the 

latter could predict about 80% of the former, which is good considering that this equation is 

merely an accounting identity.  

However, the extreme simplicity related to the use of this Identity comes at a cost. One example 

is the fact that it only provides a factual, ex post partition of energy-related emissions into its 

four drivers, without establishing their causes and their evolution (Janssens-Maenhout et al., 

2013). 

In order to fill in for this missing point, it is necessary to bring the analysis one step further, by 

means of decomposition techniques.  

 

2.2. Decomposition analysis 

 

2.2.1 Overview of the main techniques 

Decomposition techniques are used to quantify the impact of several factors driving energy and 

emission changes. By decomposing a certain indicator in a given time span into its driving 

factors, in fact, it is possible to analyse each of these factors’ role in the variation of the 

considered indicator (Caputo, 2012; Janssens-Maenhout et al., 2013).  

Two main strands of techniques have been proposed by the literature, namely structural 

decomposition analysis (SDA) and index decomposition analysis (IDA) (Hoekstra and van der 

Bergh, 2003). The two methods have in common their fundamental aim of assessing the impact 

of several driving factors on a chosen indicator’s change, with one main distinction: the former 

relies on the input-output model and data, whereas the latter relies on sector level data. IDA, by 

using aggregate sectoral data, entails less requirements in terms of data needed, which however 

leads to decompositions with a lower level of detail. Moreover, IDA allows to only assess direct 

effects, while SDA can also include indirect demand effects in its results. Lastly, the modelling 
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framework used in the SDA is much more complex than the one requested by IDA, which 

however still provides a wide array of indicator forms, mathematical tools and indices.  

For the analysis progressed in this work, more relevance has been given to wider country and 

time data availability and to feasibility, thereby privileging the use of IDA over SDA. As a 

matter of fact, some of previous works carrying out similar analyses to the one pursued in this 

work (see e.g. Metcalf, 2008; Chirmiciu and Dosi, 2011; Chen et al., 2013; Andreoni and 

Galmarini, 2016; Chen et al., 2018; Meng et al., 2018; Zheng et al., 2020) rely on IDA.         

Indeed, the use of index decomposition analysis in the field of energy and environmental studies 

can be traced back to the late 1970s (Ang and Zhang, 2000; Ang, 2004). The surge of the world 

oil crises in 1973/74, in fact, led to increased questioning on the factors influencing energy 

demand and on its linkages with industrial production. From the deployment of the first simple 

decomposition techniques in those years, it turned out that the composition of industrial activity 

was not the only factor affecting energy demand, but that energy intensity also played a 

substantial role in this sense. However, after the late 1980s, a revision of these first, very 

intuitive techniques took place, leading to the use of more sophisticated methods, such as the 

arithmetic mean Divisia Index approach, introduced by Boyd et al. in 1987, and the Laspeyres 

index approach, formalized by Howarth et al. and Park in the first 1990s, although it had been 

already widely used in the majority of the literature since 1985. However, with the breakthrough 

works of, among the others, Ang and Liu (2003), Ang (2004; 2005) and Albrecht et al. (2002), 

these techniques have been gradually singled out in favour of “perfect decomposition 

techniques”. This development led to a progressive convergence in the methodologies adopted, 

observed since the beginning of the new Century (Xu and Ang, 2013).          

Given the popularity it had up to the first 2000s, it makes sense to firstly briefly focus on the 

Laspeyres index technique. This method derives from the Laspeyres price and quantity index 

largely used in economics. It relies on holding all the variables but the one considered constant 

at their base year values, while letting the other one freely change (Ang and Zhang, 2000; Ang, 

2004). Formulae and further details related to this and the other methodologies reviewed in this 

Section can be found on APPENDIX A. The main advantage related to the Laspeyres index 

lays in its simplicity of use and understanding. This comes at a cost, however, since, by using 

this method, residuals arise, which can be so high at times as to make the analysis uninformative 

(Ang and Liu, 2007), as highlighted by numerical exercises performed by Albrecht et al. (2002).  

The same problem arose with the use of the technique of arithmetic mean Divisia index 

(AMDI), which deploys an arithmetic mean weight function. This method, in fact, although 

simpler in form than its other Divisia index counterparts, carries large residuals in some cases, 
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like the one of cross-country decompositions with significant differences among the countries 

considered. Another drawback associated to this method is the fact that it fails when zero values 

are present in the dataset.     

For these reasons, the rise of new index decomposition methodologies became crucial so as to 

develop more precise analyses, without the burden of large residuals hindering the utility of the 

decomposition task. In this sense, Ang (2004) defined the areas of evaluation for the different 

decomposition methodologies as their: “theoretical foundation, adaptability, ease of use, and 

ease of result interpretation”. For the first of these areas, Ang and Zhang (2000), and Ang (2004) 

established several tests which allow to determine the degree of attractiveness of each IDA 

methodology: 

• The factor-reversal test requires that, for the chosen method, in its multiplicative form, 

all contributing factors, when multiplied by each other, render the ratio describing the 

change of the variable considered, while, in its additive form, they all sum up to the 

change in the variable studied. This basically means that no residuals are present in the 

analysis, which implies a perfect decomposition, as the two sides of the equation 

perfectly equate. 

• The time-reversal test requires the index number computed forward (i.e. from time 0 to 

time T) to be the reciprocal, in the case of multiplicative decomposition, or the opposite, 

in the case of additive decomposition, of that computed backward (i.e. from time T to 

time 0). This implies that the decomposition should give consistent results whether it is 

performed retrospectively or prospectively.    

• The circular test requires that the index to be decomposed should also be obtained as 

the product, in case of multiplicative decomposition, or the sum, in the case of additive 

decomposition, of any intermediary, and complementary, decompositions (i.e. the 

decompositions from 0 to S and from S to T, with S being any point in time between 0 

and T). This implies that the decomposed index is not affected by the way the indicator 

develops in the time span considered. 

• The proportionality test requires that, whenever a driving factor is multiplied by a 

constant k, the new resulting index is also the k-uple of the initial one. 

For what concerns the other areas, it is found that methods associated with a broader degree of 

adaptability to different decomposition problems, are clearly also more complex, therefore 

valuations should be performed before their application. The ease of use is, in fact, another 

criterion of choice for decomposition methods, and it closely relates to the facility with which 
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a method can be applied to distinct problems. Lastly, the ease of result interpretation relates to 

the presence of residuals, which hinders results’ understanding and the possibility to draw 

definite conclusions (Ang, 2004).       

After having defined the main prerequisites to pick a good decomposition methodology for the 

problem considered, Ang and Liu (2003) and Ang (2004) move on to the description of some 

“perfect decomposition methodologies”, that do not carry residuals in the analysis, satisfying 

the factor-reversal test. These are: 

• Logarithmic Mean Divisia Index (LMDI) I and II methods. These methodologies use 

a log mean weight function. LMDI II has been the first perfect decomposition technique 

to have been implemented in the literature and was developed by Ang and Choi in 1997. 

LMDI I was subsequently proposed by Ang et al. in 1998 for the additive version, and 

by Ang and Liu (2001) for the multiplicative version. A further discussion on the LMDI 

I methodology will take place in the next Section. 

• Mean rate-of-change index (MRCI) method. It was proposed by Chung and Rhee in 

2001 and gets its name from the use of the “mean rate-of-change index” for weighting 

the terms of the decomposition. It is only available in additive form, and its formulae 

are less straightforward than the ones of the first two methodologies. 

• Fisher Ideal index method. It has been proposed in 2002 by Ang et al. as a 

reformulation of the Laspeyres index which yields perfect decomposition, and further 

developed by Ang and Liu in 2003, and Boyd and Root in 2004. It is available only in 

multiplicative form. A further insight on this methodology will be provided in the next 

Section. 

• Shapley/Sun method. This term refers to two methodologies proposed, respectively, by 

Albrecht et al. (2002) and by Sun (1998), which have been deemed as equivalent in their 

mathematical results by Ang and Liu (2003). These methodologies rely on a distribution 

of the residual term from the traditional Laspeyres index method among the different 

driving factors, based on the “jointly created and equally distributed principle” 

(Albrecht et al., 2002) for Sun, and on the axioms of symmetry, no inessential players 

and additivity for the method proposed by Albrecht et al., based on the Shapley value’s 

theoretical framework. By doing so, the two decomposition techniques essential yield 

the same result. The advantages related to these methodologies are, other than the fact 

that they perform perfect decomposition, the symmetry of their decomposition, meaning 

that all the factors involved are treated in an impartial fashion, and the possibility to 

perform complex decomposition tasks. However, this means that formulae connected to 
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these methodologies can become quite cumbersome, especially with a large number of 

factors involved in the decomposition, which is the case of most decompositions in the 

energy and environmental field. 

 

2.2.2 LMDI I and Fisher Ideal index methods 

 

This paragraph focuses on the two techniques of LMDI I and Fisher Ideal index decomposition, 

briefly reviewing their advantages and shortcomings. Given that these two methodologies have 

been chosen over other perfect decomposition techniques in tasks similar to the one performed 

in this work (see e.g. Metcalf, 2008 and Chirmiciu and Dosi, 2011 for the Fisher Ideal index 

method; and Chen et al., 2013; Andreoni and Galmarini, 2016; Chen et al., 2018; Meng et al., 

2018 and Zheng et al., 2020 for the LMDI I method), they have been chosen as the techniques 

that are going to be applied in this study.  

The LMDI I method, as previously mentioned, relies on the use of a log mean weight function. 

This allows to obtain much better results than its forerunner AMDI. In fact, LMDI I method 

does not leave any residuals, and is not subject to the zero-values problem which affects AMDI 

as, when zero values are replaced by small positive numbers, results converge, thereby solving 

all the main issues related to AMDI (Ang, 2004). Another feature of LMDI I that made it 

superior to the LMDI II method as well, was highlighted by Ang and Liu (2001) when 

introducing it for the first time in its multiplicative form and is its consistency in aggregation. 

This means that, whether by computing it in more steps or in a single step, the index 

decomposition returns the same results. This feature is particularly relevant considering that 

often decompositions are performed at more disaggregation levels (e.g. by country, by 

industrial sector, or by fuel type). Furthermore, the LMDI I method passes all the tests 

mentioned above but the proportionality test (Ang et al., 2004). A possible shortcoming of this 

method is that it is not robust to negative values, given the properties of logarithmic function. 

However, given that in energy and environmental studies negative data are extremely rare, this 

issue should not be too relevant. Lastly, Albrecht et al. (2002) pointed out that the use of the 

log mean weight function implies an assumption of constant growth rates, and a normalization 

of the weight function, since the sum of all weights is actually slightly less than one. Despite 

these flaws, the LMDI I method is currently the most widely deployed technique, as it delivers 

perfect decomposition, without requiring cumbersome computations. In this and the following 

Chapter, this methodology will be used, in its additive form, to perform decompositions for the 

change in energy-related CO₂ emissions, and in industrial energy consumption, respectively, in 
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the countries targeted in Chapter 1 as the major emitters. The mathematical formulation for the 

LMDI I method can be found in APPENDIX A.  

The Fisher Ideal index method relies on an extension of the conventional Laspeyres and Paasche 

indices. The Paasche index is very similar to the Laspeyres, but with the main difference that, 

while Laspeyres is based on a prospective reasoning, Paasche uses a retrospective view 

(Albrecht et al., 2002). Computing the geometric mean of those two indices, the Fisher Ideal 

index is obtained (Ang et al., 2004; Metcalf, 2008). This method overcomes the issue of 

residuals’ presence which arises when using the two indices on a standalone basis, thereby 

performing a perfect decomposition. In addition to that, it passes all the tests mentioned above, 

and it is also robust to negative values. However, it appears not to be consistent in aggregation, 

and its formulae can be very complicated when dealing with a large number of factors (Ang et 

al., 2004). In the following Chapter, this methodology will be used to perform decompositions 

for energy intensity’s change in the countries targeted in Chapter 1 as the major emitters. The 

mathematical formulation for the Fisher Ideal index method can be found in APPENDIX A.  

 

2.3. An application of LMDI I to fossil fuel CO₂ emissions 

 

2.3.1 Data and framework 

 

Throughout Section 2.3, a decomposition of the change in CO₂ emissions from fossil fuel 

combustion is operated for China, the US, the Russian Federation, India, and three 

representative countries of the OECD-Europe, i.e., Germany, the UK and Italy.4 This is owed 

to the fact that Germany represents Europe’s most important economy, and, as such, a 

benchmark for the rest of the European economies. As a consequence, it is also the European 

country which emits more in terms of total GHGs (Eurostat, 2020).  The UK, on the other hand, 

is the second largest EU emitter, and, since 1990, has undergone a significant process of 

decarbonization and a structural shift, which is of peculiar interest for this kind of analysis. 

Lastly, Italy, that ranks as the fourth largest EU emitter, has been chosen to analyse the national 

situation, and also for the sake of comparison, given that the third largest EU emitter, France, 

relies on a completely different fuel mix, given its large reliance on nuclear. For what concerns 

the other countries selected, they are the largest world emitters, and represent interesting objects 

of analysis for the differing driving forces of their emissions. In fact, while the US has been the 

 
4 Detailed results of the decomposition can be found in Appendix B (Table B.1). 
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largest emitter for the first half of the study period, China surpassed it owing to its growing 

economy, and to the use of a more carbon-intensive fuel mix. On the other hand, European 

emissions are on a declining path, also because of an increased regulatory concern on the matter. 

Of opposite direction are the emissions produced from India, where the economic and 

demographic drivers are particularly relevant. Lastly, the Russian Federation also represents a 

case of interest, as it had to endure a severe drop in its economy and undergo a recovery process 

that would prevent a spike in emissions.   

After providing an overview of the countries that are object of the decomposition analysis which 

will be performed, it makes sense to review the time window considered as well. As stated in 

the previous Chapter, the time span analysed ranges from 1990 to 2017. However, a further 

subdivision will take place in this decomposition analysis, in order to form four sub-periods. 

These will be:  

• 1990-1999 is the first decade of data analysed, starting from the Kyoto protocol base 

year, and following the fall of the Soviet Union. 

• 2000-2007 is the pre-crisis period, during which China fully experienced its economic 

transition, symbolized by its entry into the World Trade Organization in December 2001 

(WTO, 2020). 

• 2008-2012 is the recession period. During these years, the world’s major economies 

have been hit, first by the financial and economic downturn of 2008-2009, that saw its 

beginnings in the US, but spread worldwide, and then by the European sovereign debt 

crisis of 2010-2012.  

• 2013-2017 is the recovery period, allowing to establish the effects of the crises on 

emissions, and on the way their major drivers’ roles may have changed. 

Another remark must be made concerning the choice of the GDP measure adopted. In order to 

provide a better comparison among the different countries, without accounting for inflation 

issues which may have arisen during the period considered, GDP at constant 2015 prices, 

expressed, using exchange rates, in US dollars (USD) was used. This is also what has been done 

by Chen et al. (2013), Andreoni and Galmarini (2016), Zheng et al. (2020), who preferred the 

use of GDP at constant prices computed using exchange rates over GDP computed using 

purchasing power parity, which would have given more weight to emerging economies, 

resulting in smaller wealth disparities (Raupach et al., 2007). The GDP data for this work have 

been retrieved from the United Nations Statistics Division database (2019). On the other hand, 

the data on fossil fuel related emissions, expressed in million tonnes of CO₂, population, 
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expressed in millions, and total primary energy supply, expressed in Petajoules (PJ)5 equivalent, 

have been provided by the International Environmental Agency’s report on CO₂ emissions from 

fuel combustion (IEA, 2019a), which covers world and regional data from 1971 to 2017. 

 

2.3.2 Germany, United Kingdom and Italy 

 

At the EU level, the commitments to reduce emissions, by increasing the use of renewables and 

fostering energy efficiency, are enclosed in a number of regulations and policy initiatives. Some 

of the most remarkable ones are the EU- Emissions Trading System (ETS), which is a cap-and-

trade scheme, creating a uniform price for emission allowances in the covered sectors, that 

account for 45% of Europe’s total GHG emissions (Kisielewicz et al., 2016); the Effort Sharing 

Decision (ESD), for those sectors which are not covered by the EU-ETS, which requires to 

meet 2020 targets on GHG emissions, set for each Member State with respect to their 2005 base 

year-levels; the Renewable Energy Directive (RED), that sets a 2020 target for each Member 

State in terms of the percentage of renewable energy sources over the gross final energy 

consumption; and the Energy Efficiency Directive (EED) which requires Member States to fix 

indicative targets relatively to their gross primary energy consumption (EEA, 2017).  

Germany  

Germany is Europe’s leading economy, and, as such, it is also its leading emitter, with, as of 

2018, a 23% share on the overall EU-27 GHG emissions (Eurostat, 2020). Despite this, 

Germany’s fossil CO₂ emissions have been on a declining path for the whole time window 

considered, with a total 23.5% decrease, going from about 940 million tons in 1990 to about 

719 in 2017.  

The LMDI I decomposition of the change in fossil fuel CO₂ emissions for Germany is proposed 

in Figure 9.  

 
5 1 Petajoule = 1015 Joules. 
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Figure 9 - Germany's fossil CO₂ emissions decomposition. Source: Author's own elaboration based on IEA and UN Stats 

data (2019). 

Figure 9 shows declining emissions are obtained for all four subperiods. 

For what concerns the drivers of emissions, Figure 9 shows that the energy intensity of GDP is 

the main factor causing the emissions’ decline. In fact, in the absence of any reduction 

experienced by this driver, and with all other factors remaining equal, emissions would have 

increased by 7%, 5%, 5%, 4%, respectively, in 1990-1999, 2000-2007, 2008-2012, 2013-2017. 

In this case, the decline in energy intensity, as will be explained in further detail in the following 

Chapter, is to be imputed more to an efficiency improvement across sectors, rather than to a 

structural change.  

Another factor whose contribution sign remained consistent throughout the four subperiods is 

the GDP per capita. In fact, the contribution of this factor has remained positive for the whole 

period, even during the crisis subperiod, namely 2008-2012, where it merely experienced a 

decline in its positive contribution, which went down to 3%, from the 10% of 2000-2007 (i.e. 

without the increase in GDP per capita experienced in the same subperiod, and with all other 

things equal, emissions would have been 3% lower).  

The last two driving factors experienced a sign change in their contribution to the emissions’ 

variation across the studied subperiods. 

The population driver, in fact, had a small negative contribution to the change in emissions in 

the central subperiods, namely 2000-2007 and 2008-2012, whereas it positively contributed to 

the change in emissions in the first and last subperiods, namely 1990-1999 and 2013-2017. This 

is because, indeed, population in Germany declined in the central periods, while it increased in 
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the two extremes. Given that an increase in the population positively correlates with emissions, 

the sign of the change in population is coherent with its contribution to emissions’ variation. 

Lastly, the carbon intensity of energy driver exerted a negative impact on the emissions’ 

change in all subperiods but the crisis one (i.e. 2008-2012). This factor is particularly relevant 

for the study of Germany, as it is the largest coal consuming country in the European Union, 

totalling, in 2015, a production of brown and hard coal of more than 5 Exajoules6 (EJ), and a 

net import of almost 2 EJ (Olivier et al., 2016). In particular, coal production experienced an 

increase between 2008 and 2012, which may explain the change in the contribution sign of the 

carbon intensity of energy experienced in this period, to then decline after 2012, 

counterbalanced however by an increase in the net imports of coal. Nevertheless, in the last 

years Germany decreased its consumption of coal, with a 7.2% reduction observed only in the 

year 2018, oil, and natural gas (Olivier and Peters, 2020). This was made possible by an 

increased reliance on renewables, which will be addressed in the next Chapter.   

United Kingdom  

The United Kingdom (UK) is the second largest emitter among the European countries, with 

its 2018 GHG emissions being a 12.8% share on the EU-27 total for the same year.7 Indeed, the 

UK once was the largest European emitter, due to the massive economic development it 

experienced during the 18th and 19th century Industrial Revolution. However, this major 

development resulted in an equally as important environmental damage, which prompted the 

UK to set regulations early on, with the first ones being the Clean Air Acts of 1956 and 1968 

(Agbugba, 2019). Successive regulations include the Climate Change Act of 2008, which 

acknowledged the UK’s commitments to reduce its impact on the self-titled phaenomenon. All 

these efforts ensured that, in the time window considered in this study, UK’s CO₂ emissions 

diminished, with 2017 figures being only about 65% of the 1990 base-year levels.    

The LMDI I decomposition of the change in fossil fuel CO₂ emissions for the UK is proposed 

in Figure 10.  

 
6 1 Exajoule = 1018Joules.  
7 The EU-27 total excludes UK’s emissions. 
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Figure 10 - UK's fossil CO₂ emissions decomposition. Source: Author's own elaboration based on IEA and UN Stats data 

(2019). 

UK’s CO₂ emissions have been declining in all subperiods but the 2000-2007 one, when they 

experienced a mild 0.22% increase.  

Among the considered drivers, two maintained the same sign of their contribution to the change 

in emissions throughout the four subperiods.  

The first is the energy intensity of GDP driver, whose contribution has remained steadily 

negative for the four subperiods. In fact, in the absence of any change in this driver, and with 

everything else equal, UK’s emissions would have been 14%, 25%, 8% and 15% higher, 

respectively, in the 1990-1999, 2000-2007, 2008-2012 and 2013-2017 subperiods. In this case, 

as will be further explored in the following Chapter, the ongoing structural change in UK’s 

economy is as important a driver as the improvement in its overall energy efficiency, owing to 

its transformation from an economy centred on pollution-intensive manufacturing sectors to a 

more service-based one.   

The other driver whose sign remained the same throughout the four periods, although opposite 

to the one of energy intensity, is the population. In fact, the contribution of this driver on the 

change in emissions has remained positive in all the four subperiods, as population increased 

consistently throughout the full time window considered. 

The GDP per capita driver, however, did change the sign of its contribution across the four 

subperiods. In fact, its contribution to the change in emissions is positive for all the subperiods, 

but the crisis one (i.e. 2008-2012). The reason behind this sign change appears to be pretty 

straightforward, as the Great Recession adversely impacted on UK’s GDP per capita, with 
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British economy in 2009 being 5.5% below its peak in the first quarter of 2008 (Vaitilingam, 

2009), and with this trend continuing up to 2012, when the economy finally started to recover, 

as highlighted by the sign change experienced in the last subperiod considered, namely 2013-

2017.  

Lastly, the carbon intensity of energy driver exerted a negative contribution in all subperiods, 

but the 2000-2007 one. This temporary sign change may be owed to an increased consumption 

of fossil fuels, mainly coal, experienced by the UK precisely in those years, which were later 

outpaced by an increased consumption of renewables, starting from 2004 (Agbugba, 2019). 

Given that the UK is the sixth largest coal consuming country in the EU (Olivier et al., 2016), 

this country’s lower reliance on coal has relevant consequences at the EU level.     

Italy 

Italy is the fourth largest EU emitter, accounting, in 2018, for a 11.3% share of total EU-27 

GHG emissions (Eurostat, 2020). Concerning the time window considered in this study, Italian 

CO₂ emissions have increased for the first half of the full sample period, from 1990 to 2005, to 

then decline in the second half on a steady path, except for the two years 2010 and 2015, which 

showed isolated increases with respect to their preceding years (IEA, 2019a).  

The LMDI I decomposition of the change in fossil fuel CO₂ emissions for Italy is proposed in 

Figure 11. 

 

Figure 11 - Italy's fossil CO₂ emissions decomposition. Source: Author's own elaboration based on IEA and UN Stats data 

(2019). 
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The two opposite trends in Italian CO₂ emissions are highlighted by the subperiod 

decomposition, with the first two being characterized by an increase in emissions, and the last 

two by a decrease.  

For what regards the driving factors, only one of them exhibits sign consistency in its 

contribution, namely the carbon intensity of energy driver. This driver, in fact, had a negative 

impact on the emissions’ change throughout the four subperiods analysed. This constant 

reduction in the carbon intensity of energy experienced in Italy is owed to its declining reliance 

on oil and coal, compensated by an increasing reliance on renewable energy sources and other 

low-carbon fuels (Caputo, 2012), such as natural gas, whose consumption however decreased 

by 3.3% in 2018 (Olivier and Peters, 2020). Furthermore, in the first two subperiods, this factor 

had a primary role in the reduction of emissions, with a relevance even greater than the one of 

the energy intensity of GDP driver, which, unlike with the other two EU countries analysed, 

unexpectedly exerted a positive impact on the emissions’ change in the first subperiod. 

However, in all the following subperiods, the contribution of the energy intensity of GDP has 

become negative, reflecting improvements mainly on the side of the economic structure of Italy, 

which will be addressed in more detail in the following Chapter.  

The population driver has a positive contribution in all the subperiods but the last one, when it 

exhibited a negative impact on the emissions’ variation, as a consequence of Italian population 

declining since 2014 (Balmer, 2020).   

Lastly, the GDP per capita driver exerted a positive pressure on the emissions’ change in all 

subperiods but the crisis one (i.e. 2008-2012). This is because, indeed, Italy suffered severe 

consequences on its economy from the Great Recession and from the sovereign debt crisis, 

causing a recession which stretched out from 2008 to 2014, worsening even more an economic 

situation which was already unstable and weak (Di Quirico, 2010). Indeed, between 2000 and 

2012, Italy has been one of the world’s worst performing countries in terms of GDP creation 

(Andreoni and Galmarini, 2016). On the bright side, economic recovery started from 2014, and 

proceeded until the last year of data analysed, which nevertheless shows a GDP per capita value 

which is still lower than the peak value experienced in 2007, and much lower than the Germany 

and UK’s corresponding values. 
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2.3.3 United States 

 

The United States (US) are the World’s second largest emitters, totalling about 4,761 million 

tons of CO₂ emissions in 2017, which is only 0.87% lower than its 1990 value (IEA, 2019a). 

US’ emissions are currently on a declining path, which began shortly after the beginning of the 

new Century. The US’ commitment towards emissions’ reductions is sealed by the adoption of 

several regulations, such as the Clean Air Act, amended in 1990, which includes the setting of 

policies aiming to improve pollution standards and the promotion of more efficient technologies 

(Andreoni and Galmarini, 2016). Nevertheless, US emissions still represent an approximate 

14% share8 of world’s total CO₂ emissions, with their total emissions in 2017 being almost three 

times as much as the sum of those of the same year for the three EU countries presented in the 

previous Section together, or more than those of the Russian Federation and India put together.  

The LMDI I decomposition of the change in fossil fuel CO₂ emissions for the US is proposed 

in Figure 12.  

 

Figure 12 - US' fossil CO₂ emissions decomposition. Source: Author's own elaboration based on IEA and UN Stats data 

(2019). 

Exception made for the first subperiod, when they increased by 16%, US CO₂ emissions have 

been on a declining path, reaching bottom figures in the crisis subperiod, 2008-2012, when 

emissions decreased by 11%.  

Relatively to the drivers, it can be noted that they all have a consistent contribution sign 

throughout the four subperiods, except for the carbon intensity of energy that, after exhibiting 

 
8 Number based on Author’s computations from IEA data relative to fossil CO₂ emissions in 2017 (IEA, 2019a). 

-30%

-20%

-10%

0%

10%

20%

30%

40%

1990-1999 2000-2007 2008-2012 2013-2017

Pop GDP per cap En Int Carb Int Percentage change CO2



31 
 

a small positive contribution to the change in emissions in the first subperiod, changed its 

contribution sign for the remainder of the periods. This is because the US are indeed improving 

their fuel mix, by reducing their reliance on coal, compensated for, however, by an increased 

use of natural gas and oil. Another important compensating role, in this sense, is played by 

renewable and nuclear sources, which, together, accounted for 36% of 2018 power generation 

in the US, and for 21% of the Total Primary Energy Supply (TPES) for the same year. Despite 

these efforts, the US still had, in 2018, a 79% share of their TPES provided by fossil fuels 

(Olivier and Peters, 2020).   

Next, the main driver fostering emissions’ reduction is the energy intensity of GDP, whose 

contribution is particularly relevant. In fact, in the absence of any improvement in the energy 

intensity ratio, and with everything else remaining equal, emissions would have increased by 

33%, 14%, and 4%, respectively, in the subperiods 1990-1999, 2000-2007 and 2013-2017, 

whereas they would have decreased only 2% in the subperiod 2008-2012, as opposed to the 

actual 11% decline experienced. This continuous improvement in energy intensity, which 

slowed down only during the crisis subperiod, is to impute mainly to sectoral energy efficiency, 

as will be seen in more detail in the following Chapter. 

On the side of the positive contribution to emissions’ variation, the most important role, 

exception made for the crisis subperiod of 2008-2012, when it contributed only 1% to the 

change in emissions, is covered by the GDP per capita driver. Indeed, during the crisis 

subperiod, GDP per capita, after experiencing an important drop in 2008 and 2009, bounced 

back up already in 2010, reaching a value as high as it was in 2007 in 2014. This resulted in a 

contribution to emissions’ variation of this driver which is still positive, although not so 

relevant, even in the Great Recession’s subperiod. 

Lastly, the population driver always exerted a positive contribution to the change in emissions, 

as a consequence of increasing population throughout the entire period analysed.      

 

2.3.4 China 

 

China is currently the world’s largest emitter of fossil CO₂, with a share of about 28% over the 

world’s total emissions.9 This leading role saw its beginnings in 2006 and, afterwards, China 

alone contributed 64.8% to the global increase in emissions during the period 2007-2012 (Meng 

 
9 Number based on Author’s computations from IEA data relative to fossil CO₂ emissions in 2017 (IEA, 2019a). 
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et al., 2018). Moreover, in 2013, China’s per capita emissions surpassed those of the OECD 

Europe. 

The LMDI I decomposition of the change in fossil fuel CO₂ emissions for China is proposed in 

Figure 13.  

 

Figure 13 - China's fossil CO₂ emissions decomposition. Source: Author's own elaboration based on IEA and UN Stats data 

(2019). 

Figure 13 shows that China’s emissions have increased in all the considered subperiods, 

reaching a 109% growth during the second one. However, the last subperiod considered, namely 

2013-2017, shows a mere 1% increase, pinpointing a phase of stabilization and commitments 

towards emissions’ reduction labelled by Zheng et al. (2019) as “the new normal”. 

As for the drivers of the change in emissions, it can be noted that almost all the increase in 

emissions is to be ascribed to an increase in the Chinese economy, represented by the GDP per 

capita driver. In fact, in the absence of the increase experienced by this driver, and with 

everything else remaining equal, China’s emissions would have diminished by 56%, 7% and 

24%, respectively, in the subperiods 1990-1999, 2008-2012 and 2013-2017, while they would 

have increased only by 9%, as opposed to 109%, in the subperiod 2000-2007. Indeed, China’s 

economic development has been massive in the time window considered, especially after its 

accession to the World Trade Organization in 2001. This rapid economic development has 

mainly been driven by “the production and consumption of high-energy-consuming and high-

carbon-emitting products” (Zheng et al., 2019), causing a major increase in emissions produced 

by this country, whose economy appeared to be driven mainly by heavy and polluting 

industries. However, with increasing environmental concern worldwide, China could no longer 

continue with this emissions-filled growth path. For this reason, China adopted regulations and 
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policies to mitigate environmental damages, such as its 12th Five-Year-Plan of 2011 on Energy 

Saving and Emission Reduction, and its 13th Five-Year-Plan for economic development of 

2016, which advocates for a more sustainable and inclusive growth (Meng et al., 2018). 

Furthermore, it also ratified the Paris Agreement in 2015, which requires the achievement of 

emissions’ reduction, and to peak emissions to the latest by 2030 (Climate Action Tracker, 

2019). Due to these commitments, other than an ongoing sectoral energy efficiencies’ 

improvement, which will be addressed in the next Chapter, China is said to have entered a “new 

normal” phase in its development, because of its continued economic growth, but accompanied 

by a much lower emissions’ growth, symbolized by the 1% increase in fossil CO₂ emissions in 

the subperiod 2013-2017, which corresponded to a 31% growth in GDP10 in the same period.  

For what concerns the other drivers in China’s fossil CO₂ emissions’ change, there are further 

interesting insights to be examined.  

First, the relevance of the population driver, which already had a relatively small role in the 

increase of emissions in the first subperiod (i.e. in the absence of population growth, emissions 

would have been 12% lower in the subperiod 1990-1999), declined even more in the following 

subperiods, down to 2% in the 2013-2017 subperiod. This contained growth, which however 

still means that there has been an approximate additional 200 million people in the full time 

window considered, on top of the important population base China had in 1990 (about 1135 

million), is to be imputed to the implementation, since 1978, of the family planning policy 

(Chen et al., 2013; Zheng et al., 2020), which has been relaxed to a “two-children policy” in 

2016. Given that additional population means additional demand and consumption, other than 

an improved urbanization rate, the effect of the population driver on the emissions’ change is 

positive in all subperiods considered, correspondingly to an increase in population which 

occurred at the same time. 

Another factor whose role changed throughout the years is the carbon intensity of energy. In 

fact, this variable positively contributed, to differing extents, to the increase in emissions in the 

subperiods 1990-1999, 2000-2007 and 2008-2012 whereas, in the last subperiod, namely 2013-

2017, its contribution became negative. This is because the majority of primary energy 

consumption in China was, and still is, represented by coal, that accounted for the 59% in 2018 

(Zheng et al., 2020). In fact, despite the efforts towards a “greening” of China’s economy, the 

country’s resilience on coal is still strong. On a silver lining, however, China is increasing its 

reliance on other energy sources, such as renewables, with hydropower making up 19.5% of 

 
10 Growth rate computed for the GDP at constant prices, in 2015 USD, using UN Stats database (2019).  
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the country’s energy generation in 2015, and wind and solar altogether accounting for 5% in 

the same year (Olivier et al., 2016), but mostly oil, whose consumption increased by 5% in 

2018, and natural gas, whose consumption experienced a 17.7% increase in the same year 

(Olivier and Peters, 2020).       

Lastly, energy intensity of GDP appears to be the most relevant negative driver influencing the 

emissions’ variation. This variable, in fact, exerted a negative contribution against the 

emissions’ increase for all the subperiods considered, with the highest experienced in the first 

and last subperiods (i.e. 1990-1999 and 2013-2017). This decrease has been driven by a number 

of variables, including technological progress, energy structure, and structural shift (Chen et 

al., 2013). In the next Chapter, the contributions of two of these factors to the decrease in energy 

intensity, namely sectoral energy intensity and structural effect, will be addressed in more 

detail.  

 

2.3.5 India 

 

In 2017, India contributed about 6.6% to global fossil CO₂ emissions11, a share which has 

already increased to 6.9% in 2018 (Olivier and Peters, 2020). Considering that, at the beginning 

of the study period, this share was only 3.8%, it can be noted just how fast and to what extent 

the emissions produced by this country have increased in the past 30 years, causing it to even 

surpass, in 2009, the ones of the Russian Federation and rank as the fourth largest emitter in the 

World.  

The LMDI I decomposition of the change in fossil fuel CO₂ emissions for India is proposed in 

Figure 14.  

 
11 Number based on Author’s computations from IEA data relative to fossil CO₂ emissions in 2017 (IEA, 2019a). 
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Figure 14 - India's fossil CO₂ emissions decomposition. Source: Author's own elaboration based on IEA and UN Stats data 

(2019). 

India’s fossil CO₂ emissions increased, even if at declining rates, in all the considered 

subperiods.  

For what concerns the driving factors, the Indian situation presents some similarities to the 

situations of the countries studied up to this point. 

Indeed, just like Germany, the US and China, the GDP per capita driver exerts a positive 

contribution to the emissions’ increase, with its contribution being at its minimum in the 2008-

2012 subperiod, but still meaning that, in that subperiod, in the absence of any change in the 

GDP per capita, and with all the rest remaining equal, emissions would have increased by 11%, 

as opposed to the observed 35% increase. This is owed to the huge development experienced 

by the Indian economy, with the annual growth of GDP being around 7% for more than a decade 

(Olivier and Peters, 2020). This made it such that the economic driver resulted as the most 

relevant driver of emissions’ change in the decomposition analysis reported. Moreover, 

according to the decomposition analysis performed by Andreoni and Galmarini (2016), the 

increasing relevance of this country in the international production system for the period 2004-

2008 was another significant driver of the increased emissions experienced by this country in 

the same period. 

Another factor that thus far generally exerted a negative role in affecting the change in 

emissions, namely the energy intensity of GDP driver, maintains the same role also in the 

Indian situation. In this case, unlike what happened with China, the experienced decrease in the 

energy intensity of GDP is owed in its entirety to improvements in sectoral efficiency, whereas 

the economic structure of India had a negative impact on this driver.    
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An especially relevant role in the Indian case is played by the population driver. In fact, the 

positive contribution exerted by this factor on the emissions’ increase, linked to the continuous 

expansion of the Indian population, is relatively greater than in any of the countries previously 

observed, reaching its peak in the first subperiod, with a 22% contribution. Indeed, India is set, 

according to the United Nations World Population Prospects (2019) to surpass China as the 

world’s most populous country by 2027. Despite the fact that the growth in its population is 

ongoing, India is managing to slow it down, mostly thanks to rising wealth and women’s 

education, and to advances in family planning (Chandrashekhar, 2019).   

Lastly, the carbon intensity of energy driver maintained a positive contribution to the change 

in emissions throughout the four subperiods, even though at a declining fashion. Indeed, as of 

2018, India’s TPES still constituted in its 71.5% of fossil fuels, with this country’s coal 

consumption increasing by 8.7% in 2018. This seems to point to the fact that India lacks the 

declining trend for coal that was generally observed for the other countries object of this 

analysis. Moreover, 28.5 % of India’s TPES in 2018 consisted of renewables and nuclear 

energy, which is the same share observed in the preceding year, and 2.7 percentage points lower 

than the corresponding figure for 2010 (Olivier and Peters, 2020). This declining trend in the 

use of non-fossil energy is peculiar of India, and different from what has been observed so far 

in the other countries object of this study, showing that there is still a lot of room for 

improvement in this ratio for India, which could result in a slowdown of the emissions’ growth 

for this Country. Considering that India ratified the Paris Agreement, which requires, by 2030, 

that non-fossil cumulative power generation capacity should be of the 40% (Climate Action 

Tracker, 2019), further efforts towards a “better” fuel mix should be put in place to ensure the 

meeting of this target.   

 

2.3.6 The Russian Federation 

 

The Russian Federation is the lowest ranking emitter among the ones considered in this study, 

with its 2017’s 1,537 million tons of fossil CO₂ emissions (IEA, 2019a) making up an 

approximate 5% of the global ones.12 This Country experienced a massive drop in its emissions 

after 1990, following the fall of the Soviet Union, initially paired with an equally as massive 

drop in its economy (Chirmiciu and Dosi, 2011). Nevertheless, while the economy sharply 

recovered, reaching 1990 GDP per capita levels in 2006, emissions stabilized at much lower 

 
12 Number based on Author’s computations from IEA data relative to fossil CO₂ emissions in 2017 (IEA, 2019a). 
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levels than the ones observed at the beginning of the study period, with the Russian Federation’s 

2017 fossil CO₂ emissions values being about 30% lower than the corresponding 1990 ones.  

The LMDI I decomposition of the change in fossil fuel CO₂ emissions for the Russian 

Federation is proposed in Figure 15.  

 

Figure 15 - Russian Federation's fossil CO₂ emissions decomposition. Source: Author's own elaboration based on IEA and 

UN Stats data (2019). 

The sharp decrease experienced in the Russian Federation’s emissions following the Soviet 

Union’s fall is made evident by the 33% decline observed in the 1990-1999 subperiod. 

Afterwards, the two central subperiods, namely 2000-2007 and 2008-2012, show single-digit 

increases in emissions, followed by a mild decline of about 2% in the last subperiod. 

Concerning the driving factors, the carbon intensity of energy has a consistently negative 

contribution to the change in emissions. This reduction is mainly because of an observed shift 

from coal and oil, towards natural gas and, in smaller part, renewables and nuclear power 

(Chirmiciu and Dosi, 2011; Olivier and Peters, 2020). As a matter of fact, as of 2018, according 

to Oliver and Peters (2020), 49.8% of Russian TPES comes from natural gas, while oil and coal 

together account for a 38.6% share, and renewables and nuclear for the 11.6%. The root of this 

phaenomenon is the lower energy demand for carbon-intensive fuels from both the industry and 

power sectors, with several coal-based power and heat generation capacities not being used 

anymore (Chirmiciu and Dosi, 2011).   

The population driver has a negligible influence on the change in emissions across all the 

subperiods considered, with its contribution sign being negative in the first two subperiods, and 

positive in the last twos. This is because population changes have been of little entity over the 
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entire period considered (Chirmiciu and Dosi, 2011), with the 2017 population being only about 

2.6% lower than in 1990.13 

The GDP per capita driver, as could be expected, exerted a negative contribution in the first 

subperiod, namely 1990-1999, due to the massive economic shock experienced after the fall of 

the Soviet Union, which was the main cause of the emissions’ decrease observed in that same 

subperiod, given that, in the absence of any GDP per capita change, and with all the other 

driving factors equal, emissions would have increased 7% instead of declining. Successively, 

this factor exerted a positive contribution to emissions’ variation in the two subsequent 

subperiods (i.e. 2000-2007 and 2008-2012), following the economic recovery that took place 

in those same years, to then exert a negative, but negligible, pressure in the last subperiod 

considered, namely 2013-2017. This last sign change is to be imputed to the international 

economic sanctions imposed to the Country following the Russian invasion of Ukraine, which 

began in 2014, and contributed to the financial crisis that hit the Russian Federation in 2014 

and 2015, culminating with the Russian ruble being devaluated, and also to the oil price drop 

of the second half of 2014 (Olivier and Peters, 2020).   

Lastly, the energy intensity of GDP driver changed the sign of its contribution to emissions’ 

variation, which has been positive in all subperiods but the 2000-2007 one. Indeed, the Russian 

Federation inherited from the Soviet Union a pretty energy-intensive production scheme, 

related in great part to the large availability of fossil-fuel resources in this Country, and to 

energy under-pricing (Chirmiciu and Dosi, 2011), which may explain the positive contribution 

of this driver in the first considered subperiod. However, the major positive influence exerted 

by the economic recovery to the emissions’ variation in the 2000-2007 subperiod, has been 

almost entirely offset by the improvement in the energy intensity of GDP ratio, suggesting 

efforts towards a less energy-intensive production and a more efficient use of energy. Indeed, 

both structural changes in the Russian economy and sectoral efficiency improvements 

contributed to this decrease. In the last two subperiods, the contribution of this driver returned 

to be positive, although the trend of this ratio remains generally declining with respect to 2000 

levels, as will be pointed out in the next Chapter.  

 

 

 
13 Number based on Author’s computations from IEA data (2019a). 
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2.4. Results summary 

 

To conclude this first-level decomposition analysis, it is worth to briefly review similarities and 

differences across the considered countries.  

First, one fact that really stands out is that, in general, exception made for the case of the Russian 

Federation, the main driver which induced a positive effect on the emissions’ change has been 

the GDP per capita, whereas the main driver which induced a negative effect has been the 

energy intensity of GDP. 

In addition to that, it is important to note how the developed economies, namely Germany, the 

UK, the US and, even if to a lower extent, Italy, have experienced a reduction of  CO₂ emissions, 

while maintaining at the same time a generally good degree of economic growth. On the other 

hand, the emerging economies of China and India experienced a massive economic 

development, which was accompanied by an as important growth in their emissions, with 

China, however, reducing its growth rate remarkably in the last subperiod considered. Lastly, 

the case of the Russian Federation stands out for itself, as it underwent a recovery process 

from the Soviet Union fall-induced economic shock, which brought up a massive drop in the 

emissions produced by this country that, despite the economic recovery, managed to stabilize 

and not spike back up again. 

However, a closer look at the data reveals further insights. In fact, in the cases of Italy and the 

UK, during the Great Recession’s subperiod, the GDP per capita driver turned to a negative 

contribution sign, while in Germany and the US it significantly reduced its positive 

contribution. In spite of the fact that, in the recovery subperiod that followed the Great 

Recession, the contribution of this driver changed its sign, in the case of the first two countries, 

and increased its positive contribution, in the case of the latter countries, the emissions managed 

to continue along their declining path, suggesting an absolute decoupling between the GDP per 

capita driver, and the fossil CO₂ emissions. Moreover, while in China emissions have continued 

to increase, it appears, especially in the last subperiod considered, that they have been doing so 

at a much lower rate with respect to the GDP per capita, which seems to point to relative 

decoupling between the two variables.    

For this reason, to gain further insight on the matter and effectively formalize the relationship 

between economic growth and environmental damage, the use of a decoupling analysis appears 

to be necessary, in order to also understand how this relationship has changed throughout the 



40 
 

analysed period and, more specifically, if the Great Recession, which inevitably led to a decline 

in emissions in some of the studied countries, had any impact on this relationship.  

 

2.5. The decoupling analysis and Tapio decoupling methodology 

 

As already pointed, out, the decoupling analysis can be seen as a mean to assess the link between 

two of Kaya’s Es, namely environmental quality and economic development.  

Concerning the relationship between those two items, several studies considered the 

Environmental Kuznets Curve (EKC) hypothesis as the starting point. According to this theory, 

used for the first time in 1992 to describe the relationship between sulphur dioxide 

concentrations and GDP per capita, the two variables interact following an inverted U-shape 

(Agbugba et al., 2019). This same relationship has been later extended to the one between GDP 

per capita and environmental damage, implying that, initially, an increase in the former causes 

an increase in the latter, but, after a turning point is reached, GDP per capita continues to grow, 

whereas environmental degradation starts to decline. This relationship is summed up in the 

graph reported in Figure 16. 

 

Figure 16 - Environmental Kuznets Curve. Source: Agbugba et al., 2019. 

Relying on the EKC hypothesis means that an increase in per capita GDP or, more generally, 

in the economic development of a country, is expected to lead, eventually, to a structural shift 

in the economy of said country, from a more rural and industry-based economy, to a more 

service-based one. Moreover, a more developed economy will also bring about technological 

advancements, which reduce the amount of GHG emissions produced. Lastly, economic 

development also brings to environmental concern, from both consumers and governments, 

which may enact regulations to contain environmental degradation. This theory, for as widely 

accepted and recognized in the literature, presents however one main shortcoming: it does not 
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consider the export of carbon-emitting activities which is operated by the advanced economies, 

towards developing countries with lower labour costs (and less stringent environmental 

regulations), such as China (Agbugba et al., 2019).  

Despite this main shortcoming, it is interesting however to assess if indeed a relationship of the 

sort described by the EKC hypothesis holds in reality. In order to do that, the decoupling 

analysis seems to respond well to the task. Decoupling can be detected when “the growth rate 

of an environmental pressure (for example, CO₂ emissions) is less than that of its economic 

driving force (for example, GDP per head) over a given period” (Agbugba et al., 2019). 

Decoupling is said to be absolute when the environmental pressure is stable or degrows while 

the economic driver grows, or relative, when the two variables both grow, but the former does 

so at a lower rate. 

To investigate decoupling relationships among environmental and economic variables, two 

main techniques have been adopted: the OECD and the Tapio decoupling methods. Among 

them, Tapio decomposition has been preferred in this study, as it renders more stable results 

and includes more detailed categories for the decoupling states with respect to the OECD 

method, that only assesses whether the decoupling is absolute or relative (Lin et al., 2015; Chen 

et al., 2018). This technique relies on the computation of decoupling elasticities, that are given 

by (Liu et al., 2015): 

𝑑 = %∆𝐸𝑃/%∆𝐷𝐹 

With d being the decoupling index, or elasticity; %∆𝐸𝑃 being the percentage change in the 

environmental pressure between the two years considered; and %∆𝐷𝐹 being the corresponding 

quantity for the driving factor considered. After retrieving the value of d, it is possible to fit the 

relationship between the two variables considered into one of eight possible categories, 

according to the Table C.1, reported on the APPENDIX C. These categories have been 

constructed considering a ± 20% variation of the elasticity values around unity as a confidence 

interval for coupling, in order not to mistakenly interpret as decoupling a fairly small change 

around unity (Tapio, 2005; Liu et al., 2015).  

The results obtained from the Tapio decoupling analysis applied to the seven countries object 

of this study, relatively to the relationship between the fossil CO₂ emissions and the GDP per 

capita driver across the four subperiods, and for the entire sample are summed in the following, 

but numerical results can be reviewed in Table C.2 of APPENDIX C. 
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First, Germany exhibited strong decoupling across the four subperiods and also relatively to 

the entire sample. This basically means that, while the indicator of environmental damage used, 

namely fossil CO₂ emissions, declined in the whole sample, the indicator of economic 

development used, namely GDP per capita, increased for the same time reference. This means 

that Germany effectively managed to obtain an absolute decoupling between its emissions and 

its economic growth, by more than compensating the environmental pressure exerted by 

economic development with improvements in other driving factors, such as, for the most part, 

the energy intensity of GDP and, to a smaller extent, the carbon intensity of energy, fostered by 

technological and fuel mix improvements. 

A similar development was observed in the US, which, first subperiod aside, displayed strong 

decoupling between the two variables considered. The weak decoupling observed in the first 

subperiod, which means that both emissions and the GDP per capita increased, but with the 

former increasing at a slower rate than the latter, is basically conceptually the same as a relative 

decoupling relationship. This is because, indeed, the US’ downward trend in emissions saw its 

beginnings after the year 2000, while emissions were still on an increasing trend in the first 

subperiod analysed, namely the one from 1990 to 1999. 

In both these first two cases, the outburst of the Great Recession did not seem to have any 

visible impact on the observed absolute decoupling relationship, except for a shrinking in the 

value of the decoupling elasticities of the last subperiod, which seems to point to a lower order 

of magnitude, although of opposite sign, of the percentage variation in emissions with respect 

to the one of the economic driver. This is probably related to the fact that, while the economic 

development slowed down in the crisis subperiod, the declining path of emissions was, in a 

way, even stimulated by the economic downturn, most likely because of a reduction in the 

output. This implied that, while the economic recovery brought to a greater growth in the GDP 

per capita, the decline in emissions did not experience a change in the same order of magnitude.  

Two countries that, on the other hand, experienced a similar development in the decoupling 

relationship between the two studied variables which has been affected by the advent of the 

Great Recession are Italy and the UK. Indeed, the two countries displayed, in the subperiod 

preceding the crisis (i.e. 2000-2007) an “expansive coupling” (i.e. both emissions and GDP per 

capita increased, at approximately the same rate) and a weak decoupling relationship, 

respectively, followed by “recessive decoupling” in the 2008-2012 subperiod, to then turn to 

strong decoupling in the last subperiod (i.e. 2013-2017). Recessive decoupling is observed 

whenever both the emissions and the GDP per capita driver decrease, but with the former doing 

so at a faster rate. This implies that, while the Great Recession negatively impacted the 



43 
 

economies of these two Countries, with adverse consequences on both the emissions produced 

and GDP per capita, the economic recovery which occurred in the last subperiod did not come 

at the expense of the environment, meaning that an absolute decoupling between the two 

variables prevented the economic recovery to be accompanied by spikes in emissions. Lastly, 

when considering the entire time window of this study, both Countries displayed a strong 

decoupling relationship, whereas in the first subperiod Italy experienced a weak decoupling, 

owed to a positive growth in emissions in those years, as opposed to the strong decoupling 

experienced by the UK, linked to its declining emissions observed in those years.     

The last three countries’ GDP per capita was virtually unaffected by the Great Recession, but 

changes were still observed in the decoupling relationship between the two considered 

variables. 

The Russian Federation alternated, throughout the four subperiods, coupling and decoupling 

relationships. The first subperiod, which was the one immediately after the fall of the Soviet 

Union, showed a recessive coupling relationship, which implied that the massive drop 

experienced in Russian emissions was extensively owed to the massive economic shock which 

hit the Country in those years, since the decoupling elasticity had a value close to one. The 

second subperiod, characterized by the economic recovery, showed evidence of weak 

decoupling, meaning that, although the GDP per capita went back up, emissions did increase, 

but at a much slower rate. The Great Recession subperiod was characterized by a return to a 

coupling relationship, with both the emissions and GDP per capita increasing, at roughly the 

same rate. Nevertheless, the most hardly felt crisis subperiod for this Country was the last one, 

characterized by falling GDP per capita and emissions, but with the latter declining at a faster 

rate. This kind of relationship is labelled as recessive decoupling and is conceptually similar to 

that of relative decoupling. Nevertheless, it appears that the Russian Federation still has not 

managed to achieve the absolute decoupling which has been observed for the developed 

economies, even if, when considering the full time period, the relationship between the 

environmental pressure and the economic development variables is one of strong decoupling, 

given that, since the Soviet Union fall, this Country has managed to reduce its emissions with 

respect to base year levels, and, at the same time, undergo sensible economic recovery. 

Lastly, both China and India experienced, across the four subperiods, a growth which interested 

both their economies and emissions, but the way the two variables representing them are 

intertwined is substantially different for the two Countries. On the one hand, China experienced 

weak decoupling in the first and last subperiods, and also when considering the full time 

window as a whole. However, the central subperiods display a less encouraging picture, with 
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expansive coupling in 2000-2007 and 2008-2012. This means that, in the subperiod 

characterized by China’s access to the WTO and by its most relevant GDP per capita growth 

(i.e. 2000-2007), both emissions and GDP per capita increased, at roughly the same rate. This 

is probably because, as previously stated, the economic growth of this Country was mainly 

driven by pollution and carbon-intensive production. The following subperiod, the one of the 

Great Recession, was as well one of experienced expansive coupling. The last subperiod, as 

previously mentioned, ends the decoupling analysis on a better note, as the observed state for 

this subperiod has shifted to one of weak decoupling, meaning that China’s improvements in 

its energy intensity and carbon intensity ratios assured that, even if emissions still increased, 

they did at a much slower pace than the Chinese economy, leading to a progressively decoupled 

relationship between the two analysed items.  

This same shift to weak decoupling for the last subperiod considered has been observed in India 

and was owed, in its entirety, to a bettering of energy intensity. Nevertheless, the three previous 

subperiods, and the entire time window considered, display a relationship between the two 

variables of the opposite direction. Indeed, the first and the third subperiods, other than the full 

period, exhibit expansive negative decoupling, most likely owed to the carbon-intensive fuel 

mix utilized in this Country. The second subperiod, namely 2000-2007, showed expansive 

coupling, owed to the temporary alignment in the growth rates of emissions and GDP per capita.           

Of course, this whole reasoning holds only as long as it sticks to production-based, or territorial-

based, emissions (i.e. emissions that occur within the country’s borders – Agbugba, 2019), 

without considering emissions embodied in the net exports, that make up the so-called 

consumption-based emissions (Cohen et al., 2018). Indeed, a study on decoupling elasticities 

of the main emitting countries conducted by Cohen et al. (2018) proved that, while the 

developed economies may have changed their production patterns, they did not change their 

consumption patterns accordingly, and kept consuming emissions at a similar fashion, by 

importing it, or by moving their dirtiest production to developing economies such as China and 

India. This fact materializes in higher consumption-based than production-based elasticities, on 

average, in developed economies, and in the twos being essentially equal in developing 

economies. This seems to weaken, but does not annihilate, the evidence for the EKC curve to 

hold in reality, given that even consumption-based decoupling elasticities turned out to be 

significantly smaller for developed economies than for the developing ones.  
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CHAPTER 3: DECOMPOSITION OF ENERGY INTENSITY OF GDP 

AND CARBON INTENSITY OF ENERGY 

 

3.1. Energy intensity of GDP 

 

3.1.1 An application of the Fisher Ideal index method to industrial energy intensity: data and 

framework 

 

Energy intensity can be defined, as previously mentioned, as the energy use per unit of 

economic output for a given country (Metcalf, 2008; Atalla and Bean, 2017). Especially after 

the first oil crisis of the 1970s, this concept has been object of increasing interest, and 

investigations for possible improvements in this ratio have been at the heart of several studies 

on the subject.  

In this sense, two main drivers of energy intensity have been widely recognized: the structural 

effect, and the sectoral14 effect. 

The former includes any structural adjustment towards less energy-intensive sectors, for 

instance going from an economy strongly skewed towards polluting industries to a more 

service-based one. The latter includes any energy intensity improvements obtained within each 

sector, which may have occurred thanks to technological advancements, behavioural or product 

mix changes, or other variables (Metcalf, 2008; Voigt et al., 2014; Atalla and Bean, 2017; Haas 

and Kempa, 2018).  

In this sense, the formula for the energy intensity can be rewritten as (Metcalf, 2008): 

𝑒𝑡 =
𝐸𝑡

𝑌𝑡
= ∑ (

𝐸𝑖𝑡

𝑌𝑖𝑡
) (

𝑌𝑖𝑡

𝑌𝑡
)

𝑖

= ∑ 𝑒𝑖𝑡𝑠𝑖𝑡 

Where 𝐸𝑡 is the aggregate energy consumption in year t, 𝐸𝑖𝑡 is the energy consumption of sector 

i for year t, 𝑌𝑡 is a measure of economic output in year t, 𝑌𝑖𝑡 is a measure of economic activity 

in sector i for year t. This implies that 𝑒𝑖𝑡 is the energy intensity of sector i, at time t, while 𝑠𝑖𝑡 

is the relative contribution to the overall economic output of sector i, at time t. 

Given this formulation, the entire Section 3.1 will be devoted to the decomposition analysis of 

the industrial energy intensity (i.e. excluding the energy consumption of households) into the 

 
14 This effect is also referred to in the literature as the efficiency effect (Metcalf, 2008; Haas and Kempa, 2018) 

or the technology effect (Voigt et al., 2014). 
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two aforementioned effects, referring to the same countries which have been used in the 

previous Chapter. In order to pursue this decomposition, the Fisher Ideal index technique has 

been used.15 This will allow to gain further insight onto the main causes which led to the 

observed changes in this driving factor, and understanding on the interplay between these two 

effects in each of the studied countries.  

For this scope, data on sectoral energy use have been collected from the European Commission 

Joint Research Centre (EC JRC) World Input Output Database (WIOD) environmental accounts 

(2019 release, Corsatea et al.). This dataset, used to perform similar analyses to the one pursued 

in this work (see e.g. Voigt et al., 2014;  Andreoni and Galmarini, 2016; Atalla and Bean, 2017) 

allocates energy use according to the residence principle (i.e. energy use is allocated to the 

country of residence of the user, and not to the country in which it takes place). This should 

allow to overcome, at least in part, some of the issues referred to at the end of the previous 

Chapter, and to obtain a more true-to-reality picture of this ratio. The dataset spans for the time 

window between 2000 and 2016 and covers more than 40 countries. Energy consumption data 

are expressed in Terajoules (TJ).16 For this study, in particular, the “Emission-relevant Energy 

Accounts” have been used because, as stated by Atalla and Bean (2017), they exclude energy 

used as a feedstock, and well match the Total Primary Energy Supply data reported in IEA’s 

Energy Balances.  

The indicator of economic activity employed is the value added by sector, computed at constant 

2015 prices and expressed, through exchange rates, in USD, provided by the same UN Stats 

database (2019) which has been used in the previous Chapter. This measure of economic 

activity has already been used in decomposition studies, such as those from Xu and Ang (2013), 

and Chirmiciu and Dosi (2011).      

Accordingly with the time coverage of the WIOD, the time window used in this Section is 2000-

2016. Indeed, relying on the previous releases of this Dataset to enlarge the time window so it 

would match the one of the previous Chapter would have inevitably led to structural break and 

data inconsistency, given that previous releases did not rely on the residence principle, which 

is a novelty introduced with the latest release.  

Lastly, while the WIOD dataset subdivides industrial energy use into 56 different sectors, the 

UN Stats dataset only subdivides the total value added into 6 different sectors. This required to 

 
15 Further detail on the formulae used for this decomposition can be found in APPENDIX D.1. 
16 1 Terajoule = 1012 Joules. 
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operate a sectoral grouping, which has been reported in full in Table D.1 of APPENDIX D. The 

sectors obtained from this clustering are: 

1. Agriculture, hunting, forestry, fishing; 

2. Mining, Manufacturing, Electricity, Utilities, including equipment, food, and metals 

manufacturing, water collection, treatment and supply, and waste collection; 

3. Construction; 

4. Wholesale, retail trade, restaurants and hotels; 

5. Transport, storage and communication; 

6. Other Activities, which incorporates all service-based activities, such as consultancy 

activities, financial services and insurance, and other professional, scientific and 

technical activities.   

 

3.1.2 Germany, United Kingdom and Italy 

 

Germany  

Exception made for a slight increase experienced in the first years of data considered and for 

isolated increases experienced in 2007 and 2010, Germany’s industrial energy intensity has 

been on a declining trend since 2003.  

By applying the Fisher Ideal index decomposition, it turns out that these observed efficiency 

improvements were to be imputed in their entirety to the sectoral effect. Indeed, the structural 

effect even brought to an increase of this ratio. Figure 17, reporting the decomposition analysis 

results, represents the interplay between these two effects and the energy intensity ratio, 

showing their development between 2000 and 2016, and using 2000 as the base-year reference 

for any experienced change. 
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Figure 17 - Germany's industrial energy intensity change Fisher decomposition, with respect to 2000. Source: Author's own 

elaboration based on JRC WIOD and UN Stats data (2019). 

Figure 17 clearly shows the afore mentioned declining trend in the industrial energy intensity, 

with exceptional spikes observed in the years preceding the Great Recession, which were driven 

entirely by a worsening of sectoral energy intensities, suggesting that, across sectors, during 

that period, either an higher energy use, or a lower output created, led to an energy intensity 

increase. In general, the energy intensity curve seems to mimic the evolution of the one for the 

sectoral driver, even if at a slightly higher level, which is owed to the presence of the structural 

driver, that, with respect to the base year level, shows an increasing trend, reaching, in 2016, 

the 108% of its 2000 level. This outcome is backed up by the works of Xu and Ang (2013), 

Atalla and Bean (2017), who found results consistent with these findings. During the years of 

the Great Recession, however, a drop in the structural index has been compensated by a spike 

in the sectoral index, leading the energy intensity line to a flatten between 2008 and 2010. 

In order to get to the root of the observed development of the two drivers, two graphs are 

presented in Figure 18.   
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Figure 18 - Structural and sectoral effects for Germany. Source: Author's own elaboration based on JRC WIOD and UN 

Stats data (2019). 

The graph on the left shows the evolution of the industrial structure of Germany, for all the 

considered years of data. It is evident how the structure of the German economy has not changed 

much. Indeed, the sector which accounted for the most value added in 2000, namely “Other 

Activities”, still had the highest percentage contribution in 2016, with a mere 2,817 decrease in 

its relative importance. This points to a service-based economy, with especially little relevance 

of the primary sector, materialized in its 2016’s 0,73% share on the overall value added, 

accompanied, however, by a great significance of the manufacturing sector. Indeed, what 

probably led to the increase observed in the structural index was the increased share experienced 

in more energy-intensive sectors, such as “Mining, Manufacturing, Electricity, Utilities”, whose 

share went from 24,1% in 2000, which is already quite relevant, to 26% in 2016, and “Transport, 

Storage and Communication”, whose share went from 10,7% in 2000 to 11,3% in 2016. These 

two shifts, coupled with a declining relevance of the “Other Activities” sector, has caused the 

positive contribution sign of the structural effect to the change in energy intensity. For what 

concerns the dip observed in 2009 relative to this effect, it is owed, for the most part, to a 3% 

annual drop in the share of the “Mining, Manufacturing, Electricity, Utilities” sector’s value 

added experienced in that year, which led to a temporary decline of the entire structural effect. 

The observed structural shift towards more energy-intensive sectors, which, however, in the 

analysed time window, experienced efficiency improvements, has been commented also by 

Voigt et al. (2014). 

 
17 All numbers and percentages cited in Section 3.1 are based on the Author’s own elaboration of WIOD and UN 

Stats data (2019). 
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For what concerns the graph on the right, it can be seen how, with respect to their 2000 levels, 

all sectors but “Agriculture, Forestry, Fishing” and “Construction” experienced reductions in 

their energy intensities. This is the reason behind the observed declining trend in the sectoral 

effect contribution. The only spike in this contribution, experienced during the years of the 

Great Recession, was owed to a great increase in the “Other Activities” sector’s energy 

intensity, that, in 2007 reached the 166% of its 2000 level. 

United Kingdom   

The UK’s industrial energy intensity has been, exception made for a small increase experienced 

in 2009, declining for the entire time window considered, reaching, in 2016, the 61,4% of its 

2000 level. This has been driven, according to Voigt et al. (2014) both by a reduction in energy 

use, and a contemporaneous increase in gross output, which seems to point to an absolute 

decoupling between these two quantities.  

From the results of the decomposition analysis, it turns out that the UK’s energy intensity 

decline is to be imputed, after 2002, in equal parts to the structural effect, with the structural 

Fisher Ideal index for 2016 being the 81% of its 2000 level, and to the sectoral effect, with the 

sectoral Fisher Ideal index for 2016 being the 76% of its 2000 level (Figure 19). The importance 

of both effects in the energy intensity reduction has been observed also by Atalla and Bean 

(2017). For the first years of the considered period the structural effect had a primary role in 

contributing to the energy intensity’s decline, with this driver even being the only negative 

contributor in 2001, but the situation reversed after 2007. Indeed, unlike Germany, the UK 

underwent significant structural changes, as will be explained in further detail. Lastly, the small 

2009 increase in industrial energy intensity is to be ascribed to a temporary worsening of 

sectoral energy intensities, made evident from Figure 19. 
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Figure 19 - UK's industrial energy intensity change Fisher decomposition, with respect to 2000. Source: Author's own 

elaboration based on JRC WIOD and UN Stats data (2019). 

As before, Figure 20 reports two graphs helpful for disentangling the two studied effects.  

 

 

Figure 20 - Structural and sectoral effects for the UK. Source: Author's own elaboration based on JRC WIOD and UN Stats 

data (2019). 

The graph on the left shows a continuous development in the industrial activities’ structure of 

this Country. Indeed, the share of the “Other Activities” sector is increasing throughout the 

entire period, gaining about 5 percentage points across the full period, counterbalanced by a 

decline in the share of the “Mining, Manufacturing, Electricity, Utilities” sector, losing about 6 

percentage points across the full period. This points to a shift from a manufacturing towards a 

service-based economy, with particular relevance of the finance, professional services, and 

information and communication technology sectors, as previously observed by Agbugba et al. 
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(2019), who studied the structural change in the UK between 1948 and 2016. This kind of 

structural change is one that contributes to emissions’ and energy use’s reductions.  

The graph on the right represents a much more volatile situation with respect to the one of 

Germany. In this case, exception made for the “Agriculture, Forestry, Fishing” sector, all 

sectoral energy intensities have declined between 2000 and 2016. The most remarkable 

efficiency improvements have been observed in the “Other Activities”, “Wholesale, retail trade, 

restaurants and hotels” and “Construction” sectors, which reached, in 2016, an energy intensity 

equal to half of the corresponding 2000 levels. Given, however, that these were not, even in 

2000, particularly energy-intensive sectors, in absolute values these halving in their energy 

intensities is not as remarkable. Nevertheless, even the two most energy-intensive sectors, 

namely “Mining, Manufacturing, Electricity, Utilities” and, to a lower extent, “Transport, 

Storage and Communication”, reduced their energy intensities, accounting respectively, for 

21% and 9% decreases over the whole period. Lastly, the 2009 spike in the sectoral effect is 

probably linked to the annual 29% increase experienced in that year in the “Transport, Storage 

and Communication” sector’s energy intensity.   

Italy  

During the studied period, Italy’s industrial energy intensity first increased, until 2004, to then 

develop a declining path. Overall, there has been, over the full sixteen years of data, an 

aggregate reduction in the energy intensity of 1,3%, the smallest observed up to this point. This 

almost negligible change in the observed energy intensity may be, as Andreoni and Galmarini 

(2016) pointed out, because of the fact that the per capita energy use in Italy stabilized only in 

the late 2000s. It should be noted however, that Italy already had a lower energy intensity than 

its European counterparts at the beginning of the study period. As highlighted in Figure 21, the 

experienced reduction was owed, in its entirety, to changes in the structure of the Italian 

economy, whereas, in general, there has been a worsening in the sectoral energy intensities. 

Indeed, the Structural Fisher Ideal index of 2016 is the 95% of its 2000 value, whereas the 

Sectoral Fisher Ideal index of 2016 is the 104% of its 2000 value. This same decomposition 

outcome has been observed by Voigt et al. (2014), who pointed out the fact that structural 

adjustments towards less energy-intensive sectors were hindered in their contribution to energy 

intensity reduction by a constant increase in the sectoral effect.   
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Figure 21 - Italy's industrial energy intensity change Fisher decomposition, with respect to 2000. Source: Author's own 

elaboration based on JRC WIOD and UN Stats data (2019). 

In order to obtain further insight regarding the roles of the two effects, Figure 22 reports two 

graphs shedding a light on the drivers behind each of those factors. 

 

 

Figure 22 - Structural and sectoral effects for Italy. Source: Author's own elaboration based on JRC WIOD and UN Stats 

data (2019). 

The graph on the left marks the experienced structural change in the Italian economy. As a 

matter of fact, during the sixteen years of data analysed, less energy-intensive sectors, namely 

“Wholesale, retail trade, restaurants and hotels” and “Other Activities”, increased their 

percentage share on the total value added of 1,6 each, with the latter reaching a share of 49,5% 

in 2016. On the other hand, the share of more energy-intensive sectors has decreased, as can be 

noted by the 2,4 sixteen-year reduction in the percentage share of the “Mining, Manufacturing, 
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Electricity, Utilities” sector. The combination of these two experienced changes in sectoral 

relative importance led to a shift towards less energy-intensive industrial sectors, which in turn 

led to the declining trend observed for the structural effect throughout the entire time window.  

On the other hand, the graph on the right shows a much less encouraging picture. In fact, the 

majority of the sectoral energy intensities have either increased or approximately remained the 

same with respect to their 2000 levels, with the sole exceptions of “Agriculture, Forestry, 

Fishing” and “Wholesale, retail trade, restaurants and hotels”, which experienced mild 

decreases in the order of ten percentage points throughout the full period. Of remarkable 

importance were the energy intensity spikes observed in 2014 for the “Construction” and “Other 

Activities” sectors. This increasing trend in sectoral energy intensities has been the cause of the 

volatile, but overall growing, pattern of the sectoral effect. 

However, since the two effects counterbalanced each other, the overall energy intensity did 

decrease in 2016, with respect to its 2000 levels, albeit to a smaller extent with respect to the 

other European economies considered.  

 

3.1.3 United States 

 

The US industrial energy intensity has been declining over the considered period, reaching, in 

2016, the 73,4% of its 2000 level. This decline, as can easily be seen from Figure 23, was owed 

entirely to the improvement of sectoral energy intensities, whereas the structural effect showed 

very little volatility around its 2000 value. This result may appear at odds with those of the 

similar analyses made by Voigt et al. (2014) and Atalla and Bean (2017), who claimed the exact 

opposite to be true, but nevertheless does not contradict them, since their analyses stop, 

respectively, at years 2007 and 2009, and therefore do not account for the successive slight 

increase experienced in the structural index, which, indeed, as per their claims, did have a 

significant role in the reduction of the industrial energy intensity until 2005. 
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Figure 23 - The US industrial energy intensity change Fisher decomposition, with respect to 2000. Source: Author's own 

elaboration based on JRC WIOD and UN Stats data (2019). 

Figure 24 addresses the causes behind the observed changes in the two driving effects. 

 

 

Figure 24 - Structural and sectoral effects for the US. Source: Author's own elaboration based on JRC WIOD and UN Stats 

data (2019). 

The left graph shows, as predicted, an almost unchanged industrial structure of the US 

economy. Indeed, the sixteen-year absolute change in the sectoral share on the total value added 

is in the order of one percentage point for all sectors but the “Construction” and the “Transport, 

Storage and Communication” ones, which showed, respectively, a 2 decrease and a 3 increase 

in their percentage shares, basically offsetting one another. 
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On the right-hand graph, nevertheless, a much more dynamic situation emerges. Indeed, aside 

for the “Construction” and the “Transport, Storage and Communication” energy intensities, 

which showed mild increases in their 2016 energy intensities, relative to their base-year levels, 

all the other sectors improved their energy efficiencies. The most remarkable improvement was 

observed for the “Wholesale, retail trade, restaurants and hotels” sector, which reached, in 2016, 

the 31% of its 2000 level. This improvement led this sector to become the most energy efficient 

among the considered ones for the US.  

Despite their improvements, it should be noted that the US still rank as the country with the 

fourth highest energy intensity among the ones considered, and the first among the developed 

economies.   

 

3.1.4 China 

 

Except for the spike experienced in the years right after China’s accession to the WTO and 

before the Great Recession’s advent (i.e. between 2003 and 2007), China’s industrial energy 

intensity has been on a declining path for the entire time window considered. This development, 

as underlined by Figure 25, is to be entirely imputed to sectoral efficiency improvements, with 

the curve for the aggregate energy intensity mimicking that of the sectoral effect, even if at a 

slightly higher value. Indeed, the structural effect, if anything, exerted a slight positive pressure 

on the energy intensity change, signalling that the Chinese economy had been shifting towards 

more energy-intensive sectors, or remained more or less the same, despite the achievement of 

technological progresses that may have improved the within-sector efficiencies. The role of the 

two effects found is consistent with the results of the analyses performed by Voigt et al. (2014), 

Atalla and Bean (2017), and of those of Song and Zheng (2012), who found the 90% of the 

energy intensity change in China between 1995 and 2009 to be imputable to the sectoral effect.  
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Figure 25 - China's industrial energy intensity change Fisher decomposition, with respect to 2000. Source: Author's own 

elaboration based on JRC WIOD and UN Stats data (2019). 

As made evident from the left graph of Figure 26, the Chinese economy rested, in 2016, for the 

34,3% of its total value added, on the “Mining, Manufacturing, Electricity, Utilities” sector and, 

for the 34,6%, on the “Other Activities” sector. Indeed, both those sectors have increased their 

relative importance in the studied years. What however strikes as the most important structural 

change has been the sixteen-year 10,5 decrease in the percentage share of the “Agriculture, 

Forestry, Fishing” sector, whose effects were not as relevant, given its small energy intensity 

figures.   

On the other hand, all sectors improved their energy efficiency, with the most notable 

progresses observed for the “Wholesale, retail trade, restaurants and hotels” and “Construction” 

sectors, reaching, in 2016, approximately the 51% of their 2000 levels. What however had a 

much more relevant impact on the overall energy intensity was the reduction in the most energy-

intensive sector’s, namely “Mining, Manufacturing, Electricity, Utilities” energy intensity, 

which decreased, in sixteen years, by 30%. This corresponded, in absolute terms, to a 11,1 

Megajoules (MJ)18/$ decline, which is higher than the 2016 aggregate industrial energy 

intensity for China (i.e. 10,2 MJ/$). Lastly, the spike observed in the energy intensity between 

2003 and 2007, as made evident from the graph, may have been caused by the increase in the 

energy intensity of this last sector which occurred in these years. 

 
18 1 Megajoule = 1,000,000 Joules. 
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Figure 26 - Structural and sectoral effects for China. Source: Author's own elaboration based on JRC WIOD and UN Stats 

data (2019). 

 

3.1.5 India 

 

India presents a situation broadly similar to China (Figure 27), with an overall declining trend 

in its industrial energy intensity, mild positive changes observed for the structural effect, and a 

persistently declining sectoral effect. This, however, occurred at much higher energy intensity 

values, with India’s 2016 levels being slightly higher than China’s 2000 levels. Indeed, India, 

despite its improvements, reached a much lower reduction in its energy intensity than the other 

energy-intensive countries considered in this study (i.e. China, Russian Federation, US), 

although it should be considered that, for instance, China’s energy use is much higher than that 

of India.  
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Figure 27 - India's industrial energy intensity change Fisher decomposition, with respect to 2000. Source: Author's own 

elaboration based on JRC WIOD and UN Stats data (2019). 

The graph on the left of Figure 28 highlights two evident changes in the structure of the Indian 

economy, which may have caused the increase observed in the structural effect driver. These 

are a 13 decrease in the percentage share on total value added of the “Agriculture, Forestry, 

Fishing” sector, one of the least energy-intensive ones, experienced in the full time window, 

accompanied, for the same time reference, by a 6,5 increase in the percentage share of the 

“Transport, Storage and Communication” sector, which is much more energy-intensive, despite 

the observed efficiency improvements. 

Indeed, as can be noted from the right graph of Figure 28, all sectors gained in terms of energy 

efficiency but the “Other Activities” one, whose energy intensity remained in 2016 at 

approximately the same level as in 2000, which was already very low. The “Transport, Storage 

and Communication” is the one which experienced the most relevant improvement, with its 

2016 energy intensity level being about 31% of its 2000 level.   
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Figure 28 - Structural and sectoral effects for India. Source: Author's own elaboration based on JRC WIOD and UN Stats 

data (2019). 

 

3.1.6 Russian Federation 

 

The industrial energy intensity of the Russian Federation has been declining for the entire time 

window considered, due to the effect of both variables analysed. In fact, both factors exerted a 

negative contribution to the overall energy intensity change, with the structural effect only 

experiencing a mild increase in the first five years of data analysed (Figure 29).  

 

Figure 29 - The Russian Federation's industrial energy intensity change Fisher decomposition, with respect to 2000. Source: 

Author's own elaboration based on JRC WIOD and UN Stats data (2019). 
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After an increase in the share on total value added of the “Mining, Manufacturing, Electricity, 

Utilities” sector, owed to a comeback of heavy industries in the early 2000s (Chirmiciu and 

Dosi, 2011), which probably is what caused the positive contribution of the structural effect 

observed in the first five years of data analysed, this same share decreased for the remainder of 

the period, ranging from 31,3% in 2000 to 26,6% in 2016. This decline was compensated for 

by a sixteen-year 4,3 increase in the percentage share of the “Wholesale, retail trade, restaurants 

and hotels” sector, which is characterized by much lower energy intensity, which explains the 

declining trend in the structural effect after 2005 (Left graph, Figure 30). 

On the other hand, all the within-sector energy intensities improved throughout the study period 

(Right graph, Figure 30). In particular, the “Mining, Manufacturing, Electricity, Utilities” 

sector’s intensity in 2016 was only the 74,3% of what it was in 2000, pinpointing a double-digit 

absolute change in this energy intensity, given the very high intensity this sector showed at the 

beginning of the study period.  

 

 

Figure 30 - Structural and sectoral effects for the Russian Federation. Source: Author's own elaboration based on JRC 

WIOD and UN Stats data (2019). 

 

3.1.7 Results summary 

 

In short, it can be said that all the considered countries managed to gain industrial energy 

intensity improvements in the period 2000-2016. It can be said that, in general, the countries 

achieving the most remarkable energy intensity improvements were those with the highest 

energy intensity values, with the notable exceptions of the UK, which achieved the largest 
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percentage reduction, with its 2016 energy intensity being only the 61,4% of its 2000 level, and 

of India, which, despite very high initial levels of energy intensity, only managed to reduce its 

energy intensity up to the 78,5% of its 2000 level. Considering, however, that India ranked as 

the country with the second highest energy intensity among the considered ones, this reduction, 

in absolute terms, corresponds to 4 MJ/$. On the other hand, the Russian Federation, which is 

the country, among the studied ones, with the highest energy intensity levels, equal to 36,8 

MJ/$, managed to achieve a percentage reduction comparable to that of the UK, with its 2016 

energy intensity being equal to 24,1 MJ/$, i.e. 65,5% of its 2000 level. China, too, despite an 

initial increase in its energy intensity, obtained a fair reduction in its energy intensity values, 

down to the 74,7% of its 2000 level. 

Figure 31 concretizes this country comparison.  

 

Figure 31 – Industrial energy intensity change by country, base year 2000. Source: Author's own elaboration based on JRC 

WIOD and UN Stats data (2019). 

However, one fundamental point should not be disregarded, that is the energy use, in absolute 

terms. Indeed, by looking at Figure 32, it is evident how the US, despite an overall relatively 

contained value of their energy intensity, owed to their great value added numbers, were, until 

2008 included, the world’s largest consumers of energy, role which was later undertaken by 

China. Of remarkable importance is the persistent increase in the energy use of this latter 

country, similar, although to a much larger scale, to that observed for India after 2005. These 

are opposite to the declining trends observed in the three European economies and in the US.   
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Figure 32 – Industrial energy use by country. Source: Author's own elaboration based on JRC WIOD data (2019). 

One final remark should be made regarding a caveat intrinsic in the analysis carried in this 

Section. Indeed, as pointed out by Chirmiciu and Dosi (2011), the level of sectoral aggregation 

is quite high, and may lead to wrongly impute some changes to the sectoral rather than to the 

structural effect. As a matter of fact, for instance, the “Mining, Manufacturing, Electricity, 

Utilities” sector encloses both energy-intensive production, such as “Manufacture of basic 

metals” and the “Manufacture of coke and refined petroleum products”, and less energy-

intensive production, such as “Manufacture of basic pharmaceutical products and 

pharmaceutical preparations” and the “Manufacture of electrical equipment” (U.S. EIA, 2016). 

By doing so, all the structural shifts from a more energy-intensive manufacturing to a lesser one 

are disregarded, and are deemed as sectoral efficiency gains. For this reason, the results of the 

analysis performed in this Section should be considered with caution, by accounting for an 

inevitable underestimation of the structural effect, and an overestimation of the sectoral one. 

  

3.1.8 An LMDI I decomposition of industrial energy consumption and Tapio decoupling 

analysis 

 

In order to give an indication of the effect of the Great Recession on this specific driving factor, 

an LMDI I decomposition analysis of the change in the industrial energy consumption has been 

performed, for all the seven countries, with respect to the subperiods 2000-2007, 2008-2012 

and 2013-2016. The driving factors used in this decomposition are the sectoral energy intensity, 

the structural change and the activity driver, i.e., the observed changes in the total value added. 
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In completion to this decomposition, a Tapio decoupling analysis has also been carried out to 

investigate the relationship between the industrial energy consumption and the indicator of 

economic activity used in this Chapter, namely the total value added, and how it changed across 

the full time window, other than in the three subperiods. 

For the sake of brevity, the decomposition and decoupling results are reported in APPENDIX 

E. In the following, a discussion on the most interesting results is reported.   

In order to review the decomposition analysis results, the studied countries can be clustered in 

two main groups, namely the developed economies, enclosing the first four countries, and the 

emerging ones, enclosing the last three. All the countries belonging to the former group 

displayed, during the crisis subperiod, a decrease in their energy consumption, suggesting 

negative repercussions of the Great Recession on the industrial consumption of energy. This 

decline has been driven, in all countries but Italy and Germany, by the contribution of the 

sectoral energy intensities and the structural drivers. On the other hand, the decline in Italy has 

been driven by the structural and activity drivers, whereas the one observed in Germany was 

entirely imputed to the negative contribution of the sectoral driver. The positive contribution of 

the activity driver in the crisis subperiod for the UK may appear at odds with what observed in 

the Section 2.3.2. However, it should be pointed out that, while in Chapter 2 the GDP per capita 

was used as a reference for the economic activity of a country, in this Chapter the total value 

added is used instead. Indeed, while GDP per capita in the UK has been declining between 2008 

and 2012, the value added did increase in the same period, implying a different contribution 

sign in the two decomposition analyses performed. This is because, while GDP increased in 

those years, population did so at a higher rate, implying a lower GDP per capita in 2012 with 

respect to 2008. 

The three emerging economies analysed, on the other hand, displayed increasing energy 

consumption for all the subperiods, with the sole exception of the Russian Federation’s 2013-

2016 subperiod, showing a mild two percent decrease in the energy consumption, most likely 

linked to the crisis experienced by this Country in those years. In this sense, as highlighted in 

the previous Chapter, at this level of analysis, it appears that the energy consumption of the 

emerging economies has been virtually unaffected by the Great Recession.  

However, taking a closer look by means of the Tapio decoupling analysis, the relationship 

between the industrial energy consumption and the indicator of economic activity used has 

changed throughout the analysed time window, and the Great Recession may have played a role 

in this sense.  
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One general conclusion which can be drawn is that all countries, except the Russian Federation, 

managed to achieve a decoupling state between the “environmental pressure”, namely industrial 

energy consumption, and the economic development variable, namely total value added, in the 

last considered subperiod, i.e., 2013-2016. In the case of Germany and the UK the decoupling 

state obtained has been absolute, or “strong”, while for the US, China and India it has been 

relative, or “weak”. Italy, on the other hand, achieved an expansive negative decoupling state, 

meaning that its energy consumption and value added both increased, but with the former doing 

so at a higher rate.  

The Great Recession subperiod, however, showed a more diversified picture. Indeed, on the 

one hand the UK, the US and Germany already achieved an absolute decoupling relationship 

in the 2008-2012 subperiod (i.e. strong decoupling), with the first two exhibiting this same 

relationship in the first considered subperiod, and the last evolving from an “expansive negative 

decoupling” state experienced in 2000-2007. On the other hand, China and India showed an 

expansive coupling state in the Great Recession subperiod, meaning that both the energy 

consumption and the value added increased, at approximately the same rate. This state has also 

been observed for China in the 2000-2007 subperiod, while in India, in the same subperiod, the 

relationship was one of relative decoupling (i.e. weak decoupling), given that the value added 

increased at a higher rate than the energy consumption.  

The case of Italy stands for itself, as it evolved from “expansive coupling” in the 2000-2007 

subperiod, to “recessive decoupling” in the Great Recession subperiod, meaning that both the 

energy consumption and the value added decreased as a result of the crisis, with the former 

doing so at a higher rate.  

Lastly, the Russian Federation displayed “weak decoupling”, “expansive coupling” and 

“recessive coupling” (i.e. both energy consumption and value added decreased, at 

approximately the same rate) states in the subperiods 2000-2007, 2008-2012 and 2013-2016, 

respectively. This is because, in 2000-2007, as mentioned in the previous Chapter, the Russian 

economy underwent a significant recovery process, and, even if energy consumption did 

increase, it did at a much slower rate than the value added. However, in the following subperiod, 

the two growth rates became approximately the same, to then get to a degrowth, again at similar 

rates, in the 2013-2016 subperiod, characterized by the Russian financial crisis of 2014-2015, 

the Russian ruble devaluation, and the oil price crisis.   
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By the way, when considering the full 2000-2016 time window, all the countries exhibit a 

decoupling state, with it being absolute, or strong, for Germany, the UK and the US, and 

relative, or weak, for all the remaining countries.  

To conclude, it appears that, in the case of industrial energy consumption, the developed 

economies of Germany, the UK and the US obtained absolute decoupling with the total value 

added. However, the Great Recession seemingly weakened this decoupling relationship for the 

US, which evolved to a relative decoupling state in the last considered subperiod. This might 

be because energy consumption declined a lot in the years of the crisis with respect to 2000 

values, and the slight recovery that followed caused the growth rate of this variable to turn to 

positive, although still smaller than the one of the value added. This is different from what has 

been observed in the previous Chapter, when considering the decoupling relationship between 

carbon dioxide emissions and GDP per capita.  

Another observed difference is for the case of Italy, which, unlike what has been observed for 

the CO₂ emissions, did not obtain absolute decoupling in the last considered subperiod, due to 

a much smaller growth rate in its economic development than in its energy consumption, after 

the decline experienced in both variables in the years 2008-2012. The decoupling relationship 

between energy consumption and economic development is different from the one of CO₂ 

emissions also for China and India. As a matter of fact, the situation appears to be slightly more 

encouraging in the case of the former variables, even if the relationship observed in the 

respective last subperiods is represented by the same decoupling state, namely relative, or weak, 

decoupling. Lastly, the decoupling states for the Russian Federation are the same of those 

observed for the total carbon dioxide emissions, except for the last one, which is now “recessive 

coupling” instead of decoupling.    

 

3.2. Carbon intensity of energy 

 

As already pointed out, the carbon intensity of energy can be defined as the ratio of CO₂ 

emissions over the total primary energy supply for a certain country at a certain time or, 

equivalently, as the emissions per unit of energy. In this sense, it can be written as (Xu and Ang, 

2013; Chen et al., 2013; Meng et al., 2018): 

𝐶𝑖 = ∑ ∑
𝐸𝑖𝑗

𝐸𝑖

𝐶𝑖𝑗

𝐸𝑖𝑗
𝑗𝑖
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Where, the ratio 
𝐸𝑖𝑗

𝐸𝑖
 stands for the share of energy consumption of fuel j in area i over the total 

energy consumption of area i, and the ratio 
𝐶𝑖𝑗

𝐸𝑖𝑗
 is the carbon emission coefficient, or the carbon 

emissions per unit of fuel j in area i.  

The second factor, as observed by Chen et al. (2013), does not change much in the short term, 

and therefore will not be used in this analysis as its contribution to the emissions’ change in this 

27-years time window can be disregarded. To merely give an idea of the carbon emission 

coefficients of some fossil fuels, Table F.1 in the APPENDIX F reports the estimates made by 

Meng et al. (2018), based on the IPCC 2006 guidelines for national greenhouse gas inventories.  

Conversely, the first factor, namely the relative share of each fossil fuel over the total energy 

use for a certain country, is of more interest and the following Section is entirely devoted to the 

analysis of the fuel mix evolution for the seven countries considered in the time window 

between 1990 and 2017. 

For this purpose, data on primary energy consumption by fuel type, expressed in Million tonnes 

of oil equivalent (Mtoe) have been retrieved from the BP Statistical Review of World Energy 

(2019), relatively to the years between 1990 and 2017. This same database has been used by 

Olivier et al. (2020) to perform a similar analysis to the one pursued in this Section.  

 

3.2.1 Changes in the fuel mix 

 

3.2.1.1 Germany, United Kingdom and Italy 

 

Germany  

Germany is Europe’s largest coal producer, with the highest coal-fired power generation 

(Olivier et al., 2016). Indeed, Figure 33 depicts a fuel mix still significantly reliant on coal, even 

if to declining extent, going from a 37% share on primary energy consumption in 1990 to 21% 

in 2017.19 Another big contribution, which did not show such a pronounced decrease, is offered 

by oil, whose use even experienced an increase in the years preceding the new Century. One 

noteworthy change has also been observed for nuclear energy, which declined remarkably 

accordingly with the German government decision to shut down eight of its seventeen reactors 

following the Fukushima disaster of 2011. Lastly, the reliance on less carbon-intensive energy 

 
19 All numbers and percentages cited in Section 3.2.1 are based on the Author’s own elaboration of BP Stats data 

(2019). 



68 
 

sources, such as natural gas and renewables, increased a lot, in accordance with Germany’s 

pledge to reduce its emissions and coal reliance. However, in 2018 natural gas consumption 

decreased in Germany (Olivier and Peters, 2020). Next, the energy share represented by 

hydroelectricity remained approximately constant throughout the entire period, most likely due 

to physical and geographical limitations on the utilization of such energy source, that render 

Germany’s hydropower capacity mature and already almost completely exploited (Spänhoff, 

2014). But it is on other renewable energy sources, namely solar, wind, geothermal and 

biomass, that Germany experienced a massive increase, with their share on primary energy 

consumption ranging from 0,95% in 2000 to 13,29% in 2017. 

 

Figure 33 - Germany's fuel mix evolution, years 1990-2017. Source: Author's own elaboration based on BP Stats data 

(2019). 

United Kingdom 

The most notable change in the UK’s fuel mix is the phasing out of coal, whose share on primary 

energy consumption went from 30% in 1990 to 5% in 2017, accounting for a total 86% decline 

in the twenty-seven-year time window (Figure 34). This is in line with the decarbonization 

process the UK has gone through, made explicit by their Clean Air Acts of 1956 and 1968, and 

its Climate Change Act of 2008, and by the UK’s commitment to a phasing-out of its coal-fired 

power plants by 2025 (Olivier et al., 2016). This decrease has been compensated for by an 

increased reliance on natural gas and renewables, whereas the contribution of oil, nuclear and 

hydroelectricity remained approximately constant throughout the analysed time window. In 

2016, the reliance on gas spiked, due to lower gas price in the UK (Olivier et al., 2016), 

continuing to increase even in 2018 (Olivier and Peters, 2020). 
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Figure 34 - UK's fuel mix evolution, years 1990-2017. Source: Author's own elaboration based on BP Stats data (2019). 

Italy  

Italy’s fuel fix has been, over the analysed time period, largely reliant on oil and gas, with the 

first declining 35% in the twenty-seven years considered, and the latter increasing by 58% over 

the entire period (Figure 35), with the increase experienced in the last two years analysed 

imputable, according to Olivier et al. (2016) to larger use of summer air-conditioning, although 

natural gas consumption in Italy declined by 3.3% in 2018 (Olivier and Peters, 2020). Unlike 

its two European counterparts, Italy’s fuel mix is not skewed towards coal, whose share over 

primary energy consumption was already as low as 9% at the beginning of the study period. 

Furthermore, Italy does not rely on nuclear power, given the shutdown of nuclear power plants 

in its territory, sealed by the Italian nuclear power referendum of 1987. Moreover, the Italian 

share of hydroelectricity is higher than for its European counterparts, given its larger 

geographical predisposition, although the potential is estimated to be already exploited at its 

90% (Eni Scuola, 2012). Lastly, the share of the other renewables, just like it has been observed 

for the two other countries, experienced a major spike after the beginning of the new Century.  
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Figure 35 - Italy's fuel mix evolution, years 1990-2017. Source: Author's own elaboration based on BP Stats data (2019). 

 

3.2.1.2 United States 

 

The US fuel mix is largely based on oil and gas, accounting for, respectively, 41% and 29% of 

the US primary energy consumption in 2017 (Figure 36). Indeed, in 2015, according to Olivier 

and Peters (2016) the US had the largest share of natural gas consumption, and of global oil 

consumption. For what concerns coal, the US too decreased their reliance on this fossil fuel 

across the twenty-seven years of analysed data, with a total 28% reduction over the entire 

period, which may have been aided also by the setting, in 2015, of the  new National Ambient 

Air Quality Standards (EPA, 2020). This decrease is ongoing, as, in 2018, half of the world’s 

coal plants’ retirements have been achieved in the US (Olivier et al., 2020). However, this 

phasing-out process had to be compensated for by an increased reliance on gas in the US, as 

the shares of oil, nuclear and hydroelectricity remained overall constant throughout the entire 

period, while the renewables share did not show the same pronounced increase that has been 

observed for the EU countries, reaching in 2017 only the 4% of the Country’s energy 

consumption. This percentage is very close to the one of hydroelectricity, which, in 2017, 

represented the 3% of the US primary energy consumption. Indeed, as of 2016, the US were 

the third country in the world in terms of hydropower capacity (Olivier and Peters, 2016). 

Furthermore, in the same year, the US have been the world’s first producers of nuclear energy 

in absolute terms, with this fuel representing, in 2017, the 9% of the US primary energy 

consumption. This has been aided also by the setting of the US-EPA Clean Power Plan of 2014, 
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requiring the emissions produced by power plants to be reduced 25% with respect to 2005 levels 

by 2020 (Olivier and Peters, 2016). 

 

Figure 36 - US' fuel mix evolution, years 1990-2017. Source: Author's own elaboration based on BP Stats data (2019). 

 

3.2.1.3 China 

 

The fuel mix of China is dramatically skewed towards the use of coal, which, as of 2017, still 

represented the 60% of its energy consumption (Figure 37). Despite this high relevance of coal 

in China’s fuel mix, it should still be noted that this figure is lower than the 77% observed at 

the beginning of the study period, which suggests an ongoing shift towards cleaner energy 

sources. This fact, however, should be coupled with an acknowledgement of the persistently 

increasing energy consumption in China, as, even if the share of coal on the total fuel mix is 

indeed lower, coal consumption levels of 2017 are about 258% higher than those of 1990, with 

China’s coal consumption being half of the world’s total in 2018 (Olivier et al., 2020).  The 

decreased share of coal had to be compensated for by an increasing reliance on gas, whose share 

of 7% in 2017 is still way lower than the ones observed for the previous analysed countries; on 

nuclear, which has been sought as an alternative to coal, especially after the publication of the 

Energy Development Strategy Action Plan, 2014-2020, which imposed to cut the reliance on 

coal, in favour of cleaner technologies (World Nuclear Association, 2020); on hydroelectricity, 

for which China ranked as the first world hydropower country in terms of capacity in 2015 

(Olivier and Peters, 2016); and on renewables, which experienced the most remarkable increase 

in their share in the years following 2010, owed to a very large growth in wind and solar power 
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(Olivier et al., 2020). The share of oil, after a spike experienced in the years around the 

beginning of the Century, went back to the same numbers observed at the beginning of the study 

period, although the same share corresponded to a value 433% higher.    

 

Figure 37 - China's fuel mix evolution, years 1990-2017. Source: Author's own elaboration based on BP Stats data (2019). 

 

3.2.1.4 India 
 

Similarly to China’s, India’s fuel mix is skewed towards coal, representing, in 2017, the 55% 

of the primary energy consumption of this Country (Figure 38). In this case, however, this share 

did not experience a significant decrease throughout the analysed time window, as the 

corresponding figure for the beginning of the period was 56%. The same reasoning holds true 

for oil, nuclear and gas. Indeed, the only significant changes occurred in the shares of 

hydropower, which declined from 8% to 4% in, respectively, 1990 and 2017, and of renewables, 

whose share experienced mild increases especially after 2007, reaching, in 2017, a 2,9% 

relevance, given the Indian Ministry for Energy commitment to increase by 175 GW renewable 

energy by 2021 (Olivier and Peters, 2016). These not so encouraging changes observed in the 

fuel mix of India are the reason behind the positive pressure exerted by the carbon intensity of 

energy factor on CO₂ emissions for the four subperiods considered in Section 2.3. 
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Figure 38 - India's fuel mix evolution, years 1990-2017. Source: Author's own elaboration based on BP Stats data (2019). 

 

3.2.1.5 Russian Federation 
 

About 53% of the Russian Federation’s energy consumption in 2017 was represented by gas, 

followed by oil (22%) and coal (12%). At the beginning of the study period, the ranking order 

was the same, although with different shares, being 41%, 30% and 21%, respectively, for gas, 

oil and coal (Figure 39). This means that the Russian Federation increased its reliance on gas at 

the expense of oil and coal, with the latter decreasing by 54% in the twenty-seven years of data 

analysed. Moreover, while the share of energy consumption covered by hydroelectricity 

increased throughout the analysed period, going from 4% in 1990 to 6% in 2017, the share of 

renewables, which is negligible, did not show any significant increase in the twenty-seven years 

of data analysed. Indeed, as stated by Olivier et al. (2020), the Russian Federation is the only 

country, among the top emitters, which virtually did not make use of wind and solar power, and 

of biofuels for road transport. Lastly, the share represented by nuclear energy went from 3% in 

1990 to 7% in 2017. 
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Figure 39 - Russian Federation's fuel mix evolution, years 1990-2017. Source: Author's own elaboration based on BP Stats 

data (2019). 

 

3.2.1.6 Summary of results 
 

Summing up, in general, all the analysed countries have been shifting towards less carbon-

intensive fuel mixes. The most remarkable changes have been observed for the developed 

economies, which displayed, nevertheless, significantly lower shares of coal with respect to the 

developing economies, with the exception of the Russian Federation, which showed a fuel mix 

much more skewed towards gas. China and India, the two countries which displayed the 

highest reliance on coal, still accounting for more than half of their energy consumption in 

2017, showed differing situations, with the former significantly decreasing their reliance on this 

fossil fuel relatively to the others, and the latter not experiencing significant changes in its share 

over the entire time window analysed.  

Despite the observed general shift away from coal, traditional fossil fuels (i.e. coal, oil, gas) 

still represent the majority of energy consumption for all the considered economies, with low-

carbon energy sources, such as nuclear, hydro, and other renewables still representing a 

minority, with the European economies considered standing out as the best performers in this 

sense. This may be linked to the European commitments embodied in regulations such as the 

2009/28/EC Renewable Directive, which sets the so-called 20-20-20 goal, that aims, among 

other things, at a 20% of energy at the overall EU level to be provided by RES by 2020 (Vigotti, 

2015), or as the more ambitious Energy Roadmap 2050, that aims for carbon neutrality at the 

EU level by the self-titled year (Imperial College London et al., 2014).     
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3.2.2 The role of renewables 

 

When targeting climate change and the improvement of a country’s fuel mix, it behoves to 

make a mention of renewable energy sources (RES). Indeed, the array of benefits offered by 

this kind of energy sources is outstanding. These are, to name a few, their contribution to the 

decarbonization of the fuel mixes; their contribution to the reduction of the need for fossil fuel 

imports, contributing to a higher energy independence (World Energy Council, 2016), and their 

overall huge energy potential, considering that, for instance, solar energy alone uses a resource 

that would be more than enough to cover all of the world energy’s demand. In addition to that, 

this kind of energy source does not entail security and military risks, as does, for example 

nuclear power (Zahedi, 2011). Lastly, they could contribute to the creation of new jobs, hence 

increasing employment rates (World Energy Council, 2016).  

Even if the benefits from RES deployment are undeniable, their implementation, while 

increasing, is still small compared to more carbon-intensive fossil fuels, as further underlined 

in the previous Section. Indeed, while the global installed RES capacity has more than tripled 

between 2000 and 2019, with this increase primarily driven by wind and solar power expansion 

in the years following 2009, and RES accounting for about 60% of the total new capacity 

additions (World Energy Council, 2016), the share of global TPES provided by RES, despite 

minor improvements experienced mainly in the “Wind, solar, etc.” and “Hydro” categories, is 

still marginal, ranging at an approximate 10% level (Figure 40).  

 

 

Figure 40 - Total Primary Energy Supply by source, in percentage, years 1990-2017. Source: IEA, 2019b. 

This is because, indeed, there are some peculiar characteristics of RES that hinder their smooth 

integration in energy and electricity systems worldwide. More specifically, there are two main 

types of RES: dispatchable and non-dispatchable (IEA-ETSAP and IRENA, 2015). The first 
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category includes all those RES, such as hydro, biomass and geothermal power, that can be 

deployed following demand and dispatched on request of power grid operators, just like the 

traditional primary energy sources (e.g. coal, oil). All of the above cannot be done with non-

dispatchable RES, or Variable Renewable Energy (VRE) sources, that include, for instance, 

wind, solar photovoltaic and ocean power. In fact, there are peculiar characteristics to this kind 

of RES that hinder their normal utilization as energy sources, that are: 

• Non-controllable variability, owed to the fact that the output from this kind of energy 

sources changes over time, in a way that cannot be controlled, as it is caused by nature-

driven weather conditions; 

• Partial unpredictability, that is to be ascribed to the errors made in forecasts of VRE 

availability, that are unavoidable, given the uncertainty of changes of said resources; 

• Location dependence, related to the fact that VRE availability is conditional on the 

geographical proximity to resources;  

• Modularity, meaning that a production site for VRE has a much lower scale than a 

traditional one, requiring a larger number of sites to obtain the same amount of energy; 

• Low short-term marginal costs, that are close to zero.  

The concurrence of all these peculiarities is what poses challenges to the introduction of VRE 

into the energy and power systems around the world (IEA-ETSAP, IRENA, 2015; Cretì, 

Fontini, 2019; Philibert, 2018).  

Despite the development of several possible solutions easing the utilization of renewables 

proposed by the literature, the current use of this kind of energy sources remains quite small. 

Nevertheless, the EIA’s International Energy Outlook of 2019 depicts a very optimistic picture, 

especially in the field of electricity generation. Indeed, it projects renewables to collectively 

increase to 49% of global electricity generation by 2050, with solar showing the fastest growth 

and hydro showing the slowest, due to physical constraints related to this source.  

In the short term, however, the Covid-19 outbreak-caused delays in construction activity due to 

supply chain disruptions, lockdown measures, social‑distancing guidelines and emerging 

financing challenges, may cause, as predicted by IEA (2020), the first downward trend to be 

observed since 2000 in renewable electricity capacity. Nevertheless, the majority of these 

delayed projects are expected to be implemented in 2021 and lead to a rebound in capacity 

additions, so as to reach, in 2021, approximately the same level of renewable capacity additions 

of 2019. Despite the rebound, the combined growth in 2020 and 2021 remains below the one 
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accounted for by previous forecasts, showing that, indeed, the current crisis also displays its 

impact in the field of renewables integration.  
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FINAL REMARKS 

 

This work operated a LMDI I decomposition analysis of the change in energy-related CO₂ 

emissions for the years 1990-2017 for Germany, United Kingdom, Italy, United States, China, 

India and the Russian Federation. Furthermore, in order to investigate more in detail the effects 

of the Great Recession on emissions, a Tapio decoupling analysis was carried out, which 

allowed to shed a light on the changing relationship between the energy-related CO₂ emissions 

and one of its drivers, namely GDP per capita.  

Exception made for China and India, all the analysed countries managed to reduce their 

emissions in the study period. When considering the four drivers of emissions advocated by 

Kaya, namely population, GDP per capita, energy intensity of GDP and carbon intensity of 

energy, in general, the main positive driving factor has been the GDP per capita, whereas the 

main negative driving factor has been the energy intensity of GDP. This statement is true for 

all countries but the Russian Federation, where the energy intensity driver exerted a positive 

contribution in all subperiods analysed but the 2000-2007 one, and the GDP per capita exerted 

a negative contribution in the 1990-1999 subperiod, due to repercussions of the Soviet Union 

fall, and in the last subperiod, i.e., 2013-2017, due to the Russian financial crisis.  

Another general statement which can be made is that the developed economies, namely 

Germany, the UK, the US and, to a lower extent, Italy, have succeeded in the reduction of their 

emissions, accompanied by a generally good degree of economic growth. On the other hand, 

the emerging economies of China and India experienced a huge economic development, 

coupled, however, with an equally important growth in their emissions, with China, however, 

reducing its growth rate remarkably in the last subperiod considered. Lastly, the Russian 

Federation underwent a recovery process from the Soviet Union fall-induced economic shock, 

which brought up a massive drop in its emissions that, despite the economic recovery, managed 

to stabilize and not spike back up again.  

As for the link between emissions and the economic downturn experienced during the Great 

Recession, the Tapio decoupling analysis provides some interesting insights. The most visible 

impacts of the downturn have been observed in Italy and the UK. Indeed, these two countries 

experienced a “recessive decoupling” between their CO₂ emissions and GDP per capita during 

the period 2008-2012 (i.e. both quantities declined over this period, but the former did so at a 

faster rate) followed by an absolute decoupling in the period 2013-2017. This seems to suggest 

that the economic recovery did not come at the expense of the environment, as, while the 

economy grew, emissions continued to decline.  
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Even if not linked to the Great Recession, a similar recovery process has also been observed in 

the Russian Federation, where, after the period following the Soviet Union fall, namely 1990-

1999, characterized by a “recessive coupling” relationship between the two considered 

variables (i.e. both variables declined, at approximately the same rate), the relationship turned 

to one of relative decoupling in the years 2000-2007. It remains to be assessed whether this 

Country will succeed in maintaining this kind of recovery process even after the crisis it 

experienced in the last subperiod, namely, 2013-2017.  

Such straightforward effects of the crisis have not been observed for the remainder of the 

countries. Indeed, on the one hand, Germany and the US maintained an absolute decoupling 

relationship in the subperiods before, during, and after the Great Recession’s one. The only 

visible effect has been a mere reduction in the value of the decoupling elasticities in the last 

subperiod, which seems to point to a lower order of magnitude, although of opposite sign, of 

the percentage variation in emissions with respect to the one of the economic driver. On the 

other hand, China and India improved their decoupling relationship, going from “expansive 

coupling” (i.e. both variables increased, at approximately the same rate) and “expansive 

negative decoupling” (i.e. both variables increased, but emissions did so at a faster rate) in the 

subperiods before and during the Great Recession to one of relative decoupling in the subperiod 

2013-2017. 

In order to more deeply understand the drivers behind the energy-related CO₂ emissions, a 

Fisher Ideal index decomposition has also been carried out for the energy intensity of GDP 

driver, by decomposing the industrial energy intensity of the seven countries into the sectoral 

driver, namely energy intensity changes within sectors, and the structural driver, namely 

economy’s shifts towards less energy-intensive sectors. Hence, the evolution of the three 

variables has been studied for the period 2000-2016.  

It turned out that, in all the considered countries, the industrial energy intensity has improved 

throughout the entire study period. A few countries, namely the UK and the Russian 

Federation, displayed an approximately equal contribution to this reduction exerted by the two 

effects. However, energy intensity improvements of Germany, the US, China and India have 

been caused, in full, by the sectoral effect, while those of Italy have been caused entirely by the 

structural effect.  

Following this results, referring to the same time window, a LMDI I decomposition and a Tapio 

decoupling analysis have been performed relatively to the change in the industrial energy 

consumption, subdivided into three driving factors: sectoral energy intensities, structural 
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change and activity, pinpointed by the change in the total value added. The main result is that 

the only country displaying a visible impact of the Great Recession, Italy, showed a “recessive 

decoupling” relationship between industrial energy consumption in the period 2008-2012, 

followed by an “expansive negative decoupling” in the period 2013-2017. This points to a 

recovery process which has been faster in the energy consumption than in the economic 

rebound, unlike what happened in the case of CO₂ emissions. The other countries did not 

seemingly show such a straightforward effect of the crisis subperiod.  

On the one hand, the developed economies of Germany and the UK achieved absolute 

decoupling in the subperiods during and after the Great Recession. The US, however, evolved 

from an absolute decoupling relationship before and during the Great Recession to one of 

relative decoupling in the subperiod 2013-2017, suggesting that the industrial energy 

consumption has been increasing in the last years considered, but not as fast as the US economy. 

On the other hand, the developing economies of China and India improved their decoupling 

state from one of “expansive coupling” during the Great Recession subperiod, to one of relative 

decoupling in the last subperiod. Finally, the Russian Federation displayed, except for the last 

subperiod, the same decoupling states already observed for the emissions.  

The last driving factor analysed is the carbon intensity of energy, through a commentary on the 

evolution of the fuel mix of the primary energy consumption. From this analysis, it turned out 

that all the studied countries improved their fuel mixes during the study period, even if the 

traditional fossil fuels, namely coal, oil and gas, still represent the majority of primary energy 

consumption. In particular, coal, the most carbon-intensive among the energy sources 

considered, is still accounting for more than half of primary energy consumption in China and 

India. Finally, the three European economies have proved to be particularly well performing in 

terms of renewables (including hydroelectricity) implementation, with the highest share in 2017 

recorded in Italy, with a 14,8% of its energy consumption covered by hydropower and other 

renewables (i.e. solar, wind, biomass, geothermal and other).     

One last remark is that, as mentioned in the Introduction, the Covid-19 outbreak-induced crisis 

is likely to have an impact on emissions similar, if not greater, than the Great Recession. Hence, 

future research could apply an analysis similar to the one conducted in this work to infer the 

effect of the current crisis on emissions and their drivers. Indeed, the lack of data availability 

precluded the possibility to pursue it in this work. 
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APPENDIX A: mathematical specification of the main IDA techniques 

 

First, let assume there is an energy- related aggregate V, with n contributing factors associated 

to it. Each of these n factors corresponds to a quantifiable variable x (Ang, 2005). Then, let i be 

a sub-category of the aggregate V, such that: 𝑉𝑖 = 𝑥1,𝑖𝑥2,𝑖 … 𝑥𝑛,𝑖. The general IDA identity will 

be given by: 

𝑉 =  ∑ 𝑉𝑖

𝑖

= ∑ 𝑥1,𝑖𝑥2,𝑖 … 𝑥𝑛,𝑖

𝑖

 

The changes in V from time 0 to time T can be expressed in two ways. In the multiplicative 

decomposition: 

𝐷𝑡𝑜𝑡 =
𝑉𝑇

𝑉0
= 𝐷𝑥1

𝐷𝑥2
… 𝐷𝑥𝑛

 

In the additive decomposition: 

∆𝑉𝑡𝑜𝑡 = 𝑉𝑇 − 𝑉0 = ∆𝑉𝑥1
+ ∆𝑉𝑥2

+ ⋯ +∆𝑉𝑥𝑛
 

 

A.1. The conventional Laspeyres index method 

 

The Laspeyres index methodology, the most popular among the first IDA techniques proposed 

in the literature, can be used to decompose various energy-aggregate variables. In this case, the 

focus is on the decomposition of energy intensity into two driving factors. This Section is based 

on the survey review of main decomposition techniques presented by Ang and Zhang (2000). 

When expressing aggregate energy intensity across all sectors as: 

𝐼𝑡 = ∑ 𝑆𝑖,𝑡𝐼𝑖,𝑡

𝑖

 

With: 𝑆𝑖,𝑡 being the production share of sector i at time t and 𝐼𝑖,𝑡 the energy intensity of sector i 

at time t. 

Energy intensity decomposition, relying on the Laspeyres index method, is given by, for the 

multiplicative form: 

𝐷𝑠𝑡𝑟 =  ∑ 𝑆𝑖,𝑇𝐼𝑖,0

𝑖

/ ∑ 𝑆𝑖,0𝐼𝑖,0

𝑖
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𝐷𝑖𝑛𝑡 =  ∑ 𝑆𝑖,0𝐼𝑖,𝑇

𝑖

/ ∑ 𝑆𝑖,0𝐼𝑖,0

𝑖

 

𝐷𝑟𝑠𝑑 =  𝐷𝑡𝑜𝑡/(𝐷𝑠𝑡𝑟𝐷𝑖𝑛𝑡) 

Where, D are the decomposition terms, namely 𝐷𝑠𝑡𝑟 stands for structural effect, while 𝐷𝑖𝑛𝑡 

stands for intensity effect. The term 𝐷𝑟𝑠𝑑 is the residual, unexplained part of the decomposition 

analysis.  

For the additive form: 

∆𝐼𝑠𝑡𝑟 = ∑ 𝑆𝑖,𝑇𝐼𝑖,0

𝑖

− ∑ 𝑆𝑖,0𝐼𝑖,0

𝑖

 

∆𝐼𝑖𝑛𝑡 = ∑ 𝑆𝑖,0𝐼𝑖,𝑇

𝑖

− ∑ 𝑆𝑖,0𝐼𝑖,0

𝑖

 

∆𝐼𝑟𝑠𝑑 = ∆𝐼𝑡𝑜𝑡 − ∆𝐼𝑠𝑡𝑟 − ∆𝐼𝑖𝑛𝑡 

 

A.2. The LMDI I method 

 

The mathematical formulation of the LMDI I method for the decomposition task referred to at 

the beginning of this Appendix is (Ang, 2005): 

𝐷𝑥𝑘
= exp(∑

𝐿(𝑉𝑖
𝑇 , 𝑉𝑖

0)

𝐿(𝑉𝑇 , 𝑉0)
ln (

𝑥𝑘,𝑖
𝑇

𝑥𝑘,𝑖
0 ))

𝑖

= exp(∑

(𝑉𝑖
𝑇 − 𝑉𝑖

0)
(𝑙𝑛𝑉𝑖

𝑇 − 𝑙𝑛𝑉𝑖
0)

⁄

(𝑉𝑇 − 𝑉0)
(𝑙𝑛𝑉𝑇 − 𝑙𝑛𝑉0)⁄

× ln (
𝑥𝑘,𝑖

𝑇

𝑥𝑘,𝑖
0

𝑖

)) 

∆𝑉𝑥𝑘
= ∑ 𝐿(𝑉𝑖

𝑇 , 𝑉𝑖
0) ln (

𝑥𝑘,𝑖
𝑇

𝑥𝑘,𝑖
0 ) = 

𝑖

∑
𝑉𝑖

𝑇 − 𝑉𝑖
0

𝑙𝑛𝑉𝑖
𝑇 − 𝑙𝑛𝑉𝑖

0

𝑖

 ln (
𝑥𝑘,𝑖

𝑇

𝑥𝑘,𝑖
0 ) 

With L (a, b) = (a - b) / (ln a – ln b), and 𝐷𝑥𝑘
 and ∆𝑉𝑥𝑘

 being the decomposition factors relative 

to the characteristic 𝑥𝑘 computed in the multiplicative and additive form, respectively.  

 

A.3. The Fisher Ideal index method 

  

The mathematical formulation of the Fisher Ideal index method for the decomposition task 

referred to at the beginning of this Appendix is, when there are only two factors 𝑥1 and 𝑥2: 
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𝐷𝑥𝑘
= √𝐷𝑥𝑘

𝐿 𝐷𝑥𝑘
𝑃                  𝑘 = 1,2 

𝐷𝑡𝑜𝑡 = 𝐷𝑥1
𝐷𝑥2

 

And:  

       𝐷𝑥1
𝐿 = ∑ 𝑋1𝑖

𝑇 𝑋2𝑖
0

𝑖 / ∑ 𝑋1𝑖
0 𝑋2𝑖

0
𝑖                                       𝐷𝑥2

𝐿 = ∑ 𝑋1𝑖
0 𝑋2𝑖

𝑇
𝑖 / ∑ 𝑋1𝑖

0 𝑋2𝑖
0

𝑖  

 

       𝐷𝑥1
𝑃 = ∑ 𝑋1𝑖

𝑇 𝑋2𝑖
𝑇

𝑖 / ∑ 𝑋1𝑖
0 𝑋2𝑖

𝑇
𝑖                                       𝐷𝑥2

𝑃 = ∑ 𝑋1𝑖
𝑇 𝑋2𝑖

𝑇
𝑖 / ∑ 𝑋1𝑖

𝑇 𝑋2𝑖
0

𝑖  

With 𝐷𝑥𝑘
𝐿  and 𝐷𝑥𝑘

𝑃  being the Laspeyres and Paasche indices, respectively.   
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APPENDIX B: LMDI I decomposition 

 

The numerical results of the decomposition analysis carried in Chapter 2.3 are summed up in 

Table B.1. 

Table B.1 - LMDI I decomposition of the change in CO₂ emissions. Source: Authors' own elaboration based on IEA and 

UN Stats data (2019). 

Country 

Time 

period 

Population 

effect 

GDP per 

capita 

effect 

Energy 

intensity 

effect 

Carbon 

intensity 

effect 

Cumulated 

change 

Germany 1990-1999 22,426 120,0044 -183,939 -83,53999 -125,04831 

 2000-2007 -4,519 78,3569 -92,892 -26,53681 -45,59010 

 2008-2012 -3,187 22,1511 -66,977 17,50022 -30,51263 

 2013-2017 18,252 45,2316 -79,358 -29,10065 -44,97512 

UK 1990-1999 13,2342331 105,0343 -78,2527 -77,45691 -37,44113 

 2000-2007 21,0993763 78,3895 -127,8761 29,55766 1,17043 

 2008-2012 14,5151113 -11,6743 -38,8467 -10,44869 -46,45462 

 2013-2017 11,9262174 22,8889 -67,9865 -55,10004 -88,27144 

Italy 1990-1999 1,3987063 50,22210 4,239976 -27,54216 28,318629 

 2000-2007 13,7391715 19,88424 -3,223785 -9,37515 21,024472 

 2008-2012 7,2832873 -31,29150 -23,06554 -15,10350 -62,177255 

 2013-2017 -0,5926817 12,92746 -16,48463 -11,94465 -16,094505 

US 1990-1999 570,2 969,094 -795,843 17,34 760,792 

 2000-2007 377,3 615,698 -835,328 -200,86 -43,159 

 2008-2012 165,3 28,527 -498,672 -304,63 -609,503 

 2013-2017 143,1 313,835 -523,325 -210,83 -277,222 

China 1990-1999 244,528 2014,753 -1690,64 263,41 832,043 

 2000-2007 196,168 3103,144 -465,04 539,25 3373,526 

 2008-2012 149,787 2586,414 -663,41 77,70 2150,493 

 2013-2017 195,096 2275,149 -1998,66 -404,15 67,433 

India  1990-1999 117,2204 -117,22 232,2387 89,6957 321,9344 

 2000-2007 120,5805 -120,58 269,2182 106,5843 375,8025 

 2008-2012 83,6075 -83,61 379,4153 85,4249 464,8402 

 2013-2017 92,8405 -92,84 248,4516 58,3306 306,7822 
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Russian 

Federation 

1990-1999 -12,9796 -864,128 223,997 -67,4411 -720,551 

2000-2007 -39,4122 727,914 -564,333 -64,8376 59,331 

 2008-2012 5,0859 58,587 25,695 -35,2557 54,111 

 2013-2017 10,6529 -5,864 50,575 -87,0185 -31,654 
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APPENDIX C: Decoupling analysis 

 

C.1 The Tapio’s decoupling categories 

 

The following table is based on the works of Tapio (2005), Liu et al. (2015) and Chen et al. 

(2018): 

Table C.1 - Description of the eight decoupling states according to Tapio decomposition. Sources: Tapio (2005) and Chen 

et al. (2018). 

States   Conditions required 

Decoupling  Strong decoupling  ΔEP < 0, ΔDF > 0 

d < 0 

 Weak decoupling ΔEP > 0, ΔDF > 0 

0 < d < 0.8 

 Recessive decoupling ΔEP < 0, ΔDF < 0 

d > 1.2  

Negative decoupling Expansive negative 

decoupling 

ΔEP > 0, ΔDF >0 

d > 1.2 

 Strong negative decoupling ΔEP > 0, ΔDF < 0 

d < 0 

 Weak negative decoupling ΔEP < 0, ΔDF < 0 

0 < d < 0.8 

Coupling  Expansive coupling ΔEP > 0, ΔDF >0 

0.8 < d < 1.2 

 Recessive coupling ΔEP < 0, ΔDF < 0 

0.8 < d < 1.2 

 

C.2 Results of the Tapio’s decoupling analysis  

The numerical results of the decoupling analysis carried in Chapter 2.5 are summed up in Table 

C.2. 
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Table C.2 - Tapio decomposition results. Source: Authors' own elaboration based on IEA and UN Stats data (2019). 

Country  1990-1999 2000-2007 2008-2012 2013-2017 1990-2017 

 d  Decoupling 

state  

d  Decoupling 

state  

d  Decoupling 

state  

d  Decoupling 

state  

d  Decoupling 

state  

Germany  -0,906 Strong  

decoupling 

-0,538 Strong  

decoupling 

-1,331 Strong  

decoupling 

-0,936 Strong  

decoupling 

-0,528 Strong  

decoupling 

UK -0,311 Strong  

decoupling 

0,014 Weak  

decoupling 

3,84 Recessive  

decoupling 

-3,364 Strong  

decoupling 

-0,673 Strong  

decoupling 

Italy 0,549 Weak  

decoupling 

1,059 Expansive 

coupling 

1,913 Recessive  

decoupling 

-1,191 Strong  

decoupling 

-1,291 Strong  

decoupling 

US 0,769 Weak  

decoupling 

-0,066 Strong  

decoupling 

-20,106 Strong  

decoupling 

-0,832 Strong  

decoupling 

-0,018 Strong  

decoupling 

China  0,318 Weak  

decoupling 

1,124 Expansive  

coupling 

0,807 Expansive 

coupling 

0,026 Weak  

decoupling 

0,381 Weak  

decoupling 

India  1,546 Expansive 

negative  

decoupling 

1,012 Expansive 

coupling 

1,503 Expansive 

negative  

decoupling 

0,583 Weak  

decoupling 

1,283 Expansive 

negative  

decoupling 

Russian 

Federation 

0,867 Recessive  

coupling 

0,065 Weak  

decoupling 

0,922 Expansive 

coupling 

5,353 Recessive  

decoupling 

-1,318 Strong  

decoupling 
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APPENDIX D: Energy intensity decomposition analysis 

 

D.1 Fisher Ideal index method formulae used 

 

This Section is built on the work of Metcalf (2008).  

In order to apply the Fisher Ideal index method, the Laspeyres and Paasche indices for the 

structural and sectoral effects in year t have to be constructed first: 

𝐿𝑡
𝑠𝑡𝑟 =

∑ 𝑒𝑖0𝑠𝑖𝑡𝑖

∑ 𝑒𝑖0𝑠𝑖0𝑖
 

𝐿𝑡
𝑠𝑒𝑐 =

𝑒𝑖𝑡𝑠𝑖0

𝑒𝑖0𝑠𝑖0
 

𝑃𝑡
𝑠𝑡𝑟 =

∑ 𝑒𝑖𝑡𝑠𝑖𝑡𝑖

∑ 𝑒𝑖𝑡𝑠𝑖0𝑖
 

𝑃𝑡
𝑠𝑒𝑐 =

∑ 𝑒𝑖𝑡𝑠𝑖𝑡𝑖

∑ 𝑒𝑖0𝑠𝑖𝑡𝑖
 

Given the results obtained, the Fisher Ideal indices for the structural and sectoral effects in year 

t are: 

𝐹𝑡
𝑠𝑡𝑟 = √𝐿𝑡

𝑠𝑡𝑟𝑃𝑡
𝑠𝑡𝑟 

𝐹𝑡
𝑠𝑒𝑐 = √𝐿𝑡

𝑠𝑒𝑐𝑃𝑡
𝑠𝑒𝑐 

After defining the two Fisher Ideal indices, the aggregate energy intensity’s decomposition 

between time 0 and time t is obtained from: 

𝑒𝑡

𝑒0
= 𝐼𝑡 = 𝐹𝑡

𝑠𝑡𝑟𝐹𝑡
𝑠𝑒𝑐 

With 𝑒0 being the energy intensity of the base year, namely 2000 in this context.  
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D.2 Sectors 

 

Table D.1 - Sectors' classification. Source: Author's own elaboration based on the classification of Corsatea et al., 2019 

and UN Stats, 2019. 

Description Grouping 

category  

Crop and animal production, hunting and related service activities  Agriculture, 

Forestry, 

Fishing 
Forestry and logging 

Fishing and aquaculture 

Mining and quarrying  

Mining, 

Manufacturing, 

Electricity, 

Utilities 

Manufacture of food products, beverages and tobacco products 

Manufacture of textiles, wearing apparel and leather products 

Manufacture of wood and of products of wood and cork, except 

furniture; manufacture of articles of straw and plaiting materials 

Manufacture of paper and paper products 

Printing and reproduction of recorded media 

Manufacture of coke and refined petroleum products  

Manufacture of chemicals and chemical products  

Manufacture of basic pharmaceutical products and pharmaceutical 

preparations 

Manufacture of rubber and plastic products 

Manufacture of other non-metallic mineral products 

Manufacture of basic metals 

Manufacture of fabricated metal products, except machinery and 

equipment 

Manufacture of computer, electronic and optical products 

Manufacture of electrical equipment 

Manufacture of machinery and equipment n.e.c. 

Manufacture of motor vehicles, trailers and semi-trailers 

Manufacture of other transport equipment 

Manufacture of furniture; other manufacturing 

Repair and installation of machinery and equipment 

Electricity, gas, steam and air conditioning supply 

Water collection, treatment and supply 

Sewerage; waste collection, treatment and disposal activities; materials 

recovery; remediation activities and other waste management services  

Construction  Construction  

Wholesale and retail trade and repair of motor vehicles and motorcycles  Wholesale, 

retail trade, 

restaurants and 

hotels 

Wholesale trade, except of motor vehicles and motorcycles 

Retail trade, except of motor vehicles and motorcycles 

Accommodation and food service activities 

Water transport  

Transport, 

storage and 

communication 

 

Air transport 

Warehousing and support activities for transportation 

Postal and courier activities 

Land transport and transport via pipelines 

Publishing activities 
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Motion picture, video and television programme production, sound 

recording and music publishing activities; programming and 

broadcasting activities 

Transport, 

storage and 

communication 

Telecommunications 

Computer programming, consultancy and related activities; information 

service activities 

 

Other activities 

Financial service activities, except insurance and pension funding 

Insurance, reinsurance and pension funding, except compulsory social 

security 

Activities auxiliary to financial services and insurance activities 

Real estate activities 

Legal and accounting activities; activities of head offices; management 

consultancy activities 

Architectural and engineering activities; technical testing and analysis 

Scientific research and development 

Advertising and market research 

Other professional, scientific and technical activities; veterinary 

activities 

Administrative and support service activities 

Public administration and defence; compulsory social security 

Education 

Human health and social work activities 

Other service activities 

Activities of households as employers; undifferentiated goods- and 

services-producing activities of households for own use 

Activities of extraterritorial organizations and bodies 
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APPENDIX E: LMDI I decomposition and Tapio decoupling analysis for 

industrial energy consumption 
 

E.1 LMDI I decomposition 
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Figure E.1 - LMDI I decomposition of the change in industrial energy consumption. Source: Author's own elaboration 

based on JRC WIOD and UN Stats data (2019). 
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E.2 Tapio decoupling analysis 

Table E.2 - Tapio decoupling analysis results. Source: Author's own elaboration based on JRC WIOD and UN Stats data (2019). 

 

 

 

 

 

 

 

 

 

Country  2000-2007 2008-2012 2013-2017 1990-2017 

 d  Decoupling 

state  

d  Decoupling 

state  

d  Decoupling 

state  

d  Decoupling 

state  

Germany  1,720 Expansive 

negative 

decoupling 

-2,106 Strong  

decoupling 

-0,057 Strong  

decoupling 

-0,257 Strong  

decoupling 

UK -0,283 Strong  

decoupling 

-6,429 Strong  

decoupling 

-0,168 Strong  

decoupling 

-0,564 Strong  

decoupling 

Italy 0,908 Expansive 

coupling 

1,239 Recessive  

decoupling 

2,735 Expansive 

negative 

decoupling 

0,313 Weak  

decoupling 

US -0,107 Strong  

decoupling 

-1,254 Strong  

decoupling 

0,418 Weak  

decoupling 

-0,135 Strong  

decoupling 

China  1,069 Expansive 

coupling 

0,807 Expansive 

coupling 

0,091 Weak  

decoupling 

0,668 Weak  

decoupling 

India  0,655 Weak 

decoupling 

1,092 Expansive 

coupling 

0,514 Weak  

decoupling 

0,666 Weak  

decoupling 

Russian 

Federation 

0,212 Weak  

decoupling 

1,021 Expansive 

coupling 

1,009 Recessive  

coupling 

0,150 Weak  

decoupling 
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APPENDIX F: Carbon intensity of energy 

 

F.1 Carbon emission coefficients for the main fossil fuels 
 

Table F.1 - Carbon emission factors of different energy sources. Source: Meng et al., 2018. 

Energy 

(104 

tons) 

Coal  Coke  Crude 

Oil  

Gasoline Kerosene Diesel 

Oil 

Fuel 

Oil 

LPG  Natural 

Gas 

Carbon 

emission 

factor 

0.7668 0.8546 0.5854 0.5561 0.5737 0.5912 0.6176 0.5034 0.4478 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


