
Master Thesis in Control Systems Engineering

Robust Co-Design for
Canonical Underactuated Systems

Master Candidate Examiners

Federico Girlanda Prof. Augusto Ferrante

Student ID 2019289 Prof. Pietro Falco
DEI, University of Padua

Supervisors

Dott. Shivesh Kumar

Dott. Lasse Maywald
RIC, DFKI GmbH

Final Exam Academic Year
10.10.23 2022/2023

Abstract

Optimal behaviours of a system to perform a specific task can be achieved by
exploiting the coupling between trajectory optimization, stabilization and de-
sign optimization. The main objective of this thesis work is to analyze a novel
co-optimization approach, which aims to improve the optimization results ap-
plicability to real world systems. This methodology has shown interesting
advantages for underactuated systems, which are systems that have fewer ac-
tuators than degrees of freedom and thus require to make use of the passive
dynamics to compensate for their lack of control inputs. Two co-design algo-
rithms, namely Robust Trajectory Control (RTC) and RTC with Design optimiza-
tion (RTCD), have been concieved, implemented and evaluated. While the first
method optimizes the trajectory behavior and the cost matrices of a stabilizing
Time-varying Linear Quadratic Regulator (TVLQR) by fixing the model param-
eters, the second algorithm adds a further optimization layer where a design
optimization is performed. Both aim to maximize the system’s robustness, mea-
sured by a time-varying Lyapunov-based Region of Attraction (ROA) analysis.
This analysis provides an intuitive representation of the controller’s robustness
to off-nominal states and can also result with a formal guarantee of stability for
the entire stabilized trajectory.
The proposed algorithms have been tested on two different underactuated sys-
tems: the torque-limited simple pendulum and the cart-pole. The experiments
demonstrate an increased volume of the stabilizable state-space region, indicat-
ing improved robustness. Extensive simulations of off-nominal initial conditions
have further validated the results, and real system experiments have shown an
improved insensitivity to torque disturbances.

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1

1.1.1 Modeling Legged Systems 1
1.1.2 Nature-inspired co-optimization 2

1.2 Related works . 3
1.3 Contributions . 4
1.4 Structure . 5

2 State of the Art 7
2.1 Co-Design in Robotics . 7
2.2 Optimal Stabilizable Domains . 8
2.3 Robust Simulation Aided Co-Design 9

2.3.1 Discussion and Inspiration 11
2.4 Co-optimization of Acrobot Design and Controller 12

2.4.1 Discussion and Inspiration 15

3 Mathematical Background 17
3.1 Multibody Dynamics . 17
3.2 Trajectory Optimization . 18

3.2.1 Direct Transcription . 19
3.3 Linear Quadratic Regulators . 21

3.3.1 Infinite Horizon Formulation 21

v

CONTENTS

3.3.2 Finite Horizon Formulation 22
3.4 Region of Attraction Estimation . 24

3.4.1 Sums of Squares Optimization 25
3.4.2 Simulation-based Approach 28

4 Methodology 33
4.1 Algorithms for a Robust Co-design 33

4.1.1 RTC . 34
4.1.2 RTCD . 35

4.2 Optimization Settings . 36
4.2.1 Cost function: The Funnel Volume 36
4.2.2 Optimization Strategy: CMA-ES 38
4.2.3 Decision Variables: Stabilization and Design 39

4.3 Application: Swing-up and Stabilization 40
4.3.1 The DRAKE Toolbox . 40
4.3.2 Torque-limited Simple Pendulum 41
4.3.3 Cart-Pole . 44

5 Results 49
5.1 Torque-limited Simple Pendulum 49

5.1.1 Optimization Results . 50
5.1.2 Simulation Verification . 56
5.1.3 Experimental Verification 58

5.2 Cart-Pole . 61
5.2.1 Optimization Results . 61
5.2.2 Simulation Verification . 63
5.2.3 Experimental Verification 64

6 Conclusions & Future Works 67

References 69

Acknowledgments 75

vi

List of Figures

1.1 Interplay between optimization domains. 4

2.1 Robust bi-level scheme with simulations. 10
2.2 Acrobot ROA improvement. 14

3.1 Simulation-based time-varying ROA estimation. 30

4.1 RTC algorithm scheme for a fixed design M. 35
4.2 RTCD algorithm scheme. 35
4.3 Convex hull volume approximation 38
4.4 Schematic representation of the pendulum. 42
4.5 Schematic representation of the cart-pole. 44

5.1 Real pendulum system. 49
5.2 Ideal optimization evolution . 52
5.3 Ideal RTC funnel improvement. 52
5.4 Ideal RTCD funnel improvement. 53
5.5 Optimization evolution: Pendulum 55
5.6 Pendulum funnel improvement: RTC 55
5.7 Pendulum funnel improvement: RTCD 56
5.8 Pendulum simulated verification: RTC 57
5.9 Pendulum simulated verification: RTCD 57
5.10 Pendulum hardware modification 58
5.11 Pendulum experimental verification. 59
5.12 Pendulum experimental verification in the RTC funnel 60
5.13 Real Cart-pole system. 61
5.14 Optimization evolution: Cart-pole 63
5.15 Cart-pole ellipses improvement. 63
5.16 Cart-pole simulated verification . 64

xi

LIST OF FIGURES

5.17 Cart-pole experimental verification: RTC 65

xii

List of Tables

4.1 Tools overview. 33
4.2 Main CMAES parameters. 39
4.3 Pendulum decision variables . 44
4.4 Cart-pole decision variables . 47

5.1 Initial Pendulum model parameters. 50
5.2 Pendulum settings: RTC . 51
5.3 Pendulum settings: RTCD . 51
5.4 Initial Pendulum real model parameters. 53
5.5 Pendulum real settings: RTC . 54
5.6 Pendulum real settings: RTCD . 54
5.7 Cart-pole settings: RTC . 62
5.8 Cart-pole settings: RTCD . 62

xiii

List of Acronyms

RTC Robust Trajectory Control

RTCD RTC with Design optimization

ROA Region of Attraction

TVLQR Time-varying Linear Quadratic Regulator

EOM Equations of Motion

DIRTRAN Direct Transcription

LQR Linear Quadratic Regulator

SOS Sums of Squares

DDP Differential Dynamic Programming

FDDP Feasibility-driven DDP

OCP Optimal Control Problem

CSV Comma Separated Values

DOF Degrees Of Freedom

EOM Equations Of Motion

CMA-ES Covariance Matrix Adaption Evolution Strategy

ODEs Ordinary Differential Equations

xix

1
Introduction

1.1 Motivation

Nowadays, the robotics research community shows a growing interest for
legged robots, such as quadrupeds and humanoids, which can perform highly
dynamical tasks. Boston Dynamics has recently presented to the world a new
set of skills of it’s humanoid robot Atlas [1], which is again pushing the limits of
locomotion, sensing, and athleticism. Prominent companies such as Tesla have
invested significantly in these kind of systems. The last year they started to de-
velop Tesla Bot [2], their own general purpose, bi-pedal, autonomous humanoid
robot. This interest is related to the industrial framework moving towards an
increased human-robotic collaboration. Robots like Digit of Agility Robotics
are not designed with the goal of mimicking humans, they have to be able to
work in spaces alongside people [3]. This capability comes with the require-
ment of many of the same physical characteristics. The field of human-centered
robotics has been also of inspiration for Apptronik’s systems like Astra, which
have shown the ability to operate in close proximity to humans [4].

1.1.1 Modeling Legged Systems

Generally, legged systems are underactuated which means that they are char-
acterized by fewer control inputs than degrees of freedom. This is often due to
the lack of a fixed base or to a set of joint limits. Underactuation causes the need
to take into account passive dynamics and utilizing it to achieve stability and

1

1.1. MOTIVATION

efficient movement.
The term kinodynamic motion planning refers to a motion planning problem
where the plant is subject to dynamic constraint, like underactuation, in addi-
tion to kinematic constraints like obstacle avoidance. As a consequence of this
coupling, the control problems are more challenging and the results are often
highly affected by the so-called sim-to-real gap. This last phenomena refers to
the discrepancy between the performance achieved through simulation-based
optimization and the actual behavior of the robot in the real world. Studying
simple underactuated systems can provide useful insights into the challenges
of controlling legged systems. Some common examples of underactuated sys-
tems are: torque-limited simple pendulum, acrobot/pendubot, cartpole, rimless
wheel and hopping leg. To further enhance the effectiveness of the analysis, re-
cent studies have introduced additional types of underactuated systems. For
instance, in [5], a novel brachiating robot has been developed, expanding the
potential deployment scenarios for humanoids and animaloids. Furthermore,
there has been a recent research focus on benchmarking these systems [6, 7].
In particular, [6] introduces RealAIGym (Real Athletic Intelligence Gym), a
platform dedicated to benchmarking dynamic behaviors on real robots. This
platform establishes a valuable baseline for the application of dynamic control
algorithms on real hardware.

1.1.2 Nature-inspired co-optimization

Every healthy individual can learn to accomplish a common task, such as run-
ning. However, just a few exceptions can achieve extraordinary performances.
Usain Bolt’s career is a notable example of this, as he is widely considered to
be one of the greatest sprinters of all time. Bolt’s record-breaking performances
were not just the result of his natural athleticism and speed, but also of a careful
combined development of his body and technique. A study [8] on his kinemat-
ics showed that his superior sprinting performance was due to an impressively
long stride (aerial phase) and an intense acceleration phase. Noticeably, he had
uneven strides, caused by one of his legs being slightly longer than the other,
which results in a running gait, that is more effective than that of his competitors.
Similarly, in robotics, a combined optimization of structural parameters and tra-
jectory control is important to effectively accomplish the desired motion tasks.
A design optimization process tunes the hardware parameters of a system to

2

CHAPTER 1. INTRODUCTION

ensure the described task with the best desired behaviour. Reaching the goal
requires to search for a motion trajectory and to compute the control policy that
permits the closed-loop trajectory following. The best trajectory is obtained via
a trajectory optimization step, while the control input is computed by an ap-
positely defined controller. In optimal control theory, the control signal comes
from the formulation of the optimal cost-to-go, a function that returns the ac-
cumulated cost when running the optimal controller from every initial state to
the goal. The power of holistic approaches has been demonstrated by Boston
Dynamics’ Atlas robot. It’s ability to perform backflips, parkour, and dance
with remarkable agility and naturalness is related to a combined optimization
process [9]. Their methodology combines a trajectory optimization applied on
an unconstrained model and the optimal cost-to-go parameter coming from the
trajectory stabilization. The control input is obtained via a real-time solution
of the constrained optimization, which considers the cost-to-go as it’s objective
function.

1.2 Related works

An interesting point of view for a control problem in the field of robotics
locomotion comes from dividing it in three interdependent domains. Optimal
performance can then be attributed to a shared optimality between trajectory
optimization, stabilization and design optimization. The design optimization
process seeks for the best set of system’s model parameters with respect to the
given cost function. The same objective is shared by a trajectory optimization
problem, here the decision variables are related to the state and input trajectory.
Finally, the stabilization of a trajectory is usually handled by a feedback control
law that make the closed-loop dynamics of the system able to achieve the desired
motion. A ROA analysis can be coupled to the last process in order to gain
informations about the robustness of the computed control policy.
Maywald et. al. [10] analyzed a co-optimization between design parameters
and stabilizing controller for an Acrobot system. Here, a time-invariant ROA
estimation has been employed for introducing the concept of robustness in the
objective function.

3

1.3. CONTRIBUTIONS

Trajectory
Optimization

Trajectory
Stabilization &

ROA Estimation

Design
Optimization

Figure 1.1: Interplay between optimization domains. [10]

Also the other interplays have been analyzed in the literature. A new ver-
sion of a common trajectory optimization algorithm has been presented in [11].
The standard Direct Transcription (DIRTRAN) optimization problem finds an
open-loop nominal state and input trajectory through a large, sparse nonlinear
program. The new optimization problem, namely DIRTREL, incorporates linear
feedback, bounded disturbances and a cost function that penalizes closed-loop
deviations from the nominal trajectory. More recently, a bi-level optimization
scheme has been introduced by [12] in order to compute an energy efficient
design and trajectory for a jumping monoped. This work has also been ex-
panded in [13], where a simulation-based robustness cost has been added to the
optimization.

1.3 Contributions

The final purpose that inspires this thesis work is the future achievement
of an athletic intelligence for legged systems. Our contribution consists in
two algorithms, namely Robust Trajectory Control (RTC) and RTC with Design
optimization (RTCD). The novelties contained in such methods are:

• Modular two layer optimization scheme for sampling-based co-design op-
timization.

• Time-varying ROA estimation (using SOS and Probabilistic methods) as a
metric for co-design.

Two underactuated systems were considered in our verification process: the
torque-limited simple pendulum and the cart-pole. The optimized task involves

4

CHAPTER 1. INTRODUCTION

the well-known "swing-up" control problem, it describes the problem of bal-
ancing an inverted pendulum by moving it from the hanging-down position to
the upright position. This has been accomplished through the computation of a
nominal trajectory via DIRTRAN, which has then been stabilized by a TVLQR
controller.

1.4 Structure

In the next chapter a collection of the state of the art of co-design will be
introduced. To a deep understanding of the selected tools and the implemented
methodology, Chapter 3 recalls some fundamental mathematical backgrounds.
In particular, details about system’s Equations Of Motion (EOM) derivation,
DIRTRAN trajectory optimization method, TVLQR control and ROA estimation
are discussed. Thanks to these tools, the reader will be able to understand the
outlined methods in Chapter 4. The proposed methodology will be then applied
both in simulation and experimental verifications. Results are contained in
Chapter 5. Finally, a general discussion is given in Chapter 6 in order to develop
intuitions about further possible improvements.

5

2
State of the Art

This chapter mainly focuses on presenting existing research that inspired
this thesis work. First, an overview of the last progresses on co-design in the
field of robotics is introduced in Section 2.1. The use of ROA analysis in optimal
control is then described in Section 2.2. Finally, in Sections 2.3 and 2.4, details
about two recent results are discussed. These two implementation merge the
previous concepts, deeply inspiring our work.

2.1 Co-Design in Robotics

A traditional approach to find the best trade-off between mechanical design
and motion planning is to iterate between the two processes [14]. However,
it is a challenging approach, especially for complex and dynamic robots like
legged robots. Instead, concurrent design (co-design [15]) aims to automate
this process by numerically optimizing both the motion and design parameters.
Implementing a combined optimization has proven in the literature to provide
better solutions [12, 16–21]. For instance, Ha et. al. [20] proposed a framework
that had successfully optimized designs for legged robots performing tasks that
include jumping, walking, and climbing up a step. Most recently, Fadini et al.
[12] introduced a bi-level optimization scheme that modifies the actuator prop-
erties of a monoped in order to improve energy efficiency. Both are examples
of the popular sampling-based co-design. This method are two-staged and exploit
variants of Monte-Carlo sampling to find candidate robot designs. Each candi-
date is then evaluated through a motion planning stage. The Covariance Matrix

7

2.2. OPTIMAL STABILIZABLE DOMAINS

Adaption Evolution Strategy (CMA-ES) [22] is a commonly used sampling ap-
proach in this case. It uses a Gaussian prior on candidate design parameters
and estimates a covariance matrix needed for the following sampling steps. A
benefit of this approach is that it can use non smooth motion planners in the
lower level. This means that it does not need informations about the gradient of
the optimization cost. However, the algorithmic complexity of CMA-ES scales
exponentially with respect to the number of design parameters (i.e., decision
variables) due to the curse of dimensionality [23]. This limits its application to
a reduced number of design parameters and constraints, which in turn limits
its scalability, for instance to multiple tasks and environments. Other gradient-
free optimization algorithms are available in the literature like the Nelder-Mead
(NM) algorithm which has demonstrated its utility in the design optimization of
parallel mechanisms [24]. On the other hand, a number of gradient-based co-design
methods have been proposed in the literature. One approach is to formulate a
single nonlinear program that optimizes both motion and design parameters.
However, this can result in a non-modular method with a dangerously high al-
gorithmic complexity. To avoid this problems derivative information have also
been obtained via sensitivity analysis, but also in this case drawbacks can arise.
In particular, the number of simultaneously optimized design parameters and
the related constraints can be non-ideal. A solution has been proposed by Dinev
et. al. [21] with a bilevel optimization approach tested on quadruped robots that
jump and trot. It exploits the derivatives of the motion planning in the lower
level into the higher level general-purpose nonlinear program that performs the
design optimization.

2.2 Optimal Stabilizable Domains

One could argue that optimal control theories have provided a more com-
prehensive explanation of empirical phenomena in sensorimotor control than
any other known class of methods. However, designs that perform well in
theory may not translate to good performance in practice due to the so-called
sim-to-real gap. This often holds for complex, non-linear and highly unstable
systems like legged robots. Recent works in the literature are then trying to
introduce the non-idealities in the optimization in order to minimize this differ-
ence [10, 11, 13, 25]. For instance, Manchester and Kuindersma [11] derived a
tractable robust optimization algorithm, namely DIRTREL, that combines direct

8

CHAPTER 2. STATE OF THE ART

transcription with linear-quadratic control design to reason about closed-loop
reponses to disturbances. Gabriele Fadini [13] introduced a simulation-based
cost in a bi-level co-optimization algorithm that aims to take into account a given
set of disturbances. Recently, another method that has been studied to represent
robustness is the ROA analysis [26], which defines a set of states that are guaran-
teed to be stabilized. A formal mathematical certificate of stabilizability can also
be provided. This methodology has mostly been applied for stability analysis
but it’s use in space-filling algorithms like LQR-trees has obtained promising
results [27–29].
ROA estimation has shown to be a powerful tool also in a co-design framework.
In [10], the volume of the estimated region has been used as an optimization cost
for the up-right stabilization of an Acrobot system. The resulting closed-loop
system has then proven to be more robust to off-nominal initial state. A bi-level
optimization scheme has been introduced by [13] in order to compute a robust
energy efficient design and trajectory for a jumping monoped. A simulation-
based robustness cost is considered for enhancing the result’s robustness.
In the next sections, a more detailed explanation of some mentioned results have
been outlined. For each related work, we will highlight the similarities to our
approach and the improvements that we are proposing.

2.3 Robust Simulation Aided Co-Design

In [13] Gabriele Fadini and his research group expand their previous work
[12] by adding a simulation-based robustness cost. Previously, they had formu-
lated a bi-level optimization structure that minimizes energy consumption by
tuning design and actuation parameters. Now, the optimization considers also
the robust performances of the simulated system to noisy scenarios and actu-
ator limits. The robustness metric comes from an evaluation of the controller
performances over multiple disturbed simulations. Hence, it scales much bet-
ter than other robust co-design approaches that explicitly optimize for a robust
controller. The system is locally stabilized from the DDP trajectory optimization
without considering the disturbances. A drawback of this kind of feedback is
that it is guaranteed to work only close to the optimal trajectory. A possible solu-
tion that has been proposed is the introduction of a gain scaling in the feedback
control law. This gain has then been considered as a further co-design variable.

9

2.3. ROBUST SIMULATION AIDED CO-DESIGN

Methodology

The algorithm is composed by two levels of optimization. The inner layer
is characterized by a Feasibility-driven DDP (FDDP) implemented in Crocod-
dyl [30]. It improves the poor globalization strategy of Differential Dynamic
Programming (DDP) and provides an optimal trajectory along with the related
control commands for highly-dynamic maneuvers. This algorithm resembles
direct multiple-shooting formulations with only equality constraints but it does
not introduce extra decision variables, which often increases the computation
time. The outer loop of the proposed bi-level structure is composed by a CMA-
ES optimization of the design parameters. Here, the additional gain-scaling
parameter is optionally added.

Trajectory optimization
Genetic optimizer

CMA-ES

Model generation
(URDF + actuator)

Simulations with noise
PyBullet with controller on

Crocoddyl - FDDP

Cost estimation
Monte-Carlo

Figure 2.1: Robust bi-level scheme with simulations. [13]

Robust Cost

The CMA-ES is implemented to fix a new population of design parameters,
and possibly of the control, at each iteration. An exhaustive introduction to
this strategy will be provided in Section 4.2.2. The considered metric for the
population selection is related to the ability of each stabilized trajectory to reject
a given set of torque disturbances. Assuming a set of noises 𝝃𝑖 ∼ 𝒩(0, 𝜎2)u∗, 𝑖 ∈
[0, 𝑁 − 1], which are modeled as a random variable with respect to the optimal
control input u∗. Given the optimal trajectory and input (𝑥∗, u∗) from FDDP,
the cost for each simulation is denoted as ℒ𝜉𝑖 = ℒ(𝑥𝜉𝑖 , u𝜉𝑖). ℒ𝜉𝑖 , still being a
random variable depending on the realisations of the noise 𝝃𝑖 , has an expected
value ℒ𝜉 which can be obtained using a Monte-Carlo approach.

ℒ𝜉 = E(ℒ𝜉𝑖) ≈
1
𝑁

𝑁−1∑︂
𝑖=0

ℒ(𝑥𝜉𝑖 , u𝜉𝑖)

10

CHAPTER 2. STATE OF THE ART

This is then the value that it is used to represent the robustness of each set of
decision variables proposed by CMA-ES.

Optimization Strategy

Firstly, a population of possible robot hardware configurations is randomly
initialized. Then, for each individual set of parameters, a model of the robot is
generated and the corresponding inner Optimal Control Problem (OCP) solved.
The optimal trajectory and control input performances are then evaluated within
the robust cost computation procedure. Finally, this value is used for the popu-
lation selection of the CMA-ES optimizer.

Results

Two different systems have been tested: a serial manipulator and a monoped.
Both results in an improvement of the robustness in the stabilization of the re-
quired task. In the first case, a common pick-and-place task has been analyzed.
Whereas the standard scenario was hardly applicable to the real system due to
bandwidth limitations, the robust cost’s improvement resulted in more stabiliz-
able state trajectories. Hence, with better performances under real disturbances.
The monoped faced instead a jumping task. The reference trajectories of the
standard case were minimizing the cost, but such optimality did not translate
to the real system, as these trajectories were not easy to follow in perturbed
scenarios. After the optimization, a trajectory more near to the desired ones was
obtained.
Overall, it has been noticed that the robustness increase coincide with a choice
of a more transparent hardware. Transparent actuators can be obtained by
minimizing friction and reflected inertias at the joint level, so with quasi-direct-
drive actuation and low rotor inertia. This way the actuator bandwidth and
back-drivability are both increased. These properties are necessary for proprio-
ception and rapid control corrections.

2.3.1 Discussion and Inspiration

The obtained results show the effectiveness of the given structure and the
possibility of the CMA-ES strategy to have good convergence properties and to
avoid local minima in a gradient free optimization problem. Taking this work as

11

2.4. CO-OPTIMIZATION OF ACROBOT DESIGN AND CONTROLLER

an inspiration, our outer design optimization loop will have a similar structure
and we will exploit the same genetic optimizer. Since better robustness results
were obtained by this paper by adding parameter in the controller policy, a dif-
ferent way of dealing with the inner optimization loop has been implemented
in our work. We have choosen to optimize directly the controller parameters
in order to better decouple the processes of trajectory optimization and stabi-
lization with respect to the FDDP approach. This choice will then enhance the
modularity of the final algorithm. Also, this allows the introduction of explicit
constraints on the motion variables, which is not possible in FDDP. Here, the
constraints are introduced as weighted costs in the optimization, which ends-up
not ensuring the constraint compliance. Finally, different kind of representation
has been selected in order to represent the robustness feature. Lyapunov-based
ROA analysis has been used in our cost computation. In particular, the volume
of this region as been used as a metric for the optimization.

2.4 Co-optimization of Acrobot Design and Controller

The work of Lasse Maywald and Felix Wiebe [10] proposes an approach
to combine the optimization of design parameters and the stabilization via a
Linear Quadratic Regulator (LQR) controller. They argue that this interplay has
not been extensively studied in the literature. Furthermore, they approach this
co-design process by introducing time invariant ROA estimation as an objective
function. They also provide a meaningfull overview of the interplay between
trajectory optimization/stabilization and design optimization (Figure 1.1).

Methodology

The test bench used to prove the effectiveness of the proposed method is
an acrobot. This is an highly unstable underactuated system composed by an
actuated joint and two rigid links connected by a passive joint. The considered
task is the stabilization of the up-right position via LQR control.
The co-optimization goal is to find a physical design and controller parameters,
such that the volume 𝑉𝑅𝑂𝐴 of the ROA around the desired final state is maxi-
mized. For design optimization, the decision variables are 𝑚2, the point mass at
the tip of the second link, and the link lengths 𝑙1 and 𝑙2:

12

CHAPTER 2. STATE OF THE ART

max
𝑚2 ,𝑙1 ,𝑙2

𝑉𝑅𝑂𝐴

subject to 𝑚2,𝑚𝑖𝑛 ≤ 𝑚2 ≤ 𝑚2,𝑚𝑎𝑥

𝑙1,𝑚𝑖𝑛 ≤ 𝑙1 ≤ 𝑙1,𝑚𝑎𝑥

𝑙2,𝑚𝑖𝑛 ≤ 𝑙2 ≤ 𝑙2,𝑚𝑎𝑥

Similarly, the optimization problem for finding the optimal control parameters
is:

max
𝑞𝑖𝑖 ,𝑟

𝑉𝑅𝑂𝐴

subject to 𝑞𝑖𝑖 ,𝑚𝑖𝑛 ≤ 𝑞𝑖𝑖 ≤ 𝑞𝑖𝑖 ,𝑚𝑎𝑥 ∀𝑖
𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥

where 𝑞𝑖𝑖 and 𝑟 are the (diagonal) elements of the cost matrices Q and R of the
LQR controller, respectively.

Robust cost

Robustness has been quantified by the volume of the state-space region𝑉𝑅𝑂𝐴
resulted from a sample-based time-invariant ROA estimation. This estimate
has been performed by reasoning about the Lyapunov function properties in a
similar manner of the one proposed by E. Najafi [31]. The algorithm formulation
has been discussed in the background chapter, Section 3.4.2.
This estimation is possible thanks to a useful method for directly sampling from
a sublevel set of the Lyapunov function 𝑉 . This is a function of the state x that
has to be zero if calculated in the desired state x∗ and positive otherwise. The
valid and simple solution that they are considering is the optimal cost-to-go
coming from the LQR synthesis 𝐽∗(x).

𝑉(x) = 𝐽∗(x) = x̄𝑇Sx̄

where S is the solution of the so-called Algebraic Riccati Equations (ARE) [3.9]
and the resulting quadratic form depends on the state in error coordinates
x̄ = x∗ − x. Limiting the 𝑉 magnitude with a scalar value 𝜌 will then define an
hyper-ellipsoidal sublevel set. In practice, sampling from

𝑉(x) < 𝜌

13

2.4. CO-OPTIMIZATION OF ACROBOT DESIGN AND CONTROLLER

can be implemented thanks to

x̄ = (
√
𝚲W)−1y

where 𝚲 is a diagonal matrix containing the the eigenvalues of 𝜌−1S, W is a
matrix of eigenvectors, and y is the state sampled directly from the unit ball.

Optimization strategy

Two different optimization strategies have been emploied in order to solve
this problem either in an alternating or a combined fashion. For the alternating
approach, they try to find the optimal design first (design first) and then seek
for the optimal control parameters, or vice versa (controller first). In the com-
bined approach, the entire optimization problem is solved at once. Two differ-
ent gradient-free numerical optimization methods, Nelder-Mead and CMA-ES,
have been compared in the alternating approach.

Results

The best result in terms of ROA improvement has been obtained with the
"design first" approach that exploit the genetic optimization algorithm CMA-ES.
The corresponding increase of the ROA volume can be noticed in Figure 2.2.

Figure 2.2: Acrobot ROA improvement.

14

CHAPTER 2. STATE OF THE ART

The final ROA estimates have been verified by performing extensive simulations
of the forward dynamics for initial conditions sampled randomly from the esti-
mated ROA. No initial conditions were found, for which the top position could
not be stabilized, which probabilistically verifies the ROA estimate.

2.4.1 Discussion and Inspiration

The results suggest an interesting possible approach to use optimization for
improving the robustness provided by a stabilizing controller. In particular, it
shows that the ROA volume can be used as a cost in an optimization problem
for this purpose. As an extension, the time-varying version of the ROA analysis
has been implemented in this thesis. We have considered a quadratic Lyapunov
function coming from a linear quadratic regulator as well. Our approach is
computationally heavier but it should be more powerful in terms of the final
robustness. It makes also possible to deal with the whole swing-up control
problem and not just the final stabilization. A ROA estimation method pro-
posed in our work is the one based on Sums of Squares (SOS), which was not
implemented in this paper. The obtained region will then come with a formal
guarantee of stabilization. Furthermore, this paper shows again the power of
the CMA-ES strategy in handling this kind of gradient-free optimization. As
a further improvement, our verification step has also been integrated with real
experiments, which provides a better intuition on the improved performances.
Noticeably, the sampling method introduced in 2.4 has been fundamental for
our implementation.

15

3
Mathematical Background

In this chapter a set of basic concepts for the overall thesis understanding
is briefly presented. An overview of the modeling equations for mechanical
systems is described in Section 3.1. The well-known methods that we have used
to generate a trajectory and stabilize it are recalled in Sections 3.2.1 and 3.3.2.
Finally, the ROA analysis has been adressed in more detail in Section 3.4.

3.1 Multibody Dynamics

The Equations Of Motion (EOM) are a set of equations that describes the
time evolution of the behavior of a physical system in terms of its motion. A
well known and wide spread procedure to obtain this mathematical viewpoint
is the so-called Euler-Lagrange method [32]. This energy-based approach is
particularly useful to understand the robot’s dynamic properties and to analyze
the control schemes. Using 𝑇 as the total kinetic energy of the system, and𝑈 as
the total potential energy of the system, 𝐿 = 𝑇 −𝑈 , and 𝑄𝑖 as the element of the
generalized force vector corresponding to 𝑞𝑖 , the Lagrangian dynamic equations
are:

𝑑

𝑑𝑡

𝛿𝐿
𝛿 �̇� 𝑖

− 𝛿𝐿
𝛿𝑞𝑖

= 𝑄𝑖 (3.1)

In the case of rigid robotic manipulators two particular conditions hold [33]:

1. The kinetic energy is a quadratic function of the vector �̇� of the form

𝑇 =
1
2 q̇𝑇M(q)q̇

17

3.2. TRAJECTORY OPTIMIZATION

where q is the n-dimensional joint position vector and the inertia matrix
M(q) is a n × n positive definite matrix for each q ∈ R𝑛 .

2. The potential energy𝑈 = 𝑈(q) is independent of q̇.

Thanks to these properties we can write a general matrix form of Euler-
Lagrange equations for robotic manipulators as:

M(q)q̈ + C(q, q̇)q̇ = 𝜏𝑔(q) + Bu (3.2)

where C captures Coriolis forces, 𝜏𝑔 is the gravity vector and the matrix B maps
control inputs into generalized forces. Note that Mq̈+Cq̇ are paired together on
the left side because these terms represents the force of inertia. Both Equations
3.1 and 3.2 can be applied for each specific robot configuration in order to obtain
the related EOM.

3.2 Trajectory Optimization

The trajectory optimization problem deals with finding the optimal open-
loop state and input trajectory for the accomplishment of a specific motion
task, constrained by the system dynamics 𝑓 (x, u). The obtained trajectory is
also called nominal trajectory and it is often denoted by (x0(𝑡), u0(𝑡)). Given an
initial condition, x𝑖 , and an input trajectory u(𝑡) defined over a finite interval,
𝑡 ∈

[︁
𝑡𝑖 , 𝑡 𝑓

]︁
, we can compute the long-term (finite-horizon) cost of executing that

trajectory using the standard additive-cost optimal control objective and write
the optimization problem [32] as:

min
u(·)

ℓ 𝑓 (x(𝑡 𝑓)) +
∫ 𝑡 𝑓

𝑡𝑖

ℓ (x(𝑡), u(𝑡))𝑑𝑡

subject to ẋ(𝑡) = 𝑓 (x(𝑡), u(𝑡)), ∀𝑡 ∈
[︁
𝑡𝑖 , 𝑡 𝑓

]︁
x(𝑡𝑖) = x𝑖

(3.3)

This general formulation represents the dynamics integration by means of a
generic integrator. Usually, additional constraints, such as collision avoidance
or input limits, are also included. Constraints can be defined for specific time
instants or for some subset of the trajectory. In order to formulate this as a numer-
ical optimization, we must parameterize it with a finite set of decision variables.
This parametrization can be obtained throught various methods which result in

18

CHAPTER 3. MATHEMATICAL BACKGROUND

different performances and characteristics. Direct methods discretize the prob-
lem directly, converting it into a constrained parameter optimization problem.
This discretization is also referred as transcription. Building analitically nec-
essary and sufficient conditions for optimality is needed for indirect methods
before the discretization. This is often difficult but this methods still can be used
in specialized applications where accuracy is critical.
Shooting methods reasons about forward simulation, avoiding to add x[·] as
a decision variable. Each state x[𝑘] is defined by the dynamic evolution from
the initial state x[0] with the input u[·]. For instance, for a discrete-time linear
system it holds that

x[𝑘 + 1] = Ax[𝑘] + Bu[𝑘]

and hence

x[𝑘] = A𝑘x[0] +
𝑘−1∑︂
𝑗=0

A𝑘−1−𝑗Bu[𝑘]

However, this method presents few potential disadvantages with respect to
transcription:

• Numerical conditioning. Shooting involves calculating A𝑘 for potentially
large k, which can lead to a large range of coefficient values in the con-
straints. This problem, also refferred as tail wagging the dog, is less important
in the transcription approach.

• Adding state constraints. Having x[𝑘] as explicit decision variable makes
it easier.

• Parallelization. Whereas transcription permitts the evaluation of dynam-
ic/constraints in parallel, shooting is more fundamentally a serial operator.

These differences becomes substantial for non-linear optimization problems.

3.2.1 Direct Transcription

Transcription of problem 3.3 and considering x[·], u[·] as decision variables
leads to the so-called direct transcription. The time discretization is done for 𝑁
points, the so-called knot-points.

19

3.2. TRAJECTORY OPTIMIZATION

min
x[·],u[·]

ℓ 𝑓 (x [𝑁]) +
𝑁−1∑︂
𝑘=0

ℓ (x [𝑘] , u [𝑘])

subject to x [𝑘 + 1] = 𝑔𝑑(x [𝑘] , u [𝑘]), ∀𝑘 ∈ [0, 𝑁 − 1]
x [0] = x𝑖
+ 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

(3.4)

It can be noticed the use of a general function 𝑔𝑑 for describing the discrete time
evolution of the system’s discrete dynamics 𝑓𝑑. The obtained sparse nonlinear
problem permits to easily include state constraints and avoid numerical pitfalls
such as the previously described tail wagging the dog effect, at the expense of
a larger problem size [11]. This optimization problem can be solved using
commercial sequential-quadratic programming (SQP) packages, such as SNOPT
[34], that exploit the sparsity patterns in the linearized constraint matrix.
In practice, it is common to use a simple forward Euler integration scheme in
𝑔𝑑 and to include the timestep as a decision variable. This last characteristic
improves the integration performances and gives to the solver the freedom to
choose the time length of the resulting trajectory. The new optimization problem
can then be written as:

min
x[·],u[·],ℎ

ℓ 𝑓 (x [𝑁]) +
𝑁−1∑︂
𝑘=0

ℓ (x [𝑘] , u [𝑘])

subject to x [𝑘 + 1] = x [𝑘] + 𝑓𝑑(x [𝑘] , u [𝑘]) · ℎ, ∀𝑘 ∈ [0, 𝑁 − 1]
x [0] = x𝑖
ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥

+ 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

(3.5)

It is worth pointing out that other integration schemes exist and can lead to
a better result, e.g. midpoint integration. In fact, forwad Euler integration
suffers of a, theoretically impossible, energy increasing if the chosen timestep
is not small enough. This is because this integration scheme comes from the
approximation of the derivative with the forward finite difference:

𝑓𝑑(x [𝑘] , u [𝑘]) ≈ x [𝑘 + 1] − x [𝑘]
ℎ

20

CHAPTER 3. MATHEMATICAL BACKGROUND

The approximation is valid as soon as ℎ → 0. A similar computation leads to
backward Euler and midpoint methods.

3.3 Linear Quadratic Regulators

One of the most important and influential results in optimal control theory
is the Linear Quadratic Regulator [32]. While solving a dynamic programming
problem for continuous systems can be hard in general, there are few special
cases where the solutions are very accessible. Most of these involve variants
on the case of linear dynamics and quadratic cost. These are, in fact, suitable
features for this kind of control policy.
Often the considered system won’t be linear, a linearization near the state space
region of interest will then be necessary. This procedure is usually done by con-
sidering the Taylor expansion of the nonlinear dynamics. For instance, the Taylor
series of a real or complex-valued function 𝑓 (𝑥) that is infinitely differentiable
at a real or complex number 𝑎 is the power series:

𝑓 (𝑥) ≈
𝑜∑︂
𝑛=0

𝑓 (𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛

where 𝑜 is the order of the approximation. The increase of 𝑜 lead to a better
approximation at the price of a slower computation.

3.3.1 Infinite Horizon Formulation

The local version of this regulator deals with the stabilization as 𝑡 → ∞
of a fixed-point, a desired final state and input. Firstly, a linearization of the
dynamics around this point is performed, if necessary. The Taylor expansion of
a generic nonlinear function 𝑓 of two variables around a fixed point (x∗, u∗) can
be written as:

𝑓 (x, u) ≈ 𝑓 (x∗, u∗)⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
:= 0

+
𝑜∑︂
𝑛=1

(︂ 𝑓 (𝑛)𝑥 (x∗, u∗)
𝑛! (x − x∗)𝑛 +

𝑓
(𝑛)
𝑢 (x∗, u∗)

𝑛! (u − u∗)𝑛
)︂

(3.6)

21

3.3. LINEAR QUADRATIC REGULATORS

Choosing a first order Taylor expansion, i.e. 𝑜 = 1, and shifting the equations
in error coordinates, (x̄, ū) = (x − x∗, u − u∗), we can write:

ẋ = 𝑓 (x, u) − 𝑓 (x∗, u∗) ≈ Ax̄ + Bū

It can be noticed that, (x∗, u∗) is a fixed point of the dynamics 𝑓 , hence

ẋ = 𝑓 (x, u) ≈ Ax̄ + Bū (3.7)

Now, the shifted dynamics has a linear state-space form and it has a fixed point
in the origin. Considering the infinite horizon cost function as

𝐽 =

∫ ∞

0

[︁
x̄𝑇Qx̄ + ū𝑇Rū

]︁
𝑑𝑡, Q = Q𝑇 ⪰ 0,R = R𝑇 ≻ 0

The goal is to find the optimal cost-to-go function which satisfies the Hamilton-
Jacobi-Bellman (HJB) equation:

∀x̄, 0 = min
ū

[︃
x̄𝑇Qx̄ + ū𝑇Rū + 𝛿𝐽∗

𝛿x̄
(Ax̄ + Bū)

]︃
In optimal control theory, it gives a necessary and sufficient condition for opti-
mality of a control with respect to a loss function. It is well known that for this
problem the optimal cost-to-go function is quadratic [32]. So, choosing the form

𝐽∗ = x̄𝑇Sx̄, S = S𝑇 ≻ 0 (3.8)

lead to obtain an optimal control policy of the type ū = −R−1B𝑇Sx̄ = −Kx̄, where
S is the solution of the so-called Algebraic Riccati Equations (ARE):

0 = SA + A𝑇S − SBR−1B𝑇S + Q (3.9)

Shifting back to the initial reference frame, the dynamics control input has been
determined as: u = ū + u∗ = −Kx̄ + u∗.

3.3.2 Finite Horizon Formulation

Similar reasoning can also be applied to the stabilization of a trajectory
leading to a fixed point in a finite time span 𝑡 ∈

[︁
𝑡𝑖 , 𝑡 𝑓

]︁
. The resulting optimal

22

CHAPTER 3. MATHEMATICAL BACKGROUND

control policy is now ū = −R−1B𝑇S(𝑡)x̄ = −K(𝑡)x̄, where S(𝑡) can be obtained by
backward integration of the so-called Differential Riccati Equations (DRE):

−Ṡ(𝑡) = S(𝑡)A + A𝑇S(𝑡) − S(𝑡)BR−1B𝑇S(𝑡) + Q

where
S(𝑡) ≻ 0, ∀𝑡 𝑎𝑛𝑑 S(𝑡 𝑓) = Q 𝑓

This formulation holds even if the dynamics is time-varying, i.e. of the form:

ẋ = A(𝑡)x + B(𝑡)u

This is true also if we have time dependent cost matrices Q and R. A powerful
application of the above result regards the stabilization of a nominal trajectory
(x0, u0)defined in a finite time interval 𝑡 ∈

[︁
𝑡𝑖 , 𝑡 𝑓

]︁
via Time-Varying LQR (TVLQR)

[32]. Similarly as done in (3.6), a linearization could be necessary in the case of
nonlinear dynamics. The procedure is very similar but now the linearization
point (x∗, u∗) can be a non-fixed point of the dynamics. Hence, the relationship
described in (3.7) is not always true. In fact, now the linearization is time
dependent and the coordinate system moves along the trajectory:

ẋ = 𝑓 (x, u) − 𝑓 (x0, u0) ≈ A(𝑡)x̄ + B(𝑡)ū

where (x̄, ū) = (x − x0, u − u0) represents the shift to error coordinates.
The previous derivation of the optimal control policy still holds. Hence, the
stabilizing control input will take the following form:

u = u0(𝑡) − K(𝑡)(x − x0(𝑡))

In order to stabilize the trajectory we have to consider that stability is an infinite
horizon concept, i.e. it has to consider the dynamics behaviour as 𝑡 → ∞.
This detail can be adressed if (x(𝑡 𝑓), u(𝑡 𝑓)) is a fixed point of the dynamics by
imposing S(𝑡 𝑓) = S∞, where S∞ is the solution of (3.9). In practice, this mean to
set the cost matrices in 𝑡 𝑓 as the ones of a stabilizing infinite-horizon LQR, i.e.
Q(𝑡 𝑓) = Q 𝑓 = Q and R(𝑡 𝑓) = R.

23

3.4. REGION OF ATTRACTION ESTIMATION

3.4 Region of Attraction Estimation

The ROA estimation is an analysis that can be applied to the closed-loop
dynamics of a system in order to analyze the control behaviour. In particular,
it gives information about the robustness of the controller to off-nominal states.
These anomalities are usually due to the so-called sim-to-real gap. In other words,
this analysis defines a set of states that are guaranteed to be stabilized by the an-
alyzed controller. Under certain conditions and for simple systems, it is possible
to determine this region analytically through the solution of Ordinary Differ-
ential Equations (ODEs). A study conducted by [35] illustrates the application
of this derivation method to the torque-limited simple pendulum. Most often,
this region is impossible to determine analytically hence an estimation has to be
considered.
For a locally attractive fixed point, x∗, the region of attraction to x∗ is the largest
set 𝒟 ⊆ 𝒳 for which:

x(0) ∈ 𝒟 ⇛ 𝑙𝑖𝑚𝑡→∞x(𝑡) = x∗

Meaning that the dynamic evolution has to end-up, or stabilize, at x∗, which is
inside the region [32]. Lyapunov analysis can be used to estimate the ROA within
the framework of the so-called Lyapunov-based methods. Here, a particular
function 𝑉 , called Lyapunov function, can give information about the closed-
loop behaviour as 𝑡 → ∞, e.g. local and global asymptotical stability [32]:

𝑉(𝑂) = 0 𝑎𝑛𝑑 𝑉(x) > 0, �̇�(x) < 0 ∀x ∈ 𝒟\{𝑂}

If the above conditions hold for the fixed point in the origin 𝑂, then it is asymp-
totically stable. Without loss of generality this condition can be applied to
other fixed points by mean of a translation in the state-space. Sublevel sets
{x|𝑉(x) < 𝜌}, 𝜌 > 0, of a Lyapunov function are then used as approximations of
the region of attraction [32].
As an initial guess for the Lyapunov function the optimal cost-to-go introduced
in 3.8 is often considered. It is a quadratic polynomial that has a zero in the con-
sidered fixed point, hence it is a valid choice by construction. As a consequence
of this choice, the obtained ROA estimation will have an hyper-ellipsoidal shape.
It is worth mentioning that more complex or more dynamics-related choices of

24

CHAPTER 3. MATHEMATICAL BACKGROUND

𝑉(x) lead to a better estimation of the real state-space set.
Setting the Lyapunov function as mentioned makes the estimation to be just a
matter of finding a suitable 𝜌. Two meaningful cases can be distinguished:

• Time-invariant case, deals with the task of stabilizing a fixed point. A
single ROA around the desired state has to be found, i.e. one 𝜌 value.

• Time-varying case, cope with the stabilization of a nominal trajectory. A
vector 𝝆 ∈ ℛ𝑁

+ has to be estimated, the resulting ROA is also called funnel
[26].

Two methods to implement each of this cases will be presented. The first
formulate the estimation problem via SOS optimization while the second evalu-
ate the region around the nominal trajectory through sampling and simulations.
Both are based on the results coming from Lyapunov theory.

3.4.1 Sums of Squares Optimization

For the class of systems with polynomial dynamics the estimation problem
can be formulated as an optimization problem using sums-of-sqares (SOS) op-
timization [36]. This method has advantages in terms of scalability and does
not require numerical simulations, that can be computationally expensive. On
the other hand, it requires to express the closed-loop dynamics in a polynomial
form. This might need the use of Taylor approximation, hence introducing dif-
ferences with the real state evolution. Noticeably, the resulting invariant set is
characterized by a mathematical certificate of stability, an inner approximation
of the real ROA.
Sums-of-squares optimization effectively gives informations about the positivity
of a polynomial ∀x ∈ 𝒳. If we just need to impose this condition on a limited
region of the state-space 𝒳, as in the Lyapunov condition, we can exploit the
so-called S-procedure [37]. Given a polynomial 𝑝(x) and a semi-algebraic set
𝑔(x), where 𝑔 is a vector of polynomials. If a polynomial "multiplier", 𝜆, can be
found such that

𝑝(x) + 𝜆(x)𝑇 𝑔(x) 𝑖𝑠 𝑆𝑂𝑆 𝑎𝑛𝑑 𝜆(x) 𝑖𝑠 𝑆𝑂𝑆

then this is sufficient to demonstrate that

𝑝(x) > 0 ∀x ∈ {x|𝑔(x) ≤ 0}

25

3.4. REGION OF ATTRACTION ESTIMATION

In this formulation 𝜆 has similar meaning as the well-known Lagrangian multi-
plier.

Time invariant estimation process

For the time-invariant case, with ẋ = 𝑓 (x) , we can verify stability by finding
a sub-level set 𝒟 limited by 𝜌 of the Lyapunov function𝑉(x̄), where x̄ = (x− x∗),
such that the Lyapunov condition holds. 𝒟 is then a verified region of attraction
for the system, and any state within the region will converge asymptotically to
x∗ as 𝑡 → ∞. The optimization problem [32] can be formulated as:

max
𝜌,𝜆

𝜌

subject to − �̇� + 𝜆(𝑉 − 𝜌) 𝑖𝑠 𝑆𝑂𝑆

𝜆 𝑖𝑠 𝑆𝑂𝑆

𝜌 > 0

(3.10)

where, thanks to the S-procedure, we are finding the maximum𝜌while imposing
that

∀x ∈ {x|𝑉(x) < 𝜌}, 𝜌 > 0 ⇛ �̇�(x) ≺ 0

which means that we are searching for the biggest sublevel set of the Lyapunov
function 𝑉 such that the Lyapunov condition for stability holds.
This formulation is not convex in 𝜌, so that it has to be solved with a bilinear
alternation by fixing at each step the Lagrangian multiplier or 𝜌. However, since
the problem is convex with 𝜌 fixed and 𝜌 is just a scalar, a simple line search can
be performed in order to find the largest value for which the convex optimization
returns a feasible solution. Another possible formulation is the so-called equality
constrained formulation [38] which results in an optimization problem jointly
convex in 𝜆 and in 𝜌, so that it can be solved in a single optimization step.

Time varying estimation process

Estimating the funnel around a nominal trajectory requires to solve a more
involved optimization problem. Each knot point will have an associated esti-
mated region, so 𝝆 ∈ ℛ𝑁+ is no more scalar. While the definition of the goal
ROA is the one above, the others have a slightly different meaning. Every state
sampled from the knot point 𝑘 must end up, following the system’s dynamics,

26

CHAPTER 3. MATHEMATICAL BACKGROUND

inside the ellipse 𝑘 + 1. Hence, an estimation procedure for each couple of
knot points is necessary. Each estimation process is now a bilinear alternation
between two optimization problems:

1. Multiplier Step, searching for a feasible mutiplier by fixing 𝝆.

2. Rho Step, searching for the maximum 𝝆 by fixing the multiplier.

Given a meaningful initial guess of 𝝆, this two steps has to be alternatively
solved until a convergence condition. This condition can be, for instance, related
to the overall magnitude of the 𝝆 vector. After a time-invariant 𝝆𝑁 have been
determined, a bilinear alternation for each couple of knot points has to be solved
going backwords for 𝑘 ∈ [0, 𝑁 − 1]. The methodology can be summarized with
the two following optimization problems:

1. Multiplier Step:

max
𝛾𝑖 ,𝜆𝑖

𝛾𝑖

subject to − (�̇� − �̇�𝑖) + 𝜆𝑖(𝑉 − 𝝆𝑖) − 𝛾𝑖 𝑖𝑠 𝑆𝑂𝑆

𝜆𝑖 𝑖𝑠 𝑆𝑂𝑆

𝛾𝑖 > 0

2. Rho Step:

max
𝝆𝑖

𝝆𝑖

subject to − (�̇� − �̇�𝑖) + 𝜆𝑖(𝑉 − 𝝆𝑖) 𝑖𝑠 𝑆𝑂𝑆

𝜆𝑖 𝑖𝑠 𝑆𝑂𝑆

𝝆𝑖 > 0

(3.11)

As the definition is now different also the Lyapunov condition has been imposed
differently. By means of the S-procedure, we are now constraining the Lyapunov
function to change slower than the 𝝆 value for all the states at the boundary of
the ROA. This is sufficient for the dynamics to stay inside the funnel for the
whole of its evolution.
Some interesting applications of the funnel estimation via SOS can be found in
the literature. For instance, [27] uses funnels computation via SOS optimization

27

3.4. REGION OF ATTRACTION ESTIMATION

along with LQR-Trees, a “space-filling” algorithm. The state space is filled with
regions in which the dynamics is guaranteed to be stabilized to some trajectory
which will lead to the goal region. This approach has been applied to a post-
stall perching problem and it has resulted, in real system experiments with a 95
percent perching success rate over 147 flights for a wide range of initial speeds.

Dealing with input saturation

An important implementation detail regards the input saturation effect that
has often to be considered in a control task. The inclusion of this property
in the SOS problem formulation requires the use of additional multipliers. A
time invariant one-input example is presented in [28]. By formalizing the input
saturation and introducing a set of multiplier as

u− ≤ u ≤ u+ 𝑎𝑛𝑑 𝜆𝑖 𝑓 𝑜𝑟 𝑖 ∈ [1, 7]

The following modification of the Lyapunov condition is obtained:

− �̇�− + 𝜆1(𝑉 − 𝜌) + 𝜆2(u− − u)
−�̇� + 𝜆(𝑉 − 𝜌) 𝑖𝑠 𝑆𝑂𝑆 ⇛ − �̇� + 𝜆3(𝑉 − 𝜌) + 𝜆4(u − u−) + 𝜆5(u+ − u) 𝑖𝑠 𝑆𝑂𝑆

𝜆 𝑖𝑠 𝑆𝑂𝑆 − �̇�+ + 𝜆6(𝑉 − 𝜌) + 𝜆7(u − u+)
𝜆𝑖 , 𝑖 ∈ [1, 7] 𝑖𝑠 𝑆𝑂𝑆

where �̇�− = �̇� |u=u− and �̇�+ = �̇� |u=u− . The new Lagrange multipliers serve to
restrict the verification to the regions of interest. While the middle constraint is
always evaluated, the other two are considered just in case of input saturation.
As a consequence of this approach, the needed number of SOS conditions grows
exponentially with the number of inputs. This has to be considered in systems
where there is a big number of saturated inputs. The same solution and con-
siderations still holds and can be easily extended for the Lyapunov constraint in
the time-varying case.

3.4.2 Simulation-based Approach

Another method to estimate the ROA is based on repeated sampling and
simulations. Hence, it can be computationally expensive and less scalable with
respect to the previous approach. On the other hand, no approximation of

28

CHAPTER 3. MATHEMATICAL BACKGROUND

the dynamics is needed for the simulations and the overall implementation has
turned out to be simpler.
As the number of simulations grows, the estimation becomes more fine. Even-
tually, an outer approximation of the real ROA is obtained. No formal guarantee
of stabilization is provided by this procedure.

Time invariant estimation process

The estimation procedure also reasons about the Lyapunov stability theory.
The time-invariant version estimates the ROA with an ellipse around the goal.
Here, random states are sampled inside an initially guessed region and the
Lyapunov condition is checked. If the condition holds the sampled state is inside
the ROA and hence the proposed region remains valid. If not, the estimated
region is shrunk by using the value of the Lyapunov function computed in that
sampled state. A concise and meaningful representation of this algorithm is
given in [31].

Algorithm 1 Memoryless sampling method for estimating the DoA

Require: 𝑉(𝑥), �̇�(𝑥), 𝑛𝑠
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝜌 = ∞
for 𝑖 = 1 : 𝑛𝑠 do
𝑃𝑖𝑐𝑘 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑥𝑖 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒

if �̇�(𝑥𝑖) ≥ 0 and 𝑉(𝑥𝑖) < 𝜌 then
𝜌 = 𝑉(𝑥𝑖)

end if
end for
return 𝜌

If the number of simulations 𝑛𝑠 is big enough, this algorithm leads to find a set
of initial states that is probabilistically guaranteed to succeed the stabilization
task. Also, a version with memory of this algorithm exists. It considers both a
lower and an upper bound for rho that updates after each simulation depending
on similar conditions used in Algorithm 1.

Time varying estimation process

A time-varying implementation of this estimation method is described in
[29], the reasoning comes from a general extension of the previous one. They
propose this method in the context of an LQR-Trees algorithm with probabilistic

29

3.4. REGION OF ATTRACTION ESTIMATION

coverage of the state-space. The methodology is based on simulations and
falsifications. Initially, a funnel hypothesis is proposed, then each trajectory knot
point is verified through sampling and simulations. Given a desired trajectory
(x∗, u∗) defined for 𝑁 knot points, the initial ROA guess of node 𝑛 is set as an
open ball with radius 𝜖𝑛 > 0, centered at x̄𝑛 :

ℬ(x̄𝑛 , 𝜖𝑛) := {x𝑛 : 𝑑(x̄𝑛) < 𝜖𝑛}

where x̄ = x − x∗ and 𝑑 is some metric on R𝑛 . Assume that a stabilizable region
𝒢 around the goal state is given. For each node a set of samples is obtained and
simulated through the end of the nominal trajectory. A simulation is considered
successful if the sampled initial condition has been stabilized to the goal region,
x𝑁 ∈ 𝒢. If so, the verified ROA remains valid. If the simulation fails the initial
region guess and the following ones are shrunk accordingly to the following
rule:

𝜖𝑘,𝑛𝑒𝑤 = 𝑚𝑖𝑛(𝑑(x̄𝑘), 𝜖𝑘,𝑜𝑙𝑑), ∀𝑘 ∈ [𝑛, 𝑁 − 1]

A natural choice for 𝑑, suggested from the time invariant approach, could be the
Lyapunov function 𝑉 .

x

x

k-ellipse

(k+1)-ellipse

xn[k]

xn[k+1]

Figure 3.1: Simulation-based time-varying ROA estimation.

A variation of this formulation is also possible by considering an estimation
procedure for each couple of knot points. The idea is to take inspiration from
the SOS based approach presented in Section 3.4.1. The initial states for the
simulation are sampled from the proposed ROA in 𝑘 and they are simulated
until the next time discretization 𝑘 + 1. The same shrinking policy is then
applied, a successful simulated trajectory is the one that ends up inside the ROA

30

CHAPTER 3. MATHEMATICAL BACKGROUND

in 𝑘 + 1. In Figure 3.1 an intuitive representation of a successfull and a failing
simulated trajectory has been proposed. It can be noticed how the shrinking
process has been triggered by the failing simulation. The new k-ellipse will be
now updated to become the dashed one.

31

4
Methodology

In this chapter, we will provide a comprehensive overview of the methodolo-
gies used in our co-design framework, building upon the tools and motivation
introduced in Chapter 1 and the related works presented in Chapter 2. By pro-
viding a detailed description of our methodology, we aim to enable readers to
better understand our approach, replicate our methods, and assess the valid-
ity and reliability of our results. The two proposed algorithms that form the
core of our framework are introduced in Section 4.1. After outlining the op-
timization settings in Section 4.2, specific details that characterize our systems
implementation are provided in Section 4.3.

4.1 Algorithms for a Robust Co-design

In this thesis, the analysis of the co-optimization between trajectory opti-
mization, trajectory stabilization and design optimization has been adressed.
Using as a starting point the instruments of the works presented in Chapter 2,
we have tried to study how this different domains can be combined toghether.

Tool Objective Input Output
DIRTRAN Trajectory optimization 𝑀, 𝑄, 𝑅 𝑥0(𝑡), 𝑢0(𝑡)
TVLQR Trajectory stabilization 𝑀, 𝑄, 𝑅, 𝑥0(𝑡), 𝑢0(𝑡) 𝐾, 𝑆

Funnel volume Cost computation 𝑀, 𝐾, 𝑆, 𝑥0(𝑡), 𝑢0(𝑡) 𝑉

Table 4.1: Tools overview.

A functional input-optput description of the selected tools has been presented in

33

4.1. ALGORITHMS FOR A ROBUST CO-DESIGN

Table 4.1. The different processes are strictly related to each other, their require-
ments already define an intuitive structure for combining them. The DIRTRAN
approach has been considered for the trajectory optimization step. In partic-
ular, the formulation presented in Equation 3.5 has been used. The reference
trajectory (x0(𝑡), u0(𝑡)) has then been stabilized via the TVLQR controller that
has been introduced in Section 3.3.2. As an implementation choice, the Q and
R matrices of the stabilization have been also used for computing the quadratic
cost that drives the search for a nominal trajectory:

ℓ (x(𝑡), u(𝑡)) = x(𝑡)𝑇Qx(𝑡) + u(𝑡)𝑇Ru(𝑡)

Intuitively, these two processes are very close to each other and hence it is
meaningful that they are aiming to minimize a similar cost function. On the other
hand, this comes at the cost of computing a new trajectory for each proposed
controller even if the design is fixed. This can result in a computationally
expensive behaviour as the state dimension increases. For every stabilized
trajectory, a funnel can be estimated by using one of the time-varying methods
presented in Section 3.4. Finally, the volume of this ROA can be computed with
the approximation that will be introduced in Chapter 4.2.1.

4.1.1 RTC

The simpler proposed algorithm is concurrently optimizing the nominal
trajectory and the stabilizing controller, while fixing the design parameters M.
This has been implemented by considering Q and R as decision variables for the
optimization process.
At each iteration the optimizer will propose a new set of cost matrices. Firstly,
a new nominal trajectory is computed via DIRTRAN. The trajectory is then
stabilized via TVLQR, which provides the tools to compute the related ROA.
Finally, the volume of the estimated funnel is used by the CMA-ES strategy
to weight each initially proposed set of costs. A detailed definition of this
optimization strategy will be introduced in Section 4.2.2. It can be noticed
that, thanks to the choice of using the same cost matrices for both trajectory
optimization and stabilization, the solver has influence on both processes. A
schematic view of the algorithm workflow is shown is Figure 4.1.

34

CHAPTER 4. METHODOLOGY

Optimization
strategy
CMA-ES

Q, R

Trajectory optimization
DIRTRAN
x(t), u(t)

Trajectory Stabilization
TVLQR

K(t), S(t)

Funnel Estimation
SOS/Sampling

ρ(t)

Cost
Computation
Funnel Volume

V

Figure 4.1: RTC algorithm scheme for a fixed design ℳ.

4.1.2 RTCD

To complete our analysis, a second algorithm with the capacity to vary the
design parameters M has also been implemented. The resulting process is then
more computationally expensive due to the increased number of optimization
layers. As it is changing hardware parameters, it is also more difficult to verify
in the real world. Even though the problem complexity increases, the solver has
now more power to improve the objective function.

Inner Optimal Cost
Funnel Volume

V

Optimization
strategy
CMA-ES
M

RTC

Figure 4.2: RTCD algorithm scheme.

An outer CMA-ES optimization layer has been added to the previous algorithm.
The optimization strategy is now proposing a new set of model parameters
for each iteration. The RTC optimization is then started by fixing M. The
inner-optimization will then come up with an optimal stabilized trajectory and

35

4.2. OPTIMIZATION SETTINGS

it’s related funnel volume. Eventually, designs that minimize the optimal cost
computed in the inner layer will be preferred by the solver.

4.2 Optimization Settings

In this section, we will outline the optimization settings used in our opti-
mization algorithms. Specifically, we will present three key components of our
optimization approach: cost function, strategy, and decision variables. The cost
is a critical component of an optimization process as it defines the objective
function that has to be optimized. It is designed to evaluate the performance
of the proposed solution at each iteration. The optimization strategy is another
fundamental component of an optimization approach. It defines the algorithmic
techniques that are used to search for optimal solutions. A well-chosen opti-
mization strategy can enable the optimization process to converge to optimal
solutions quickly and efficiently. Finally, the decision variables represent the set
of parameters that have to be optimized. These variables are typically selected
based on their potential impact on the system’s performance and the constraints
that must be satisfied. It is essential to carefully define the optimization vari-
ables to ensure that they accurately capture the system’s behavior and that they
can be realistically optimized within the given constraints.

4.2.1 Cost function: The Funnel Volume

For evaluating the performance of our optimization algorithms, we have
selected the volume of the funnel derived from time-varying ROA estimation
as our metric. This region characterizes the off-nominal states that can still
be stabilized by the computed control policy, and maximizing its dimension is
our objective. As the funnel is a region in the state space, its volume depends
on the state dimensionality. Our approach consists of a composition of 𝑁
hyperellipsoids, where 𝑁 is the number of knot points of the nominal trajectory.
The volume of each hyperellipsoid 𝑉𝑘 is estimated and then summed to obtain
the total volume 𝑉 of the funnel.

𝑉 =

𝑁∑︂
𝑘=1

𝑉𝑘

36

CHAPTER 4. METHODOLOGY

It is well known, that a linear transform T ∈ ℛ𝑚×𝑛 maps the unit ball in ℛ𝑛

to an ellipsoid in ℛ𝑚 [10]. Consider the n-ball 𝒮𝑛 = {y|y𝑇y ≤ 1} and a transform
T such that y = Tx. Expressing 𝒮𝑛 in terms of x yields:

𝒮𝑛 = {x|x𝑇T𝑇Tx ≤ 1}

This describes an ellipse in x, since T𝑇T is symmetric and by definition positive
definite. A diagonalization of T𝑇T yields:

T𝑇T = W𝑇𝚲W

where W and 𝚲 are matrices of eigenvectors and eigenvalues, respectively.
Therefore, the transform T can be written as:

T =
√
𝚲W

Thanks to this formulation we can write the mathematical formula for the vol-
ume of each hyperellipsoid 𝑘 as:

𝑉𝑘 = |𝑑𝑒𝑡(
√
𝚲W)|−1 𝜋

𝑛
2

Γ(𝑛2 + 1)

where Γ is the Euler’s Gamma function.
It is worth noticing that the exactness of this measure is not critical, its primary
purpose is to provide intuition to the optimization strategy regarding robustness.
To estimate the volume at each knot point, we propose a sample-based method
that leverages the concept of convex hull. Using T𝑇T = 𝜌−1S, the following
transform allows us to sample randomly from a sublevel set of a quadratic
Lyapunov function such as 𝑉(x) = x𝑇Sx ≤ 𝜌:

x̄ = (
√
𝚲W)−1y

where 𝚲 is a diagonal matrix containing the the eigenvalues of 𝜌−1S, W is a
matrix of eigenvectors, and y is the state sampled directly from the unit ball.
Specifically, we have tuned this sampling method to obtain states lying on the
boundary of each hyperellipsoid. We then consider the convex hull defined by
these samples to approximate the desired quantity.

37

4.2. OPTIMIZATION SETTINGS

V ~ V

Figure 4.3: Estimating a state-space area via a convex hull approximation.

In Figure 4.3, we illustrate the concept of convex hull and how it can be used
to estimate the area of a region in the state-space. The convex hull represents
the smallest convex shape that encloses all the samples. This approach can
be extended to higher dimensions, where the convex hull can represent the
boundary of a complex region in the state-space. However, it is important to
note that the sampling process becomes more challenging as the dimensionality
of the state-space increases, due to the exponential increase in the number of
samples required to achieve a certain level of accuracy. This problem is usually
referred as curse of dimensionality

4.2.2 Optimization Strategy: CMA-ES

CMA-ES is a powerful stochastic optimization algorithm that is specifically
designed to tackle non-convex and ill-conditioned objective functions. It is a
gradient-free method that operates by maintaining a population of candidate
solutions, also known as individuals. In each iteration of the optimization pro-
cess, new candidate solutions are generated by varying the current population,
with a preference for better-performing individuals. Inspired by principles from
biological evolution, the CMA-ES algorithm adapts the covariance matrix of the
search distribution to better match the landscape of the objective function. This
approach allows it to effectively search complex, multi-modal search spaces with
limited function evaluations.

38

CHAPTER 4. METHODOLOGY

Notably, in a comprehensive survey of black box optimization algorithms [39],
Hansen et al. found that variants of the CMA-ES algorithm outperformed 31
other optimization algorithms in tackling difficult functions.
Overall, the CMA-ES algorithm has proven to be a highly effective tool for op-
timizing complex objective functions and has been successfully applied in a
variety of fields, including machine learning, engineering, and finance.
For our analysis, we have considered the implementation of the CMA-ES algo-
rithm from [22]. The main parameters that has been set for the optimization are
grouped in Table 4.2.

Parameter Meaning
𝑋0 Initial values for the decision variables.
𝜎0 Initial standard deviation, the optimum is expected to lie

within about 𝑥0 ± 3𝜎0.
bounds Boundaries for the decision variables.
maxfevals Max number of evaluations for the cost function per each

iteration.

Table 4.2: Main CMAES parameters.

In order to speed-up the optimization, the multiprocessing module EvalParal-
lel2 has been used. A simple modification in the code permits to evaluate the
objective function in parallel.

4.2.3 Decision Variables: Stabilization and Design

In general, the proposed objective function highly depends on the closed-
loop dynamics of the system. Hence, the costs matrices of the TVLQR sta-
bilization and the design parameters have been considered as decision vari-
ables. Optimization problems with a large number of variables can quickly
become computationally intractable, especially if the problem is non-linear or
non-convex. By reducing the number of decision variables, the computational
burden is reduced, and the optimization process becomes more efficient. Hence,
choosing few but meaningfull optimization variables is fundamental. Some sim-
plifications have then been taken into account. The Q and R matrices have, by
definition, to be symmetric and respectively positive semi-definite and positive
definite. A simple valid structure is then the diagonal one. Given a system
with an 𝑛-dimensional state-space and𝑚 inputs, the Q and R matrix considered

39

4.3. APPLICATION: SWING-UP AND STABILIZATION

parametrization is:

Q =

⎡⎢⎢⎢⎢⎢⎣
𝑞11 0 0

0 . . . 0
0 0 𝑞𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦ R =

⎡⎢⎢⎢⎢⎢⎣
𝑟11 0 0

0 . . . 0
0 0 𝑟𝑚𝑚

⎤⎥⎥⎥⎥⎥⎦
where 𝑞11−𝑛𝑛 ≥ 0 and 𝑟11−𝑚𝑚 > 0.
It can be noticed how the input and state dimensionality increasing causes an
increase of the number of decision variables. However, this parametrization
can be further simplified by fixing some of the diagonal elements thanks to
the knowledge about the specific systems dynamics and control. The same
intuition-based simplification has been considered for the design parameters.
Their contribution can be effective even if few parameters can vary. In general,
hardware modifications can be time and resources expensive, hence minimizing
them could be an implementation advantage.

4.3 Application: Swing-up and Stabilization

The swing-up stabilization problem is a common example problem for bench-
marking and testing new approaches in the field of underactuated systems. It
is a challenging task because it involves overcoming significant energy barriers
to bring the system from a low-energy state to a high-energy one. This requires
careful planning and control of the system’s motion, as well as the ability to
generate and manage energy in the system.
In this section, we will demonstrate the practical applications of our proposed
optimization algorithms. Specifically, we will leverage the Drake toolbox to
compute a TVLQR stabilization and to implement the SOS-based estimation
of the ROA for underactuated systems. We will consider two testbenches, a
torque-limited simple pendulum and a cart-pole, to highlight the effectiveness
and limitations of our approach.

4.3.1 The DRAKE Toolbox

Drake is a C++ toolbox [40], initially created by the Robot Locomotion Group
at the MIT Computer Science and Artificial Intelligence Lab (CSAIL) and now
maintained by the Toyota Research Institute. This toolbox is designed to facili-

40

CHAPTER 4. METHODOLOGY

tate the analysis of robot dynamics and the construction of control systems, with
a particular emphasis on optimization-based design and analysis.
While several simulation tools exist in the field of robotics, they tend to operate
like black boxes, receiving commands and outputting sensor data. Drake, on
the other hand, aims to simulate even the most complex robot dynamics, such as
those involving friction, contact, and aerodynamics. Moreover, it is designed to
expose the underlying structure of the governing equations, including sparsity,
analytical gradients, polynomial structure, and uncertainty quantification. This
approach makes it possible to employ advanced planning, control, and analysis
algorithms. Drake also provides a Python interface to enable rapid prototyping
of new algorithms and to offer open-source implementations for many state-of-
the-art algorithms. Overall, the Drake toolbox provides a comprehensive and
sophisticated set of tools for analyzing robot dynamics and building control
systems, and has been widely adopted in both academic and industrial settings.
For the sake of this thesis work, the 𝐹𝑖𝑛𝑖𝑡𝑒𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝐿𝑖𝑛𝑒𝑎𝑟𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟(·)
and the 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙𝑃𝑟𝑜𝑔𝑟𝑎𝑚(·) classes are the most important in the tool-
box. The first one provides a straightforward method for managing TVLQR
control. It solves the differential Riccati equation to compute the optimal con-
troller and optimal cost-to-go for the finite-horizon linear quadratic regulator.
This function handles system linearization by taking gradients of the provided
continuous-time dynamics. The second one stores the decision variables, the
constraints and costs of an optimization problem. It has been fundamental for
the implementation of the SOS-based ROA estimation.

4.3.2 Torque-limited Simple Pendulum

The torque-limited simple pendulum system consists in an actuated rota-
tional joint connected to a weight of mass 𝑚 by a rigid link of length 𝑙. The total
number of Degrees Of Freedom (DOF) is 1 and the related joint is actuated. The
underactuation property here comes from the limit 𝜏𝑙𝑖𝑚 on the torque 𝜏 that can
be applied by the motor. During the motion the worst case scenario is when the
weight is couteracting the lift with the maximum force: when the angle 𝜃 from
the hanging position and the current one is 90 degrees. In this case the gravity
force momentum is 𝜏𝑔 = 𝑚𝑔𝑙 and the input torque has to apply a bigger torque

41

4.3. APPLICATION: SWING-UP AND STABILIZATION

to complete the lift. This robot is then considered underactuated iff:

𝜏 ∈ {−𝑚𝑔𝑙 < 𝜏 < 𝑚𝑔𝑙}

This rather simple system has been extensively used in the literature to test and
benchmark different control approaches. A schematic representation of it can
be seen in Figure 4.4.

θ = 0

b, cf

l

θ

m

g

Figure 4.4: Schematic representation of the pendulum.

Equations of Motion

Equation 3.1 can be applied to obtain the EOM for this system. Consider
𝑞 = 𝜃 and let 𝑄 model a damping torque with and an input torque 𝜏, then we
can write:

𝑑

𝑑𝑡

𝛿𝐿

𝛿�̇�
− 𝛿𝐿

𝛿𝜃
= 𝜏 − 𝑏�̇�

where 𝑏 is the damping factor.
From basic physics reasonings we know that the kinetic energy is 𝑇 = 1

2𝑚𝑙
2�̇�

2

and the potential energy is 𝑈 = 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠(𝜃)). Hence, the total mechanical
energy 𝐿 is

𝐿 = 𝑇 −𝑈 =
1
2𝑚𝑙

2�̇�
2 − 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠(𝜃))

Introducing this last result in the previous equation and taking some mathemat-
ical simplifications, the dynamics equation can be written as:

𝑚𝑙2�̈� = 𝜏 − 𝑚𝑔𝑙𝑠𝑖𝑛(𝜃) − 𝑏�̇�

42

CHAPTER 4. METHODOLOGY

Considering the 2 dimensional state x =
[︁
𝑞, �̇�

]︁𝑇 , the EOM can be written in
state-space representation as:

ẋ =

[︄
�̇�

𝜏−𝑚𝑔𝑙𝑠𝑖𝑛(𝜃)−𝑏�̇�
𝑚𝑙2

]︄
Noticeably, the Coulomb friction 𝑐 𝑓 has been neglected.

Cost function

For this system we were able to implement both time invariant and time-
varying ROA estimation via SOS, as described in detail in Section 3.4.1. The
resulting inner estimation of the real invariant domain comes along with a
stabilizability guarantee. Furthermore, the limited dimension of the state-space
leads to a computationally tractable estimation. This is why we have chosen this
estimation method over the simulation based one. The low dimensional state
also allows an accurate volume calculation with the convex hull formulation,
even with a relatively small number of sample points.

Decision Variables

With x ∈ 𝑋 = R2 and 𝑢 ∈ 𝑈 = R1, we can parametrize the TVLQR cost
matrices as discussed in Section 4.2.3:

Q =

[︄
𝑞11 0
0 𝑞22

]︄
R =

[︂
𝑟11

]︂
with 𝑞11 ≥ 0, 𝑞22 ≥ 0 and 𝑟11 > 0.
The design parameters that are more easy to modify and meaningful for the cost
function are the load mass and the link length. Both have been considered in
the design optimization layer as:

M = [𝑚, 𝑙]

An overview of the full and reduced parameters set is presented in Table 4.3.
Only mass and length are meaningful design parameters for the Pendulum
system so no reduction has been introduced in this case. On the other hand, a
decreasing of the number of decision variables has been imposed for the motion

43

4.3. APPLICATION: SWING-UP AND STABILIZATION

optimization.

D
es

ig
n

O
pt 𝑀 𝑓 𝑢𝑙𝑙 [𝑚, 𝑙]

𝑀𝑟𝑒𝑑𝑢𝑐𝑒𝑑 [𝑚, 𝑙]

M
ot

io
n

O
pt

𝑄 𝑓 𝑢𝑙𝑙

[︁
𝑞11, 𝑞12, 𝑞21, 𝑞22

]︁
𝑅 𝑓 𝑢𝑙𝑙 [𝑟11]

𝑄𝑟𝑒𝑑𝑢𝑐𝑒𝑑

[︁
𝑞11, 𝑞22

]︁
𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 [𝑟11]

Table 4.3: Decision variables overview for the Pendulum system.

4.3.3 Cart-Pole

The Cart-Pole is an underactuated robot composed by a cart, an actuated
prismatic joint, with a pole mounted on it, by means of a passive rotational joint.
The underactuation is due to the number of DOF (2) that is higher then the
number of actuated joints (1).

l

mp

mc

θ = 0
xc = 0

xc

θ
g

Figure 4.5: Schematic representation of the cart-pole.

This system can be considered as a simplified model to study complex systems
like legged robots. In fact, It can be used to simulate the balancing and stepping
motion of a leg during walking or running tasks.

44

CHAPTER 4. METHODOLOGY

Equations of Motion

Now consider q = [𝑥𝑐 , 𝜃]𝑇 and x =
[︁
𝑞, �̇�

]︁𝑇 . The task is to stabilize the
unstable fixed point x 𝑓 = [0,𝜋, 0, 0]𝑇 , starting from the hanging straight down
state x𝑖 = [0, 0, 0, 0]𝑇 . The energy is given by

𝑇 =
1
2(𝑚𝑐 + 𝑚𝑝)�̇�2

𝑐 + 𝑚𝑝 �̇�𝑐�̇�𝑙𝑐𝑜𝑠𝜃 + 1
2𝑚𝑝 𝑙

2�̇�
2

𝑈 = −𝑚𝑝𝑔𝑙𝑐𝑜𝑠𝜃

Hence, the Lagrangian yelds the equations of motion:

(𝑚𝑐 + 𝑚𝑝)�̈�𝑐 + 𝑚𝑝 𝑙�̈�𝑐𝑜𝑠𝜃 − 𝑚𝑝 𝑙�̇�
2
𝑠𝑖𝑛𝜃 = 𝐹𝑐 − 𝑏𝑐 �̇�𝑐

𝑚𝑝 𝑙 �̈�𝑐𝑐𝑜𝑠𝜃 + 𝑚𝑝 𝑙
2�̈� + 𝑚𝑝𝑔𝑙𝑠𝑖𝑛𝜃 = −𝑏𝑝�̇�

where 𝐹𝑐 is the control input and it is the force applied to the cart, 𝑏𝑝 and
𝑏𝑐 are the damping parameters associated with the two DOFs. The nonlinear
Coulomb friction applied to the linear cart, and the force on the linear cart due
to the pendulum’s action have been neglected.
For the sake of our implementation, a translation in the state space has been
implemented for the angle 𝜃: 𝜃 = 𝜃 + 𝜋. As a consequence, the task becomes
to stabilize the point x 𝑓 = [0, 0, 0, 0]𝑇 , starting from the state x𝑖 = [0,𝜋, 0, 0]𝑇 .
Furthermore, in our experiments we have considered a more detailed set of
equations that were given in the documentation of the real system [41]:

(𝐽𝑒𝑞 + 𝑚𝑝)�̈�𝑐 + 𝑚𝑝 𝑙�̈�𝑐𝑜𝑠𝜃 − 𝑚𝑝 𝑙�̇�
2
𝑠𝑖𝑛𝜃 = 𝐹𝑐 − 𝐵𝑒𝑞 �̇�𝑐

𝑚𝑝 𝑙𝑐𝑜𝑠𝜃�̈�𝑐 + (𝐽𝑝 + 𝑚𝑝 𝑙
2)�̈� + 𝑚𝑝𝑔𝑙𝑠𝑖𝑛𝜃 = −𝐵𝑝�̇�

where 𝐽∗ and 𝐵∗ parameters deals with the modeling of the inertia and damping
components.

Cost function

In this case, the time-varying ROA estimation has been obtained via the
variation of the simulation-based approach described in Section 3.4.2. The
time-varying SOS based implementation turned out to be more involved. The
increased dimension of the state space caused a problem infeasibility that end-
up preventing the estimation to be meaningful. However, the time invariant

45

4.3. APPLICATION: SWING-UP AND STABILIZATION

version of this last method has been used to estimate the hyper-ellipsoid around
the goal state. Intuitively, having an inner estimation of the last region is always
a good starting point for a time-varying estimation.
The increase of the state dimensionality has affected, as expected, the compu-
tational time. The simulations were more time consuming and more samples
were needed for accuracy of both funnel estimation and volume computation.
The implemented estimation method is not providing formal guarantees. For
the sake of an optimization procedure, is sufficient that the cost gives a quan-
titative information about the desired property. A trade-off between accuracy
and timings has then been considered in our experiments.

Decision Variables

Since now the state x ∈ 𝑋 = R4, the parametrized stabilization cost matrices
for this system are the following ones:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑞11 0 0 0
0 𝑞22 0 0
0 0 𝑞33 0
0 0 0 𝑞44

⎤⎥⎥⎥⎥⎥⎥⎥⎦
R =

[︂
𝑟11

]︂

Here, a further simplification has been introduced to lower the number of con-
sidered decision variables. The state weights 𝑞33 and 𝑞44 have been fixed to 100,
a value that in practice was working well for our real design parameters.
As before, not all the design parameters has been considered but only:

M =
[︁
𝑚𝑝 , 𝑙

]︁
For our system, these were the most straightforward to modify. Their effect on
the system dynamics is also more intuitive thanks to the similarity with the pre-
vious system. An overview of the full and reduced parameters set is presented
in Table 4.4. The mass of the cart has been fixed by assumption. Furtermore, the
Q matrix has been simplified as depicted before. This last approximation lead
to a considerable decrease of the number of decision variables and hence of the
problem complexity.

46

CHAPTER 4. METHODOLOGY

D
es

ig
n

O
pt 𝑀 𝑓 𝑢𝑙𝑙

[︁
𝑚𝑝 , 𝑚𝑐 , 𝑙

]︁
𝑀𝑟𝑒𝑑𝑢𝑐𝑒𝑑

[︁
𝑚𝑝 , 𝑙

]︁
M

ot
io

n
O

pt
𝑄 𝑓 𝑢𝑙𝑙

[︁
𝑞11, 𝑞12, . . . , 𝑞43, 𝑞44

]︁
𝑅 𝑓 𝑢𝑙𝑙 [𝑟11]

𝑄𝑟𝑒𝑑𝑢𝑐𝑒𝑑

[︁
𝑞11, 𝑞22

]︁
𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 [𝑟11]

Table 4.4: Decision variables overview for the Cart-pole system.

47

5
Results

This chapter contains the implementation of the proposed methodologies.
The testbenches that we have used for our verifications are two underactuated
robots: the torque-limited simple pendulum (Section 5.1) and the cart-pole (Sec-
tion 5.2). For each system, the resulting optimization parameters have been
firstly applied in simulation. Then, real world experiments have been imple-
mented accordingly to get a stronger verification.

5.1 Torque-limited Simple Pendulum

The verification of the proposed algorithms has been first implemented on a
torque-limited simple pendulum system.

Figure 5.1: Real pendulum system.

The considered design parameters for both simulation and optimization have

49

5.1. TORQUE-LIMITED SIMPLE PENDULUM

been inspired by the real system which is availble in the Underactuated Lab of
the DFKI GmbH Robotics Innovation Center in Bremen [42]. Here, an AK80-6
actuator from T-Motor is rigidly connected to a weight through an alluminium
rod. A representation of this system achieving a swing-up task is shown in
Figure 5.1.

5.1.1 Optimization Results

Two cases have been distinguished for this system, depending on the pendu-
lum design parameters that has been considered. The first case has been used
to get intuition about the optimization properties, while the second is suitable
for our real system application.
Coulomb friction has not been taken into account for two reasons. First, the
simulator from the DRAKE toolbox was initially used and it cannot handle this
kind of parameter. Second, we argue that the effect of this parameter can be
always avoided through friction compensation.

Optimization Properties Analysis

For the first optimization case, the considered initial design parameters are:

Parameter Value
m 0.67 𝑘𝑔
l 0.5 𝑚
b 0.4 𝑁𝑚/𝑠
𝜏𝑙𝑖𝑚 2.5 𝑁𝑚

Table 5.1: Initial Pendulum model parameters.

The system that handled the optimization computations is a 2-core 4-thread 2.70
GHz Intel(R) Core(TM) i7-7500U computer with 8 Gb of RAM. A maximum of
3 parallelized computations have been considered.
Both RTC and RTCD methods have been tested. The optimization settings and
results are summarized in Table 5.2 and 5.3. The settings𝑋0, 𝜎0, 𝑏𝑜𝑢𝑛𝑑𝑠, 𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠

refers to the CMA-ES parameters presented in Section 4.2.2. It can be noticed that
both the optimization processes result in an improvement of the ROA volume.

50

CHAPTER 5. RESULTS

C
M

A
-E

S
In

it

𝑋0
[︁
𝑞11, 𝑞22, 𝑟

]︁
= [10, 1, 0.1]

𝜎0 0.1
𝑏𝑜𝑢𝑛𝑑𝑠 (upper) [10, 10, 1]
𝑏𝑜𝑢𝑛𝑑𝑠 (lower) [1, 1, 0.1]
𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠 100
fixed design [𝑚, 𝑙] = [0.67, 0.5]

volume 15.75

R
TC O
pt

parameters
[︁
𝑞11, 𝑞22, 𝑟

]︁
= [9.9, 1.21, 0.95]

timing 23 min
volume 40.8

Table 5.2: RTC optimization settings and results: Pendulum

C
M

A
-E

S
In

it

𝑋0 [𝑚, 𝑙] = [0.67, 0.5]
𝜎0 0.1

𝑏𝑜𝑢𝑛𝑑𝑠 (upper) [0.9, 0.7]
𝑏𝑜𝑢𝑛𝑑𝑠 (lower) [0.5, 0.3]

𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠 (outer) 20
𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠 (inner) 20

volume 15.75

R
TC

D
O

pt

parameters
[︁
𝑚, 𝑙, 𝑞11, 𝑞22, 𝑟

]︁
= [0.5, 0.3, 9.96, 1, 0.9]

timing 86 min
volume 119.64

Table 5.3: RTCD optimization settings and results: Pendulum

The cost evolution is shown in Figure 5.3(left). More evaluations have been
computed in the RTCD case, hence the execution time has increased. Each step
represents an optimal solution obtained in an iteration of the solver computation.
Every iteration needs maximum 𝑚𝑎𝑥𝑒𝑣𝑎𝑙𝑠 = 20 function evaluations. In the bi-
level optimization case a maximum of𝑚𝑎𝑥𝑒𝑣𝑎𝑙𝑠(𝑖𝑛𝑛𝑒𝑟)×𝑚𝑎𝑥𝑒𝑣𝑎𝑙(𝑜𝑢𝑡𝑒𝑟) = 400
function evaluations were available to the solver.
The final result of RTCD is way more robust than the one of RTC. We have noticed
that the design optimization layer brings the system to violate the uderactuation
condition 𝑚𝑔𝑙 > 𝜏𝑙𝑖𝑚 . A further particular behaviour can be noticed in the
𝑟 parameter of the RTC optimization, which is the one related to the control
input. It’s increasing is related to the improvement of the funnel volume. These
behaviours are depicted in Figure 5.3(right).

51

5.1. TORQUE-LIMITED SIMPLE PENDULUM

Figure 5.2: Ideal optimization evolution.

A comparison between initial and optimized scenario is proposed in Figures
5.3 and 5.4. The CMA-ES initial parameters will be from now on referred as
DIRTRAN parameters. The funnel improvement is visible in both cases. In the
RTC case we can see that the nomininal trajectory remains almost the same, but
still the controller optimization ends-up improving the robustness.

Figure 5.3: RTC vs DIRTRAN: nominal trajectories (left) and funnels (right).

In the RTCD optimized framework the trajectory changes due to the pendulum
parameters optimization. The resulting funnel is way more big and the swing-
up is achieved with only one pendulum swing. This last behaviour is typical of
the fully-actuated situation. In fact, now we have obtained:

𝑚𝑅𝑇𝐶𝐷𝑔𝑙𝑅𝑇𝐶𝐷 ≈ 1.48 𝑁𝑚 < 𝜏𝑙𝑖𝑚

52

CHAPTER 5. RESULTS

Figure 5.4: RTCD vs DIRTRAN: nominal trajectories (left) and funnels (right).

Real System Optimization

In the second optimization case, we have considered the real system hard-
ware while fixing the optimization parameters. The initial design parameters
have been set as:

Parameter Value
m 0.7 𝑘𝑔
l 0.4 𝑚
b 0.1 𝑁𝑚/𝑠
𝜏𝑙𝑖𝑚 2.5 𝑁𝑚

Table 5.4: Initial Pendulum real model parameters.

The available system mass is 𝑚𝑟𝑒𝑎𝑙 ≈ 0.6 𝑘𝑔. By setting this value as a lower
bound for the design optimization of the mass, we are expecting the optimization
to choose it. This is because of the intuition gained from the first optimization
case. It is easier for us to add weight rather then reduce it. Similarly, the real
length is 𝑙𝑟𝑒𝑎𝑙 = 𝑙, we will set it as a lower bound. Using the same rod for both
initial and final design will reduce the timings for a real test. The optimization
settings that are shown in Tables 5.5 and 5.6.

53

5.1. TORQUE-LIMITED SIMPLE PENDULUM

C
M

A
-E

S
In

it

𝑋0
[︁
𝑞11, 𝑞22, 𝑟

]︁
= [10, 1, 0.1]

𝜎0 0.9
𝑏𝑜𝑢𝑛𝑑𝑠 (high) [10, 10, 10]
𝑏𝑜𝑢𝑛𝑑𝑠 (low) [1, 1, 0.001]
𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠 100
fixed design [𝑚, 𝑙] = [0.7, 0.4]

volume 14.83
R

TC O
pt

parameters
[︁
𝑞11, 𝑞22, 𝑟

]︁
= [9.5, 1.2, 1.64]

timing 24 min
volume 47.2

Table 5.5: RTC optimization settings and results: Pendulum

C
M

A
-E

S
In

it

𝑋0 [𝑚, 𝑙] = [0.7, 0.4]
𝜎0 0.1

𝑏𝑜𝑢𝑛𝑑𝑠 (high) [0.8, 0.6]
𝑏𝑜𝑢𝑛𝑑𝑠 (low) [0.6, 0.4]

𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠 (outer) 20
𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠 (inner) 40

volume 14.83

R
TC

D
O

pt

parameters
[︁
𝑚, 𝑙, 𝑞11, 𝑞22, 𝑟

]︁
= [0.61, 0.4, 9.98, 1, 3.387]

timing 3 h
volume 57.84

Table 5.6: RTCD optimization settings and results: Pendulum

The computations have been handled by a CPU-cluster available in the DFKI
research institute. It consists in 12 compute nodes, each having 2x 8-core Xeon
E5-2630 v3 (Haswell), 128GB ECC RAM. Still a maximum of 3 parallelized
processes has been implemented for consistency with the last results. However,
multiple nodes have been used to speed-up the algorithms testing phases.
The optimized volume has increased almost 4 times the initial value for both
RTC and RTCD. The cost evolution during the optimization can be seen in
Figure 5.5(left). The expected parameters behaviour has been achieved from the
design optimization. The similar parameters behaviour can be noticed in Figure
5.5(right).

54

CHAPTER 5. RESULTS

Figure 5.5: Optimization results for simple pendulum.

The increased shape of the funnel is depicted in Figure 5.6. Here, the result
of the RTC optimization is compared with the initial situation. Even though, as
expected, the two nominal trajectories are very similar, the optimized behaviour
is more robust with respect to the initial scenario.

Figure 5.6: RTC vs DIRTRAN: nominal trajectories (left) and funnels (right).

The improvement of this property is even more obvious in the RTCD case, the
comparison is shown in Figure 5.7. Now, the optimized trajectory turns out to
be slightly different from the initial one. Less saturation in the input torque is
present and the swing-up is achieved before.

55

5.1. TORQUE-LIMITED SIMPLE PENDULUM

Figure 5.7: RTCD vs DIRTRAN: nominal trajectories (left) and funnels (right).

In general, the design optimization behaviour can be related to the under-
actuation. The best design is indeed the least underactuated. It can be noticed
that in this case both the considered trajectories obtain the swing-up almost
directly. However, just the otimized RTCD scenario violates the underactuation
condition.
Only this last optimization case for the pendulum parameters has been consid-
ered in both simulation and experimental verification for a consistent compari-
son between the two frameworks.

5.1.2 Simulation Verification

The system behaviour has been modeled by using the EOM that have been
described in Section 4.3.2. The state evolution has then been obtained with a
simple Euler numerical integration.
An inner knot point for each optimized trajectory has been verified.The verifi-
cation process firstly samples initial conditions within the ROA defined for the
verified knot point. Then, each initial condition is simulated until the end of the
nominal time. If the simulated trajectory stays inside the funnel for the whole
of it’s evolution it is considered successful. This is because other behaviours
would not be compliant with the definition of funnel.

56

CHAPTER 5. RESULTS

Figure 5.8: RTC inner-knot verification.

Figure 5.9: RTCD inner-knot verification.

Both optimizations result in a fully successful verification. This is expected
since the SOS estimation method is providing us a formal guarantee of stabiliz-
ability, an inner estimation of the unknown real ROA. The simulated trajectories
are shown in Figure 5.8 and 5.9, where they are plotted along the related funnel.
All of them are indeed able to recover the off-nominal start and to stay inside
the funnel until the goal achievement.

57

5.1. TORQUE-LIMITED SIMPLE PENDULUM

5.1.3 Experimental Verification

The choices described in Section 5.1.1 were very useful to easily implement
a real verification. In particular, the selected hardware and control parameters
correspond to the ones depicted in Tables 5.5 and 5.6. It can be noticed that
𝑚𝐷𝐼𝑅𝑇𝑅𝐴𝑁 = 𝑚𝑅𝑇𝐶 = 0.7𝑘𝑔 and that 𝑚𝑅𝑇𝐶𝐷 ≈ 0.6. A weigth of 0.5𝑘𝑔 have been
mounted on the provided real system, hence obtaining a total mass 𝑚 ≈ 0.6𝑘𝑔
including link and mounting screws. This is the configuration that we have
tested for the design optimized case, i.e. the RTCD case. A further weight of
𝑚+ = 0.1𝑘𝑔 has then been attached to the center of the link in order to match the
requirements of the other two cases. The hardware modification can be seen in
Figure 5.10.

m = 100g

Figure 5.10: Pendulum hardware modification through the additional weight
𝑚+.

The length of the alluminium rod remains the same for both the initial and the
optimized design, i.e. 𝑙𝐷𝐼𝑅𝑇𝑅𝐴𝑁 = 𝑙𝑅𝑇𝐶 = 𝑙𝑅𝑇𝐶𝐷 . On the other hand, the control
matrices are different in each case:

Q𝐷𝐼𝑅𝑇𝑅𝐴𝑁 =

[︄
10 0
0 1

]︄
, Q𝑅𝑇𝐶 =

[︄
9.5 0
0 1.2

]︄
, Q𝑅𝑇𝐶𝐷 =

[︄
9.98 0

0 1

]︄
R𝐷𝐼𝑅𝑇𝑅𝐴𝑁 =

[︂
0.1

]︂
, R𝑅𝑇𝐶 =

[︂
1.64

]︂
, R𝑅𝑇𝐶𝐷 =

[︂
3.387

]︂
An interesting real experiment has been proposed in this section. In order to
compare the robust performances betweeen the initial and final set-up, we have
decided to introduce a torque disturbance. An artificial disturbance has been

58

CHAPTER 5. RESULTS

addeded via software to understand the system sensibility to this kind of non-
ideality. In practice, in the time window 𝑡 ∈ [0.5, 0.7] the torque input will be
decreased by 3 𝑁𝑚, i.e. 𝜏 = 𝜏𝑑𝑒𝑠 − 3 𝑁𝑚. The resulting behaviours are grouped
in Figure 5.11.

Figure 5.11: Experimental responses for different scenarios with (right) and
without (left) torque disturbance.

It can be noticed in the figure above that the experiment without disturbances
is successful in every case. Just a slightly less smooth behaviour is present in
the 𝑡 ∈ [1, 2] for the DIRTRAN set-up. This already gives us some intuition
about the improved robustness of the optimized frameworks. This idea is then
confirmed in the disturbed scenario where the initial design is not able to achieve
the given task.

59

5.1. TORQUE-LIMITED SIMPLE PENDULUM

Figure 5.12: Disturbed experimental trajectories in the RTC funnel.

An interesting comparison has also been studied through this experiment,
which is shown in Figure 5.12. The experimental trajectories have been plotted
with respect to the RTC funnel, which is the smallest of the optimized ones.
The knot-point that we have verified via simulation is exactly the one where the
torque disturbance has been introduced in the experimental verification. The
failing DIRTRAN trajectory exits from the stabilizable region and it is not able
to recover the desired behaviour, i.e. to come back inside the funnel. It can be
noticed that also the successfully stabilized trajectories are exceeding the funnel
boundaries. We argue that the SOS inner ROA estimation does not give us info
about the states outside the funnel. Hence, we have considered the improved
recovery as a success for showing an improved general robustness.

60

CHAPTER 5. RESULTS

5.2 Cart-Pole

A more complex system has been used to further analyze our implemen-
tation: the Cart-pole. The hardware design from Quanser [41] has been used
for experimental verifications. Hence, also the simulations has been developed
thinking about this system, which is shown in Figure 5.13. The "Linear Servo
Base Unit" consists of a cart driven by a DC motor, via a rack and pinion mech-
anism, that ensures consistent and continuous traction. The cart is equipped
with a rotary metal shaft to which a free turning pendulum is attached.

Figure 5.13: Real Cart-pole system.

5.2.1 Optimization Results

Firstly, a careful tuning process for the DIRTRAN trajectory optimization step
and of the solver parameters was necessary. Then, the two proposed algorithms
have been tested on this new system. The same computational tool and settings
considered in Section 5.1.1 has been considered. A different estimation method
for the ROA analysis has been used. The region around the goal was still obtained
via SOS but the funnel around the trajectory was computed via a simulation-
based method. This method has been previously introduced in Section 2.4. The
most satisfying results and the related settings are listed in Table 5.7 and 5.8.

61

5.2. CART-POLE

C
M

A
-E

S
In

it

𝑋0
[︁
𝑞11, 𝑞22, 𝑟

]︁
= [10, 10, 10]

𝜎0 3
𝑏𝑜𝑢𝑛𝑑𝑠 (high) [20, 20, 15]
𝑏𝑜𝑢𝑛𝑑𝑠 (low) [1, 1, 5]
𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠 100
fixed design

[︁
𝑚𝑝 , 𝑙

]︁
= [0.227, 0.178]

volume 6.97
R

TC O
pt

parameters
[︁
𝑞11, 𝑞22, 𝑟

]︁
= [1.71, 1.01, 5.01]

timing 86 𝑚𝑖𝑛
volume 53.84

Table 5.7: RTC optimization settings and results: Cart-pole

C
M

A
-E

S
In

it

𝑋0 [𝑚, 𝑙] = [0.227, 0.178]
𝜎0 0.1

𝑏𝑜𝑢𝑛𝑑𝑠 (high) [0.3, 0.3]
𝑏𝑜𝑢𝑛𝑑𝑠 (low) [0.127, 0.178]

𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠 (outer) 1
𝑚𝑎𝑥 𝑓 𝑒𝑣𝑎𝑙𝑠 (inner) 40

volume 6.97

R
TC

D
O

pt

parameters
[︁
𝑚, 𝑙, 𝑞11, 𝑞22, 𝑟

]︁
= [0.129, 0.185, 1.31, 1.023, 5.71]

timing 14 ℎ 44 𝑚𝑖𝑛
volume 71.09

Table 5.8: RTCD optimization settings and results: Cart-pole

The increased state dimensionality and the different ROA estimation method
makes the overall optimization to be more computationally expensive with re-
spect to the pendulum case. The cost evolution is depicted in Figure 5.14. It can
be noticed the improvement of the funnel volume, which goes up to 10 times
the initial value. This improvement gives us an intuition about an increased
robustness. We have noticed that most of the volume is due to the last ellipse,
the one obtained via SOS. This is because the simulation-based method that
we used for estimation the funnel seems to shrink very quickly as long as the
considered knot point goes far from the goal state.

62

CHAPTER 5. RESULTS

0 50 100 150 200 250 300 350
Evaluations

10

20

30

40

50

60

RO
A

Vo
lu

m
e

RTCD
RTC

Figure 5.14: Optimization cost evolution for cart-pole.

In Figure 5.15, a comparison between initial and final ellipses around the
goal state has been shown. Some meaningful slices of the state-space have been
considered.

Figure 5.15: Ellipses around the goal state improvement wrt the initial shape.

5.2.2 Simulation Verification

As for the previous system, the simulated verification has been implemented
by exploiting the EOM and a simple numerical integration (Forward Euler).

63

5.2. CART-POLE

However, now we don’t have any stability guarantee for the funnel because we
are not using SOS. The verification of the improved performances has then been
implemented in a probabilistic way. A set of initial states have been sampled from
a grid around the rest position. The states evolution has been computed until
the end of the nominal trajectory. Eventually, a simulation has been considered
successful iff the simulated state ends-up in the last ellipse.
A success rate over 100 simulations has been computed for each optimized
scenario to get a meaningful comparison. The initial states has been sampled in
the middle of the trajectories.

0 20 40 60 80 100

DIRTRAN

RTC

RTCD

50.0

60.0

62.0

successes
simulations%

Figure 5.16: Simulation stabilization rate of off-nominal states.

As expected, in Figure 5.16 we can notice that the optimized scenarios are in
general able to better recover from off-nominal initial states.

5.2.3 Experimental Verification

A real experiment has also been implemented on the Quanser linear inverted
pendulum system [41] available in the laboratory of DFKI. As before, the exper-
iment has been formulated in order to be consistent with the simulation-based
verification and taking into account the possible real harware modifications. The
optimized weight is almost the weigth of the pole alone, 𝑚𝑝 ≈ 0.127. A further
weight has then been attached to the pole in order to match the weight in the
non-optimized scenarios, 𝑚𝑝 ≈ 0.227. The used control matrices are different in
each case:

Q𝑟
𝐷𝐼𝑅𝑇𝑅𝐴𝑁 =

[︄
10 0
0 10

]︄
, Q𝑟

𝑅𝑇𝐶 =

[︄
1.71 0

0 1.01

]︄
, Q𝑟

𝑅𝑇𝐶𝐷 =

[︄
1.31 0

0 1.023

]︄

64

CHAPTER 5. RESULTS

R𝐷𝐼𝑅𝑇𝑅𝐴𝑁 =

[︂
10
]︂
, R𝑅𝑇𝐶 =

[︂
5.01

]︂
, R𝑅𝑇𝐶𝐷 =

[︂
5.71

]︂
where Q𝑟 are the reduced form of the 4 by 4 matrices Q that include the two
additional diagonal elements 𝑞33 = 𝑞44 = 100.
The implemented experiment consists in a torque disturbance that has been
introduced in the middle of the nominal trajectory. The non-ideality has been
introduced in the same knot point that we have verified before via multiple
simulations. In practice, in the interval 𝑡 ∈ [2.51, 2.54] the input torque is
zeroed, i.e. 𝜏 = 0 𝑁𝑚. Even if both RTC and RTCD responses have been tested,
only the first one was able to provides us satisfying results. The change of the
hardware parameters may have been not introduced correctly or not precisely
enough to implement the optimized case.

Figure 5.17: Real responses to a disturbed scenario: DIRTRAN and RTC.

As shown is Figure 5.17, the optimized set-up is now able to reject the disturbance
that made the initial settings to fail. The trajectories behaviour is almost the same
until the disturbance, this is the result of both closely following a similar nominal
trajectory. However, the insourgence of a non-ideality caused a totally different
behaviour thanks to the optimized controller.

65

6
Conclusions & Future Works

In this thesis work, an analysis of a sampling-based co-design process for
underactuated robots is presented. Two novel algorithms have been developed
to achieve a shared optimality among the design, trajectory, and stabilizing con-
troller. Unlike the approach described in [13], both algorithms directly manip-
ulate the stabilization cost matrices. Although this choice introduces additional
complexity, it is motivated by significant improvements in the robustness cost,
even when keeping the design parameters fixed. Furthermore, this choice en-
hances the modularity of the overall algorithm. An additional enhancement
of this work is the incorporation of robustness analysis through ROA estima-
tion. This approach offers an intuitive perspective and can potentially provide
a stabilizability guarantee for off-nominal states around the optimal trajectory,
particularly when employing the SOS-based estimation method. Notably, this
type of estimation was not implemented in [10], where the focus was on consid-
ering the volume of a sample-based region around the desired goal. Moreover,
in this thesis work, a time-varying ROA estimation is utilized as the metric for the
co-optimization algorithms. Our approach has shown an improvement of the
sim-to-real gap both in simulated and in real experiments for the two considered
underactuated systems. During the experimental part of our analysis we have
noticed some particular characteristics of our method. In the Pendulum case, the
design optimization always pushes the system away from underactuation. Also,
it resulted that having a bigger cost for the control input in the TVLQR stabiliza-
tion usually improves the robustness feature. In the case of the Cart-pole system,
we encountered certain challenges due to the increased system complexity. As

67

a consequence, we did not manage to implement the time-varying SOS ROA
estimation method. Alternatively, we resorted to a simulation-based method,
which still yielded improvements in robustness for the simpler co-optimization
algorithm introduced. However, it is important to note that the resulting time-
varying region exhibited a non-ideal shrinking behavior, indicating that the
improvement primarily affected the goal region rather than the entire trajectory.
Additionaly, the RTCD real verification was not achieved successfully. In our
opinion, a deeper analysis on this last system and, in general, on how to best deal
with the increase of the system’s complexity should follow this thesis work. An
improvement in the computational time is expected with a C++ implementation
and an increased use of parallelization. A careful look should be kept on the SOS
stabilizability guarantee, modeling and linearization errors could always affect
the estimation. The proposed simulation-based approach could give advan-
tages since it does not require the system linearization. Furthermore, this last
method could be easily parallelized for improved computational performances.
As a further improvement, it would be valuable to explore the possibilities of
extending our co-design approach to an online setting. We believe that existing
implementations of the LQR-tree algorithm [27–29] could serve as a source of
inspiration for this endeavor. Additionally, extending the RTCD scheme to ac-
commodate multiple tasks simultaneously could offer a powerful solution for
more complex robotic systems.

68

References

[1] Boston Dynamics. Atlas Gets a Grip. 2023. url: https://www.youtube.
com/watch?v=-e1_QhJ1EhQ.

[2] Tesla. Testa AI Day. TeslaBot reveal. 2022. url: https://www.youtube.
com/watch?v=ODSJsviD_SU.

[3] Agility Robotics. ProMat. Digit working autonomously. 2023. url: https:
//www.youtube.com/watch?v=FhlUI2xDxdE.

[4] Apptronik. Astra Compilation. Astra working with humans. 2023. url:
https://www.youtube.com/watch?v=FhlUI2xDxdE.

[5] Mahdi Javadi et al. “AcroMonk: A Minimalist Underactuated Brachiating
Robot”. In: IEEE Robotics and Automation Letters 8.6 (June 2023), pp. 3637–
3644. doi: 10.1109/lra.2023.3269296. url: https://doi.org/10.1109%
2Flra.2023.3269296.

[6] Felix Wiebe et al. “RealAIGym: Education and Research Platform for
Studying Athletic Intelligence”. In: Robotics Science and Systems Workshop
Mind the Gap: Opportunities and Challenges in the Transition Between Research
and Industry. New York, July 2022.

[7] Felix Wiebe et al. “An Open Source Dual Purpose Acrobot and Pen-
dubot Platform for Benchmarking Control Algorithms for Underactuated
Robotics”. In: IEEE Robotics and Automation Magazine (RAM). under review.
2023.

[8] Milan Čoh et al. “Kinematics of Usain Bolt’s maximal sprint velocity”. In:
Kinesiology 50 (Jan. 2018), pp. 100–101. doi: 10.26582/k.50.2.10.

[9] Frank Permenter Scott Kuindersma and Russ Tedrake. “An efficiently solv-
able quadratic program for stabilizing dynamic locomotion”. In: 2014 IEEE
International Conference on Robotics and Automation (ICRA). Hong Kong,
China, 2014, pp. 2589–2594.

69

https://www.youtube.com/watch?v=-e1_QhJ1EhQ
https://www.youtube.com/watch?v=-e1_QhJ1EhQ
https://www.youtube.com/watch?v=ODSJsviD_SU
https://www.youtube.com/watch?v=ODSJsviD_SU
https://www.youtube.com/watch?v=FhlUI2xDxdE
https://www.youtube.com/watch?v=FhlUI2xDxdE
https://www.youtube.com/watch?v=FhlUI2xDxdE
https://doi.org/10.1109/lra.2023.3269296
https://doi.org/10.1109%2Flra.2023.3269296
https://doi.org/10.1109%2Flra.2023.3269296
https://doi.org/10.26582/k.50.2.10

REFERENCES

[10] Lasse Maywald et al. “Co-optimization of Acrobot Design and Controller
for Increased Certifiable Stability”. In: (July 2022). doi: 10.13140/RG.2.
2.36436.07043.

[11] Zachary Manchester and Scott Kuindersma. “DIRTREL: Robust Trajec-
tory Optimization with Ellipsoidal Disturbances and LQR Feedback”. In:
Robotics: Science and Systems (RSS). 2017. url: https://github.com/
HarvardAgileRoboticsLab/drake/tree/dirtrel.

[12] G. Fadini et al. “Computational design of energy-efficient legged robots:
Optimizing for size and actuators”. In: 2021 IEEE International Conference
on Robotics and Automation (ICRA). 2021, pp. 9898–9904. doi: 10.1109/
ICRA48506.2021.9560988.

[13] Gabriele Fadini et al. “Simulation Aided Co-Design for Robust Robot Op-
timization”. In: IEEE Robotics and Automation Letters 7.4 (2022), pp. 11306–
11313. doi: 10.1109/LRA.2022.3200142.

[14] C Semini et al. “Design of HyQ - a hydraulically and electrically actuated
quadruped robot”. In: Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering 225.6 (2011), pp. 831–849.
doi: 10.1177/0959651811402275. eprint: https://doi.org/10.1177/
0959651811402275. url: https://doi.org/10.1177/0959651811402275.

[15] Q. Li, W.J. Zhang, and L. Chen. “Design for control-a concurrent engineer-
ing approach for mechatronic systems design”. In: IEEE/ASME Transac-
tions on Mechatronics 6.2 (2001), pp. 161–169. doi: 10.1109/3516.928731.

[16] James Allison and Sam Nazari. “Combined Plant and Controller Design
Using Decomposition-Based Design Optimization and the Minimum Prin-
ciple”. In: vol. 1. Jan. 2010. doi: 10.1115/DETC2010-28887.

[17] James T. Allison, Tinghao Guo, and Zhi Han. “Co-Design of an Ac-
tive Suspension Using Simultaneous Dynamic Optimization”. In: Jour-
nal of Mechanical Design 136.8 (June 2014). 081003. issn: 1050-0472. doi:
10.1115/1.4027335. eprint: https://asmedigitalcollection.asme.
org/mechanicaldesign/article- pdf/136/8/081003/6225103/md\

_136_08_081003.pdf. url: https://doi.org/10.1115/1.4027335.

70

https://doi.org/10.13140/RG.2.2.36436.07043
https://doi.org/10.13140/RG.2.2.36436.07043
https://github.com/HarvardAgileRoboticsLab/drake/tree/dirtrel
https://github.com/HarvardAgileRoboticsLab/drake/tree/dirtrel
https://doi.org/10.1109/ICRA48506.2021.9560988
https://doi.org/10.1109/ICRA48506.2021.9560988
https://doi.org/10.1109/LRA.2022.3200142
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1177/0959651811402275
https://doi.org/10.1109/3516.928731
https://doi.org/10.1115/DETC2010-28887
https://doi.org/10.1115/1.4027335
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/136/8/081003/6225103/md_136_08_081003.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/136/8/081003/6225103/md_136_08_081003.pdf
https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/136/8/081003/6225103/md_136_08_081003.pdf
https://doi.org/10.1115/1.4027335

REFERENCES

[18] Gabriel Bravo-Palacios, A. Del Prete, and Patrick M. Wensing. “One Robot
for Many Tasks: Versatile Co-Design Through Stochastic Programming”.
In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 1680–1687. doi:
10.1109/LRA.2020.2969948.

[19] Gianluigi Grandesso et al. Exploring the limits of a hybrid actuation system
through Co-Design - Technical Report. Technical Report. University of Trento,
June 2020. url: https://hal.science/hal-02737086.

[20] Sehoon Ha et al. “Task-based limb optimization for legged robots”. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
2016, pp. 2062–2068. doi: 10.1109/IROS.2016.7759324.

[21] Traiko Dinev et al. A Versatile Co-Design Approach For Dynamic Legged
Robots. 2022. arXiv: 2103.04660 [cs.RO].

[22] Nikolaus Hansen et al. CMA-ES/pycma: r3.2.0. Version r3.2.0. Feb. 2022.
doi: 10.5281/zenodo.6300858. url: https://doi.org/10.5281/zenodo.
6300858.

[23] Mohammmad Nabi Omidvar and Xiaodong Li. “A Comparative Study of
CMA-ES on Large Scale Global Optimisation”. In: vol. 6464. Dec. 2010,
pp. 303–312. isbn: 978-3-642-17431-5. doi: 10.1007/978-3-642-17432-
2_31.

[24] Durgesh Salunkhe et al. “An efficient combined local and global search
strategy for optimization of parallel kinematic mechanisms with joint lim-
its and collision constraints”. In: Mechanism and Machine Theory 173 (July
2022), p. 104796. doi: 10.1016/j.mechmachtheory.2022.104796.

[25] Antonios E. Gkikakis and Roy Featherstone. “Robust Analysis for Mecha-
nism and Behavior Co-optimization of High-performance Legged Robots”.
In: 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Hu-
manoids). 2022, pp. 752–758. doi:10.1109/Humanoids53995.2022.9999745.

[26] Rizzi A. A. Burridge R. R. and Koditschek D. E. “Sequential composition of
dynamically dexterous robot behaviors”. In: International Journal of Robotics
Research 8.18 (1999), pp. 534–555.

[27] Joseph Moore, Rick Cory, and Russ Tedrake. “Robust post-stall perching
with a simple fixed-wing glider using LQR-Trees”. In: Bioinspiration and
Biomimetics 9.2 (May 2014), p. 025013. doi: 10.1088/1748-3182/9/2/
025013. url: https://dx.doi.org/10.1088/1748-3182/9/2/025013.

71

https://doi.org/10.1109/LRA.2020.2969948
https://hal.science/hal-02737086
https://doi.org/10.1109/IROS.2016.7759324
https://arxiv.org/abs/2103.04660
https://doi.org/10.5281/zenodo.6300858
https://doi.org/10.5281/zenodo.6300858
https://doi.org/10.5281/zenodo.6300858
https://doi.org/10.1007/978-3-642-17432-2_31
https://doi.org/10.1007/978-3-642-17432-2_31
https://doi.org/10.1016/j.mechmachtheory.2022.104796
https://doi.org/10.1109/Humanoids53995.2022.9999745
https://doi.org/10.1088/1748-3182/9/2/025013
https://doi.org/10.1088/1748-3182/9/2/025013
https://dx.doi.org/10.1088/1748-3182/9/2/025013

REFERENCES

[28] Russ Tedrake et al. “LQR-trees: Feedback Motion Planning via Sums-of-
Squares Verification”. In: The International Journal of Robotics Research 29.8
(2010), pp. 1038–1052. doi: 10.1177/0278364910369189. eprint: https:
//doi.org/10.1177/0278364910369189. url: https://doi.org/10.
1177/0278364910369189.

[29] Philipp Reist, Pascal Preiswerk, and Russ Tedrake. “Feedback-motion-
planning with simulation-based LQR-trees”. In: The International Journal of
Robotics Research 35.11 (2016), pp. 1393–1416. doi:10.1177/0278364916647192.
eprint: https://doi.org/10.1177/0278364916647192. url: https:
//doi.org/10.1177/0278364916647192.

[30] C. Mastalli et al. “Crocoddyl: An Efficient and Versatile Framework for
Multi-Contact Optimal Control”. In: IEEE International Conference on Robotics
and Automation (ICRA). 2020.

[31] Esmaeil Najafi, Robert Babuska, and Gabriel Lopes. “A fast sampling
method for estimating the domain of attraction”. In: Nonlinear Dynam-
ics 86 (Oct. 2016). doi: 10.1007/s11071-016-2926-7.

[32] Russ Tedrake. Underactuated Robotics. Algorithms for Walking, Running,
Swimming, Flying, and Manipulation. 2023. url: https://underactuated.
csail.mit.edu.

[33] Seth Hutchinson Mark W. Spong and M. Vidyasagar. Robot Modeling and
control. John Wiley and Sons, 1989. Chap. 6.3, Equations of Motion, pp. 200–
202.

[34] Waltar Murray Philip E Gill and Michael A Saunders. “SNOPT: An SQP
Algorithm for Large-scale Constrained Optimization”. In: SIAM Review
47(1):99-131 (2005).

[35] Lukas Gross et al. “Analytic Estimation of Region of Attraction of an
LQR Controller for Torque Limited Simple Pendulum”. In: 2022 IEEE
61st Conference on Decision and Control (CDC). 2022, pp. 2695–2701. doi:
10.1109/CDC51059.2022.9992856.

[36] Mark M. Tobenkin, Ian R. Manchester, and Russ Tedrake. Invariant Funnels
around Trajectories using Sum-of-Squares Programming. 2010. arXiv: 1010.
3013 [math.DS].

[37] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, p. 655.

72

https://doi.org/10.1177/0278364910369189
https://doi.org/10.1177/0278364910369189
https://doi.org/10.1177/0278364910369189
https://doi.org/10.1177/0278364910369189
https://doi.org/10.1177/0278364910369189
https://doi.org/10.1177/0278364916647192
https://doi.org/10.1177/0278364916647192
https://doi.org/10.1177/0278364916647192
https://doi.org/10.1177/0278364916647192
https://doi.org/10.1007/s11071-016-2926-7
https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu
https://doi.org/10.1109/CDC51059.2022.9992856
https://arxiv.org/abs/1010.3013
https://arxiv.org/abs/1010.3013

REFERENCES

[38] Shen Shen and Russ Tedrake. “Sampling Quotient-Ring Sum-of-Squares
Programs for Scalable Verification of Nonlinear Systems”. In: 2020 59th
IEEE Conference on Decision and Control (CDC). 2020, pp. 2535–2542. doi:
10.1109/CDC42340.2020.9304028.

[39] Nikolaus Hansen et al. “Comparing Results of 31 Algorithms from the
Black-Box Optimization Benchmarking BBOB-2009”. In: ACM-GECCO Ge-
netic and Evolutionary Computation Conference. pp. 1689-1696. Portland,
United States, July 2010. url: https://hal.science/hal-00545727.

[40] Russ Tedrake and the Drake Development Team. Drake: Model-based design
and verification for robotics. 2019. url: https://drake.mit.edu.

[41] Quanser. Linear Servo Base Unit with Inverted Pendulum. Simulink Course-
ware. url: https://www.quanser.com/products/linear-servo-base-
unit-inverted-pendulum/.

[42] Felix Wiebe et al. “Torque-limited simple pendulum: A toolkit for getting
familiar with control algorithms in underactuated robotics”. In: Journal of
Open Source Software 7.74 (2022), p. 3884. doi: 10.21105/joss.03884. url:
https://doi.org/10.21105/joss.03884.

73

https://doi.org/10.1109/CDC42340.2020.9304028
https://hal.science/hal-00545727
https://drake.mit.edu
https://www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/
https://www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/
https://doi.org/10.21105/joss.03884
https://doi.org/10.21105/joss.03884

Acknowledgments

This work is the culmination of my two-year Master’s program in Control
System Engineering at the University of Padua. I am grateful for the opportunity
to have been inspired by the many professional figures I encountered during this
period. In particular, I would like to acknowledge the important contribution of
my first examiner, Augusto Ferrante. The knowledge I gained from the various
university exams has prepared me to tackle real-world applications in the field
of robotics. During my time at the Bremen (DE) DFKI research institute, led by
Frank Kirchner, I was introduced to this fascinating research field. The team of
the Underactuated Lab provided me with a warm welcome and supported me for
almost a year. I would like to express my gratitude to my supervisors, Shivesh
Kumar and Lasse Maywald, who closely monitored my progress and provided
valuable feedback when needed.
All of these accomplishments would not have been possible without the financial
and emotional support of my family. Additionally, I would like to thank my
friends who helped me overcome the challenges I faced and achieve a desirable
work-life balance.

75

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Modeling Legged Systems
	Nature-inspired co-optimization

	Related works
	Contributions
	Structure

	State of the Art
	Co-Design in Robotics
	Optimal Stabilizable Domains
	Robust Simulation Aided Co-Design
	Discussion and Inspiration

	Co-optimization of Acrobot Design and Controller
	Discussion and Inspiration

	Mathematical Background
	Multibody Dynamics
	Trajectory Optimization
	Direct Transcription

	Linear Quadratic Regulators
	Infinite Horizon Formulation
	Finite Horizon Formulation

	Region of Attraction Estimation
	Sums of Squares Optimization
	Simulation-based Approach

	Methodology
	Algorithms for a Robust Co-design
	RTC
	RTCD

	Optimization Settings
	Cost function: The Funnel Volume
	Optimization Strategy: CMA-ES
	Decision Variables: Stabilization and Design

	Application: Swing-up and Stabilization
	The DRAKE Toolbox
	Torque-limited Simple Pendulum
	Cart-Pole

	Results
	Torque-limited Simple Pendulum
	Optimization Results
	Simulation Verification
	Experimental Verification

	Cart-Pole
	Optimization Results
	Simulation Verification
	Experimental Verification

	Conclusions & Future Works
	References
	Acknowledgments

