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Introduction

A well-studied hard problem in number theory is to find an unknown high degree

isogeny between two supersingular elliptic curves over a finite field. This lead to the

development of isogeny based cryptosystems. Supersingular Isogeny Diffie-Hellman

(SIDH) is a key exchange protocol proposed in 2011 that makes use of isogenies

between supersingular elliptic curves. Isogeny based cryptosystems are believed to be

hard for even quantum computers. One of the most influential primitive in the field of

post-quantum cryptographic standards is Supersingular Isogeny Key Encapsulation

(SIKE) which is the incarnation of SIDH that recently advanced to the fourth round

of NIST’s ongoing standardization process. This project deals with a brief study of

the mathematical aspects of an efficient key recovery attack on SIDH proposed by

Wouter Castryck and Thomas Decru in 2022.

In comparison with other cryptosystems based on the pure isogeny problem, the

hardness of SIDH is weaker due to the availability of torsion point information under

the secret isogeny that is made public during the protocol. Then the problem is called

supersingular isogeny with torsion (SSI-T). The main mathematical tool used behind

this key recovery attack is the “glue-and-split” theorem due to Ernst Kani. This

attack also exploits the existence of a small non-scalar endomorphism on the starting

curve.

Including the preliminaries, the first chapter is mainly devoted for studying abelian

varities whose classical examples are elliptic curves. This includes the Picard scheme,

the dual and polarizations of an abelian variety. Later the chapter also introduces

elliptic curve cryptography and SIDH in detail. The second chapter is based on Kani’s

paper, where we introduce reducible subgroup and its correspondence with an isogeny

factorization configuration. The main aim of this chapter is to see how to employ the

reducibility criterion proposed by Ernst Kani to set the decision criteria through out

the attack.

In the last two chapters, we will finally turn to see the setup, strategy and the key

recovery algorithm presented by Wouter Castryck and Thomas Decru. In particular,

we will focus on discussing the mathematical aspects of the steps that are involved in

the iteration. The complexity of the algorithm and some generalizations of the attack

are also added in the final chapter. It is then concluded by giving a brief study of

an algorithm emerged from the same source of inspiration, proposed to attack SIDH

without any information the endomorphism ring of the starting curve.

The main reference used for this project is the paper An efficient key recovery

attack on SIDH by Wouter Castryck and Thomas Decru [1] published in 2022.
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Chapter 1

Pre-requisites

1.1 Abelian variety

An abelian variety is a complete algebraic variety whose points form a group, in such

a way that the maps defining the group structure are given by morphisms. The book

Abelian Varieties by Bas Edixhoven, Gerard van der Geer, Ben Moonen [3] is referred

for this section.

Definition 1.1. A group (G,m, i, e) consists of a set G together with the map

m : G×G→ G the group law

i : G→ G the inverse

e ∈ G the identity element

such that following holds

1. Associativity: m ◦ (m× idG) = m ◦ (idG ×m) : G×G×G→ G

2. The defining property of the identity element:

m ◦ (idG × e) = j1 : G× {e} → G and

m ◦ (e× idG) = j2 : {e} ×G→ G

where j1, j2 denotes the corresponding projection maps and e denotes the inclu-

sion map {e} ↪→ G.

3. Let π : G → G be the constant map g 7→ e and ∆G : G → G × G denotes the

diagonal map, then i gives the two-sided inverse if it satisfies

π = m ◦ (idG × i) ◦∆G = m ◦ (i× idG) ◦∆G

1



1.1 Abelian variety

Translating the same definition to the category of varieties, we obtain the definition

of a group variety

Definition 1.2. A group variety over a field k is a k-variety X together with the

k-morphisms

m : X ×X → X the group law

i : X → X the inverse

e ∈ X(k) a k-rational point to be the identity element

such that following equality of morphisms holds

1. Associativity: m ◦ (m× idX) = m ◦ (idX ×m) : X ×X ×X → X

2. Let j1 : Spec(k) ×X → X, and j2 : X× Spec(k) → X be the projection maps,

then

m ◦ (e× idX) = j1 and m ◦ (idX × e) = j2.

3. Let π : X → Spec(k) be the structure morphism, then

e ◦ π = m ◦ (idX × i) ◦∆X/k = m ◦ (i× idX) ◦∆X/k : X → X

If X is a group variety, then its k-rational points naturally form a group. In gen-

eral, X yields a contravariant functor from the category of k-schemes to the category

of groups by mapping any k-scheme T to the set X(T ), of T valued points of X.

Non-singularity ensures that the group variety behaves well with respect to inter-

section theory, which allows for the definition of divisors, line bundles, and simplifies

the study of rational points and the computation of cohomology groups.

Definition 1.3. An abelian variety is a group variety which, as a variety is complete.

An abelian variety is smooth, connected, commutative and can also be proved as

a projective algebraic group. The classical examples of abelian varieties are elliptic

curves. An elliptic curve is a complete, non-singular curve of genus 1 over a field k.

Remark 1.4. Non-abelian group varieties are varieties equipped with a non-commutative

group structure. For example: General linear group GL(n), Special linear group

SL(n), Symmetric groups Sn, Orthogonal group O(n).

The definition of group schemes is a variation on that of a group variety where

arbitrary schemes are considered rather than varieties. In a less explicit way, one can

define group scheme as follows:

2



CHAPTER 1. PRE-REQUISITES

Definition 1.5. Let S be a scheme. An S-group scheme is a scheme G over S

together with an S-morphism m : G×G→ G such that the induced law of composition

G(T )×G(T )→ G(T ) makes G(T ) a group for every S-scheme T .

An equivalent definition is that an S-group scheme is a contravariant functor from

the category of schemes over S to the category of groups such that the underlying

functor to the category of sets is representable.

Definition 1.6. Let (X1,m1, i1, e1) and (X2,m2, i2, e2) be two group schemes over a

common base k. A homomorphism of group schemes f : X1 → X2 is a morphism of

k-schemes such that

f ◦ e1 = e2, m2 ◦ (f × f) = f ◦m1, i2 ◦ f = f ◦ i1
If f : X1 → X2 is a group scheme homomorphism, then ker(f) is defined as the fibre

product

ker(f) X1

Spec k X2

f

e2

and ker f is then a subgroup scheme of X1.

When A,B are abelian varieties we shall say that f is a homomorphism of abelian

varieties, or simply a homomorphism.

Definition 1.7. Let f : X → Y be a finite surjective morphism between algebraic

varieties over a field k. The degree of f is the degree of the finite field extension of

the function field k(X) over f ∗k(Y ).

Definition 1.8. Let X, Y be abelian varieties over an algebraically closed field k. A

k-isogeny between X and Y is a homomorphism f : X → Y defined over k and such

that ker (f) is finite. The degree of an isogeny f is its degree as a homomorphism.

An isogeny between two abelian varieties can be characterized in many equivalent

ways.

Proposition 1.9. For a homomorphism f : A→ B of abelian varieties, the following

statements are equivalent:

1. f is an isogeny.

2. dimA = dimB and f is surjective.

3. dimA = dimB and ker (f) is a finite group (scheme).

4. f is finite, flat, and surjective.

3



1.2 The Picard scheme of an abelian variety

1.2 The Picard scheme of an abelian variety

Given a scheme X, the Picard group of a scheme,

Pic(X) = H1(X,O∗
X) = {isomorphism classes of line bundles on X}

Let X be an abelian variety and tx : X → X is the translation defined by tx(y) =

m(x, y). The theorem of square states that if L is a line bundle on X, then for all

x, y ∈ X(k), t∗x+yL ⊗ L ∼= t∗xL ⊗ t∗yL, it can be shown that the map φL : X(k) →
Pic(X/k) given by x 7→ [t∗xL⊗ L−1] is a homomorphism.

Remark 1.10. Since abelian varieties are non-singular, we have the natural isomor-

phism Cl(X)
∼→ Pic(X) for any abelian variety X and its Jacobian denoted as Jac(X)

can be considered as the abelian variety which parametrize the degree zero divisor

classes on X by the degree map,

(0)→ Jac(X)→ Pic(X)→ Z→ (0)

Let X be a scheme over some basis S. Consider the contravariant functor PX/S :

(SchS)→ Ab given by

PX/S : T 7→ Pic(XT ) = H1(X ×S T,Gm)

This functor is not representable since PX/S is not a sheaf for the Zariski topology on

SchS.

Definition 1.11. The relative Picard functor PicX/S : (SchS) → Ab is defined to

be the sheaf associated to the presheaf PX/S. So if PicX/S is representable then an

S-scheme representing PicX/S is called the relative Picard scheme of X over S.

Concretely, if T is an S-scheme, then an element of PicX/S(T ) can be described

by giving T ′ → T and a line bundle L on XT ⊗T T
′ such that the two pull backs of L

to XT ⊗T (T ′ ⊗T T
′) are isomorphic. PicX/S cannot be expected to be representable

in general conditions unless we impose certain conditions to the structure morphism

X → S. The most important general results about representability all work under

the assumption that X → S is proper, flat and of finite presentation. If so, the

representing scheme is unique up to S-isomorphism and comes with the structure of

an S-group scheme, locally of finite over k.

Remark 1.12. Let C be a complete curve over a field k. Then PicC/k is group scheme

locally of finite type over k. It can be shown that PicC/k is smooth over k. Assume

C(k) 6= ∅, since PicC/k is locally of finite type over k, it suffices to show that any

point of PicC/k with values in R0 := k[t]/(tn) can be lifted to a point with values in

4



CHAPTER 1. PRE-REQUISITES

R := k[t]/(tn+1). So if we have a line bundle L0 on C ⊗ R0, then the obstruction for

extending L0 to a line bundle on C ⊗ R lies in H2(C,OC) which is zero since C is a

curve.

Definition 1.13. If C is a smooth curve over k with C(k) 6= ∅, then PicC/k is repre-

sentable by a smooth group scheme over k whose connected components are complete.

In particular, the identity component Pic0C/k is an abelian variety over k. It is called

the Jacobian of C denoted as Jac(C).

Remark 1.14. For an elliptic curve E defined over a finite field Fq have E(Fq) 6= ∅.
More precisely, a theorem of Hasse states that if E/Fq is defined over a finite field,

then

|#E(Fq)− q − 1| ≤ 2
√
q

Poincaré line bundle

Let X be a scheme over S with the following situation,

1. f : X → S, the structure morphism is quasi-compact and quasi-separated.

2. f∗(OX×ST ) = OT and f has a section ε : S → X.

This situation holds when X is a complete k-variety with X(k) 6= ∅. Rather than

sheafifying PX/S there is also a way to rigidify the objects as follows: If L is a line

bundle on XT for some S-scheme T , then rigidification of L along εT for εT : T → XT

induced by ε refers to the isomorphism α : OT → ε∗TL. Now define the functor

PX/S,ε : SchS → Ab by

PX/S,ε : T 7→ { isomorphism classes of rigidified line bundles (L, α) on X ×S T}
with the group structure (L, α).(M,β) = (L⊗M, γ) where γ : OT → ε∗(L⊗M).

Definition 1.15. Suppose PX/S,ε is representable by a scheme. Then on X×S PX/S,ε,

there is a universal rigidified line bundle (P , ν) called Poincaré line bundle with the

property that, if (L, α) is a line bundle on X×ST with rigidification along the section ε,

then there exist a unique morphism g : T → PX/S,ε such that (L, α) ∼= (idX×g)∗(P , ν)
as rigidified line bundles on XT .

Remark 1.16. Note that PicX/k also represents the functor PX/S,0 of line bundles

with rigidification along the zero section. The identification between the two functors

is given by sending the class of a line bundle L on X ×k T to the class of L ⊗
pr∗T ε

∗L−1 with its canonical rigidification along {0} × T . So in particular, this shows

the existence of a Poincaré line bundle P on X ×k PicX/k with a rigidification along

α : OPicX/k
→ P{0}×PicX/k

.

5



1.2 The Picard scheme of an abelian variety

Dual of an abelian variety

Definition 1.17. Let L be a line bundle on an abelian variety X. The Mumford line

bundle Λ(L) on X ×X is defined as

Λ(L) = m∗L⊗ p∗1L−1 ⊗ p∗2L−1

The restriction of Λ(L) to both vertical fibre {x}×X and horizontal fibre X×{x}
is t∗xL⊗L−1. So Λ(L) is trivial on {0}×X and on X×{0}. With the same notation,

define K(L) ⊂ X as the maximal closed subscheme such that Λ(L)|X×K(L) is trivial

over K(L) i.e Λ(L)|X×K(L) = pr∗2M for some line bundle M on K(L). So a point

belongs to K(L) if L is invariant under translation by this point.

Proposition 1.18. The subscheme K(L) is a subgroup scheme of X. In particular,

if L is ample then K(L) is a finite group scheme.

Definition 1.19. A line bundle L on an abelian variety is said to be non-degenerate

if K(L) is finite.

Remark 1.20. The map φL : X(k) → PicX/k given by x 7→ [t∗xL ⊗ L−1] is the

unique morphism with the property (idX ×φL)
∗(P) = Λ(L) on X ×S X. And as X is

connected, φL factors through thee identity component Pic0X/S with φL(0) = 0.

Theorem 1.21. Let X be an abelian variety over a field k. Then Pic0X/k is reduced,

hence it is an abelian variety. For every ample line bundle L, the homomrphism

φL : X → Pic0X/k is an isogeny with kernel K(L). We have dim(Pic0X/k) = dim(X) =

dimH1(X,OX).

Proof. Since φL has kernelK(L) which is a finite group scheme for any ample line bun-

dle L, it follows that φL is a finite map with dim(Pic0X/k) ≥ dim(X). For any proper

variety, the tangent space of Pic0X/k is isomorphic to H1(X,OX), in addition Pic0X/k

is smooth over k if and only if dimPic0X/k = dimH1(X,OX). Altogether dimPic0X/k =

dimH1(X,OX) ≤ dim(X) due to the natural structure of graded algebra on the group

variety X. Hence dim(Pic0X/k) = dim(X).

Therefore, for an abelian variety X, Pic0X/k is an abelian variety of same dimension

as X, which parametrizes precisely the translation-invariant line bundles on X.

Definition 1.22. The abelian variety X̂ := Pic0X/k is called the dual of X. The

restriction of the Poincaré line bundle to X × X̂ is denoted as PX . If f : X → Y is

6
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a homomorphism of abelian varities over k, then f̂ : Ŷ → X̂ called the dual of f , is

the unique homomorphism such that

(id× f̂)∗PX
∼= (f × id)∗PY

as line bundles on X × Ŷ with rigidification along {0} × Ŷ .

Proposition 1.23. Let f : X → Y be a homomorphism. Let M be a line bundle on

Y and write L = f ∗M . Then φL : X → X̂ is the composition of

X
f→ Y

φM→ Ŷ
f̂→ X̂

If f is an isogeny and M is non-degenerate then L is non-degenerate too and

rank(K(L)) = deg(f)2.rank(K(M)).

The Poincaré line bundle on X × X̂ comes with a rigidification along {0} × X̂.

As P|X×{0}
∼= O, we can choose a rigidification along X × {0} which is unique up to

an element of k∗ = Γ(X,O∗) and the two rigidifications agree at (0, 0).

Remark 1.24. If we view P as a family of line bundles on X̂ parametrized by X,

then there is a morphism κX : X → ˆ̂
X with κX(0) = 0 and φL = φ̂L ◦ κX . It can be

also shown that if X is an abelian variety, then κX is an isomorphism.

1.2.1 Polarizations

Polarization is the class of an ample line bundle modulo an algebraic equivalence which

carries the same information as the associated homomorphism λ = φL : X → X̂.

Proposition 1.25. Let X be an abelian variety with λ : X → X̂ be a homomorphism.

Consider the line bundle M := (id, λ)∗PX on X. Then φM = λ+ λ̂. In particular, if

λ is symmetric then φM = 2λ.

Remark 1.26. It can be shown that the homomorphism λ : X → X̂ being symmetric

is equivalent to the existence of a finite separable field extension k ⊂ K and L be a

line bundle on XK such that λK = φL.

Proposition 1.27. Let X be an abelian variety over a field k. Let λ : X → X̂ be a

homomorphism such that λ is symmetric and let M := (id, λ)∗PX . Let k ⊂ K be a

field extension and L be a line bundle on XK such that λK = φL. Then we have the

following

1. λ is an isogeny ⇐⇒ L is non-degenerate ⇐⇒ M is non-degenerate.

2. If λ is an isogeny, then L is effective if and only if M is effective.

7



1.2 The Picard scheme of an abelian variety

3. L is ample ⇐⇒ M is ample.

Corollary 1.28. Let X/k be an abelian variety with λ : X → X̂ be a homomorphism,

then the following are equivalent

1. λ is a symmetric isogeny and the line bundle (id, λ)∗PX on X is ample.

2. λ is a symmetric isogeny and the line bundle (id, λ)∗PX on X is effective.

3. there exists a field extension k ⊂ K and an ample line bundle L on XK such

that λK = φL.

4. there exists a finite separable field extension k ⊂ K and an ample line bundle L

on XK such that λK = φL.

Definition 1.29. A polarization of an abelian variety X is an isogeny λ : X → X̂

that satisfies the above equivalent conditions. If λ is an isomorphism, then it is called

a principal polarization.

Proposition 1.30. Let f : X → Y be an isogeny. If µ : Y → Ŷ is a polarization of

Y , then f ∗µ := f̂ ◦ µ ◦ f is a polarization of X of degree deg(f ∗µ) = deg(f)2. deg(µ).

Pairings

Any isogeny f gives a pairing ef between Ker(f) and Ker(f̂). In particular for

f = [n]X and for a polarization λ : X[n]→ X̂[n], we can obtain a bilinear form eλn on

X[n] called the Weil Pairing. Let f be an isogeny of abelian varieties, denote β to be

the canonical isomorphism of group schemes Ker(f̂) and the Cartier dual Ker(f)D.

Remark 1.31. For a commutative group scheme G over a basis S, its Cartier dual

GD represents the contra-variant functor Hom(G,Gm,S) : Sch/S → Gr given by

T → HomSch/T (GT ,Gm,T )

Definition 1.32. Let f : X → Y be an isogeny of abelian varieties over a field k.

Define

ef : Ker(f)× Ker(f̂)→ Gm,k

to be the bilinear pairing on the points given by ef (x, y) = β(y)(x). If Ker(f) is killed

by n ∈ Z≥1, then ef takes values in µn ⊂ G. In particular if f = [n]X , then the

pairing is called the Weil pairing.

en : X[n]× X̂[n]→ µn

8



CHAPTER 1. PRE-REQUISITES

Let λ : X → X̂ is a homomorphism, then

eλn : X[n]×X[n]→ µn

is a bilinear pairing given by eλn(x1, x2) = en(x1, λ(x2)). If λ = φL, then eλn is also

denoted as eLn .

Remark 1.33. If L is a non-degenerate line bundle over an abelian variety X, as the

associated isogeny φL is a symmetric homomorphism, we have K(L) = Ker(φL) ∼=
Ker(φ̂L) and

eφL
: K(L)×K(L)→ Gm

Proposition 1.34. 1. Let f : X → Y be a homomorphism of abelian varieties

over k. Then the following diagram is commutative for any integer n ≥ 1

X[n]× Ŷ [n] X[n]× X̂[n]

Y [n]× Ŷ [n] µn

1×f̂

f×1 en

en

2. Let f : X → Y and g : Y → Z be isogenies and write h = g ◦ f : X → Z and
′i′ be the natural inclusion homomorphism of Ker(f) ⊂ Ker(h), then if T is a

k-scheme with x ∈ Ker(f)(T ) and η ∈ Ker(ĥ)(T ), then ef (x, ĝ(η)) = eh(i(x), η).

Corollary 1.35. Let X be an abelian variety wwith the polarization λ : X → X̂, then

for any integer n ≥ 1, the pairing eλn : X[n] × X[n] → µn is alternating, i.e for any

x ∈ X[n](T ), we have eλn(x, x) = 1.

1.3 Elliptic curves

An elliptic curve is a pair (E,O) where E is a nonsingular curve of genus one and

O ∈ E. The elliptic curve is said to defined over k if E as a curve is defined over k

and O ∈ E. The book The Arithmetic of Elliptic Curves by Joseph H Silverman [4]

is referred for this section.

Let E be an elliptic curve given by the Weierstrass equation. Then E ⊂ P2 consists

of points P = (x, y) satisfying the Weierstrass equation and a point O = [0, 1, 0] at

infinity. Then one have a composition law denoted as
⊕

on E as follows

Composition rule Let P,Q ∈ E, let L be a line through P and Q and let R be

the third point of intersection of L with E. Let L′ be the line through R and O. Then

9



1.3 Elliptic curves

L′ intersects E at R ,O and a third point. The third point is denoted by P
⊕

Q.

This composition law makes E into an abelian group with identity element O.

Definition 1.36. Let E1 and E2 be two elliptic curves. An isogeny from E1 to E2 is

a morphism φ : E1 → E2 satisfying φ(O) = O.

Two elliptic curves are said to be isogenous if there is an non-zero isogeny from

E1 to E2. Except from the zero isogeny, every other isogeny is a finite map of curves,

which gives a usual injection of corresponding function fields φ∗ : k̄(E2) → k̄(E1).

Hence the degree of an isogeny φ denoted by deg φ is the degree of the finite extension

k̄(E1)/φ
∗k̄(E2) and the degree of zero isogeny is zero.

Example: For each m ∈ Z, the multiplication by m isogeny is defined as:

[m] : E → E

if m > 0, P 7→ P + P + P + ...+ P (m-times)

for m < 0, [m](P ) = [−m](−P ) and [0](P ) = O.

Definition 1.37. Let E be an elliptic curve and let m ∈ Z with m ≥ 1. The m-torsion

subgroup of E denoted by E[m] is the set of points of E of order m.

E[m] = {P ∈ E : [m]P = O}

Scheme-theoretically, E[m] is the kernel of the isogeny [m] : E → E, hence it is a

subgroup scheme of E(k̄). The torsion subgroup of E, denoted by Etors is the set of

points of finite order

Etors =
⋃

mE[m]

Proposition 1.38. Let E be an elliptic curve and let m ∈ Z with m 6= 0.

1. deg [m] = m2

2. If m 6= 0 in k (if either char(k) = 0 or p = char(k)> 0 and p 6 |m), then

E[m] =
Z

mZ
×

Z

mZ

3. If char(k)=p > 0, then one of the following is true:

(i) E[pe] = {O} for all e = 1, 2, 3...

(ii) E[pe] =
Z

peZ
for all e = 1, 2, 3, ...

10
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More generally, we have

Theorem 1.39. Let k be a field and X be a g-dimensional abelian variety defined

over k. Let m be an integer which is prime to the characteristic of k, then X[n] is

isomorphic to (Z/mZ)2g as an abstract group.

Therefore, for an elliptic curve E over k and m ∈ Z which is non-zero in k, E[m]

is a subgroup scheme of length m2. In positive characteristic, if E/Fp2 is an elliptic

curve, then E[pe] can never have order p2; the subgroup scheme E[pe] can either be

trivial or isomorphic to Z/peZ.

1.3.1 Supersingular Elliptic curves

Supersingular elliptic curves are a special class of elliptic curves defined over finite

fields. These curves have unique properties that distinguish them from ordinary

elliptic curves.

Theorem 1.40. Let E be an elliptic curve defined over a field k of characterisitc p.

For each integer r ≥ 1, let

φr : E → E(pr) and φ̂r : E
(pr) → E

be the pr-power Frobenius map and its dual. Then the following are equivalent

1. E[pr] = 0 for all r ≥ 1.

2. The map φ̂r is purely inseparable for all r ≥ 1.

3. The isogeny [p] : E → E is purely inseparable and j(E) ∈ Fp2.

4. End(E) is an order in a quaternion algebra.

If the equivalent conditions do not hold, then E[pr] =
Z

prZ
for all r ≥ 1. Further if

j(E) ∈ F̄p, then End(E) is an order of a quadratic imaginary field.

Definition 1.41. If E is an elliptic curve with the properties given as the equivalent

conditions in the above theorem, then it is called a supersingular elliptic curve.

Remark 1.42. Every supersingular elliptic curve defined over a field of characteristic

p admits an isomorphic representation defined over Fp2 .

11



1.3 Elliptic curves

Commutative Isogeny Diagrams

Classical notation of pushforward maps can be used to define commutative diagrams

of isogenies. Let E0, E1, E2 be three curves and two separable isogenies ϕ1 : E0 → E1

and ϕ2 : E0 → E2 of coprime degrees N1 and N2. Then there is a fourth curve E3

and two pushforward isogenies [ϕ1]∗ϕ2 and [ϕ2]∗ϕ1 going from E1 and E2 toward E3

as follows

E0 E1

E2 E3

ϕ1

ϕ2 [ϕ1]∗ϕ2

[ϕ2]∗ϕ1

The isogenies [ϕ2]∗ϕ1 and [ϕ1]∗ϕ2 are defined separable isogenies of respective kernels

ϕ2(ker(ϕ1)) and ϕ1(ker(ϕ2)) with degrees to be deg([ϕ1]∗ϕ2) = N2 and deg([ϕ2]∗ϕ1) =

N1. The two sides of the commutative diagram can be seen as the decomposition of

the same isogeny ψ : E0 → E3 where ψ = [ϕ2]∗ϕ1 ◦ ϕ2 = [ϕ1]∗ϕ2 ◦ ϕ1.

Definition 1.43. A finite subgroup scheme H ⊆ E of an elliptic curve E/K is called

primitive, if E[m] ⊆ H implies m = ±1. In general, H is m-primitive if H[m] =

Ker([m]|H) is primitive. equivalently if

E[q] 6⊆ H for all primes q|m.

An isogeny f : E → E ′ is called m-primitive if Ker(f) is m-primitive or f does

not factor over [q] for any prime q|m.

Proposition 1.44. 1. If H ⊆ E is a subgroup of order n and d|n, then d|#H[m]

and equality holds if (d, n/d) = 1.

2. If H ⊆ E is an m-primitive subgroup scheme of order n and d|(n,m) then

#H[d] = d,#H[k] = k and [d]H = H[k] where k = n/d.

3. Let H1 and H2 be two subgroup schemes of E with H1 ∩ H2 = (0). Then for

ni = #Hi and d = (n1, n2), Hi is d-primitive. If E is supersingular, then

char(K) - d.

4. Let H̃i = [n]−1(Hi) and H ′
i = [ki](H̃i) where ki = ni/d and n = k1 + k2. Then

#H̃i[ki] = ki,#H
′
i = Nn where N = n1 + n2 and we have

H ′
1 +H ′

2 = E[N ] and H ′
1 ∩H ′

2 = E[n].

12
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1.4 Elliptic Curve Cryptography

Public key cryptosystems rely on what are known as one-way trapdoor functions.

These are easy to compute injective functions f : A→ B with the property that f−1

is hard to compute in general, but the same f−1 becomes quite easy to compute if

someone possesses an extra piece of information k.

Typically in cryptography, we have Alice and Bob want to communicate, while

Eve, the eavesdropper intercepts and tries to read their messages. Thus, if Alice and

Bob use public key cryptosystems with Alice knowing the value of k, then Bob can

send her a message a by sending her the quantity b = f(a). Alice easily recovers

a = f−1(b), while Eve, who does not know k, is unable to compute f−1(b).

Public key cryptography was invented by Diffie and Hellman in 1976. The first

practical public key cryptosystem was devised the following year by Rivest, Shamir,

and Adleman. The RSA cryptosystem bases its security on the difficulty of factoring

large numbers. However, Diffie and Hellman did describe a key exchange algorithm

whose security relies on the discrete logarithm problem in the multiplicative group of

Fq, and subsequently ElGamal created a public key cryptosystem based on the same

underlying problem. Koblitz and Miller proposed replacing the finite field Fq with

an elliptic curve E, with the hope that the discrete logarithm problem in the elliptic

curve group E(Fq) might be harder to solve than the discrete logarithm problem in

F∗
q. Their intuition led to the creation of elliptic curve cryptography.

Definition 1.45. Let G be a group and let x, y ∈ G such that y is in the subgroup

generated by x. Then discrete logarithm problem (DLP) is the problem of finding an

integer m ≥ 1 such that

xm = y

The elliptic curve discrete logarithm problem (ECDLP) is the problem of determining
′m′ for the equation [m]P = Q for the given points P,Q ∈ E(Fq).

1.4.1 Diffie-Hellman Key Exchange

It is a method to jointly establish a shared secret key over a public channel based on

DLP due to Diffie and Hellman. Let Alice and Bob agree on a p be a large prime,

a generator of the cyclic group (Z/pZ)∗ = 〈g〉. It is then followed by each choosing

a secret integer called private keys and sending the result of g raised to the power

13
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equal to the secret integer.

Alice Bob

a b

ga ga

gb gb

g

Private keys

Now Alice and Bob compute the shared secret gab. So Eve has to extract a or b from

knowing p, g, ga, gb. There is no known efficient algorithm to do this on a classical

computer, but quantum computer can do this efficiently.

Similarly in Elliptic Curve Diffie-Hellann key exchange, to securely exchange the

value of a point on an elliptic curve,

1. Alice and Bob agree on a finite field Fq, an elliptic curve E over Fq, and a point

P ∈ E(Fq).

2. Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fq).

3. Bob selects a secret integer b and computes the point B = [b]P ∈ E(Fq).

4. Alice and Bob exchange the values of A and B over a possibly insecure com-

munication line.

5. Alice computes [a]B and Bob computes [b]A. They have now shared the value

of the point [ab]P.

So for Eve to extract the message, she needs to solve the ECDLP, given three points

P, [a]P and [b]P in E(Fq), compute the point [ab]P without knowing a and b.

Post-quantum cryptography

Quantum computers have the potential to break many of the commonly used public-

key cryptographic algorithms, such as RSA and elliptic curve cryptography (ECC),

due to their ability to efficiently solve certain mathematical problems that underlie

these algorithms. Therefore, there is a need to develop new cryptographic algorithms

that are resistant to attacks by both classical and quantum computers.

14



CHAPTER 1. PRE-REQUISITES

There are several classes of mathematical problems that are believed to be hard

for both classical and quantum computers. These problems serve as the foundation

for post-quantum cryptographic algorithms. Some of the most promising approaches

include: Lattice-based cryptography, Multivariate cryptography, Hash-based cryptog-

raphy, Supersingular elliptic curve isogeny cryptography etc. It is important to note

that post-quantum cryptography is still an active area of research, and no definitive

standard has been established yet. The National Institute of Standards and Tech-

nology (NIST) in the United States has been leading the standardization process by

soliciting and evaluating candidate algorithms. They are working towards selecting

one or more post-quantum cryptographic algorithms as standards to replace existing

algorithms vulnerable to quantum attacks. For further information on the above, we

refer to the book “Introduction to post-quantum cryptography” by Daniel J Bernstein

[7].

1.4.2 Supersingular Isogeny Diffie-Hellman (SIDH)

Supersingular Isogeny Diffie-Hellman (SIDH) is a post-quantum key exchange proto-

col that relies on the hardness of certain mathematical problems related to isogenies

between supersingular elliptic curves. It was proposed as an alternative to traditional

Diffie-Hellman key exchange, which is vulnerable to attacks by quantum computers.

SIDH was created in 2011 by De Feo, David Jao, and J. Plut [6]. It uses conventional

elliptic curve operations. Supersingular Isogeny Key Encapsulation SIKE or SIDH is

one of the leading candidates for post-quantum cryptography and is currently being

standardized by NIST as part of their ongoing effort to develop quantum-resistant

cryptographic algorithms.

The setup for SIDH is as follows

Choose a prime p be of the form p = 2a3bf − 1 for a small cofactor f , together with

a supersingular elliptic curve E defined over Fp2 . This curve has two large torsion

subgroups E[2a] and E[3b] which are assigned to Alice and Bob respectively. The

protocol starts by choosing a secret subgroup of their respective torsion group and

computing the corresponding secret isogeny. It is then followed by sharing the equa-

tion of the target curve of one’s secret isogeny and the images of the generators of

the other party’s torsion group. This allows them to privately compute a new isogeny

from the starting curve E whose kernel is jointly generated by the two secret sub-

groups and the j-invariant of the codomain curve is the shared secret between them.

Let PA, QA, PB, QB be the auxiliary points such that 〈PA, QA〉 = E[2a] and
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〈PB, QB〉 = E[3b]. Let sk denotes the secret integer chosen.

Alice Bob

Chooses skA Chooses skB

A = 〈PA + skAQA〉 ⊆ E[2a] B = 〈PB + skBQB〉 ⊆ E[3b]

ϕA : E → E/A ϕB : E → E/B

PA,QA,PB ,QB

Secret Subgroups

E/A, ϕA(PB), ϕA(QB)
↪−−−−−−−−−−−−−→

E/B, ϕB(PA), ϕB(QA)←−−−−−−−−−−−−−↩

Now Alice can compute ϕB(A) and Bob can compute ϕA(B). The j-invariant of

(E/B)/ϕB(A) ∼= (E/A)/ϕA(B) is the common secret.

Security

The security of SIKE informally lies on the (Supersingular) isogeny walk problem:

Given two elliptic curves E,E ′ in the same isogeny class, find a path made of isogenies

of small degree between E and E ′. The best generic algorithm currently known is

due to Galbraith: it is a “meet in the middle” strategy that on average requires a

number of elementary steps proportional to the square root of the isogeny class of

E and E ′ with a constant amount of memory. In SIDH, since the secret subgroup

A = 〈PA + skAQA〉 ⊂ E[2a], Alice’s isogeny ϕA : E → EA can be viewed as a

composition of 2-isogenies of smaller degrees i.e if we plot a graph Γ with

V (Γ) = { Supersingular elliptic curves over Fp2}/ ∼=
E(Γ) ={ {E,E ′}| ∃ φ : E → E ′ 2-isogeny}

then quotienting out A from E is a secret walk in this graph starting from E.

Security argument for SIDH: Γ is a Ramanujan graph with rapid mixing properties.
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Key Recovery

In comparison to cryptosystems that rely purely on the isogeny problem, the hardness

assumption underlying SIKE is weaker as the image of the auxiliary points under the

secret isogeny is also revealed. In particular, on targeting Bob’s secret isogeny, the

key recovery amounts to finding an instance of ϕB : E → EB (equivalently the kernel

B) with the given information on the images of the auxiliary points ϕB(PA) and

ϕB(QA) that makes it into an atypical isogenic problem called supersingular isogeny

with torsion (SSI-T).

Definition 1.46. SSI-T: Given two coprime integers lA and lB, two supersingular

elliptic curves E and EB over Fp2 connected by an unknown degree lB-isogeny ϕB :

E → EB and given the restriction of ϕB to the lA torsion points of E, recover an

isogeny ϕB matching these constraints.

On studying superspecial principally polarized abelian surfaces and (2,2)-isogenies

between them, as well as their endomorphisms, Wouter Castryck and Thomas Decru

presented as efficient key recovery attack on SIDH. It is a polynomial-time attack

and provide an implementation for all the proposed NIST-parameter sets for SIKE.

This attack exploits the existence of a small non-scalar endomorphism on the starting

curve and is based on the “glue and split” theorem due to Ernst Kani.

Remark 1.47. During the same time period, Luciano Maino and Chole Martindale

have also presented an attack on SIDH which does not require any endomorphism

information on the starting curve and the algorithm has subexponential complexity

[2]. The inspiration of this attack come from an unrealted collaboration of Lucinao

Maino with Wouter Castryck and Thomas Decru on studying superspecial principally

polarized abelian surfaces.
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Chapter 2

The Reducibility Criterion

As we discussed earlier, recovering the secret keys in SIDH amounts to solve SSI-T.

One way of solving it is by constructing an explicit isogeny from an abelian surface

that contains the starting curve E as a factor such that one of the components of the

isogeny reveals the secret isogeny ϕB : E → EB. So the core idea behind this attack

is to construct an auxiliary curve C, an isogeny γ : E → C and a polarized isogeny

ψ′ originating from the abelian surface C × EB (where EB is the codomain of the

secret isogeny) such that the codomain of the isogeny is again a product of elliptic

curves. Then the kernel of the isogeny ψ′ is called “reducible”. This phenomenon

is characterized by Ernst Kani called Reducibility Criterion. So in this chapter, we

are going to see how to employ Kani’s reducibility criterion for the attack. For this

chapter, Kani’s paper [5] is referred.

This study is done by starting with reducible/irreducible anti-isometries associ-

ated to maximally isotropic subgroups with respect to the Weil pairings and then

its correspondence with an isogeny factorization configuration. The definition of re-

ducible/irreducible anti-isometry depends on the following general identification.

Proposition 2.1. Let A be an abelian variety with dimension d with a principal

polarization λ : A→ Â defined by an ample divisor θ ∈ Div(A) and let p : A→ A′ be

an isogeny. Then the following are equivalent:

1. The subgroup Ker(p) ⊂ A[N ] = K(Nθ) is maximally isotropic with respect to

the symplectic pairing eNθ.

2. deg(p) = Nd and there exist θ′ ∈ Div (A′) such that p∗θ′ ∼ Nθ.

3. There is a principal polarization λ′ : A′ → Â′ such that p̂ ◦ λ′ ◦ p = [N ] ◦ λ.

In addition, p→ Ker(p) establishes a bijection as follows
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1. the set of equivalence classes of pairs (p, λ′)

2. the set of maximally isotropic subgroups of A[N ].

Definition 2.2. Let (A, λ) be a principally polarized abelian surface and H ⊆ A[N ]

be a maximally isotropic subgroup. Then H is called reducible if the unique principal

polarization λH on AH = A/H is a product polarization i.e

(AH , λH) ∼= (E1 × E2, λE1,E2
)

where the ample divisor θE1,E2
= pr∗1(θE1

) + pr∗2(θE2
).

Definition 2.3. An anti-isometry ψ : E1[N ]→ E2[N ] is called reducible if its graph

subgroup, Graph (ψ) ⊆ A[N ] has this property for A = E1 × E2

Classification of reducible maximally isotropic subgroups H ⊂ (E1×E2)[N ] which

are non-diagonal are closely related to the factorization of isogenies f : E1 → E2

Definition 2.4. An isogeny diamond configuration of order N from E1 to E2 is a

triplet (f,H1, H2) consisting of f : E1 → E2 is an isogeny and two subgroup schemes

H1, H2 ⊆ Ker(f) such that

#H1 +#H2 = N , H1

⋂
H2 = 0, #H1 ∗#H2 = deg(f)

Two isogeny configurations (f,H1, H2) and (f ′, H ′
1, H

′
2) are said to be equivalent

if and only if either one the following happens

f = −f,H ′
1 = H2 and H1 = H ′

2 or f ′ = f,H ′
1 = H1 and H ′

2 = H2

If f : E1 → E2 is any isogeny with two factorizations f = f ′
1 ◦ f1 = f ′

2 ◦ f2 such

that deg(f1) = deg(f ′
2) where fi : E1 → E ′

i and f ′
i : E ′

i → E2, then (f, Ker(f1),

Ker(f2)) is an isogeny configuration of order N = deg(f1) + deg(f2). Conversely

each isogeny configuration (f,H1, H2) with H1, H2 ⊆ Ker(f) yield a factorization

fi : E1 → E ′
i = E1/Hi. Moreover fi is uniquely defined by Hi upto isomorphism. The

tuple (f, f1, f
′
1, f2, f

′
2) is called the isogeny factor set representing (f,H1, H2).

Theorem 2.5. Let E1 and E2 be two elliptic curves over K and let N ≥ 2. Then

there is a natural bijection between the following sets of :

(a) equivalence classes of isogeny diamond configurations (f,H1, H2) of order N from

E1 to E2, and

(b) non-diagonal, reducible, maximally isotropic subgroups H ⊆ (E1 × E2)[N ].
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Proof. The theorem can be proved by constructing a map from the set of isogeny

diamond configurations of order N to the set of non-diagonal, reducible maximally

isotropic subgroups of (E1×E2)[N ] and then show it is bijective. Let f = (f, f1, f
′
1, f2, f

′
2)

be an isogeny factor set representing (f,H1, H2), define the isogeny

p = pf : E1 × E2 → E ′
1 × E ′

2 as

p(x1, x2) = (f1(x1)− f̃ ′
1(x2), f2(x1) + f̃ ′

2(x2)

where f̃ ′
i := λ−1

Ei
◦ f̂i ◦ λE2

: E2 → E ′
i.

Claim: Hf = Ker(pf ) is a reducible, maximally isotropic subgroup of A[N ] with

respect to the product polarization λE1.E2
on A = E1 × E2.

By the proposition, it is enough to show that

p̂ ◦ λE′

1
,E′

2
◦ p = λE1,E2

◦ [N ]A (2.6)

holds. To verify this, note that it is equivalent to the matrix equation

M̃(p)M(p) = diag ([N ]E1
, [N ]E2

) (2.7)

where for the isogeny p ∈ Hom(E1 × E2, E
′
1 × E ′

2), M(p) is the matrix
[
p11 p12

p21 p22

]
where pij ∈ Hom (Ej → E ′

i)

and M̃(p) is the adjoint matrix defined by

[
p̃11 p̃12

p̃21 p̃22

]
. Now by definition for p = pf

M(pf ) =

[
f1 −f̃ ′

1

f2 f̃ ′
2

]
and M̃(pf ) =

[
f̃1 f̃ ′

2

−f ′
1 f ′

2

]

Hence the equation 2.7 is equivalent to the equations

f̃1 ◦ f1 + f̃2 ◦ f2 = [deg(f1)]E1
+ [deg(f2)]E1

= [N ]E1

f̃1 ◦ (−f̃ ′
1) + f̃2 ◦ f̃ ′

2 = 0

(−f ′
1) ◦ f1 + f ′

2 ◦ f2 = 0

(−f ′
1) ◦ (−f̃ ′

1) + f ′
2 ◦ f̃ ′

2 = [deg(f ′
1)]E2

+ [deg(f ′
2)]E2

= [N ]E2

which holds true by the representing isogeny factor set. Thus Hf = Ker(pf ) is a

reducible, maximally isotropic subgroup of A[N ]. It is not diagonal, since if Hf =

H ′
1 × H ′

2 with H ′
i ⊂ Ei, then H

′
1 ⊂ Ker(f1) and H ′

2 ⊂ Ker(f̃ ′
2). Since #Hf = N2,

either one of #H ′
i ≥ N which is a contradiction because deg(f1) = N− deg(f2) < N

and degf̃ ′
2 = deg(f1) < N . It can be also shown that this map is compatible with the
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choice of the isogeny factor set representing f .

It remains to the prove the map is bijective. Let f and g be two isogeny configurations

such that Ker(pf ) = Ker(pg). Thus pf and pg both satisfy 2.6, then there exist an

isomorphism φ such that pg = φ ◦ pf and λE′

1
,E′

2
= φ̂ ◦ λE′′

1
,E′′

2
◦ φ. Hence they define

equivalent isogeny configuration, so it is injective. Given a non-diagonal, reducible,

maximally isotropic subgroup H of A[N ], define an isogeny p : A = E1 × E2 → A′ =

E ′
1 × E ′

2 with Ker(p) = H. Let M(p) =

[
p11 p12

p21 p22

]
, then put f1 = p11, f2 = p21,

f ′
1 = −p̃12 and f ′

2 = p̃22. Define f = f ′
1 ◦ f1. Since p satisfies 2.6, it can be shown that

f = (f, f1, f
′
1, f2, f

′
2) is an isogeny factor set of order N .

Corollary 2.8. If f = (f, f1, f
′
1, f2, f

′
2) is any isogeny factor set of order N with

Ker(f1)∩ Ker(f2) = (0), then there is an unique reducible anti-isometry ψ = ψf :

E1[N ]→ E2[N ] such that

f̃ ′
1 ◦ ψ = f1|E1[N ] and f̃ ′

2 ◦ ψ = −f2|E2[N ] (2.9)

and every reducible anti-isometry arises in this way. Thus the theorem 2.5 restricts

to a bijection between the following sets of

1. equivalence classes of isogeny diamond configuration of order N from E1 to E2

and

2. reducible anti-isometries ψ : E1[N ]→ E2[N ].

Proof. Let pf be the associated isogeny as in 2.5 and let H = Ker(pf ), Hi = Ker(fi).

Since Ker(pf )∩ (E1 × (0)) = (H1 ∩H2)× (0). From the hypothesis H1 ∩H2 = (0), it

follows that (pr2)|H : H → E2[N ] is injective and hence bijective since #H = N2 =

#E2[N ].

Thus if we put ψ′ := pr1 ◦ (pr2)−1|H : E2[N ] → E1[N ], then H = {(ψ′(y), y) : y ∈
E2[N ]}. Since H is an isotropic subgroup of A[N ], then ψ′ is an anti-isometry and

hence so its inverse (ψ = ψ′)−1 and by construction Ker(pf ) = Graph(ψ). The map ψ

is unique since if ψ1 is another anti-isometry with Graph(ψ1) ⊆ Ker(pf ) = Graph(ψ),

then ψ1 = ψ.

Conversely, if ψ : E1[N ] → E2[N ] is a reducible anti-isometry, then by theorem 2.5

there exists an isogeny factor set f = (f, f1, f
′
1, f2, f

′
2) of order N such that Ker(pf ) =

Graph(ψ). Since ψ is an isomorphism, Graph(ψ) ∩ (E1 × (0)) = (0) and so Ker(f1)∩
Ker(f2) = (0).

Observe that if we apply f ′
1 to both sides of f̃ ′

1 ◦ ψ = f1|E1[N ] from 2.9, we obtain
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[n2] ◦ ψ = f |E1[N ] where n2 = deg(f2) = deg(f ′
1)

which characterizes ψ if and only if (n2, N) = 1. In particular, if N is prime, then

an anti-isometry ψ : E1[N ]→ E2[N ] is reducible if and only if there is an isogeny f :

E1 → E2 of degree k(N−k) such that the above equation holds for n2 = N−k, for any
such f give rise to the isogeny diamond configuration (f,Ker(f)[k], Ker(f)[N − k]).
The following is an explicit description about the complete characterization of the

reducible anti-isometries ψ : E1[N ]→ E2[N ] by using the results from the proposition

1.44.

Theorem 2.10. Let (f,H1, H2) be an isogeny diamond configuration of order N from

E1 to E2 and put n = N/d and ki = ni/d where d = (n1, n2) and ni = #Hi. Then

f = f̄ ◦ [d], f factors uniquely over [d] and there is a unique reducible anti-isometry

ψ = ψf : E1[N ]→ E2[N ] such that

ψ(k1x1 + k2x2) = f̄(x2 − x1) (2.11)

for all xi ∈ [n]−1(Hi) and every reducible anti-isometry is of this form. In addition if

f′ = (f ′, H ′
1, H

′
2) is another isogeny diamond configuration, then we have ψf = ψf ′ if

and only if f ∼ f’.

Proof. Let H0 = Ker(f) and Hi[d] = Hi ∩ E1[d] for i = 0, 1, 2. Observe H0[d] =

H1[d] × H2[d] ≤ E1[d]. Since d|ni, we have d|#Hi[d], so d
2|H0[d]. But #E1[d] = d2

and so H0[d] = E1[d]. Thus E1[d] ≤ H0 and hence f factors over [d].

Let (f, f1, f
′
1, f2, f

′
2) be an isogeny factor set associated to (f,H1, H2). Then f̃ ′

1 ◦ f̄ ◦
[d] = f̃ ′

1 ◦ f ′
1 ◦ f1 = n2f1 = k2f1 ◦ [d] and f̃ ′

2 ◦ f̄ ◦ [d] = k1f2 ◦ [d]. Thus

f̃ ′
1 ◦ f̄ = k2f1 f̃ ′

2 ◦ f̄ = k1f2. (2.12)

Now by corollary, there is a unique anti-isometry ψ : E1[N ] → E2[N ] corresponding

to f .

Claim: ψ satisfies 2.11.

Let xi ∈ [n]−1(Hi), then kixi ∈ E1[N ] for Nkixi = ninxi = 0. So left hand side

is defined. Observe that Ker(f̃ ′
1)∩ Ker(f̃ ′

2) = (0) for otherwise f ′
1, f

′
2 factor over a

common isogeny which contradicts (f, f1, f
′
1, f2, f

′
2) forms a diamond. Thus to verify

2.11 it is enough to show it is true after applying f̃ ′
i for i = 1, 2. So we have

f̃ ′
1(ψ(k1x1 + k2x2)) = f1(k1x1 + k2x2) = f1(nx1 + k2(x2 − x1)) = f̃ ′

1(f̄(x2 − x1))
f̃ ′
2(ψ(k1x1 + k2x2)) = −f2(k1x1 + k2x2) = f2(−nx2 + k1(x2 − x1)) = f̃ ′

2(f̄(x2 − x1)).

Since every reducible anti-isometry ψ satisfies 2.9, we see by the above that ev-

ery ψ satisfies 2.11. Uniqueness of the ψ follows from the fact that [k1][n]
−1(H1) +

[k2][n]
−1(H2) = E1[N ].
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Chapter 3

The set-up and strategy

This algorithm is presented using a general base elliptic curve E0, however the com-

monly chosen base curves in SIDH is Estart : y
2 = x3 + x or Estart : y

2 = x3 + 6x2 + x

with respective j-invariants 1728 and 287496. Hence on attacking SIDH it becomes

E0 = Estart. This attack target Bob’s private key. The key recovery amounts to find-

ing an instance of 3b-isogeny ϕ : E0 → E (equivalently the secret subgroup B) with

the given information on the images of the auxiliary points ϕ(PA), ϕ(QA) that makes

it into an atypical isogenic problem. This method can also be used to recover Alice’s

key and more generally for any choices of lAlice and lBob instead of just lAlice = 2 and

lBob = 3.

The initial input for the algorithm is

1. a prime p of the form 2a3bf − 1 for integers a ≥ 2, b, f ≥ 1 with 2a ' 3b.

2. an elliptic curve E0/Fp2 with #E0(Fp2) = (p+ 1)2.

3. the generators P0, Q0 of E0[2
a].

4. a 3β-isogeny τ : E0 → Estart for some β ≥ 0.

5. the codomain E/Fp2 of a secret cyclic 3b-isogeny ϕ : E0 → E.

6. the generators P = ϕ(P0) and Q = ϕ(Q0) of E[2
a].

This input returns an isogeny ϕ as the output which we assume the secret isogeny

ϕ is uniquely determined by the input and it is true with overwhelming probability.

This attack runs in heuristic polynomial time on a classical computer.

3.1 Decision strategy via Gluing and Splitting

Given the inputs, the goal is to decide whether or not there exists
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3.1 Decision strategy via Gluing and Splitting

a 3b-isogeny ϕ : E0 → E such that P = ϕ(P0) and Q = ϕ(Q0)

Two temporary assumptions are made here, which will be discussed later in the

generalization and construction of the algorithm. The assumptions are

1. Suppose that 2a > 3b.

2. Let c = 2a − 3b. Assume there exists a cyclic c-isogeny γ : E0 → C for some

codomain curve C and can compute the images Pc = γ(P0) and Qc = γ(Q0).

Let x ∈ Z be an integer that satisfies

x3b ≡ 1 mod 2a and −xc ≡ 1 mod 2a

Suppose there exist a 3b-isogeny ϕ : E0 → E such that P = ϕ(P0) and Q = ϕ(Q0),

then consider the isogeny

ψ = [−1] ◦ ϕ ◦ γ̂ : C → E

with ψ(Pc) = −cP and ψ(Qc) = −cQ.
Observe that for all R, S ∈ C[2a], we have

e2a(xψ(R), xψ(S)) = e2a(R, S)
x2c3b = e2a(R, S)

−1

Hence the group homomorphism [x] ◦ψ|C[2a] : C[2
a]→ E[2a] is an anti-isometry with

respect to the 2a-Weil pairing. This implies that the graph subgroup

〈(Pc, xψ(Pc)), (Qc, xψ(Qc))〉 = 〈(Pc,−xcP ), (Qc,−xcQ)〉 = 〈(Pc, P ), (Qc, Q)〉

is maximally isotropic with respect to the 2a-Weil pairing on C × E.
And this subgroup form the kernel of a (2a, 2a)-isogeny which is a chain of (2, 2)-

isogenies of length a. Quotienting out this subgroup is a walk in the (2, 2)-isogeny

graph of principally polarized abelian surfaces over F̄p all of whose vertices are defined

over Fp2 . These vertices comes in two types;

1. about p2/288 products of supersingular elliptic curves.

2. about p3/2880 Jacobians of superspecial genus-2 curves.

So one can expect most isogenies to be among Jacobians of genus-2 curves which can

be computed by Richelot formula, see Section 3.3.2 for the detailed discussion. With

a proportion of 10/p, the codomain of the (2a, 2a)-isogeny can be a product of elliptic

curves, in which the situation is called split. The role of isogeny γ is to force it into

this expectional situation through ψ.

In this case, the kernel of ψ is a cyclic group of order c3b and it admit two cyclic

subgroupsH1 =Ker(γ̂) andH2 = γ(B) of respective orders c and 3b with the following

properties
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CHAPTER 3. THE SET-UP AND STRATEGY

#H1 +#H2 = 2a , #H1.#H2 = degψ , H1 ∩H2 = {0}

So the triplet (ψ,H1, H2) is an isogeny diamond configuration of order 2a. Then by

Kani’s theorem 2.10, the anti-isometry xψ|C[2a] is reducible such that it satisfies the

condition 2.11. Calculate d =gcd(c, 3b) = 1. To verify 2.11 for all points R1, R2 such

that 2aR1 ∈ H1 and 2aR2 ∈ H2, first observe that ψ(R1) and ψ(R2) are 2a-torsion

points, hence

xψ(cR1 + 3bR2) = 3−b(2a − 3b)ψ(R1) + 3−b3bψ(R2) = ψ(R2)− ψ(R1)

Then by Kani’s theorem the anti-isometry xψ|C[2a] is reducible.

So the decision strategy amounts to find whether or not quotienting C × E by

〈(Pc, xψ(Pc)), (Qc, xψ(Qc))〉 = 〈(Pc, P ), (Qc, Q)〉 result in a product of elliptic curves.

As if there exists a 3b-isogeny ϕ : E0 → E such that P = ϕ(P0) and Q = ϕ(Q0),

then this results holds true. Particularly, since quotienting out this subgroup is a

process of walking in the (2, 2)-isogeny graph of principally polarized surfaces, with

overwhelming probability, the first (a− 1) steps will be one gluing step of C × E to

a Jacobian of genus-2 curve followed by (a− 2) Richelot isogenies between Jacobians

of genus-2 curves and a final test for checking whether the last step splits or not.

3.2 Construction of the auxiliary isogeny γ

Constructing a c-cyclic isogeny γ and computing its images is non-trivial. The prop-

erties of chosen curves Estart plays here an important role in the construction of

the isogeny γ. Both chosen curves Estart come with an endomorphism 2i satisfying

(2i)2 = −4 as follows

1. For Estart : y
2 = x3 + x, let i : (x, y)→ (−x,

√
−1y), then 2i = [2] ◦ i.

2. For Estart : y
2 = x3 + 6x2 + x, let f be the 2-isogeny from y2 = x3 + 6x2 + x to

the curve y2 = x3 + x, then 2i = f̂ ◦ i ◦ f .

There is a reasonable chance of 1/
√
a for the prime factors of c to be congruent 1

mod 4, so c can be expressed as c = u2 + 4v2 = (u+ 2iv)(u− 2iv).

Remark 3.1. The method of finding u and v in the case of square-free integer c is by

using the primes factors l of c to compute
∏

l|c gcd(zl + i, l) whose outcome is among

±(u+ 2iv),±i(u+ 2iv) where zl is any integer such that z2l ≡ −1 mod l.

Define a degree c endomorphism of Estart as

γstart = [u] + [v] ◦ 2i
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3.2 Construction of the auxiliary isogeny γ

The input (4) a 3β-isogeny τ : E0 → Estart for some β ≥ 0, is used to construct γ.

Let τ̃ : Estart → C be the isogeny with kernel γstart(τ(E0[3
β])) = γstart(ker(τ̂))

E0 Estart

C

τ

τ̃

γstart

Then τ̃ ◦ γstart ◦ τ : E0 → C is a 32βc-isogeny vanishing on E0[3
β], so it factors over

[3β], then define

γ =
τ̃ ◦ γstart ◦ τ

3β

Evaluating γ

Now it remains to evaluate γ on the 2a torsion points P0 and Q0.

Case 1: β ≤ b: This is relevant in attacking SIDH when E0 = Estart, as in the case

of SIKE, while β will grow during search-to-decision reduction, but never beyond b.

Since ker τ̂ ⊂ E0[3
b] ⊂ E(Fp2), let T ∈ E0(Fp2) be a generator of ker τ̂ , compute

τ̃ with kernel 〈γstart(T )〉. So evaluating P0 and Q0 is by computing the images un-

der τ̃ ◦γstart◦τ and then scalar multiplying by the multiplicative inverse of 3β mod 2a.

Case 2: β > b: Observe that the isogeny τ̃ is the pushforward isogeny [γstart]∗τ̂

with degree 3β. This gives an alternative method to find τ̃ by using Deuring Corre-

spondence. The Deuring correspondence defines bijection between isogenies of super-

singular elliptic curves and ideals of maximal orders in a quaternion algebra. For the

specific choice of Estart in this case, there is an explicit isomorphism

i : End(Estart)→ Ostart

where Ostart is a maximal order in the quaternion algebra Bp,∞ = 〈1, i, j, ij〉 over Q
with i2 = −1, j2 = −p.

Now by using the techniques from the literature [10], one can covert the isogeny τ̂

into a left ideal Iτ̂ ⊂ Ostart of norm 3β. Then compute the left ideal Iτ̃ = [i(γstart)]∗Iτ̂ .

Finally convert back the left ideal Iτ̃ into a length β chain of 3-isogenies starting from

Estart, which gives the isogeny τ̃ of norm 3β. So here too, evaluating P0 and Q0 is by

computing the images under τ̃ ◦ γstart ◦ τ and then scalar multiplying by the multi-

plicative inverse of 3β mod 2a.
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3.3 Computing chains of (2,2)-isogenies

The decision strategy includes the computation of a chain of (2, 2)-isogenies starting

off by gluing C×E into a Jacobian of a genus-2 curve, followed by Richelot isogenies.

This is done in such a way that it will never run into a product of elliptic curves

except possibly at the last step.

Representation of points in JH

From a geometrical point of view, one can obtain a smooth projective curve C by

adding suitable points at infinity to the base curve y2 = f(x). If deg f is odd, there

is just one such point, and it is always a rational point. If deg f is even, there are

two such points, which correspond to the two square roots of the leading coefficient

of f .

Classical Mumford Representation: Let C : y2 = f(x) be a hyperelliptic

curve of odd degree with genus g over k and D be a non-zero effective divisor of

degree d such that if i : C → C is a map which takes (x, y) 7→ (x,−y) satisfies

i(Pj) 6= Pk for all j 6= k in D. Then there exist unique polynomials u(x), v(x) ∈ k[x]
such that

1. u(x) is a monic polynomial of degree d.

2. deg(v(x)) < d.

3. if P = (x′, y′) ∈ C then P ∈ Supp(D) ⇐⇒ u(x′) = 0, v(x′) = y′ and in this

case, vP (D) is the multiplicity of x′ as a root of u(x).

This representation ofD by a pair of polynomials is called theMumford representation

of D.

Lemma 3.2. Let C : y2 = f(x) be a hyper elliptic curve of odd degree and of genus

g over k. Denote its Jacobian as usual by J . Then for every point P ∈ J(k) there is

a unique divisor D ∈ Div C(k) of degree d = deg(D) ≤ g such that P = [D − d.∞].

Moreover, if the degree of the polynomial f is even, then for every point P ∈ J(k),
there is a unique divisor D such that P = [D − d

2
∞1 − d

2
∞2]. Throughout, we are

interested in genus-2 curve H : y2 = h(x) = c6x
6+c5x

5+...+c0, with c6 6= 0, so that it

has two places∞1,∞2 at infinity, and all points on its Jacobian JH that are assumed

to be representable as (α1, β1)+(α2, β2)−∞1−∞2 with α1 6= α2. Then by the above

lemma, points on the Jacobian JH is assumed to have a Mumford representation of

the form D = [x2 + u1x+ u0, v1x+ v0].
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3.3 Computing chains of (2,2)-isogenies

3.3.1 Gluing E × C into a Jacobian

In the first step, E × C need to be glued into the Jacobian of a genus-2 curve H

via the (2, 2)-subgroup 〈(2a−1Pc, 2
a−1P ), (2a−1Qc, 2

a−1Q)〉. Then we need to find the

images of the points (Pc, P ), (Qc, Q) of this corresponding isogeny.

Proposition 3.3. Let C/K : y2 = (x−α1)(x−α2)(x−α3) and E : y2 = (x−β1)(x−
β2)(x−β3) be elliptic curves over a field K of characterisitc different from two. Write

∆α for the discriminant of (x− α1)(x− α2)(x− α3) and ∆β for the discriminant of

(x− β1)(x− β2)(x− β3). Define

1. a1 = (α3 − α2)
2/(β3 − β2) + (α2 − α1)

2/(β2 − β1) + (α1 − α3)
2/(β1 − β3)

2. b1 = (β3 − β2)2/(α3 − α2) + (β2 − β1)2/(α2 − α1) + (β1 − β3)2/(α1 − α3)

3. a2 = α1(β3 − β2) + α3(β2 − β1) + α2(β1 − β3)

4. b2 = β1(α3 − α2) + β3(α2 − α1) + β2(α1 − α3)

5. A = ∆βa1/a2, B = ∆αb1/b2

6. h(x) = −(A(α2 − α1)(α1 − α3)x
2 +B(β2 − β1)(β1 − β3))

.(A(α3 − α2)(α2 − α1)x
2 +B(β3 − β2)(β2 − β1))

. (A(α1 − α3)(α3 − α2)x
2 +B(β1 − β3)(β3 − β2))

Then the (2,2)-isogeny with domain C×E and kernel 〈((α1, 0), (β1, 0)), ((α2, 0)(β2, 0))〉
has a codomain as the Jacobian of a genus-2 curve H defined by y2 = h(x). The

degree-2 morphisms of the dual isogeny are given by

φ1 : H → C

(x, y) 7→ (s1/x
2 + s2, (∆β/A

3)(y/x3))

φ2 : H → E

(x, y) 7→ (t1x
2 + t2, (∆α/B

3)y)

where s1 = −(B/A)(a2/a1), t1 = −(A/B)(b2/b1),

s2 =
1

a1
(α1(α3 − α2)

2/(β3 − β2) + α3(α2 − α1)
2/(β2 − β1) + α2(α1 − α3)

2/(β1 − β3)),

t2 =
1

b1
(β1(β3 − β2)2/(α3 − α2) + β3(β2 − β1)2/(α2 − α1) + β2(β1 − β3)2/(α1 − α3))

Proof. The proposition is proved in the reference [[8], Proposition 4].

The above mentioned morphisms φi for i = 1, 2 can be extended and combined to

form a (2, 2)-isogeny φ : JH → C × E by mapping
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[
∑

j Pj]→
∑

j φ(Pj)

Observe that φ̂ is the isogeny of interest and to compute the image of a point (Pc, P ) ∈
C × E, it suffices to compute for some [D] ∈ φ−1{(PcP )}

2[D] = φ̂φ([D]) = φ̂(Pc, P ).

Let D = PH + QH − ∞1 − ∞2 represent a point in JH . Assume its Mumford

representation is of the form [x2+u1x+u0, v1x+ v0]. Note that the divisor∞1+∞2

maps to ∞ under φ1 and φ2. So it’s left to compute φi(PH +QH).

For i = 2, the line connecting φ2(PH) and φ2(QH) has a slope of λ2 =
− (∆α/B

3)v1

t1u1
and denote ω2 = λ22 +

∑3
i=1 βi − t1(u21 − 2u0)− 2t2, then

φ2(PH +QH) = (ω2,−λ2(ω2 − t2 + (u0v1 − u1v0)t1/v1))

To calculate φ1, first consider the transformation ĩ : (x, y) 7→ (1/x, y/x3). Then let

ũ0, ũ1, ṽ0, ṽ1 be the Mumford coordinates of P̃H + Q̃H with

ũ0 =
1

u0
, ũ1 =

u1

u0
, ṽ0 =

u1v0 − u0v1
u20

, ṽ1 =
u21v0 − u0v0 − u0u1v1

u20

Denote λ1 to be the slope of the line connecting φ1(PH) and φ1(QH) and ω1 =

λ21 +
∑3

i=1 αi − s1(ũ21 − 2ũ0)− 2s2, then

φ1(PH +QH) = (ω1,−λ1(ω1 − s2 + (ũ0ṽ1 − ũ1ṽ0)s1/ṽ1))

This gives four equations in the unknowns u0, u1, v0, v1:

x(φ1(PH +QH)) = x(Pc)

y(φ1(PH +QH)) = y(Pc)

x(φ2(PH +QH)) = x(P )

y(φ2(PH +QH)) = y(P )

Together with expressing [D] ∈ JH in the equation of H gives

2v20 − 2v0v1u1 + v21(u
2
1 − 2u0) = 2c0 + (−u1)c1 + (u21 − 2u0)c2 + (−u31 + 3u0u1)c3 +

(u41 − 4u21u0 + 2u20)c4 + (−u51 + 5u31u0 − 5u1u
2
0)c5 + (u61 − 6u41u0 + 9u21u

2
0 − 2u30)c6

This system will have four solutions defined over Fp2 . Take any of these solutions and

double the corresponding point on JH produces the desired image of (Pc, P ).
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3.3.2 Richelot isogenies

The next (a − 2) steps are assumed to be Richelot isogenies between Jacobians of

genus-2 curves. In the case of genus-2 curves, a Richelot isogeny φ : JC → JC′

induces an isomorphism between the degree-2 isogeny class of JC and the degree-2

isogeny class of JC′ . In general, we have the following definition

Definition 3.4. Let A be a principally polarized abelian surface. A Richelot isogeny

φ : A→ A/G is an isogeny where G ∼= (Z/2Z)2 is a maximal 2-isotropic subgroup of

A[2].

Let C denotes a hyperelliptic curve of genus two, over a field k of characteristic

not two and JC be the Jacobian of C. It follows from the nondegeneracy of the

Weil pairing that the maximal 2-Weil isotropic subgroups of JC [2] are isomorphic to

(Z/2Z)2.

Lemma 3.5. Let R be a proper, nontrivial subgroup of JC [2]. If R is the kernel of an

isogeny of principally polarised abelian surfaces, then R is a maximal 2-Weil-isotropic

subgroup of JC [2].

Therefore the lemma implies that if A is a principally polarised abelian surface,

and if φ : JC → A is an isogeny respecting the polarisations such that the kernel of φ

is a proper, nontrivial subgroup of JC [2], then φ is a (2, 2)-isogeny.

Explicit formula of Richelot isogenies between Jacobians of genus-2 curves are

available in the reference [9] chapter 8. Let H : y2 = h(x) be a hyperelliptic curve

and a (2, 2)-subgroup

〈[g1(x), 0], [g2(x), 0]〉, g1(x) = x2 + g11x+ g10 g2(x) = x2 + g21x+ g20

of its Jacobian. Let g3(x) = h(x)/g1(x)g2(x) = g32x
2 + g31x+ g30, then compute

δ = det



g10 g11 1

g20 g21 1

g30 g31 g32


 and h′(x) = g′1(x)g

′
2(x)g

′
3(x)

where g′i(x) = δ−1

(
dgj

dx
gk − gj

dgk

dx

)
for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). Then the

codomain of the corresponding isogeny is the Jacobian of the curve H ′ : y2 = h′(x).

Let X ⊂ H ×H ′ be a curve defined by

X : g1(x)g
′
1(x) + g2(x)g

′
2(x) = yy − g1(x)g′1(x)(x− x) = 0
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X is naturally equipped with the projection maps π : X → H, π′ : X → H ′. Then

the isogeny is given by

JH → JH′ : [D] 7→ [π′
∗π

∗D]

To compute the image of the point [D] = [x2 + u1x + u0, v1x + v0], eliminate the

variables x, y from the system

x2 + u1x+ u0 = 0

y2 = v1x+ v0

y2 = h(x)

g1(x)g
′
1(x) + g2(x)g

′
2(x) = 0

yy − g1(x)g′1(x)(x− x)

By running a Gröbner basis computation, one can find that

[x4 + u′3x
3 + u′2x

2 + u′1x+ u′0, v
′
3x

3 + v′2x
2 + v′1x+ v′0]

are the non-reduced Mumford coordinates for the image on JH′ .

3.3.3 Last step of the chain: Split or not

The deciding step of the strategy is to check whether quotienting out C×E will result

in a product of elliptic curves i.e the codomain of the last step of (2, 2)-isogeny is split

or not. It can be shown that the determinant δ of the a-th Richelot isogeny vanishes

if and only if the codomain is a product of elliptic curves instead of the Jacobian of a

genus-2 curve. Hence the deciding step is reduced to verifying whether or not δ = 0.

33



3.3 Computing chains of (2,2)-isogenies

34



Chapter 4

Key Recovery Algorithm and

Generalizations

The main aim is to come up with an algorithm that challenge SIDH/SIKE (even in

a general case) to recover Bob’s secret key.

4.1 Algorithm: Basic Version

Having the input for the algorithm from previous chapter, assume β = 0, so that

E0 = Estart. This is the case of SIKE. In the general case, replace the maps κ̂ : E1 →
E0, κ̂2κ1 : E2 → E0, etc below with their compositions with τ.

4.1.1 Iteration

For the first iteration, choose β1 ≥ 1 minimal such that there exists an α1 ≥ 0 for

which

c1 = 2a−α1 − 3b−β1

is positive and only has prime factors congruent to 1 mod 4. Let κ1 : E0 → E1 be a

3β1-isogeny followed by ϕ1 : E1 → E.

To an attacker, there are 3β1 options for κ1 and for each of these options, run the

decision algorithm on

1. the curve E1 = κ1(E0).

2. the generators P1 = κ1(2
α1P0) and Q1 = κ1(2

α1Q0) of E1[2
a−α1 ].

3. the 3β1-isogeny κ̂1 : E1 → E0.
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4. the codomain E; if the guess is correct then E is connected to E1 via an unknown

isogeny ϕ1 of degree 3b−β1 .

5. the generators 2α1P, 2α1Q of E[2a−α1 ].

So according to the decision strategy, only the correct option for κ1 will pass the

test, which will then left a secret isogeny of degree 3b−β1 : the starting step of next

iteration.

To begin with, one needs to construct the auxiliary isogeny γ1 : E1 → C1 and

compute the images Pc1 , Qc1 of the points P1, Q1.

E0 E1 E

C1

γstart
κ1

˜̂κ1 γ1

ϕ1

Let us denote κ̂1 as η1. So γ1 auxiliary isogeny of degree c1

γ1 =
η̃1 ◦ γstart ◦ η1

3β1

where η̃1 : Estart → C1 is the isogeny with the kernel γstart(kerκ1). This simplifies the

computation to

Pc1 = 2α1 η̃1γstart(P0) and Qc1 = 2α1 η̃1γstart(Q0)

After computing these points, the final step is to check whether the quotient of C1×E
by the (2a−α1 , 2a−α1)-subgroup

〈(Pc1 , 2
α1P ), (Qc1 , 2

α1Q)〉

is again a product of elliptic curves or not. This is done by computing the corre-

sponding (a−α1) chain of (2, 2)-isogenies. As discussed from the previous chapter, it

start with the gluing of C1×E into Jacobian of a genus-2 curve followed by a−α1−2

Richelot isogenies between Jacobian of genus-2 curves and a final easy ”δ = 0 test”

which confirm whether the last step split or not. If the ”δ = 0 test” fails, then try

again with a different guess for κ1.

Remark 4.1. Even in the case of wrong guess for κ1, the subgroup 〈(Pc1 , 2
α1P ), (Qc1 , 2

α1Q)〉
remains maximally isotropic with respect to the Weil pairing. So detecting wrong

guesses using Weil pairing is not the way to use. Hence the computation of chain

of (2, 2)-isogeny which includes gluing and its successive Richelot walk is compulsary

through out.
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If the test passes, i.e when the right option for κ1 is found, the next iteration

starts from E1. Let β2 > β1 be minimal such that there is an α2 for which

c2 = 2a−α2 − 3b−β2

is positive and all its prime factors are congruent to 1 mod 4. Let κ2 : E1 → E2 be a

3β2−β1-component such that the new secret isogeny ϕ1 = ϕ2 ◦ κ2 where ϕ2 : E2 → E.

E0 E1 E2 E

C2

γstart
κ1

˜̂κ2κ1

κ2

γ2

ϕ2

Let us denote κ̂2κ1 as η2 and η̃2 : Estart → C2 is the isogeny with kernel γstart(kerκ2κ1)

and for the ease of writing.

For each guess for κ2 one computes

Pc2 = 2α2 η̃2γstart(P0) and Qc2 = 2α2 η̃2γstart(Q0)

Once these points are computed, checks whether the quotient of C2 × E by the

subgroup

〈(Pc2 , 2
α2P ), (Qc2 , 2

α2Q)〉
is reducible or not.

By continuing in this way, one eventually retrieves all of ϕ by the composition of

E0
ϕ1−→ E1

ϕ2−→ E2
ϕ3−→ .........→ En−1

ϕn−→ E

4.1.2 Step sizes

One way of reducing the number of possible guesses in each iteration is by making

the gaps between the consecutive integers 0, β1, β2, β3, ....., βr = b small as possible.

In particular, the expected number of (2, 2)-chains that need to be computed is about

1

2
(3β1 + 3β2−β1 + 3β3−β2 + ....+ 3b−βr−1)

Except on the last iteration where βr = b, a necessary condition for each of the βi is

that b− βi is odd. Because, if b− βi > 0 is even then

ci = 2a−αi − 3b−βi ≡ 3 mod 4

ci must admit a prime factor that is congruent to 3 mod 4. Hence the best one can

allow the sequence of {βi} to grow by steps of two. This makes the expected number

of (2, 2)-chains to be computed becomes about 9b/4. Except in the cases of small βi,

the optimal estimate of 9b/4 lies close to reality. Since as βi grows, the number of

candidates α′
is grows as well which leads to the increase in the probability of success

as ci is allowed to get smaller.
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4.1.3 In terms of Bob’s key

This is an attempt to rephrase the iteration in terms of Bob’s secret key denoted as

skBob. SIDH comes with public generators PB, QB of E0[3
b] and a secret isogeny ϕ (or

the secret subgroup 〈PB+ skBobQB〉 which forms the kerϕ ) is encoded as the integer

skBob ∈ [0, 3b)

Let β0 = 0 and expand

skBob = k1 + k23
β1 + .....+ kr3

βr−1 where ki ∈ [0, 3βi−βi−1 − 1)

observe that for i = 1,

kerκ1 = 〈3b−β1PB + k13
b−β1QB〉

So the first iteration step to find the isogeny κ1 amounts to

1. guessing k1

2. computing the 3β1-isogeny ˜̂κ1 : Estart → C1 with the kernel as γstart(kerκ1)

where kerκ1 is as mentioned above.

3. computing the points Pc1 , Qc1 ∈ C1

4. checking whether the subgroup 〈(Pc1 , 2
α1P ), (Qc1 , 2

α1Q)〉 is reducible or not.

Once k1 is found, proceed to determine k2 by setting the kernel as

kerκ2 = 〈3b−β2PB + (k1 + k23
β1)3b−β1QB〉

and the process goes on. So the iteration finally determines the integer skBob digit by

digit. In addition, if all the gaps between βi is two, then this results in determining

one base-9 digit of skBob at a time.

4.2 Some speed ups

The following are some methods for speeding up the iteration.

Choosing αi as large as possible: For a given βi, one usually choose an integer

αi ≥ 0 such that ci = 2a−αi − 3b−βi is positive and has only prime factors which are

congruent to 1 mod 4. But this is not a unique integer. Hence choosing a large αi

makes the length of a−αi-chain of (2,2)-isogenies smaller. Therefore it is efficient to

choose larger αi.
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Using a precomputed table: A precomputed table which stores for all odd

values s ∈ {1, 3, 5, ........, 239}, the smallest integer t(s) such that 2t(s) − 3s has only

prime factors which are congruent to 1 mod 4. It also stores the corresponding values

for u and v. The table is available in uvtable.m. For every values of βi such that

b− βi is odd, check whether the corresponding value of t(b− βi) ≤ a. After choosing

the right option, set αi = a − t(b − βi). This makes sure that, one can choose αi as

large as possible with u and v readily available without factoring.

Extending Bob’s secret isogeny: Imagine a situation when some candidates

of βi does not admit an integer αi ≥ 0 such that 2a−αi − 3b−βi has prime factors only

congruent to 1 mod 4. For instance, this happens when b− βi > 0 is even. Suppose

βi − 1 does admit αi such that all necessary conditions are satisfied. Then one can

extend Bob’s secret isogeny with an arbitrary 3-isogeny ϕ′ such that P ′ = ϕ′(P ) and

Q′ = ϕ′(Q). Now set ϕ′◦ϕ as the new secret isogeny , the relevant expression becomes

2a−αi − 3b+1−βi and we already have the value for αi ≥ 0 for which ci is a product of

prime factors that are congruent to 1 mod 4. One can use the attack to this extended

isogeny for determining Bob’s secret key.

This means that most step sizes drop from 2 to 1, by rephrasing it means that

we are determining one base-3 digit of skBob instead of base-9 in general case. The

only possibly larger step occurs at the beginning of the iteration. Example: In case

of SIKEp751, the smallest value β1 such that c1 satisfies the essential conditions is for

β1 = 6. This implies a costly start of the algorithm: out of 20.6 hours for breaking

SIKEp751, about 14 hours are spent for determining the first 6 ternary digits of skBob.

Remark 4.2. 1. If 2a is smaller than 3b, then it is more efficient to attack Alice’s

private key instead of Bob using 3b torsion points and chain of (3, 3)-isogeny.

2. There is possibility that the randomly chosen isogeny ϕ′ matches with the dual

of the last degree-3 component of ϕ. This can lead to create false positives and

clueless about the correct guess since the wrong guesses are also at distance

3b−βi from E. So if multiple guesses pass the test, all needs to do is change the

ϕ′, then one can identified the dual direction too. if this happens, it will not

affect the correctness of β1 since it doesn’t depend on ϕ′, but will be discovered

when trying to determine the ternary digit at β2 = β1 + 1.

4.3 Complexity of the Algorithm

Modulo the factorization of polynomially many natural numbers which only depend

on a and b, this attack runs in heuristic polynomial time on a classical computer.
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The complexity of the attack is mainly dependent on the computation of the isogeny

γ : E0 → C of degree c = 2a − 3b.

Landau’s classical theorem regarding sums of two squares

Let b(n) be the characteristic function of integers that are representable as a sum of

two squares and let

B(x) =
∑

n≤x b(n)

be the number of such integers up to x. Landau’s Theorem gives an asymptotic

formula for B(x):

B(x) = K
x

√
log x

+O(
x

log3/2 x
), x→∞

where K ≈ 0.764 is the Landau–Ramanujan constant. More generally, for any integer

n 6= −k2, let Bn(x) be the number of positive integers less than or equal to x of the

form u2 + nv2, it was also shown that B4(x) is asymptotic to

0.5731..
√
log x

x

We can use this to estimate the probability that our strategy succeeds in constructing

an isogeny γ : E0 → C of degree c = 2a − 3b: it is about ≈
0.6884
√
a

.

The first iteration of our key recovery algorithm is where we choose β1 such that

there exists an α1 for which c1 = 2a−α1 − 3b−β1 is of the form u2 + 4v2. Observe

that the first iteration dominates the overall runtime, because the expression can be

recycled in the remaining iterations by extending Bob’s secret isogeny. In view of

Landau’s theorem, it is expected that one should try in the order of
√
a pairs (α1, β1)

before we succeed. So the smallest β1 is expected to be of magnitude a1/4. While

this is good enough for breaking the concrete parameter sets of SIKE, the asymptotic

runtime is Lp(1/4) rather than polynomial.

To achieve a polynomial time complexity, the attack is extended from sums of

squares to more general quadratic forms and hope that there is a number n ≤ a such

that c1 can be written as u2 + nv2. Once such a decomposition is found, there is a

polynomial time construction of an isogeny from Estart to an elliptic curve possess-

ing an endomorphism
√
ni satisfying

√
ni ◦ √ni = −[n]. This endomorphism can be

transferred into a desired degree c isogeny γ.
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Once γ is constructed, the algorithm proceeds by computing the corresponding

(a−α1) chain of (2, 2)-isogenies. This mainly includes the Richelot isogenies between

Jacobians of genus-2 curves. The formula consists of computing the determinant of a

3× 3 matrix in each step. The computational complexity of finding the determinant

of a n × n matrix is the same as matrix multiplication up to a constant. By a fast

known algorithm, it is O(n3). In this case, we are always computing the determinant

of a 3×3 matrix which have arithmetic operation complexity O(1). For determinant,

the order of magnitude of the bit complexity is different from that of arithmetic, as

it depends on the length of the inputs. Given the inputs for the algorithm, it has

complexity polynomial in log(p).

4.4 Generalizations

The proposed algorithm can also admit some generalizations which make one to use

it even some of the initial inputs of the algorithm are not available explicitly.

Arbitrary torsion

As it is mentioned in the last remark, there is no theoretical obstruction to attack

Alice’s key instead of Bob especially in the situation when 2a is considerably smaller

than 3b which makes none of the ci to be positive. So in this case, one will be com-

puting the chains of (3, 3)-isogenies instead of (2, 2)-isogenies.

This is doable using the machinery available in the literature Descent via (3,3)-

isogeny on Jacobians of genus 2 curves by N. Bruin, E.V. Flynn, D. Testa.

It gives a parametrization of curves C of genus 2 with a maximal isotropic (Z/3Z)2

in JC [3], where J is the Jacobian variety of C, and develop the theory required to

perform descent via (3, 3)-isogeny. Consider curves C of genus 2 over a field k of

characteristic not 2 or 3, that have special structure in the 3-torsion of their Jacobians

JC . In particular, we consider the situation where JC [3] contains a group χ of order

9. Such a curve C can be given by a model of the form

y2 = F (x) = G(x)2 + λH(x)3

where G(x) is cubic and H(x) is quadratic in x. It can be shown that the Weil pairing

of the 3-torsion points can be easily expressed in terms of the corresponding polyno-

mials G(x) and H(x) and this allows to show that the subgroup χ ⊂ JC [3] of size 9 is

maximally isotropic with respect to the Weil pairing. Therefore JC/χ is a principally

polarized surface and then descent via (3, 3)-isogeny. The formula are practical and
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one can recover Alice’s private key bit per bit.

The attack will proceeds by computing (3, 3)-isogenies of length at most b and

then using a test ”∆ = 0” which plays a similar role as δ in the Richelot isogeny

formula to verify whether the final (3, 3)-isogeny splits or not.

In general, one can attack SIDH when set up use arbitrary primes lA and lB

instead of just 2 and 3. This changes nothing but now one needs to compute chains

of (l, l)-isogenies for primes l ≥ 5. For isogenies between Jacobians of genus-2 curves,

the formula is more involved than those to compute (2, 2) and (3, 3)-isogenies, but

they are polynomial in l, so practically enough to complete the attack. Away from

l = 2, 3, a straightforward decision algorithm to verify whether the codomain of the

Jacobian of a genus-2 curve result in a product of elliptic curves is not available. So

this can be done by either compute an (l, l)-isogeny to a Jacobian and see if the theta

constants fails to form a genus-2 curve or by writing down a system of equations

expressing that the domain Jacobian is ”(l, l)-split” and verify whether the system is

consistent or not.

Other base curves with a known path to Estart

In practice, SIDH have a base curve E0 = Estart where

Estart : y
2 = x3 + x or Estart : y

2 = x3 + 6x2 + x

But with the currently known ways of generating supersingular elliptic curves, every

publicly generated alternative to E0 comes with a known path to Estart. The KLPT

algorithm can convert this path into a required isogeny for the intial input τ : E0 →
Estart of degree 3β for some β ≥ 0. Now one is in the position to start the attack by

using glue and split method by constructing the auxiliary isogeny γ explicitly.

4.4.1 Base curves without a known path to Estart

In the case of unavailability of information about End(E0), then letting γ to emanate

from E rather than E0 leading to consider γ ◦ ϕ : E0 → C, an isogeny of degree c3b

makes sense and it can be used to apply the decision criteria by checking whether or

not the subgroup

〈(P0, xγ(P ), (Q0, xγ(Q))〉 ⊂ E0 × C

is reducible, with x be a multiplicative inverse of 3b modula 2a.
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Even in the absence of a known path to Estart, there are situations when one can

possibly construct the auxiliary isogeny γ. For instance, if c = 2a − 3b is smooth.

Construction of γ: Let c = l1l2...ls be the prime factorization of c and for each

i = 1, 2, ..., s, let ri denote the multiplicative order of −p modulo li. Observe that

since #E(Fp2) = (p + 1)2 and End(E) is an order, the p2− Frobenius map acts as

[−p]. Hence one can find a non-trivial point in E0[l1] ⊂ E0(Fp2r1 ) and the subgroup

it generates is defined over Fp2 . Using this subgroup as the kernel of an Fp2-rational

isogeny γ1 : E0 → C1 of degree l1 which can be computed and evaluated using

formula of Velu type. By continuing this process, we eventually obtain γ : E0 → C

as a composition of γs ◦ γs−1 ◦ .... ◦ γ1 where each γi is an Fp2 rational li-isogeny.

Using this γ in the decision criteria and key recovery algorithm is in the same way

as in a general case. To begin with, choose a smallest integer β ≥ 1 for which there

exists an integer α ≥ 0 such that

c = 2a−α − 3b−β

is smooth. Then for the each guess for κ1-the first degree 3
β component of the secret

isogeny ϕ, run the first iteration step to check whether or not there exist a degree

3b−β- isogeny ϕ1 : κ1(E0)→ E which maps 2ακ1(P0) to 2αP and 2ακ1(Q0) to 2αQ to

find the right option.

Once κ1 is found, proceed to find the next component of ϕ by steps of degree

3. Since smoothness is a rare event, it make sense to recycle the expression c =

2a−α − 3b−β all along. Hence the auxiliary isogeny γ is also recycled again i.e it has

to be computed once, including pushing through points. It works by extending γ by

an extra degree 3-isogeny ϕ′ : C → E ′ and to find the option for κ2, the decision is

made by checking whether or not there is a degree c3b−β-isogeny mapping 2ακ2κ1(P0)

to 2αϕ′γ(P ) and 2ακ2κ1(Q0) to 2αϕ′γ(Q). By continuing this iteration will give the

entire isogeny chain.

Remark 4.3. An attack on SIDH with arbitrary starting curve:

Given the same source of inspiration, this way of generalizing the attack when there

is no known path to Estart is quite similar to the attack proposed by Luciano Maino

and Chole Martindale [2].

To recover the secret isogeny with an input of; let A = laA and B = lbB be two

coprime integers, two supersingular elliptic curves E0 and EA over Fp2 connected by

an unknown degree-A- isogeny ϕA : E0 → EA, a basis {PB, QB} of E0[B], a basis

{PA, QA} of E0[A], the image points ϕA(PB), ϕA(QB).

The core idea behind their attack is to construct an elliptic curve E and an isogeny

ϕf : E → E0 with f = B − A be smooth and a polarized isogeny Φ originating from
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the abelian surface E × EA such that one of its components reveals the dual of the

secret isogeny ϕA. A brief version of the algorithm can be given as:

1. Compute integers e, j, f, i such that e is small and smooth, 0 ≤ j ≤ b, f is

smooth and positive, i is small, (Al−i
A )−1 = c mod eBl−j

B and eBl−j
B = f +Al−i

A .

Set A′ = Al−i
A and B′ = eBl−j

B for ease of notation.

2. Compute a curve f -isogenous to E0 by the isogeny ϕf .

3. Compute a basis {PeB′ , QeB′} of E[eB′] such that [e]PeB′ = [ljB]ϕ̂f (PB) and

[e]QeB′ = [ljB]ϕ̂f (QB).

4. Choose a guess ϕliA
for the last i steps of ϕA and let ϕ′ : E0 → E ′ be the

corresponding first a− i steps of ϕA.

E0 E ′ EA

E

ϕ′
ϕ
li
A

ϕf
ϕ

5. Choose R, S ∈ E ′[eB′] such that

[e]R = [l−i
A fl

j
B]ϕ̂liA

◦ ϕA(PB)

[e]S = [l−i
A fl

j
B]ϕ̂liA

◦ ϕA(QB)

R,S are a guess for the images of ϕ(PeB′), ϕ(QeB′) respectively.

6. Compute a (eB′, eB′)-isogeny Φguess with domain E × E ′ and kernel;

ker Φguess = Graph(cϕ|E[eB′]) = 〈(PeB′ , cR), (QeB′ , cS)〉.

Check if the codomain splits, if not take a new guess for (ϕliA
, R, S).

7. Choose a basis {P,Q} of E ′[A′] and compute the images of ϕ̂′ by evaluating Φ

on E ′[A′].

8. Compute ker(ϕ′) = 〈ϕ̂′(P ), ϕ̂′(Q)〉 and return ϕliA
◦ ϕ′.

The existence of Φ with a kernel given by the graph of cϕ|E[B] which is maximally

isotropic with respect to the Weil pairing of E × EA is proven by employing Kani’s

reducibility criteria. The complexity of this attack is mainly determined by the cost

of computation of the cofactor isogeny ϕf and how smooth we require f to be.
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So in summary the whole idea is as soon as one is able to find a small integer

β ≥ 1 such that there exist an α together with c = 2a−α − 3b−β is smooth, then the

attack applies. Since finding c to be smooth is an optimistic goal, at least this might

lower the security level of certain parameter sets.

There are some ways to make up the leeway of our attack

1. By extending the secret isogeny ϕ : E0 → E by an arbitrary isogeny ε : E → F

of some smooth degree e and then working with ε ◦ϕ : E0 → F allows to easily

find a smooth integer of the form c = 2a−α − e3b−β to construct the auxiliary

isogeny γ : F → C.

2. Let H be a genus-2 curve over Fp2 with a superspecial Jacobian J and let d be

an integer. By any algorithm if one can efficiently solve to find if there exist a

(d, d)-isogeny ψ : J → A such that A is a product of elliptic curves for a fixed

d, this will also create more leeway.

Indeed, this allows us to work with expression of the form c = d2a−α − e3b−β.

Each step consists of computing a (2a−α, 2a−α)-isogeny and then checking the

final Jacobian is (d, d)-split which likely to be more efficient by using the above

algorithm.
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