
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Data Science

Optimization of embedding alignment for

bias analysis

Supervisor Master Candidate
Prof. FRANCESCORINALDI WUXIANLONG
University of Padova

Co-supervisor Student ID
Prof. GIOVANNI DA SANMARTINO 2038500
University of Padova

Academic Year
2022-2023

ii

iv

Abstract

Natural Language Processing(NLP) is a field of Artificial Intelligence which also related to lin-
guistics. NLP tasks usually rely on word embedding, the representation of words. However,
bias in the words can also propagate to its word embedding, thus resulting in a bias representa-
tion. The study of the bias in word embedding is of a great interests nowadays. In this thesis,
we will focus on methods of finding the bias hidden in the word embedding with alignment.

This thesis consists two parts, the first part, we will focus on the general introduction to the
word embedding, biases and the alignment technique. more specifically, with the first chap-
ter, we will introduce the word embedding and the semantic and syntactic property. In the
chapter part, we will introduce the theoretical background of the optimization and linear pro-
gramming. In the third chapter, we will introduce to the biases and the diachronic evolution
of themeaning of words in different years. While in the second part of this thesis, we will focus
on different alignments found by different techniques and we compare their performances of
finding the diachronic change between theword embedding of Englishwords in year 1890 and
1990. Later we will focus on the zero norm formulation and try to implement different tech-
nique to reduce the computational time. In chapter four, wewill construct the alignments and
similarity measure. In the last two chapters we will perform the experiment and we compare
different algorithms for computation reduction.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1
1.1 Distributional hypothesis and vector semantics 1
1.2 Semantic and syntactic property of embedding 3

1.2.1 Cosine Similarity . 3
1.2.2 Analogy of word embedding . 5

1.3 Embedding models . 6
1.3.1 One Hot Encoding . 7
1.3.2 Word2Vec . 9

1.4 The alignment . 13
1.4.1 Word alignment . 14

2 Linear Programming and FrankWolfe method 17
2.1 Introduction to Linear Programming . 17
2.2 Nonlinear Programming . 19

2.2.1 Continuous Optimization . 21
2.2.2 Existence condition . 22
2.2.3 Convex and concave programming 24
2.2.4 Linearization of nonlinear problem 27

2.3 The Frank-Wolfe method . 30
2.3.1 Formulation of Frank-Wolfe method 31
2.3.2 Step size . 33
2.3.3 Block-coordinate Frank-Wolfe . 35

3 Cultural Semantic Conditioning and Biases 39
3.1 Biases . 39

3.1.1 Societal biases . 40
3.1.2 Bias propagation and amplification 43

vii

3.2 Diachronic change of the embedding . 43
3.2.1 Histwords project . 44
3.2.2 ExploringWord Evolution . 46

3.3 The cultural contamination by alignment 48

4 Models 49
4.1 W1: Orthogonal Procrustes . 51
4.2 W2: l1 method . 51
4.3 W3: Zero norm . 53

4.3.1 Similarity measure . 58

5 Dataset and the experimental setup 61
5.1 Comparison of the alignments . 66
5.2 Evaluation methodology . 69

6 Experiment and conclusion 71
6.1 Frank-Wolfe and its variants . 79
6.2 Conclusion and future work . 85

References 87

Acknowledgments 93

viii

Listing of figures

1.1 CBOW architecture. 11

2.1 Full FrankWolfe [1]. 32

3.1 Figure of automatically generated analogies for the she-he pair by Bolukbasi et
al. [2] (2016). 41

3.2 Figure of selected list of occupations that are closest toheor she in thew2vNEWS
embedding. 41

3.3 Characteristics of the datasets built for the project Histwords[3]. 45
3.4 Diachronic change of different words in the project Histwords[3]. 46
3.5 Result of the wordmail in the ExploringWord Evolution[4]. 47

4.1 Representations of w and the alignment map A. 50
4.2 Representations of all three alignments. 50
4.3 Diagram of similarity measure. 58

5.1 Cardinality of the vocabulary. 62
5.2 Sorted θ20 for words in the common vocabulary. 63

6.1 Result of absolute cosine similarity for all three base line models. 72
6.2 Result of theta measure (K = 20) for all three base line models. 73
6.3 Comparison of sE and si values for all alignments. 78
6.4 Comparison of theta measure for all the alignments. 79
6.5 Value of the objective function . 80
6.6 Mean value of theta measure with variants of FW. 82
6.7 Mean value of cosine similarity with variants of FW. 82
6.8 Mean value of absolute cosine similarity with variants of FW for top and bot-

tom lists. 85

ix

x

Listing of tables

6.1 Original theta measure without alignments. 71
6.2 Table of result of absolute cosine similarity for all three base line models. . . . 72
6.3 Theta measure for all the test sets after applying all three alignments. 73
6.4 Number of intersecting words between test sets and the top and bottom lists. 76
6.5 sE values for all the top and bottom lists. 77
6.6 Absolute cosine similarity with alignments for all the top and bottom lists. . 77
6.7 Theta measure without alignments for all the top and bottom lists. 78
6.8 Theta measure with different alignments for all the top and bottom lists. . . 79
6.9 Time needed for the computation of the baseline alignments. 79
6.10 Gap and value of the objective function for the full Frank-Wolfe algorithm. . 80
6.11 Time needed for the computation of various alignments. 81
6.12 Theta measure for all the test sets after applying variants of Frank-Wolfe. . . . 81
6.13 Table of result of absolute cosine similarity for variants of FW. 83
6.14 Number of intersecting words between test sets and the top and bottom lists. 85

xi

xii

Listing of acronyms

FTC Fundamental Theorem of Calculus

xiii

xiv

1
Introduction

Before diving into the thesis, the first thing to be done is to clarify the termword embedding.
The word embedding is essentially a vectorial representation of a word which is widely used in
Computer Science and alsoNLP.Mathematically speaking, it is amapping e from a vocabulary
of N wordsD = {wi}i=1,...,N to a d-dimensional space V = {wi⃗ }i=1,...N [5] and this mapping
can be represented as:

e : D −→ V

With the above formulation, we can map a word into a vector representation. Notice that
V ∼= Rd, the selectionof dimensionality forword embedding is awell-knownopenproblem. In
mostNLPapplications, the dimensionality d is either selected adhocorby grid search, however,
in this thesis, we will use d = 300 as it is not only the most common choice of d [6], but we
also want to stay aligned with groundbreaking papers such as [7], [8] and [9].

1.1 Distributionalhypothesisandvectorsemantics

In the1950s, a hypothesis called thedistributional hypothesiswasfirst formulatedby linguists
such as Joos, M. (1950)[10], Harris (1954) [11] and Firth (1957) [12]. Within this hypothesis,
it stated that words in similar contexts tend to have similar meanings, the link between similar-

1

ity in how words are distributed and similarity in what they mean is called the distributional
hypothesis. Based on this hypothesis, we can introduce the so-called distributional semantics
which adopts the idea that it is possible to study the linguistic elements starting from the distri-
butional hypothesis. In a 1957 paper, The measurement of Meaning [?], they notice that it is
possible to retrieve a 3-dimensional vector from a word.
Harris (1954) inhisworkDistributedStructuremade another important contribution, hewrote:

Here we will discuss how each language can be described in terms of a distribu-
tional structure, i.e. in terms of the occurrence of parts (ultimately sounds) rel-
ative to other parts, and how this description is complete without intrusion of
other features such as history or meaning.

Furthermore, Joos (1950) and Firth (1957), they found out that the words that are being
used in the same context are more likely to have a close semantic similarity. Now, we can pro-
vide with some examples.

1. Can I use your ……?

2. Sure, the ……is in the living room.

3. Shhh, he’s on the …….

4. Pick up the ……and call me.

For the examples above, there is a lot of options of words that can be used in some of these
contexts. However, in order to find words that can appear in all of them are more likely to be
synonymous. Let us give some examples, for words such as sofa will be perfectly fine option
for sentences 1, 2 and 3. The word TV appears to be more suitable for sentences 1 and 2. And
the word bathroom can appear in only the first sentence. Furthermore, word such as volcano
cannot appear in any of these sentences above while words such as telephone and dog and bone
have exactly the same meaning and thus they can be filled into all of these sentences.

Another term that is useful for this thesis is the so-called vector semantics, it instantiates
the distributional hypothesis by learning representations of the words which is also called the

2

embedding, directly from the distributions in texts. In order to obtain the embedding rep-
resentation for the words, linear algebra and machine learning tools are necessary. The word
embedding can be retrieve using different algorithms, and the algorithm tries to match each
word in the vocabulary to its unique vectorial representation or namely their word embedding.
This will be discussed in more detail in the following sections.

1.2 Semantic and syntactic property of embedding

In the previous section, we have discussed in general about word embedding, distributional hy-
pothesis which is related to the semanticmeaning of the words. In this section, wewill move to
the semantic and syntactic properties of embedding, but before starting it, we will first discuss
the metric to determine the similarity between embedded words.

1.2.1 Cosine Similarity

When determining the similarity of two vectorial representations, there are various ways of do-
ing so. The most common one can be using the Minkowski distances which is defined as:

Definition 1 TheMinkowski distance of order p (p an integer) between two points

X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn)

is defined as:

Lp(X,Y) = (
n∑
i=1

|xi − yi|p)
1
p

For the same points given, the Minkowski distance might change according to the order p,
an popular choice of p is when p = 2, in this specific case, the Minkowski distance is the Eu-
clidean distance.

Even though, the Minkowski distance is a really easy choice for the similarity identification,
however, it still faces some difficulties such as the proper choice of the order p. Thus, here we
will use anothermetric which instead of determining similarity of representations based on the

3

distance, we use the angle between vectors to perform the task, and this new method is called
the cosine similarity. Notice that, we have successfully avoid choosing the order p as the co-
sine similarity does not measure the distance in the first place, it considers only the cosine of
the angle between two vectors, which means that two words that have a smaller angle are more
similar in space. Now, we will give the definition of the cosine similarity.

Definition 2 Let v, w ∈ D be two words and let v⃗, w⃗ ∈ V be the corresponding vectors. The
cosine similarity between v⃗ and w⃗ can be computed as:

cos (v⃗, w⃗) =
v⃗ · w⃗

∥v⃗∥2∥w⃗∥2

Due to the property of the cosine function, we know that the cosine similarity cos (v⃗, w⃗) ∈
[−1, 1]. With this technique, the denominator of the function performs a normalization over
the dot product, which can provide us a more robust identification of two embedding. In this
thesis, since the embedding of each word is normalized to 1 and the denominator of equation
(2) takes value 1 and it can be then be rewritten in a simplified form:

cos (v⃗, w⃗) = v⃗ · w⃗

Here,wewill give some examples of the cosine similaritymeasure taking from[13]byAtienza
(2018) which considers a 50-dimensional embedding vectors.

cos (father⃗ ,mother⃗) = 0.890903844289

cos (ball⃗ , crocodile⃗) = 0.890903844289

Let us do a quick check of the example above. For words father andmother, they are clearly
similar words as they can be labeled within the same semantic class, for example, they are the
parent of a person. Indeed, the cosine similarity give us a very high result that is close to 1. And
the words ball and crocodile belong to different semantic class, thus should return a low simi-
larity value, indeed, we get 0.274.

4

1.2.2 Analogy of word embedding

One important semantic property of word embedding is the so-called analogy. It can capture
the relational meanings between the word embedding [14] through vector arithmetic. A word
analogy is essential a statement of the form ’x is to y as a is to b ’. The word a and x can be trans-
formed to get b and y in the same way, and vice-versa. Since this transformation is invertible,
thus, we can state:

Definition 3 A word analogy f is an invertible transformation that holds over a set of ordered
pairs S if and only if

∀x, y ∈ S, f(x) = y ∧ f−1(y) = x.

when f is of the form x⃗→ x⃗+ r⃗, it is a linear word analogy.

Let us give another definition.

Definition 4 If we consider three words, a, b, x. We can find the solution y of the analogy a : x =
b : y(a is to x as b is to y) by computing argminx L

2(y, b⃗+ x⃗− a⃗) in which the term L2 represents
the Euclidean distance.

Now, let us report some examples from [15], within this pre-trained 50-dimensional embed-
ding space, we have the following analogy:

woman⃗ −man⃗ + son⃗ ≈ daughter⃗

This analogy does make sense as the relational meaning between the pair of words (woman,
man) and (daughter, son) are captured. More specifically, for both pairs, they have the form of
(female,male). Another example can be:

China⃗ − Beijing⃗ + Tokyo⃗ ≈ Japan⃗

With this analogy, again it captures the semantic relation of the pairs (China, Beijing) and
(Japan, Tokyo). They are both have the form (country, capital). One last example we will give

5

is as follow:

worst⃗ − bad⃗ + big⃗ ≈ biggest⃗

Again, within this analogy, the semantic relation of the pairs (worst, bad) and (biggest, big) as
they both have the form (superlative, basic).
In order to show better the concept, here, we will cite [16] another example with figure (??).

With the figure above, we can see how the words king and man shift to words queen and
woman in the same manner.

1.3 Embedding models

Until now, we have discussed briefly about the basics of the word embedding and its semantic
properties, however, we haven’t discussed how to obtain the word embedding. Within this sec-
tion, we will dive deeper into the relevant models for retrieving word embedding.

The easiest on is the so-called one hot encoding which takes each word into its own class
represented by a d-dimensional unit vector. With this method, in order to guarantee that each
pair of word and embedding vector is unique, the dimension d should be larger or equal to the
number of words in the vocabulary. This setup results in a very sparse representation of words,
and d is much larger than 300.

6

Another important and successful model is the so-called Word2Vec model which is first in-
troduced by Mikolov et al. [17] in 2013. Within this paper, they proposed two novel model
architectures for computing continuous vector embedding of words, namely CBOW model
and Skip-Gram model. The CBOWmodel output a word embedding considering the words
in a sliding window, moving one word at time even though the exact output method differs
and we will discuss more about them in the following section.

And finally, the last model to be introduced in this thesis is theGloVemodel [18] developed
by Stanford’s NLP group in 2014 which uses an unsupervised learning algorithm for obtain-
ing vector representations for words. Training is performed only on the nonzero elements in a
word-word co-occurrence matrix.

Notice that, unlike one hot encoding which give sparse vectors and large dimensionality
d. Both Word2Vec and GloVe model returns vectors that are typically dense and have much
smaller dimensionality d compared to the size of the vocabularyN.The embedding obtainwith
the models explained above can be labelled as static embedding as they are trained over a fixed
corpus and they do not change depending on the context of the word. There is also its counter-
part, the dynamic embedding which learns the dynamic contextual embedding, one of such
model is BERT [5]. We will not discuss more about BERT, as in this thesis, our embedding
belongs to the type of static embedding.

1.3.1 OneHot Encoding

Previously, we have introduced briefly various models for word embedding, now, we will dis-
cuss them inmore detail. First, we start with the one hot encodingmodel. As explained before,
the one hot encoding represents the words with unit vectors, hence, each word is mapped to
a unit vector whose value are all zero except for the index of the word itself in the vocabulary.
Since it’s a unit vector, thus, the non-zero entry of the embedding will take value 1 and con-
sequently, the norm of such word embedding is always equal to 1. Other than the previous
stated problem with high dimensionality d. There is another potential issue for this method:
since all the unit vectors are orthogonal to each other and thus they are dissimilar to each other,
in case of classification, this might be beneficial as we want the different class to be as separable
as possible. However, it can be an potential limitation if we want to preserve some similarity.

7

Now, let us give an example of one hot encoding so that it can be understood better. Let us
consider the following sentence and let us call itD:

I left home last summer and I went to Paris and Rome.

Then length or the cardinality of sentence D is: |D| = 10, which means that, in order to
preserve the one to one correspondence between word and word embedding vector, we must
represent these word in R10 as there are 10 unique words in this sentence. Let us represent
these word with one hot encoding and we consider the order of the appearance of the word in
the sentence as the position of the entry of the unit vector, and thus we have:

I [1 0 0 0 0 0 0 0 0 0]
left [0 1 0 0 0 0 0 0 0 0]
home [0 0 1 0 0 0 0 0 0 0]
last [0 0 0 1 0 0 0 0 0 0]

summer [0 0 0 0 1 0 0 0 0 0]
and [0 0 0 0 0 1 0 0 0 0]
went [0 0 0 0 0 0 1 0 0 0]
to [0 0 0 0 0 0 0 1 0 0]
Paris [0 0 0 0 0 0 0 0 1 0]
Rome [0 0 0 0 0 0 0 0 0 1]

And finally, let us summarize the pros and cons of one hot encoding. The advantage of this
technique is that it is highly intuitive and very easy to compute. Recall that, it might requires
more memory because as the size of the vocabulary increases, the dimensionality increases ac-
cordingly andwill result in a largermemory consumption. Another disadvantage is that it does
not preserve the inner relation between the words and by its construction, it does not exploit
the context of the words as it can be seen as a random assignment of unit vector to the vocab-
ulary. As explained before, due the orthogonality between the unit vectors, all the embedding
are equally irrelevant to each other, whichmakes the embedding fail at providingmeaningmea-
sure. For example, Beijing and Tokyo are both capitals and for sure we expect them to be more
similar than Beijing and apple. For all the reasons stated above, within this paper, we will not
use one hot encoding for word embedding.

8

1.3.2 Word2Vec

TheWord2Vec mainly contains two models. The first one is the CBOWmodel which is short
for Continuous Bag-of-Words model. With this method, it outputs the target word according
to its surrounding words which is called context words [19]. Let us give an example of the
context words. Let us consider a text corpus with a sliding window of size h, it can slide one
word forward each time. At each time instance, we focus on the center word of the sliding win-
dow and we output based on all the other h − 1 surrounding words and these words are the
context words. Let’s consider a sliding window of the size h = 5 and let us assume we have the
following sentence:

I love giraffes because I love their long necks

Let us consider the first 5words as the size of the slidingwindow is 5, thenwe have the center
word of this time instance is then theword giraffes. Notice that our corpus has 7 uniquewords,
namely, I, love, giraffes, because, their, long, necks. Representing them with one hot encoding
requires a 7-dimensional representation. Let us follow the order of these 7 unique words and
with one hot encoding, we have:

I [1 0 0 0 0 0 0]
love [0 1 0 0 0 0 0]

giraffes [0 0 1 0 0 0 0]
because [0 0 0 1 0 0 0]
their [0 0 0 0 1 0 0]
long [0 0 0 0 0 1 0]
necks [0 0 0 0 0 0 1]

In the first time instance, our contextwords are I, love, because, I. For the current centerword
giraffes, its output is thus calculated as the average of the embedding of the context words, and
we have the output of giraffes.

Notice that, in the calculation above, we simply perform the sum of the vectors, thus in this
case, the order of the vectors doesn’t change the result.

9

Let us dive into the model that trains for the embedding. Here, a neural network is used
for this task which is fully connected. It has three different layers, namely, the Input layer,
Hidden layer andOutput layer. The Schematic representation of the CBOW architecture is
showed in figure (??). We can see that the input context word vector x⃗ is fed to the input layer
and then it passes through the fully connected layers withReLu activation function toHidden
layer, produces a hidden representation of the input, later it further passes to the output layer
with again fully connected layers activated with the softmax function, and finally at the out-
put, we have the predicted word vector of the center word y⃗. The relevant hyperparameters of
this network are the dimensionality of the embedding d and the cardinality of the vocabulary
|D = N|. From now on, we will fix the letter d for the dimensionality of the embedding and
the letter N as the number of words of the vocabulary. Moreover, we have also bias terms a, b
and the weight matricesM ∈ Rd×N, N ∈ RN×d. CBOW uses a cross entropy loss as its loss
function and it is defined as:

J = −
N∑
k=1

yk⃗ log(yk⃗)

By the end of the training process, we learn the optimal weight matricesM andN, the final
word embedding is then given by the average of M andN transposed.

Another architecture is the Skip-Grammodelwhich acts as the reverse ofCBOW.The skip-
gram model seeks to classify whether the center word belongs to the context or not based on
another word in the sentence. In order to demonstrae better the concept, let us give the follow-
ing example. Consider the following sentence:

. . . lemon, a tablespoon of apricot jam, a pinch . . .

10

Figure 1.1: CBOW architecture.

Let us now focus on the central part of this sentence and consider a sliding window of size
h = 5 that is the words between tablespoon and a. The center and the target word for this
sliding window is thus the word apricot.
Considering a general pair of words (w, c) of the corpus, inwhich c is the possible context word.
Our classifier tries to classify if word c is a real context word based on the probability P(+|w, c).
With the example above, we should expect a positive classification if c = jam and return neg-
ative if c= air. The intuition behind this is that a word is likely to be close to the target if its
embedding vector is also similar to the target ones. With the cosine similarity measure intro-
duced in the previous section, now we can quantity the similarity between word w and c and
we can finally get the probability P(+|w, c):

P(+|w, c) = σ(w⃗ · c⃗) = 1
1+ e−w⃗·c⃗

where σ is the sigmoid function. Notice that the cosine similarity inside is generally higher
whenwords are close to eachother, thus, correspond to ahigher probability value. Assumption
that all context words are independent is make for the skip-gram model, thus, the probability
of a set of h words c1, . . . , ch are words in a real context window for w is:

P(+|w, c1, . . . , ch) =
h∏

i=1

σ(ci · w)

The model considers two embedding for target and contest word. The two embedding are
then gathered in matricesW ∈ Rd×N and C ∈ Rd×N. Later they will be concatenated and
return the matrix θ.

11

The skip-grammodel starts by assigning a random embedding vector for each of theNword
in the vocabulary. Then, it modifies the embedding of each word iteratively by trying to make
nearby words to have similar embedding, in another word, given a word w and other words
close in the text, the embedding of w shifts to be more like the embedding of the nearby words
and less like the embedding of the word that occur far away from w. Here, we have a binary
classifier, in order to train this binary classifier, wewill use the Skip-GramwithNegative Sam-
pling(SGNS). For training, we will need two set of samples, a positive set and a negative set of
the form (w, c). Let us denote them as:

S+ := {(w, c+)}and S− := {(w, c−)}

Going back to the previous example, for the target word apricot, word pairs such as (apri-
cot, jam) and (apricot, tablespoon) are in the positive set S+. While word pairs such as (apricot,
space) and (apricot, air) should be in the negative set S−. In the training, we usually have more
negative class words than positive class words as the corpus is usually really large, and for this
reason, we put the term Negative Sampling in the name of this method. This algorithm has
one hyper-parameter which is the ratio of the number of positive sample pairs and the num-
ber of negative sample pairs, and we denote it as k. Thus, for each positive sample, k negative
sample are generated according to the weighted unigram frequency of w. The definition of the
loss function takes into consideration both the idea of maximizing similarity between positive
pairs and at the same timeminimizing similarity between negative paris for each word w in the
corpus, and the loss can be written as:

L(θ) = −[log(P(S+|w, c)) +
k∑

i=1

log(P(S−|w, c))]

= −[log(σ(w⃗ · c⃗)) +
k∑

i=1

log(σ(−w⃗ · c⃗))]

(1.1)

For minimization of this loss function, one can use the stochastic gradient descent. And
another hyper-parameter should be mentioned is the size of the sliding window h. A smaller
slidingwindow forces a similarword embeddingwith the same semantic role, for exampleParis
and RomeWhile a large gives the topical relatedness, such as pope and Rome. Hence, usually

12

the size of the sliding window is a moderate value which is less or equal to 10.

1.4 The alignment

Mathematically speaking, the word alignment is essentially a mapping function A between
two vector spaces of two different set of word embedding. Considering two sets of words and
their corresponding set of word embedding, the word embedding of word in the set can be
defined as:

e1 : D1 → Vi e2 : D2 → V2

in which D represents the vocabulary sets and we have V1 ∼= Rd1 and V2 ∼= Rd2 . In this
thesis, we will consider the dimensionality of the two embedding to be the same. Given two
word x ∈ D1 and y ∈ D2, the alignment between the embedding space will try to look for a
linear map A of the form [20]:

A : V1 → V2 s.t. A(e1(x)) ≈ ex(y)

This method is widely used in the cross-lingual embedding models as we can set the two
vocabulariesD1 andD2 to be the vocabularies of two different languages, however, its applica-
tion can also expand to the embedding of the same language [21]. We will further discuss it in
the following section.

The joint embedding space of the cross-lingual embedding is the main application of the
cross-lingual embeddingmodel. The cross-lingual transfer is really useful for someNLP task.
It is composed by modelling on data of one language and then applying to another based on
shared cross-lingual features.

Let us take sentiment analysis for an example of the cross-lingual task. It has to determine
the polarity of the sentiment such as positive and negative of text in different languages [22].
Mogadala andRettinger [23] evaluate their embeddingwith themultilingualAmazonproduct
review dataset of Prettenhofer and Stein [24]. Another widely used application is themachine
translation task, which seeks to translate the entire text of corpus into another language. One

13

example is done by Zou et al. [25] who uses a phrase-basedmachine translation to evaluate the
embedding.

Before diving into the word alignment models, we will first classify the alignment. They
can be classified based on the input and output. For example, we can have theWord to Word
alignment method, which takes an embedding in the first embedding space e1 and output the
embedding of semantically similar token in the second embedding e2(x∗). Whenwewant to in-
put and output sentences, we then have the so-called Sentence to sentence alignment, we can
further expand it to the document class and we have the document alignment model. Since
for thesis, we use only the word to word alignment model, thus, we will not discuss further
about the sentence alignment and the document alignment.

1.4.1 Word alignment

For word embedding trained on different text corpora, they exhibit similar geometric patterns
and behaviors. This phenomenon is first observed by Mikolov [26] in 2013. With this idea,
a hypothesis of the transformation of the embedding space can be an linear operation. Now,
we will introduce various mapped basedmethods for finding the word alignment. Wewill con-
sider two different sets of embedding e1 and e2 training on two different corpora D1 and D2.
We try to search for a linear map A by finding the corresponding transformation matrix of the
two embedding spaces W:

A : V1 −→ V2

and we have that x⃗ → Wx⃗ ≈ y⃗ in which x⃗ = e1(X) ∈ D1 and y⃗ = e2(y) ∈ D2 are the corre-
sponding word embedding of words x and y andW ∈ Rd×d. It means that for a cross-lingual
alignment, it gives us the translation of word x as y. As for the embedding space of the same
language, words x and y are simply the samewordwith different representations. Furthermore,
since the linear map is a bijection, thus, we can make the following assumption:

• Two vocabularies have the same cardinality,D1| = |D2| and

14

• For all the words in the first vocabulary, there exists a corresponding y in the second
vocabulary that is ∀x ∈ D1, ∃y ∈ D2.

The firstmethodwewill introduce here is the regressionmethod, the alignment is obtained
by maximizing the similarity between embedding. In the work done be Mikolov et al. [26] in
2013, he showed that using the n most frequent words in two vocabularies, the linear trans-
formation matrix W can be obtained by minimizing the mean squared error between word
embedding x⃗ and y⃗ using stochastic gradient descent. More specifically, the function is:

ΩREG(R) =
n∑
i=1

∥Rxi⃗ − yi⃗∥2 with R ∈ Rd×d

It can be further written into the matrix form:

ΩREG(R) = ∥RX− Y∥2F with R ∈ Rd×d

in which matrices X,Y ∈ Rd×N are the embedding matrices of the two vocabularies. For
each column of the matrices X and Y, the column corresponding to the same index in both
embedding are the corresponding embedding xi⃗ and yi⃗. The ∥∥F is the Frobenius norm. And
finally, we will minimize this objective function and then obtain the alignment matrix W:

W = argmin
R∈Rd×d

ΩREG(R)

Further regularization such as l2 regularization has been added by Ruder et al. [22] in 2019.

Another method is the orthogonal methods. This idea was proposed by Ruder [22] by
adding the orthogonal constraints to the regression model. And our problem now becomes a
classic problem in Data Science which is the orthogonal Procrustes problem.

W = argmin
R∈Rd×d

∥RX− Y∥F subjected to RTR = Id

The closed form solution to the procrustes problem is found by Schöneman [27] in 1966.
He solved it with the singular value decomposition and it can be solved efficiently, and the so-

15

lution is:

W = VUT where YTX = UΣVT

Wewill also report the proof here.

R = argmin
Ω
∥ΩA− B∥2F

= argmin
Ω
∥A∥2F + ∥B∥2F − 2 < ωA,B >F

= argmax
Ω

< ΩA,B >F

= argmax
Ω

< Ω,BAT >F

= argmax
Ω

< Ω,UΣVT

= argmax
Ω

< UTΩV,Σ >F

= argmax
Ω

< S,Σ >F where S = UTΩV

Since matrix S is an a product of orthogonal matrices, thus in order to maximize it, the matrix
S must be an identity matrix, Thus,

I = UTRV

R = UVT

and the matrix R is our final output alignment matrix W.

The orthogonal constraints has been used by various researchers. For example, Xing et al
[28] in his work Normalized word embedding and orthogonal transform for bilingual word
translation states that the orthogonal constraints leads to the preservation of length normaliza-
tion. Other researcher such as Artetxe et al. [29]motivates it as ameans to ensuremonolingual
invariance.

16

2
Linear Programming and FrankWolfe

method

2.1 Introduction to Linear Programming

Within this section, the basic idea of Linear Programming will be introduced as it will be re-
quired by the subsequent tasks. A Linear Programming problem is a minimization/maxi-
mization problem subjected to linear constraints formulated by linear equations and/or linear
inequalities, which takes the general form of:

max c1x1+ · · ·+ cnxn
s.t. a11x1+ · · ·+ a1nxn ∼ b1

...
...

am1x1+ · · ·+ amnxn ∼ bm

(2.1)

in which the symbol∼ is used to represent operators such as≥,≤ and= and the terms aij,
bi, cj∈R (i= 1, …,m, j = 1, …, n) are the corresponding parameters. Here, we only use themaxi-
mization problem, however, a minimization problem is equivalent to a maximization problem
which means that we can obtain the result of a minimization problem denoted with minf(x)
by solving a maximization problem max − f(x). Notice that the constraints with ∼ forms a
region where the possible solution locates, and we call it the feasible set or feasible region. A

17

vector x∈Rn in the feasible set is called a feasible solution. A feasible solution is a solution to
the linear programming problembut not necessarily the best solution. Let us denote the vector
x̃ ∈ Rn an optimal solution of the linear program problem if vector x̃ is a feasible solution and
if given a random feasible solution x in the feasible set, the inequality cTx̃ ≥ cTx∀ holds true.
The corresponding value cTx̃ is called the optimal value of this linear program.

Furthermore, there is more compact form of the linear programwhich we call it a standard
form, which is:

max cTx

s.t. Ax = b

x ≥ 0

(2.2)

in which A ∈ Rm·n, b ∈ Rm, c ∈ Rn and x ∈ Rn a vector that contains the variables of the
problem.

Before reporting some important theorems for the linear programmingwhich are calledFun-
damental Theorem of Linear Programming, we first report some basic definitions.

Definition 5 A closed half-space in Rn is a set having the form {x ∈ Rn : aTx ≤ β} where
a ∈ Rn\{0} and β ∈ R. If we it explicitly, we have a1x1 + · · ·+ anxn ≤ β

Definition 6 A hyperplane in Rn is a set having the form {x ∈ Rn : aTx = β} where a ∈
Rn\{0} and β ∈ R.

Definition 7 A polyhedron is the intersection of a finite number of closed half-spaces. Equiva-
lently a polyhedron is a setΩ that can be written in the following form:

Ω{x ∈ Rn : Ax ≤ b}

with A∈ Rm×nandb ∈ Rm.

Furthermore, an extreme point is called vertexwhen dealing with a polyhedron. Now, we fur-
ther introduce a proposition for the connection between polyhedron and convex set.

18

Proposition 1 The following properties hold:

• every closed half-space is convex

• intersection of convex sets is a convex set

• every polyhedron is convex

With proposition above, we know that a linear programming problem is also a convex prob-
lem. And finally we can introduce the fundamental theorem of linear programming which is:

Theorem 1 Given a linear program, one and only one of the following alternatives holds:
(a) the problem has an optimal solution (which is a vertex of the polyhedral feasible set) at least;
(b) the problem is unfeasible, i.e., it has no feasible solutions;
(c) the problem is unbounded, i.e., for every K ∈ R, there exists a feasible solution x such that cTx
≥K (cTx < K for minimization problems).

With the theorem above, we can now solve a linear programming problem with an efficient
way other than the brute force search which is by check only the vertex of the polyhedral feasi-
ble set as if the optimal solution exists, it is for sure one of the vertex of the polyhedron.

2.2 Nonlinear Programming

A nonlinear programming problem is a problem such that minimizes/maximizes a nonlinear
objective function subjected to constraints formulated by inequalities or equalities. For the
sake of simplicity, we will fix the notation first before going further. Let us denote the feasible
set as Ω and the objective function as f : Ω−→R. Then the problem can be represented as:

min f(x) s.t. x ∈ Ω (2.3)

and

19

max f(x) s.t. x ∈ Ω (2.4)

Here we will report some definitions hold for the problem of the form 2.3. As explained in
the chapter before, since these minimization and maximization problem can be transformed,
thus they also hold for the maximization problem of the form (2.4).

Definition 8 An optimization problem of the type (2.3) is said to be infeasible ifΩ =Φ, that is,
if there are no feasible solutions.

Definition 9 An optimization problem of the type (2.3) is said to be unbounded(below) if how-
ever, if you choose a valueM≥ 0, there is a point xM ∈ Ω such that f(xM) ≤ −M.

Definition 10 An optimization problem of the type (2.3) is said to have an optimal solution if
there exists a x∗ ∈ Ω such that it results f(x∗) ≤ f(x)∀x ∈ Ω. The corresponding value f(x∗) is
the optimal value.

We can classify the optimization problem into three different types according to the struc-
ture of the feasible set Ω.

• Continuous Optimization problemwhere we have real value variable x∈Rn, thus, we
have the feasible set Ω⊆Rn.

• IntegerOptimization problemwhose variables takes integer values x∈Z, thus, wehave
that the feasible set Ω⊆ Zn.

• Mixed Integer problemwith a subset of variables are constrained to be integer.

In this thesis, the test dataset requires variable to take real values, thus, only the continuous
optimization will be discussed.

20

2.2.1 Continuous Optimization

Here, we represent some relevant definitions.

Definition 11 A point x∗ ∈Ω is a global minimum for f inΩ, if f(x∗) ≤ f(x) ∀x ∈ Ω.

Definition 12 A point x∗ ∈Ω is a strict global minimum for f inΩ, if f(x∗) ≤ f(x) ∀x ∈
Ω, x ̸= x∗.

Definition 13 A point x∗ ∈ Ω is a local minimum for f in Ω, if there exists a neighborhood
B(x∗; ρ), with ρ > 0 such that f(x∗) < f(x) ∀x ∈ Ω∩ B(x∗; ρ).

Now, let us consider a continuous optimization problem with the following form:

min f(x)

x ∈ω
(2.5)

where f : Ω → R is a continuous function in Rn. When minimizing this objective function,
for the consideration of the computation, it is crucial that we find a proper set of direction to
go for our algorithm, and these directions are the so-called the descent directions and the nec-
essary condition for the optimality which in this thesis, we will use the first order optimality
condition. The descent directions help us to determine a proper direction for our algorithm
to proceed and the optimality condition can help us to identify such directions. In order to
understand better, let us consider the following definitions and proposition.

Definition 14 We define the set of descent directions for f in x̄ as follows:

D(x̄) = {d ∈ Rn : ∃δ > 0 s.t. f(x̄+ αd) < f(x̄), ∀α ∈ (0, δ)}

Proposition 2 Let f be a continuous differentiable function. If x8 ∈ Ω is a local(global) mini-
mum for our problem, then

D(x8) = Φ

21

Considering both definition (14) and proposition (2), we can get the following results.

Proposition 3 Assume that f: Ω→ R is a continuous differentiable and let d∈ Ω be a nonzero
vector. If we have:

∇f(x)Td < 0

then d is a descent direction for f in x. If we further have that f is a convex function and d is a
descent direction for f in x, then the condition above is satisfied.

The proposition above gives us a characteristic of the first order information of the descent di-
rections. The second result is:

Theorem 2 Let f be a continuous differentiable function. If x∗ ∈ Ω is a local(global)minimum
of problem (2.5), then

∇f(x∗) = 0

The theorem (2) is really useful for proving the convergence of the Frank-Wolfe algorithm
which will be explained in more detail in the following chapter.

2.2.2 Existence condition

For the completeness and well-posedness of the problem, we will now discuss about the exis-
tence conditions of the continuous optimization problem. In fact, we are not guaranteed to
have the minimum point to be in the feasible set Ω, we have:

• Ω = Φ

• Ω ̸= Φ, but function f is unbounded from below on Ω, i.e. infx∈Ωf(x) = −∞

• Ω ̸= Φ, f is bounded from below on Ω, but there exists no global minimum point for
f in set Ω.

22

Hence, now, we can establish the sufficient conditions for the existence of a globalminimum
of the the continuous optimization problem. First, wewill introduce a newproposition related
to the existence of solution given a continuous optimization problem.

Proposition 4 Let Ω ⊂ Rn be a non-empty and compact set. Let f be a continuous function
defined onΩ. Then there exists a global minimum point for f inΩ.

Notice that this proposition holds true only to problem with compact feasible set. Further-
more, for the constrained problem, since we have that Ω ⊂ Rn, thus if we have closed and
limited set Ω, then it is also compact. In case of a non-constrained problem or if set Ω is closed
but not limited, in order to make the solution exists, the identification of some subset of set Ω
that contain the optimal solution of the continuous problem is required.

Let us report more useful definitions and propositions. The first definition we will give is
the level set

Definition 15 LetΩ ⊆ Rn and f : Ω→ R. A level set for f onΩ is a non-empty set of the form:

L(α) := {x ∈ Ω : f(x) ≤ α}

in which α ∈ R. Essentially, the level set represents the set of input variables corresponding to
the value of the objection function lower than a threshold value. For example, give a random
point x∈ Ω. The corresponding level set L(f (x)) corresponds to the set of points xi which has
an corresponding objective function value lower than α = f(x).

Now, we can introduce more propositions.

Proposition 5 LetΩ ⊆ Rn and f be a continuous function defined onΩ. Suppose there exists a
level set of f onΩ that is not empty and compact. Then there exists a global minimum point for f
inΩ.

Proposition 6 LetΩ ⊆ Rn and f be a continuous function defined onΩ. Then all the level sets
L(α) := {x ∈ Ω : f(x) ≤ α} of f in Ω are compact if and only if the following condition is
satisfied:

23

• Let {xk} be a sequence of xk ∈ Ω such that limk→∞∥xk∥ =∞, then it follows that

lim
k→∞

=∞

Combining the two above mentioned propositions, now we have:

Proposition 7 LetΩ ⊆ Rn be a closed set and let f be a continuous function onΩ and assume
that f is coercive onΩ, that is

lim
k→∞

f(xk) =∞

for each sequence {xk}, with xk ∈ Ω, such that limk→∞∥xk∥ = ∞. Then there exists a global
minimum of f onΩ.

With the last proposition, now we can conclude the part of the sufficient condition for the
existence of the continuous optimization problem with a closed feasible set Ω.

2.2.3 Convex and concave programming

Convex programming problems deal with convex optimization. For the introduction of the
discussion, here, we will report more relevant definitions.

Definition 16 Let us consider a set C⊆ Rn. C is a convex set if, ∀ x, y ∈ C and ∀α ∈ [0, 1], it
holds:

αx+ (1− α)y ∈ C (2.6)

Definition 17 Let set C⊆Rn be a convex set and let f: C−→R. f is convex onC if, given any x,
y ∈ C and α ∈ [0, 1], we have that

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (2.7)

Then, f is strictly convex on C if, given any x, y ∈ C, with x ̸= y and α ∈ (0, 1) have that

f(αx+ (1− α)y) < αf(x) + (1− α)f(y) (2.8)

24

Definition 18 A point x ∈ Rn is a convex combination of points vi, . . . , vm ∈ Rn if we have:

x =
m∑
i=1

αivi,
m∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . ,m

Definition 19 A point x ∈ Rn is a proper convex combination of points v1, . . . , vm ∈ Rn if
we further have αi ∈ (0, 1) for all i ∈ {1, . . . , p}.

Now, let us further report some operations preserving convexity that are useful for this the-
sis.

Definition 20 Given a convex setΩ ⊆ Rn a point x̄ ∈ Ω is an extreme point ofΩ if x̄ cannot
be given as a proper convex combination of two points inΩ. That is, if we cannot find two points
y, z ∈ Ω such that x̄ = αx+ (1− α)z, with α ∈ (0, 1).

Proposition 8 LetΩ ∈ Rn, be a convex set and fi : Ω → R, i = 1, . . . ,m be convex functions
defined inΩ. We have that the function

f(x) =
m∑
i=1

αifi(x)

with αi ≥ 0, i = 1, . . . ,m is a convex function overΩ. Furthermore, if there also exists an index
i such that αi > 0 and fi strictly convex overΩ, then f is strictly convex overΩ.

As for the concave programming problem, we have the following definitions.

Definition 21 Let set C⊆Rn be a convex set and let f: C−→R. f is concave on C if, given any
x, y ∈ C and α ∈ [0, 1], we have that

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y) (2.9)

Then, f is strictly concave on C if, given any x, y ∈ C, with x ̸= y and α ∈ (0, 1) have that

f(αx+ (1− α)y) > αf(x) + (1− α)f(y) (2.10)

25

Definition 22 A convex programming problem is a minimization problem of the form:

min f(x) s.t. x ∈ Ω (2.11)

where setΩ is a convex set and f is concave onΩ.

Proposition 9 Let C⊆ Rn be a convex set and f a convex (strictly convex) function on C. Then
any(one) minimum point of f on C is also (the only) global minimum.

Besides the convex programming problem, the concave programming problem is another
type ofminimization problem. Nowwewill providemore definitions about concave program-
ming problem.

Definition 23 A concave programming problem is a minimization problem of the form:

min f(x) s.t. x ∈ Ω (2.12)

whereΩ is a convex set and f is concave onΩ, or, equivalently:

max f(x) s.t. x ∈ Ω (2.13)

whereΩ is a convex set and f is convex onΩ.

For both types of programming problem, when dealing with the non-strictly case, wemight
end up stuck in a local minimum, thus, solving such type of problem becomes harder when it
a larger number of local minimum points. For the concave programming problem, it usually
consists a larger number of such points, thusmaking itmore challenging to tackle compared to
the convex programming problem. Now, let us give two theorems related to the global minima
of the concave programming problem.

Theorem 3 Let Ω ⊆ Rn be a closed convex set, and let f be concave (and non-constant) on Ω.
Hence, if there is a global minimum of f onΩ, this lies on the boundary ofΩ.

Theorem 4 LetΩ ⊆ Rn be a polyhedron with at least one vertex and let f be a concave function
with global minima inΩ. Then, there exists a global minimum of f inΩ that coincides with a
vertex of the polyhedronΩ.

The theorem above give us a nice way to deal with the concave programming problem with
a polyhedral feasible set as one can focus on the set of vertices of the feasible set to get the global
minimum of the problem.

26

2.2.4 Linearization of nonlinear problem

Nonlinear problem is generally more complicated and hard to solve, however, for some cases a
nonlinear problem can be transformed into a linear one (2.1). For example, here in this thesis,
we will report one called linearization of absolute value problemwhich will be useful in the
following chapters.

TheAbsolute value problem is a type of problem of the following form:

min
x,y

∑
j

cj|xj|+
∑
k

dkyk s.t. (x, y) ∈ Ω (2.14)

where set Ω is the feasible region and it is a polyhedron, and furthermore, we have that cj > 0.
In order to tackle this problem, first we perform the following transformation of the variables
which is representing a real number with its positive and negative part:

x = x+j − x−j , x+j ≥ 0, x−j ≥ 0

The transformation above holds true for all real numbers, furthermore, we can differentiate
two different cases:

• xj ≥ 0⇒ x+j = xj + δ = |xj|+ δ and x−j = δ

• xj < 0⇒ x+j = δ and x−j = −xj + δ = |xj|+ δ

with δ ≥ 0. For both cases above, when δ = 0, we have one of the negative or positive part
will be 0 and the other one will be |xj|. For the first case, when xj ≥ 0, we have that the negative
part x−j = δ = 0, the absolute value of |xj| equals to xj and for the second case, when xj is a
negative number, we have that x+j = δ = 0 and we have the absolute value |xj| equals to -xj.
Further more, we can sum the positive part and the negative part and we have:

x+j + x−j = |xj|+ 2δ

27

We can then replace the relation above to the absolute value problem (2.14) with δ = 0.
Now the problem can be written as:

min
x,y

∑
j

cj(x+j + x−j) +
∑
k

dkyk

s.t. (c+j − x−j , y) ∈ Ω x+j ≥ 0, x−j ≥ 0, ∀j = 1, . . . , n

in which set Ω the feasible set.

Another type of transformation can be made is by represent the absolute value of xj as the
maximum between xj and−xj:

|xj| = max{xj,−xj}

We can also replace this formulation to the problem (2.14) and we have the following prob-
lem:

min
x,y

∑
j

cjmax xj,−xj +
∑
k

dkyk s.t. (x, y) ∈ Ω

We can further transform the problem above by introducing a new variable zj to our formu-
lation. We can now replace the max with our new variable zj, and then the original problem
(2.14) becomes:

min
x,y,z

∑
j

cjzj +
∑
k

dkyk s.t. zj = max{xj,−xj}, (x, y) ∈ Ω (2.15)

The constraint about can be further transformed as setting the variable zj to be the maxi-
mum between between xj and−xj is equivalent to constraining xj to be ranging between−zj
and zj, and thus, our problem now can be rewritten as:

28

min
x,y,z

∑
j

cjzj +
∑
k

dkyk s.t. − zj ≤ xj ≤ zj, j = 1, . . . , n, (x, y) ∈ Ω (2.16)

Now let us demonstrate the linearization technique in aData Science scenario. First suppose
we want to build up a linear regression model of the following form:

y = aTx+ b

We have that x ∈ Rn a real valued input vector of our model, and y ∈ R is a real valued
output of the model. Furthermore, a ∈ Rn and b ∈ R are the relevant parameters. In Data
Science applications, we have a finite set T of the input and output sample pairs, the set T is
often called the training set, it has the form:

T := (x1, y1), . . . , (xm, ym)

in which the superscript represents the sample of the training set T. Nowwe want to obtain
the variables a and b giving the training set T and we hope those found variables can help us to
identify the label yj giving a new sample xj. In order to achieve this goal, we can minimize the
error over the training set T, and the error Ei for a general input-output pair in the training set
T can be written as:

Ei = yi − (aTxi + b)

Whenminimizing this error, we have various formulations to do so, a popular one is by con-
sidering the square loss over the training set and we obtain the desired parameters by solving
the well-known least-square problem which has the following form:

min
a,b

m∑
i=1

(yi − aTxi − b)2

Another option can be done with the absolute value formulation, which is, instead of con-
sidering the square error, we seek to optimize over the absolute value of the error, and thus the

29

formulation can be written as:

min
a,b

m∑
i=1

|yi − aTxi − b|

Now, we can apply the linearization techniques (2.15) and (2.15) to the absolute value for-
mulation and it can be rewritten as:

min
a,b,z

m∑
i=1

zi s.t. |yi − aTxi − b| ≤ zi, ∀i = 1, . . . ,m

and

min
a,b,z

m∑
i=1

zi s.t. − zi ≥ yi − aTxi − b ≤ zi, ∀i = 1, . . . ,m

This formulation is called the Least Absolute Deviation (LDA). Thanks to the linear con-
straints provided with this linearization, now, this problem can be solved with the linear pro-
gramming techniques which makes it very easy to solve.

2.3 The Frank-Wolfe method

There are various techniques for solving a constrained optimization problem, here, we will re-
port the so-called Frank-Wolfe method which is also called conditional gradient method. It is
an iterative first-order optimization originally proposed by Marguerite Frank and Phili Wolfe
in 1956 to solve quadratic programming problem with linear constraints. It is a very popular
method for solving constrained optimization problem as it is simple to solve and unlike the
projected methods, it does not require the projection back to the feasible set which reduced
the computational cost. Furthermore, as stated before, thanks to the fundamental of linear
programming, we only need to search for the vertices of the polyhedron set, thus, combing all
the reasons discussed before, in this thesis, we will focus on this particular method and its vari-
ants for solving efficiently our constrained optimization problem.

30

2.3.1 Formulation of Frank-Wolfe method

The Frank-Wolfe algorithm proceeds by solving iteratively the so-called Frank-Wolfe problem
with the form:

min f(x)

x ∈Ω
(2.17)

in which the objective function f (x) is a continuous differentiable function and set Ω ⊆ Rn

a convex compact set.

Now, we will dive deeper into the Frank-Wolfe algorithm. We first start with a random fea-
sible solution in the feasible set and then at each iteration xk, we search for the new descent
direction by solving the following Frank-Wolfe problem:

min
x∈Ω

∇f(xk)T(x− xk)

Notice that, the problem provided above is in fact a simplified version of the linear approxima-
tion of function f in point xk, the original linear approximation is:

min
x∈Ω

f(xk) +∇f(xk)T(x− xk)

And in figure (3.1), we can see the full FrankWolfe iteration. The solution gives us a feasible
search corner or vertex of the polyhedron, and the next iterate is given by a convex combina-
tion of current vertex and the previous iterate adjusted by the step size. Furthermore, since at
each iteration xk, the value of the objective function f (xk) is a constant, thus can be ignored
in the optimization process. Furthermore, from the compactness of the set Ω, we have that
there exits a solution x̂k ∈ Ω for the linearized problem. Now, we can introduce the first order
optimality condition for the Frank-Wolfe problem. Recall that we have already introduced the
descent directions and the first order optimality condition for a continuous objective function.
The same argument holds true for the Frank-Wolfe problem. In fact, we have the following
result.

Proposition 10 Let x∗ ∈ Ω be local minimum for problem

31

Figure 2.1: Full Frank Wolfe [1].

min f(x) s.t. x ∈ Ω

withΩ ⊆ Rn convex and f ∈ C1(Rn). Then we have

∇f(x∗)T(x− x∗) ≥ 0, ∀x ∈ Ω

Proposition 11 LetΩ ⊆ Rn be a convex set and f ∈ C1(Rn) be a convex function. x∗ ∈ Ω is a
global solution of the following problem:

min f(x) s.t. x ∈ Ω

if and only if
∇f(x∗)T(x− x∗) ≥ 0 ∀x ∈ Ω

Going back to the original Frank-Wolfe problem (2.3.1). We might have the following two
different cases. The first one is when the optimality condition is reached, that is:

0 = ∇f(xk)T(x̂k − xk) ≤ ∇f(xk)T(xk − xk) ∀x ∈ Ω

Another possible case is when ∇f(xk)T(x̂k − xk) < 0 which means that there exists a di-
rection that can further decrease the value of the objective function f (x) and this new descent
direction in xk can then bewritten as dk = x̂k−xk. And subsequently, the newpoint is given by
xk+1 = xk− αkdk, in which α ∈ (0, 1] is a properly chosen step size. There are various ways for

32

choosing a proper step size alpha including line search. We will leave the relevant discussion
in the following section. Before jumping into the next section, a pseudo-code of the general
Frank-Wolfe algorithm will be reported.

Algorithm 2.1 The general Frank-Wolfe algorithm
1: Choose a random starting point x1 ∈ Ω
2: for k = 1, . . .
3: Set x̂k = argminx∈Ω∇f(xk)

T(x− xk)
4: If xk̂ satisfies some specific condition, then STOP
5: Set xk+1 = xk + α(xk̂ − xk), with αk ∈ (0, 1]
6: end for

Notice that, in line (5) of the Frank-Wolfe algorithm (2.1). We restricted the step size to ad-
mit a maximum possible value equals to 1, this is essential for the Frank-Wolfe algorithm as it
can guarantee that at each Frank-Wolfe iteration, the newly found point xk+1must be a feasible
point within the feasible set Ω.

2.3.2 Step size

When solving an optimization problem, it is also very to choose a proper step size αk at each
iteration of the algorithm. However, choosing a proper step size αk is not a simple task. The
first one to be discussed is the so-called line search which is an iterative approach to find a lo-
cal minimum of a nonlinear function using its gradients. It is composed by two phases, the
first phase a search direction will be computed and then in the second phase, we will choose an
acceptable step length that satisfies certain standard condition. The line search methods can
be further divided into two categories, namely the exact search and inexact search. The exact
search method seeks to find the exactminimizer at each iteration and the inexact search com-
putes the step length to satisfy certain conditions. We will not give too much details as the line
search method will not be used in this thesis, thus, we will not mention too much about it.
However, we will still report the pseudo-code for the basic line search algorithm.

Another type of step size is the so-called fixed step sizewhichmeans that a step size remains
unchanged throughout the entire iterations.

33

Algorithm 2.2 The line search algorithm
1: Pick the starting point x0
2: while fx := f(xk) does not converge to a local minimum
3: Choose a descent direction dk starting at xk such that∇f(xk)Tdk < 0 for ∇f(xk) ̸=

0
4: Find a step length αk
5: end while

αk = p, with p > 0, k = 0, 1 . . .

In this thesis, we will use a unit step size which has αk = p = 1 for all the k = 0, 1 We
will further provide a proposition for the convergence of the unit step size for the Frank-Wolfe
algorithm.

Proposition 12 Let us consider the problem

min f(x) s.t. x ∈ Ω

with f ∈ C1(Rn) concave function lower bounded on Ω, andΩ ⊆ Rn polyhedron. The Frank-
Wolfe Algorithm (2.1) with unit step size converges to a stationary point in a finite number of
steps.

The proposition above gives us the guarantee of convergence to a stationary point in finite
number of steps. In order words, we might not converge to global minimum, but we will at
least converge to a stationary point.

The last rule for the selectionof a proper step size involved in this thesis is using a diminishing
step size. It is used to guarantee the converges of the stochastic methods such as the stochastic
gradient descent method. Without a diminishing step size, the stochastic gradient descent
method might not converge as it replaces the actual gradient by an estimate of it or in another
word, a randomly selected subset of the data.
In this thesis, we will use the diminishing step size for the Block Coordinate Frank Wolfe al-
gorithm which optimizes over only a block of the variable. The choice of a diminishing step
size is different from the above mentioned case. When optimization over a random block of

34

the variable, we do not have the inexact information of the current iterate which might lead
to an irregularity to the sequence of the values found by the algorithm, thus, we will use a di-
minishing step size for this algorithm. Further details will be provided in the following chapter.

2.3.3 Block-coordinate Frank-Wolfe

Theblock-coordinatemethods represents a class ofmethods that solve the optimization prob-
lem by performing gradient steps along alternating sub-block of the coordinates. The block-
coordinate methods become useful when we want to minimize over a variable in Rd and the
dimensionality n large. It first split the optimization process into a sequence of simpler opti-
mizations. In this case, computation for the entire variable can be very expensive, thus consider-
ing only a sub block of the variable makes the computation much cheaper. However, we have
to keep in mind that even though the computation is faster, but since we do not use all the in-
formation of the current iteration and the new descent direction is determined by optimizing
over only a sub-block of the variable, thus, wemight get the optimal value for at each iteration.

Before going further, let us first report the general shceme of the block-coordinate methods.

Algorithm 2.3 Block-coordinate method
1: Choose a random starting point x1 ∈ Ω
2: for k = 1, . . .
3: If xk̂ satisfies some specific condition, then STOP
4: Pick coordinate i from 1 to n and set

s(i)k = argmin
x(i)∈R

f(x(i), x−i)

5: Use s(i)k , with i = 1, . . . , n to build xk+1
6: end for

in which the term x−i represents the set of all variables but the selected block of variable x(i).
This is a very general scheme for the block-coordinate method. The selection of block can be
done using different technique, furthermore, at step (4) of the algorithm, it is possible to intro-
duce two different schemes. One is the Gauss-Seidel Scheme and the other one is the Jacobi
Scheme. With the Gausee-Seidel scheme, at step (4), we set the coordinate x−i to be the most

35

up-to-date value, that is:

x−i = (s(1)k , . . . , s(i−1)k , x(i+1)k , . . . , x(n)k)

and at step (5), we simply set:

x(i)k+1 = s(i)k

This scheme has a faster convergence, however, it suffers from the fact that it can be done only
in the sequential order, thus, we will introduce the Jacobi schemewill enable theminimization
in parallel. At step (4) with the Jacobi scheme, we have:

x−i = (x(1)k , . . . , x(i−1)k , x(i+1)k , . . . , x(n)k)

and at step (5), we gather the information obtained from the different minimization steps
to get a new iterate to guarantee the decrease of the objective function. The most important
advantage of the Jacobi scheme is that it allows the computation to be done in a parallelmanner
which gives a fast computation, however, it also has one major drawback, that is: The update
of the Jacobi scheme does not take into account the intermediary iterates until we finish all the
coordinates.

Another interesting thing about the block-coordinate method is how to select the block.
Herewewill report two classes of block selection strategies. The first one is the classic strategies
and the second one is the randomized block selection strategies in which a random procedure
is considered.
Now, let us discuss first the classic block coordinate selection strategies, considering b blocks,
we have:

• Cyclic order: Run all blocks in cyclic order starting from the very first block to the very
last block.

• Almost cyclic order: Each block i ∈ {1, . . . , b} picked at least every β <∞ successive
iterations.

36

• Gauss-Southwell: At each iteration, pick block i so that:

i = argmin
j∈{1,...,b}

∥∇jf(xk)∥

The cyclic order selection proceeds by moving to the next block in a cyclic order, the almost
cyclic order one requires that all the b blocks i ∈ {1, . . . , b}will be picked at least once every fi-
nite β iterations. And finally, the Gauss-Southwell method that is a greedy method and it seeks
to pick the block that has the largest gradient norm, thus, providing a faster descent direction.

As for the randomized selection strategies, as one can tell from the name, this class of strate-
gies requires randomized procedure. The first one is the seeks to create randomness by random
permutation of the set and the other one performs a direct random selection of the block. More
specifically, they are:

• Random Permutation: Run cyclic order on a set of permuted indices

• Random Sampling: Randomly select a block i for update

The cyclic order of the random permutation means that we fix the position and then run
cyclic order, then at each iteration, we make a random permutation of the set of indices, thus,
result in a random selection. As for the random sampling approach, at each iteration, we ran-
domly select one block to optimization.

Here, we will give some examples of the these methods. We assume that we have only 3
blocks and each with a dimensionality of 1, and thus, we have:

Cyclic : (1→ 2→ 3)→ (1→ 2→ 3)→ (1→ 2→ 3) . . .

Random Permutation : (2→ 1→ 3)→ (3→ 1→ 2)→ (1→ 2→ 3) . . .

Random Sampling : 3→ 3→ 1→ 2→ 1→ 3 . . .

37

With the introduction of block-coordinate method above, now, we can discuss the Block-
coordinate Frank-Wolfe method. It is essentially the standard Frank-Wolfe algorithm but
considers a random sampling of the block at each iteration and its result comes from the opti-
mization of the objective function over the selected block. Comparing with the original Frank-
Wolfe method, it is clear that the block-coordinate methods help the algorithm to be solved
faster at each iteration as the problem becomes easier by considering one block each time.

This method was first proposed by Lacoste-Julien et al. [1] in their groundbreaking work
Block-Coordinate Frank-WolfeOptimization for Structural SVMs in 2013. In their experiments,
they applied the block coordinate method to the structural SVMs problem and they showed
that despite the lower iteration cost of the block-coordinate FrankWolfemethod, a similar rate
in duality gap to the full FrankWolfe method is achieved. Here, we will report the pseudocode
of the Block-coordinate FrankWolfe algorithm.

Algorithm 2.4 Block-coordinate FrankWolfe algorithm

1: Let x(1) a starting point and x1 ∈ Ω = Ω(1) ×Ω(2) × . . .×Ω(n)

2: for k = 1, . . . ,K
3: Pick i at random in { 1, . . ., n}
4: Find s(i) := argmins∗

(i)∈M
(i) < s∗(i),∇(i)f(x(k)) >

5: Let α be a properly chosen step size
6: Update xk+1(i) := x(k)(i) + α(s(i) − x(k)(i))
7: end for

Notice that this is again just a general scheme of the block-coordinate FrankWolfe method.
One can modify according step size or block selection method. Further, it is also possible to
consider more blocks at each iteration so that at each iteration, more information will be pro-
vided and thus a better result, however, it is still with the cost of more computation.

38

3
Cultural Semantic Conditioning and Biases

Nowadays, there are a lot of online source for the pre-trained embedding obtained with the
above mentioned methods, one example can be the Word2Vec. However, these results are not
always that trust-worthy or fair as Petreski and Hashim found out that the bias or cultural pe-
culiarities of the training corpora can be also passed and hid inside the word embedding. In
another word, our trained embedding also contains bias or cultural peculiarities related to the
training corpora. With this in mind, several studies have proved that the ability of the word
embedding to reflect different types of particular prejudice, such as: gender bias, racial bias,
homophobia and discrimination.

3.1 Biases

In the Oxford English Dictionary, the term bias in general means that: Tendency to favour or
dislike a person or thing, especially as a result of a pre- conceived opinion; partiality, prejudice
[30].
Now we will introduce different types of bias of the word embedding. The first one is the

gender bias. However, in the field of AI fairness, it is often described as: skew that result in
undesirable impacts [31] ormore precisely computer systems that systematically and unfairly dis-
criminate against certain individuals or groups of individuals in favor of others [32]. Blodgett
et al. [33] in his work Language (Technology) is Power: A Critical Survey of” Bias” in NLP

39

stated that:

Large body of work analyzing “bias” in natural language processing (NLP) sys-
tems has emerged in recent years, including work on “bias” in embedding spaces
(...). Although these papers have laid vital groundwork by illustrating some of
the ways that NLP systems can be harmful, the majority of them fail to engage
critically with what constitutes “bias” in the first place.

Friedman and Nissenbau proposed a new interesting framework for the bias analysis by
splitting them into preexisting, technical and emergent. By dividing the problem into this
scheme, we have that the preexisting bias is related to the input data with which the algorithm
is trained. While the technical bias refers to the bias caused by technical constraints. And fi-
nally, the emergent bias refers to bias related to the usage with a real user. Papakyriakopoulos
et al. in their 2020’s work Bias in Word Embeddings demonstrated that in reality, the word
embedding suffers from all three types of bias mentioned before. To the interest of this thesis,
we will focus only on the preexisting bias. This type of bias is of our interests as it is strongly
related to social discrimination, more precisely, it represents the discrimination of one social
group from the member of another social group. Now, we will focus on introducing different
types of societal biases.

3.1.1 Societal biases

The very first societal bias to be introduced is the so-called gender bias. In NLP, this type of
bias has a huge impact on our embedding, and it originates from the implicit sexism perme-
ating the society and can be seen in the input corpora for the embedding training. Thus, our
embedding will learn the bias pattern and will provide a biased output. One example can be
the relations of the gender bias associated with the (male, female) pair and a semantic domain
such as (work, family) pair. One very important paper about this topic is theMan is to Com-
puter Programmer as Woman is to Homemaker? Debiasing Word Embeddings by Bolukbasi
et al. Bolukbasi focus on the w2vNEWS embedding and he successfully detected the biases
association such as indicated in the title, a man is biased towards programmer and a woman
is biased toward a Homemaker. Within his work, he first highlight the occupational biases by
measuring the distance between occupations and the (he, she) pair (2.4). They further studies
about the analogies exhibiting stereotypes by generating pairs of word (x, y) such that they have

40

the following relation with the pair (he, she):

he : she = x : y or she⃗ − he⃗ ≈ y⃗− x⃗

Figure 3.1: Figure of automatically generated analogies for the she‐he pair by Bolukbasi et al. [2] (2016).

Considering all the analogies of the corpora of the form (he, she) = (a, b), we can define a
score for all the possible pairs (x, y):

SA,B(X,Y) =

cos (a⃗− b⃗, x⃗− y⃗) if ∥x⃗− y⃗∥ ≤ δ

0 otherwise

in which the Greek letter δ is the threshold value for the evaluation of the score, that is, a
valued non zero score will be generated only if the vector pair of x and y are close enough in
term of the norm of their difference. And in the following figure (3.2), within the figure, we
can see that in the upper part, a list of the gender biases following the she-he analogies, and at
the bottom, we have the list of appropriate gender she-he analogies.

Figure 3.2: Figure of selected list of occupations that are closest to he or she in the w2vNEWS embedding.

Bolukbasi et al. later proposed a debiasing algorithm that tries to correct the bias of thewords

41

by finding a gender subspace by two binary extremes on pairs of gender specific words.
And finally, in 2022, Caliskan et al. [34] studies how gender bias permeate by studying the
frequency, the part-of-speech, the conceptual clusters and the emotional characterization asso-
ciated with each gender. And finally, we have to keep in mind that even gender is more com-
plicated than a simple polarity, we will still rely on the polar classification due to the limitation
inherent in data.

Another type of bias is the so-called racial bias which means the discrimination from one
group towards a specific ethnic group. One example can be Semantics derived automatically
from language corpora contain human-like biases written by Cliskan et al. [35] in 2017. They
used analogy for the racial bias association and they showed that, the word embedding of the
African American names appear to be closer to negative words rather than the positive ones,
the same pattern doesn’t appear for the European American names. And with this example, a
clearly reflection of the racial bias towards the African Americans can be observed.

Garg et al. [36] in his paperWord embeddings quantify 100 years of gender and ethnic stereo-
types found the occupational bias related to the proper names depending on the ethnicity. They
achieved it by measuring the distance between elements of a set of proper names and a set of
occupations. Furthermore, some other paper also suggest that the presence of racial bias hid-
den in the NLP system [37] [38].

Another type of bias is political bias. Bias does not only emerge in racial context, but also
exist in a political context. In 2020, Gordon et al. [39] demonstrated that the technique devel-
oped byBolukbasi et al. [2] can be expanded for the study of the political bias. They considered
the American politics and thus a binary choice of party between the Democratic pole and Re-
publican pole. The author analysis the most frequent word of the tweet by the two political
parties, and then the binary pairs are obtained. And finally they arrived to the conclusion that
in order to make a comprehensive analysis, it is necessary to model the bias along multiple axes
as the politics is way more complicated than a simple binary choice.

42

3.1.2 Bias propagation and amplification

The word embedding has the ability to both propagate and amplify the intrinsic bias hidden
in the language itself and it is mainly due to two reasons. The first one is the large usage of
the word embedding and the second one is that the NLP algorithms are built so that they can
influence people’s behaviors, and let us now see two examples.

The first one is the search engine. In the work by Bolukbasi et al. [2], they noticed that,
given a search query cmu computer science phd student for searching the computer science phd
student at the Carnegie Mellon University. For two pages with the same content but only dif-
fers by the name: Mary and John. Despite this, the bias hidden in the embedding results in
picking John before Mary. In this case, the word programmer is biased towards or closer to
male or the male name John rather than female or the female nameMary. This poses an issue
and in the field of computer science as given in the example above, woman might face a large
gender gap due to the bias hidden inside of the embedding and subsequently, inside the search
engine algorithm.

The second one we would like to discuss is theNLG tasks. NLG is short for Natural Lan-
guage Generation, it is a class of methods used to generate the so-called human-readable lan-
guage. The NLG tasks have a wide range of applications, some of the examples can be: Chat
bots, automatic translation, virtual assistants and etc. In this work done by Sheng et al. [40]in
2021. They stated the importance of understanding how societal biases in NLG applications
which can interact with its users directly, resulting in problem. Furthermore, these biases orig-
inate from the training of the NLG algorithm and also originate from the word embedding.

In conclusion, bias propagation and amplification can appear in various environments, they
can pose different trouble and hinder the performance of our AI system, and these bias can
come directly from the word embedding itself and thus they should be handled with care.

3.2 Diachronic change of the embedding

Before, we have discussed about the biases more precisely societal biases and their relevant pres-
ence in AI or NLP applications. Within this section, we will focus on the diachronic change
of the word embedding which considers the embedding of the same word trained with the co-

43

pora of the same language at different time. First, we will introduce the concept of semantic
change. Bloomfield [41] in his 1933 work Language defined the semantic change as:

Innovations which change the lexical meaning rather than the grammatical func-
tion of a form, are classed as change of meaning or semantic change.

According to the dictionary, the term diachronic [42] means, relating to, or studying the de-
velopment of a phenomenon through time. Thus studying the diachronic change of the embed-
ding basically means to find the evolution of the embedding between two labelled time. Now
we will report two relevant studies about the diachronic semantic change.

3.2.1 Histwords project

The first project to be discussed is the famous Histwords project, which was done by a group
of researchers at Stanford University. In their research paper Diachronic Word Embeddings
Reveal Statistical Laws of Semantic Change [3] published in 2016, they demonstrated the pos-
sibility of studying the diachronic change of words by analysing the relevant embedding space.
Moreover, the embedding spaces are trained with the same technique and with the text at dif-
ferent time period, spanning for almost 2 centuries with texts written between 1800 and 1990.
In this corpus, 4 languages are available: they are English, German, French and Chinese. A
table of the characteristics of the datasets built for the Histwords project can be seen in the
figure (3.3). One important reason for including this project work in the thesis is that in the
experiment, we used the open source embedding of the Histword, in fact, we selected the em-
bedding of English words of the year 1890 and of the year 1990 respectively, more details will
be provided in the following chapter.

Now, let us talk aboutmore the dataset of the histwords project. The project is based on two
corpus, one is the Google n-gram corpus [43], [44], the second one used is the corpus of histor-
ical American English [45]. The Google n-gram corpus is very large and it contains almost 6%
of all the books ever published, however, this rich collection of information also introduces a
significant amount of corpus artifacts and noise. The Corpus of Historical American English
on the other hand is much smaller and cleaner than theGoogle n-gram, it contains 457million
words coming from the 1820s-2010s and it is balanced by genre decade by decade.

44

Figure 3.3: Characteristics of the datasets built for the project Histwords[3].

Different state-of-the-artmodelswere used for the training of the histwords embedding such
as PPMI, SVD and SGNS using the framework provided by Levy et al. [46]. But the latter one
seems to be a better one in terms of the performance.

The next step is to compute the alignment matrix, in order to do so, the Orthogonal Pro-
crustes construction is used between each pair of diachronic embedding. Considering amatrix
X(t) ∈ Rd × N which is the embedding matrix of the vocabulary with N words at the time t,
and the dimensionality of each word embedding is d. Thus, this diachronic change matrix can
thus be computed by solving the following problem:

W(t) = argmin
QTQ=I

∥QXT − X(t+1)∥F

The final solutionW(t) ∈ Rd×d, and it can be solvedwith themethod discussed in the previ-
ous chapter. And the last step of this project is to quantify the diachronic change of the word
embedding over time, they proposed two approaches. The first one is measuring the similarity
of the word pairs, the second one is by quantifying the overall shift of an individual word with
the Spearman correlation.

Let us give some examples of the final result. Given three different words of different year:
gay (1900s), broadcast (1850s) and awful (1850s), as a result of the approaches reported be-
fore, these diachronic change of these words can be see in the figure (3.4). From this figure we
can notice that, the word gay has changed significantly its meaning, as its original meaning is
closer to daft and shifts its meaning slowly to pleasant, witty and it appears to have the mod-
ern day meaning related to the secual orientation after the 1990s. For the word broadcast, the
similar trend can be found, as it shifted significantly its meaning from the original sow, seed to
newspaper and then gradually takes the modern day meaning such as close to radio etc which

45

is connected to contemporary technologies. As for the word awful, we can see that it shifted
its meaning from majestic, solemn in the 1850s to appalling, terrible in the 1900s and finally
arrived to the modern meaning in the 1990s.

Figure 3.4: Diachronic change of different words in the project Histwords[3].

3.2.2 ExploringWord Evolution

In the paper Every Word has its History: Interactive Exploration and Visualization of Word
Sense Evolution by Jatowt et al [4], an interactive framework is introduced and it is published
on the web page. This is really powerful as it allows the users to study the diachronic change
of the meaning of the words.This online platform performs various investigation at different
lever once given the queryword, these analysis are: word analysis, contrastive word pair analysis,
multi-word analysis and temporal context analysis. Since in the experiment, we used the word
analysis, thus later, we will give a description of the system basing on the word analysis. And
finally this project uses the same dataset as the Histword project, namely the Google n-gram
corpus and the COHA.

Now, given a query word w at a decade time d, the framework automatically find the word
embedding wd⃗ . Then a word analysis is perform as it evaluates the degree of changes a query
word experience across time. The word embedding at time d is compared to any other decade
of a fixed time range. Theweb page provided several possiblemethods tomake the comparison,
they are: Cosine Similarity, Pearson correlation, and Jaccard similarity. Let us focus on the
cosine similaritymeasure. The similaritymeasure considered by the ExploringWordEvolution
is:

SE(wd1⃗ ,wd2⃗) := | cos (wd1⃗ ,wd2⃗)|

46

Furthermore, we provided a screen shot (3.5) of the web page showing the output for the
wordmail. The plot on the top right of the figure is the plot of the cosine similarity between
the query at decade d and the one in the past decade. The plot at the bottom left is the plot of
the raw word count and its normalized frequency through out the time. And finally, the plot
on the right is the plot similarity plot of theword embedding of two consecutive decadeswhich
can provide a better vision of the evolution of the meaning of the query word. And we can see
that the meaning of the wordmail has changed dramatically after 1980s.

Figure 3.5: Result of the word mail in the Exploring Word Evolution[4].

47

3.3 The cultural contamination by alignment

From the previous discussion, we know that bias or cultural peculiarities can be hidden insider
the word embedding, it can be also disseminated by the alignment between different embed-
ding space, the alignment does not only align the embedding but it also carries the bias. One
of the most popular example can be the alignment between the cross-lingual word embedding.
Let us take the example proposed by Zhang et al. [47] in the paper Are Girls Neko or Shojo?
Cross-Lingual Alignment of Non-Isomorphic Embeddings with Iterative Normalization. With
their work, they found out that it can be hard to build a cross-lingual alignment between two
languages using the orthogonal method which is related to the cultural differences related to
the languages. They further proposed a solution to deal with this problem which is by using
an iterative normalization before applying the alignment so that one can try to correct the
monolingual embedding.

One example is provided by Zhang which focus on the translation between English and
Japanese. They noticed that the orthogonal alignment failed to translate the Japanese word
shojo which has the meaning of girl. This phenomenon is due to the fact that in Japanese em-
bedding, the word shojo and girl have different most similar words which means in the context
of Japanese, they are not semantically similar. Furthermore, the most similar word of shojo in
the Japanese embedding is the word neko which means cat as in Japanese culture, cats are con-
sidered to be a feminine animal which is totally different from the English as in English, words
girl and cat are not similar.

Some other work that worth mentioning is done by Søgaard et al.[48] in which they found
the limitations of unsupervised machine translation. Their critique is based on that:

Unsupervised approaches to learning crosslingual word embeddings are based on
the assumption that monolingual word embedding graphs are approximately iso-
morphic, that is, after removing a small set of vertices (words).

They used various unsupervised models rely on the orthogonal method that are developed
by Conneau et al. [49]. They reached to the conclusion that monolingual word embedding
are far frombeing isomorphic by studying the nearest neighbor graphs of the embedding space.
This result still holds for two closely related languages such as English and German.

48

4
Models

In previous chapters, we have introduction the general description of word embedding, now
let us introduce the exact framework to be used in this thesis. From now on, we will follow the
following notations. Since we will use two word embedding spaces of the same language, thus
we will define e1 and e2 as:

e1 : D→ V1 e2 : D→ V2

withD1,D2 the vocabularies andV1,V−2 the corresponding embedding spaces. Consider-
ing both vocabulary to be the same andwewill further have the number of words are |D| = N.
We will also denote X, Y ∈ Rd×N two matrices of the word embedding, each column is the
embedding representation of the word. Thus, we have for any wordwi ∈ D, its representation
are the columns of X and Y as e1(wi) = xi⃗ and e2(wi) = xi⃗. Here, we want to find a technique
that can automatically highlight the bias based on the alignment. And it is showed in the figure
(4.1). We start with a word w from the vocabulary D. Later we have its embedding in different
spacesV1 andV2 are x⃗ and y⃗ respectively. And our alignment A seeks to find an alignment ma-
trixW ∈ Rd×d to minimize the mapping error between the two word embedding x⃗ and y⃗.

Our experiment considers three different base alignments according to different selection of
norm. All three alignments are the map of the form:

49

Figure 4.1: Representations of w and the alignment map A.

Ai : V1 −→ V2

which transform the embedding x⃗ in the first embedding space to be as close to its rep-
resentation y⃗ in the second space via the corresponding transformation matrix W, which is
X⃗→Wix⃗ ≈ y⃗. These mapping can be seen in the figure (4.2).

Figure 4.2: Representations of all three alignments.

Now we will provide more details about the construction of these alignments. Our goal is
to find a matrix that can minimize the error or difference between the mapped representation
Wx⃗ and its target representation y⃗ in the other embedding space, these difference can bewritten
in matrix form that isWX − Y. Now we want to minimize this difference by considering the
norm of the matrixWX − Y and we consider three types of norm, the l2, l1 and zero norm
that in the end will return different alignment matrixWi.

50

4.1 W1: Orthogonal Procrustes

The first norm we will consider is the l2 norm which is involved with the square of the error
of each dimension of the difference of the embedding, when applied to the matrices, it is also
called the Frobenius norm, thus our alignment problem becomes the orthogonal Procrustes
problem and our first alignment matrixW1 is obtained by solving:

W1 = argmin
W∈Rd×d

∥WX− Y∥F s.t. WWT = I

and here with this alignment we seeks to minimize the global squared error for each entry
in this error matrix A = WX− Y. Recall from the previous chapter, this problem has a close
from solution, and it is:

W1 = UVT with UΣVT = SVD(YXT)

It is very efficient to compute, as notice that it requires the SVD which is essentially matrix
multiplication and with Python, there are already several efficient libraries that can handle the
matrix multiplication efficiently, such as: Numpy, JAX.

4.2 W2: l1 method

Another normwe canuse for this problem is the l1 norm, unlike the l2 norm, instead of consid-
ering the squared error, it considers the pure difference between the word. And our alignment
matrixW2 is found by solving:

W2 = argmin
W∈Rd×d

∥WX− Y∥1

Again, we consider the global error of the error matrix A, we can further reconstruct the
problem by considering the global error as the sum of the error of each individual word embed-
ding, and that is:

51

W2 = argmin
W∈Rd×d

N∑
i=1

∥WXi⃗ − Yi⃗ ∥1

= argmin
W∈Rd×d

N∑
i=1

∥Wxi⃗ − yi⃗∥1

Notice that the letter X and Ywith subscript i represents the i-th column of the correspond-
ing matrix, for the sake of simplicity, we denote x as a general word embedding in X and y as
a word embedding in Y for the i-th word, it can be denoted as xi and yi. The superscript in
this thesis will denote the row of a matrix. And finally with these notations, considering also
d = 300, we will represent the j-th row and i-th column of the matrix Y as Yj

i and our problem
can be rewritten as:

W2 = argmin
W∈Rd×d

N∑
i=1

300∑
j=1

|Wjxi − yji|

= argmin
W∈Rd×d

300∑
j=1

N∑
i=1

|Wjxi − yji|

Furthermore, solving the problem above is equivalent to solving 300 sub-problems of the
form:

min
wj∈Rd

N∑
i=1

|Wjxi − yji| ∀j = 1, . . . , 300

As explained in the previous chapter, we canperform the linearization technique to the prob-
lem and we have the following linear problem:

min
wj∈Rd,z∈RN

N∑
i=1

zi s.t. − zi ≤ wjxi − yji ≤ zi ∀j = 1, . . . , 300

where z ∈ RN the new variable to optimize. Notice that such decomposition of the problem
is required, as with the very original construction, solving the problem requires the consider-
ation of almost 5 million constraints at once, thus makes the problem way more complicated

52

and hard to solve.

4.3 W3: Zero norm

The last normwe consider is the zero norm, unlike previous two norms that consider the scale
of the error, the zero norm forces the sparsity of the error vector z ∈ RN, in our previous
constructions, we refer the entry zi ∈ Rd as the sum of error over all the dimensions of the
embedding of the i-th word. Let us first define the zero norm problem. Given a polyhedral set,
the problem of finding the minimum number of nonzero components of a vector in the set is
the zero norm problem. And we can write it formally as:

min
min

∥z∥0, z ∈ Ω (4.1)

where we denote the zero norm of z as ∥z∥0 = card{zi : zi ̸= 0}. This problem is NP-hard
[50], thus in order to make it tractable, we can further write it as:

∥z∥0 =
N∑
i=1

s(|zi|)

in which s : R→ R+ is the step function such that:

s(t) =

1 t > 0

0 t ≤ 0

53

Replacing the step function in the previous formwith a continuously differentiable concave
function v(t) = 1− exp−αt, with α > 0, the objective function of the zero norm become:

min
z,y∈RN

N∑
i=1

(1− exp−αyi) s.t. z ∈ Ω − yi ≤ zi ≤ yi, i = 1, . . . ,N

With this replacement, the convergence of the Frank-Wolfe method to a vertex stationary
point with uni step size is guaranteed, in fact, this convergence result was proved to be value
for a general class of concave programming problem. And now, we can apply this framework
to our problem, and we can find the third alignment matrixW3 by solving:

W3 = argmin
W,A,z

∥z∥0 s.t. − ai ≤Wxi − yi ≤ ai, eTai = zi

in which z ∈ RN is the error vector with entry i being the sum of the i-th column ai of the
error matrix A and eT is a vector of all its entries equal to 1. We will focus on this problem
and use the Frank-Wolfe algorithm and its variant to solve it. For this problem, we have three
variables that are concatenated in variable x, since there is no component of wj and a

j
i in the

objective function, thus, we have:

∂f
∂wl

j
=

∂f
∂aji

0 with ∀j = 1, . . . , d, l = 1, . . . , d, i = 1, . . . ,N

Thus, we further have:

∇f(xk) · x = ∇f(zk) · z

and finally, our minimization problem becomes:

min
A,W,z
∇f(zk) · z s.t. − ai ≤Wxi − yi ≤ ai, eTai = zi

Here, we will report the pseudocode of the Frank-Wolfe algorithm for the zero norm prob-
lem, we will set gk := ∇f(zk) ∈ RN, and the cut-off condition ε.

54

Algorithm 4.1 The general Frank-Wolfe algorithm for the zero-norm problem
1: k← 0
2: (gk)i ← (g0)i, ∀i = 1, . . . ,N
3: A,W, z← argminA,W,z∇f(zk) · z s.t. A,W, z ∈ Ω
4: k← 1
5: while

∑N
i=1(gk)i(zi − (zk)i) ≥ −ε

6: (zk)i ← zi ∀i = 1, . . . ,N
7: (gk)i ← α exp−α(zk)i ∀i = 1, . . . ,N
8: A,W, z← argminA,W,z∇f(zk) · z s.t. A,W, z ∈ Ω
9: k← k+ 1
10: end while

Similar to the l1 problem, this problem again requires almost 5 million constraints, in order
to obtain a lighter version of this problem, we will perform the following transformation.

For each entry zi of the error vector, the error of the i-th word is:

eTai =
300∑
i=1

aji = zi

apply it to the objective function, we then have:

∇f(zk) · z =
N∑
i=1

(gk)izi =
N∑
i=1

(gk)i
300∑
j=1

aji

=
N∑
i=1

300∑
j=1

(gk)ia
j
i

=
300∑
j=1

N∑
i=1

(gk)ia
j
i

and our minimization problem now becomes:

min
A,W

300∑
j=1

N∑
i=1

(gk)ia
j
i s.t. − ai ≤Wxi − yi ≤ ai

55

Thanks to the concave nature of our approximated objective function, we have that the gra-
dient is always greater or equal to 0, thus the problem above can be again divided into 300
sub-problem, and they have the form:

min
aj,wj

N∑
i=1

s.t. − aji ≤Wxi − yi ≤ aji ∀j = 1, . . . , 300

Denote Ωj as the feasible set for the j-th sub-problem, now the pseudocode becomes:

Algorithm 4.2 The general Frank-Wolfe algorithm for the zero-norm problem
1: k← 0
2: (gk)i ← (g0)i, ∀i = 1, . . . ,N
3: aj,wj ← argminaj,wj

∑N
i=1(gk)ia

j
i s.t. aj,wj ∈ Ωj, ∀j = 1, . . . , 300

4: k← 1
5: while

∑N
i=1(gk)i(

∑300
j=1 a

j
i − (zk)i) ≥ −ε

6: (zk)i ←
∑300

j=1 a
j
i ∀i = 1, . . . ,N

7: (gk)i ← α exp−α(zk)i ∀i = 1, . . . ,N
8: aj,wj ← argminaj,wj

∑N
i=1(gk)ia

j
i s.t. aj,wj ∈ Ωj ∀j = 1, . . . , 300

9: k← k+ 1
10: end while

Thanks to the proposition (12), we are sure that this algorithm converges in a finite number
of steps. Another modification can be applied is the reduction of dimension method which
was proposed by Rinaldi el al. [51]. Within this work, a new technique based on the idea that
if a word is correctly aligned, or equivalently the entry corresponds to that word is 0 and will
remain unchanged for the rest of the iterations. Hence, computations related to those words
by be skipped and thus a significant save of computation time by performing the following
transformation.

(zk)i = 0⇒
300∑
i=1

aji = 0 ∀j = 1, . . . , 300

⇒ 0 ≤ wjxi − yi ≤ 0

⇒ wjxi − yi = 0

56

Considering a set of indices of non zero entry of zk, which we denote with I = {i =

1, . . . ,N, s.t. (zk)i ̸= 0}, thus the j-th sub-problem becomes:

min
aj,wj

∑
i∈I

(gk)ia
j
i

s.t. wjxi − yi = 0 ∀ /∈ I

− aji ≤ wjxi − yi ≤ aji ∀i ∈ I

As discussed before, we can also apply the block-coordinate method for this problemwhich
considers one block at a time. Here, we will use a random sampling of the block to be opti-
mized, thus, we only need to add a random selection of the block between line 4 and 5 in the
pseudocode.

Notice that we can also define an easier objective function, which is instead of considering
the zero norm of the error vector zk, we will try to minimize the zero norm of each word, or
equivalently, we try to make the error matrix to contain as many zeros as possible. Comparing
with the original formulation, our new problem becomes easier, as forcing one entry of zk to
be zeromeans that for that column of the error matrix to be all zero. Hence, minimize the zero
norm of the error vector zk means trying to make all columns to be 0 which is a way harder
problem. The new gradient is still a vector, for the sake of simplicity, we will denote (gk)

j
i as

the gradient related to the variable aji and now we can write the pseudocode as:

Algorithm 4.3 The general Frank-Wolfe algorithm for the zero-norm problem (Version 2)
1: k← 0
2: (gk)

j
i ← (g0)

j
i, ∀i = 1, . . . ,N ∀j = 1, . . . , 300

3: aj,wj ← argminaj,wj

∑N
i=1(gk)

j
ia

j
i s.t. aj,wj ∈ Ωj, ∀j = 1, . . . , 300

4: k← 1
5: while

∑N
i=1(gk)

j
i(a

j
i − (ak)

j
i) ≥ −ε

6: (ak)
j
i = aji

7: (gk)
j
i ← α exp−αaji ∀i = 1, . . . ,N ∀j = 1, . . . , 300

8: aj,wj ← argminaj,wj

∑N
i=1(gk)

j
ia

j
i s.t. aj,wj ∈ Ωj ∀j = 1, . . . , 300

9: k← k+ 1
10: end while

57

4.3.1 Similarity measure

In this very last section of this chapter, we will include the important similarity measures for
our experiment. The first one is the absolute cosine similarity and we denote it as si. For the
i-th aligned word, its absolute cosine similarity is thus defined as:

si(w) = | cos (y⃗,Wix⃗)|

in which the subscript of the alignment matrix refers to different matrix obtained with various
techniques and vectors x⃗, y⃗ are the usually word embedding representation of w in two embed-
ding spaces. The second useful measure is the theta measure, which considers the common
number of N closest neighbors before and after the alignment. The intuition is that if two
words have similar semantic meaning, that means that they are likely to have more words in
common. With this intuition, the theta measure can be defined as:

θk(x⃗, y⃗) =
|{x1, . . . , xk}|

∩
{y1, . . . , yk}

k
where the sets {x1, . . . , xk} and {y1, . . . , yk} are the set of k nearest words of x⃗ and y⃗ in the

corresponding embedding space. And below is attached one diagram of the role of the similar-
ity measure.

Figure 4.3: Diagram of similarity measure.

These twomeasure are essentially similar, as saying that twowordshavemore commonneigh-
bors means that they are close to each other and as a consequence, the angle between them
should be small and thus a lower absolute cosine similarity. One final note to the theta mea-

58

sure is the choice of the number of closest neighbors. Of course more neighbors considered
means a higher computation load, on the other hand, a too small number of neighbors might
not give us enough information to make meaningful statement, hence, in our experiment, we
consider 20 closest neighbors as a trade-off between those two factors.

59

60

5
Dataset and the experimental setup

As explained in the previous chapter, the dataset used in this experiment is a pre-trained 300-
dimensional of the Histwords project. More specifically, we use the embedding trained on
English corpora ENGFIC which is made up by English fiction books with 7.5 × 1010 tokens.
There are 20 different sets of embedding for different decade between the year 1890 and 1990
and of course with various number of words. From the figure (5.1) below, the number of word
embedding of each decade is reported.

We selected the year 1890 and 1900, thus we have the two embedding are:

e1890 : D1890 → V1890 and e1990 : D1990 → V1990

in which again the letter Di the vocabularies of related to the embedding. From the figure
above we can see that there are 8896words in the vocabulary of the year 1890 and 24049words
in the year 1990. Our hypothesis assumes the two embedding to have the same dimensionality
which means both the dimensionality of the embedding vector d and the number of words
in the vocabulary N must be the same for the two dataset, thus, we will use the intersection
between these two vocabularies as the common vocabulary for both embedding spaces. There
are 8810 words in the common vocabulary. Thus, for our experiment, we will use X as the
embedding representation matrix in the space of 1890 and Y in the space of 1990.

61

Figure 5.1: Cardinality of the vocabulary.

62

Within our experiment, we will use two different test set, the first one is composed by the
top and bottom 150 words based on their theta measure and the second test set will be a test
sets selected based on literature, personal annotation. We will discuss both test sets in more
details.

Let us focus on the first dataset of the top and bottomwords. In order to extract this dataset,
we first consider the theta measure θk between all the words in two embeddingmatrices and we
use subscript k to represent the number of closest neighbors to be considered. We compute
the theta measure for all the words in the vocabulary and then sort them based on their theta
measure value in ascending order. The result can be found in the figure (5.2). From the figure,
we can see that the theta measure took all its possible values in a discrete way. Furthermore, we
can also see that some words tends to be stable as their common closest neighbors don’t really
change, and some words tends to be unstable as none of their closest neighbors in the 1890
remain in the closest neighbors of the same word in 1990. Which confirmed the fact that the
meaning of some words has a more rapid change.

Figure 5.2: Sorted θ20 for words in the common vocabulary.

Now, we will take the top and bottom 150 words of the vocabulary based on the sorted
list of theta measure as those two groups of words represent the word with the most and least
rapid change between the year 1890 and 1990. Now, wewill report the two set of words below.

Bottom 150 words
’tut’, ’ta’, ’roland’, ’guy’, ’palmer’, ’warden’, ’jerry’, ’veteran’, ’unheard’, ’check-

63

ing’, ’exercises’, ’ex’, ’priscilla’, ’wells’, ’continues’, ’corrected’, ’luckily’, ’maps’,
’presided’, ’eventually’, ’jem’, ’eminently’, ’compound’, ’delivery’, ’distributed’,
’consigned’, ’imagining’, ’judy’, ’accomplishment’, ’ultimately’, ’enlightened’, ’ex-
cluded’, ’swamp’, ’breasts’, ’lodger’, ’creditors’, ’damn’, ’brussels’, ’minstrel’, ’car-
rier’, ’noah’, ’interpreted’, ’missionary’, ’bearings’, ’mac’, ’secondly’, ’flourished’,
’sate’, ’available’, ’twelvemonth’, ’production’, ’spit’, ’jason’, ’crook’, ’transport’,
’contemplate’, ’aforesaid’, ’meg’, ’assailed’, ’barker’, ’divinity’, ’assisting’, ’toilet’,
’unequal’, ’exempt’, ’random’, ’practise’, ’representation’, ’exaggerated’, ’foreigner’,
’reminding’, ’brand’, ’whatsoever’, ’plight’, ’overtake’, ’georgie’, ’availed’, ’keawe’,
’dad’, ’proclaimed’, ’literally’, ’uses’, ’hereditary’, ’choosing’, ’compromise’, ’dis-
miss’, ’correspondent’, ’artificial’, ’hermiston’, ’partial’, ’obviously’, ’snatch’, ’of-
fensive’, ’dorrit’, ’deborah’, ’nell’, ’significant’, ’speculation’, ’rosa’, ’nick’, ’ban-
ished’, ’illustration’, ’foster’, ’viewed’, ’favoured’, ’kindred’, ’esther’, ’urge’, ’jessie’,
’joyous’, ’flora’, ’tony’, ’jove’, ’dow’, ’detained’, ’monarch’, ’judging’, ’briefly’, ’ex-
tensive’, ’charlie’, ’ideal’, ’positively’, ’convenience’, ’daniel’, ’division’, ’scandal’,
’ward’, ’travellers’, ’archie’, ’assigned’, ’including’, ’reserved’, ’type’, ’gypsy’, ’mess’,
’communicate’, ’acknowledged’, ’chanced’, ’waverley’, ’cranford’, ’headed’, ’egyp-
tian’, ’gay’, ’rob’, ’rude’, ’nanny’, ’gavin’, ’of’, ’and’, ’vis’

Top 150 words
’bout’, ’wist’, ’fifteenth’, ’grate’, ’3’, ’beale’, ’rum’, ’ter’, ’lamorak’, ’kay’, ’ane’,
’perspiration’, ’precipice’, ’sung’, ’sixth’, ’blaze’, ’slew’, ’bors’, ’trousers’, ’four-
teen’, ’youngest’, ’sweat’, ’virgin’, ’2’, ’haired’, ’cliff’, ’eighteen’, ’sang’, ’pistol’,
’finest’, ’sheep’, ’fired’, ’secretary’, ’shield’, ’francs’, ’dawn’, ’gown’, ’accepted’,
’daughters’, ’burning’, ’sisters’, ’growing’, ’fifteen’, ’sing’, ’weight’, ’sunday’, ’play-
ing’, ’bottle’, ’mountain’, ’played’, ’forty’, ’launcelot’, ’heads’, ’france’, ’dozen’,
’m’, ’weeks’, ’1’, ’thirty’, ’third’, ’sword’, ’months’, ’knight’, ’hair’, ’children’, ’days’,
’mother’, ’few’, ’years’, ’father’, ’two’, ’gude’, ’5’, ’marhaus’, ’thirteenth’, ’ninth’,
’fourteenth’, ’ony’, ’ector’, ’4’, ’sixteenth’, ’nineteen’, ’percivale’, ’nae’, ’ower’, ’gareth’,
’dinadan’, ’eighty’, ’centuries’, ’burned’, ’lantern’, ’seventy’, ’en’, ’eleven’, ’sofa’,
’coach’, ’knife’, ’tristram’, ’sigh’, ’twelve’, ’breakfast’, ’wine’, ’eight’, ’fifty’, ’seven’,
’carriage’, ’trees’, ’glass’, ’thousand’, ’twenty’, ’understand’, ’morning’, ’three’, ’ole’,
’9’, ’14’, ’gaheris’, ’8’, ’muckle’, ’thirteen’, ’mair’, ’ninety’, ’sixteen’, ’gawaine’,
’fourth’, ’song’, ’nine’, ’six’, ’ten’, ’five’, ’hundred’, ’fire’, ’27’, ’30’, ’19’, ’15’, ’16’,
’25’, ’7’, ’mordred’, ’hae’, ’four’, ’23’, ’21’, ’24’, ’13’, ’17’, ’20’, ’12’, ’18’

The second dataset is a combination of three different dataset selected by Elena [52] which
are reported below.

64

H
fun, fond, terrific, tremendous, awe, grin, smart, egregious, sad, smug, facetious,
bully, gay, fatal, awful, nice, broadcast, monitor, record, guy, call, awesome, ter-
rible, terrific, naive, demagogue, guy, mouse, queer, nigger, jaw, kill, astound,
knave, knight, recording, bitch, tape, checking, diet, sex, plastic, transmitted, peck,
honey, hug,windows, bush, apple, sink, click, handle, instant, twilight, rays, stream-
ing, ray, delivery, combo, candy, rally, snap, mystery, stats, sandy, shades, god,
propaganda, atomic, toilet, halloween, king
B
chink, colored, indian, african, foreign, lesbian, gypsy, elderly, handicapped, ho-
mos, homosexual, alien,master, slave, retarded, tranny, tribe, girl, boy,man,woman,
housekeeper
S
house, tree, table, lamp, book, shoe, mirror, box, fork, chair, telephone, bottle,
stove, engine, wallet, boat, pencil, box, cup, plate, paper, stereo, leaf, stick, cloud,
shampoo, hat, painting, clothes, watch, window, key, pillow, water, fire, book,
door, street, path, bird, horse, cat, dog, fox, fish, school, paper, fountain, cage,
ink, pen, bone, forniture, dictionary, umbrella, scissor, hammer, rubbish

For the set H, it has the words subjected to historical semantic change according to the lit-
erature. Set B contains words that are subjected to certain type of cultural bias or due to racial
bias, etc. and they are personally annotated or found online. The set S are words that are more
likely to be stable with all the words belong to the inanimate objects and common animals
and natural elements classes as usually these classes are influenced less by the cultural change
over time. Thus, if we plot the thetameasure of these three datasets, wewill expect setH to have
the lowest theta measure as these are words that are subjected to semantic changes according
to the literature which is possibly the most reliable source for such classification. Furthermore,
we expect the set S to have the highest theta measure and the set B to be the intermediate one.

Notice that not all the words in this test set are present in our common vocabulary, in fact,
25 words of set H are not in the common vocabulary, the number of missing word are 9 and 6
for the set B and S respectively. Thus, as explained before, in order to have the common vocab-
ulary, we will not consider all the missing words in the common vocabulary.

One thing to be noticed is that in the list of the top words, a lot of them are just numerical
numbers, it is not surprising that the numbers tend to be stable as they are more objective com-
pared to other classes of words. Furthermore, we will also report in the table below the mean

65

value and variance of the thetameasure θk for all thewords in the top and bottoms lists. Wewill
use these values to compare the effectiveness of our alignments. As for the second dataset, we
will apply the theta measures for all three sets H, B and S and again we will report these values
in the same table.

Set bottom top H B S
θ(x⃗, y⃗)± σθ(x⃗,y⃗) 0.0003 ± 0 0.7977 ± 0.0035 0.3326 ± 0.0461 0.35 ± 0.0373 0.4806 ± 0.027

From the table above, we can see that for the theta measure for the bottoms words are really
close to zero and the thetameasure of the topwords are really high, with amean value of almost
0.8, but this phenomenon is not surprising to us as we have purposely selected those words. As
for the second test set, we can see that even though the difference between the mean value of
set H and B are close, but recall that all the words of set B are personally annotated or found
online, thus the conclusion of semantic change of these words are not as reliable as the other
two sets. However they still follows our expectation as set S has the highestmean thetameasure
and then followed by set B and thenH.With these results, we can confirm that the sets H, B, S
are properly selected.

5.1 Comparison of the alignments

Within this subsection, we will focus on comparing the alignment obtained with different
methods. We will classify them into three general groups by the formulation of the objective
functions as discussed in the previous chapter. Recall that these methods are:

• W1 obtained by solving the orthogonal procrustes problem.

• W2 obtained by minimizing the L1 norm with linear decomposition.

• W3 obtained by minimizing the zero norm of the error matrix .

66

Notice that we have already discussed in detail about the Block-coordinate methods and we
will further add the block-coordinate Frank-Wolfe algorithm and we will denote it withW4.
Furthermore, we will propose two different initialization point for the Frank-Wolfe algorithm.
For the initialization of the Frank-Wolfe algorithm, as explained before, we usually just pick
a random starting point and then solving for a vertex of the polyhedron formed by the lin-
ear constraints. However, we are also free to choose our initialization point such as using the
one obtained by the Procrustes and L1 norm problem. The intuition behind this is that, even
though we have constructed different objective function, but since the minimization of the er-
ror in terms of the L2 norm, L1 norm and zero norm are essentially performing similar tasks,
thus we can assume that the solution provided by the orthogonal procrustes method and L1
methods are close to the solution of the zero norm problem, or at least close to one of its lo-
cal minimum. Hence, by applying those new starting point, we expect that our algorithm will
converge faster than the random initialization. Thus, we will denoteW5 for the Frank-Wolfe
method initialized with the solution of the L1 norm method andW6 as for the Frank-Wolfe
method initialized with the solution to the orthogonal procrustes problem. However, the fea-
sibility of the initialization point provided by different base line models should be guaranteed
first. More precisely, notice that in our formulation, for each entry of thematrices X and Y and
also for each row j of the matrix W, we have the following constraint:

−aji ≤Wxi − yi ≤ aji ∀j = 1, . . . , 300

One hidden constraint on the entry aji is that it takes only non negative values. Indeed, from
the constraint above, we have that the only possibility that the inequality−aji ≤ aji hold is by
letting variable aji takes non negative values. This is really important as these constraints form
the feasible set of our problem and for the Frank-Wolfe algorithm, one important thing is that
it is a projection free algorithm as at each Frank-Wolfe step, we move towards one of the vertex
of the polyhedron and we also set the step size to be smaller or equal to 1, thus, the new point
generated by the Frank-Wolfe algorithm for sure is a feasible solution by our construction. On
the other hand, if we start with a point outside of the feasible region, then the Frank-Wolfe
method will not work and it will give us a wrong result. We can perform the analysis first with
the error matrix obtained by the L1 normmethod. For the result provided by L1method, this
non-negativity constraint is automatically satisfied as it is also the constraint for the L1 norm
method. However, if we take a look at the error matrix provided by the procrustes method, we

67

can see that this constraint is not satisfied as some of these entries are negative values. Thus, in
order to make the solution of orthogonal procrustes method a feasible solution, we will first
need to perform the projection of the result back to the feasible set. As discussed before, one
of the constraint is that all aji must take non negative value, thus projecting the non negative
value back to the feasible set means to take the positive part of the negative entries. With this
transformation, we can guarantee that our initialization is feasible.

And finally, we will introduce one more way to find the transformation matrix W but will
not be considered in currentwork, which is by considering the topwords according to the theta
measure and then solve this new dataset with procrustes method as it is really efficient, later we
choose the next word that has the highest theta measure and we add it to our dataset and again
we apply the procrustes method. Later, the algorithm keeps going until we find a new word
such that by adding that new word to our dataset, the mean value of the error increases by δ
with δ being the threshold value. Since, it is based on a different technique, thus we will de-
note it with simply W without any subscripts. The intuition behind this final formulation is
that by focusing only on the topwords, wewill find amatrix that can alignwell the stablewords.

Before going further, wewill first set up all the necessary parameters for the algorithms. More
specifically, all the parameters required by the Frank Wolfe method such as cut-off condition
ε and hyper-parameter α that is used for the approximation of the zero norm. For the ε, we
decided to choose 10−12 and as for the hyper parameter α, we will set it to α = 5. As for the
step-size of the Frank Wolfe algorithm, we will set it to be a unit step size for the full Frank
Wolfe algorithm and with the block-coordinate method, we will try to use a diminishing step
sizes: 1

k+1 ,
1

k2+1 and
1√
k+1 . Where the letter k refers to the number of iteration, notice that all

these three step sizes are all lower or equal to 1 which can guarantee that the new iterate is still
feasible. The difference between these three step sizes are the speed of converging to 0when the
iteration k keeps growing. In fact, out of all 3 step sizes, at the same iteration, 1√

k+1 will have
the highest value as it has the lowest speed of converging to 0 and on the other hand, 1

k2+1 will
give the smallest step size value as it converges faster comparing to the other two step sizes. In
conclusion, we can use these different step size to control the number of iteration needed for
the convergence of the Block-Coordinate FrankWolfe method.

68

5.2 Evaluation methodology

The experiment is composed by two different parts, the first part is about the general evalua-
tion, we take both test sets explained in the previous subsection and given a word w in those
sets, we will compute the mean value of the theta measure θ(Wix⃗, y⃗) and the mean of the ab-
solute cosine similarity si(w) after applying the alignments for all alignments discussed before.
The second part of the experiment performs the analysis based on the top and bottom words
based on si in the ascending order and we denote the top lists as Hi and the bottom list as Li

with the index i representing different alignments. We expect the words in the bottom list are
more likely to be subjected to the semantic bias through the alignmentWi and words in the
top listsHI are less likely to be subjected to the semantic bias through the alignments. We later
computer also the theta measure for the top and bottom listHi and Ti for all the alignments.

Notice that the first three alignmentsW1,W2,W3 are associatedwith different formulation
of the objective functions, thus we will use them as the baseline models for our experiment.
Later we will focus on the zero norm method and and we will try to implement some variants
of the Frank- Wolfe algorithm to speed up the computation such as Block-coordinate Frank-
Wolfemethod and Frank-Wolfemethod initializedwith the solution of the Procrustes problem
and L1 norm problem.

69

70

6
Experiment and conclusion

Within this chapter, we will report the result of our experiments and their respective analysis.
Before we start, we will first perform a general evaluation on the test sets, more specifically,
the sets H, B and S. Recall that these sets come from literature, personal annotation,etc which
means that they are not supported by our evaluation measure. On the contrary, the top and
bottom lists comes from the sorted thetameasure array, thus they are automatically verified. As
for the top and bottom lists, the same procedures are repeated as they are already verified by the
theta measure, and with this test, we can check the effectiveness of the alignments. Consider-
ing a vocabularyD and for all wordw ∈ D in the set top/bottom lists, H, B and S, we compute
their corresponding absolute cosine similarity values after applying three different based line
alignments models and we later obtain the absolute cosine similarity s1(w), s2(w), s1(w) after
the alignment i, where x⃗ ∈ V1890 and y⃗ ∈ V1990. The mean and variance of the absolute cosine
similarity of our datasets without applying the alignments are (6.1):

Set bottom top H B S
s(w)± σs(w) 0.266± 0.010 0.472 ± 0.010 0.378 ± 0.014 0.414 ± 0.018 0.458 ± 0.012

Table 6.1: Original theta measure without alignments.

Notice that here we have that the order based on the absolute cosine similarity are: bottom
< H < B < S < top which are in line with our choice of these sets. Furthermore, the absolute

71

cosine similarity after applying three alignments are in the following table (6.2):

Set s1 ± σs1 s2 ± σs2 s3 ± σs3
Top 0.614 ± 0.010 0.678 ± 0.009 0.677 ± 0.009

Bottom 0.362 ± 0.014 0.412 ± 0.015 0.411 ± 0.156
H 0.512 ± 0.022 0.569 ± 0.026 0.568 ± 0.026
B 0.557 ± 0.018 0.622 ± 0.018 0.621 ± 0.018
S 0.611 ± 0.012 0.668 ± 0.009 0.667 ± 0.009

Table 6.2: Table of result of absolute cosine similarity for all three base line models.

Wewill further provide a plot (6.1) of the absolute cosine similarity measures for both with
and without alignments and for all the three base line models. From the table, we can see that
for each alignment, they can really align the two dataset as the absolute cosine similarity has in-
creased after the alignment which confirms the effectiveness of the alignment techniques. And
more importantly, we can see that the orderH<B < S based on the absolute cosine similarity is
also respected and there are clearly somemargins between setH, B and S that can guarantee the
separability between these sets. Furthermore, from the table we can also see that the procrustes
method gives the poorest result as it has an absolute cosine similarity value that is on average 0.5
lower than the other two for all the sets. We can also see that the second and third alignment
have similar performance as they give almost equivalent results for all the set considered in our
experiment.

Figure 6.1: Result of absolute cosine similarity for all three base line models.

Similarly, we can also calculate the theta measure before and after the corresponding align-
ment and a bar plot with is presented in (6.2) and the result are also reported in the following

72

table (6.3):

Figure 6.2: Result of theta measure (K = 20) for all three base line models.

Set θ(W1x⃗, y⃗)± σθ(W1x⃗,y⃗) θ(W2x⃗, y⃗)± σθ(W2x⃗,y⃗) θ(W3x⃗, y⃗)± σθ(W3x⃗,y⃗)
Top 0.821 ± 0.0 0.839 ± 0.0. 0.896 ± 0.0

Bottom 0.125 ± 0.0 0.18 ± 0.0 0.178 ± 0.0
H 0.441 ± 0.0 0.468 ± 0.0 0.472 ± 0.0
B 0.535 ± 0.0 0.527 ± 0.0 0.53 ± 0.0
S 0.602 ± 0.0 0.658 ± 0.0 0.663 ± 0.0

Table 6.3: Theta measure for all the test sets after applying all three alignments.

Comparing with the theta measure without alignment, we can notice that with all the align-
ments, the theta measure for all the sets increases which indicates that the alignments are cor-
rectly applied and we can also see that not only all of their theta measures increase with the
alignment but also their corresponding order is respected. More importantly, we can notice
that the theta measure for the bottom list has increased significantly with the alignments. Re-
call that these words are selected based on the lowest theta measures and the original mean
value of the theta measure for the low list is essentially zero which means that they are the ones
with the most rapid changes and their meanings have changes completely. However, with the
alignment, it seems like we can mitigate this change as they provide a descent improvement
to the mean values, more specifically, the mean value increases from 0 to almost 0.2 for some
alignments. Furthermore, if we focus on the differences between the sets, we can see that the
difference between set H and B are more evident after applying the alignments as their gap has
increased a lot. Furthermore, from the plot we can see that the alignmentsW2 andW3 seem

73

like to have a slightly better performance than the procrustes method for all the sets.

The second experiment we focus on the second test set namely, H, B, S andwe later perform
the evaluation of the top andbottomof the sorted ranking according to the absolute cosine sim-
ilarity value si. We first consider only the test set H, B, S as we have already verified their level
of bias they are subjected to in the first experiment. Now we can start the second experiment
by first applying the absolute cosine similarity for all three base alignments and later we sort all
the words based on the the absolute cosine similarity and thus 3 different sorted rankings for
all three different alignments is obtained. The next step is to select both the setH1,H2,H3 of
top 50 words of the ranking and the set B1,B2,B3 of bottom 50 words of all three ranking lists.
And then, we will check the effectiveness of the alignments on these selected sets. We know
that words in the lists have the properties that:

• Hi contains the last 50 words in ri corresponding to the high absolute cosine similarity
value, thus, for words w ∈ Hi, they are the stable ones after applying the alignmentWi.

• Li contains the first 50 words in ri corresponding to the low absolute cosine similarity
value, thus, for words w ∈ Li, they are the words that are subjected to a rapid change
after applying the alignmentWi

And finally, we can perform analysis based these sets and their intersections with listsHi and
Li by checking the intersections between the top listsHi and the test sets and the bottom lists
Li and the test sets. Here, we will report these lists found by all three alignments.

H1
’hands’, ’tone’, ’knights’, ’window’, ’noise’, ’tristram’, ’sitting’, ’sleep’, ’face’, ’hair’,
’heavy’, ’hand’, ’night’, ’oh’, ’between’, ’river’, ’horses’, ’five’, ’walls’, ’stairs’, ’through’,
’ye’, ’words’, ’sun’, ’windows’, ’fire’, ’steps’, ’voice’, ’water’, ’sea’, ’church’, ’ga-
heris’, ’gate’, ’sat’, ’hear’, ’years’, ’god’, ’horse’, ’knight’, ’beaumains’, ’morning’,
’floor’, ’launcelot’, ’evening’, ’heard’, ’hundred’, ’trees’, ’door’, ’miles’, ’marhaus’

H2
’horse’, ’afternoon’, ’hours’, ’horses’, ’eyes’, ’window’, ’sitting’, ’thou’, ’tried’,

74

’gude’, ’brownlow’, ’standing’, ’morning’, ’hair’, ’mother’, ’chair’, ’warm’, ’twenty’,
’knight’, ’oh’, ’unto’, ’glass’, ’steps’, ’kenwigs’, ’sea’, ’stairs’, ’voice’, ’hundred’,
’church’, ’floor’, ’ye’, ’hear’, ’years’, ’windows’, ’jesu’, ’launcelot’, ’five’, ’water’,
’balin’, ’evening’, ’miles’, ’door’, ’gat’, ’trees’, ’hight’, ’sat’, ’heard’, ’beaumains’,
’gaheris’, ’marhaus’

H3
’horse’, ’horses’, ’hours’, ’afternoon’, ’eyes’, ’window’, ’hair’, ’tried’, ’gude’, ’sit-
ting’, ’thou’, ’brownlow’, ’standing’, ’morning’, ’mother’, ’chair’, ’twenty’, ’warm’,
’knight’, ’unto’, ’oh’, ’glass’, ’steps’, ’kenwigs’, ’church’, ’sea’, ’stairs’, ’hundred’,
’voice’, ’floor’, ’ye’, ’hear’, ’years’, ’jesu’, ’windows’, ’launcelot’, ’five’, ’water’,
’evening’, ’balin’, ’miles’, ’door’, ’gat’, ’trees’, ’hight’, ’sat’, ’heard’, ’beaumains’,
’gaheris’, ’marhaus’

L1
’guy’, ’gavin’, ’dow’, ’egyptian’, ’dad’, ’ut’, ’mac’, ’tony’, ’quentin’, ’checking’,
’nanny’, ’cranford’, ’vis’, ’jan’, ’barnaby’, ’georgie’, ’percy’, ’66’, ’dinah’, ’kenneth’,
’barker’, ’deborah’, ’gypsy’, ’jessie’, ’overdue’, ’plight’, ’molly’, ’comer’, ’ta’, ’ob-
viously’, ’jean’, ’hermiston’, ’gilbert’, ’comers’, ’wanting’, ’designs’, ’jenny’, ’char-
lie’, ’catriona’, ’matilda’, ’glen’, ’wight’, ’martha’, ’romances’, ’palmer’, ’waverley’,
’foster’, ’presumed’, ’tho’, ’y’

L2
’guy’, ’dow’, ’tony’, ’quentin’, ’gavin’, ’georgie’, ’vis’, ’egyptian’, ’checking’, ’mac’,
’ut’, ’barnaby’, ’jan’, ’the’, ’dinah’, ’gypsy’, ’cranford’, ’comer’, ’catriona’, ’percy’,
’deborah’, ’dad’, ’gilbert’, ’jessie’, ’palmer’, ’jason’, ’kenneth’, ’martha’, ’barker’,
’edith’, ’foster’, ’nanny’, ’ta’, ’overdue’, ’scot’, ’almayer’, ’comers’, ’66’, ’covers’, ’es-
ther’, ’signor’, ’judy’, ’headed’, ’romances’, ’clennam’, ’tho’, ’hilda’, ’urge’, ’amy’,
’jean’

L3
’guy’, ’dow’, ’tony’, ’quentin’, ’gavin’, ’georgie’, ’egyptian’, ’vis’, ’checking’, ’mac’,
’ut’, ’barnaby’, ’jan’, ’the’, ’dinah’, ’gypsy’, ’cranford’, ’comer’, ’percy’, ’catriona’,

75

’deborah’, ’dad’, ’gilbert’, ’palmer’, ’jessie’, ’jason’, ’martha’, ’kenneth’, ’edith’,
’barker’, ’foster’, ’nanny’, ’ta’, ’scot’, ’overdue’, ’almayer’, ’comers’, ’66’, ’covers’,
’esther’, ’signor’, ’headed’, ’judy’, ’romances’, ’clennam’, ’hilda’, ’tho’, ’urge’, ’weav-
ing’, ’plight’

From the dataset above, we represent the intersections between our test sets H, B, S and the
corresponding top and bottom lists in bold. Since we have already verified our test set, thus
the for set H, since it has a rapid transformation of its meaning, thus, we expect the words in
H to be present in set H and probably also in B, but we will never expect it to be in S as those
are the stables words and by construction. Similarly, we should expect opposite result for Hi.
Our ideal alignment has intersection with only set H if that word comes from list Li, vice versa,
our ideal alignment has intersection with only set S if that word comes from listHi. We can see
that for the words in the bottom lists Li, all three alignments picked the same words in the test
set and all of alignment ignored the set S which means that they correctly separated set S with
other sets. Now, let us check the list Hi, all the alignments provided 5 words in the stable set
S which mean they correctly labeled those words, then L1 and zero normmethod selected the
same word in set H, which means that they couldn’t separate those words correctly. However,
comparing to the Procrustes alignment, we can see that if further made 1 more mistake as it
labeled the word ’god’ as word that is subjected to a more rapid semantic change. We further
made a more detailed report about the number of intersecting words in the following table
(6.4):

Set L1 H1 L2 H2 L3 H3

H 2 3 2 2 2 2
B 1 0 1 0 1 0
S 0 5 0 5 0 5

Table 6.4: Number of intersecting words between test sets and the top and bottom lists.

We further calculated themean and variance for the top and bottom lists so that we can gain
a better quantitative insight. In order to compare them, we will first report the sE value which
corresponds to the case without any alignment and then we will also report the same statistics
after applying the corresponding alignments. And these numbers are reported in the tables
(6.5) (6.6) below:

76

Set sE
L1 0.124 ± 0.005
H1 0.615 ± 0.002
L2 0.131 ± 0.009
H2 0.622 ± 0.002
L3 0.129 ± 0.008
H3 0.622 ± 0.002

Table 6.5: sE values for all the top and bottom lists.

Set s1 ± σs1
L1 0.180 ± 0.004
H1 0.767 ± 0.0

s2 ± σs2
L2 0.214 ± 0.005
H2 0.819 ± 0.0

s3 ± σs3
L3 0.212 ± 0.005
H3 0.819 ± 0.0

Table 6.6: Absolute cosine similarity with alignments for all the top and bottom lists.

In order to give a better presentation, we will now report the relevant bar plot (6.3) with for
each alignment, the two bars at the left represent the mean value without the alignment and
the two bars at the right represent the mean value with the corresponding alignment method.

From both the table and figure above, we can see that for all the top and bottom lists, after
the alignments, the absolute cosine similarity increases. Furthermore, we can again notice that
L1 and zero norm methods out-performed the Procrustes method. We can also observe that
for the words in the bottoms list, their mean values has increased by a small value, on average
around 0.05. While as for the words in the top lists, we can see that they have increased at least
three times as much as the words in the bottom lists. This phenomenon is especially evident
for L1 and zero norm alignments.

Now, wewill repeat the same procedures above, but this time, we consider the thetameasure

77

Figure 6.3: Comparison of sE and si values for all alignments.

θ(x⃗, y⃗)without alignments and thetameasure θ(Wix⃗, y⃗) forword representation x⃗ ∈ V1890 and
y⃗ ∈ V1990 andWi being the corresponding alignment. The final result is reported in the table
(6.7) and (6.8)

Set θ(x⃗, y⃗)± σθ(x⃗,y⃗)
L1 0.045 ± 0.0
H1 0.653 ± 0.0
L2 0.032 ± 0.0
H2 0.658 ± 0.0
L3 0.030 ± 0.0
H3 0.658 ± 0.0

Table 6.7: Theta measure without alignments for all the top and bottom lists.

From the tables above, we can notice that again our alignments have increased the thetamea-
sure of our top and bottom lists. However, we can also notice that even though the value in-
creases for the bottom lists, but this increment is barely significant. On the other hand, we can
see the top lists are all alignedwell by our alignments, which gives us a result that our alignment
can align well the stable words and leave the unstable ones unchanged. Furthermore, unlike
the absolute cosine similarity, for the top lists, all three alignments performed equally. We will
also report the bar plots in the following figure (6.4). And again, for the same position, the two
bars on the left side are themean values obtained before applying the corresponding alignment
and the ones on the right side corresponds to those that are subjected to alignmentWi.

78

Set θ(Wix⃗, y⃗)± σθ(Wix⃗,y⃗)
L1 0.056 ± 0.0
H1 0.794 ± 0.0
L2 0.047 ± 0.0
H2 0.803 ± 0.0
L3 0.043 ± 0.0
H3 0.803 ± 0.0

Table 6.8: Theta measure with different alignments for all the top and bottom lists.

Figure 6.4: Comparison of theta measure for all the alignments.

6.1 Frank-Wolfe and its variants

In this subsection, we will focus on the variants of the Frank Wolfe algorithm and try to im-
plement various variants and with different initialization in order to reduce the computational
time and keep the comparable performance at the same time. Before moving further, we will
first report the time needed for the calculation of the three base line alignments. And it is re-
ported in the table (6.9).

Procrustes L1 method zero norm
time < 1 s 24390 s 113773 s

Table 6.9: Time needed for the computation of the baseline alignments.

We can clearly see that the fastest one is the Procrustes method, as even though it uses the
SVD for the final construction of the solution, but essentially, even SVD is just simple matrix

79

multiplication, and with numpy, these matrix multiplications can be solve easily, thus giving
us a really fast computation. As for the L1 method and the zero norm method, we have to
first report that in order to obtain the alignmentW3, we have set the maximum iteration to 5,
the Frank-Wolfe algorithm failed to converge in 5 iterations. Now if we take the mean value
of each iteration of the Frank-Wolfe problem, we can see that it is similar to the time required
to compute with the L1 method. This is reasonable, as L1 and zero norm methods essentially
have the same constraints and dimensions, thus they require similar amount of time to process
the data. Furthermore, even though the full Frank-Wolfe method didn’t converge in 5 itera-
tions but this result is still acceptable as the there isn’t a lot of improvement between iterations.
In the following table (6.10), we will report the objective value and the gaps for each iteration.
Furthermore, we will provide a plot of the value of the objective function.

Objective function 92964.881 92763.364 92761.556 92761.368 92761.315
Gap at each iteration -638166.272 -181.8135 -1.267 -0.108 -0.025

Table 6.10: Gap and value of the objective function for the full Frank‐Wolfe algorithm.

Figure 6.5: Value of the objective function

From both the table and the figure above, we can see that the value of the objective function
decreased rapidly for the first Frank-Wolfe iteration and for the other iterations, this improve-
ment is limited. Furthermore, we can also see the gap has been continuously decreasing but
again not by a significant amount. For both reasons stated above, we are already close to the
minima and if we keep running, the algorithm will keep improving, but this improvement is

80

negligible. Thus, we can conclude that our alignment is relatively good.

Now, we can apply the experiments to the test sets H, B, S with Block-coordinate Frank
Wolfe and BCFW initialized with the solution found by the L1 method and perform the stan-
dard FrankWolfe initialized with the projected solution of the Procrustes problem. Again, we
will first report in the following table (6.11)the time needed to obtain these alignments and
their final value of the objective function.

Procrustes and FW L1 and BCFW BCFW
time 111684 s 24473 s 21506 s
value 92795.8 730102 730103

Table 6.11: Time needed for the computation of various alignments.

From the table above, we can see that the procrustes initialization gives the lowest value of the
objective function but in the cost of a long computational time. While the other twomethods
require way less time, but their value of objective function are way higher than the procrustes
initialization. Let us again apply these alignment and apply the same analysis as before to see
their performance in bias analysis. The theta measure before and after all these alignments are
(6.12):

Set θ(W4x⃗, y⃗)± σθ(W4x⃗,y⃗) θ(W5x⃗, y⃗)± σθ(W5x⃗,y⃗) θ(W6x⃗, y⃗)± σθ(W6x⃗,y⃗)
Top 0.838 ± 0.0 0.846 ± 0.0. 0.840 ± 0.0

Bottom 0.179 ± 0.0 0.171 ± 0.0 0.176 ± 0.0
H 0.472 ± 0.0 0.471 ± 0.0 0.457 ± 0.0
B 0.527 ± 0.0 0.527 ± 0.0 0.523 ± 0.0
S 0.660 ± 0.0 0.655 ± 0.0 0.630 ± 0.0

Table 6.12: Theta measure for all the test sets after applying variants of Frank‐Wolfe.

Similarly, we also provide a plot (6.6) for the mean values of the theta measure.

We can notice that, all three methods gives essentially the same result and now let us check
the absolute cosine similarity with table (6.13) and plot (6.7).

81

Figure 6.6: Mean value of theta measure with variants of FW.

Figure 6.7: Mean value of cosine similarity with variants of FW.

82

Set s4 ± σs4 s5 ± σs5 s6 ± σs6
Top 0.678 ± 0.009 0.664 ± 0.012 0.677 ± 0.009

Bottom 0.412 ± 0.015 0.390 ± 0.016 0.411 ± 0.156
H 0.569 ± 0.029 0.558 ± 0.028 0.568 ± 0.026
B 0.622 ± 0.018 0.611 ± 0.022 0.621 ± 0.018
S 0.668 ± 0.009 0.655 ± 0.011 0.667 ± 0.009

Table 6.13: Table of result of absolute cosine similarity for variants of FW.

From the result above, we can see that the L1 initialization has a weaker performance in term
of the absolute cosine similarity. The other twomethods have similar performance, butwe have
to remember that the Procrustes initialization takes way longer to calculate whichmakes it less
favorable.

Now, we apply the same method to get the top and bottom lists with different alignments
and these lists are:

H4
’horse’, ’afternoon’, ’hours’, ’horses’, ’eyes’, ’window’, ’sitting’, ’thou’, ’gude’, ’tried’,
’brownlow’, ’standing’, ’morning’, ’hair’, ’mother’, ’chair’, ’warm’, ’twenty’, ’knight’,
’unto’, ’oh’, ’glass’, ’steps’, ’kenwigs’, ’sea’, ’stairs’, ’voice’, ’hundred’, ’church’,
’ye’, ’floor’, ’hear’, ’years’, ’windows’, ’jesu’, ’launcelot’, ’five’, ’water’, ’balin’, ’evening’,
’miles’, ’door’, ’gat’, ’trees’, ’hight’, ’sat’, ’heard’, ’beaumains’, ’gaheris’, ’marhaus’

H5
’eyes’, ’strength’, ’faces’, ’sun’, ’voice’, ’kenwigs’, ’slight’, ’god’, ’oh’, ’standing’,
’sleep’, ’wife’, ’hands’, ’steps’, ’hair’, ’church’, ’gude’, ’chair’, ’tried’, ’unto’, ’after-
noon’, ’sitting’, ’morning’, ’stairs’, ’sit’, ’warm’, ’knight’, ’five’, ’ye’, ’jesu’, ’gat’,
’balin’, ’sea’, ’floor’, ’miles’, ’years’, ’mother’, ’glass’, ’door’, ’hear’, ’evening’, ’win-
dows’, ’hight’, ’water’, ’sat’, ’trees’, ’beaumains’, ’heard’, ’gaheris’, ’marhaus’

H6
’horse’, ’horses’, ’hours’, ’afternoon’, ’eyes’, ’window’, ’hair’, ’tried’, ’gude’, ’thou’,

83

’sitting’, ’brownlow’, ’morning’, ’standing’, ’chair’, ’twenty’, ’mother’, ’warm’,
’knight’, ’oh’, ’unto’, ’glass’, ’steps’, ’church’, ’kenwigs’, ’sea’, ’stairs’, ’voice’, ’hun-
dred’, ’ye’, ’floor’, ’hear’, ’years’, ’jesu’, ’windows’, ’launcelot’, ’water’, ’five’, ’evening’,
’balin’, ’miles’, ’door’, ’gat’, ’trees’, ’sat’, ’hight’, ’heard’, ’beaumains’, ’gaheris’,
’marhaus’

L4
’guy’, ’dow’, ’tony’, ’quentin’, ’gavin’, ’georgie’, ’vis’, ’egyptian’, ’checking’, ’mac’,
’ut’, ’barnaby’, ’jan’, ’the’, ’dinah’, ’gypsy’, ’cranford’, ’comer’, ’catriona’, ’percy’,
’deborah’, ’dad’, ’gilbert’, ’jessie’, ’palmer’, ’jason’, ’kenneth’, ’martha’, ’barker’,
’edith’, ’foster’, ’nanny’, ’ta’, ’overdue’, ’scot’, ’almayer’, ’comers’, ’66’, ’covers’, ’es-
ther’, ’signor’, ’judy’, ’headed’, ’romances’, ’clennam’, ’tho’, ’hilda’, ’urge’, ’amy’,
’jean’

L5
’guy’, ’georgie’, ’tony’, ’gavin’, ’quentin’, ’vis’, ’egyptian’, ’dow’, ’mac’, ’jan’, ’ut’,
’checking’, ’barnaby’, ’dinah’, ’cranford’, ’the’, ’martha’, ’gilbert’, ’gypsy’, ’nanny’,
’deborah’, ’comer’, ’percy’, ’barker’, ’dad’, ’jessie’, ’kenneth’, ’edith’, ’jason’, ’judy’,
’catriona’, ’66’, ’palmer’, ’foster’, ’scot’, ’almayer’, ’joan’, ’jenny’, ’romances’, ’com-
ers’, ’overdue’, ’jean’, ’esther’, ’amy’, ’covers’, ’matthew’, ’hilda’, ’clennam’, ’sig-
nor’, ’charlie’

L6
’guy’, ’dow’, ’tony’, ’quentin’, ’gavin’, ’georgie’, ’egyptian’, ’vis’, ’checking’, ’mac’,
’ut’, ’barnaby’, ’jan’, ’the’, ’dinah’, ’gypsy’, ’cranford’, ’comer’, ’percy’, ’catriona’,
’deborah’, ’dad’, ’gilbert’, ’jessie’, ’palmer’, ’jason’, ’martha’, ’kenneth’, ’barker’,
’edith’, ’foster’, ’nanny’, ’ta’, ’scot’, ’overdue’, ’almayer’, ’comers’, ’66’, ’covers’, ’es-
ther’, ’signor’, ’headed’, ’judy’, ’romances’, ’clennam’, ’hilda’, ’tho’, ’urge’, ’weav-
ing’, ’plight’

And we will also report the intersection between these sets and test sets H, B, S (6.14).
With the intersection table above, we can see that all the alignments performedwell with the

bottom list, however, when it comes to the top lists, the alignment with L1 initialization seems
like to be poorly performed comparedwith the other two asmore errors aremade on setH and

84

Set L4 H4 L5 H5 L6 H6

H 2 2 2 3 2 2
B 1 0 1 0 1 0
S 0 5 0 3 0 5

Table 6.14: Number of intersecting words between test sets and the top and bottom lists.

Figure 6.8: Mean value of absolute cosine similarity with variants of FW for top and bottom lists.

less correctly labeled stable words in S. As for the absolute cosine similarity for those lists, we
reported the result in the following following plot (6.8).

Again from the plot above, we can see that the alignments performed in a similar manner,
thus considering all these data above, it seems like that BCFW is overall the best option for this
task as it both requires less time and a relatively effective analysis ability.

6.2 Conclusion and future work

With this thesis work, we have performed the diachronic bias analysis of the word embedding
using the alignment techniques. From a performance point of view, it appears that the L1 and
zero norm methods performed better compared to the Procrustes method, however, with a
much higher computational cost. Thus, for this specific task, if we do not require the preci-
sion of the analysis, the Procrustes methods appear to be the best choice as it takes a couple of
seconds to get a descent result instead of a few hours. Later, we further exploited the variants
of the Frank-Wolfe algorithm and we proposed various starting point for the algorithm. From
our analysis we can see that from all the proposed methods performed well in terms of the bias
analysis, however, the computational cost of the procrustes initialization is way higher than the

85

other two versions which means that our hypothesis that the solution of the procrustes prob-
lem is close to a local minima does not hold true, and in fact, we need the same number of
iterations to get to the final result as the full Frank-Wolfe algorithm which makes it useless in
terms of the time reduction. On the other hand, the L1 initialization and BCFWmethods are
waymore computationally efficient than the procrustes initialization and also they require less
than a quarter of the time for the full Frank-Wolfe method. But in terms of the performance
of the bias analysis, even though the result obtained with the L1 initialization methods is rea-
sonable, but it still cannot match up with the BCFWmethod. This indicates that the solution
obtainedby theL1method is indeed close to the localminima, but thisminimadoes not appear
to be too close to the global minima of the Frank-Wolfe algorithm. Thus, if we want to achieve
a good bias analysis performance while spending reasonable time, then the BCFW seems to be
the best option. Furthermore, it is worth mentioning that even if the initialization of the tech-
nique can provide us with a reasonable result, but it is still more interesting to study about the
BCFW method, as this method generally speaking works for all types of alignment problem.
And finally, our result also indicates that the alignments is more sensitive to the stable words
by the mean of theta measure. And they also appear to be efficient for the unstable words in
term of absolute cosine similarity.

Several future works related to this thesis can be interesting to study such as studying the
initialization of this problem that is finding a new way to start close to a better local minima
than the one found by L1 method. Another interesting direction can be using the procrustes
method to perform the analysis on the evolution of themeaning of words and also coeval polit-
ical data as these types of tasks require a huge amount of computation and with the procrustes
method, a reasonable result can be obtained in a really fast way. Other interesting work can be
the implementation of the alignmentW7 introduced in this thesis work which is finding the
alignment by adding one word at a time and stop when the change is large enough.

86

References

[1] M. S. P. P. Simon Lacoste-Julien, Martin Jaggi, Block-Coordinate Frank-Wolfe Opti-
mization for Structural SVMs.

[2] J. Y. Z. V. S. Tolga Bolukbasi, Kai-Wei Chang and A. T. Kalai,Man is to Computer Pro-
grammer as Woman is to Homemaker? Debiasing Word Embeddings. Advances in
Neural information processing systems, 29, 2016.

[3] J. L. William L. Hamilton and D. Jurafsky, Diachronic Word Embeddings Reveal Sta-
tistical Laws of Semantic Change. arXiv preprint arXiv:1605.09096, 2016.

[4] S. S. B. N. T. Adam Jatowt, Ricardo Campos and A. Doucet, Every word has its history:
Interactive exploration and visualization of word sense evolution. Proceedings of the
27th ACM In- ternational Conference on Information and Knowledge Management,
pages 1899–1902, 2018.

[5] D. Jurafsky and J. Martin, Speech and Language Processing. Prentice Hall, 2000.

[6] Z. Yin and Y. Shen, On the Dimensionality of Word Embedding. Advances in neural
information processing systems, 2018.

[7] W. t. Y.TomasMikolov andG.Zweig., “Linguistic regularities in continuous spaceword
representations,” 2013a.

[8] Y. G. Omer Levy and I. Dagan, Improving Distributional Similarity with Lessons
Learned fromWord Embeddings. Transactions of the association for computational
linguistics, 3:211–225„ 2015a.

[9] A. J. Piotr Bojanowski, Edouard Grave and T.Mikolov, Enriching word vectors with sub-
word information. Transactions of the Association for Computational Linguistics,
5:135–146„ 2017.

[10] M. Joos,Description of language design. JASA, 1950.

87

[11] Z. S. Harris,Distributional structure. Word, 10:146–162, 1954.

[12] J. R. Firth,A synopsis of linguistic theory 1930–1955. In Studies in Linguistic Analysis.
Philological Society, 1957.

[13] G. Atienza, Operations on Word Vectors. https://github.com/gemaatienza/Deep-
Learning-Coursera, 2018.

[14] D. E. Rumelhart and A. A. Abrahamson, AModel for Analogical Reasoning. Cogni-
tive Psychology, 5(1):1–28, 1973.

[15] M. L. Aston Zhang, Zachary C. Lipton and A. J. Smola, Dive into Deep Learning.
arXiv preprint arXiv:2106.11342, 2021.

[16] https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-
word2veec/.

[17] G. C. Tomas Mikolov, Kai Chen and J. Dean, Efficient Estimation of Word representa-
tions in Vector Space. arXiv preprint arXiv:1301.3781„ 2013b.

[18] R. S. Jeffrey Pennington andC.D.Manning,Glove: GlobalVectors forWordRepresenta-
tion. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

[19] B. Madhukar, The Continuous Bag Of Words (CBOW) Model in NLP – Hands-On
ImplementationWith Codes.

[20] A. Kalinowski and Y. An, A Survey of Embedding Space Alignment Methods for Lan-
guage and Knowledge Graphs. arXiv preprint arXiv:2010.13688, 2020.

[21] J. L. William L. Hamilton and D. Jurafsky, Diachronic Word Embeddings Reveal Sta-
tistical Laws of Semantic Change. arXiv preprint arXiv:1605.09096, 2016.

[22] I. V. SebastianRuder andA. Søgaard,ASurvey ofCross-LingualWordEmbeddingMod-
els. Journal of Artificial Intelligence Research, 65: 569–631, 2019.

[23] A. Mogadala and A. Rettinger, Bilingual Word Embeddings from Parallel and Non-
parallel Corpora for Cross-Language Text Classification. Proceedings of the 2016Con-
ference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 692–702, San Diego, California, 2016.

88

[24] P. Prettenhofer and B. Stein,Cross-Language Text Classification Using Structural Corre-
spondence Learning. Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1118–1127, Uppsala, Sweden, 2010.

[25] D.C.Will Y. Zou, Richard Socher andC.D.Manning,BilingualWordEmbeddings for
Phrase-BasedMachine Translation. Proceedings of the 2013Conference on Empirical
Methods inNatural LanguageProcessing, pages 1393–1398, Seattle,Washington,USA,
2013.

[26] Q. V. L. Tomas Mikolov and I. Sutskever, Exploiting Similarities among Languages for
Machine Translation. arXiv preprint arXiv:1309.4168, 2013c.

[27] P. H. Schönemann,AGeneralized Solution of the Orthogonal Procrustes Problem. Psy-
chometrika, 31(1):1–10, 1966.

[28] C. L. Chao Xing, Dong Wang and Y. Lin., Normalized word embedding and orthogo-
nal transform for bilingual word translation. Proceedings of the 2015 conference of
the North American chapter of the association for computational linguistics: human
language technologies, pages 1006–1011, 2015.

[29] G. L. Mikel Artetxe and E. Agirre, Learning principled bilingual mappings of word em-
beddings while preservingmonolingual invariance. Proceedings of the 2016 conference
on empirical methods in natural language processing, pages 2289–2294, 2016.

[30] OEDOxfordEnglishDictionary. https://www.oed.com/view/Entry/18564?rskey=xGzzk8result=1isAdvanced=falseeid,
2021.

[31] K. Crawford, The trouble with bias. Proceedings of NeurIPS 2017, 2017.

[32] B. Friedman and H. Nissenbau, Bias in Computer Systems. ACM Transactions on
information systems (TOIS), 14(3):330–347, 1996.

[33] H.D. I. SuLinBlodgett, SolonBarocas andH.Wallach,Language (Technology) is Power:
A Critical Survey of” Bias” in NLP. arXiv preprint arXiv:2005.14050, 2020.

[34] T. C. R. W. Aylin Caliskan, Pimparkar Parth Ajay and M. R. Banaji, Gender Bias in
Word Embeddings: A Comprehensive Analysis of Frequency, Syntax, and Semantics.
arXiv preprint arXiv:2206.03390, 2022.

89

[35] J. J. B. Aylin Caliskan and A. Narayanan, Semantics derived automatically from lan-
guage corpora contain human-like biases. Science, 356(6334):183–186, 2017.

[36] D. J. Nikhil Garg, Londa Schiebinger and J. Zou,Word embeddings quantify 100 years
of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences,
115(16):E3635–E3644, 2018.

[37] S. Kiritchenko and S. M. Mohammad, Examining Gender and Race Bias in Two Hun-
dred Sentiment Analysis Systems. arXiv preprint arXiv:1805.04508, 2018.

[38] D. B. Thomas Davidson and I. Weber, Racial bias in hate speech and abusive language
detection datasets. arXiv preprint arXiv:1905.12516, 2019.

[39] M. B. Josh Gordon and J. Matthews, Studying Political Bias via Word Embeddings.
WWW ’20: Companion Proceedings of the Web Conference 2020, pages 760–764,
2020.

[40] P. N. Emily Sheng, Kai-Wei Chang andN. Peng, Societal Biases in Language generation:
Progress and Challenges. arXiv preprint arXiv:2105.04054, 2021.

[41] L. Bloomfield, Language. George Allen UNWIN LTD, 1933.

[42] C. Dictionary, diachronic. https://www.collinsdictionary.com/dictionary/english/,
2022a.

[43] E. A. L. J. O.W. B. Yuri Lin, Jean-Baptiste Michel and S. Petrov., Syntactic Annotations
for the Google Books NGramCorpus. Proceedings of the ACL 2012 system demonstra-
tions, pages 169–174, 2012.

[44] GoogleBooks, The Google Books Ngram Viewer.
https://storage.googleapis.com/books/ngrams/books/datasetsv3.html, 2013.

[45] M.Davies, Expanding horizons in historical linguistics with the 400million word Corpus
of Historical American English. Corpora, 7(2):121–157, 2012, 2012.

[46] Y. G. Omer Levy and I. Dagan, Improving Distributional Similarity with Lessons
Learned fromWord Embeddings. Transactions of the association for computational
linguistics, 3:211–225, 2015b.

90

[47] K. i. K. S. J. Mozhi Zhang, Keyulu Xu and J. Boyd-Graber, Are Girls Neko or Shojo?
Cross-Lingual Alignment of Non-Isomorphic Embeddings with Iterative Normalization.
arXiv preprint arXiv:1906.01622, 2019.

[48] S. R. Anders Søgaard and I. Vulić,On the Limitations of Unsupervised Bilingual Dictio-
nary Induction. arXiv preprint arXiv:1805.03620, 2018.

[49] M. R. L. D. Alexis Conneau, Guillaume Lample and H. Jégou,Word translation with-
out parallel data. arXiv preprint arXiv:1710.04087, 2017.

[50] K. V. Amaldi, E.,On the approximability of minimizing nonzero variables or unsatisfied
relations in linear systems. Theor. Comput. Sci. 209, 237–260, 1998.

[51] M. S. Francesco Rinaldi and F. Shoen, Concave programming for minimizing the zero-
norm over polyhedral sets. Comput Optim Appl 46, 2008.

[52] E. D. Casa, Bias Analysis inWord Embeddings with Alignment Techniques, 2023.

91

92

Acknowledgments

Here we will report the code used in this thesis. The first one is the Frank-Wolf algorithm

de f FW_al ignment (X, Y , g r a d_ i n , d , N) :
” ” ”
S o l v e t h e Frank −Wolfe a l i g nmen t a t t h e
i t e r a t i o n k w i t h t h e PuLP p a c k a g e .
Re tu rn m a t r i c e s A , W and z e r o norm a r r a y
z_new (t h e o u t p u t o f i t e r a t i o n k and i n p u t
o f i t e r a t i o n k + 1 i f n e c e s s a r y) .
−−−
INPUT :
X : Matrix o f t h e f i r s t embedd ing .
Y : Matrix o f t h e s e c o n d embedd ing .
g rad_k : Array t h a t c o n t a i n s t h e g r a d i e n t o f t h e
f u n c t i o n a t i t e r a t i o n k .
z _ i n : Ou tpu t z e r o norm a r r a y o f t h e i t e r a t i o n
k − 1 and i n p u t o f t h e i t e r a t i o n k .
d : Dimen s i on o f t h e embedding , t y p i c a l l y e q u a l s t o 3 0 0 .
N : Number o f w o rd s o f t h e v o c a b u l a r y .
−−−
OUTPUT :
W : Al i gnmen t ma t r i x (d X d)
A : Matrix t h a t c o n t a i n s t h e e r r o r o f t h e a l i g nmen t
”WX − Y” (d X N)
−−
” ” ”

I n i t i a l i z e d i c t i o n a r i e s f o r t h e r e s u l t
A = { }

93

W = { }

S e t up t h e d i c t i o n a r y o f v a r i a b l e s
mat_w = [(i , j) f o r i in range (d) f o r j in range (d)]
mat_a = [(i , j) f o r i in range (d) f o r j in range (N)]

S e t up t h e v a r i a b l e s
d i c t _ a = LpV a r i a b l e . d i c t s (’A ’ , mat_a , lowBound =0)
d i c t _w = LpV a r i a b l e . d i c t s (’W’ , mat_w)

S o l v e d d i f f e r e n t sub − p r o b l em
f o r j in range (d) :

s o l v e t h e j − t h row o f t h e ma t r i x W (t h e j − t h sub − p r o b l em)

” ” ”
S u p e r s c r i p t ^ r e p r e s e n t s t h e ROWS o f a ma t r i x
S u b s c r i p t _ r e p r e s e n t s t h e COLUMNS o f a ma t r i x
” ” ”
D e f i n e t h e p r o b l em and s e t up t h e o b j e c t i v e f u n c t i o n
” ” ”
argmin Σ _ i (g_k) _ i * a_ i ^ j f o r i = 1 , , N
” ” ”
prob_FW = LpProblem (’ Frank −Wolfe ’ , LpMinimize)

prob_FW += (
lpSum (g r a d _ i n [j , i] * d i c t _ a [j , i] f o r i in r ange (N))

)

Add t h e c o n s t r a i n t t o t h e FW pr o b l em
f o r i in range (N) :

” ” ”
f o r n in r an g e (d) s i n c e i t ’ s a d o t p r o d u c t o f two v e c t o r s
i n R^d f o r i in r an g e r an g e (N) t o a c c e s s t h e i − t h p o s i t i o n
o f t h e row v e c t o r A^ j

94

” ” ”

prob_FW += (
− d i c t _ a [j , i] <= lpSum (d i c t _w [j , n] * X[n , i] f o r n in range (d)) − Y [j , i]

)

prob_FW += (
lpSum (d i c t _w [j , n] * X[n , i] f o r n in range (d)) − Y [j , i] <= d i c t _ a [j , i]

)

S o l v e t h e p r o b l em
prob_FW . s o l v e (GUROBI_CMD(msg = True))

p r i n t warn ing when o p t ima l s o l u t i o n i s n o t r e a c h e d
i f LpS t a t u s [prob_FW . s t a t u s] != ” Opt ima l ” :

p r i n t (’ Warning␣ : ␣The␣ r e s u l t ␣ i s ␣NOT␣ op t im a l ! ’)

S t o r e t h e r e s u l t s i n t h e c o r r e s p o n d i n g d i c t i o n a r y
f o r v in prob_FW . v a r i a b l e s () :

i f v . name . s t a r t s w i t h (’A ’) :
A[v . name [3 : −1] . r e p l a c e (’ _ ’ , ” ”)] = v . v a rV a l u e

e l s e :
W[v . name [3 : −1] . r e p l a c e (’ _ ’ , ” ”)] = v . v a rV a l u e

p r i n t (f ’ The␣ row␣ { j } ␣ i s ␣ s o l v e d ! ’)
r e t u rn W, A

The second one we will report is the BCFW.

de f BCFW(X, Y , g r ad_k , W_in , A_in , d , N, i n d e x _ s e l) :
” ” ”
S o l v e t h e Frank −Wolfe a l i g nmen t a t t h e i t e r a t i o n k w i t h
t h e PuLP p a c k a g e .
Re tu rn m a t r i c e s A , W and z e r o norm a r r a y z_new
(t h e o u t p u t o f i t e r a t i o n k and i n p u t o f i t e r a t i o n k + 1 i f n e c e s s a r y) .
−−

95

INPUT :
X : Matrix o f t h e f i r s t embedd ing .
Y : Matrix o f t h e s e c o n d embedd ing .
g rad_k : Array t h a t c o n t a i n s t h e g r a d i e n t o f t h e f u n c t i o n
a t i t e r a t i o n k .
z _ i n : Ou tpu t z e r o norm a r r a y o f t h e i t e r a t i o n k − 1 and
i n p u t o f t h e i t e r a t i o n k .
d : Dimen s i on o f t h e embedding , t y p i c a l l y e q u a l s t o 3 0 0 .
N : Number o f w o rd s o f t h e v o c a b u l a r y .
W_in : I n p u t a l i g nmen t from t h e p r e v i o u s i t e r a t i o n .
A_in : I n p u t e r r o r ma t r i x from t h e p r e c i o u s i t e r a t i o n .
i n d e x _ s e l : Random b l o c k s e l e c t e d .
−−−
OUTPUT :
W : Al i gnmen t ma t r i x (d X d)
A : Matrix t h a t c o n t a i n s t h e e r r o r o f t h e a l i g nmen t
”WX − Y” (d X N)
−−−
” ” ”

I n i t i a l i z e d i c t i o n a r i e s f o r t h e r e s u l t
A = A_in
W = W_in

S e t up t h e d i c t i o n a r y o f v a r i a b l e s
mat_w = [(i , j) f o r i in range (d) f o r j in range (d)]
mat_a = [(i , j) f o r i in range (d) f o r j in range (N)]

S o l v e d d i f f e r e n t sub − p r o b l em

f o r j in range (d) :
s o l v e t h e j − t h row o f t h e ma t r i x W(t h e j − t h sub − p r o b l em)

96

” ” ”
S u p e r s c r i p t ^ r e p r e s e n t s t h e ROWS o f a ma t r i x
S u b s c r i p t _ r e p r e s e n t s t h e COLUMNS o f a ma t r i x
” ” ”

i f j in i n d e x _ s e l : # Op t im i z e t h i s row
D e f i n e t h e p r o b l em and s e t up t h e o b j e c t i v e f u n c t i o n
p r i n t (f ’ C a l c u l a t i n g ␣ row␣ { j } . . . ’)

” ” ”
argmin Σ _ i (g_k) _ i * a_ i ^ j f o r i = 1 , , N
” ” ”
S e t up t h e d i c t i o n a r y o f v a r i a b l e s
mat_w = [(j , i) f o r i in range (d)]
mat_a = [(j , i) f o r i in range (N)]
prob_FW = LpProblem (’ Frank −Wolfe ’ , LpMinimize)

S e t up t h e v a r i a b l e s
d i c t _ a = LpV a r i a b l e . d i c t s (’A ’ , mat_a , lowBound =0)
d i c t _w = LpV a r i a b l e . d i c t s (’W’ , mat_w)
prob_FW += (

lpSum (g r a d_k [j , i] * d i c t _ a [j , i] f o r i in range (N))
)

Add t h e c o n s t r a i n t t o t h e FW pr o b l em
f o r i in range (N) :

” ” ”
f o r n in r an g e (d) s i n c e i t ’ s a d o t p r o d u c t o f two
v e c t o r s i n R^d f o r i in r an g e r an g e (N) t o a c c e s s t h e i − t h p o s i t i o n o f t h e row v e c t o r A^ j
” ” ”

prob_FW += (
− d i c t _ a [j , i] <= lpSum (d i c t _w [j , n] * X[n , i] f o r n in range (d)) − Y [j , i]

)

97

prob_FW += (
lpSum (d i c t _w [j , n] * X[n , i] f o r n in range (d)) − Y [j , i] <= d i c t _ a [j , i]

)

S o l v e t h e p r o b l em
prob_FW . s o l v e (GUROBI_CMD(msg = True))

p r i n t warn ing when o p t ima l s o l u t i o n i s n o t r e a c h e d
i f LpS t a t u s [prob_FW . s t a t u s] != ” Opt ima l ” :

p r i n t (’ Warning␣ : ␣The␣ r e s u l t ␣ i s ␣NOT␣ op t im a l ! ’)

S t o r e t h e r e s u l t s i n t h e c o r r e s p o n d i n g d i c t i o n a r y
f o r v in prob_FW . v a r i a b l e s () :

i f v . name . s t a r t s w i t h (’A ’) :
A[v . name [3 : −1] . r e p l a c e (’ _ ’ , ” ”)] = v . v a rV a l u e

e l s e :
W[v . name [3 : −1] . r e p l a c e (’ _ ’ , ” ”)] = v . v a rV a l u e

r e t u rn W, A

98

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Distributional hypothesis and vector semantics
	Semantic and syntactic property of embedding
	Cosine Similarity
	Analogy of word embedding

	Embedding models
	One Hot Encoding
	Word2Vec

	The alignment
	Word alignment

	Linear Programming and Frank Wolfe method
	Introduction to Linear Programming
	Nonlinear Programming
	Continuous Optimization
	Existence condition
	Convex and concave programming
	Linearization of nonlinear problem

	The Frank-Wolfe method
	Formulation of Frank-Wolfe method
	Step size
	Block-coordinate Frank-Wolfe

	Cultural Semantic Conditioning and Biases
	Biases
	Societal biases
	Bias propagation and amplification

	Diachronic change of the embedding
	Histwords project
	Exploring Word Evolution

	The cultural contamination by alignment

	Models
	W1: Orthogonal Procrustes
	W2: l1 method
	W3: Zero norm
	Similarity measure

	Dataset and the experimental setup
	Comparison of the alignments
	Evaluation methodology

	Experiment and conclusion
	Frank-Wolfe and its variants
	Conclusion and future work

	References
	Acknowledgments

