
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Guida, navigazione e controllo per il
docking autonomo di un Cubesat

Guidance, Navigation and Control for
autonomous docking of a Cubesat

Relatore Laureando
Prof. Stefano Ghidoni Federico Favotto

Correlatore
Prof. Francesco Branz

Anno Accademico 2021-2022
11-Apr-2022

Thanks to my family and friends, who have supported me during the
university. Thanks to Stefano Ghidoni and Francesco Branz who
reviewed this thesis and accompanied me in my work of this project.
Thanks to Omar, Francesco and Andrea for the beautiful moments
we spent together. Thanks (and good luck) to the ERMES team:
Alessandro, Giuliano, Miroljub, Fabio, Nicola.

iv

Abstract - EN

In recent years there has been growing interest in autonomous docking manoeu-
vres. In aerospace they are important and of scientific interest because they
allow the development of larger structures or the removal of debris in orbit. The
fields of application are manifold, so Experimental Rendezvous in Microgravity
Environment Study (ERMES) has as its main objective the design and test of
an autonomous docking manoeuvre between two free-flying CubeSats mock-ups.
The two mock-ups involved in the experiment are both equipped with a Guid-
ance Navigation and Control (GNC) system and mechanical docking interfaces.
During the manoeuvre, they work in a Target-Chaser configuration, where the
Chaser is active and the Target is cooperative. In addition, the Chaser is equipped
with a cold gas propulsive system based on expendable CO2 cartridges, while the
Target is equipped with three reaction wheels. This thesis proposes a software
architecture to implement a collaborative GNC system based on the Robot Op-
erating System (ROS). The implementation proposal uses navigation based on
the fusion of information from two IMU and a AprilTag detection system, with
the aim of improving state estimation. In fact, it is believed that a ROS-based
system can benefit the development of the experiment: thanks to the availability
of related Open Source libraries, it is possible to increase the complexity of the
on-board computation systems without impacting on the development time. The
implementation uses a navigation system based on the fusion of the information
coming from two IMUs and from the recognition of AprilTags, placed on the face
of the Target, with the aim of improving the localization and the estimation of
the system status. A test to verify the correct integration of the components is
also proposed, and future tests to improve performance under certain conditions
are described.

v

vi

Abstract - IT

Negli ultimi anni è cresciuto sempre più l’interesse verso le manovre di docking
autonomo. In ambito aerospaziale esse son importanti e hanno interesse scien-
tifico perché permettono lo sviluppo di strutture più grandi, oppure la rimozione
di detriti in orbita. I campi di applicazione sono molteplici, ed ecco che Ex-
perimental Rendezvous in Microgravity Environment Study (ERMES) ha tra i
principali obiettivi quello di progettare e testare una manovra di docking au-
tonomo tra due CubeSats mock-ups. I due mockup son provvisti di un sistema
di Guida, Navigazione e Controllo e delle interfacce di docking meccanico. Du-
rante la manovra, lavorano in una configurazione Target-Chaser, dove il Chaser
è la parte attiva e il Target è cooperativo. Inoltre il Chaser è provvisto di un
sistema di propulsione basato su cartucce CO2 usa e getta, mentre il Target è
dotato di tre ruote di reazione. Questa tesi propone una architettura software
per implementare un sistema GNC collaborativo basato su Robot Operating Sys-
tem (ROS). Si crede infatti che un sistema basato su ROS possa avantaggiare
lo sviluppo dell’esperimento. Infatti, grazie alla disponibilità di librerie Open
Source ad esso correlate, è possibile aumentare la complessità dei sistemi di com-
putazione di bordo senza impattare sui tempi di sviluppo. L’implementazione
utilizza un sistema di navigazione basato sulla fusione delle informazioni proveni-
enti da due IMU e dal riconoscimento di AprilTag, posti sulla faccia del Target,
con l’obiettivo di migliorare la localizzazione e la stima dello stato del sistema.
Viene inoltre proposto un test per verificare la corretta integrazione delle compo-
nenti, e descritti test futuri per migliorare le prestazioni in certe condizioni.

vii

viii

Contents

Abstract - EN v

Abstract - IT v

List of figures xi

List of Acronyms xiii

Introduction 1

1 ERMES Hardware Design 7
1.1 Chaser . 7

1.1.1 Propulsive System’s Hardware 8
1.1.2 Attitude and Position Determination and Control System . 11
1.1.3 Electronics and power supply 13

1.2 Target . 16
1.3 The Release System and External Setup 17

2 Software Design 21
2.1 Low Level System . 23
2.2 Medium Level System . 24

2.2.1 Navigation . 25
2.2.2 Guidance . 28
2.2.3 Control . 32

2.3 High Level System . 34

3 Software implementation 35
3.1 ROS overview . 35
3.2 Reference System . 36
3.3 Low Level System . 37

3.3.1 Exploiting the Electrovalves 38
3.3.2 Communication between LLS and MLS 41
3.3.3 Improving the LLS . 42

3.4 Navigation . 42
3.4.1 AprilTag . 43
3.4.2 Preparing Sensors Data . 46

ix

3.4.3 Extended Kalman Filter 49
3.4.4 Calibrate the sensors . 51

3.5 Guidance and Control nodes . 52
3.6 Retrieve Data and HLS . 53

4 Integration Test 55
4.1 Execution and Results . 56
4.2 Comments . 57

5 Conclusion 61

x

List of Figures

1 The Airbus A310 Zero-G . 2
2 Parabolas scheduling . 3
3 Apparent weight during the parabola 4

1.1 Chaser . 8
1.2 Thrusters configuration . 9
1.3 Propulsive Scheme . 10
1.4 Attitude and Position Determination and Control System 11
1.5 Typical ranging performance of VL6180x 12
1.6 Electrical Circuit Scheme . 15
1.7 Target . 17
1.8 Release structures . 18

2.1 Software Architecture . 22
2.2 Low Level System Tasks . 23
2.3 Reference System for the Free Floating Objects 25
2.4 Some common fiducial markers 26
2.5 Localization step in relation to the target 27
2.6 Localization step in relation to the odom 28
2.7 Naive Planner Trajectory Example 29
2.8 Trapezoidal Planner Trajectory Example 30
2.9 Collaborative Planner Trajectory Example 31
2.10 Control Phases . 32
2.11 Control Adjustment Phase . 33
2.12 Control example . 34

3.1 Coordinate system’s tree . 36
3.2 Test PWM 30.64Hz 256 steps . 39
3.3 Test PWM 30.64Hz 16 steps . 39
3.4 Test PWM 122.55Hz 256 steps . 40
3.5 Test PWM 122.55Hz 16 steps . 40
3.6 AprilTag Example . 43
3.7 The calibration checkerboard . 44
3.8 The Image Pipeline . 45
3.9 A possible tag bundle for the Target 46
3.10 Guidance, Navigation, Control scheme 52

xi

4.1 Integration Test Setup . 55
4.2 The field of view of the Chaser camera 56
4.3 Integration Test Setup . 56
4.4 TF Tree of the of the integration test 57
4.5 Integration test Chaser’s path . 58

xii

List of Acronyms

APDCS Attitude and Position Determination and Control System. 11, 13

ASDS Autonomous Satellite Docking System. 5

ATV Automated Transfer Vehicle. 5

CPOD CubeSat Proximity Operations Demonstration. 5

CSI Camera Serial Interface. 13, 16

DoF Degrees of Freedom. 6, 8, 9, 11, 16, 41, 42

EKF Extended Kalman filter. 27, 49, 52

ELGRA European Low Gravity Research Association. 2

ERMES Experimental Rendezvous in Microgravity Environment Study. 1–4, 7,
8, 11–13, 16, 17, 19, 21, 23–28, 30, 32, 35–37, 42–45, 49, 51, 52, 57, 61

ESA European Space Agency. 1, 2

ESDP Experiment Safety Data Package. 3

EV Electrovalve. 16, 23, 24, 37, 38, 41, 42, 61

FELDs Flexible Electromagnetic Leash Docking system. 6

FYT Fly Your Thesis!. 1, 2

GPS Global Positioning System. 51

HLS High Level System. 23, 34, 53

I2C Inter Integrated Circuit. 13, 14, 23, 24, 38, 43

IMU Inertial Measurement Unit. 11–14, 17, 18, 24, 26, 27, 34, 37, 42, 46, 48,
49, 51–53, 55

IR LED Infrared Light-Emitting Diode. 11, 26, 43

xiii

ISS International Space Station. 1, 5

LLS Low Level System. 23, 24, 32, 37, 38, 41–43, 48, 50, 51, 53

MLS Medium Level System. 23, 24, 35, 37, 41, 53

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor. 12, 16

OBCS Onboard Computer System. 1, 11–13, 17

PACMAN Position and Attitude Control with MAgnetic Navigation. 6, 18, 43

PWM Pulse-width modulation. 13, 16, 38, 41, 61

ROS Robot Operating System. 35, 36, 41–45, 48, 49, 51, 53, 61

SPHERES Synchronized Position Hold, Engage, Reorient, Experimental Satel-
lites. 5

ToF Time of Flight. 11, 13, 14, 26, 37, 42, 48–50, 52

UART Universal Asynchronous Receiver-Transmitter. 13, 24

USB Universal Serial Bus. 16

xiv

Introduction

This dissertation presents the design and development of the control software of
the experimental rendevouz in microgravity environment, hence the name Ex-
perimental Rendezvous in Microgravity Environment Study (ERMES). ERMES
is an experiment that has in its main objetives to perform a docking manoeu-
vre between two free-flying CubeSats mock-ups. The mock-ups involved in the
experiment are equipped with an Onboard Computer System (OBCS) and a me-
chanical docking interface. They are referred as “Chaser” and “Target”. The
chaser will be able to move using a cold gas propulsion system based on expend-
able CO2 cartridges. The target on the other hand will be able to change its
orientation using three reaction wheels. The chaser will approach the target in
a calculated trajectory and will lock the docking interface when it is in the final
position.

In order to test the system in a reduced-gravity environment, ERMES is
selected in Fly Your Thesis! (FYT) programme by European Space Agency
(ESA) in the 2022 edition. This allows us the opportunity to test and perform
the experiment in a real microgravity environment.

This thesis will introduce the design of the experiment, the organisation of the
Fly Your Thesis! programme, and how the parabolic flights offered by Noves-
pace1 work. Then it will present the hardware design in the Chapter 1. The
software design is explained in the Chapter 2 followed by its implementation in
the Chapter 3

Fly Your Thesis!

The Fly Your Thesis! programme is an opportunity provided to master and PhD
students by ESA. Along with the Drop your Thesis! and the Spin your Thesis!,
FYT is part of the Hands-on space projects of ESA Education. In FYT a team of
students has the opportunity to fly technological research or scientific experiments
related to engineering, physics, chemistry, biology in microgravity conditions.
FYT is the only microgravity platform among those listed that allows scientists to
interact with their own experiment while it is experiencing weightlessness, rather
than doing it by remote on a robotic capsule or in the International Space Station
(ISS) where only astronauts can interact with it. The programme launches a call
for proposal once per year, during which master and PhD students can send their

1Novespace site: https://www.airzerog.com/scientific-research-services/

1

https://www.airzerog.com/scientific-research-services/

2

Figure 1: The Airbus A310 Zero-G

proposal of an experiment designed for parabolic flights.
After the presentation of the experiment proposal, ESA will shortlist the top

teams who have met the eligibility criteria. The teams will present their experi-
ment to a review board composed of experts from ESA Human Spaceflight and
Robotic Exploration Directorate, ESA Education Office, European Low Gravity
Research Association (ELGRA) and Novespace [1].

Some teams will be selected to fly in the campaign, in the 2022 campaign
ERMES is one of them, hence this thesis. To accomplish the goal to prepare the
experiment, a series of assignments to design and test the experiment is planned
with ESA. This should be done in accordance with the security measures, ESA
and Novespace experts will review all the work progress between each step.

In the last four-month period there will be the flight campaign. It is a two-
week long event that will take place in Bordeaux, France. The teams will parte-
cipate in three flights of 30 parabolas each, experiencing about 20 seconds of
microgravity (and 20 of hypergravity, about 1.8𝑔).

When the microgravity experiment is done the teams can retrieve their data,
and publish a report.

Novespace and the A310 ZERO-G

Novespace’s main activity is to organise scientific parabolic flights for research in
microgravity on the Airbus A310 Zero G [2]. These scientific flight campaigns
have been operated for many years. In April 2015, Novespace began operating
its third aircraft, the Airbus A310 Zero G (Fig.: 1). This is a modified version
of the airplane to accomodate the experiments in the cabin. They also have a
separated cabin to experience weightless in <a safe way. Novespace can provide
even different levels of g-force, to simulate different space environments. In the
case of FYT the parabolas are performed to provide near 0𝑔 microgravity. The

3

Figure 2: The schedule of the series of parabolas

level of microgravity is around ±5 ∗ 10−2.
After the takeoff the plane will go in a zone decided with regards to the

weather. Then it will perform a parabola as test, this is necessary to let the
people to get used of the manoeuvre without worrying about the experiments.
Then six series of five parabolas each are performed with a five minutes pause
between each series.

Due to the nature of the flight, there are additional safety measures compared
to standard passenger flights. The Experiment Safety Data Package (ESDP) is a
safety document that must be updated by the team and analyzed with Novespace
every three weeks. This allows the technical contact, provided by Novespace to
each team, to review the ESDP and advise if there is something to fix. The
design of the experiment will be frozen after June 2022 and the experiment must
be built at least four weeks before the flight.

What is a parabolic flight

A parabolic flight is an aircraft flight that performs a series of manoeuvres, called
parabolas, each providing 20 seconds of microgravity or weightlessness, during
which scientists are able to test their experiments in low gravity conditions and
obtain data that would otherwise not be possible on Earth.

To be weightlessness means to be in a free fall. To achieve this result the plane
must follow a certain path. There are 4 forces that act on the plane: weight, drag,
thrust, lift. In normal condition a plane has a lift equals to the weight force. And
if it is going at constant velocity it will have the thrust equal to the drag force. In
this condition the objects in the cabin experience the normal gravity acceleration.
To achieve a microgravity environment in the plane, it needs to be in a zero-lift
angle of attack. It also must balance thrust to have no acceleration along the
longitudinal axis. In these conditions inside the cabin the object will have near
0 acceleration relative to the airplane. In this thesis those condition could be
referred as “zero-gravity” for convenience.

Now, the weightlessness condition is clear, but what happens when the plane
needs to regain altitude? It will climb and inside the cabin there will be 1.8𝑔
apparent weight. In the ERMES experiment there are not any benefit of this

4

Figure 3: Apparent weight during the parabola - scheme from the Novespace
site

phase, but sometimes there are experiments that can make use of both phases.
In the Figure 3 there is the acceleration experienced in the cabin during the flight.

ERMES

The main goal of ERMES is the design and development of a test in a micrograv-
ity environment for an autonomous docking manoeuvre between two free flying
CubeSat mock-ups equipped with Guidance Navigation and Control (GNC) sys-
tems. The two mock-ups will work in a Target-Chaser configuration.

The Chaser has control over its attitude and position, while the Target only
over its attitude. The manoeuvre will be accomplished by releasing the CubeSat
mock-ups from their initial electromagnetic constraints into a free flying con-
dition, then the dedicated localization and proximity navigation software will
control attitude and position of the Chaser and slowly approach and dock the
Target, that in the meanwhile will work cooperatively by contrasting attitude
disturbances.

The ERMES major objective can be achieved thanks to a series of low level
goals: the design and development of the Target and Chaser, their structure
and all of the hardware interfaces; the design and development of the Guidance
Navigation and Control software, able to locate autonomously the Target, com-
pute the trajectory to reach it and send the commands to the actuators; finally,
the design and development of miniaturized docking interfaces, suitable for this
particular application.

In general, the ERMES experiment aims to prove the feasibility and versa-
tility of autonomous docking manoeuvres between small satellites. This general
objective can be achieved thanks to the validation and testing of the GNC sys-
tems in relevant reduced-gravity environment and the validation of the manoeuvre

5

configuration and selected approaches.
The two mock-ups involved in the manoeuvre work in a Target-Chaser con-

figuration, in which the Chaser actively performs the manoeuvre to reach the
Target, that, in the meanwhile, acts cooperatively by contrasting unwanted atti-
tude disturbances. Moreover, the manoeuvre will be performed autonomously by
the mock-ups. They will be released by a Release Structure composed of a hold-
ing mechanism to support the mock-ups prior to the start of the experiment and
a slider to withdraw the locking mechanism so that it does not interfere with the
experiment. The mock-ups are equipped with probe-drogue miniaturized docking
interfaces [3], composed of an active probe on the Chaser and a passive drogue
on the Target.

The connection between these two interfaces is obtained with a physical in-
sertion of the two and then a mechanical interlock thanks to a servo motor that
rotates the tip of the probe.

The experiment is composed by three main phases:

1. release of the mock-ups: the Release Structure removes the magnetic con-
straint and retracts the locking mechanism;

2. proximity navigation: the chaser will approach the target by controlling
its velocity and attitude, while the target will maintain its attitude;

3. docking phase: the chaser will lock the target activating the mechanical
interlock;

After each maneuvre, an operator relocates the mock-ups on the Release Structure
to prepare the system for the next parabola.

Related work

Autonomous space systems have always been an interesting topic in the scientific
community because they allow particularly useful applications related to large
structure assembly, active space debris removal or formation control. The Auto-
mated Transfer Vehicle (ATV) [4] is one of the first examples of an autonomous
space system that carried out on multiple occasions rendezvous with the ISS. Au-
tonomous Satellite Docking System (ASDS) [5] from Michigan Aerospace Corpo-
ration had the goal to demonstrate the capability of autonomous docking manoeu-
vres between satellites on orbit. More recently, Crew-2 Mission [6] performed an
autonomous docking manoeuvre with the ISS. Regarding small satellites studies
some examples are: Synchronized Position Hold, Engage, Reorient, Experimental
Satellites (SPHERES) [7] aboard the ISS that consists of a series of miniaturized
satellites developed by the Massachusetts Institute of Technology used to test
flight formations, rendezvous and autonomy algorithms in view of future imple-
mentations; CubeSat Proximity Operations Demonstration (CPOD) [8] mission
led by Tyvak Nano-Satellite Systems focused on a docking manoeuvre of two
3U CubeSats. Finally, regarding autonomous small satellite systems and, in

6

particular, software architectures for autonomous operational capabilities, As-
trobee [9] [10] can be cited: it has been built on the legacy of SPHERES and it is
composed of three autonomous cubic shape robots that help the astronauts in all
their duty in the ISS. Moreover, the University of Padova has a grounded heritage
on autonomous docking manoeuvres studies for example: Flexible Electromag-
netic Leash Docking system (FELDs) [11] studied an electromagnetic soft docking
technology, participating in the Drop Your Thesis! Programme achieving a post-
docking mechanical connection with a flexible wire; Autonomous Rendezvous
Control And Docking Experiment - Reflight 2 (ARCADE-R2) [12] correctly per-
formed three release operations and two docking procedures between 2-Degrees
of Freedom (DoF) vehicles; Position and Attitude Control with MAgnetic Nav-
igation (PACMAN) [13] demonstrated how a Chaser can correct autonomously
the relative attitude with respect to the Target through electromagnetic actu-
ators. Moreover, regarding the miniaturized docking interfaces, a probe-drogue
solution suitable for small satellites has been developed and proven functional in
the laboratory on a low friction table, able to guarantee a docking manoeuvre
with tolerance to misalignment [3].

1
ERMES Hardware Design

This chapter will elaborate on the hardware design. This is not a definitive
design, because further tests could require a redesign of some parts. A number
of constraints were presented in the introduction and are summarised below:

• Chaser and Target are independent from external informations and com-
mands (exceptions for security and starting the experiment);

• The Chaser will approach the Target;

• The manoeuvre must be under 8 seconds;

• The sensors should not rely on external features.

1.1 Chaser

The chaser is a two unit (2U) CubeSat mock-up1

It has an alluminum structure that can contain all the hardware and provide
stiffness to the mockup. All the hardware inside is positioned with some priorities,
some consumables must be chaged during the flight so they must be accessible in
a short time. The entire body frame of the chaser is covered with foam sheets.
They serve to protect it from possible impacts during the experiment.

A preliminary design of the chaser is shown in Fig. 1.1. The docking port
has a movable part that allows to lock the chaser with the target. It also has a
sensor to know if the docking port is in the correct position with the other half
before the locking. Both the motor and the sensor are yet to be fixed, because
ERMES will try to test two different docking mechanism. A common electrical
interface need to be defined. In the software part we assumed that the sensor is
a digital sensor with two different values: high when the docking interface is in
the locking position, low otherwise. The locking mechanism is assumed as a logic
output. Both of them are not included in this version of the circuit.

1The standard defines a (1U) cubesat rigorously [14]. The standard defines one unit as
10 × 10 × 11.35 cm3, this allows an internal space of 10 × 10 × 10 cm3.

7

8 Chapter 1. ERMES Hardware Design

Figure 1.1: Preliminary design of the chaser

1.1.1 Propulsive System’s Hardware

ERMES chaser is equipped with a cold gas propulsive system to actuate the
position and attitude control. It can control 6 DoF.

The propulsive system is based on expendable CO2 cartridges and character-
ized by a set of 8 controlled thrusters. The cartridge contains 16g of CO2.

The thrusters are tilted by ±45◦ with the respect to z axis, ±30◦ with the
respect to y axis and ±60◦ with the respect to x axis. To move or rotate along a
single axis four thrusters must be actuated together as shown in Table 1.1. The
figure 1.2 shows a design of the positions and orientations of the thrusters. Lets
take for example an acceleration along the 𝑦 positive axis, the thrusters to open
are the 1,2,5,6, the resulting force would be along the 𝑦 axis. Similarly, we can
identify all other combinations. To control this configuration the chaser will have

Translation Rotation
+ − + −

𝑥 1 − 4 − 5 − 8 2 − 3 − 6 − 7 3 − 4 − 5 − 6 1 − 2 − 7 − 8
𝑦 1 − 2 − 5 − 6 3 − 4 − 7 − 8 1 − 4 − 6 − 7 2 − 3 − 5 − 8
𝑧 5 − 6 − 7 − 8 1 − 2 − 3 − 4 2 − 4 − 6 − 8 1 − 3 − 5 − 7

Table 1.1: Thrusters to open to perform an acceleration along or around one
axis.

a pneumatic circuit better explained by the fig. 1.3. An exhaustive list of the
components of the pneumatic circuit is given below:

• C1: 16g CO2 threaded cartridge;

Chapter 1. ERMES Hardware Design 9

Figure 1.2: The trusters are placed in this configuration, this allows to control
6𝐷𝑜𝐹 with 8 thrusters

• PR1: Pressure regulator;

• RV1, RV2: relief valves2

• T1-21 and D1-5: Tubing and adapters;

• SV1-8 Solenoid electrovalves;

• N1-8 Convergent nozzles.

The CO2 inside the cartridge is around 57bar at standard condition of tempera-
ture, assuming the liquid state. The volume is below 0.5L according to Novespace
guidelines (PRES 01-04) [15]. The type of cartridge chosen is commonly used in
cycling activities: they are used to inflate tyres, therefore they are easy to find
and buy.

The pressure regulator stands a maximum pressure of 190bar of input and
can regulate pressure between 0 and 5.5bar. It sets a working pressure around
2.5bar. According to the MATLAB program used to study the fluid-dynamics of
the pneumatic system, it allows to generate over 100mN of thrust: in the ambient
pressure of the laboratory (1bar) and the parabolic flight environment (0.8bar).
This value of thrust allows to have a low-pressure system that generates enough
amount of thrust to perform the manoeuvre.

2Novaspace requires a two point of failure pneumatic system (REF/PRES 01-04 of Guide-
lines)

10 Chapter 1. ERMES Hardware Design

Figure 1.3: This is the propulsive circuit on board of the Chaser

Both relief valves have been implemented for safety reason [15]. They act as
a safety relief point for any unwanted increase of pressure. The selected config-
uration resists up to 10bar in order to avoid any damages to the electrovalves.
This guarantees two point of failure as required.

The selected tubes are all PVC 4×1mm due to their relatively high flexibility.
The choosen electrovalves can be controlled by a 12V or 24V input voltage.

This allows the CO2 stream to exit the respective nozzle and provide thrust when
the valve is powered. The nozzles are simply convergent, instead of a classic
convergent-divergent configuration due to the necessity of avoiding supersonic
flows since the experiment takes place at standard atmospheric pressure and not
in a vacuum chamber. In fact, supersonic flows lead to shock waves, that could
cause unwanted increase in pressure in the pneumatic system and, consequently,
damages to the system or simply alter its performance. The choice of a convergent
solution allows also to model the thrust output linearly with the respect to the
pressure set on the regulator. For pressure higher than 1.8 bar, the flow exits
at a sonic state (Mach number equal to 1) and, therefore, the exit pressure is a
function of the total pressure set on the regulator.

𝑝𝑠𝑜𝑛𝑖𝑐 = 𝑝𝑡𝑜𝑡𝑎𝑙 ∗
(︃

2
𝛾 + 1

)︃ 𝛾

𝛾−1
(1.1)

𝑇 = 𝐴𝑒𝑥𝑖𝑡 ∗ 𝑝𝑡𝑜𝑡𝑎𝑙 ∗ Γ(𝛾) (1.2)

Like shown in Eq. 1.1 and the thrust is linear.

Chapter 1. ERMES Hardware Design 11

Figure 1.4: An comprehensive scheme of the Attitude and Position Determina-
tion and Control System (APDCS) components, and the connec-
tions between them.

1.1.2 Attitude and Position Determination and Control System

To achieve an high level of situation awareness of the chaser, different kind of
sensors are needed. The chaser also needs an OBCS to process the information
and provide adeguate commands to the actuators. The OBCS of the chaser would
also calculate the trajectory of the manoeuvre.

The sensors used by the system are:

• 3 Time of Flight (ToF) sensors;

• 2 Inertial Measurement Unit (IMU);

• Raspberry Pi Camera V2 Noir.

The camera is used to implement a computer vision system. The principal
algorithm is the AprilTag Detection3 [16] [17] [18]. It is a fiducial tag recognition
system better discussed in Section 3.4.1. The camera is without the infrared
filter to allow the implementation of an Infrared Light-Emitting Diode (IR LED)
based computer vision system. If implemented, the choice of IR LEDs is to avoid
disturbing other experiments in the cabin of the aircraft.

Three ToF sensors will provide the distance of the target. The VL6180x
model is selected because it has a range of 20cm. Three DoF sensors can also
provide orientation information in particular conditions. They cannot always
provide a reliable orientation information because the face of the target is not
completely flat. According to the datasheet these sensors are pretty unreliable
under 1cm [19]. The Figure 1.5 reports the typical range performance measured

3The AprilTag 3 is the version used in ERMES

12 Chapter 1. ERMES Hardware Design

Figure 1.5: Typical ranging performance of VL6180x as reported by the
datasheet

by the manifacturer. According to the datasheet the software will consider their
measures below 1cm as invalid. So their measurements are considered only in
particular conditions.

A good argument is that two IMU are useless or a risky choice, because if they
provide two measures in contradiction between them it is a problem. ERMES
will use two sensor positioned in different way to achieve a better estimation of
the real state of the system. Sections 2.2.1 and 3.4.3 present methods to obtain a
good result from this combination of sensors. Focusing to the hardware selection,
the IMUs are two Pmod NAV sensors, they have the LSM9DS1 chip module that
provides a 3-axes accelerometer, 3-axes gyroscope and 3-axes magnetometer. If
future tests show that there is a need for a more precise sensor, one of the Pmod
NAV sensors can be kept, to be coupled to a sensor with higher accuracy, like the
Epson M-G364PD or the Phidget Spatial 1044_1B. The choice of Pmod NAV is
due to its wide use in a lot of projects and its compatibility with Arduino. It is
also an inexpensive sensor compared to other IMU in the market. We think that
fusing of a lot of cheap sensors measures could be good enough for our purposes.
But, because the hardware design isn’t frozen yet, the software must consider the
possibility that the IMU model will change.

The actuators are the nozzles that are activated by the opening of the corre-
sponding solenoid valves. As mentioned above, the solenoid valves open with a 12
or 24 volt voltage, so a suitable circuit needs to be implemented to transform the
low voltage signals (3.3V in the case of the chaser) from the OBCS to the voltage
needed by the solenoid valves. It was therefore decided to use a logic level MOS-
FET4 as a switch, which will open the power supply to the solenoid valves when
the digital signal is high. Each signal is generated by a predetermined digital

4Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

Chapter 1. ERMES Hardware Design 13

port of the OBCS, and the signal generation is based on Pulse-width modulation
(PWM) management, like explained in the Section 3.3.1.

The computer units are the Raspberry Pi 4 and the Arduino Due, both are
part of the OBCS. The Raspberry will provide the computational power to achieve
an autonomous guidance and navigation. The Arduino is used to provide a low
level computing system, better suited to generate the PWM signals. The two
units are connected together with a serial connection, using the UART5 devices
made available by the outputs of the boards. The camera is connected to the
Raspberry through the Camera Serial Interface (CSI), all other sensors are con-
nected to the Arduino via a common Inter Integrated Circuit (I2C) bus. The
software design assumes as mandatory to connect the camera to the Raspberry,
and at least one of the IMU to the Arduino.

The Raspberry and the Arduino versions are choosen based on the compati-
bility with the software libraries used. There is a valid argument about the version
of the Arduino, because an Arduino Nano could achieve the designed task. But,
due to the amount of data that needs to be read and processed by the Arduino
we opted to the safer choice. The different in weight is negligible if compared
with other systems in the chaser, like the eight electrovalves or the battery rack.

The ToFs and the IMUs use an I2C connection with the computer system.
If both IMUs will be connected to the arduino there could be also an I2C mul-
tiplexer. This is because, according to some tests, the data flow is more reliable
using a multiplexer instead of changing the chip selection pin of both accelerom-
eter and magnetometer. For the three ToF sensors, it is possible to change the
I2C addresses at the startup.

1.1.3 Electronics and power supply

Battery

The chaser needs a battery to power the APDCS described in the previous para-
graph. The safety parameters to which ERMES is subject require that lithium
batteries cannot be implemented. Batteries and items that contain batteries are
sensitive components as they may overheat and ignite in certain conditions and,
once ignited, may be difficult to extinguish or may spread corrosive substances.
That is why specific cares and limitations apply when batteries are embedded in
experiments. Limitations are based on the IATA requirements dealing with the
transportation of batteries and on the parabolic flight particularities. In view of
the above, the choice was made to use rechargeable NiMH batteries. Additional
precautions must be implemented, so the battery will be enclosed and protected
from short circuit. A switch should be able to isolate the battery from the rest of
the circuit, all the circuit needs to be compliant to design rules against fire. This
means also that all the cables must have the appropriate size.

According to all of the safety requests, we think that is better to buy an
appropriate battery pack already assembled. The chaser can use a battery of 24V,

5Universal Asynchronous Receiver-Transmitter (UART)

14 Chapter 1. ERMES Hardware Design

it will be composed by many different cells, already connected and encapsulated
by the vendor. On the market there are different capacities, ERMES will opt to
the smallest battery possible that allows to accomplish at least five repetition of
the experiment, and with a 20% of safety margin. That’s because the battery is
the heaviest component in the free floating object, so it makes sense to optimize
the weight of it. During the flight it is possible to carry additional batteries
provided they are in suitable containers, and to change them between breaks in
the series of parabolas. It would be useful to size the battery so that it can only
be changed after 15 parabolas, i.e. during the longest break, but achieving such
a long battery life could cost in terms of premature consumption of the CO2
cartridges.

Changing of battery means that the system needs a complete restart, between
each parabola there is 1 minute and 40 seconds, and in this time one member of
the team has to enter the safety net and reposition both mockups. In this time
it is unthinkable to change the battery, and probably also the cartridge. In the
preliminary design, a battery change was programmed after 15 parabolas, and a
cartridge change every 5. It has been proven in previous tests6 that a cartridge
can keep the flow from one nozzle for 40 seconds. Now one could argue that each
experiment last 8 seconds, more or less, and needs to activate 4 nozzles at time.
But it is necessary to consider that the thrust is not always on, and the chaser has
an initial velocity due to the release system design. So, in the end, the possibility
to change the cartridge every 5 experiment is not so far from reality.

If the cartridge cannot last safely for 5 consecutive experiments, it makes
sense to reduce the battery capacity and change it every 5 experiments, just like
the cartridge. This could reduce the consumption of the CO2 used to perform
the manoeuvre. Additional precaution could be taken to reduce the propellant
use, but because they are related to the software, they are better discussed in the
Section 2.2.2.

Electrical Circuit

The circuit can be divided in 3 main sections: power management, logic level
boards and the interface with actuators.

Each section can be outlined by its function. The power management includes
the battery and the necessary circuit to step down the voltage to power the other
parts. The logic level boards are characterized by voltages around 5V or 3.3V,
they are the Arduino Due and the Raspberry Pi 4, and the converter from the
logic level signal to the 24V allows solenoid valves to be opened.

The block scheme represented in Fig. 1.6 shows the connections between the
main parts. The battery power the entire system with a step down for the two
computer boards. The three ToF sensors are directly connected to the I2C of the
Arduino. From each ToF and IMU there is a chip selection pin connection.

6Some of those tests are mentioned in this dissertation because they also regard the control
system

Chapter 1. ERMES Hardware Design 15

Figure 1.6: Electrical Circuit Scheme

16 Chapter 1. ERMES Hardware Design

The Arduino is connected to the Raspberry via a standard micro USB7 cable,
this provides also the power input required.

After the battery there is a protection fuse for the computer units, and an-
other fuse for the electrovalves. The step down provide an usb connection with
5𝑉 output. Note that the Raspberry will power itself and also the Arduino. The
Pi Camera is connected with the CSI to the Raspberry.

The last part is the circuit that transforms the logic level signal to an ap-
propriate signal to open the EVs8, for each electrovalve there is a MOSFET and
a resistor. The diode is a freewheeling. All of the signal cables have a relative
small size, but the connection of the high power part of the circuit must have
appropriate sized cable.

Another important note is that the battery will have a connector that does not
allow a reverse polarity connection. That’s for safety reasons, and also because
the battery needs to be changed in flight.

The Arduino Nano Alternative

Like mentioned before, the chaser will use the Arduino Due. But there is an
argument about the choice of an Arduino Nano instead.

The Arduino Due has a lot of advantages, for example it has 11 PWM pins,
it has a lot of memory and a very good processor. Those features are very useful
in a testing phase, like it will be explained in the section 3.3.

The main drawback is that consumes a lot of power. Even if it has some low
power modes [20].

From the circuit described above we can substitute the Arduino Due with the
Arduino Nano and a PWM board. If the PWM board can output up to 1.2A per
pin and 12V it can substitutes the circuit that converts the logic level signal: the
green part of the Scheme 1.6.

1.2 Target

The target is a 1U CubeSat mock-up. Like the chaser it has an alluminum
structure to contain the hardware and provide stiffness. All its edges and corners
are covered with protections to prevent damage from shocks. The passive drogue
of the docking interface is attached to the front face of the cubesat and it has no
sensor or activation mechanism. On the same face are the fiducial tags necessary
for the localization by the chaser. If the use of IRLEDs is required, they will also
be placed here in a known pattern.

The target has three reaction wheels to allow it to control the 3DoF needed
to maintain its attitude. The reaction wheels are enclosed in a case, and they

7Universal Serial Bus (USB), the Arduino Due has two ports: native port and programming
port, in ERMES we use the programming port to connect the two devices

8Electrovalve (EV)

Chapter 1. ERMES Hardware Design 17

Figure 1.7: Preliminary design of the target

are composed by a DC motor connected to a flywheel. They will spin in different
velocities to allow the target to maintain the correct attitude.

The preliminary design of the cubesat mockup is shown in the Figure 1.7.
The OBCS of the target is composed by an IMU, an Arduino Mega board,

and 3 DC motors. The OBCS is powered by a battery. The implementation of
the battery will follow the same rules of the chaser’s one, but the battery will be
smaller in both voltage and total capacity.

In order to allow testing of the target control system, a WiFi interface must
be implemented, which could also remain for the final design, as it could become
useful in the case of a manoeuvre that involves sending certain commands to the
target by the chaser, as it is explained in Section 2.2.2. In fact the Raspberry Pi 4
of the chaser has both bluetooth and WiFi interfaces and it could send commands
via wireless.

1.3 The Release System and External Setup

To support the manoeuvre ERMES needs some fixed hardware. This added
hardware provide these functionality:

• release of the experiment;

• collecting data;

• power supply;

18 Chapter 1. ERMES Hardware Design

Figure 1.8: Release structures of the experiment

• telemetry monitoring base.

The experiment area contains two structures for the release of cubesat mockups.
They are built according to novespace guidelines, and they are fixed on 2 baseplate
on the aircraft floor. In the Figure 1.8 there is a preview design, but the final
appearance of each structure will be enclosed with panels, then covered with foam
like mentioned before.

These structures provide a release system based on linear guides. At the end
of each linear guide an electromagnet is fixed which will hold the corresponding
cubesat. The linear guides allow the acceleration of the chaser, the release of the
mockups, and the withdrawal of the electromagnets so as not to interfere with
the experiment. Those structures will be similar of the ones used by PACMAN,
mentioned in the introduction. Due to the nature of the parabola, it is a good
idea to implement an automated release system for the experiment. The goal
is to release both mockups when the perceived acceleration is as close to 0 as
possible. To achieve this goal it is necessary to add an IMU unit attached to the
structures, and connected with the supporting laptops.

The experiment area is completely enclosed in a safety net. The floor inside is
covered with mattresses to reduce impact damage during the experiment phases.
Outside the net there are two support plates that provide anchorage points for
the external hardware supporting the experiment. One of them is used to fix the
power distribution units, such as the distribution socket and the power supplies

Chapter 1. ERMES Hardware Design 19

needed to keep the experiment’s electronic instruments running. In the case of
ERMES there will be two power supplies for the laptops and another to power
the linear guides and their electromagnets. Each laptop is attached to another
support plate, which in addition to the laptops, is used to store the cartridges
and the additional batteries. ERMES needs two laptops, one of them is used to
saving the data, starting the experiment and monitoring the telemetry, the other
one is a backup in the case the first one fails.

To retrieve additional data for the experiment, there will be 2 cameras posi-
tioned in the upper part of the safety net. They should be able to observe and
register the experiment from 2 different angles. The precise model of the cameras
has yet to be defined. Their features include internal memory and the ability
to record in 1080p at 60fps, and if possible, they should be battery powered.
Their video will be used after the experiment to analize the manoeuvre. Another
option is to consider a wide angle camera, like the one used in the PACMAN
experiment [13].

The amount of data registered in the experiment needs additional memory
space. The external storage media should be provided for data and backups.
The solid state drives should be preferred to achieve this goal, because the hard
disks have moving parts, and they could experience some problems during the
parabolas9.

9The hard disk park the lens at the border when they are off, to prevent the damage of the
disk itself. In ERMES experiment they should be on during the parabolas to save the data, so
this is a possible point of failure.

20 Chapter 1. ERMES Hardware Design

2
Software Design

This chapter describes the software architecture decided upon for the system and
attempts to explain the interaction between the various main components. The
implementation will be discussed in the next chapter, while this one focuses on
outlining software features and constraints.

The software can be divided into three different levels, each corresponding
to a different computational unit. Each level provides functionalities and has
different constraints. Each component belongs to a certain level and can interact
with others. Figure 2.1 shows a general diagram of the architecture with an
outline of the components and their interactions.

Among the main components, the four key ones are Guidance, Navigation,
Control and Actuator Control System. Starting with the last one, in the ERMES
project the actuation control means a component capable of executing simple
commands. This subsystem allows the chaser to move or rotate with respect to
a single certain axis. Guidance, Navigation and Control interact so closely that
they are usually referred to as GNC, denoting the whole system. In the case
of the chaser, these subsystems are described separately, but they still interact
closely with each other.

Guidance is used to calculate the trajectory to be followed by the system.
This is calculated using the location data provided by the navigation. Finally, it
communicates the planned trajectory to the control system.

Navigation, also referred to as localization, is responsible for estimating the
position of the target relative to the chaser, and the chaser state (position, orien-
tation, velocity, acceleration). To do this it must use the information produced
by the sensors, including the vision system. In addition to the sensor information,
localization uses movement estimates calculated by the control system.

Control refers to the manipulation of the forces required to execute the cal-
culated trajectory. In the case of ERMES, the applicable forces are dependent on
the opening of the corresponding nozzles. Therefore the control component must
calculate the commands to be communicated to the low-level system, in the form
of direction, applied force and ignition time.

21

22 Chapter 2. Software Design

Figure 2.1: Software architecture divided by levels and grouped by functional-
ity. In gray the interfaces with the respective hardware.

Chapter 2. Software Design 23

Outside the main components, it is necessary to interface with the experi-
ment by the users. Therefore, the high-level system must provide the necessary
interface both to start the experiment and to observe its telemetry.

Referring instead to the computational unit that deals with each level, in
ERMES project it was decided:

• the Low Level System (LLS), with the actuator control system, runs on
the Arduino Due;

• the Medium Level System (MLS), with the guidance, navigation and con-
trol, runs on the Raspberry Pi 4;

• the High Level System (HLS), that takes care of the communication between
the operators and the chaser, runs on the laptop.

This subdivision is partially inspired by the work of the Astrobee team [9] [10]
[21]. The Astrobee system consists of three cubed-shaped robots, software and a
docking station used for recharging. The robots use electric fans as a propulsion
system that allows them to fly freely through the microgravity environment of the
station. In this system there is a particular feature interesting for ERMES project:
the free flyer can autonomously dock with its charging station. ERMES needs to
dock with another free flying object, but some techniques used for Astrobee are
useful in ERMES project too.

2.1 Low Level System

Figure 2.2: The tasks to be performed by the Low Level System within the
time limit. In the ERMES project it is set at 100ms

The low-level system is a cycle that repeats itself at a predefined interval, and
performs the following activities (also shown in Figure 2.2):

• controls the opening of the EVs;

• reads data from sensors connected to the I2C line;

• deserialises commands received from the MLS;

• packages and sends sensor data to the mid-level system.

24 Chapter 2. Software Design

LLS activities must be performed within a certain time limit. It is set at
100ms by the design. This time limit must be strictly adhered to, i.e. no cycle
repetition must exceed 100ms. It means that the system is hard real time [22].
This is because if a deadline is missed, the next command may interfere with the
command still running, resulting in less stable control. Due to the difficulties of
an hard real time system implementation, this level should have the minimum
level of features required to work. For the ERMES project the feature to control
the opening of the EVs is essential. Reading commands from the MLS is linked
to the previous activity, so it is also considered vital to the LLS. Reading sensors
is instead optional, during ermes development it was chosen to keep the man-
agement of sensors connected to the I2C line at this level. This is because after
some tests made, it was verified that it is possible to maintain the time deadline
even if this activity is inserted. Given the premises, the choice is also correct be-
cause it allows for more sophisticated future developments in the event that the
current implementation is not sufficient to guarantee system stability: for exam-
ple, it is possible to consider IMU data to control the EVs with the IMU feedback.

The communication between the LLS and the MLS is serial based on UART.
The information transmitted in commands from the MLS contains the direction of
thrust, the force of thrust, and the time expressed in number of cycles. Messages
from the LLS to the MLS must contain sensor data. Apart from the previous
two, there is no other form of communication between the two levels.

Given the premise of communication, the LLS must be able to understand
which nozzles to open when a command is given, according to the Section 1.1.1.
It must also send the correct signal to the outputs PINs to which the actuators
are connected to guarantee an opening consistent with the force expressed in the
command received.

2.2 Medium Level System

The MLS relies on the localization, and on the coordinate system of the exper-
iment. In ERMES the reference system follows the conventions outlined in the
REP-103 document [23].

Starting with the reference system of the free floating objects, the center of
mass is the origin, the axes are disposed according to the standard: the 𝑥 positive
axis is the forward one, 𝑦 positive is the left and 𝑧 positive is the up. All systems
are right handed, this means they comply with the right hand rule. In both the
chaser and target, the front face is the one with the docking port. The top face,
in the case of ERMES, can be any of the side faces: it has been decided to be the
one facing upwards while the objects are still fixed in the release system. The
reference system of the chaser and the target is shown in Figure 2.3, the colour
scheme used for the axes was chosen for consistency with the programs used in
the development.

Chapter 2. Software Design 25

Figure 2.3: The axes are 𝑥 in red, 𝑦 in green, 𝑧 in blue. The × means that it
enters the sheet, the circle means that it comes out.

In this thesis, the target software will not be discussed in detail, but some
features are key to understand some design choices of the chaser software. The
first one is the ability of the target to maintain a given attitude. According to the
design its software should start to control the orientation just after the release.
The second key feature is the ability to communicate via WiFi. This feature is
mainly used to test the software of the target. In the chaser control system, the
target’s WiFi capability is used to communicate attitude commands when using
a collaborative manoeuvre, as described in section 2.2.2.

2.2.1 Navigation

In the control theory, the navigation is the determination, at a given time, of
the state of the vehicle, in this case the chaser. Its state is determined by its
position, velocity, and orientation (attitude). In ERMES the state will include
the acceleration along each axis. In the navigation system, the state of the
chaser 𝑠𝑐, referred to a coordinate system 𝐹1, is defined by:

• the position referred to 𝐹1

• the velocity relative to 𝐹1, but referred to 𝐹𝑐, where 𝐹𝑐 is the coordinate
frame of the chaser itself (as described in the section before);

• the linear acceleration relative to 𝐹1, but referred to 𝐹𝑐;

and it can be expressed by:

𝑠𝑐 =

[︁
𝑥𝐹1 𝑦𝐹1 𝑧𝐹1 𝑟𝑜𝑙𝑙𝐹1 𝑝𝑖𝑡𝑐ℎ𝐹1 𝑦𝑎𝑤𝐹1

�̇�𝐹𝑐 �̇�𝐹𝑐 �̇�𝐹𝑐 𝑟�̇�𝑙𝑙𝐹𝑐 𝑝𝑖𝑡𝑐ℎ𝐹𝑐 𝑦�̇�𝑤𝐹𝑐 �̈�𝐹𝑐 �̈�𝐹𝑐 �̈�𝐹𝑐
]︁ (2.1)

For example, if the state of the chaser with respect to the target reference system
is considered (depicted in Figure 2.3): the first six terms represent the position of

26 Chapter 2. Software Design

Figure 2.4: Comparison of some fiducial markers used in computer vision ap-
plications

the chaser with respect to the target, the other terms indicate the velocities along
and around the axes of the chaser’s reference system with respect to the target.
To determine the status, the chaser needs data from sensors, including a vision
system capable of locating the target. There are a lot of solutions for a computer
vision based system, but ERMES focused in a fiducial tag based recognition.
Fiducial tags are objects positioned in the field of view of the camera for use as
a point of reference or a measure, examples are shown in Figure 2.4. In ermes,
fiducial tags are used to recognise the position of the target, so the target will have
at least one tag with a defined pattern and a known size. The computer vision
software will recognize the sticker and compute the position and orientation of the
target with respect to the camera. Another computer vision algorithm to consider
is the IR LED based system. It has taken a back seat because it complicates the
design of the target circuit, and also there are some known issues with the use of a
LED based system in the airplane cabin: it may interfere with other experiments1.

The sensors data should be passed by the low level system, so the medium
level system can process them. Considering the nature of the data recorded by
the sensors, in addition to the position relative to the target provided by the
vision system, there are also:

• the acceleration along the axes and velocity around them, provided by the
IMU;

• the relative distance between target and chaser, provided by the 3 ToF.

Information from the control system is also used in determining the status of the
chaser. At each control cycle, a predicted state is generated in accordance with
the command sent. In ERMES, the control system sends commands in the form
of an applied force. The mass of the chaser is known. Therefore the Control can
generate a prediction of what the next state of the chaser will be. To do this it

1In the last flight campaign (2021) one experiment used a LED based system to locate one
object, and it interfered with another experiment. There are precautions that could be taken
to avoid it, so if future tests show that it is an essential feature, the additional work will be
justified

Chapter 2. Software Design 27

Figure 2.5: The Localization component will estimate one state at every step.
This is the scheme for the target-related localization

must integrate acceleration with respect to time, and use the previous state as an
initial condition. Given the previous state of the system 𝑠𝑡−1, and an acceleration
along 𝑥 positive of 𝐴𝑥m/s2, considering 100ms as the time step, the control will
generate the �̂�𝑡 . The following equation shows the calculation of the �̇� �̂�𝑡 term as
an example:

�̇� �̂�𝑡 = �̇�𝑠𝑡−1 + 𝐴𝑥 ∗ 0.1 (2.2)

The first state used by the control is initialised with the initial conditions of the
experiment, which are known. The navigation, considering all the data from the
sensors explained above, considering the predictive model of the control system
and also considering the status generated in the previous step, will generate the
estimate of the current status of the chaser. Considering also that each piece
of information has an uncertainty associated with it, the localization can also
estimate the uncertainty of the current generated state. To do this, a filter is
needed, and in particular in ERMES it was decided to use the Extended Kalman
filter (EKF). It is the nonlinear version of the Kalman filter [24] which linearizes
about an estimate of the current mean and covariance. The Figure 2.5 shows a
diagram of how localization works at each step.

In this design, the localization finds the estimate of the chaser state referred to
the target coordinate system, shown in the right of the Figure 2.3. This could be a
problem for the control algorithm: for example, if the target rotates a few degrees
on itself to control its attitude, there will be an apparent velocity in the previously
explained localization estimate. In order to solve this problem, a dual localization
system is implemented, consisting of both the system explained in the paragraph
above and an identical system but relying only on a few sensors. The second
system will base its estimation only on data from the IMU, and on information
calculated by the control’s predictive model. Its initialisation will be the same as
the previous system, because the initial state of the experiment is known. The
coordinate system of this Localization is the position of the target at the initial
moment of the experiment. As the manoeuvre continues, the position estimate
given by this system will tend to accumulate error. However, this estimate is
continuous. In the previous system, assuming that the chaser momentarily loses

28 Chapter 2. Software Design

Figure 2.6: The Localization component will estimate one state at every step.
This is the scheme for the odom-related localization

visual contact with the target, and regains visual contact shortly thereafter, new
data from the vision system would correct the estimate, which would instantly
jump to the new position. This position jump would result in an untrue speed
estimate. In the second estimator, however, since there are no sensors dependent
on external factors included in the estimate, there is no such problem. A diagram
of this second estimator is shown in Figure 2.6. For convenience, the reference
system of this estimator will be called “odom”.

2.2.2 Guidance

Guidance refers to the determination of a trajectory from the chaser current
location to the target as well as desired changes in velocity and rotation.

The trajectory in ERMES consists of a series of states, each containing posi-
tion, rotation and linear and angular velocity information. The general state 𝑠𝑖
is represented as:

𝑠𝑖 =

[︁
𝑥𝐹𝑡 𝑦𝐹𝑡 𝑧𝐹𝑡 𝑟𝑜𝑙𝑙𝐹𝑡 𝑝𝑖𝑡𝑐ℎ𝐹𝑡 𝑦𝑎𝑤𝐹𝑡

�̇�𝐹𝑐 �̇�𝐹𝑐 �̇�𝐹𝑐 𝑟�̇�𝑙𝑙𝐹𝑐 𝑝𝑖𝑡𝑐ℎ𝐹𝑐 𝑦�̇�𝑤𝐹𝑐

]︁ (2.3)

Where 𝐹𝑡 means that it relates to the target reference system, and 𝐹𝑐 means
that it is the velocities along and around the orientation axes of the chaser. To
simplify, it is assumed that all velocities are always zero in the intermediate states
of the trajectory. The only exception is the final state which will have �̇�𝐹𝑐 equal
to the velocity decided for the docking port according to its limits. Thus, the
state 𝑠𝑖 becomes:

𝑠𝑖 =
[︁
𝑥𝐹𝑡 𝑦𝐹𝑡 𝑧𝐹𝑡 𝑟𝑜𝑙𝑙𝐹𝑡 𝑝𝑖𝑡𝑐ℎ𝐹𝑡 𝑦𝑎𝑤𝐹𝑡 �̇�𝐹𝑐

]︁
(2.4)

The generation of the trajectory is entrusted to a planning strategy, executed
by a component called “planner”. The planner must generate a series of states.
Between one state and the next the value of only one term must change. The
planner must also generate execution time limits for each state, taking into ac-
count the physics of the system. In ermes, 3 planners are considered: naive
planner, trapezoidal planner, collaborative planner.

Chapter 2. Software Design 29

Figure 2.7: This is a 2D example of a trajectory generated by the Naive Planner

Naive Planner

This planner, considering the estimated position of the target, will generate a
series of states whose values change one by one starting from the penultimate
one. Figure 2.7 shows an example of a planned 2D trajectory.

In order to plan the time limits, must find 𝑡𝑖 to minimise the following:

min
∑︁
𝑖

𝑡𝑖 (2.5)

Where 𝑡𝑖 is the time between the previous state and the state 𝑖. And according
to the following constraint:

𝑡𝑖 ≥ 𝑇𝑝−𝑚𝑖𝑛 ∗ (1 + 𝐴𝑡𝑟) (2.6)

Where 𝑇𝑝−𝑚𝑖𝑛 is the minimum time to move from the previous state to the 𝑠𝑖
according to the physical model, and 𝐴𝑡𝑟 is a parameter decided in the project
that represents the relative added time to allow the adjustment commands.

This planner is very simple, but if the target exits the camera field of view,
the chaser loses the relative localization: if the field of view of the chaser camera

30 Chapter 2. Software Design

Figure 2.8: This is a 2D example of a trajectory generated by the Trapezoidal
Planner

in the Figure 2.7 were narrower, the navigation would lose the information given
by the vision system.

Trapezoidal Planner

To solve the field of view problem, ERMES takes inspiration from Astrobee soft-
ware, in their implementation they use a trapezoidal planner. It plans a straight
line between different poses, with terminal velocity equals to 0.

In the ERMES case scenario the planner needs to:

• generate a series of states with a position unchanged but with the orien-
tation equal to the direction of the vector from the center of mass of the
chaser and the desired position;

• generate a state in the desired position;

• generate a series of states in the same position but with the orientation
equal to the direction of the vector from the center of mass of the chaser
and the docking port of the target. The velocity along this direction is lower
than the maximum allowable velocity.

Chapter 2. Software Design 31

Figure 2.9: This is a 2D example of a trajectory generated by the Collaborative
Planner

In this way, the chaser will always have visual contact with the target except at
the end, when the camera may not be able to focus anyway. This planner can be
easily understood by looking at Figure 2.8

Collaborative Planner

Lets start by optimizing the trapezoidal planner: the key movement that slows
the system is the change of orientation.

The goal is to send to the target appropriate commands, via WiFi, to get it
oriented towards the chaser, using the localization provided by the chaser itself.
The generation of states is similar to the previous one, but some are referred to
the chaser, and some to the target.

The states generated by the planner will be:

• Target, a series of states to adjust the orientation of the target, so that
its positive x-axis points to the position of the centre of mass of the chaser;

• Chaser, generation of a series of states to adjust the orientation of the
chaser so that its x-axis points to the centre of mass of the target;

• Chaser, generation of the final state near the target but with a velocity
towards it different from zero.

32 Chapter 2. Software Design

Figure 2.9 gives an example of the states generated by the Collaborative Planner
in a 2D trajectory.

Considerations on Planning Strategies

The planner usually calculates the trajectory considering the collision avoidance,
in the ERMES experiment this feature is not necessary. But, the same group
of motion planning algorithms are designed to allow the specification of various
constraints, for example in terms of time or fuel consumption. From this point
of view there is the possibility to use one algorithm to optimize the trajectory
planned by the chaser. Unfortunately, these approaches require a lot of devel-
opment and optimisation, and in the case of the ERMES project there is not
enough time. Furthermore, the calculation of the trajectory itself with these
methods may take too long in terms of computation. The planners considered
above have algorithms that produce the sequence of states in linear time.

2.2.3 Control

The control takes care of generating the messages that can be executed by the
LLS. They are a tuple with two main elements: the force required and the time.
They represent an impulse. To generate valid commands for the LLS, it needs
the configuration parameters that define the physical model of the chaser. This
means that the control knows the mass, the maximum force it can apply along a
certain axis, the available force levels due to the discretization of the system.

Using the trajectory provided by the guidance, the control must generate
messages allowing it to move from one point on the trajectory to the next. Since
it has been assumed that guidance always generates trajectories in which accel-
eration along only one axis is required between each point and the next, the
control could generate two commands at most between two points. If the system
were ideal, these two commands would be acceleration and deceleration along the
above-mentioned axis.

Figure 2.10: Breakdown of time allocated for each control activity. It is not to
scale, and depends on the parameters decided by the project.

Due to the imperfections of a real system, this method cannot be used. There-
fore, the ERMES control plans the above accelerations, with time constraints:
between two different points of the trajectory it can use a percentage of the time
for the two commands of acceleration and deceleration, and keep the rest for the
commands of trajectory adjustment. The percentage of the time available for
the acceleration and deceleration commands is a parameter set by the project,
and can be tweaked to have the right compromise: the lower this parameter, the

Chapter 2. Software Design 33

longer the time needed to travel the distance between one point on the trajectory
and the next.

Figure 2.11: A possible decision cycle for the trajectory adjustment phase.

During the adjustment time, the control will generate the necessary impulses
to maintain a certain attitude and direction. The attitude and the translation
movement are corrected with the information received from the location relative
to “odom”. Using the information from the navigation relative to target, it could
estimate the real target position in the odom coordinate system, and use this
information to correct the manoeuvre.

Figure 2.12 shows an example of trajectory correction. The first figure shows
the target and the planned trajectory on the odom reference system. In the second
figure, a position update has arrived, and the position of the target relative to
the odom reference system has changed by 𝑒. The magnitude of the vector 𝑒 is
smaller than a parameter assigned to the control system: the control then updates
the positions of the trajectory with respect to the odom reference system. This
update will cause the generation of impulses by the adjustment cycle. In the
third figure, the target has rotated on itself, so the location relative to odom
shows a rotation. The control will ask the guidance if trajectory recalculation is
necessary. In this example it is assumed that recalculation is not necessary, and
therefore the control continues. In the last image the target is translated by 𝑒,
its magnitude is greater than the system parameter, so the control requires a new
trajectory. This is the case if the localization system has previously estimated an
incorrect position and the new estimates have corrected it.

Each command that the control generates affects the status of the chaser, and
therefore has an expected result. The control uses the generated pulse messages
to propagate the state received by the “odom”-localization: it adds the effects
of the generated commands to the last received state. This was explained in

34 Chapter 2. Software Design

Figure 2.12: An example on control decisions

Section 2.2.1, and the Equation 2.2 shows the example in the case where the
command is an acceleration along 𝑥.

The control operates at a fixed frequency of 10Hz, and, between one point
on the trajectory and another, uses its control cycle to calculate the adjustment
pulses and to propagate the state estimate according to the predictive model.
Figure 2.10 shows the division of time to be allocated to the two activities: gen-
eration of acceleration and deceleration pulses, and generation of addition pulses.
While in Figure 2.11 there is a general scheme of the adjustment phase.

2.3 High Level System

The HLS is used to interact with the experiment. The two main tasks of the
HLS are to start (and stop) the experiment and to make the chaser telemetry
available to the user.

To do so the high level system needs to communicate with the medium level
system. The communication between the HLS and the glsmls is based on a
wireless network.

To start the experiment and release the two mockups, an automatic release
system based on electromagnets was designed, as described in Section 1.3. The
exact moment of release is managed by the HLS through an automatic program
based on the information of the IMU located in the release structure. The software
plans to release the experiment when the jitter in acceleration is below a certain
threshold. This software runs on the laptop connected to the IMU: the first one.
In case it has any problems, the release software must be run on the second
laptop, so the IMU must also be able to be connected to the latter..

Telemetry, on the other hand, can be viewed from both laptops of the HLS.
This allows it to be recorded in double copy.

3
Software implementation

In this chapter, the software implementation chosen for ermes will be presented.
Its structure is described in Chapter 2.

This chapter will discuss the main points of Robot Operating System (ROS)
[25], which is the framework chosen for the development of ERMES. It will also
highlight the key functionalities of the adopted libraries, focusing on those used
in ERMES. Some calibration tests have not yet been performed, so the procedure
for doing them and what to consider a good result will be described.

3.1 ROS overview

ROS is a set of software libraries and tools that help build robot applications. It
contains drivers and state-of-the-art algorithms. It also provides powerful debug-
ging tools. ROS is an open-source, meta-operating system for robots. It provides
the services you would expect from an operating system, including hardware ab-
straction, low-level device control, implementation of commonly-used functional-
ity, message-passing between processes, and package management. It also pro-
vides tools and libraries for obtaining, building, writing, and running code across
multiple computers. The ROS runtime “graph” is a peer-to-peer network of pro-
cesses (potentially distributed across machines) that are loosely coupled using the
ROS communication infrastructure. ROS implements several different styles of
communication, including synchronous RPC-style communication over services,
asynchronous streaming of data over topics, and storage of data on a Parameter
Server [25]. ROS is not a realtime framework, though it is possible to integrate
ROS with realtime code.

ERMES uses ROS to implement the MLS. This allows to integrate some
algorithms, like the Tag detection, or the Extended Kalman Filter. This is a key
value, because the algorithms are already tested in multiple applications.

The executables in ROS are called nodes. The code structure is composed by
different nodes, each one has a “main”. Each node will run in a different process1.

1There are exceptions like nodelets

35

36 Chapter 3. Software implementation

Figure 3.1: Relations between different coordinate systems. The arrow means
“is child of”.

To communicate between different nodes ROS uses topics.
A topic is composed by an header and the body of the message. In a ROS

system the nodes can be distributed in different machines in the same network.
ROS works with a principal node, called “roscore”. It is the server that allows
the subscription and publishing of the topics.

In ERMES the “roscore” is executed in the Raspberry, that runs Ubuntu
20.04 Server.

ROS uses workspaces to build and source the code. In ERMES chaser there is
one workspace to build the additional libraries, and another to build the projects
developed by the ERMES team.

In the laptop there will be a ROS installation that uses the chaser as a server.
This allows the operator to check the telemetry with RViz2, but also to save the
data.

3.2 Reference System

In ROS each object has a coordinate system, for example as seen in Section 2.2,
target and chaser have two different coordinate systems, like shown in the Fig-
ure 2.3. The coordinate system is called “frame”. These frames are managed by
the tf library [26]. The tf library was designed to provide a standard way to keep
track of coordinate frames and transform data within an entire system such that
individual component users can be confident that the data is in the coordinate
frame that they want without requiring knowledge of all the coordinate frames
in the system. Transforms and coordinate frames can be expressed as a graph
with the transforms as edges and the coordinate frames as nodes. In this rep-
resentation the net transform is simply the product of the edges connecting any

2RViz is a telemetry tool provided by ROS to show the output of the topics in a graphical
environment.

Chapter 3. Software implementation 37

two nodes. The graph can exist with one or more disconnected subgraphs and
the transform can be computed between nodes within the subgraphs, but not
between disconnected subgraphs.

In the ERMES system the tf tree is shown in the Figure 3.1. Note that the
two edges between “map” and “odom” and between “odom” and “base_link” are
dynamic. In fact, they are estimated by the localisation and therefore the tree
is not initially fully connected. Each node represents a component of ERMES;
the image shows the frames on the target in orange and those on the chaser in
green. As explained in Section 2.2, the general reference system is based on the
target coordinate system, so “map” is the root of the tree and it coincides with
the target frame shown in the Figure 2.3. The main frame is choosen according
to the application [27].

3.3 Low Level System

The low level system should integrate the Arduino program. The frequency for
the programme cycle is 10Hz. the minimum time a group of EVs can remain
open is 100ms. This also fixes the amount of possible commands manageble
by the system: in 8 seconds of manoeuvre there is the time for 80 different
commands. This is mainly due to the time it takes for the solenoid valves to open
and close. The system has been designed with the aim of reducing the impact of
the transition time, of opening and closing the EVs, on the total opening time.

As discussed in the Section 2.1 the features that the LLS should have are:

1. close and open the electrovalves;

2. read the first IMU;

3. read the second IMU;

4. read the three ToF;

5. empty the serial buffer;

6. send sensors data to the MLS;

7. deserialize the command;

To build an hard real time system we need to be sure that in the worst case of
code branching, all the actions are performed before the 100ms time limit. This
must also be tested by forcing the worst branch the code can follow, because
when the system is completely integrated, it could be very difficult to identify.

To open the electrovalves there should be a table that associates each axis
with the PINs where the EVs are connected in the circuit. The program should
keep trace of the command in execution, to remember to close the EVs when it’s
terminated. A precaution to build more robust software is to close all EVs every
time there isn’t any command in the queue. So the close phase should close all
the EVs.

38 Chapter 3. Software implementation

The reading of the sensors is a point of concern, because it needs to wait the
I2C, so this phase needs to be short enough even when all sensors will timeout.

During the development of the LLS, it is assumed that only one command
can be executed at a time. In fact, the hardware design specifies that EVs should
be opened in groups of 4.

3.3.1 Exploiting the Electrovalves

In the preliminary discussion of the LLS it has been decided that the electrovalves
should function with a PWM. This could give some advantages and a finer con-
trol, useful in the final step of the maneuvre. Unfortunately the EVs don’t work
like the LED3, and their average response is not linear with the input.

First lets briefly introduce what is a PWM. The Pulse-width modulation is
a method to reduce the average power delivered by an electrical signal. Lets
fix a frequency f , a periodic signal with a period of 𝑇 seconds, and the possible
values for the signal as {0, 1}. In a period 𝑇 we defined the signal with the val-
ues 1 for 𝑇 ∗ 𝐷 seconds and 0 for 𝑇 ∗ (1 − 𝐷) seconds, 0 ≤ 𝐷 ≤ 1. 𝐷 is called
duty cycle, and varying 𝐷 results in a variation of the average power of the signal.

A PWM signal is to be used in the project to vary the output of the EV,
mantaining the relation in the Eq.: 3.1:

𝐹𝑡ℎ𝑟𝑢𝑠𝑡 = 𝐹𝑚𝑎𝑥−𝑡ℎ𝑟𝑢𝑠𝑡 ∗ 𝐷 (3.1)

Where 𝐹𝑚𝑎𝑥−𝑡ℎ𝑟𝑢𝑠𝑡 is the maximum thrust of a nozzle with the electrovalve com-
pletely open, 𝐷 is the duty cycle mentioned before. In the implementation the
𝐷 needs to be discretised, so the PWM generator, that the Arduino provides in
some ports, was used to obtain this result [28].

Different frequencies have been tested: 122.55Hz, 30.64Hz. According to the
[28] document those frequencies can be obtained with the use of PWM registers,
so it will not interfere with the LLS cycle. Higher frequencies than 122.55Hz do
not work with the EVs chosen.

The 𝐷 value is represented by the discrete values from 0 to 255. 255 is
associated with 1, when the signal is always in its higher state.

The results are not linear and the Eq. 3.1 is not respected, so the output needs
to be remapped to have a result similar to the Eq. 3.1. In the Chaser 16 different
levels of thrust are sufficient to have a fairly fine division of the maximum thrust.
The chosen frequency is 30.64Hz, because the response seems more stable. To
remap the PWM values to obtain a response similar to function 3.1, it is necessary
to find 16 values such that: 0 is 0, 15 is the maximum (in this case 135mN), and
the remaining once are assigned so that the response is proportional. In general,

3In a PWM the LED will blink rapidly, and the perceived quantity of light is a factor of
the maximum light that the diode can emit

Chapter 3. Software implementation 39

Figure 3.2: This graph reports the response in thrust of one nozzle if controlled
with a PWM. The dotted lines represent the values of the PWM to
map to the 16-levels values

Figure 3.3: This graph shows the relation between the thrust of the nozzle and
the PWM with the remapped values: step number 15 is 𝐷 = 1

40 Chapter 3. Software implementation

Figure 3.4: The response in thrust of one nozzle if controlled with a PWM.
The dotted lines represent the values of the PWM to map to the
16-levels values. The points between 0 and 200 are omitted, because
the mean thrust for them is 0

Figure 3.5: The relation between the thrust of the nozzle and the PWM with
the remapped values: step number 15 is 𝐷 = 1

Chapter 3. Software implementation 41

given 𝑁 bit of PWM precision, a PWM step is:

𝐹𝑠𝑡𝑒𝑝 =
𝐹𝑚𝑎𝑥−𝑡ℎ𝑟𝑢𝑠𝑡

2𝑁 − 1
(3.2)

And the general force of PWM value p, 0 ≤ 𝑝 ≤ 2𝑁 − 1:

𝐹𝑃𝑊𝑀 (𝑝) = 𝐹𝑠𝑡𝑒𝑝 ∗ 𝑝 (3.3)

Starting from a PWM accuracy in bits greater than 𝑁, called �̂� in the non linear
PWM response �̂� , for each 𝑝 from 0 to 2𝑁 − 1 it is necessary to find the values of
�̂� such that:

�̂� (�̂�) = 𝐹𝑠𝑡𝑒𝑝 ∗ 𝑝 (3.4)
The pair 𝑝, �̂� represents the map for a linear response with respect to 𝑝. In
the implementation, an array of 16 elements contains the corresponding �̂�-values.
The index of the array is 𝑝 and it is the access key to the map. The final run of
the experiment with 16 different levels outputs the graph shown in the Fig. 3.3.
The values of �̂� are represented by the dotted lines in the Figure 3.2.

3.3.2 Communication between LLS and MLS

The LLS needs to communicate with the MLS, so there are two ways: the first
one is to use ROS as a message layer, this is memory intensive and can overhead
the serial connection, but it’s very easy to implement and integrate with the other
nodes in the Raspberry. The second is to develop an ad hoc serial protocol for
this system. The first approach is useful to quickly test some functions of the
MLS, even before the LLS is developed. This method has a major flaw: it’s slow.
It can manage 2 topics, but when the system will be expanded it could miss the
100ms deadline. This is bad for the LLS, because, like it was explained in the
Section 2.1.

As seen at the beginning of the section, the worst case scenario is when
the loop needs to close the EVs, open another group of EV, read the sensors,
send the data, read the buffer and deserialize the command. Please note that
the worst case does not happen in every cycle. It is important to optimize the
communication. The minimum amount of data required for communication is
analysed below. For a command, must be considered:

• 3 bit for the DoF to activate, one of the possibilities is “no DoF”, all shut
down.

• 5 bit for the PWM level: 4 as PWM, 1 as sign;

• cycles of duration, the maximum is 80, so 7 bit at worst;

A command could be less than 2 bytes. However, for data communication to
the MLS, the following are required:

• 6 bytes for each accelerometer;

42 Chapter 3. Software implementation

• 6 bytes for each gyroscope;

• 6 bytes for each magnetometer;

• 1 byte for each ToF;

Considering the above, an ad hoc protocol could greatly reduce the amount of
data passing through the serial line. In fact, ROS messages have a large header
and the data is not transported in the most efficient way (For example, the bytes
needed for an IMU ROS message are 172). The optimal solution would be to
send the minimum necessary data through a custom protocol, and then enrich it
with the necessary information through a special node in the MLS.

3.3.3 Improving the LLS

During future tests of the system, it may turn out that the thrust given by the
4 EVs controlled by the LLS does not precisely follow the corresponding axis.
There are two main ways to solve this problem: close the control loop to the LLS
as well, or create a calibration matrix.

The first one needs to use the IMU data. Closing the cycle and balancing the
output of the EV could be difficult, because there is the need to process the IMU
data. Also the LLS should integrate the velocities around the axis, or combine
the data from the two IMU to retrieve the torque. Adding to all of this, there
are the problems related to the edge cases, like when the command lasts only one
cycle or when the command requires the lowest thrust.

The problem can also be solved with a calibration system, as mentioned
above. It has some advantages: the results are always static and it is faster for
the processor.

To calibrate the system the deviation from the correct path should be mea-
sureed. This could be difficult for the DoFs of rotation, but doing this only for
the translations might be useful anyway. At the end, using the data collected, a
calibration table must be constructed, that means that for each EV used in each
command, what is the thrust offset to apply. The results must be validated by
the same test, the expected result is that the deviation is lower than before.

3.4 Navigation

The navigation of ERMES chaser relies on two main part:

• the computer vision system;

• the sensors data from the LLS.

Three main approaches were considered for the vision system: a LED based
system, a features recognition and a fiducial tag localization. In the Section
2.2.1 it was mentioned that a system based on fiducial tags was chosen. Please

Chapter 3. Software implementation 43

Figure 3.6: This is an example of AprilTag, it’s code is 4, and it’s format is
“41h12”.

note that all of these possibilities are meaningful, for example the Astrobee [10]
experiment uses the features recognition on the handle of the docking port. The
PACMAN experiment used the IR LED based system.

The sensors can be read by the LLS, but, if necessary, the entire I2C line can
be moved on the Raspberry. In both cases the navigation layers consider only
some types of messages, so the data needs to be processed before feeding them
to the navigation.

As mentioned in the Section 3.2, the navigation will also publish the TF
from “map” to “odom” and from “odom” to “base_link”. This means that, during
data preprocessing, nodes manipulating data in this subsystem cannot rely on
the above-mentioned TFs, because the TF-tree has two missing branches.

3.4.1 AprilTag

AprilTag is a visual fiducial system, useful for a wide variety of tasks including
augmented reality, robotics, and camera calibration. Targets can be created from
an ordinary printer, and the AprilTag detection software computes the precise
3D position, orientation, and identity of the tags relative to the camera [17]. In
ERMES the algorithm version 3 [16] was used, with its ROS wrapper. AprilTag
uses an embedded 2D-coded marker for tag detection and to differentiate it from
the other tags. The visual marker tag can be of any size with a square dimension.
The tag is printed on a white background with a black outline square. Inside the
square is an embedded black bar-code. In ERMES, the “41h12” format was used,
which also features part of the barcode on the outside of the black border, an
example is repoted in the Figure 3.6.

The AprilTag algorithm uses the features to recognize the tag in the frame,
than finds the border and evaluates the position. Please keep in mind that the

44 Chapter 3. Software implementation

Figure 3.7: This is an 8 × 6 checkerboard used in calibration.

size of each tag and their code is known to the algorithm.
With AprilTag it is possible to detect a single Tag, or a bundle where each tag

is in a known fixed position relative to each other. The use of bundles will result
in a better localization of them, the drawback is that they take up a lot of space.
They are resilient to partial occlusion, but in the case of ERMES this feature
is not important. It is possible to change the format of the tags used, looking
for one that is better optimised for the ermes use case. A good tag distribution
solution is to position the first tag correspondent to the camera when the chaser is
aligned with the target, so it will stay in frame even when the chaser approaches
the target. Then apply other tags in the front face, and evaluate the possibility
to put other tags in each face.

Camera

The raspberry camera must be used to detect the AprilTags. Drivers are needed
to do this, and in ERMES it has been chosen to use the “raspicam_node” li-
brary [29]. It provides a ROS node that publish two main topics: “image_raw”
and “camera_info”. The first one publishes the uncompressed image according
to the parameters, the second one publishes the camera information necessary
to the rectification. The camera information must be obtained through calibra-
tion. After that it is possible to configure the said node to publish the correct
information. To calibrate the camera the algorithm implementation of the Zhang
approach [30] was used. ROS provides a node to execute the program, this node
will subscribe to the “image_raw” topic, it will recognize the checkerboard and it
saves the necessary frames. To make the calibration a chessboard 8 × 6 must be
printed out, it is shown in the Figure 3.7. The algorithm implemented in ROS
uses the OpenCV library, and in [31] there is a useful guide.

At the end of the calibration the node outputs two files, one of them is the

Chapter 3. Software implementation 45

Figure 3.8: This is the output of the rqt graph of ROS, it represents the image
pipeline.

yaml file needed for the rapicam node. The other contains the same information
but in a different format. In ermes, a resolution of 1280 × 960 at 10 𝑓 𝑝𝑠 were
chosen as the camera’s operating parameters. In addition, the focus was adjusted
so that the depth of field is between 4cm and 20cm.

The AprilTag algorithm has additional operating parameters, but in this
version the default ones have been maintained, with the exception of the number
of processors that can be used, which has been increased to 4.

Image Pipeline

The camera will produce two topics, the image and the information, but the
image is not rectified. To rectify the image ROS provides a nodelet inside the
package “image_proc”. This package uses OpenCV to rectify the input image
using the camera info associated with the topic. It will publish the topic with
the rectified image.

At this point in the pipeline, the image is rectified and can therefore be
used by AprilTag’s algorithm, but the camera information was published at the
previous step, so it is out of sync with the rectified image, as can be seen in
Figure 3.8. This problem exists because in the implementation of ROS it is
foreseen that a camera can have variable focus, so each frame is associated with
a different information message, with the calibration for that particular focal
length relative to the frame. In the case of ERMES this leads to the need to
add a synchronisation system between the two published topics. This is because
the node processing the image to detect the apriltags requires the messages to
be perfectly synchronised. Therefore, a special synchronisation node was created
(“ermes_sync_camera_node” in the Figure 3.8).

The AprilTag node will subscribe to the output topics of the synchronization
node. It will publish the tag detections topic, on which the node to transform
the tag detections to odometry messages will subscribe to.

At this point, simple pre-tests were performed to confirm that the entire
pipeline was executed within 100ms. Using the parameters on the AprilTag to

46 Chapter 3. Software implementation

Figure 3.9: This is an example of how to place apriltags on the target, each of
them is independent, but being in a fixed position relative to each
other, it is possible to define a bundle. The numbers are the Tag
ID used. The lines are guidelines for the necessary configuration.

achieve the best precision, the tag family “41h12”, the maximum resolution of
the camera frame, the frequency where the pipeline was stable was higher than
10Hz. Given the settings used, it might be worth thinking about lowering some
settings that would lead to faster algorithm execution and thus a higher refresh
rate.

3.4.2 Preparing Sensors Data

To use the sensor data in the localization node, they need to be prepared in a
certain format. The navigation accepts odometry4, IMU, pose and twist messages.
Each one must be in the correct reference system according to the REP-103 [23].

Odometry from Fiducial Tags

An odometry message is composed by the pose (position and orientation) and
the twist (linear and angular velocity). In the Section 3.4.1 it was described
how to obtain the apriltags poses referenced to the camera frame. In order to
use this information, their position must be converted to the target coordinate
system (“map”). Figure 3.9 shows a test positioning of the AprilTags. As these
4 AprilTags are bound to each other, and the relative position between them is
fixed, they can be grouped together in a bundle. A bundle Tag is defined by the

4odometry messages are composed by the pose and twist with covariance

Chapter 3. Software implementation 47

main Tag, and the relative positions to it of the other AprilTags in the group. In
the example, the Tag in the bottom right corner has been chosen as the main one,
and the relative positions of the other Tags have been set out in the configuration
file. The detection of the position of a Tag bundle is much more accurate because
the algorithm can rely on 4 estimates. However, it must be completely in the
camera’s field of view to be detected.

To publish the positions the following strategy is used:

• If the tag bundle is detected, the pose published by the topic will be the
one obtained by the bundle pose;

• If it’s not detected, all of the tag topics will publish their pose letting the
filter to manage them.

In this way there is always at least one pubblication of the pose from the
AprilTag process.

Now that the pubblication strategy is defined, each tag detection must be
converted to a chaser pose referenced to “map”. With the tree of transforms, the
algorithm can transform the pose from the “raspicam” frame to the “base_link”,
then it will invert it. Once this has been done, the position is referred to the ref-
erence system of the Tag, looking at the tree in 3.1, it is clear that it must be
converted to a position referring to “map”, and the static link exists and can be
used to do this. After the geometry calculation the node will reconstruct the pose
message, with the covariance matrix, and publish it.

From the node that publishes the poses, the average velocity between different
time samples can be derived. It is assumed that:

• The velocity needs to be calculated from consecutive tag detections.

• The published twist topic needs to be referenced to the “base_link”, not
the “map”, according to the localization implementation [32].

For simplicity lets assume that there is only one tag that is always detected.
The twist node will subscribe to one of the chaser pose topics published by the
previous node. At the first iteration it will save the old pose. When a pose
estimation arrives, the node will calculate the velocity using the two poses, each
pose has an associated time, because it’s inherited from the topic header.

To do that the algorithm will invert both poses, so they represent a point
position in space referenced to the chaser frame. In this way the node can ignore
the target orientation in the calculations. The linear velocities on each axis
are just the difference between the old pose and the new pose, divided by the
difference in time, showed in the following:

𝑣𝑥 =
𝑥𝑜𝑙𝑑 − 𝑥𝑛𝑒𝑤

𝑡𝑛𝑒𝑤 − 𝑡𝑜𝑙𝑑
(3.5)

𝑣𝑦 =
𝑦𝑜𝑙𝑑 − 𝑦𝑛𝑒𝑤

𝑡𝑛𝑒𝑤 − 𝑡𝑜𝑙𝑑
(3.6)

48 Chapter 3. Software implementation

𝑣𝑧 =
𝑧𝑜𝑙𝑑 − 𝑧𝑛𝑒𝑤

𝑡𝑛𝑒𝑤 − 𝑡𝑜𝑙𝑑
(3.7)

To calculate the twist is easier to start from the target coordinate system, so
the position of the chaser in the target frame. This allows to use some quater-
nion properties. In ROS the quaternion is defined as 𝑞 = (𝑥, 𝑦, 𝑧, 𝑤) where the
component are:

𝑞 = 𝑥 + 𝑦𝑖 + 𝑧 𝑗 + 𝑤𝑘 (3.8)

There is a trick to find the relative rotation between 2 quaternion in the same
frame, it is widely used in robotics. The quaternion 𝑞𝑟 , to go from 𝑞1 to 𝑞2, is in
relation with them according to:

𝑞2 = 𝑞𝑟 ∗ 𝑞1 (3.9)

from this lets multiply both sides with the inverse of 𝑞−1
1 = 𝑞1𝑖𝑛𝑣 and obtain:

𝑞𝑟 = 𝑞2 ∗ 𝑞1𝑖𝑛𝑣 (3.10)

To invert a quaternion, simply change the the sign of the 𝑤 term. So the algorithm
will calculate 𝑞𝑟 .

Now the node needs to convert 𝑞𝑟 in roll, pitch and yaw, then they can be
divided by the delta time.

At the end both linear and angular velocity are calculated, and the node can
publish the topic after the filling of the covariance matrix. The velocity covariance
should be the sum of the two pose covariances.

IMU

The IMU data can be transported by the IMU message created by ROS. It is
directly created in the LLS. As discussed in the Section 3.3, in the future the
LLS will only send data through a custom protocol, and a node in the MLS will
package it to conform to ROS standards.

ToF

To use the ToF data a fake pose message is created. If at least one of the ToF send
a valid range5, the node will publish a pose message with the 𝑥 dimesion equals
to the range augmented by the 𝑥 value of the “base_link”-“tof_N” transform
and the 𝑥 value of the “map”-“target_face” transform6. The covariance needs
to be a big value for all other variables but 𝑥.

On the other hand, if all three of the ToF send a valid range, it could be
possible to calculate 𝑦𝑎𝑤 and 𝑝𝑖𝑡𝑐ℎ. Before calculating them, the node should
check the previous position estimation to verify that the beams do not intersect
the drogue port of the target.

5The range needs to be between the minumum and the maximum
6This transform doesn’t exist at the moment, because it was needed only for the ToF, and

only for the 𝑥 value, so it is a simple parameter

Chapter 3. Software implementation 49

At the end the node calculated a fake pose of the target with respect to the
chaser. But the positions need to be referenced to the target frame. So, before
publishing, it needs to invert it.

3.4.3 Extended Kalman Filter

In estimation theory, the EKF is the nonlinear version of the Kalman filter which
linearizes about an estimate of the current mean and covariance. In the case of
well defined transition models, the EKF has been considered [33] the de facto
standard in the theory of nonlinear state estimation.

The robot_localization package [32] provides an implementation of the
EKF filter for ROS.

ERMES uses two instances of this filter, one node to estimate the state relative
to “map” and one relative to “odom”.

Each node has a frequency. In the case of ERMES it was set at 10Hz if it is
decided to mantain the sensor update cycle at the same frequency of the control
cycle. Otherwise, if it is assessed that it is better to raise the frequency of publi-
cation of states, it can be set to 30Hz. There is no problem if the computer vision
algorithm is slower than the chosen frequency, because the filter will propagate
its state when it receives the first sensor data anyway.

As mentioned before, there are two estimators that use different frames,
to configure that, all frames must be defined. “map_frame”,“odom_frame” and
“base_link_frame” are set in the same way on both filters. Then, “world_frame”
is set to “map” for the filter that references to the target, and to “odom” for the
filter that references to the fictitious frame. In this setup the node that references
the target will publish the transform from “map” to “odom”, and the node that
references the “odom” will publish the transform from “odom” to “base_link”.
For the state of the system, each node will publish the state vector referenced to
the “world_frame” specified before.

For each data source there is a vector of 15 Boolean variables representing
which reference system variables to consider for such data source when making
the prediction. The order of the variables is the following:⎡⎢⎢⎢⎢⎣

𝑥 𝑦 𝑧 𝑟𝑜𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑦𝑎𝑤

�̇� �̇� �̇� 𝑟 �̇�𝑙𝑙 𝑝𝑖𝑡𝑐ℎ 𝑦�̇�𝑤

�̈� �̈� �̈�

⎤⎥⎥⎥⎥⎦ (3.11)

The IMUs will have the acceleration along �̈�, �̈� and �̈�, the twist along 𝑟�̇�𝑙𝑙,
𝑝𝑖𝑡𝑐ℎ, 𝑦�̇�𝑤 set to true.

The ToF pose source will have the 𝑥 position set to true, and also 𝑝𝑖𝑡𝑐ℎ and
𝑦𝑎𝑤 orientation. Note that if the position is invalid the node will not publish
the pose data on the topic, this is not a problem, the filter will publish the
propagation state anyway.

The odometry from fiducial tags is composed by two topics, like explained
in the Section 3.4.1. This means that for the position the filter will consider all
6 position variables: 𝑥, 𝑦, 𝑧, 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤. And the respective �̇�, �̇�, �̇�, 𝑟�̇�𝑙𝑙,
𝑝𝑖𝑡𝑐ℎ, 𝑦�̇�𝑤 velocity variables for the twist.

50 Chapter 3. Software implementation

In the Section 2.2.3 it was shown how the control system will produce com-
mands expressed by accelerations. To integrate those commands in the filter, it
needs to produce odometry messages, like it was mentioned inthe Section 2.2.3.
The covariance of this predictive model is correlated by the performances of the
LLS and it can be retrieved in the experiment to calibrate the LLS (Section 3.3.3).

The last mention is to the “relative” parameter. For the estimator that ref-
erences to odom, this parameter will be true for the fictitious odometry messages
from the control node. With this parameter, the filter will initialize the first
state estimation as the origin of the system. This guarantees a continuous state
estimation with an initialization parameter.

The result of this implementation is composed by two nodes that operate
in the Raspberry. They will publish an odometry message, and the acceleration
message. With both topics there is the 15 dimensions state presented in the
Section 2.2.1. It will also the pubblish the transform from different frames. This
is needed for the correct visualization of the state of the system in RViz, but also it
is needed by the control cycle, because, like it was mentioned in the Section 2.2.3,
it will convert the states of the trajectory from one reference system to another
to determine whether trajectory recalculation is necessary.

Finally, what happens in flight will be something like this:

• The chaser program will start, it has not yet been released;

• The apriltags will be detected because the two mockups are still in fixed
positions, so they are definitely in the camera’s field of view;

• The navigation node publish the first message;

• The control publish the first state, with position relative to target, and
velocity equals to zero.

• The navigation publish the message, this time the “odom” state estimation
is valid because it receives the first data from the “relative” source;

• The experiment start the release of the system;

• The chaser and target are released;

• If the target is out of the field of view of the camera, it’s position is already
estimated, and the chaser just try to counteract the unexpected rotation;

• The target will return on the field of view, the guidance would probably
recalculate the trajectory;

• The target is now in ToF range, so the estimation of the distance is more
precise.

This system should be able to counteract the initial rotation given by the
release system. Even if the tags will be out of frames, the propagation of the

Chapter 3. Software implementation 51

state will publish the orientation expected, so the control can send the counter
rotation command to the LLS.

The two nodes to publish two different state estimations are usually used for
other purposes. For example in a robot that uses the Global Positioning System
(GPS), due to the nature of GPS, it will use two localizations: one local and one
global. In the ERMES experiment the tag detection is like the GPS.

In the Chapter 4 there is reported an integration test of the system.

3.4.4 Calibrate the sensors

The system described in the Section 3.4.3 relies on the covariance of the sensors.
In a simplistic way, if the covariance is high enough, the data point will be ignored.
If the covariance is too low, the filter will jump between 2 different estimantion
every time it receives a data point. So it’s important to estimate the covariance
of the data of each sensor.

There are two ways: the first one is starting from the manifacturer datasheets,
and increase it according to the performances of the filter. This works but if
possible should be avoided. The second way is testing each sensor with a ground
truth, in the final hardware setup, retrieve a dataset and calculate the covariance.

The use of a motion capture system is proposed as ground truth. In an op-
tical motion capture system, multiple synchronized cameras are installed around
the target capture volume, and 2D images are captured from each camera. 2D
positions are calculated, and the overlapping position data are compared to com-
pute the 3D positions via triangulation. OptiTrack7, which is a ROS-compatible8

system, may be available in the laboratory.

AprilTag Detection Covariance

The proposed setup is similar to the work done by [34]. They used a Motion
Capture device as groud truth. In ERMES the OptiTrack should be used as
ground truth, as mentioned before. A ROS node should publish the position of
the chaser and target on a topic in the OptiTrack frame reference. Then the Opti-
Track measures should be transformed from its reference to the reference used by
the chaser: “map”. Enough data must be collected to have a sufficiently accurate
estimate for the variance of each variable. Please note that the covariance of each
AprilTag could be different, because it depends on the dimension. Than if the
tag bundle is used in the experiment, its covariance should also be estimated.

The twist covariance is the pose covariance doubled.

IMU Covariance and Calibration

The IMU’s covariance estimation is more difficult. The proposed covariance is
the square of the offset recorded by the IMU calibration. ERMES will use two
IMU, so after calibration it is necessary to check that the covariance estimates

7https://optitrack.com/
8http://wiki.ros.org/mocap_optitrack

https://optitrack.com/
http://wiki.ros.org/mocap_optitrack

52 Chapter 3. Software implementation

Figure 3.10: Diagram of interactions between the various components of the
ERMES GNC. Arrows represent data flows.

overlap sufficiently. Otherwise, the estimate produced by the EKF might jump
from one data point to another every time it receives an update from one of the
two IMU.

ToF Covariance

The ToF covariance could be collected in the same experiment of the AprilTag
covariance. There is also the possibility of relying on the data provided by the
manufacturer, but this was collected in an environment too different from ER-
MES’ use case. In fact ERMES should collect these data using the face of the
Target.

3.5 Guidance and Control nodes

The guidance and control are two different nodes. They both receive the messages
from the localization.

The guidance publishes a trajectory in the form of a vector of states, each state
has 7 variables and they are all assumed with acceleration equals to 0, they have
the form expressed in Equation 2.4 of Section 2.2.2. This trajectory is calculated
accordingly to the strategy choosen for this phase. The implementation assumes
one pubblication before the release of the chaser. The guidance listens to the topic
published by the localization relative to the target. The control could request a
recalculation in some circumstances. The guidance needs to account the physics
limits of the physics system, for example the different acceleration limits in the

Chapter 3. Software implementation 53

various axes.
The control node tries to generate acceleration commands, then check if the

nominal trajectory given by the execution of the command will result in the next
state. It can generate commands every 100ms according to the LLS implementa-
tion. The control node then publish a odometry message every 100ms, using as
the first reference the first target localization estimation. Then it could integrate
the acceleration commands and retrieve the expected velocity and pose at each
time step. Obviously the localization generated from this data is imprecise in
the long term, but its precision in the short term depends on the calibration of
the LLS. The estimation is also continuous, the control should use this reference
system for the execution of the trajectory, then the guidance will produce another
trajectory using the target reference system if the target moves. Theoretically
the control node shouldn’t use the localization relative to the target, but only the
position referenced to “odom”.

From the outside view, it can be summarized as follow: the guidance will
produce a trajectory in the frame of the “odom” using the data in the frame of
the “map”. The control will try to follow this trajectory in the frame of the “odom”,
keeping the trajectory updated according to the strategy described in the Section
2.2.3. Please note that in the meantime “odom” moves from its original position,
so the transform is changed. This approach works not only for the accumulated
error by the “odom” localization, but also for the movement of the target.

3.6 Retrieve Data and HLS

To save all the data ROS provides the command rosbag, with this command
executed on one laptop, ROS can create a file that saves the output of one or
more topics. This is better than saving the data in another database system,
because it allows to reproduce the same data in the simulator.

To control the experiment the HLS needs one node that listens to the IMU
data from the sensor installed in the structure. With this data it has to decide
when is the best time to send the start signal to the main node of the chaser. Note
that the launch of the system needs to be done before the start of the parabola.
This allows the MLS to record the initial possible angular velocity, so it can act
accordingly when it is released.

If the rosbag saves also the topics published by the HLS, all the data are
timing correlated. Please note that the image topics shouldn’t be saved by the
laptop. A better procedure is to run another ssh terminal from the laptop that
saves the image topics in the chaser itself. The transport of image topics through
the network is discouraged.

54 Chapter 3. Software implementation

4
Integration Test

A basic test was designed to check the operation of the navigation system. It has
the following objectives:

• check that missing branches of the TF tree are published;

• ensure that localization topics are published;

• check accuracy of localization in normal condition;

• check accuracy when the target is out of focus;

To check the first two requirements, just start the system and see if the missing
branches are published, and if the topics are present.

In order to check the others, 4 tags were printed on the sheet at known sizes
and relative distances from each other. This sheet of paper was attached to a
metal plate, so that it would stand straight, and fixed to a bench vice. This will
simulate the target, in fact the AprilTag have been placed within a rectangle the
size of its face. To simulate the Chaser, the Raspicam was attached to a pre-built
model, which can also accompany the Raspberry. An Arduino and an IMU were

Figure 4.1: Setup for the Integration Test

55

56 Chapter 4. Integration Test

Figure 4.2: Field of view in each position, in the order: A, B, C, D

Figure 4.3: Setup for the Integration Test (Not in scale)

added to it. The ground truth of the experiment is a sheet of paper with a square
of side 10cm, fixed to the table, on which the chaser can be moved. The laptop is
connected to the Raspberry via WiFi, to check the system with RViz. The setup
is shown in the Figure 4.1

4.1 Execution and Results

Before the test, the camera was adjusted to have a focus range of 5cm to 20cm,
and then the calibration was repeated. It was verified that the calibration was
correct by checking the rectified images with rqt_image_view. The chaser was
placed at the four corners of the test square to verify the frame captured by the
camera. The photos are in the Figure 4.2. They are in the same order as the
chaser route for the experiment, that is reported by the scheme in the Figure 4.3.

The second objective of the experiment is easy and it is a requirement for the
other steps, it was checked that the list of published topics included those related
to navigation, from which the message data will be extracted. The first objective
is shown in the Figure 4.4.

A telemetry node was created, that listens to the odometry messages, and
write the 𝑥 and 𝑦 coordinates on a log file. Several repetitions of the experiment
were carried out to record the data. One set of repetitions was made with the

Chapter 4. Integration Test 57

Figure 4.4: The RViz view of the tree of the integration test, the “map” frame
is used as coordinate system for the 3D viewer.

initial position of the target at approximately 13cm, so that during the experiment
the distant part was out of focus. The other set of repetitions was made starting
at about 9cm, so that the whole experiment was in optimal conditions.

In the Figure 4.5 there is the path of one repetition. As expected, the accuracy
away from the target tends to degrade, which can be seen despite the flaws in the
execution of the experiment. Then some parameters are calculated:

• average minimum distance from the nearest point of the rectangle;

• variance of the minimum distance from the nearest point of the rectangle;

• maximum minimum distance from the nearest point of the rectangle;

Those parameters are calculated for the entire rectangle, and for the lower edge.
That is because the lower edge, from A to B, is the most interesting in ERMES.
The results are reported in the Table 4.1.

4.2 Comments

The results are as expected but the distance from square is a somewhat mislead-
ing measure. In fact, the test should be improved with a ground truth referred
to the individual point. Apart from that, the most interesting edge for ERMES
project is also the one with the best performance, at least from what the test
shows.

There is room for improvement when the chaser is far from the target, but the
test can be considered a very good first result: it shows the correct integration
of the system, and provides the track followed to see where the algorithm can
be improved. This test also has advantages in terms of time, as it takes only
a short time to set up, and leaves room for more measurements, even repeated

58 Chapter 4. Integration Test

Figure 4.5: The path recorded by the Chaser, on the left the camera was al-
ways in focus, on the right it was not. These are 2 example of the
repetitions. The green square is a 0.1×0.1m, starting from the first
record of the repetition. For simplicity: looking at this graph is like
looking at the experiment from above.

In focus Out of focus

avg (mm) 1.560 2.688

var (mm2) 2.628 4.454

max (mm) 6.4 10.2

avg AB (mm) 0.692 1.628

var AB (mm2) 0.432 1.069

max AB (mm) 3.4 3.9

Table 4.1: Results of the integration tests, on the right column the results of
the test with part of the square outside the focus area

Chapter 4. Integration Test 59

ones. It could also be a good preliminary test for the future, and would serve to
identify implementation errors before more demanding and time-consuming tests
are carried out.

60 Chapter 4. Integration Test

5
Conclusion

This thesis described the operation of the ERMES experiment. It then showed
the hardware choices to enable it to run: describing the two free floating objects.
However, the main part is the development of software that can enable the ma-
noeuvre that the experiment aims to achieve. In order to understand the main
functionalities of such software, its architecture was discussed in Chapter 2. A
solution was found to the problem of navigation for the chaser, and a control
system was described that could exploit this functionality. During development,
a way was also found to use the EVs with a PWM signal, while maintaining a
linear response in terms of the resulting force from the system. This method was
tested and its results are satisfactory and presented in Chapter 3. In the same
Chapter the implementation techniques adopted to obtain this software system
have been described, including navigation based on two EKF filters, which is the
main part of this thesis. In order to demonstrate the correct integration of the
navigation system, a basic model was assembled with the necessary components
to operate the system. The description of the test of this model and the results
obtained are given in the last chapter.

Certainly the EV management and the implementation of the navigation sys-
tem are very good results, however the navigation integration test has some flaws,
as described in the corresponding chapter. Indeed, in future developments would
be appropriate to repeat the described test in a better controlled environment. In
addition, all sensors would have to be calibrated in order to obtain more mean-
ingful results from the EKF filters used.

This thesis opens up the opportunity to develop a control system based on two
Localizations, which makes it possible to distinguish the movements of the chaser
from the apparent movements given by the adjustment of the target attitude. It
is hoped that future developments will make good use of this functionality. After
the flight campaign, it would be interesting to considering the use of ROS 2: the
real time version of ROS. In recent years ROS 2 has made interesting develop-
ments, finally becoming a system stable enough to be used in projects. A good
development of the project could be base the successor of ERMES using ROS 2
with a real time kernel.

61

62 Chapter 5. Conclusion

Bibliography

[1] ESA, “Fly Your Thesis! programme phases.” https://www.esa.int/
Education/Fly_Your_Thesis/Fly_Your_Thesis!_programme_phases,
2022. [Online; accessed 21-Mar-2022].

[2] Novespace, “The Airbus A310 Zero-G.” https://www.airzerog.com/
the-airbus-a310-zero-g/, 2022. [Online; accessed 21-Mar-2022].

[3] F. Branz, L. Olivieri, F. Sansone, and A. Francesconi, “Miniature docking
mechanism for cubesats,” Acta Astronautica, vol. 176, pp. 510–519, 2020.

[4] P. Amadieu and J. Heloret, “The automated transfer vehicle,” Air & Space
Europe, vol. 1, no. 1, pp. 76–80, 1999.

[5] G. Ritter, A. Hays, G. Wassick, G. Sypitkowski, C. Nardell, P. Tchory, and
J. Pavlich, “Autonomous satellite docking system,” in AIAA Space 2001
Conference and Exposition, p. 4527, 2001.

[6] NASA, “Crew-2 Astronauts Safely Splash Down in Gulf of Mexico.” https:
//blogs.nasa.gov/crew-2/, 2022. [Online; accessed 21-Mar-2022].

[7] A. Fejzic, S. Nolet, L. Breger, J. How, and D. Miller, “Results of spheres
microgravity autonomous docking experiments in the presence of anomalies,”
in 59th International Astronautical Congress, Glasgow, Scotland, 2008.

[8] J. Bowen, A. Tsuda, J. Abel, and M. Villa, “Cubesat proximity operations
demonstration (cpod) mission update,” in 2015 IEEE Aerospace Conference,
pp. 1–8, IEEE, 2015.

[9] M. Bualat, J. Barlow, T. Fong, C. Provencher, and T. Smith, “Astrobee:
Developing a free-flying robot for the international space station,” in AIAA
SPACE 2015 Conference and Exposition, p. 4643, 2015.

[10] M. G. Bualat, T. Smith, E. E. Smith, T. Fong, and D. Wheeler, “Astrobee:
A new tool for iss operations,” in 2018 SpaceOps Conference, p. 2517, 2018.

[11] D. Petrillo, M. Buonomo, A. Cavinato, F. Chiariotti, M. Gaino, F. Branz,
R. Mantellato, L. Olivieri, F. Sansone, A. Francesconi, et al., “Flexible elec-
tromagnetic leash docking system (felds) experiment from design to micro-
gravity testing,” in 66Th International Astronautical Congress, IAC-15 E,
vol. 2, 2015.

63

https://www.esa.int/Education/Fly_Your_Thesis/Fly_Your_Thesis!_programme_phases
https://www.esa.int/Education/Fly_Your_Thesis/Fly_Your_Thesis!_programme_phases
https://www.airzerog.com/the-airbus-a310-zero-g/
https://www.airzerog.com/the-airbus-a310-zero-g/
https://blogs.nasa.gov/crew-2/
https://blogs.nasa.gov/crew-2/

64 BIBLIOGRAPHY

[12] M. Barbetta, A. Boesso, F. Branz, A. Carron, L. Olivieri, J. Prendin,
G. Rodeghiero, F. Sansone, L. Savioli, F. Spinello, et al., “Autonomous
rendezvous, control and docking experiment-reflight 2,” ESA/CNES Small
Satellites Systems and Services Symposium, Porto Petro . . . , 2014.

[13] M. Duzzi, R. Casagrande, M. Mazzucato, F. Trevisi, F. Vitellino, M. Vit-
turi, A. Cenedese, and A. Francesconi, “Electromagnetic position and atti-
tude control for pacman experiment,” in Proceedings of the 10th International
ESA Conference on Guidance, Navigation & Control Systems, Salzburg, Aus-
tria, vol. 29, 2017.

[14] A. Mehrparvar, D. Pignatelli, J. Carnahan, R. Munakat, W. Lan, A. Toorian,
A. Hutputanasin, and S. Lee, “Cubesat design specification rev. 13,” The
CubeSat Program, Cal Poly San Luis Obispo, US, vol. 1, no. 2, 2014.

[15] B. Verthier, A. Jaquemet, T. Villatte, A. Jolion, and F. Gai, “NOVESPACE
Experiment Design Guidelines in Parabolic Flight,” Guidelines GDL-2021-
03, NOVESPACE, 2021.

[16] M. Krogius, A. Haggenmiller, and E. Olson, “Flexible layouts for fiducial
tags,” in Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), October 2019.

[17] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pp. 3400–3407, IEEE, May 2011.

[18] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detec-
tion,” in Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), October 2016.

[19] STMicroelectronics, “Proximity and ambient light sensing (ALS) module,”
Datasheet DocID026171 Rev 7, STMicroelectronics, 2016.

[20] Atmel, “SAM3X / SAM3A Series,” Datasheet Atmel-11057C-ATARM-
SAM3X-SAM3A-Datasheet 23-Mar-15, Atmel, 2015.

[21] K. Albee, M. Ekal, C. Oestreich, and P. Roque, “A Brief Guide to Astrobee’s
Flight Software,” Guidelines Revision 1.1, 2021.

[22] H. Koptez, “Real-time systems: design principles for distributed embedded
applications,” 1997.

[23] T. Foote and M. Purvis, “Standard Units of Measure and Coordinate Con-
ventions.” https://ros.org/reps/rep-0103.html, 2010. [Online; accessed
21-Mar-2022].

[24] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Transactions of the ASME-Journal of Basic Engineering, vol. 82, no. Series
D, pp. 35–45, 1960.

https://ros.org/reps/rep-0103.html

BIBLIOGRAPHY 65

[25] ROS, “Robot Operating System.” https://www.ros.org/, 2022. [Online;
accessed 21-Mar-2022].

[26] T. Foote, “tf: The transform library,” in Technologies for Practical Robot Ap-
plications (TePRA), 2013 IEEE International Conference on, Open-Source
Software workshop, pp. 1–6, April 2013.

[27] W. Meeussen, “Coordinate Frames for Mobile Platforms.” https://ros.
org/reps/rep-0105.html, 2010. [Online; accessed 21-Mar-2022].

[28] Arduino, “Secrets of Arduino PWM.” https://docs.arduino.cc/
tutorials/generic/secrets-of-arduino-pwm, 2022. [Online; accessed
21-Mar-2022].

[29] UbiquityRobotics, “raspicam node repository.” https://github.com/
UbiquityRobotics/raspicam_node, 2022. [Online; accessed 21-Mar-2022].

[30] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–
1334, 2000.

[31] OpenCV, “Camera Calibration and 3D Reconstruction.” https:
//docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_
and_3d_reconstruction.html, 2022. [Online; accessed 21-Mar-2022].

[32] T. Moore and D. Stouch, “A generalized extended kalman filter implemen-
tation for the robot operating system,” in Proceedings of the 13th Interna-
tional Conference on Intelligent Autonomous Systems (IAS-13), Springer,
July 2014.

[33] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estima-
tion,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[34] S. M. Abbas, S. Aslam, K. Berns, and A. Muhammad, “Analysis and im-
provements in apriltag based state estimation,” Sensors, vol. 19, no. 24,
p. 5480, 2019.

https://www.ros.org/
https://ros.org/reps/rep-0105.html
https://ros.org/reps/rep-0105.html
https://docs.arduino.cc/tutorials/generic/secrets-of-arduino-pwm
https://docs.arduino.cc/tutorials/generic/secrets-of-arduino-pwm
https://github.com/UbiquityRobotics/raspicam_node
https://github.com/UbiquityRobotics/raspicam_node
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

	Abstract - EN
	Abstract - IT
	List of figures
	List of Acronyms
	Introduction
	ERMES Hardware Design
	Chaser
	Propulsive System's Hardware
	Attitude and Position Determination and Control System
	Electronics and power supply

	Target
	The Release System and External Setup

	Software Design
	Low Level System
	Medium Level System
	Navigation
	Guidance
	Control

	High Level System

	Software implementation
	ROS overview
	Reference System
	Low Level System
	Exploiting the Electrovalves
	Communication between LLS and MLS
	Improving the LLS

	Navigation
	AprilTag
	Preparing Sensors Data
	Extended Kalman Filter
	Calibrate the sensors

	Guidance and Control nodes
	Retrieve Data and HLS

	Integration Test
	Execution and Results
	Comments

	Conclusion

