UNIVERSITA DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE
Department Of Civil, Environmental and Architectural Engineering

Master’s Degree in Mathematical Engineering

TESI DI LAUREA

A Stochastic Model for Optimal Investment in
Renewable Energy Communities

Relatore: Laureando: Lorenzo Portaluri
Chiar.mo PROF. Tiziano Vargiolu 2058087

ANNO ACCADEMICO 2022-2023

The political problem of mankind is to combine three things:
Economic Efficiency, Social Justice, and Individual Liberty

John Maynard Keynes

Speech delivered at the Manchester Reform Club,
February 9, 1926;

First published in The Nation and Athenaeum,
February 20, 1926

Contents

1 Abstract 7
2 Motivation 9
3 Introduction 13
3.1 The environmental issue 13
3.2 Renewable Energy Communities (RECs) 18
3.3 The growing interest in REC and the linked challenges 19
3.4 Framework. 21
3.5 General setting 22

4 The mathematical model 23
4.1 The leader-follower model 23
4.2 Geometric Brownian Motion 27
4.2.1 Introduction 27

4.2.2 Positive and negative aspects 30

4.3 Ornstein-Uhlenbeck Process 31
4.3.1 Introduction 31

4.3.2 Positive and negative aspects 33

4.4 Model choices 34

5 Processes and Model implementation 37
5.1 Why Python 37
5.2 Stochastic Processes 38
5.2.1 Geometric Brownian Motion in Python 38

5.2.2 Ornstein-Uhlenbeck process in Python 40

5.3 Numerical Integration 44
5.3.1 scipy.integrate.quad 44

54 Optimization, 45

5.4.1 S8LSQP’
5.5 Code
5.5.1 Geometric Brownian Motion
5.5.2 Ornstein-Uhlenbeck
5.5.3 Integration L.
5.5.4 Optimization
56 Output
6 Further research
6.1 Lévy Process
6.1.1 Introduction
6.1.2 Positive and negative aspects
6.2 Lévy process implementation.
6.2.1 Stochastic process.
6.2.2 Lévy processes in Python.
6.23 Code
6.24 Output.
6.3 Seasonality
6.3.1 Fourier series
6.3.2 Fourier series implementation
6.33 Code
6.34 Output.
6.3.5 Time trend functions

7 Results and Conclusion

Bibliography

Chapter 1

Abstract

The attention on Renewable Energy Communities (REC) is fastly
growing after the European Union (EU) has introduced a dedicated
regulation in 2018. RECs can be composed by citizens, small-
and medium-sized companies, and local administrations with the
purpose of self-production and self-consumption of energy from
renewable sources.

This thesis presents a stochastic model for optimizing invest-
ment in Renewable Energy Communities (RECs), taking as a
starting point the paper [1]. The model focuses on a particular type
of REC composed of a "representative” household and a biogas
producer, where the potential demand of the community is given by
the household’s demand, while both members produce renewable
energy. The biogas producer invests in technology to convert biogas
into electricity and sell it in the electricity market at the spot price,
whereas the biogas that is not transformed into energy can be sold
on the market at the gas spot price. The household invests in
photovoltaic panels to reduce the energy purchased from the market
in order to cover its own power demand. Moreover, investing in a
renewable energy plant provides the household with the revenues
of selling the excess of energy not used for self-consumption. The
relevant advantage of entering into a REC for both players is
that their joint self-consumption is rewarded with a governmental
incentive, which must be fairly shared. The challenge of optimal
investment with fair share of incentives is addressed by setting the
problem as a leader-follower game, where the leader decides how to

share the incentive. The model provides insights into how RECs
can effectively balance investment in renewable energy technologies
with fair distribution of incentives, promoting sustainable energy
production and consumption.

Chapter 2

Motivation

My Master’s thesis will focus on developing a stochastic model for
optimal investment in Renewable Energy Communities. This is a
topic that I am deeply passionate about, for several reasons.

First and foremost, I am deeply concerned about the environ-
mental issues facing our planet. Global warming and climate
change are serious threats to our environment, and the need to
reduce carbon emissions and develop sustainable energy sources has
never been more pressing.

Renewable energy is a promising solution that can help ad-
dress these challenges, and renewable energy communities have
emerged as an innovative solution to promote the use of renewable
energy sources and achieve sustainable development.

Secondly, I have a strong academic background in applied math-
ematics and a passion for using my skills and knowledge to make
a positive contribution to society. I believe that developing a
stochastic model for optimal investment in Renewable Energy
Communities provides an excellent opportunity to combine my
interests in mathematics and environmental sustainability.

Furthermore, I believe that this thesis provides an opportu-
nity to make a meaningful contribution to a developing field.
Renewable energy investment is a complex and challenging area,
with several uncertainties and risks that must be taken into account

when making investment decisions.

By developing a stochastic model for optimal investment, I
hope to provide a valuable tool for investors to make informed
investment decisions and guide them towards profitable and sus-
tainable investments in Renewable Energy Communities.

Another crucial element that stood out to me was the great
impact of reading Fred Espen Benth, Jurate Saltyte Benth, and
Steen Koekebakker’s work [4] on stochastic modelling of electricity
and related markets.

Their research is a milestone in the field of electricity markets
and stochastic modelling, providing a comprehensive and in-depth
analysis of the complex dynamics that shape these markets. Their
work sheds light on the intricate interplay of various market partic-
ipants, including producers, consumers, regulators, and investors,
and how their actions and decisions affect the electricity market.

Their research highlights the importance of stochastic modelling in
understanding the volatility and uncertainty inherent in electricity
markets. By developing sophisticated mathematical models that
account for random fluctuations and hardly foreseeable events, their
work demonstrates the potential for improved decision-making in
these markets.

As I delved deeper into their research, I was struck by their
approach to stochastic modelling, drawing on insights from math-
ematics, economics, and physics to develop a more comprehensive
understanding of electricity related markets. Their work has
inspired me to explore the potential of stochastic modelling in
developing more robust and sustainable investment strategies for
Renewable Energy Communities.

Overall, my Master’s thesis represents a convergence of my
interests in applied mathematics and environmental sustainability,

with the significant contribution of my reading of [4].

Through this research, I hope to make a real contribution to

10

the field of renewable energy investment and help advance sustain-
able solutions for our planet’s energy needs.

11

12

Chapter 3

Introduction

3.1 The environmental issue

Environmental issues are a complex and multifaceted problem
that affects every aspect of our lives. These problems are mostly
caused by human activities, such as the burning of fossil fuels,
deforestation, and the use of toxic chemicals, and they have a deep
impact on the health of our planet and its inhabitants [5].

One of the most pressing environmental issues is climate change.
Climate change refers to the long-term changes in temperature,
precipitation, and other weather patterns that occur as a result
of the increased levels of greenhouse gases in the atmosphere [20].
Greenhouse gases, such as carbon dioxide and methane, trap heat
from the sun, causing the Earth’s temperature to rise [11]. This
increase in temperature is leading to a wide range of consequences,
including melting polar ice caps, rising sea levels, and more frequent
and severe weather events, such as hurricanes, droughts and floods.
These consequences are already having a significant impact on the
environment and human society and, if left unaddressed, they will
only get worse in the future.

Another major environmental issue is the loss of biodiversity.
Biodiversity refers to the variety of life on Earth, including the
variety of species, ecosystems, and genetic diversity. The loss of
biodiversity is a result of human activities, such as deforestation,
overfishing and the use of toxic chemicals, which are destroying

13

habitats and threatening the survival of many species. This loss of
biodiversity has a number of consequences, including the disruption
of food chains, the loss of important ecosystem services, and the
extinction of species that are critical to the health of the planet. In
addition, the loss of biodiversity makes our planet more vulnerable
to other environmental problems, such as climate change, and
disease outbreaks.

Air and water pollution are also major environmental issues.
Air pollution is caused by the emission of harmful chemicals and
particulates into the atmosphere, while water pollution is caused
by the release of toxic chemicals and waste into rivers, lakes, and
oceans. Both forms of pollution have serious impacts on human
health and the environment. For example, air pollution is linked
to respiratory problems, heart disease, and cancer, while water
pollution can harm wildlife, disrupt food chains, and make water
unsafe for human consumption.

Deforestation is another significant environmental issue. De-
forestation is the destruction of forests and woodland areas, usually
for the purpose of agriculture or urban development. This de-
struction of forests has a number of negative impacts, including
the loss of habitats for wildlife, the release of carbon dioxide into
the atmosphere, and the destruction of important ecosystems,
such as tropical rainforests. Deforestation also contributes to soil
degradation, which can lead to decreased crop yields, increased
food insecurity, and other environmental problems.

Soil degradation is another environmental issue that has a
significant impact on the health of our planet. Soil degradation
is caused by factors such as overuse, deforestation, and the use of
toxic chemicals, and it results in reduced soil fertility, increased
erosion, and decreased water-holding capacity. This degradation
of soil can lead to decreased crop yields, increased food insecurity,
and other environmental problems. In addition, soil degradation
contributes to desertification, which is the process by which fertile
land becomes a desert, and is a major threat to food security in
many regions of the world.

14

In conclusion, environmental issues are a complex and press-
ing problem that requires immediate and sustained action from
individuals, communities and governments around the world. By
addressing these issues, we can help to ensure a healthier, more
sustainable future for ourselves and future generations. This
requires a global effort, including the reduction of greenhouse gas
emissions, the preservation of biodiversity, and the adoption of
sustainable practices in our daily lives. Additionally, it requires
investment in new technologies.

One way of facing some of the above challenges and issues is
trying to develop a new way of producing the extremely significant
quantity of energy which is required in almost every human activity.

The shift towards sustainable energy production has the po-
tential to significantly mitigate environmental problems. Here are
a few ways this transition can have a positive impact.

Reduction of greenhouse gas emissions: the most significant
benefit of sustainable energy production is the reduction of green-
house gas emissions [8]. Fossil fuels such as coal, oil, and natural
gas are the primary sources of greenhouse gas emissions and are
responsible for the majority of the global warming. On the other
hand, renewable energy sources such as wind, solar, geothermal,
and hydropower emit minimal or no greenhouse gases, thus reducing
their impact on the environment.

Decreased air pollution: fossil fuels also contribute to air pol-
lution, which can have significant negative impacts on human
health and the environment. The shift to sustainable energy
production can help reduce air pollution, leading to healthier air
quality and improved public health.

Protection of natural habitats: the production and extraction
of fossil fuels often involve the destruction of sensitive natural
habitats such as wetlands, forests, and wildlife habitats. Renewable
energy sources can be produced in ways that have minimal impact
on the environment, preserving these habitats for future generations.

15

Conservation of water resources: water is a scarce resource
and many conventional energy production methods require signif-
icant amounts of it. Sustainable energy production methods, such
as solar and wind power, use much less water and help to conserve
this vital resource.

Economic benefits: sustainable energy production not only
helps to address environmental problems, but it also has economic
benefits. The growth of renewable energy industries is creating jobs,
spurring economic development, and contributing to energy security.

Renewable energy sources, however, can sometimes have also
a controversial impact on the environment. So, before diving into
the analysis it necessary to ponder also these points.

The installation of solar or photovoltaic panels, for example,
can require the clearing of large areas of land, which can have an
impact on biodiversity and ecosystem function. This is particu-
larly true in areas with high conservation value, such as forests,
wetlands, or grasslands. In addition, the construction of access
roads, transmission lines and other infrastructure necessary for the
installation of solar or photovoltaic panels can also contribute to
deforestation and habitat fragmentation.

To address these concerns, it’s important to carefully consider
the location of solar installations and to prioritize the use of previ-
ously disturbed lands, such as brownfields or abandoned industrial
sites, for solar development. Additionally, the implementation of
wildlife-friendly designs and management practices, such as the use
of native plant species or reduced mowing, can help to mitigate the
impacts of solar installations on biodiversity.

Overall, while solar energy is a clean and renewable energy
source, it is important to carefully consider its potential impacts on
the environment, including deforestation and loss of biodiversity.
By implementing sustainable practices and prioritizing the use
of previously disturbed lands, we can ensure that solar energy
contributes to a more sustainable and resilient energy system.

16

Another controversial example is the use of wind produced energy.
One of the main concerns is its impact on wildlife, particularly
birds and bats, which can collide with the turbines or suffer habitat
disruption. The visual impact of wind turbines is also a concern
for some communities, who argue that the installation of turbines
can spoil the beauty of natural landscapes and affect tourism
and property values. Additionally, noise pollution generated by
wind turbines during their operation can be audible up to several
kilometers away, potentially causing sleep disturbance and other
health effects for nearby residents.

Furthermore, the construction of wind turbines and their as-
sociated infrastructure can lead to land use changes and the
fragmentation of wildlife habitats, which can have implications for
biodiversity and long-term sustainability. Lastly, the intermittent
nature of wind energy production requires energy storage and
transmission systems, which can also have environmental impacts,
such as habitat destruction and land use changes.

Summing up, while wind energy has the potential to provide
a sustainable alternative to fossil fuels, it is important to consider
and address its potential environmental impacts in order to promote
its responsible development. By balancing the benefits of wind
energy with its potential negative impacts, we can work towards a
cleaner and more sustainable energy future.

In conclusion, a sustainable way of producing energy has a
number of positive effects on environmental problems, including
reducing greenhouse gas emissions, decreasing air pollution, pro-
tecting natural habitats, conserving water resources, and providing
economic benefits. We must note, however, that there are some
critical aspects which must be carefully managed.

One way of producing energy in a sustainable way, which also
takes into account the most controversial aspects, is the devel-
opment of Renewable Energy Communities. These communities,
that we are about to study, are usually brought to life in a local
and small scale setting. This allows to avoid the most negative
consequences which can originate from the exploitation of some

17

renewable energy sources, by having all the necessary attention as
seen above.

3.2 Renewable Energy Communities (RECs)

Renewable Energy Communities (RECs) [6] are a recent concept in
the world of sustainable energy and environmentalism. A REC is a
group of individuals, organizations or companies that come together
with a shared goal of transitioning to a more sustainable and envi-
ronmentally friendly energy system. The main objective of a REC is
to generate energy through renewable sources, such as solar, wind,
and hydro power, and to distribute it among its members, while
reducing dependence on traditional non-renewable sources of energy.

One of the key advantages of a REC is the ability for individ-
uals to generate their own energy, without having to rely on the
traditional energy grid. This is achieved through the installation
of renewable energy systems, such as photovoltaic panels, wind
turbines, and hydro-generators, which are owned and operated
by the members of the community. The generated energy is then
distributed among the members, and any excess energy can be sold
back to the traditional energy grid.

Another important aspect of a REC is the creation of a more
sustainable energy system. Renewable energy sources are inher-
ently more sustainable and environmentally friendly than traditional
sources, such as coal, oil, and gas. They emit significantly less
greenhouse gases, which are the primary cause of global warming,
and they are not depleted, unlike non-renewable sources, which are
finite and will eventually run out.

In addition to the environmental benefits, RECs also offer economic
benefits to their members. By generating their own energy, mem-
bers can significantly reduce their energy bills, while also creating
new job opportunities in the areas of renewable energy installation,
maintenance and management.

18

To create a REC, a group of individuals, organizations or compa-
nies must first come together and decide on the specific goals and
objectives for the community. They must then work together to
identify potential locations for the installation of renewable energy
systems and determine the best type of renewable energy systems
for their particular community. The next step is to secure financing
for the project, either through loans, grants, or investment from
members or outside sources.

Once the renewable energy systems are installed, the community
must establish a governance structure to manage the community
and ensure the fair distribution of energy among its members. This
includes the creation of a governing board, the establishment of
policies, and procedures for the management of the community and
the development of a billing and metering system to accurately
measure energy usage and production.

In conclusion, Renewable Energy Communities are an innova-
tive and effective way for individuals, organizations and companies
to transition to a more sustainable and environmentally friendly
energy system. By generating their own energy and reducing
their dependence on the traditional energy grid, RECs provide
a multitude of benefits, including reduced energy costs, new job
opportunities, and a more sustainable energy system. With the
growing global demand for renewable energy, it is likely that the
concept of Renewable Energy Communities will continue to grow
and evolve in the years to come.

3.3 The growing interest in REC and the linked
challenges

The interest in Renewable Energy Communities (REC) has rapidly
increased since the European Union introduced a specific regulation
in 2018 [7]. These communities can consist of citizens, small to
medium-sized businesses, and local authorities with the goal of
producing and consuming energy from renewable sources. The

19

Italian government has also recently implemented an incentive tariff
for RECs, with a special feature that rewards self-consumption.
This refers to the demand of the community being satisfied by
self-generated energy.

However, there are two key challenges that need to be addressed.
Firstly, the optimal investment in new technologies is crucial and
secondly, a fair division of the incentive among community members
is essential. These two challenges are interdependent, as an unfair
division of the incentives could negatively impact the profitability
and discourage members from joining a REC.

To address these challenges, we consider a particular type of
REC composed of a "representative” household and a biogas
producer. The household’s demand serves as the potential demand
of the community, while both members generate renewable energy.
This type of REC is common in both rural and urban areas.

In this scenario, the biogas producer invests in new technology to
convert biogas into electricity for sale in the electricity market at
the spot price, while the household invests in photovoltaic panels to
reduce their dependence on the energy market. Both parties benefit
from the joint self-consumption that is rewarded by a governmental
incentive, which must be shared fairly.

We set this problem as a leader-follower problem, with the
leader determining how to share the incentive and the followers
determining their own optimal investment strategy. We can assume
that the leader is an authority, such as a local administration or the
block of flats administrator (this is, for example, common in Italy)
and the members of the community are, instead, followers. In our
analysis we will set the optimization problem to avoid the issue of
share division of incentives focusing on optimal investment.

20

3.4 Framework

Climate change is a global problem that requires the attention
of all segments of society to find solutions. One of the solutions
that has the potential to reduce CO, emissions is for consumers to
become self-producers and self-consumers of electricity generated
from Renewable Energy Sources (RES).

In line with this, the European Union (EU) has introduced
two recent directives to allow private households, small businesses
and local public authorities to join local Renewable Energy Com-
munities and share the generation of their renewable energy plants.
This can lead to a more efficient national energy system and reduce
grid congestion [6].

However, the implementation of these EU directives across member
states is happening at different speeds. One of the first examples is
Italy, which has introduced a sophisticated ”virtual” consumption
framework. Under this framework, the members of a REC do not
directly consume the energy generated by their plants, but instead,
all the energy must be offered to the market.

The central authority acts as a natural broker to guarantee a
REC a selling price calculated as an average of the gross price of
electricity. To satisfy their energy needs, the members must continue
to buy energy from their retailers. However, they are compensated
through the sale of energy generated by the REC’s power plants
and receive an incentive for the energy they virtually self-consumed.

The implementation of this incentive framework poses a non-
trivial problem for the potential members of a REC to find a fair
sharing rule for the incentive. This becomes even more compli-
cated with larger groups and different consumption profiles. The
success of a REC depends on many factors, including the ability
of its members to find a fair sharing rule for the self-consumption
incentive.

21

3.5 General setting

The EU regulation defines an energy community as a group of
members who are both producers and consumers of energy, referred
to as "prosumers”. According to Italian law, there are two types of
energy communities that are eligible for public incentives: Renew-
ables Energy Communities (RECs) and Collective Self-consumption
Groups (CSGs).

A REC is a legal entity composed of diverse members, includ-
ing individual households, small- and medium-sized enterprises,
and local or regional authorities, that aims to provide members
with self-generated and self-consumed renewable energy. On the
other hand, a CSG is a group of at least two individuals located
in the same building or block of flats who collectively consume
renewable energy. Both types of RECs can be combined with
other entities, both private and public, that produce energy from
renewable sources.

As per the Italian law, members of a REC do not own the
energy they generate. They pay for all the energy they use, includ-
ing the self-generated portion, at the rate fixed by their retailer.
However, they will receive an incentive tariff from the Gestore dei
Servizi Energetici (GSE) for their share of self-generated energy
and can also sell any unused energy to the market. Members are
free to leave the REC at any time.

In a typical scenario, a biogas producer and a household can
form a REC, which can be seen in both rural and urban areas
where a biogas plant is established to reduce the impact of organic
waste or animal effluents.

22

Chapter 4

The mathematical model

4.1 The leader-follower model

In this chapter, we describe the mathematical model and problem
formulation of a simplified version of a Renewable Energy Commu-
nity.

Consider a complete filtered probability space (€, F,F;, P),
where a four dimensional Brownian motion (W., W,, W,, W) is
defined, satisfying the usual conditions.

(Wi)i>o is a one-dimensional Brownian motion correlated with
W, with correlation factor p. := Corr(W,W,). In fact, the four
Brownian motions W, W,, W,,, and W, can be correlated, but only
the correlation p. might be relevant.

The following is the starting point for this thesis, which aims
to re-implement the leader-follower model with more realistic
stochastic processes. As mentioned above the starting point is
taken from [1].

We consider two possible members of an energy community:
a biogas producer and a household. On one hand, the biogas
producer has a total gas production capacity K,, which is sold in
the market at the gas spot price (PP(t));>0, which evolves according
to a Geometric Brownian Motion:

23

Pp(s) —= peﬂps—‘—Upr(S) (4.1)

where p, € R and o, > 0. The biogas producer has the op-
tion to install new technologies, up to a maximum power of 6, to
transform the gas into power and sell it in the electricity market
at the spot sale electricity price (X®(t));>0, which is assumed to
evolve according to a Geometric Brownian Motion:

ng(s) — xveﬂvs“'ngv(s) (42)

where i, € R and o, > 0.
On the other hand, the household buys energy in the electric-

ity market to meet its demand at the purchase electricity price
(XZe(t))i>0, which also follows a Geometric Brownian Motion:

Xe(s) = woetestoeWels) (4.3)

where . € R and o. > 0. The household can install new
photovoltaic panels, up to a maximum power of 6,, to produce
power and reduce its costs.

We consider an energy community that can be formed by these two
members. The demand of the energy community is given by the
household power demand (D(t));>, which follows a Geometric
Brownian Motion:

D%(s) = detstoa(s) (4.4)

where 1y € R and o4 > 0.

24

Both members contribute to the total power produced by the
community. The household provides power y, by installing pho-
tovoltaic panels, while the biogas producer contributes power 1y,
by installing turbines to transform the gas into energy. Hence, the
energy shared by the community can be expressed as

min {Dd(t), Yn + Upt (4.5)

As previously stated, the government offers an incentive, de-
noted by Z, to groups that form an energy community. The
incentive rewards the energy shared by the community that is
produced by new installations of renewable energy sources, such as
photovoltaic panels or turbines to transform biogas into power. The
entire community is given the incentive and it is up to a coordinator
to determine how to share it. We will assume that this coordinator
will share the incentive using the Nash bargaining solution of the
sharing problem, that is, the coordinator will search for a g € (0,1)
that satisfies:

B € arg Jnax, (Jn(B) = dn) (Jo(B) — db) (4.6)

where J,(8) and Jy(5) are the profits of the household and
the biogas producer, respectively, if they enter into the community,
while d;, and d, are known as the disagreement points and corre-
spond to the profits of the household and the biogas producer if
they do not agree to enter into the energy community, that is, dj
and d, are their profits without the incentive. The parameter 3 is
the part of the incentive that the household receives, while 1 — 3 is
the part that the biogas producer receives.

Let us now define the profits J, and J, for the household and
the biogas producer, assuming that the household receives a part

B € (0,1) of the incentive, while the biogas producer receives 1 — .

The biogas profit functional is written as:

25

Jb<xv7xcapa d7 ybayhaﬁ) =E |:/ e—TSva(S)yde:|
0

+E [/OOO e (1= B)Zmin{D(s),ys + yh}ds} (4.7)

+E [/ e "PP(s)(bK, — yb)ds] —
0

where ¢, is the installation cost of a turbine that produces 1
MW, b > 0 is a conversion factor expressing the cubic meters of gas
needed to produce 1 MW of power, and r > 0 is a discount factor.

The profit of the household is written as:

Jh<xv7xcvpa d7 ybayha/6> =E |:/ e_rstv(s)yhdS:|
0

B[[T erxz o (4.9

+E [/ e " ZBmin{D*(s), yy, + yb}d5:| — ChYn
0

where ¢, is the installation cost of photovoltaic panels to pro-
duce 1 MW.

In the above discussion the main process are modeled as Geo-
metric Brownian Motions in equations (4.1),(4.2),(4.3),(4.4). A
possibility to improve the realism of the model is to switch to
Ornstein-Uhlenbeck processes. So, before going further, let us
analyse the features of the two kinds of stochastic processes just
mentioned.

26

4.2 Geometric Brownian Motion

4.2.1 Introduction

The Geometric Brownian Motion (GBM) [19] is a stochastic process
used in finance to describe the evolution of asset prices over time.
It is based on the assumption that the relative change in the
price of an asset follows a random walk, where each change is
proportional to the current price and a log-normal random variable.
In mathematical terms, GBM can be expressed as:

dSt = IUStdt + UStth (49)

where S; is the price of the asset at time ¢, p is the drift,
which represents the expected rate of return of the asset, o is the
volatility, which describes the dispersion of the returns, and W is a
Wiener process.

We can also write the exponential form of the GBM. In order
to do that we need to apply Itd’s lemma, which relates the differ-
ential of a function of a stochastic process to the partial derivatives
of the function with respect to the process and its time.

Consider the function f(S;,t) = f(S;) = In(S;), where In de-

notes the natural logarithm. Applying It0’s lemma, we get:

af(Sh)
ox

10*f(S,)
2 Ox?

(dS,)? (4.10)

df (Sy) = dS; +

Since Sy = e/(5%) we can rewrite dS; in terms of df(S,) as:

dS; = f I df(S,) = S,df(Sy) (4.11)

27

Substituting this into the original GBM equation, we get:
L,
d(In S;) = (n — 3¢ Ydt + odW, (4.12)

Integrating both sides from 0 to ¢, we get:

In 2t _ (n— 1aQ)t + oW, (4.13)
So 2

where Sy is the initial value of the process and W is a stan-
dard Brownian motion.

Exponentiating both sides, we get the exponential form of GBM:

S, = Syel—zo")+oWe (4.14)

This equation shows that the price of the asset follows a log-
normal distribution with a drift term of p and a volatility term
of o. The drift term represents the expected rate of return of the
asset, while the volatility term describes the uncertainty or risk
associated with the returns.

The mean and variance of a Geometric Brownian Motion at
time ¢ are given by [21]:

E[S;] = Soett (4.15)

Var[S,] = Sje (e”Qt - 1) : (4.16)

28

where Sy is the initial value of the process.

GBM is widely used in finance to model the behavior of stock
prices, commodities, and other financial assets. The model is
attractive because of its simplicity and ability to capture the
essential features of asset price movements.

One important application of GBM is the Black-Scholes op-
tion pricing model. The Black-Scholes model uses GBM to describe
the evolution of the underlying asset price, and it provides a
method to price European options. European options are options
that can only be exercised at the expiration date, and they are the
most common type of options traded in financial markets. The
Black-Scholes formula is a well-known mathematical formula that
provides the price of a European option based on the underlying
asset price, the option strike price, the time to expiration, the
risk-free interest rate, and the volatility of the underlying asset.

GBM can also be used in portfolio optimization, where the
goal is to determine the optimal portfolio weights that maximize
the expected return for a given level of risk. In this context, GBM
is used to model the expected returns of the assets in the portfolio
and the volatility is used as a measure of risk.

Another application of GBM is in risk management, where
the model is used to estimate the Value at Risk (VaR) of a port-
folio. VaR is a measure of the potential loss of a portfolio over
a specified time horizon and confidence level. By using GBM to
model the evolution of asset prices, it is possible to estimate the
VaR of a portfolio and take appropriate risk management measures.

So, Geometric Brownian Motion is a widely used mathemati-
cal model in finance, and it provides a simple and intuitive way
to describe the evolution of asset prices over time. Despite its
limitations, GBM has proven to be a useful tool for option pricing,
portfolio optimization, and risk management.

29

4.2.2 Positive and negative aspects

Geometric Brownian Motion (GBM) is a widely used mathematical
model in finance that describes the evolution of asset prices over
time. While GBM has several advantages, it also has some limita-
tions that should be considered when using it. In this subsection,
we will discuss in detail the pros and cons of GBM.

Pros of GBM:

e Simplicity: one of the main advantages of GBM is its simplicity.
The model assumes that asset prices follow a random walk and
can be described by a simple mathematical equation, making
it easy to understand and implement.

e Ability to capture essential features of asset price movements:
GBM is able to capture the essential features of asset price
movements, including the expected rate of return, volatility,
and the random nature of asset price changes.

e Widely used in finance: GBM is widely used in finance and
has been applied to a variety of financial problems, including
option pricing, portfolio optimization, and risk management.
This widespread use makes it easier to find information and
resources related to GBM.

e Basis for Black-Scholes model: GBM is the basis for the
Black-Scholes option pricing model, which is one of the most
widely used models in finance for pricing European options.

Cons of GBM:

e Limited realism: one of the main limitations of GBM is its
limited realism. The model assumes that asset price changes
are normally distributed and follow a random walk, which may
be not always the case in the real world.

e Assumes constant volatility: GBM assumes that the volatility
of asset prices is constant, which may not be true in practice.
Volatility can change over time and can have different levels for
different assets.

30

e Not suitable for modeling extreme events: GBM is not well
suited for modeling extreme events, such as crashes or sudden
changes in market conditions, as the model assumes that asset
prices follow a continuous distribution.

e Does not account for market frictions: GBM does not account
for various market frictions, such as transaction costs, taxes
and market impact, which can have a significant impact on
asset, prices.

In conclusion, Geometric Brownian Motion is a widely used math-
ematical model in finance that has several advantages, including
its simplicity, ability to capture the essential features of asset price
movements and widespread use in finance.

However, it also has several limitations, including its limited
realism, assumption of constant volatility, lack of consideration for
market frictions, and unsuitability for modeling extreme events.
When using GBM, it is important to understand both its advan-
tages and limitations and to consider the specific context in which
it will be applied.

4.3 Ornstein-Uhlenbeck Process

4.3.1 Introduction

The Ornstein-Uhlenbeck (OU) [4] process is a mathematical model
used in finance and economics to describe the evolution of a
mean-reverting time series. The OU process is a type of stochastic
process that is characterized by a mean-reverting behavior, where
the values of the time series tend to move towards a long-term
average value over time.

The mathematical representation of the OU process can be
written as:

31

where X; is the value of the time series at time ¢, p is the
long-term average value, A is the rate of mean reversion, o is the
volatility, and W is a Wiener process.

The mean of an Ornstein-Uhlenbeck process is given by [21]:

E[X] = e MXo + pu(l —e™) (4.18)

where X is the initial value of the process.

The covariance of an Ornstein-Uhlenbeck process Cov(Xs, X¢)
is given by [21]:

0.2

Cov(Xs, X3))

(e—Mt—s| . e—/\(t+s)> (4_19)

The OU process is commonly used in finance to model the evolution
of interest rates, foreign exchange rates and other financial variables
that exhibit mean-reverting behavior. For example, in the case
of interest rates, the OU process can be used to model the move-
ments of short-term interest rates around a long-term average value.

One of the main advantages of the OU process is its ability
to capture the mean-reverting behavior of time series, which is
often observed in financial markets. The OU process also provides
a simple and intuitive way to model the volatility and the rate of
mean reversion, which are important parameters in many financial
applications.

However, the OU process assumes that the mean-reverting be-
havior is constant over time, which may be not always the case in

32

practice.

In conclusion, the Ornstein-Uhlenbeck process is a useful math-
ematical model used in finance and economics to describe the
evolution of mean-reverting time series. The model provides a
simple and intuitive way to model the mean-reverting behavior,
volatility, and rate of mean reversion of time series.

4.3.2 Positive and negative aspects

The Ornstein-Uhlenbeck (OU) process is a widely used mathemat-
ical model in finance and economics for modeling mean-reverting
time series. The OU process has several advantages and limita-
tions, which should be considered when using it. In this subsection,
we will discuss in further detail the pros and cons of the OU process.

Pros of the OU process:

e Ability to capture mean-reverting behavior: one of the main
advantages of the OU process is its ability to capture the mean-
reverting behavior of time series, which is often observed in
financial markets.

e Simple and intuitive modeling: the OU process provides a sim-
ple and intuitive way to model the mean-reverting behavior,
volatility, and rate of mean reversion of time series.

e Widely used in finance and economics: the OU process is
widely used in finance and economics, making it easier to find
information and resources related to its use and implementa-
tion.

Cons of the OU process:

e Limited realism: the OU process may not perfectly capture the
real-world behavior of mean-reverting time series. In addition,
the model assumes that the mean-reverting behavior is constant
over time, which may not always be the case in practice.

33

e Limited applicability: the OU process is only applicable to
mean-reverting time series and may not be suitable for model-
ing other types of time series.

e May require a more demanding estimation of parameters: the
OU process requires the estimation of more parameters than
the GBM, such as the long-term average value, rate of mean re-
version, and volatility, which may be challenging in some cases.

e Like GBM, it is not suitable for modeling extreme events: the
OU is not well suited for modeling extreme events, such as
crashes or sudden changes in market conditions, as the model
assumes that asset prices follow continuous simple paths.

e Like GBM, it does not account for market frictions: the
OU does not account for various market frictions, such as
transaction costs, taxes, and market impact, which can have a
significant impact on asset prices.

In conclusion, the Ornstein-Uhlenbeck process is a widely used
mathematical model in finance and economics for modeling mean-
reverting time series. The model has several advantages, including
its ability to capture the mean-reverting behavior of time series and
its simple and intuitive modeling approach.

However, it also has several limitations, including its limited
realism, limited applicability and the need to estimate more param-
eters. When using the OU process, it is important to understand
both its advantages and limitations and to consider the specific
context in which it will be applied.

4.4 Model choices

In this thesis, we face the challenge of modeling the uncertain
dynamics of energy prices and demand in a community setting.
Specifically, we need to choose a stochastic process that could
accurately capture the key features of the dynamics, such as mean
reversion.

34

Traditionally, Geometric Brownian Motion (GBM) has been
the go-to stochastic process for modeling asset prices, including
energy prices. However, as seen above, GBM has some limitations,
such as assuming constant volatility and lacking the ability to
capture mean reversion and jumps in the price dynamics.

In order to overcome some of these limitations, we try the
stochastic process explored above: the Ornstein-Uhlenbeck (OU)
process.

The OU process captures the mean-reverting behavior of en-
ergy prices, which is an important feature of energy markets. The
use of the OU process allows to develop a stochastic model for
optimal investment in Renewable Energy Communities that better
reflects the real-world dynamics of energy prices. The model can be
used to determine the optimal investment decisions for a Renewable
Energy Community, taking into account the uncertain and volatile
nature of energy prices and demand.

In conclusion, the decision to use the Ornstein-Uhlenbeck pro-
cess instead of Geometric Brownian Motion is a critical one that
allows to develop a more accurate and realistic stochastic model
for Renewable Energy Communities. The use of this alternative
stochastic processes highlights the importance of carefully choosing
the appropriate model for the problem at hand, taking into account
the specific features of the system being modeled.

35

36

Chapter 5

Processes and Model
implementation

To implement the stochastic model and conduct an optimization,
we use Python as programming language. Let us point out the
main reasons for this choice and the main tools of the language
employed.

5.1 Why Python

Python [13] is a versatile programming language that has gained
significant popularity in the scientific computing community. Here
are some reasons why one might choose to use Python:

e Open-source: Python is an open-source language, meaning that
it is free to use and distribute. This makes it accessible to a
wide range of users, including students and researchers.

e Large ecosystem: Python has a large and active community
that has developed many useful libraries and tools for scien-
tific computing. These libraries include NumPy, SciPy, Pandas,
and Matplotlib among others. They provide tools for data
manipulation, scientific computing, and data visualization.

e Easy to learn: Python has a simple and intuitive syntax that
is easy to learn, even for non-programmers. This makes it a
popular choice for teaching and research.

37

e Interactivity: Python provides an interactive environment
through tools like Jupyter notebooks, which allow users to com-
bine code, text and visualizations in a single document. This
makes it easy to explore data and communicate results.

e Versatility: Python can be used for a wide range of applica-
tions, from web development to machine learning. This means
that users can leverage their Python skills across many different
domains.

For a thesis on stochastic differential equations, Python is an excel-
lent choice of programming language for the following reasons:

e Numerical computing: Python has powerful numerical comput-
ing capabilities, including libraries like NumPy and SciPy, which
are well-suited to dealing with stochastic differential equations.

e Visualization: Matplotlib and other visualization tools in
Python make it easy to generate plots and visualizations of
the results of stochastic processes simulations.

e Code readability: Python’s clean and intuitive syntax makes
it easy to write and understand code, which can be impor-
tant when working with complex mathematical concepts like
stochastic differential equations.

5.2 Stochastic Processes

To simulate the stochastic processes in Python we employ the
following tools.

5.2.1 Geometric Brownian Motion in Python

The role played by Python libraries in this code is significant. The
NumPy [12] library is used to create an array of zeros and to generate
random numbers from a normal distribution. The mathematical
operations used to simulate the GBM are also performed using

38

NumPy. Specifically, the np.exp() function is used to calculate the
exponential of a number, and the np.sqrt() function is used to
calculate the square root of a number.

Here’s how the code works:

The for loop then iterates over the specified number of time
steps. In each iteration, the code updates the value of the process
using the Geometric Brownian Motion equation.

Specifically, the code implements the Euler-Maruyama method
to simulate a drifted Brownian Motion and then exponentiates
it to obtain the exact solution of a Geometric Brownian Motion.
The Euler-Maruyama method is an extension of the Euler method,
which is a basic numerical approximation scheme for ordinary
differential equations. The key difference is the inclusion of the
stochastic term in the update step, allowing for the simulation of
stochastic processes such as Geometric Brownian Motion.

The FEuler-Maruyama method discretizes a drifted Brownian
Motion, which is exponentiated to achieve a numerical simulation
of the exact solution of the stochastic differential equation of the
Geometric Brownian Motion (4.9). The discretized version, as
implemented in the code, can be represented mathematically as
follows:

Xit1 = X;exp ((u - %UQ)At +ovV AtZi) (5.1)

where:

e i is the drift or long-term growth rate,

e o is the volatility,

e X, is the process value at the next time step,

e X, is the process value at the current time step (initialized to

xo at the beginning),

39

e At is the time step size,

e 7, is a random number drawn from a standard normal distri-
bution.

The mu - 0.5 * sigma **x 2 term represents the drift
component of the process. The sigma * np.sqrt(dt) *
np.random.normal (0,1) term represents the random component
of the process, which is generated using the np.random.normal ()
[14] function from NumPy. Finally, the code returns the simulated
values of the GBM process as an array.

So, with the FEuler-Maruyama method, the update for each
time step is given by:

x[1] = x[i-1] * np.exp((mu - 0.5 * sigma *x 2) x dt +
sigma * np.sqrt(dt) * np.random.normal(0,1))

where: x[i] represents the value of the process at the current
time step 7; x[i-1] is the value of the process at the previous time
step; mu is the drift or long-term growth rate; sigma is the volatil-
ity; dt is the time step size; np.random.normal (0,1) generates a
random number from a standard normal distribution (mean = 0,
standard deviation = 1). It represents the random component of
the process.

In summary, the NumPy library is used extensively in this code
to simulate a Geometric Brownian Motion process, which is a
stochastic process commonly used in finance to model stock prices
and other financial instruments.

5.2.2 Ornstein-Uhlenbeck process in Python

In the context of simulating the Ornstein-Uhlenbeck (OU) process in
Python, NumPy, random, and normal play the following specific roles:

NumPy [12] is used in the OU process to create arrays of ran-
dom numbers. In particular, NumPy’s zeros function is used to

40

create an array of zeros to store the simulated values of the OU
process. NumPy’s sqrt function is also used to calculate the square
root of the time step, which is needed to simulate the stochastic
term in the OU process.

The random [14] module is used in the OU process to gener-
ate random numbers that are normally distributed. In particular,
the normal function from the random module is used to generate
normally distributed random numbers with a mean of zero and
a standard deviation of one. These random numbers are used to
simulate the stochastic term in the OU process.

To simulate the OU process, we start with an initial value
and use an algorithm that updates the value of the process at
each time step using the OU equation. In the OU equation, the
stochastic term is modeled by a normally distributed random
variable. Specifically, the code implements the Euler-Maruyama
method to simulate the Ornstein-Uhlenbeck process.

The Euler-Maruyama method discretizes the SDE (4.17) to
simulate the process numerically. The discretized version, as
implemented in the code, can be represented mathematically as
follows:

where:

e X, is the process value at the next time step,

e X, is the process value at the current time step (initialized to
xo at the beginning),

e)\ is the rate of mean reversion,
e 4 is the long-term mean,

e At is the time step size,

41

e 7, is a random number drawn from a standard normal distri-
bution.

The implementation involves a deterministic drift term (_lambda
* (mu - x[i-1]) * dt) and a stochastic term (sigma *
np.sqrt(dt) * np.random.normal(0,1)). The normal func-
tion from NumPy is used to generate this random variable at
each time step, which is then used to update the value of the
process. The zeros function from NumPy is used to initialize
an array of zeros to store the simulated values of the process.
Together with the normal function, these tools from NumPy and
random enable to simulate the behavior of the OU process over time.

So, with the Euler-Maruyama method, the update step for
each time step is given by:

x[i] = x[i-1] + _lambda * (mu - x[i-1]) * dt + sigma
* np.sqrt(dt) * np.random.normal(0,1)

where x[i] represents the value of the process at time step i;
x[i-1] represents the value of the process at the previous time
step i-1; _lambda is the rate of mean reversion; mu is the long-term
mean of the process; dt is the time step; sigma is the volatility of
the process; np.sqrt(dt) * np.random.normal(0,1) represents
the stochastic term, which is a random number drawn from a
normal distribution with mean 0 and standard deviation 1, scaled
by the square root of the time step.

To allow consistency of measures employed, we build all the
stochastic processes assuming hourly time-steps.

An alternative to the above strategy could be to use the ex-
act solution to the OU SDE:

42

tit1
th'+1 - Xtie_k(ti+1_ti) + P)\/ e_A(S_ti)dS
t;

t;
N 0/ +1 e*/\(s*ti)dWs (5.3)
t

i

which contains a Wiener integral and can be written explic-
itly as:

Xt — Xtie_)\At +M(1 o 6—>\At) to

41

where:

e X, ., is the value of the process at time #;,1,
e X, is the initial value of the process at ¢,

e)\ is the rate of mean reversion,

e 4 is the long-term mean,

e At is the time step size,

e o is the volatility,

e 7, is a random number drawn from a standard normal distri-
bution.

This explicit formula provides the exact solution of the OU process
at any given time ¢, given its initial value Xy and the model
parameters A, u, and o. It eliminates the need for numerical ap-
proximation methods and allows direct computation of the process
values at different time points.

43

5.3 Numerical Integration

To compute the integrals which are present in the code it is
necessary to rely on numerical integration. Specifically we use
scipy.integrate.quad.

5.3.1 scipy.integrate.quad

scipy.integrate.quad [18] uses a combination of Gaussian
quadrature and adaptive subdivision to approximate the definite
integral of a given function over a specified interval.

Gaussian quadrature is a method for approximating integrals
by evaluating the integrand at a set of carefully chosen points,
called the quadrature points, and weighting the results by a set
of corresponding weights. The goal of Gaussian quadrature is to
choose the quadrature points and weights in such a way that the
resulting approximation is as accurate as possible for polynomials
up to a certain degree.

In scipy.integrate.quad, the quadrature points and weights
are determined by the Legendre-Gauss quadrature rule, which is
a specific type of Gaussian quadrature that is optimized for the
interval [—1, 1]. To use this rule for a general interval [a, 0],
scipy.integrate.quad first transforms the interval to the interval
[—1, 1] using a change of variables, and then applies the Legendre-
Gauss quadrature rule to the transformed integrand.

The adaptive subdivision aspect of scipy.integrate.quad
comes into play when the algorithm encounters regions of the
integrand that are particularly difficult to approximate accurately
using Gaussian quadrature. In these cases, scipy.integrate.quad
subdivides the integration interval into smaller subintervals and
applies the quadrature rule to each subinterval. This adaptive
subdivision process continues until the estimated error in the
approximation falls below the specified tolerance level.

In summary, scipy.integrate.quad uses a combination of

44

Gaussian quadrature and adaptive subdivision to approximate
the definite integral of a given function over a specified interval.
It does this by first transforming the integration interval to the
interval [—1,1] using a change of variables, and then applying
the Legendre-Gauss quadrature rule to the transformed inte-
grand. If the estimated error in the approximation is too high,
scipy.integrate.quad subdivides the integration interval into
smaller subintervals and repeats the process until the estimated
error falls below the specified tolerance level.

So, to integrate to infinity, it is necessary to set as upper
bound a very large finite number, according to the specific kind of
problem that we are facing. In the implementation of this model,
however, we decide to integrate over a reasonable life horizon of the
equipment - and not over an infinite time - estimated around 20
years.

5.4 Optimization

To find the optimal investment of the two members of the REC,
avoiding the problem of fair share of incentives, we define as
objective function the sum of the profits of the household and of
the biogas producer

f(yba yh) = Jb($v>$c>p, da Ybs Yn, 6) + Jh(xvaxmpa da Ybs Yn, 6) (55)

which is, as it is clear from the above formula, a function of
two variables. These two variables are, respectively, the biogas
producer y, and the "representative” household y, investments.
Defining this objective function for the optimization we get a
cancellation of the terms involving 3, allowing us to working only
on optimal investment.

This optimization problem corresponds, according to the fol-
lowing lemma from [2], to finding a Pareto optimal solution.

45

Lemma 1. If I € argmaz J(I), then I is Pareto optimal.

Proof. Suppose I € argmax.J(I) and assume I is not Pareto
optimal. Then, there exists I* such that,

JJ(IF) > Ji(L), Vie{l,...,N} (5.6)

where at least one inequality is strict. Then,

N N

Zji(]:) > Z‘]Z(jz> (5.7)

i=1 =1

contradicting the fact that I is maximizing.

]

Therefore, the optimal investments for the two members of the
community that we are willing to find are such that we cannot im-
prove the condition of one member without worsening the condition
of the other one.

At this point, we define all the constraints mentioned in the
model. Finally, we optimize the objective as a function of the two
variables (v, yr), given all the inputs and the constraints, using the
’SLSQP’ method.

The *SLSQP’ optimization method is part of the scipy.optimize
module in the SciPy library for Python. The SciPy [17] library is
an open-source library used for scientific computing and technical
computing. To use the method for optimization, it is first necessary
to import the minimize function from the scipy.optimize [16]
module.

46

5.4.1 ’SLSQP’

The ’SLSQP’ [15] method is based on the Sequential Quadratic
Programming (SQP) algorithm, which is a type of optimization
algorithm that uses quadratic approximations of the objective
function and constraints. The main idea of the SQP algorithm is to
iteratively solve a sequence of quadratic programming subproblems
that approximate the nonlinear optimization problem.

The ’SLSQP’ method starts by defining the objective function
and the constraints of the optimization problem. The objective
function is the function that needs to be minimized or minus the
function that needs to be maximized, while the constraints are the
conditions that must be satisfied by the solution. The ’SLSQP’
method requires the objective function to be twice continuously
differentiable and the constraints to be continuous functions.

The °SLSQP’ method then creates a quadratic approximation
of the objective function and the constraints at the current iterate.
This approximation is based on the first and second derivatives
of the objective function and constraints, evaluated at the current
iterate.

If the explicit functions of the derivatives are not available,
the ’SLSQP’ method can use the numerical approximations com-
puted with the finite differences method.

The ’SLSQP’ method then solves the quadratic programming
subproblem using a Sequential Linear Programming (SLP) algo-
rithm. The SLP algorithm solves a sequence of linear programming
subproblems, where each subproblem is obtained by linearizing the
quadratic approximation of the objective function and constraints.

If the solution of the quadratic programming subproblem satisfies
the Kuhn-Tucker conditions, which are the necessary conditions for
optimality in nonlinear constrained optimization, then the solution
is accepted as the new iterate. Otherwise, the ’SLSQP’ method
backtracks to the previous iterate and tries again with a smaller
step size.

47

The °SLSQP’ method continues iterating until a convergence
criterion is met. The convergence criterion is typically based on
the magnitude of the gradient of the objective function and the
constraints, or on the change in the objective function and the
constraints between iterations.

One of the advantages of the ’SLSQP’ method is that it is a
well-established and widely used algorithm for nonlinear con-
strained optimization. It has been extensively tested and is known
to be robust and efficient for a wide range of optimization problems.
Moreover, the ’SLSQP’ method can handle problems with both
inequality and equality constraints, and it can handle problems
with nonlinear constraints.

In conclusion, the ’SLSQP’ method is a powerful and versatile
optimization algorithm that can solve a wide range of nonlinear
constrained optimization problems. Its effectiveness and efficiency
make it a valuable tool for many applications in science and
engineering.

5.5 Code

Here follows the Python implementation of the processes and of the
mathematical model previously described. The parameters used
to model the processes of the model are based on the information
found in [1].

The first few lines of the code import the necessary packages:
Pandas for data analysis, NumPy for scientific computing, math for
mathematical functions, random for generating random numbers,
and matplotlib.pyplot for data visualization.

The last two lines import specific functions from the SciPy li-
brary, namely quad for numerical integration and minimize for
optimization.

Master’s thesis, Lorenzo Portaluri

48

Import packages

import pandas as pd

import numpy as np

import math

import random

import matplotlib.pyplot as plt
plt.rcParams.update({’font.size’: 24})
from scipy.integrate import quad

from scipy.optimize import minimize

5.5.1 Geometric Brownian Motion

def geometric_brownian_motion(x0, mu, sigma, dt, n_timesteps):

x0 is the initial value of the process

mu is the drift or long-term growth rate

sigma is the volatility

dt is the time step

n_timesteps is the number of time steps to simulate for

=+

Initialize an array of zeros to store the values
of the process
X = np.zeros(n_timesteps)

Set the initial value of the process
x[0] = %0

Loop over the time steps to simulate the process
for i in range(l, n_timesteps):

Update the value of the process at each time step
using the Geometric Brownian Motion equation
x[i] = x[i-1] * np.exp((mu - 0.5 * sigma ** 2) * dt

+ sigma * np.sqrt(dt) * np.random.normal(0,1))

Return the simulated values of the process

49

return X

Define the parameters for the simulation

x0 = 10

mu = 0
sigma = 0.2
dt = 0.01

n_timesteps = 100
n_simulations = 10

Call the function to simulate the process
fig, ax = plt.subplots(figsize=(30, 15))

for i in range(n_simulations):
X = geometric_brownian_motion(x0, mu, sigma, dt, n_timesteps)

Plot the simulated values
plt.plot(x)

Show the graph

plt.xlabel("Time step")

plt.ylabel("Value")

plt.title("Simulation of Geometric Brownian Motions")
plt.show()

5.5.2 Ornstein-Uhlenbeck

Define a function implementing Ornstein-Uhlenbeck processes
def ornstein_uhlenbeck_process(x0, _lambda, mu, sigma, dt,
n_timesteps):

x0 is the initial value of the process
_lambda is the rate of mean reversion
mu is the long-term mean

sigma is the volatility

dt is the time step

50

n_timesteps is the number of time steps to simulate for

Initialize an array of zeros to store the values
of the process
X = np.zeros(n_timesteps)

Set the initial value of the process
x[0] = x0

Loop over the time steps to simulate the process
for i in range(1l, n_timesteps):

Update the value of the process at each time step
using the Ornstein-Uhlenbeck equation

x[i] = x[i-1] + _lambda * (mu - x[i-1]) * dt

+ sigma * np.sqrt(dt) * np.random.normal(0,1)

Return the simulated values of the process
return x

Define the parameters for the simulation

10
_lambda =1
10
sigma = 0.2

dt = 0.01
n_timesteps = 100
n_simulations = 10

Call the function to simulate the process
fig, ax = plt.subplots(figsize=(30, 15))

for i in range(n_simulations):

x = ornstein_uhlenbeck_process(x0, _lambda, mu, sigma, dt,
n_timesteps)

Plot the simulated values
plt.plot(x)

Show the graph

o1

plt.xlabel("Time step")

plt.ylabel("Value")

plt.title("Simulation of Ornstein-Uhlenbeck processes")
plt.show()

Define the parameters for the processes of the model
_lambda = 1

dt = 0.01

n_timesteps = 45000 # = 9 hours * 250 days * 20 years

Spot price at which biogas is sold by the producer

on the market

Let us assume it goes as an 0OU process

P = ornstein_uhlenbeck_process(74.7, _lambda, 74.7, 0.84, dt,
n_timesteps)

Biogas producer total gas production capacity K_g
K_g = 18.9394

Spot price at which electricity produced

from biogas is sold by the producer on the market

Let us assume it goes as an 0U process

X_v = ornstein_uhlenbeck_process(56.7, _lambda, 56.7, 0.09, dt,
n_timesteps)

Biogas producer maximum power to transform gas
into power theta_b
theta_b = 0.2

Spot price at which the household buys energy in

the electricity market in order to satisfy its demand

Let us assume it goes as an 0OU process

X_c = ornstein_uhlenbeck_process(65, _lambda, 65, 0.001, dt,
n_timesteps)

Household maximum allowed power to install new
photovoltaic panels theta_h
theta_h = 0.32

The demand of the energy community is given

92

by the household power demand

Let us assume it goes as an 0U process

D = ornstein_uhlenbeck_process(0.3, _lambda, 0.3, 0.04,
dt, n_timesteps)

5.5.3 Integration

Additionl parameters relevant for the model

Suppose that the household receives a part beta in (0, 1)
of the incentive, while the biogas producer receives 1 - beta
beta = 0.5 # Let us assume a half-half split

Interest rate (hourly translated)
r = 3e-6 # From the paper

Incentives
Z = 110

The biogas profit functional is then written as
def J_b(y_b, y_h):

my_J.b =20
b = 0.1056
c_b = 900000

my_integral_1 = []
my_integral_2 (]
my_integral_3 = []

for i in range(0, 100):
Argumets of the integrals for each timestep
for s in range(0, n_timesteps):

def arg_1(s, y_b):
return math.exp(-r*s) * X_v[int(s)] * y_b

93

def arg_2(s, y_b, y_h):
return math.exp(-r*s) * (1-beta) * Z %
min(D[int(s)], y_b+y_h)

def arg_3(s, y_b):
return math.exp(-r*s) * P[int(s)] *
(b*K_g - y_Db)

integral_1, error_1 = quad(arg_1, O, n_timesteps,
args=(y_b), epsabs=1le-3, epsrel=le-3, limit = 10000)

integral_2, error_2 = quad(arg_2, 0, n_timesteps,
args=(y_b, y_h), epsabs=1e-3, epsrel=le-3, limit = 10000)

integral_3, error_3 = quad(arg_3, 0, n_timesteps,
args=(y_b), epsabs=1le-3, epsrel=le-3, limit = 10000)

my_integral_1.append(integral_1)
my_integral_2.append(integral_2)
my_integral_3.append(integral_3)

Do a number of simulations of integrals to have
something meaningful

comp_1 = np.mean(my_integral_1)

comp_2 = np.mean(my_integral_2)

comp_3 = np.mean(my_integral_3)

Final computation
my_J_b = comp_1 + comp_2 + comp_3 - c_b*y_b

return my_J_b

The profit of the household is written as
def J_h(y_b, y_h):

my_J_h =0

c_h = 2500000

(]
(]
(]

my_integral_1
my_integral_2
my_integral_3

o4

for i in range(0, 100):
Argumets of the integrals for each timestep
for s in range(0, n_timesteps):

def arg_1(s, y_h):
return math.exp(-r*s) * X_v[int(s)] * y_h

def arg_2(s):
return math.exp(-r*s) * X_c[int(s)] * D[int(s)]

def arg_3(s, y_b, y_h):
return math.exp(-r*s) * Z * beta *
min(D[int(s)], y_b+y_h)

integral_1, error_1 = quad(arg_1, O, n_timesteps,
args=(y_h), epsabs=1le-3, epsrel=le-3, limit = 10000)

integral_2, error_2 = quad(arg_2, 0, n_timesteps,
epsabs=1e-3, epsrel=1e-3, limit = 10000)

integral_3, error_3 = quad(arg_3, 0, n_timesteps,
args=(y_b, y_h), epsabs=1e-3, epsrel=1le-3, limit = 10000)

my_integral_1.append(integral_1)
my_integral_2.append(integral_2)
my_integral_3.append(integral_3)

Do a number of simulations of integrals to have
something meaningful

comp_1 = np.mean(my_integral_1)

comp_2 = np.mean(my_integral_2)

comp_3 = np.mean(my_integral_3)

Final computation
my_J_h = comp_1 - comp_2 + comp_3 - c_h*y_h

return my_J_h

%)

5.5.4 Optimization

Define the objective function,
to maximize a function minimize minus the function
def obj_function(y):

return (-(J_b(y[0],y[1]1) + J_h(y[0]l,y[11)))

Define the constraints functions
def ggg(y):

return [theta_b, theta_h] -y
def hhh(y):

return y

Define the constraints
cons = {’type’: ’ineq’, ’fun’: ggg,
’type’: ’ineq’, ’fun’: hhh}

Set initial guess
x_0 = [0.20,0.32]

Optimize, using ’SLSQP’

resO = minimize(obj_function, x_0, constraints=cons,
method=’SLSQP’, tol=1e-6)

display(res0)

5.6 Output

Executing the above Python code we obtain the following output
in Figures 1, 2 and 3:

96

Figure 1

Simulation of Geometric Brownian Motions

14

12

Value

10

102

10.1

10.0

Value

9.9

9.8

9.7

0 20 40 60 80 100

Time step

Figure 2

Simulation of Ornstein-Uhlenbeck processes

0 20 40 60 80 100
Time step

57

Figure 3

fun: -6675388.01987983
jac: array([1656687.6875, 113453.625])
message: ’Optimization terminated successfully’

nfev: 10
nit: 6
njev: 2
status: O

success: True
x: array([0.08688509, 0.31212891])

Figures 1 and 2 show generic simulations of Geometric Brownian
Motions and Ornstein-Uhlenbeck processes. We can notice in
Figure 1 how Geometric Brownian Motions tend to diverge from
the initial value. Ornstein-Uhlenbeck processes in Figure 2, instead,
revert to the long-term mean, which we set equal to the initial value
of the processes.

Moreover, we see in Figure 3 that the optimization procedure
was completed successfully. In the specific case proposed, the
parameters of the model are set as follows, starting from [1]:

e The conversion factor b expressing the cubic meters of gas
needed to produce 1 MW of power is set b = 0.1056 m3/MW;

e The discount factor r is set r =3 x 10751 /h;

e The installation cost of photovoltaic panels ¢, required to pro-
duce 1 MW of solar power is set ¢, = 2500000 €/MW;

e The installation cost of a turbine ¢, that produces 1 MW of
power is set ¢, = 900000 €/MW;

e The biogas producer’s total gas production capacity K, is set
K, = 18.9394 m?;

e The biogas producer’s maximum power transformation capac-
ity 6, is set 6, = 0.2 MW;

e The household’s maximum power transformation capacity 6 is
set 6, = 0.32

98

e The incentives received by the energy community Z is set
Z =110 €/MW.

Regarding the parameters of the stochastic processes, instead, in
[1] they were estimated for a GBM-based model. For our OU-based
implementation we took the initial value of the processes, setting
it as long-term mean too, and the estimated values of volatility
o, = 0.09, 0, = 0.84, 0, = 0.04, 0, = 0.01. Finally, we set the rate
of mean reversion A = 1.

In the end, we obtained a suggested optimal investment of

312.13 kW for the "representative” household and 86.90 kW for the
biogas producer.

99

60

Chapter 6

Further research

A possible example for further research is to explore other stochastic
processes such as Lévy processes. Let us see the main features of
Lévy processes.

6.1 Lévy Process

6.1.1 Introduction

A Lévy process [9] is a stochastic process with stationary and
independent increments, named after the French mathematician
Paul Lévy. It is a continuous-time process that takes values in the
real line or in a higher dimensional Euclidean space.

Mathematically, a Lévy process can be defined as a stochastic
process {X;;t > 0}, with the following properties:

e Xy = 0 almost surely.

e The process has stationary and independent increments, mean-
ing that for any s < ¢, the random variable X; — X is inde-
pendent of the sigma-algebra generated by the process up to
time s, and its distribution depends only on the time difference
t—s.

e The process is stochastically continuous, which means that for
any € > 0 and any s < t, the probability of |X; — X,| > € goes

61

to zero as (t —s) — 0.

These properties imply that a Lévy process may have jumps,
and the sizes and timings of these jumps are determined by the
underlying Lévy measure. The Lévy measure is a measure on the
real line or on the Euclidean space that describes the distribution
of the jumps of the process.

Lévy processes have several important applications in finance,
physics, and other areas of science. Their infinite divisibility prop-
erty, which means that any finite segment of a Lévy process can be
decomposed into independent segments, makes it a useful tool for
modeling complex systems with random behavior. The dynamics
of a Lévy process can be described by the Lévy-Khintchine for-
mula, which expresses the characteristic function of the process as a
function of the drift, the diffusion coefficient, and the Lévy measure.

The Lévy-Khintchine formula is a mathematical expression
that describes the characteristic function of a Lévy process. The
characteristic function is a complex-valued function that completely
determines the distribution of a stochastic process. In the case of a
Lévy process, the characteristic function describes the probability
distribution of the process at any time.

The Lévy-Khintchine formula expresses the characteristic function
of a Lévy process as follows:

E[e*¥t] = et (6) (6.1)

where 9(§) is the characteristic exponent of the Lévy process,
which is given by:

GO =€t [(@1 i) (62

62

Here, ~ is the drift coefficient, o is the diffusion coefficient,
and v(dz) is the Lévy measure, which describes the distribution of
the jumps of the process.

The Lévy-Khintchine formula is a powerful tool for analyzing
the properties of Lévy processes. It allows us to derive various
statistical properties of the process, such as its mean, variance,
and higher moments. Moreover, it can be used to simulate Lévy
processes numerically, which is important for applications in finance
and other areas.

Overall, the Lévy-Khintchine formula is a fundamental result
in the theory of Lévy processes, and it plays a key role in their
analysis and application.

6.1.2 Positive and negative aspects

Lévy processes are a powerful tool for modeling a wide range of
phenomena in science, finance, and engineering. However, like
any modeling approach, they have pros and cons, which must
be carefully considered when using it to analyze data or make
predictions.

Pros:

e Flexibility: one of the key advantages of Lévy processes is the
flexibility. The process can be customized to fit a wide range of
data sets and phenomena, making it a versatile tool for mod-
eling complex systems.

e Jumps: Lévy processes are especially useful for modeling sys-
tems that exhibit sudden jumps or discontinuous changes. This
feature is particularly important in finance, where asset prices
can experience large fluctuations in short periods of time.

e Multiscale: Lévy processes are inherently multiscale, meaning
that they can capture behavior over different time scales. This
is important in many applications, including financial model-

63

ing, where it is necessary to capture both short-term and long-
term trends.

e Heavy tails: Lévy processes often have heavy-tailed distri-
butions, which means that extreme events are more likely
to occur than in other types of stochastic processes. This
is important in many fields, including finance, where it is
necessary to model rare events such as market crashes.

Couns:

e Complex: a Lévy process is a complex mathematical model
that can be difficult to understand and apply correctly. Its
complexity means that it requires careful calibration and inter-
pretation, which can be time-consuming and error-prone.

e Parameters: every Lévy process has two parameters and a mea-
sure that must be carefully chosen in order to accurately model
a system. These parameters can be difficult to estimate, par-
ticularly when the data is noisy or incomplete.

e Computational demands: The simulation of Lévy processes
can be computationally demanding, particularly when mod-
eling large data sets or complex systems. This can make it
impractical for certain applications.

e Limited applicability: while Lévy processes are a powerful tool
for modeling certain types of systems, they may not be suitable
for all applications. For example, they may not be appropriate
for systems that exhibit smooth, continuous behavior, such as
Brownian motion.

e Does not account for market frictions: also this kind of
process, as the two seen before, does not account for various
market frictions, such as transaction costs, taxes, and mar-
ket impact, which can have a significant impact on asset prices.

In conclusion, Lévy processes are a powerful tool for modeling com-
plex systems that exhibit sudden jumps or discontinuous changes.
However, they requires careful calibration and interpretation, and
may not be suitable for all applications. As with any modeling

64

approach, it is important to carefully consider the pros and cons of
Lévy processes before applying them to a particular problem.

6.2 Lévy process implementation

6.2.1 Stochastic process

As for Geometric Brownian Motion and Ornstein-Uhlenbeck pro-
cesses, we implement Lévy processes in Python. The kind of Lévy
process we are simulating is built with a linear combination of
Brownian increments and Poisson increments, to allow for the
presence of jumps. To allow for both jumps upward and downward,
the function in the code is built with a difference of two Poisson
increments with equal intensities, which can result in both a positive
and negative outcome.

The Lévy process implemented in the code can be represented
mathematically as:

n

X(n) = X(0)+) _(BAt+ cAW; + AN)), (6.3)

i=1

where:
e X (n) is the Lévy process at step n;
e X(0) is the initial value of the process;
e (3 is the drift coefficient;
e o is the diffusion coefficient;
e At is the time increment;

o AW, is the increment of the standard Brownian motion, gen-
erated as AW, ~ N (0, VAt);

65

e AN; is the increment of the Poisson process, generated as
AN; ~ Poisson(aAt) — Poisson(aAt), where « is the Poisson
process intensity.

The Lévy process is obtained by cumulatively summing the incre-
ments starting from X (0), where the sum includes the drift term
(BAt), the diffusion term (cAW;), and the jump term (AN;).

6.2.2 Lévy processes in Python

The Python libraries and tools used are essential for simulating a
Lévy process with the given parameters and initial value.

NumPy [12] is used to generate random normal and Poisson
distributed numbers, which are used as increments for the Brown-
ian Motion and Poisson processes, respectively.

The numpy.ndarray data type is used to store the simulated
process values. From random [14] the random.normal() and
random.poisson() functions in NumPy are used to generate random
normal and Poisson distributed numbers, respectively.

The concatenate() function in NumPy is used to join together
the initial value of the process with the cumulatively summed
increments to get the simulated process values.

All of these tools are crucial for simulating a Lévy process in
Python and allow for efficient and accurate numerical simulations.

To simulate a Lévy process, we start with an initial value and
use the algorithm that generates random increments based on a
Poisson process and a Brownian motion. The simulated values
of the process are then calculated by cumulatively summing the
increments starting from the initial value of the process using
np.cumsum. Finally, the simulated values are stored in a NumPy
array, which is returned as the output of the function.

66

The function generates a stochastic process that has both Brownian
motion and Poisson increments, which are the building blocks of a
Lévy process. Therefore, the function simulates a Lévy process.

The function assumes that the increments of the Poisson pro-
cess have a constant intensity alpha*dt. To allow both jumps
upward and downward, the function is built with a difference of
Poisson increments, which can result in both a positive and negative
outcome.

Brownian motion increment:
dW = np.random.normal(0, np.sqrt(dt), n_steps)

The code generates a random array called dW, representing
the increment of a standard Brownian motion process. It uses the
NumPy function np.random.normal(0, np.sqrt(dt), n_steps).
Each element of dW is a random number drawn from a normal
distribution with mean 0 and standard deviation equal to the
square root of the time increment dt. The array dW captures the
random fluctuations associated with the diffusion term.

Poisson increment:

dN = np.random.poisson(alpha*dt, n_steps) -
np.random.poisson(alpha*dt, n_steps)

The code generates another random array called dN, repre-
senting the increment of a Poisson process. It uses the difference
between two arrays: np.random.poisson(alpha * dt, n_steps)
- np.random.poisson(alpha * dt, n_steps). Each element of
dN represents the difference between two random numbers drawn
from a Poisson distribution with mean equal to the product of the
Poisson process intensity alpha and the time increment dt. By
subtracting two arrays of Poisson random numbers, we obtain an
array dN with a mean of 0, reflecting the stochastic jumps in the
process.

67

The overall formula to calculate the process values is as fol-
lows:

X = x0 + np.concatenate(([0], np.cumsum(betaxdt +
sigmaxdW + dN)))

The code initializes an array called X to store the simulated
values of the Lévy process. It starts with the initial value x0 and
adds the cumulative sum of the increments, resulting in the array
X. The cumulative sum is obtained using np.cumsum(beta * dt +
sigma * dW + dN). Here, beta * dt represents the deterministic
drift term scaled by the time increment. sigma * dW represents
the diffusion term, where sigma is the diffusion coefficient and
dw is the Brownian motion increment. dN represents the Poisson
increment capturing the jumps in the process. The cumulative
sum is calculated using np.cumsum(), which sums the elements
of the increments array cumulatively. Finally, the initial value
x0 is added at the beginning of the cumulative sum array using
np.concatenate(([0], ...)).

6.2.3 Code

Here follows the Python implementation of a Lévy processes simu-
lation

Define a function implementing Lévy processes
def levy_process(alpha, beta, sigma, n_steps, dt, x0):

alpha is the Poisson process intensity

beta is the drift coefficient

sigma is the diffusion coefficient

n_steps is the number of time steps to simulate

dt is the time increment

x0 is the initial value of the process (default is 0)

Generate the increments of the process
dW = np.random.normal(0, np.sqrt(dt), n_steps) # Brownian

68

motion increment

dN = np.random.poisson(alpha*dt, n_steps) -
np.random.poisson(alpha*dt, n_steps) # Poisson increment

Calculate the process values by cumulatively summing the
increments starting from XO

X = x0 + np.concatenate(([0], np.cumsum(betaxdt

+ sigmaxdW + dN)))

return X

Define the parameters for the simulation
n_steps = 100 # number of time steps

dt = 0.01 # time increment

alpha = 1 # Poisson process intensity
beta = 0 # drift coefficient

sigma = 1 # diffusion coefficient

x0 = 10 # initial value

Simulate the process 10 times with starting point
x0 and plot the results
fig, ax = plt.subplots(figsize=(30, 15))

for i in range(10):
X = levy_process(alpha, beta, sigma, n_steps, dt, x0)
plt.plot(X)

Set the plot labels and title
plt.xlabel(’Time step’)
plt.ylabel(’Value’)
plt.title(’Simulation of Lévy Processes’)

Show the plot
plt.show()

69

6.2.4 Output

Executing the above Python code we obtain the following output
in Figure 4:

Figure 4

Simulation of Lévy Processes

12

11

Value

Time step

Figure 4 represents a generic simulation of Lévy processes.
We can notice how these processes show the presence of random
jumps both upwards and downwards.

6.3 Seasonality

Another major improvement to the model could be to add season-
ality functions. Seasonality is a well-known phenomenon in various
fields, including economics, energy markets, and agriculture. Sea-
sonal patterns can have a significant impact on prices, production,
and demand for goods and services, and therefore it is important
to incorporate them into many models.

70

In the context of financial modeling, a seasonality function can
be added as a deterministic element to the stochastic process to
capture these patterns. This involves modifying the model to
include a periodic component that captures the fluctuations in the
data due to seasonal effects.

By incorporating seasonality into the model, it becomes more
realistic and accurate, and can provide more reliable forecasts for
future trends. For instance, seasonality is a crucial factor in energy
markets, affecting both the production and consumption of various
energy sources.

For example, the demand for natural gas tends to increase
during the winter months due to heating needs, while the demand
for electricity tends to increase during the summer months due
to air conditioning needs. In addition, the production of certain
types of energy, such as solar and wind power, can be influenced by
seasonal factors such as weather patterns and daylight hours.

Overall, adding a seasonality function to the model is a sig-
nificant improvement that can enhance the accuracy and usefulness
of the model. It enables the model to better capture the dynamics
of the underlying processes and provides more reliable forecasts
that account for the impact of seasonal patterns. Therefore, it is
an crucial component to consider when modeling various real-world
phenomena that exhibit seasonality.

There are several deterministic functions that can be combined
with stochastic processes to model seasonality in energy prices,
production and demand. We can employ, for example, Fourier
series as suggested in the paper [10].

6.3.1 Fourier series

Energy prices, production, and demand often exhibit seasonal
patterns that repeat themselves over time. These seasonal patterns
can be modeled using deterministic functions represented as Fourier

71

series. Fourier series can be used to decompose a periodic function
into a sum of sine and cosine waves, with each wave having a
different frequency and amplitude. By including Fourier series in a
stochastic model, the seasonal patterns in energy prices, production,
and demand can be modeled and incorporated into a stochastic
model that also captures the random fluctuations.

The Fourier series [3] representation of a periodic function f(z)
with period 7' is given by:

o0

flz) = % + Z (a,, cos(nwzx) + by, sin(nwx)) (6.4)

where ag, a,, and b, are Fourier coefficients, w = 27/T is the
angular frequency, and z is time. The first term (/2 is the average
value of the function over one period,

o [T
ag = T/o f(z)dx (6.5)

and the summation represents the contribution of each har-
monic frequency to the periodic function. Each harmonic frequency
is a multiple of the fundamental frequency w, which is the reciprocal
of T/(2r). Finally, the coefficients a,, and b, are given by the
following integrals:

0 = % /O " () cos (27;”’) da (6.6)

by = %/OT f(z)sin (27;”:) da (6.7)

72

The higher the number of harmonics included in the Fourier
series, the better the approximation of the periodic function.
However, it is important to note that Fourier series assumes that
the seasonal pattern is completely deterministic, which may not
always be the case in practice. Therefore, it is common to combine
Fourier series with stochastic processes to account for the stochastic
component of seasonality.

In summary, a Fourier series can be a useful deterministic
function for capturing seasonality in energy prices, production, and
demand. By combining Fourier series with stochastic processes, a
more accurate and robust model can be developed for representing
values of energy prices, production, and demand.

6.3.2 Fourier series implementation

Let us show an example of Fourier series implementation. We
will show the approximation of a square-wave function with an
increasing number of harmonics.

The code uses several Python libraries:

NumPy is used to generate an array of x-values with a given
range and resolution, and to perform mathematical operations on
these arrays.

matplotlib.pyplot is used to plot the square wave and its
Fourier series approximation.

The code defines a squareWave() function that generates a
square wave with a given period and phase shift. It also defines a
fourierSeries() function that computes the partial sum of the
Fourier series up to a given number of harmonics. The bn() and
wn () functions are used to compute the coefficients and frequencies
of the Fourier series.

The code then creates a list of harmonics and a list of colors

73

for the plot. It generates a subplot for each number of harmonics
in harmonics, plots the true square wave and its Fourier series
representation, and sets the title of the subplot. Finally, it shows
the plot using plt.show().

The code uses only the coefficient b, to compute the Fourier
series approximation of the square wave. The coefficients ay and
a, are not needed in this case because the function being approx-
imated, a square wave, is an odd function, meaning that its even
Fourier coefficients are all zero (including ag), and its odd Fourier
coefficients are given by the b, coefficients. Therefore, only the b,
coefficients are defined in the code.

6.3.3 Code

Here follows the Python implementation of Fourier series represen-
tations of a periodic function:

Setup

x = np.linspace(-20, 20, 10000) # Define the x-axis range
and resolution

T = 10 # Define the period of the square wave

Define a function to generate a square wave
def squareWave(x, T, phi=0):
return 2 * (np.sin(2 * np.pi * x / T + 4xphi) > 0) - 1

Define the bn coefficients of the Fourier series
def bn(n):
ifn'% 2 !'=0:
return 4 / (np.pi * n)
else:
return 0O

Define the wn frequencies of the Fourier series
def wn(n):

74

return 2 * np.pi *n / T

Define a function to compute the partial sum

of the Fourier series up to n_max

def fourierSeries(n_max, X):
a0 = 0 # The DC component of the Fourier series
partialSums = a0l

for n in range(1, n_max):
partialSums += bn(n) * np.sin(wn(n) * x)
return partialSums

Plot the Fourier series approximation of

the square wave with different numbers of harmonics
harmonics_list = [2, 5, 10, 15, 20]

colors = [’lightblue’, ’red’, ’green’, ’orange’, ’pink’]
fig, axs = plt.subplots(len(harmonics_list), figsize=(30,
15%1len(harmonics_list)))

for i, harmonics in enumerate(harmonics_list):

y = squareWave(x, T, np.pi/2) # Generate the true square
wave with a phase shift of pi/2

f = fourierSeries(harmonics, x) # Compute the Fourier
series approximation up to n_max=armonics

axs[i] .plot(x, y, color=’blue’, label=’Signal’) # Plot the
true square wave

axs[i] .plot(x, f, color=colors[i], label=’Fourier series
approximation’) # Plot the Fourier series approximation
axs[i] .set_title(f"Fourier Series approximation with
{harmonics} harmonics") # Set the title of the subplot
axs[i] .legend() # Add a legend to the subplot

plt.show() # Show the plot

()

6.3.4 Output

Executing the above Python code we obtain the following output
in Figures 5, 6, 7, 8 and 9:

Figure 5

Fourier Series approximation with 2 harmonics

1.0
0.5
—— Signal
0.0 ; P " "
Fourier series approximation
-0.5
-1.0

-20 -i5 -10 -5 0 5 10 15 20

Figure 6

Fourier Series approximation with 5 harmonics

AL DA AN
| |

0.5
00 —— Signal
: —— Fourier series approximation
-0.5

- VARV, VARV, VARV,

=20 =15 =10 =5 0 5 10 15 20

76

Figure 7

Fourier Series approximation with 10 harmonics

Lo Maandl Aaanfl Nanafl
: N ey V V ¥ V
0.5
0o —— Signal
: —— Fourier series approximation
-0.5
i /\V \/A /\v U/\ f\v U/\
V ! V ! V V
=20 =15 -10 -5 0 5 10 15 20
Figure 8
Fourier Series approximation with 15 harmonics
10 —* ——
0.5 | |
—— Signal
0.0 Fourier series approximation
_0_5 |
|
|
-1.0

—20 —15 =10 5 0 5 10 15 20

7

Figure 9

Fourier Series approximation with 20 harmonics

1.0

0.5

— Signal

0.0 ; : SO
Fourier series approximation

-20 -i5 -10 -5 0 5 10 15 20

Figures 5, 6, 7, 8 and 9 represent the Fourier Series represen-
tations of a square wave function with an increasing number of
harmonics.

6.3.5 Time trend functions

While Fourier series has been a widely used technique for capturing
seasonality in time series data, it is by no means the only option.
In fact, another method available involves the use of time trend
functions.

Time trend functions are deterministic functions that allow to
capture seasonal patterns in time series data. Unlike Fourier series,
which decomposes a signal into a sum of sine and cosine waves of
varying frequencies, time trend functions represent the pattern of
the data over time as a simple linear function. These functions are
typically used to model the trend of the data over time, but they
can also be used to capture seasonal patterns.

78

The advantage of using time trend functions to capture sea-
sonality is that they are relatively simple to implement and do not
require as much computation as Fourier series. Additionally, time
trend functions allow to capture the trend of the data over time,
which can be useful in identifying long-term patterns in the data.

One popular method of implementing time trend functions is
through the use of seasonal dummy variables. These variables are
binary indicators that take a value of 1 during a specific season and
0 during all other seasons. By including seasonal dummy variables
we can capture the seasonal patterns in the and estimate the effect
of each season on the outcome of interest.

Overall, while Fourier series remains a popular method for
capturing seasonality in time series data, the use of time trend
functions provides an alternative approach that can be just as
effective in capturing seasonal patterns. With the added benefit
of being relatively simple to implement and providing insight into
long-term trends, time trend functions should not be overlooked
when attempting to model seasonal patterns.

79

80

Chapter 7

Results and Conclusion

In approaching the conclusion of this discussion let us briefly
restate the goal of this work, review the key points and results of
the analysis, and explain why it is relevant.

This thesis has allowed an in depth analysis of a proposed
stochastic model for optimal investment in Renewable Energy
Communities. Specifically, it focused on the variety of stochastic
processes available and commonly used to model energy-related
markets and communities, the choices among the variety of pro-
cesses, and the model implementation.

The model is built on a particular type of REC composed of
a "representative” household and a biogas producer, where the
potential demand of the community is given by the household’s
demand, while both members produce renewable energy. The bio-
gas producer invests in technology to convert biogas into electricity
and sell it in the electricity market at the spot price, whereas
the biogas that is not transformed into energy can be sold on the
market at the gas spot price. The household invests in photovoltaic
panels to reduce the energy purchased from the market in order to
cover its own power demand. Moreover, investing in a renewable
energy plant provides the household with the revenues of selling
the excess of energy not used for self-consumption. The relevant
advantage of entering into a REC for both players is that their joint
self-consumption is rewarded with a governmental incentive, which
must be fairly shared.

81

The stochastic processes analyzed in this work are some of
the most commonly employed for economic and financial mod-
elling, namely Geometric Brownian Motion, Ornstein-Uhlenbeck
processes, and Lévy processes.

At the beginning of this work it was possible to expand the
picture and have a detailed view of the broader framework in which
the model lies. This includes an introductory part on Renewable
Energy Communities, their definition, the regulatory framework
and possible future developments, and a discussion on the global
environmental problem, considering the role that Renewable Energy
Communities can play in its relieve.

The last point mentioned is given a substantial weight as it is
particularly pressing in our society not only inside the borders of
the scientific community but also, and with great echo, in everyday
chats and in political agendas. Moreover, the environmental prob-
lem is one of the main drivers for scientific research and innovation
in the field of renewable energy.

At this point, after a careful and comprehensive description of
the model, we dived into a detailed analysis on Geometric Brow-
nian Motion and Ornstein-Uhlenbeck processes, explaining the
reasons for preferring the latter in our scenario.

In the next chapter of this thesis we proceeded to implement
the proposed model employing Ornstein-Uhlenbeck processes.
Because of its versatility, open source tools and widespread use
we chose as programming language Python. We computed inte-
grals thanks to a numerical integration library and conducted an
optimization procedure thanks again to a numerical optimization
library.

Executing our code we obtained a suggested optimal invest-
ment of 312.13 kW for the "representative” household and 86.90
kW for the biogas producer, in the specific case proposed. Of
course, being our model a stochastic model, each execution can
produce slightly different results.

82

Later in this work we designed a couple of suggestions to be
considered as a starting point for further research on the model.
The first one is to implement the model using Lévy processes, which
are stochastic processes with the capability to show jumps. The
second one is the inclusion in the stochastic model of deterministic
seasonality contributions. These two elements could help to capture
some of the key features of energy-related markets just mentioned,
namely the presence of jumps and seasonality.

We deeply hope that this work can have a significant and positive
impact on our society, playing a role in the necessary transition to a
new and sustainable way of producing and consuming energy. The
years and decades to come will inevitably have to face challenges
and overcome obstacles in the transition process. The positive
outcome of this struggle also depends on the tools we are equipped
with. So, the final goal of this thesis is exactly to give a contribu-
tion in providing these tools which are necessary for a successful
transition.

83

84

Bibliography

[1] A. Awerkin, P. Falbo, C. Pelizzari, and T. Vargiolu. Optimal Investment and Fair
Sharing Rules of the Incentives for Renewable Energy Communities.

[2] A. Awerking and T. Vargiolu. Optimal installation of renewable electricity
sources: the case of Italy. Decisions in Economics and Finance, 2021, vol. 44, issue 2,
No 30, pp. 1179-1209.

[3] Belk. Fourier Series. URL: https://e.math.cornell.edu/people/belk/measure
theory/Fourier%20Series.pdf.

[4] Fred Espen Benth, Jurate Saltyte Benth, and Steen Koekebakker. Stochas-
tic Modelling of Electicity and Related Markets. World Scientific, 2008.

[6] Euroean Environmental Agency. Environmental impact of energy. URL: https:
//www.eea.europa.eu/help/glossary/eea-glossary/environmental-impact-of-
energy.

[6] European Commission. Energy communities. URL: https://energy.ec.europa
.eu/topics/markets-and-consumers/energy-communities_en.

[7] European Commission. Renewable energy directive. URL: https://energy.ec.
europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and
-rules/renewable-energy-directive_en.

[8] International Energy Agency. Emissions savings. URL: https://www.iea.org/
reports/multiple-benefits-of-energy-efficiency/emissions-savings.

[9] Steven P. Lalley. Lévy Processes, Stable Processes, and Subordina-
tors. University of Chicago, Department of Statistics, USA. URL: https://
galton.uchicago.edu/ lalley/Courses/385/LevyProcesses.pdf.

[10] Manuel Moreno, Alfonso Novales, and Federico Platania. Long-
term swings and seasonality in energy markets. European Jour-
nal of Operational Research, 2019, 279, pp.1011 - 1023. URL:

https://www.sciencedirect.com/science/article/pii/S0377221719304722.

[11] NASA. What Is the Greenhouse Effect? URL: https://climatekids.nasa.
gov/greenhouse-effect/.

85

[12] NumPy. NumPy Documentation. URL: https://numpy.org/doc/.
[13] Python. Python 3.11.2 documentation. URL: https://docs.python.org/3/.

[14] Python. random - Generate pseudo-random numbers. URL: https://docs.
python.org/3/library/random.html.

[15] SciPy. minimize(method="SLSQP’). URL: https://docs.scipy.org/doc/
scipy/reference/optimize.minimize-slsqp.html.

[16] SciPy. Optimization (scipy.optimize). URL: https://docs.scipy.org/doc/
scipy/tutorial/optimize.html.

[17] SciPy. SciPy documentation. URL: https://docs.scipy.org/doc/scipy/.

[18] SciPy. scipy.integrate.quad. URL: https://docs.scipy.org/doc/scipy/
reference/generated/scipy.integrate.quad.html.

[19] Steven Shreve. Stochastic calculus for finance 2: Continuous-time models.
Springer, 2004.

[20] United Nations. =~ What Is Climate Change? URL: https://www.un.org/
en/climatechange/what-is-climate-change.

[21] Tiziano Vargiolu. Course in Stochastic Differential Equations with Numer-
ics at the University of Padova.

86

	Abstract
	Motivation
	Introduction
	The environmental issue
	Renewable Energy Communities (RECs)
	The growing interest in REC and the linked challenges
	Framework
	General setting

	The mathematical model
	The leader-follower model
	Geometric Brownian Motion
	Introduction
	Positive and negative aspects

	Ornstein-Uhlenbeck Process
	Introduction
	Positive and negative aspects

	Model choices

	Processes and Model implementation
	Why Python
	Stochastic Processes
	Geometric Brownian Motion in Python
	Ornstein-Uhlenbeck process in Python

	Numerical Integration
	scipy.integrate.quad

	Optimization
	'SLSQP'

	Code
	Geometric Brownian Motion
	Ornstein-Uhlenbeck
	Integration
	Optimization

	Output

	Further research
	Lévy Process
	Introduction
	Positive and negative aspects

	Lévy process implementation
	Stochastic process
	Lévy processes in Python
	Code
	Output

	Seasonality
	Fourier series
	Fourier series implementation
	Code
	Output
	Time trend functions

	Results and Conclusion
	Bibliography

