
Università degli studi di Padova
Department of Mathematics “Tullio Levi-Civita”

Master's degree in Computer Science

Verifying Kotlin Code with Viper
by Controlling Aliasing

Master's Thesis

Supervisor
Prof. Francesco Ranzato

Tutors
Ilya Chernikov, Komi Golov

Undergraduate
Francesco Protopapa
ID number 2079466

ACADEMIC YEAR 2023-2024

Francesco Protopapa: Verifying Kotlin Code with Viper by Controlling Aliasing, Mas-
ter's Thesis, © September 2024

Abstract
In Computer Science, aliasing refers to the situation where two or more references
point to the same object. On the one hand, aliasing can be useful in object-oriented
programming, allowing programmers to implement designs involving sharing. On the
other hand, aliasing poses significant challenges for formal verification. This is because
changing a value through a reference can modify the data that other references also
point to. As a result, it becomes more challenging to predict the behavior of the pro-
gram.
Developed by JetBrains, Kotlin is an open-source, statically typed programming lan-
guage that gained popularity in recent years especially in the Android software devel-
opment field. However, unlike other programming languages, few tools for performing
formal verification in Kotlin exist. Moreover, Kotlin does not provide any guarantee
against aliasing, making formal verification a hard task for the language.
This work introduces an annotation system for a significant subset of the Kotlin lan-
guage, designed to provide some formal guarantees on the uniqueness of references.
After presenting and formalizing the annotation system, the thesis shows how to use
these annotations for performing formal verification of Kotlin by encoding it into
Viper, a language and suite of tools developed by ETH Zurich to provide an architec-
ture for designing new verification tools. The annotation system plays a crucial role in
this process, as it bridges the gap between Kotlin’s lack of guarantees about aliasing
and Viper’s strict memory model.

iii

iv

“E il treno io l’ho preso e ho fatto bene
Spago sulla mia valigia non ce n’era
Solo un po’ d’amore la teneva insieme
Solo un po’ di rancore la teneva insieme”

––– Francesco De Gregori

Acknowledgements

First of all, I would like to thank everyone who supported me during these months,
making this work possible. My sincere thanks go to all the people at JetBrains, espe-
cially Komi Golov and Ilya Chernikov, for giving me the opportunity to work on this
project and for their guidance throughout. I would also like to express my gratitude to
my supervisor, Prof. Francesco Ranzato, for his guidance and suggestions both before
and during the development of this thesis.

Voglio poi ringraziare i miei genitori per avermi sempre aiutato nei momenti di diffi-
coltà e per tutti i sacrifici che hanno fatto per me, solo ora riesco a capire davvero
quanto certe scelte siano state complicate. Un grazie speciale anche a Chiara per es-
sermi stata sempre vicina, sia nei momenti belli che in quelli più difficili. Grazie anche
ai nonni per avermi sempre supportato.

Un grazie anche a tutti gli amici che ho incontrato a Padova per aver reso questi anni
di università indimenticabili.

I would also like to thank all the friends I met in Munich over the past year. You are
truly making my time there extraordinary.

Infine voglio ringraziare Niko e Ghenzo per tutti i bei momenti e per essere stati sempre
presenti quando ho avuto bisogno di un confronto.

Padua, September 2024 Francesco Protopapa

v

vi

Contents

1 Introduction 1
1.1 Contributions ... 1
1.2 Structure of the Thesis .. 3

2 Background 5
2.1 Kotlin .. 5

2.1.1 Mutability vs Immutability ... 5
2.1.2 Smart Casts .. 5
2.1.3 Null Safety .. 6
2.1.4 Properties .. 7
2.1.5 Contracts .. 7
2.1.6 Annotations .. 8

2.2 Aliasing and Uniqueness .. 9
2.3 Separation Logic .. 12
2.4 Viper .. 13

2.4.1 Language Overview ... 14
2.4.2 Permissions .. 15
2.4.3 Predicates and Functions .. 16
2.4.4 Domains .. 17

3 Related Work 19
3.1 The Geneva Convention ... 19

3.1.1 Detection ... 19
3.1.2 Advertisement ... 19
3.1.3 Prevention ... 19
3.1.4 Control .. 20

3.2 Systems for Controlling Aliasing .. 20
3.2.1 Controlling Aliasing through Uniqueness .. 20
3.2.2 Programming Languages with Aliasing Guarantees 21

3.3 Viper Verification Tools ... 22
3.3.1 Prusti .. 22
3.3.2 Gobra .. 22
3.3.3 Nagini .. 23

4 Uniqueness in Kotlin 25
4.1 Overview .. 25

4.1.1 Function Annotations .. 25
4.1.2 Class Annotations ... 26
4.1.3 Uniqueness and Assignments ... 27

4.2 Benefits of Uniqueness ... 28
4.2.1 Formal Verification .. 28
4.2.2 Smart Casts ... 29

vii

4.2.3 Optimizations .. 30
4.3 Stack Example ... 30

5 Annotation System 33
5.1 Grammar ... 33
5.2 General .. 34
5.3 Context .. 35
5.4 Well-Formed Context ... 35
5.5 Sub-Paths and Super-Paths ... 36

5.5.1 Definition .. 36
5.5.2 Remove .. 36
5.5.3 Deep Remove .. 37
5.5.4 Replace .. 37
5.5.5 Get Super-Paths .. 38

5.6 Relations between Annotations .. 38
5.6.1 Partial Ordering .. 38
5.6.2 Passing .. 39

5.7 Paths .. 39
5.7.1 Root .. 39
5.7.2 Lookup .. 40
5.7.3 Get .. 41
5.7.4 Standard Form .. 42

5.8 Unification ... 42
5.8.1 Pointwise LUB .. 42
5.8.2 Removal of Local Declarations .. 43
5.8.3 Unify ... 44

5.9 Normalization .. 44
5.10 Statements Typing ... 45

5.10.1 Begin ... 45
5.10.2 Sequence .. 45
5.10.3 Variable Declaration .. 45
5.10.4 Call .. 46
5.10.5 Assignments ... 48

5.10.5.1 Assign null .. 48
5.10.5.2 Assign Call ... 49
5.10.5.3 Assign Unique .. 49
5.10.5.4 Assign Shared ... 50
5.10.5.5 Assign Borrowed Field .. 51

5.10.6 If .. 51
5.10.7 Return ... 52

5.11 Stack Example ... 54

6 Encoding in Viper 55
6.1 Classes Encoding ... 55

6.1.1 Shared Predicate ... 55
6.1.2 Unique Predicate ... 57

6.2 Functions Encoding ... 58
6.2.1 Return object .. 58
6.2.2 Parameters .. 59
6.2.3 Receiver ... 60

viii

6.2.4 Constructor ... 60
6.3 Accessing Properties .. 61

6.3.1 Accessing Properties within Shared Predicate 61
6.3.2 Accessing Properties within Unique Predicate 62
6.3.3 Accessing Properties not Contained within a Predicate 63

6.4 Function Calls Encoding .. 64
6.4.1 Functions with Unique Parameters ... 64
6.4.2 Functions with Shared Parameters .. 65

6.5 Stack Example ... 66

7 Conclusion 69
7.1 Results ... 69
7.2 Future Work .. 69

7.2.1 Extending the Language ... 69
7.2.2 Improving Borrowed Fields Flexibility .. 69
7.2.3 Tracking of Local Aliases .. 70
7.2.4 Checking Annotations ... 70
7.2.5 Proving the Soundness of the Annotation System 70

Bibliography 71

A Typing Rules 75
A.1 General ... 75
A.2 Well-Formed Contexts .. 75
A.3 Sub-Paths and Super-Paths ... 75

A.3.1 Definition .. 75
A.3.2 Remove ... 76
A.3.3 Deep Remove .. 76
A.3.4 Replace ... 76
A.3.5 Get Super-Paths ... 76

A.4 Relations between Annotations .. 76
A.4.1 Partial Ordering ... 76
A.4.2 Passing ... 77

A.5 Paths .. 77
A.5.1 Root .. 77
A.5.2 Lookup ... 77
A.5.3 Get ... 77
A.5.4 Standard Form ... 77

A.6 Unification ... 78
A.6.1 Pointwise LUB .. 78
A.6.2 Removal of Local Declarations ... 78
A.6.3 Unify ... 78

A.7 Normalization .. 78
A.8 Statements Typing ... 78

ix

x

Chapter 1

Introduction

Aliasing is a topic that has been studied for decades in computer science [8,9,16] and
it refers to the situation where two or more references point to the same object. Alias-
ing is an important characteristic of object-oriented programming languages allowing
the programmers to develope complex designs involving sharing. However, reasoning
about programs written with languages that allow aliasing without any kind of control
is a hard task for programmers, compilers and formal verification tools. In fact, as
reported in the Geneva Convention on the Treatment of Object Aliasing [16], without
having guarantees about aliasing it can be difficult to prove the correctness of a simple
Hoare formula like the following.

{𝑥 = true} 𝑦 ≔ false {𝑥 = true}

Indeed, when 𝑥 and 𝑦 are aliased, the formula is not valid, and most of the time
proving that aliasing cannot occur is not straightforward.
On the other hand, ensuring disjointness of the heap enables the verification of such
formulas. For instance, in separation logic [19,28,29], it is possible to prove the cor-
rectness of the following formula.

{(𝑥 ↦ true) ∗ (𝑦 ↦ −)} 𝑦 ≔ false {(𝑥 ↦ true) ∗ (𝑦 ↦ false)}

This verification is possible because separation logic allows to express that 𝑥 and 𝑦 are
not aliased by using the separating conjunction operator “∗”. Similarly, programming
languages can incorporate annotation systems [2,7,33] or built-in constructs [17,31]
to provide similar guarantees regarding aliasing, thereby simplifying any verification
process.

1.1 Contributions
This work demonstrates how controlling aliasing through an annotation system can
enhance the formal verification process performed by SnaKt [20], an existing plugin for
the Kotlin language [1,21]. SnaKt verifies Kotlin using Viper [10,25], an intermediate
verification language developed by ETH Zurich. Viper is designed to verify programs
by enabling the specification of functions with preconditions and postconditions, which
are then checked for correctness. This verification is performed using one of two back-
ends: symbolic execution [26] or verification condition generation [15], both of which
rely on an SMT solver to validate the specified conditions.
In order to verify to Kotlin with Viper, it is necessary to translate the former language
into the latter. However, this translation presents several challenges due to fundamen-
tal differences between the two languages. Specifically, Viper’s memory model is based
on separation logic, which disallows shared mutable references. In contrast, Kotlin
does not restrict aliasing, meaning that references in Kotlin can be both shared and
mutable, posing a significant challenge when trying to encode Kotlin code into Viper.
This issue is clearly illustrated in the Kotlin code example provided in Listing 1. In
that example, the language allows the same reference to be passed multiple times when

1

calling function f, thereby creating aliasing. Additionally, Listing 1 presents a naive
approach for encoding that Kotlin code into Viper. Despite the Viper code closely
resembling the original Kotlin code, it fails verification when f(x, x) is called. This
failure occurs because f requires write access to the field n of its arguments, but as
previously mentioned, Viper’s separation logic disallows references from being both
shared and mutable simultaneously.

1 class A(Kotlin
2 var n: Int
3)
4
5 fun f(x: A, y: A) {
6 x.n = 1
7 y.n = 2
8 }
9
10 fun use_f(a: A) {
11 f(a, a)
12 }

1 field n: Int Viper
2
3 method f(x: Ref, y: Ref)
4 requires acc(x.n) && acc(y.n)
5 {
6 x.n := 1
7 y.n := 2
8 }
9
10 method use_f(a: Ref)
11 requires acc(a.n)
12 {
13 f(a, a) // verification error
14 }

Listing 1: Kotlin code with aliasing and its problematic encoding into Viper

As mentioned before, Kotlin does not have built-in mechanisms to manage or prevent
aliasing, which can lead to unintended side effects and make it harder to ensure code
correctness. To address this issue, this work proposes and formalizes an annotation
system specifically designed to manage and control aliasing within Kotlin.
The proposed annotation system introduces a way for developers to specify and en-
force stricter aliasing rules by tagging references with appropriate annotations. This
helps to clearly distinguish between references that might be shared and those that
are unique. Additionally, the system differentiates between functions that create new
aliases for their parameters and those that do not. This level of control is important
for preventing common programming errors related to mutable shared state, such as
race conditions or unintended side effects.
Listing 2 provides an overview of the annotation system. Specifically, the @Unique an-
notation ensures that a reference is not aliased, while the @Borrowed annotation guar-
antees that a function does not create new aliases for a reference. The example also
demonstrates how the problematic function call presented in Listing 1 is disallowed
by the annotation system, as x and y would be aliased when the function f requires
them to be unique.
The thesis finally shows how aligning Kotlin’s memory model with Viper’s, using the
proposed annotation system, enhances the encoding process performed by SnaKt.

2

1 class A(var n: Int) Kotlin
2
3 fun f(@Unique @Borrowed x: A, @Unique @Borrowed y: A) {
4 x.n = 1
5 y.n = 2
6 }
7
8 fun use_f(@Unique a: A) {
9 f(a, a) // annotations checking error
10 }

Listing 2: Kotlin code with annotations for aliasing control

1.2 Structure of the Thesis
The rest of the thesis is organized as follows:

Chapter 2 provides a description of the background information needed to under-
stand the concepts presented by this work. In particular, this chapter presents the
Kotlin programming language and its feature of interest for the thesis. Following
this, the chapter provides an overview of the “Aliasing” topic in Computer Science
and presents an introduction to the Viper language and its set of verification tools.

Chapter 3 analyzes works that have been fundamental for the development of this
thesis. The chapter is divided in two parts, the former describing existing works
about aliasing and systems for controlling it; the latter giving an overview of the
already existing tools that perform formal verification using Viper.

Chapter 4 introduces a uniqueness system for the Kotlin language. It shows several
examples of Kotlin code extended with uniqueness annotations and explores how
the annotations can be used for bringing improvements to the language.

Chapter 5 formalizes the annotation system introduced before on a language that
can represent a significant subset of the Kotlin language. After introducing the
language and several auxiliary rules and functions, the typing rules for the system
are formalized.

Chapter 6 shows how the annotation system presented before can be used to obtain
a better encoding of Kotlin into Viper, thus improving the quality of verification
performed by SnaKt.

Chapter 7 summarizes the contributions of this research and points out reasonable
extensions to this work as well as potential new areas for future research.

3

4

Chapter 2

Background

This chapter outlines the background information necessary to understand the con-
cepts discussed in the rest of this work. Specifically, it covers relevant aspects about
Kotlin, aliasing, separation logic, and Viper, providing a foundation for understanding
how these topics interrelate and support the main contributions of the thesis.

2.1 Kotlin
Developed by JetBrains, Kotlin [1,21] is an open-source, statically typed programming
language that gained popularity in recent years, particularly in the field of Android
software development. It shares many similarities with Java and it can fully interop-
erate with it. Additionally, Kotlin introduces a range of modern features, including
improved type inference, support for functional programming, null-safety, and smart-
casting, making it an attractive option for developers.
The following sections will present the features of the language that are more relevant
for this work.

2.1.1 Mutability vs Immutability
In programming languages, mutability refers to the capability to alter the value of
a variable after it has been initialized. In Kotlin, variables and fields can be either
mutable or immutable. Mutable elements are defined using the var keyword, while
immutable elements are defined using the val keyword. Mutable variables or fields,
once assigned, can have their values changed during the execution of the program. In
contrast, immutable elements, once assigned a value, cannot be altered subsequently.
For instance, var x = 5 allows to change the value of x later in the program, while
val y = 5 keeps y consistently at the value of 5 throughout the program’s execution.
This clear distinction between val and var is particularly useful in a multithreaded
environment since it helps to prevent race conditions and data inconsistencies.

2.1.2 Smart Casts
In Kotlin, when the compiler can determine that a variable’s type is more specific
than its declared type, it inserts a smart cast to reflect this. This means that after a
type check in a conditional expression, the variable can be used with its more specific
type within that block without additional casting. For example, after confirming a
variable is of a certain type in an if condition, the variable can be used with that type
within the if block without requiring an explicit cast. An example of smart casting is
provided in Listing 3.

5

1 open class A() Kotlin
2 class B : A() {
3 fun f() = println("B")
4 }
5
6 fun callIfIsB(a: A) {
7 if (a is B) {
8 a.f()
9 // ^^^^^
10 // Smart cast to B
11 }
12 }

Listing 3: Example of smart-cast in Kotlin

2.1.3 Null Safety
Kotlin’s type system has been designed with the goal of eliminating the danger of
null references. In many programming languages, including Java, accessing a member
of a null reference results in a null reference exception. Kotlin avoids most of these
situations because the type system distinguishes between references that can hold null
and those that cannot, the former are called nullable references while the latter are
called non-nullable references. Listing 4 shows how nullable references are declared by
appending a question mark to the type name and it shows that trying to assign null
to a non-nullable reference leads to a compilation error.

1 var nullableString: String? Kotlin
2 nullableString = "abc" // ok
3 nullableString = null // ok
4
5 var nonNullableString: String
6 nonNullableString = "abc" // ok
7 nonNullableString = null // compilation error

Listing 4: Kotlin null safety example

Accessing members of nullable reference or calling a method with a nullable reference
as receiver is only allowed if the compiler can understand that the reference will never
be null when one of these actions occurs. Usually, this is done with a smart cast con-
sidering that for every type T, its nullable counterpart T? is a supertype of T.

1 fun f(nullableString: String?) { Kotlin
2 if (nullableString != null) {
3 // 'nullableString' is smart-cast from 'String?' to 'String'
4 println(nullableString.length) // safe
5 println(nullableString.isEmpty()) // safe
6 }
7 val n = nullableString.length // compilation error
8 }

Listing 5: Kotlin smart cast to non-nullable

6

However, there are instances in which a NullPointerException can be raised in Kotlin.
These include explicit calls to throw NullPointerException(), performing unsafe (non-
smart) casts, and during Java interoperation.

2.1.4 Properties
As mentioned before, properties in Kotlin can be declared as either mutable or read-
only. While the initializer, getter, and setter for a property are optional, the property’s
type can also be omitted if it can be inferred from the initializer or the getter’s return
type. Kotlin does not allow direct declaration of fields. Instead, fields are implicitly
created as part of properties to store their values in memory. When a property requires
a backing field, Kotlin automatically provides one. This backing field can be accessed
within the property’s accessors using the field identifier. A backing field is generated
under two conditions: if the property relies on the default implementation of at least
one accessor, or if a custom accessor explicitly references the backing field via the
field identifier.

1 class Square { Kotlin
2 var width = 1 // initializer
3 set(value) { // setter
4 if (value > 0) field = value // accessing backing field
5 else throw IllegalArgumentException(
6 "Square width must be greater than 0"
7)
8 }
9 val area
10 get() = width * width // getter
11 }

Listing 6: Kotlin properties

2.1.5 Contracts
Kotlin contracts [30] are an experimental feature introduced in Kotlin 1.3 designed to
provide additional guarantees about code behavior, helping the compiler in performing
more precise analysis and optimizations. Contracts are defined using a special contract
block within a function, describing the relationship between input parameters and the
function’s effects. This can include conditions such as whether a lambda is invoked or
if a function returns under certain conditions. By specifying these relationships, con-
tracts provide guarantees to the caller of a function, offering the compiler additional
information that enable more advanced code analysis.
It is important to point out that currently contracts are only partially verified by
the compiler. In certain cases, the compiler trusts the contracts without verification,
placing the responsibility on the programmer to ensure that the contracts are correct.
In Listing 7 it is possible to see how contracts allow the initialization of immutable
variables within the body of a lambda, doing this is not possible without using a
contract (Listing 8).

7

1 public inline fun <R> run(block: () -> R): R { Kotlin
2 contract {
3 callsInPlace(block, InvocationKind.EXACTLY_ONCE)
4 }
5 return block()
6 }
7
8 fun main() {
9 val b: Boolean
10 run {
11 b = true
12 }
13 println(b)
14 }

Listing 7: Example of contract declaration and usage

1 fun <R> runWithoutContract(block: () -> R): R { Kotlin
2 return block()
3 }
4
5 fun main() {
6 val b: Boolean
7 runWithoutContract { b = true }
8 /* ^^^^^^^^
9 Captured values initialization is forbidden
10 due to possible reassignment
11 */
12 }

Listing 8: Compilation error caused by the absence of contracts

2.1.6 Annotations
Annotations provide a way to associate metadata with the code. To declare annota-
tions, the annotation modifier should be placed before a class declaration. It is also
possible to specify additional attributes by using meta-annotations on the annotation
class. For instance, @Target specifies the types of elements that can be annotated.
Listing 9 illustrates how to declare and use a custom annotation (Lines 1-13) alongside
existing annotations such as @Deprecated and @SinceKotlin.

8

1 @Target(Kotlin
2 AnnotationTarget.CLASS,
3 AnnotationTarget.FUNCTION,
4 AnnotationTarget.VALUE_PARAMETER
5)
6 annotation class MyAnnotation
7
8 @MyAnnotation
9 class MyClass {
10 @MyAnnotation
11 fun myFun(@MyAnnotation foo: Int) {
12 }
13 }
14
15 @Deprecated(
16 message = "Use newFunction() instead",
17 replaceWith = ReplaceWith("newFunction()"),
18)
19 fun oldFunction() { /* ... */ }
20
21 @SinceKotlin(version = "1.3")
22 fun newFunction() { /* ... */ }

Listing 9: Example of annotations usage

2.2 Aliasing and Uniqueness
Aliasing refers to the situation where a data location in memory can be accessed
through different symbolic names in the program. Thus, changing the data through
one name inherently leads to a change when accessed through the other name as well.
This can happen due to several reasons such as pointers, references, multiple arrays
pointing to the same memory location etc.
In contrast, uniqueness [14,24] ensures that a particular data location is accessible
through only one symbolic name at any point in time. This means that no two vari-
ables or references point to the same memory location, thus preventing unintended
side effects when data is modified. A data location that is accessible by exactly one
reference is said to be unique; similarly, the reference pointing to that data location
is also termed unique.
Uniqueness can be particularly important in concurrent programming paradigms,
where the goal is often to avoid mutable shared state to ensure predictability and
maintainability of the code [6]. By enforcing uniqueness, programmers can guarantee
that data modifications are localized and do not inadvertently affect other parts of the
program, making reasoning about program behavior and correctness more straight-
forward.
Listing 10 shows the concept of aliasing and uniqueness practically with a Kotlin ex-
ample. The function starts by declaring and initializing variable y with x, resulting
in x and y being aliased. Following that, variable z is initialized with a newly-created
object in the function’s second line. Therefore, at this stage in the program, z can

9

be referred to as “unique”, signifying that it is the only reference pointing to that
particular object.

1 class T() Kotlin
2
3 fun f(x: T) {
4 val y = x // 'x' and 'y' are now aliased
5 val z = T() // here 'z' is unique
6 }

Listing 10: Aliasing, an example

Although aliasing is essential in object-oriented programming as it allows program-
mers to implement designs involving sharing, as described in the Geneva Convention
on the Treatment of Object Aliasing [16], aliasing can be a problem in both formal
verification and practical programming.
The example in Listing 11 illustrates how aliasing between references can complicate
the formal verification process. In the given example, a class A is declared with a
boolean field x, followed by the function f which accepts two arguments a1 and a2
of type A. The function assigns true to a1.x, false to a2.x, and finally returns a1.x.
Despite the function being straightforward, we cannot assert that the function will
always return true. The reason for this uncertainty is the potential aliasing of a1 and
a2, as the second assignment might change the value of a1.x as well.
Modern programming languages frequently utilize a high degree of concurrency, which
can further complicate the verification process. As shown in Listing 12, even a simpler
function than its counterpart in Listing 11 does not permit to assert that it will always
return true. In this instance, the function only takes a single argument a of type A,
assigns true to a.x and eventually returns it. However, within a concurrent context
there may exist another thread with access to a variable aliasing a that can modify
a.x to false prior to the function’s return, thus challenging the verification process.
Listing 13 presents a contrived example to illustrate how aliasing can lead to mysteri-
ous bugs. Function f takes two lists xs and ys as arguments. If both lists are not empty,
the function removes the last element from each. One might assume this function will
never raise an IndexOutOfBoundsException. However, if xs and ys are aliased and have
a size of one, this exception will occur.
Moving to a more realistic example, Listing 14 shows a reasonable C++ implementa-
tion of the assignment operator overloading for a vector. Since C++ does not have
built-in mechanisms to control aliasing statically, in this implementation, the assign-
ment operator must explicitly address the possibility of aliasing between the this
pointer and the &other pointer (Lines 9-11). If these two pointers are found to be
identical, indicating that the object is being assigned to itself, the operation is imme-
diately terminated to prevent any unnecessary operations. Failing to properly manage
this aliasing could lead to significant issues, such as data corruption or unintended
behavior, because the operator might inadvertently delete the data before copying,
thereby causing the object to lose its original state.

10

1 class A(var x: Boolean) Kotlin
2
3 fun f(a1: A, a2: A): Boolean {
4 a1.x = true
5 a2.x = false
6 return a1.x
7 }

Listing 11: Problems caused by aliasing in formal verification

1 class A(var x: Boolean) Kotlin
2
3 fun f(a: A): Boolean {
4 a.x = true
5 return a.x
6 }

Listing 12: Problems caused by aliasing in formal verification within a concurrent
context

1 fun f(xs: MutableList<Int>, ys: MutableList<Int>) { Kotlin
2 if (xs.isNotEmpty() && ys.isNotEmpty()) {
3 xs.removeLast()
4 ys.removeLast()
5 }
6 }
7
8 fun main() {
9 val xs = mutableListOf(1)
10 f(xs, xs)
11 }

Listing 13: Problems caused by aliasing in practical programming

11

1 class Vector { C++
2 private:
3 int* data;
4 size_t size;
5 public:
6 // other code here...
7
8 Vector& operator=(const Vector& other) {
9 if (this == &other) {
10 return *this;
11 }
12
13 delete[] data;
14 size = other.size;
15 data = new int[size];
16 std::memcpy(data, other.data, size * sizeof(int));
17 return *this;
18 }
19
20 // other code here...
21 }

Listing 14: Aliasing handling in vector assignment operator overloading

2.3 Separation Logic
Separation logic [19,28,29] is an extension of first-order logic that can be used to
reason about low-level imperative programs that manipulate pointer data structures
by integrating it in Hoare’s triples. Unlike a first-order logic formula, which directly
represents a truth value, a separation logic formula represents predicates on the heap.
This enables separation logic to describe how memory locations are manipulated and
how different locations interact with each other.
The core concept of separation logic is the separating conjunction 𝑃 ∗ 𝑄, which asserts
that 𝑃 and 𝑄 hold for different, non-overlapping parts of the heap. For instance, if a
change to a single heap cell affects 𝑃 in 𝑃 ∗ 𝑄, it is guaranteed that it will not impact
𝑄. This feature eliminates the need to check for possible aliases in 𝑄. On a broader
scale, the specification {𝑃} 𝐶 {𝑄} for a heap modification can be expanded using a
rule that allows to derive {𝑃 ∗ 𝑅} 𝐶 {𝑄 ∗ 𝑅}, indicating that additional heap cells
remain untouched. This enables the initial specification {𝑃} 𝐶 {𝑄} to focus solely on
the cells involved in the program’s footprint.
Separation logic also includes other assertions: emp indicates that the heap is empty,
𝑒1 ↦ 𝑒2 specifies that the heap contains a cell at address 𝑒1 with the value 𝑒2, and
𝑎1 −∗ 𝑎2 asserts that extending the current heap with a disjoint part where 𝑎1 holds
will result in a heap where 𝑎2 holds.

12

⟨assert⟩ ⩴
| emp empty heap
| ⟨exp⟩ ↦ ⟨exp⟩ singleton heap
| ⟨assert⟩ ∗ ⟨assert⟩ separating conjunction
| ⟨assert⟩ −∗ ⟨assert⟩ separating implication

Example 2.3.1 : In separation logic, this example represents a Hoare triple,
which consists of a precondition, a command, and a postcondition.

{(𝑥 ↦ true) ∗ (𝑦 ↦ true)} 𝑥 ≔ false {(𝑥 ↦ false) ∗ (𝑦 ↦ true)}

The triple has the following meaning:

• Precondition {(𝑥 ↦ true) ∗ (𝑦 ↦ true)} describes the state of the memory be-
fore the command is executed.
‣ 𝑥 ↦ true means that reference 𝑥 points to the value true.
‣ 𝑦 ↦ true means that reference 𝑦 points to the value true.
‣ Separating conjunction ∗ indicates that 𝑥 and 𝑦 point to different locations

in memory.

• Command 𝑥 ≔ false is an assignment operation where the value referenced
by 𝑥 is updated from true to false.

• Postcondition {(𝑥 ↦ false) ∗ (𝑦 ↦ true)} describes the state of the memory
after the command is executed.
‣ After the assignment, 𝑥 now points to false, while 𝑦 continues to point to

true, reflecting that 𝑦 remains unchanged.
‣ Again, the separating conjunction ∗ ensures that 𝑥 and 𝑦 still point to dis-

tinct memory locations.

□

Example 2.3.2 : The following triple is derivable in separation logic:

{(𝑥 ↦ −) ∗ ((𝑥 ↦ 1) −∗ 𝑃)} 𝑥 ≔ 1 {𝑃}

□

2.4 Viper
Viper [10,25] (Verification Infrastructure for Permission-based Reasoning) is a lan-
guage and suite of tools developed by ETH Zurich designed to aid in the creation of
verification tools. The Viper infrastructure (Figure 1) consists of the Viper interme-
diate language and two different back-ends: one that uses symbolic execution [26] and
another that relies on verification condition generation [15].
The verification process with Viper follows several steps. First, a higher-level program-
ming language is translated into Viper’s intermediate language, which incorporates
permission-based reasoning to manage and express ownership of memory locations,
similar to separation logic.
After translation, Viper uses one of its back-ends and an SMT solver to verify the
conditions expressed in the Viper language [12]. The back-ends are designed to auto-
mate the verification process as much as possible, allowing tool developers and users to

13

focus on the verification task itself without needing to comprehend the inner behavior
of the back-ends

Figure 1: The Viper verification infrastructure [10]

2.4.1 Language Overview
The Viper intermediate language is a sequential, object-based language that provides
simple imperative constructs along with specifications and custom statements for man-
aging permission-based reasoning.
In Viper, methods can be seen as an abstraction over a sequence of operations. The
caller of a method observes its behavior solely through the method’s signature and
its preconditions and postconditions. This allows Viper to perform a method-modular
verification, avoiding all the complexities associated with interprocedural analysis.

1 method multiply(x: Int, y: Int) returns (res: Int) Viper
2 requires x >= 0 && y >= 0
3 ensures res == x * y
4 {
5 res := 0
6 var i: Int := 0
7 while (i < x)
8 invariant i <= x
9 invariant res == i * y
10 {
11 res := res + y
12 i := i + 1
13 }
14 }

Listing 15: Viper method example

Listing 15 shows an example of method in Viper. It is possible to notice that the
signature of the method (Line 1) declares the returned values as a list of variables.
Preconditions (Line 2), postconditions (Line 3) and invariants (Lines 8-9) are the as-
sertions subject to verification. The remaining statements are similar to most of the
existing programming languages. The language is statically typed and several built-in
types like Ref, Bool, Int, Seq, Set and others are provided.

14

2.4.2 Permissions
In Viper, fields are top-level declarations and, since classes do not exist in Viper, every
object has all the declared fields. Field permissions, which define the heap areas that
an expression, a statement, or an assertion can access, control the reasoning of a Viper
program’s heap. Heap locations are only accessible if the relevant permission is under
the control of the method currently being verified. Listing 16 shows how a method
can require field permissions in its preconditions (Line 4) and ensure that these per-
missions will still be valid when returning to the caller (Line 5).

1 field b: Bool Viper
2
3 method negate(this: Ref)
4 requires acc(this.b)
5 ensures acc(this.b)
6 {
7 this.b := !this.b
8 }

Listing 16: Viper permissions example

As well as being declared in preconditions and postconditions, field permissions can
also be obtained within a method’s body. The operation that allows to gain permis-
sions is called inhaling and can be seen in Listing 17 (Line 3). The opposite operation
is called exhaling and enables to drop permissions. Listing 17 also allows to notice how
access permissions that has been seen until now are exclusive. In fact, the assertion
acc(x.b) && acc(y.b) is similar to a separating conjunction in separation logic and
so inhaling that assertion implies that x != y. This is confirmed by the fact that the
statement at Line 6 can be verified.

1 field b: Bool Viper
2
3 method exclusivity(x: Ref, y: Ref)
4 {
5 inhale acc(x.b) && acc(y.b)
6 assert x != y
7 x.b := true
8 y.b := true
9 }

Listing 17: Viper exclusivity example

Sometimes, exclusive permissions can be too restrictive. Viper also allows to have frac-
tional permissions for heap locations that can be shared but only read. Fractional per-
missions are declared with a permission amount between 0 and 1 or with the wildcard
keyword. The value represented by a wildcard is not constant, instead it is reselected
each time an expression involving a wildcard is identified. The wildcard permission
amount provides a convenient way to implement duplicable read-only resources, which
is often suitable for the representation of immutable data. The example in Listing 18
shows how fractional permissions can be combined to gain full permissions (Line 6-7).
In the same example it is also possible to see that Viper does not allow to have a
permission amount greater than 1, in fact, since wildcard is an amount greater than

15

0, a situation in which x == y == z is not possible and so the assertion on Line 11 can
be verified.

1 field b: Bool Viper
2
3 method fractional(x: Ref, y: Ref, z: Ref)
4 requires acc(x.b, 1/2)
5 requires acc(y.b, 1/2)
6 requires acc(z.b, wildcard)
7 {
8 if (x == y) {
9 x.b := true
10 if (x == z) {
11 assert false
12 }
13 }
14 }

Listing 18: Viper fractional permissions example

2.4.3 Predicates and Functions
Predicates can be seen as an abstraction tool over assertions, which can include re-
sources like field permissions. The body of a predicate is an assertion. However, pred-
icates are not automatically inlined. In fact, in order to substitute the predicate re-
source with the assertions defined by its body, it is necessary to perform an unfold
operation. The opposite operation is called a fold: folding a predicate substitutes the
resources determined by its core content with an instance of the predicate. Having
predicates that are not automatically inlined is fundamental since it allows to repre-
sent potentially unbounded data structures as shown in Listing 19 (Lines 4-8) where
the predicate List can represent a linked-list. The same example shows how unfold
and fold operations can be performed to access the value of the second element of a
list (Lines 22-26).
Similar to predicates, functions in Viper are used to define parameterized and poten-
tially recursive assertions. The body of a function must be an expression, ensuring
that the evaluation of a function is side-effect free, just like any other Viper expres-
sion. Unlike methods, Viper reasons about functions based on their bodies, so it is not
necessary to specify postconditions when the function body is provided. In Listing 19
(Lines 11-15), a function is first used to represent the size of a List, and then is utilized
in the preconditions of the get_second method (Line 19).

16

1 field value: Int Viper
2 field next: Ref
3
4 predicate List(this: Ref)
5 {
6 acc(this.value) &&
7 acc(this.next) &&
8 (this.next != null ==> List(this.next))
9 }
10
11 function size(xs: Ref): Int
12 requires List(xs)
13 {
14 unfolding List(xs) in xs.next == null ? 1 : 1 + size(xs.next)
15 }
16
17
18 method get_second(xs: Ref) returns(res: Int)
19 requires List(xs) && size(xs) > 1
20 ensures List(xs)
21 {
22 unfold List(xs)
23 unfold List(xs.next)
24 res := xs.next.value
25 fold List(xs.next)
26 fold List(xs)
27 }

Listing 19: Viper predicate and function example

2.4.4 Domains
Domains allow the creation of custom types, mathematical functions, and axioms that
define their properties. The functions defined within a domain are accessible globally
across the Viper program. These are known as domain functions, and they have more
limitations compared to standard Viper functions. Domain functions cannot have pre-
conditions and can be used in any program state. They are also always abstract,
meaning that they cannot have an implemented body. To give meaning to these ab-
stract functions, domain axioms are used. Domain axioms are also global and define
properties that are assumed to be true in all states. Typically, they are expressed as
standard first-order logic assertions.

17

1 domain Fraction { Viper
2 function nominator(f: Fraction): Int
3 function denominator(f: Fraction): Int
4 function create_fraction(n: Int, d: Int): Fraction
5 function multiply(f1: Fraction, f2: Fraction): Fraction
6
7 axiom axConstruction {
8 forall f: Fraction, n: Int, d: Int ::
9 f == create_fraction(n, d) ==>
10 nominator(f) == n && denominator(f) == d
11 }
12
13 axiom axMultiply {
14 forall f1: Fraction, f2: Fraction, res: Fraction ::
15 res == multiply(f1, f2) ==>
16 (nominator(res) == nominator(f1) * nominator(f2)) &&
17 (denominator(res) == denominator(f1) * denominator(f2))
18 }
19 }
20
21 method m(x: Int)
22 {
23 var f: Fraction
24 f := create_fraction(x, 2)
25 assert nominator(f) == x
26 assert denominator(f) == 2
27
28 var f_sq: Fraction
29 f_sq := multiply(f, f)
30 assert nominator(f_sq) == x * x
31 assert denominator(f_sq) == 4
32 }

Listing 20: Viper domain example

18

Chapter 3

Related Work

This chapter first outlines the foundational principles established in the Geneva Con-
vention on the Treatment of Object Aliasing [16], which serves as a fundamental refer-
ence for any work addressing aliasing issues. Then, it provides an overview of existing
approaches to managing uniqueness in programming languages, focusing on the design
choices that have influenced the development of the uniqueness system proposed in
this work. Finally, the chapter examines current systems that utilize Viper for verifi-
cation, providing a critical analysis of their strengths and limitations.

3.1 The Geneva Convention
The Geneva Convention [16] examines the issues related to aliasing management in
object-oriented programming languages. After introducing the aliasing problem, the
paper establishes four primary methods to manage aliasing: Detection, Advertisement,
Prevention, and Control.

3.1.1 Detection
Alias detection is a retrospective process that identifies potential or actual alias pat-
terns in a program using static or dynamic techniques. This is beneficial for compilers,
static analysis tools, and programmers, as it helps detect aliasing conflicts, enables
more efficient code generation, identifies cases where aliasing may invalidate predi-
cates, and assists in resolving problematic conflicts. However, alias detection requires
complex interprocedural analysis due to its non-local nature, which can make compre-
hensive analyses too slow to be practical. For this reason, this approach is not adopted
in this work.

3.1.2 Advertisement
Given the impracticality of global detection, it is essential to create techniques and
constructs that enable a more modular approach to analysis. Constructs that improve
the locality of analysis by annotating methods based on their resulting aliasing be-
haviors can be useful for both programmers and formalists.
One example of this concept is to specify that the output of a function is not aliased
anywhere else in the program, signifying that it is unique. Additionally, an “uncap-
tured” qualifier could state that an object is never assigned to a variable that might
lead to further modifications through side channels once the method has returned.

3.1.3 Prevention
Alias prevention techniques introduce constructs that ensure aliasing does not occur
in specific contexts, in a way that can be statically verified. This differs from alias
advertisement, where annotations enable a modular analysis but are not checked. For
static checkability, constructs must be conservatively defined. For instance, a check-
able version of “uncaptured” might restrict all variable bindings within a method, ex-
cept when calling other methods that also have uncaptured attributes. This approach

19

would forbid uses that programmers may happen to know as alias-free but cannot be
statically checked to be safe.
As will be illustrated in Chapter 4 and in Chapter 5, the uniqueness system developed
in this work falls into this category, as it employs conservative annotations to enforce
alias prevention in a manner that can be statically verified.

3.1.4 Control
Aliasing prevention alone may not be sufficient because aliasing can be unavoidable
in conventional object-oriented programming. In aliasing control, the programmer de-
termines that the system will never reach a state where unexpected aliasing occurs,
even though this possibility cannot be ruled out when examining code components
individually. This is verified through an analysis of state reachability.

3.2 Systems for Controlling Aliasing
In recent decades, extensive research has been conducted to address the issue of alias-
ing. The book Aliasing in Object-Oriented Programming [8] provides a comprehensive
survey of the latest techniques for managing aliasing in object-oriented programming.

3.2.1 Controlling Aliasing through Uniqueness
A uniqueness type system distinguishes values referenced no more than once from
values that can be referenced multiple times in a program. Harrington’s Uniqueness
Logic [14] provides a formalization of the concept of uniqueness. While it may initially
appear similar to the more widely known Linear Logic [13], Marshall et al. [24] clarify
the differences between these two approaches and demonstrate how they can coexist.
The common trait of all systems based on uniqueness is that a reference declared as
unique points to an object that is not accessible by any other reference, unless such
references are explicitly tracked by the system. Moreover, the unique status of a ref-
erence can be dropped at any point in the program.
A first approach to ensuring uniqueness consists of using destructive reads. Aldrich
et al. [2] have developed a system called AliasJava for controlling aliasing which uses
this approach. AliasJava is characterized by a strong uniqueness invariant asserting
that “at a particular point in dynamic program execution, if a variable or field that
refers to an object o is annotated unique, then no other field in the program refers
to o, and all other local variables that refer to o are annotated lent”. This invariant
is maintained by the fact that unique references can only be read in a destructive
manner, meaning that immediately after being read, the value null is assigned to the
reference.
Boyland [7] proposes a system for controlling aliasing in Java that does not require to
use destructive reads. The system utilizes a set of annotations to distinguish between
different types of references. Specifically, procedure parameters and return values can
be annotated as unique, indicating that they are not aliased elsewhere. Conversely,
parameters and return values that are not unique are classified as shared. Within the
system, a shared parameter may also be declared as borrowed, meaning that the func-
tion will not create further aliases for that parameter. Finally, fields can be marked as
unique; if not, they are treated as shared. The main contribution of Boyland’s work
is the introduction of the “alias burying” rule: “When a unique field of an object is
read, all aliases of the field are made undefined”. This means that aliases of a unique
field are allowed if they are assigned before being used again. The “alias burying” rule
is important because it allows to avoid having destructive reads for unique references.

20

On the other hand, having a shared reference does not provide any guarantee on the
uniqueness of that reference. Finally the object referred to by a borrowed parameter
may not be returned from a procedure, assigned to a field or passed as a non-borrowed
parameter.
Zimmerman et al. [33] propose an approach to reduce both the volume of annotations
and the complexity of invariants necessary for reasoning about aliasing in an object-
oriented language with mutation. The system requires minimal annotations from the
user: fields and return types can be annotated as unique or shared, while method
parameters can be marked as unique, shared, or owned. For local variables, the system
automatically infers the necessary information. Furthermore, the system provides flex-
ibility for uniqueness by permitting local variable aliasing, as long as this aliasing can
be precisely determined. A uniqueness invariant is defined as follows: “a unique object
is stored at most once on the heap. In addition, all usable references to a unique object
from the local environment are precisely inferred”. The system’s analysis produces at
each program point an “alias graph”, that is an undirected graph whose nodes are
syntactic paths and distinct paths 𝑝1 and 𝑝2 are connected iff 𝑝1 and 𝑝2 are aliased.
Moreover a directed graph whose nodes are syntactic path called “reference graph” is
also produced for every program point. Intuitively, having an edge from 𝑝1 to 𝑝2 in
the reference graph means that the annotation of 𝑝1 requires to be updated when 𝑝2
is updated.

3.2.2 Programming Languages with Aliasing Guarantees
Recently, several programming languages have started to introduce type systems that
provide strong guarantees regarding aliasing.
Rust is a modern programming language that prioritizes both high performance and
static safety. A key feature of Rust is its ownership-based type system [31], which
guarantees memory safety by preventing problems such as dangling pointers, data
races, and unintended side effects from aliased references. The type system enforces
strict rules, allowing memory to be either mutable or shared, but not both at the same
time. This approach helps to avoid common memory errors and aligns Rust’s memory
model with principles from separation logic, facilitating formal verification [23].
Swift is another language that has introduced constructs to manage aliasing effectively
[17,18]. By default, function arguments in Swift are passed by value, which means
any modifications made within the function do not affect the original argument in the
caller. However, parameters marked as inout behave differently. When a function is
called with an inout parameter, the argument’s value is copied. The function then
works with this copy, and when it returns, the modified copy is assigned back to
the original argument. Swift guarantees memory exclusivity, meaning that accessing
an inout value from two different references simultaneously is prohibited, thereby
preventing aliasing issues. In addition to inout, Swift provides two other parameter
modifiers to manage ownership more precisely. The borrowing modifier indicates that
the function temporarily accesses the parameter’s value without taking ownership,
leaving the caller responsible for the object’s lifetime. This approach minimizes over-
head when the function uses the object only transiently. Conversely, the consuming
modifier indicates that the function takes full ownership of the value, including the
responsibility for either storing or destroying it before the function returns.
Finally, Granule [27] is a language designed with a focus on fine-grained resource man-
agement. Its type system combines linear types, indexed types (lightweight dependent
types), and graded modal types to enable advanced quantitative reasoning. This com-
bination offers strong guarantees for memory management and aliasing, ensuring strict

21

control over when and how resources can be accessed. Granule aims to demonstrate
the reasoning power of combining linear, graded, and indexed types, particularly in
the context of common language features such as data types, pattern matching, and
recursion.

3.3 Viper Verification Tools
Several verifiers have been built on top of Viper. The most relevant tools for this work
are: Prusti, a verifier for the Rust programming language, Gobra, used to verify code
written in Go, and Nagini, which can be used to verify Python programs.
All these tools require the user to add annotations to the code that has to be verified.
However, the number of annotations needed is inversely proportional to the robustness
of the language’s type system. This is the reason why the verifier for the Rust language
is able to verify significant properties even without annotations, while other verifiers
cannot work without user-provided annotations.

3.3.1 Prusti
Based on the Viper infrastructure, Prusti [3,4] is an automated verifier for Rust pro-
grams. It takes advantage of Rust’s robust type system to make the specification and
verification processes more straightforward.
By default, Prusti ensures that a Rust program will not encounter an unrecoverable
error state causing it to terminate at runtime. This includes panics caused by explicit
panic!(...) calls as well as those from bounds-checks or integer overflows.
In addition to use Prusti to ensure that programs are free from runtime panics, de-
velopers can gradually add annotations to their code, thereby achieving increasingly
robust correctness guarantees and improving the overall reliability and safety of their
software.
In terms of Viper encoding, Rust structs are represented as potentially nested and
recursive predicates representing unique access to a type instance. Furthermore, moves
and straightforward usages of Rust’s shared and mutable borrows are akin to owner-
ship transfers within the permission semantics of separation logic assertions. Rebor-
rowing is directly modeled using magic wands, Viper’s counterpart to the separating
implication in separation logic. When a reborrowed reference is returned to the caller,
it includes a magic wand denoting the ownership of all locations from which borrowing
occurred, except those currently in the proof.

3.3.2 Gobra
Go is a programming language that combines typical characteristics of imperative
languages, like mutable heap-based data structures, with more unique elements such
as structural subtyping and efficient concurrency primitives. This mix of mutable data
and sophisticated concurrency constructs presents unique challenges for static program
verification.
Gobra [32] is a tool designed for Go that allows modular verification of programs.
It can ensure memory safety, crash resistance, absence of data races, and compliance
with user-defined specifications.
Compared to Prusti, Gobra generally requires more user-provided annotations. Bench-
marks by Wolf et al. [32] indicate that the annotation overhead varies from 0.3 to 3.1
lines of annotations per line of code.

22

3.3.3 Nagini
Nagini [11] is a verification tool for statically-typed, concurrent Python programs. Its
capabilities include proving memory safety, freedom from data races, and user-defined
assertions.
Programs must follow to the static, nominal type system described in PEP 484 and
implemented by the Mypy type checker to be compatible with Nagini. This type sys-
tem requires type annotations for function parameters and return types, while types
for local variables are inferred.
The tool includes a library of specification functions to express preconditions and
postconditions, loop invariants, and other assertions.
By default, Nagini verifies several safety properties, ensuring that validated programs
do not emit runtime errors or undeclared exceptions. Its permission system ensures
that validated code is memory safe and free of data races. Moreover, the tool can
verify functional properties, input/output properties and can ensue that no thread is
indefinitely blocked when acquiring a lock or joining another thread, thus including
deadlock freedom and termination.
Similarly to Gobra, Nagini requires a significant amount of annotations provided by
the user and requires users to write fold operations.

23

24

Chapter 4

Uniqueness in Kotlin

This chapter introduces a uniqueness system for Kotlin that takes inspiration from the
systems described in Subsection 3.2.1. The following subsections provide an overview
of this system, with formal rules defined in Chapter 5.

4.1 Overview
The uniqueness system introduces two annotations, as shown in Listing 21. The Unique
annotation can be applied to class properties, as well as function receivers, parameters,
and return values. In contrast, the Borrowed annotation can only be used on function
receivers and parameters. These are the only annotations the user needs to write,
annotations for local variables are inferred.
Generally, a reference annotated with Unique is either null or the sole accessible ref-
erence to an object. Conversely, if a reference is not unique, there are no guarantees
about how many accessible references exist to the object. Such references are referred
to as shared.
The Borrowed annotation is similar to the one described by Boyland [7] and also to
the Owned annotation discussed by Zimmerman et al. [33]. In this system, every func-
tion must ensure that no additional aliases are created for parameters annotated with
Borrowed. Moreover, a distinguishing feature of this system is that borrowed parame-
ters can either be unique or shared.

1 @Target(Kotlin
2 AnnotationTarget.VALUE_PARAMETER,
3 AnnotationTarget.FUNCTION,
4 AnnotationTarget.PROPERTY
5)
6 annotation class Unique
7
8 @Target(AnnotationTarget.VALUE_PARAMETER)
9 annotation class Borrowed

Listing 21: Annotations for the Kotlin uniqueness system

4.1.1 Function Annotations
The system allows annotating the receiver and parameters of a function as Unique. It
is also possible to declare that a function’s return value is unique by annotating the
function itself. When a receiver or parameter is annotated with Unique, it imposes a
restriction on the caller, that must pass a unique reference, and provides a guarantee
to the callee, ensuring that it has a unique reference at the begin of its execution.
Conversely, a return value annotated with Unique guarantees to the caller that the
function will return a unique object and imposes a requirement on the callee to return
a unique object.

25

Additionally, function parameters and receivers can be annotated as Borrowed. This
imposes a restriction on the callee, which must ensure that no further aliases are cre-
ated, and guarantees to the caller that passing a unique reference will preserve its
uniqueness. On the other hand, if a unique reference is passed to a function without
borrowing guarantees, the variable becomes inaccessible to the caller until it is reas-
signed.

1 class T() Kotlin
2
3 fun consumeUnique(@Unique t: T) { /* ... */ }
4
5 @Unique
6 fun returnUniqueError(@Unique t: T): T {
7 consumeUnique(t) // uniqueness is lost
8 return t // error: 'returnUniqueError' must return a unique reference
9 }
10
11 fun borrowUnique(@Unique @Borrowed t: T) { /* ... */ }
12 fun borrowShared(@Borrowed t: T) { /* ... */ }
13
14 @Unique
15 fun returnUniqueCorrect(@Unique t: T): T {
16 borrowUnique(t) // uniqueness is preserved
17 borrowShared(t) // uniqueness is preserved
18 return t // ok
19 }
20
21 fun sharedToUnique(t: T) {

22 consumeUnique(t) // error: 'consumeUnique' expects a unique argument,
but 't' is shared

23 }

Listing 22: Uniqueness annotations usage on Kotlin functions

4.1.2 Class Annotations
Classes can have their properties annotated as Unique. Annotations on properties de-
fine their uniqueness at the beginning of a method. However, despite the annotation, a
property marked as Unique may still be accessible through multiple paths. For a prop-
erty to be accessible through a single path, both the property and the object owning
it must be annotated as Unique. This principle also applies recursively to nested prop-
erties, where the uniqueness of the entire chain of ownership is necessary to ensure
single-path access. For example, in Listing 23, even though the property x of the class
A is annotated as Unique, sharedA.x is shared because sharedA, the owner of property
x, is shared.
Moreover, properties with primitive types do not need to be annotated. This is be-
cause, unlike objects, primitive types are copied rather than referenced, meaning that
each variable holds its own independent value. Therefore, the concept of uniqueness,
which is designed to manage the sharing and mutation of objects in memory, does not

26

apply to primitive types. They are always unique in the sense that each instance op-
erates independently, and there is no risk of aliasing or unintended side effects through
shared references.

1 class T() Kotlin
2
3 class A(
4 @property:Unique var x: T,
5 var y: T,
6)
7
8 fun borrowUnique(@Unique @Borrowed t: T) {}
9
10 fun f(@Unique uniqueA: A, sharedA: A) {

11 borrowUnique(uniqueA.x) // ok: both 'uniqueA' and property 'x' are
unique

12 borrowUnique(uniqueA.y) // error: 'uniqueA.y' is not unique since
property 'y' is shared

13 borrowUnique(sharedA.x) // error: 'sharedA.x' is not unique since
'sharedA' is shared

14 }

Listing 23: Uniqueness annotations usage on Kotlin classes

4.1.3 Uniqueness and Assignments
The uniqueness system handles assignments similarly to Boyland’s system [7]. Specif-
ically, once a unique reference is read, it cannot be accessed again until it has been
reassigned. However, passing a reference to a function expecting a Borrowed argument
does not count as reading, since borrowing ensures that no further aliases are created
during the function’s execution. This approach allows for the formulation of the fol-
lowing uniqueness invariant: “A unique reference is either null or points to an object
as the only accessible reference to that object.”

27

1 class T() Kotlin
2 class A(@property:Unique var t: T?)
3
4 fun borrowUnique(@Unique @Borrowed t: T?) {}
5
6 fun incorrectAssignment(@Unique a: A) {
7 val temp = a.t // 'temp' becomes unique, but 'a.t' becomes inaccessible
8 borrowUnique(a.t) // error: 'a.t' cannot be accessed
9 }
10
11 fun correctAssignment(@Unique a: A) {
12 borrowUnique(a.t) // ok, 'a.t' remains accessible
13 val temp = a.t // 'temp' becomes unique, but 'a.t' becomes inaccessible
14 borrowUnique(temp) // ok
15 a.t = null // 'a.t' is unique again
16 borrowUnique(a.t) // ok
17 }

Listing 24: Uniqueness behavior with assignments in Kotlin

4.2 Benefits of Uniqueness
The uniqueness annotations that have been introduced can bring several benefits to
the language.

4.2.1 Formal Verification
The main goal of introducing the concept of uniqueness in Kotlin is to enable the
verification of interesting functional properties. For example, it might be interesting
to prove the absence of IndexOutOfBoundsException in a function. However, the lack of
aliasing guarantees within a concurrent context in Kotlin can complicate such proofs
[22], even for relatively simple functions like the one shown in Listing 25. In this ex-
ample, the following scenario could potentially lead to an IndexOutOfBoundsException:
• The function executes xs.add(x), adding an element to the list xs.
• Concurrently, another function with access to an alias of xs invokes the clear

method, emptying the list.
• Subsequently, xs[0] is called on the now-empty list, raising an

IndexOutOfBoundsException.

Uniqueness, however, offers a solution by providing stronger guarantees. If xs is unique,
there are no other accessible references to the same object, which simplifies proving
the absence of IndexOutOfBoundsException.

1 fun <T> f(xs: MutableList<T>, x: T) : T { Kotlin
2 xs.add(x)
3 return xs[0]
4 }

Listing 25: Function using a mutable list

28

Moreover, the concept of uniqueness can significantly facilitate the process of encoding
Kotlin programs into Viper. Uniqueness guarantees that a reference to an object is
exclusive, meaning there are no other accessible references to it. This characteristic
aligns well with Viper’s notion of write access. In Viper, write access refers to a situa-
tion where a reference is guaranteed to be inaccessible to any other part of the program
outside the method performing the write operation. This guarantee allows Viper to
perform rigorous formal verification since it can assume that no external factors will
alter the reference while it is being used.

4.2.2 Smart Casts
As introduced in Subsection 2.1.2, smart casts are an important feature in Kotlin that
allow developers to avoid using explicit cast operators under certain conditions. How-
ever, the compiler can only perform a smart cast if it can guarantee that the cast will
always be safe [1]. This guarantee relies on the concept of stability: a variable is con-
sidered stable if it cannot change after being checked, allowing the compiler to safely
assume its type throughout a block of code. Since Kotlin allows for concurrent execu-
tion, the compiler cannot perform smart casts when dealing with mutable properties.
The reason is that after checking the type of a mutable property, another function
running concurrently may access the same reference and change its value. Listing 26,
shows that after checking that a.valProperty is not null, the compiler can smart cast
it from Int? to Int. However, the same operation is not possible for a.varProperty
because, immediately after checking that it is not null, another function running con-
currently might set it to null. Guarantees on the uniqueness of references can enable
the compiler to perform more exhaustive analysis for smart casts. When a reference
is unique, the uniqueness system ensures that there are no accessible aliases to that
reference, meaning it is impossible for a concurrently running function to modify its
value. Listing 27 shows the same example as before, but with the function parameter
being unique. Since a is unique, it is completely safe to smart cast a.varProperty from
Int? to Int after verifying that it is not null.

1 class A(var varProperty: Int?, val valProperty: Int?) Kotlin
2
3 fun useSharedA(a: A): Int {
4 return when {
5 a.valProperty != null -> a.valProperty // smart cast
6 a.varProperty != null -> a.varProperty // compilation error
7 else -> 0
8 }
9 }

Listing 26: Smart cast error caused by mutability

29

1 class A(var varProperty: Int?, val valProperty: Int?) Kotlin
2
3 fun useUniqueA(@Unique @Borrowed a: A): Int {
4 return when {
5 a.valProperty != null -> a.valProperty // smart cast to Int
6 a.varProperty != null -> a.varProperty // smart cast to Int
7 else -> 0
8 }
9 }

Listing 27: Smart cast enabled thanks to uniqueness

4.2.3 Optimizations
Uniqueness can also optimize functions in certain circumstances, particularly when
working with data structures like lists. In the Kotlin standard library, functions that
manipulate lists, such as filter, map, and reversed, typically create a new list to store
the results of the operation. For instance, as shown in Listing 28, the filter function
traverses the original list, selects the elements that meet the criteria, and stores these
elements in a newly created list. Similarly, map generates a new list by applying a
transformation to each element, and reversed produces a new list with the elements
in reverse order.
While this approach ensures that the original list remains unchanged, it also incurs
additional memory and processing overhead due to the creation of new lists. However,
when the uniqueness of a reference to the list is guaranteed, these standard library
functions could be optimized to safely manipulate the list in place. This means that
instead of creating a new list, the function would modify the original list directly,
significantly improving performance by reducing memory usage and execution time.

1 fun manipulateList(xs: List<Int>): List<Int> { Kotlin
2 return xs.filter { it % 2 == 0 }
3 .map { it + 1 }
4 .reversed()
5 }

Listing 28: List manipulation example

4.3 Stack Example
To conclude the overview of the uniqueness system, a more complex example is pro-
vided in Listing 29. The example shows the implementation of an alias-free stack,
a common illustration in the literature for showcasing uniqueness systems in action
[2,33]. It is interesting to note that having a unique receiver for the pop function allows
to safely smart cast this.root from Node? to Node (Lines 19-20); this would not be
allowed without uniqueness guarantees since root is a mutable property.

30

1 class Node(Kotlin
2 @property:Unique var value: Any?,
3 @property:Unique var next: Node?,
4)
5
6 class Stack(@property:Unique var root: Node?)
7
8 fun @receiver:Borrowed @receiver:Unique Stack.push(@Unique value: Any?) {
9 val r = this.root
10 this.root = Node(value, r)
11 }
12
13 @Unique
14 fun @receiver:Borrowed @receiver:Unique Stack.pop(): Any? {
15 val value: Any?
16 if (this.root == null) {
17 value = null
18 } else {
19 value = this.root.value
20 this.root = this.root.next
21 }
22 return value
23 }

Listing 29: Stack implementation with uniqueness annotations

31

32

Chapter 5

Annotation System

This chapter formalizes the uniqueness system that was introduced in Chapter 4.
While inspired by prior works [2,7,33], it introduces several significant improvements.
This system is designed for being as lightweight as possible and gradually integrable
with already existing Kotlin code. The main goal of the system is to improve SnaKt’s
verification process by adding aliasing control to Kotlin, thereby establishing a con-
nection to separation logic in Viper.

5.1 Grammar
In order to define the rules of this annotation system, a grammar representing a subset
of the Kotlin language is used. This grammar captures the specific syntax and features
that the system needs to handle. By focusing on a subset, the rules can be more clearly
defined and easier to manage, while many complex features of the language can be
supported through syntactic sugar.

𝑃 ⩴ CL × 𝑀
CL ⩴ class 𝐶(𝑓 : 𝛼𝑓)

𝑀 ⩴ 𝑚(𝑥 : 𝛼𝑓𝛽) : 𝛼𝑓{begin𝑚; 𝑠; return𝑚𝑒} | 𝑚(𝑥 : 𝛼𝑓𝛽) : 𝛼𝑓

𝛼𝑓 ⩴ unique | shared
𝛽 ⩴ ⋅ | ♭
𝑝 ⩴ 𝑥 | 𝑝.𝑓
𝑒 ⩴ null | 𝑝 | 𝑚(𝑝)
𝑠 ⩴ var 𝑥 | 𝑝 = 𝑒 | 𝑠1; 𝑠2 | if 𝑝1 == 𝑝2 then 𝑠1 else 𝑠2 | 𝑚(𝑝)

Classes are made of fields, each associated with an annotation 𝛼𝑓 . Methods have
parameters that are also associated with an annotation 𝛼𝑓 as well as an additional
annotation 𝛽, and they are further annotated with 𝛼𝑓 for the returned value. The
receiver of a method is not explicitly included in the grammar, as it can be treated
as a parameter. Similarly, constructors are excluded from the grammar since they can
be viewed as methods without a body returning a unique value. Overall, a program is
simply made of a set of classes and a set of methods.
The annotations are the same that have been introduced in the previous chapter, the
only difference is that Borrowed is represented using the symbol ♭. Finally, statements
and expressions are pretty similar to Kotlin.
The runtime semantics of this grammar is not formalized in this work, as it corre-
sponds to the expected semantics for an imperative language. Moreover, annotations
do not impact the runtime behavior of the program.

33

1 class C(
2 f1: unique,
3 f2: shared
4)
5
6 m1() : unique {
7 ...
8 }
9
10 m2(this: unique) : shared {
11 ...
12 }
13
14 m3(
15 x1: unique,
16 x2: unique ♭,
17 x3: shared,
18 x4: shared ♭
19) {
20 ...
21 }

1 class C(Kotlin
2 @property:Unique var f1: Any,
3 var f2: Any
4)
5
6 @Unique fun m1(): Any {
7 /* ... */
8 }
9
10 fun @receiver:Unique Any.m2() {
11 /* ... */
12 }
13
14 fun m3(
15 @Unique x1: Any,
16 @Unique @Borrowed x2: Any,
17 x3: Any,
18 @Borrowed x4: Any
19) {
20 /* ... */
21 }

Listing 30: Comparison between the grammar and annotated Kotlin

5.2 General

𝑚(𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛) : 𝛼{begin𝑚; 𝑠; return𝑚𝑒} ∈ 𝑃
m-type(𝑚) = 𝛼0𝛽0, …, 𝛼𝑛𝛽𝑛 → 𝛼

M-Type-1

𝑚(𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛) : 𝛼 ∈ 𝑃
m-type(𝑚) = 𝛼0𝛽0, …, 𝛼𝑛𝛽𝑛 → 𝛼

M-Type-2

𝑚(𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛) : 𝛼{begin𝑚; 𝑠; return𝑚𝑒} ∈ 𝑃
args(𝑚) = 𝑥0, …, 𝑥𝑛

M-Args-1

𝑚(𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛) : 𝛼 ∈ 𝑃
args(𝑚) = 𝑥0, …, 𝑥𝑛

M-Args-2

class 𝐶(𝑓 ′ : 𝛼′
𝑓 , 𝑓 : 𝛼𝑓 , 𝑓″ : 𝛼″

𝑓) ∈ 𝑃

default(𝑓) = 𝛼𝑓
F-Default

Given a program 𝑃 , M-Type rules define a function taking a method name and re-
turning its type. Similarly, M-Args rules define a function taking a method name and
returning its arguments. In order to derive these rules, the method must be contained

34

within 𝑃 . For simplicity, it is assumed that in 𝑃 , fields within the same class, as well as
across different classes, have distinct names. This assumption simplifies the definition
of the F-Default rule, which defines a function that returns the type of a given field.

Example 5.2.1 : Given a method:

𝑚(𝑥 : unique ♭, 𝑦 : shared) : unique

The type and the arguments of 𝑚 are the following:

m-type(𝑚) = unique ♭, shared → unique
args(𝑚) = 𝑥, 𝑦

□

5.3 Context
A context is a list of distinct paths associated with their annotations 𝛼 and 𝛽. While
𝛽 is defined in the same way of the grammar, 𝛼 is slightly different. Other than unique
and shared, in a context, an annotation 𝛼 can also be ⊤. As will be better explained
in the following sections, the annotation ⊤ can only be inferred, so it is not possible
for the user to write it. A path annotated with ⊤ within a context is not accessible,
meaning that the path needs to be re-assigned before being read. The formal meaning
of the annotation ⊤ will be clearer while formalizing the statement typing rules.

𝛼 ⩴ unique | shared | ⊤
𝛽 ⩴ ⋅ | ♭
Δ ⩴ ⋅ | 𝑝 : 𝛼𝛽, Δ

Apart from ⊤, the rest of the annotations are similar to the annotations in the previ-
ous section. A reference annotated as unique may either be null or point to an object,
with no other accessible references to that object. In contrast, a reference marked as
shared can point to an object without being the only reference to it. The annotation ♭
(borrowed) indicates that the method receiving the reference will not create additional
aliases to it, and upon returning, the fields of the object will have at least the permis-
sions specified in the class declaration. Finally, annotations on fields only indicate the
default permissions; to determine the actual permissions of a field, the context must
be considered, a concept that will be formalized in the upcoming sections.

5.4 Well-Formed Context

𝑝 ∉ ⋅
Not-In-Base 𝑝 ≠ 𝑝′ 𝑝 ∉ Δ

𝑝 ∉ (𝑝′ : 𝛼𝛽, Δ)
Not-In-Rec

⋅ ctx
Ctx-Base Δ ctx 𝑝 ∉ Δ

𝑝 : 𝛼𝛽, Δ ctx
Ctx-Rec

This first set of rules defines how a well-formed context is structured. The judgment
𝑝 ∉ Δ is derivable when 𝑝 is not present in the context. If the judgment Δ ctx is

35

derivable, the context is well-formed. In order to be well-formed, a context must not
contain duplicate paths and must be finite.

Example 5.4.1 : Given a context:

Δ = 𝑥 : unique, 𝑥.𝑦 : shared

The following judgments are derivable:

𝑦 ∉ Δ
𝑥.𝑓 ∉ Δ

𝑥.𝑦.𝑧 ∉ Δ

□

Example 5.4.2 : Given the following contexts:

Δ1 = 𝑥 : unique, 𝑥.𝑦 : shared
Δ2 = 𝑥 : unique, 𝑥.𝑦 : shared, 𝑥 : shared
Δ3 = 𝑥 : unique, 𝑥.𝑦 : shared, 𝑥.𝑦 : ⊤

The judgment “Δ1 ctx” is derivable meaning that Δ1 is a well-formed context.
However, the judgments “Δ2 ctx” and “Δ3 ctx” are not derivable meaning that
Δ2 and Δ3 are not well-formed contexts. Indeed, they are not well-formed be-
cause 𝑥 appears twice in Δ2 and 𝑥.𝑓 appears twice in Δ3. □

5.5 Sub-Paths and Super-Paths

5.5.1 Definition

𝑝 ⊏ 𝑝.𝑓
Sub-Path-Base 𝑝 ⊏ 𝑝′

𝑝 ⊏ 𝑝′.𝑓
Sub-Path-Rec

𝑝 ⊑ 𝑝
Sub-Path-Eq-1 𝑝 ⊏ 𝑝′

𝑝 ⊑ 𝑝′
Sub-Path-Eq-2

This set of rules is used to formally define sub-paths and super-paths.

Example 5.5.1.1 : Given two paths 𝑥.𝑦 and 𝑥.𝑦.𝑧, the following judgment is
derivable:

𝑥.𝑦 ⊏ 𝑥.𝑦.𝑧

We say that:
• 𝑥.𝑦 is a sub-path of 𝑥.𝑦.𝑧
• 𝑥.𝑦.𝑧 is a super-path of 𝑥.𝑦

□

5.5.2 Remove

⋅ ∖ 𝑝 = ⋅
Remove-Empty

(𝑝 : 𝛼𝛽, Δ) ∖ 𝑝 = Δ
Remove-Base

36

Δ ∖ 𝑝 = Δ′ 𝑝 ≠ 𝑝′

(𝑝′ : 𝛼𝛽, Δ) ∖ 𝑝 = 𝑝′ : 𝛼𝛽, Δ′
Remove-Rec

Remove rules are used to define a function taking a context and a path and returning
a context.

_ ∖ _ : Δ → 𝑝 → Δ

Basically, the function will return the context without the specified path if the path is
within the context, and it will return the original context if the path is not contained.

Example 5.5.2.1 : Given a context:

Δ = 𝑥 : shared, 𝑥.𝑓 : shared

Remove has the following results:

Δ ∖ 𝑥.𝑓 = 𝑥 : shared
Δ ∖ 𝑥 = 𝑥.𝑓 : shared

Δ ∖ 𝑦 = 𝑥 : shared, 𝑥.𝑓 : shared

□

5.5.3 Deep Remove

⋅ ⊖ 𝑝 = ⋅
Deep-Remove-Empty

𝑝 ⊑ 𝑝′ Δ ⊖ 𝑝 = Δ′

(𝑝′ : 𝛼𝛽, Δ) ⊖ 𝑝 = Δ′
Deep-Remove-Discard

𝑝 ⋢ 𝑝′ Δ ⊖ 𝑝 = Δ′

(𝑝′ : 𝛼𝛽, Δ) ⊖ 𝑝 = (𝑝′ : 𝛼𝛽, Δ′)
Deep-Remove-Keep

Deep-Remove rules define a function similar to Remove (∖) that in addiction to re-
moving the given path from the context, also removes all the super-paths of that path.

_ ⊖ _ : Δ → 𝑝 → Δ

Example 5.5.3.1 : Given a context:

Δ = 𝑥 : unique, 𝑥.𝑦 : unique, 𝑥.𝑓 : unique, 𝑥.𝑦.𝑧 : unique

Deep Remove has the following result:

Δ ⊖ 𝑥.𝑦 = 𝑥 : unique, 𝑥.𝑓 : unique

□

5.5.4 Replace

Δ ⊖ 𝑝 = Δ′

Δ[𝑝 ↦ 𝛼𝛽] = Δ′, 𝑝 : 𝛼𝛽
Replace

37

This rule gives the definition of a function that will be fundamental for typing state-
ments. The function takes a context, a path 𝑝 and a set of annotations 𝛼𝛽 and returns
a context in which all the super-paths of 𝑝 have been removed and the annotation of
𝑝 becomes 𝛼𝛽.

[↦ _] : Δ → 𝑝 → 𝛼𝛽 → Δ

Example 5.5.4.1 : Given a context:

Δ = 𝑥 : unique, 𝑥.𝑦 : unique, 𝑥.𝑦.𝑧 : unique

Replace has the following result:

Δ[𝑥.𝑦 ↦ ⊤] = 𝑥 : unique, 𝑥.𝑦 : ⊤

□

5.5.5 Get Super-Paths

⋅ ⊢ superPaths(𝑝) = ⋅
Get-Super-Paths-Empty

¬(𝑝 ⊏ 𝑝′) Δ ⊢ superPaths(𝑝) = 𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛

𝑝′ : 𝛼𝛽, Δ ⊢ superPaths(𝑝) = 𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛
Get-Super-Paths-Discard

𝑝 ⊏ 𝑝′ Δ ⊢ superPaths(𝑝) = 𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛

𝑝′ : 𝛼𝛽, Δ ⊢ superPaths(𝑝) = 𝑝′ : 𝛼𝛽, 𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛
Get-Super-Paths-Keep

Finally, Get-Super-Paths rules are used to define a function that returns all the super-
paths of a give path within a context. Also this function will be used for statements
typing rules.

_ ⊢ superPaths(_) : Δ → 𝑝 → 𝑝 : 𝛼𝛽

Example 5.5.5.1 : Given a context:

Δ = 𝑥 : unique, 𝑥.𝑦 : unique, 𝑥.𝑦.𝑧 : unique

Getting super-paths has the following result:

superPaths(𝑥.𝑦) = 𝑥.𝑦.𝑧 : unique

□

5.6 Relations between Annotations

5.6.1 Partial Ordering

𝛼𝛽 ≼ 𝛼𝛽
Rel-Id 𝛼𝛽 ≼ 𝛼′𝛽′ 𝛼′𝛽′ ≼ 𝛼″𝛽″

𝛼𝛽 ≼ 𝛼″𝛽″
Rel-Trans

shared ♭ ≼ ⊤
Rel-Shared-♭

shared ≼ shared ♭
Rel-Shared

38

unique ♭ ≼ shared ♭
Rel-Unique-♭

unique ≼ shared
Rel-Unique-1

unique ≼ unique ♭
Rel-Unique-2

This set of rules is used to define a partial order between the annotations. This partial
order can be represented by the lattice shown in Figure 2. The meaning of these rela-
tions is that if 𝛼𝛽 ≼ 𝛼′𝛽′, then 𝛼𝛽 can be used where 𝛼′𝛽′ is expected, for example for
method calls. Thanks to these rules, it will be correct to pass a unique reference to a
method expecting a shared argument, but not vice versa. Moreover, the relations are
consistent with the definition of ⊤ since it will not be possible to pass an inaccessible
reference to any method.

Figure 2: Lattice obtained by Rel rules

5.6.2 Passing

𝛼𝛽 ≼ 𝛼′♭
𝛼𝛽 ⇝ 𝛼′♭ ⇝ 𝛼𝛽

Pass-♭ unique ⇝ unique ⇝ ⊤
Pass-Unique

𝛼 ≼ shared
𝛼 ⇝ shared ⇝ shared

Pass-Shared

Pass rules define what happens to the annotations of a reference after passing it to
a method. If derivable, a judgment 𝛼𝛽 ⇝ 𝛼′𝛽′ ⇝ 𝛼″𝛽″ indicates that after passing
a reference annotated with 𝛼𝛽 to a method expecting an argument annotated with
𝛼′𝛽′, the reference will be annotated with 𝛼″𝛽″ after the call. However, these rules
are not sufficient to type a method call statement since passing the same reference
more than once to the same method call is a situation that has to be handled carefully.
Nonetheless, the rules are fundamental to express the logic of the annotation system
and will be used for typing method calls in subsequent sections.

5.7 Paths

5.7.1 Root

39

root(𝑥) = 𝑥
Root-Base root(𝑝) = 𝑥

root(𝑝.𝑓) = 𝑥
Root-Rec

This simple function takes a path and returns its root. The function can simplify the
preconditions of more complex rules. For example root(𝑥.𝑦.𝑧) = 𝑥

root : 𝑝 → 𝑝

Example 5.7.1.1 :

root(𝑥.𝑦.𝑧) = 𝑥
root(𝑦.𝑧) = 𝑦
root(𝑧) = 𝑧

□

5.7.2 Lookup

(𝑝 : 𝛼𝛽, Δ) ctx
(𝑝 : 𝛼𝛽, Δ)⟨𝑝⟩ = 𝛼𝛽

Lookup-Base
(𝑝 : 𝛼𝛽, Δ) ctx

𝑝 ≠ 𝑝′ Δ⟨𝑝′⟩ = 𝛼′𝛽′

(𝑝 : 𝛼𝛽, Δ)⟨𝑝′⟩ = 𝛼′𝛽′
Lookup-Rec

default(𝑓) = 𝛼
⋅ ⟨𝑝.𝑓⟩ = 𝛼

Lookup-Default

Lookup rules define a (partial) function that, given a well-formed context, returns the
annotations associated with a given path
When the path is explicitly contained within the context, the function returns the
corresponding annotation. If a field access (𝑝.𝑓) is not explicitly present in the con-
text, the function returns the annotations specified in the class declaration containing
𝑓 . This concept, formalized by Lookup-Default, is crucial as it ensures that contexts
remain finite, even when handling recursive classes. However, if a variable (𝑥) is not
present in the context, its lookup cannot be derived.
It is important to note that the lookup function returns the annotations associated
with a path based on the context or the class declaration, rather than determining the
actual ownership status of that path.

⟨⟩ : Δ → 𝑝 → 𝛼𝛽

Example 5.7.2.1 : Given a context:

Δ = 𝑥 : shared, 𝑥.𝑓 : unique

The result of the lookup for 𝑥.𝑓 is the following:

Δ⟨𝑥.𝑓⟩ = unique

However, since 𝑥 is shared, there can be multiple references accessing 𝑥. This
implies there can be multiple references accessing 𝑥.𝑓 , meaning that 𝑥.𝑓 is also
shared. A scenario like this can occur when, starting from a context containing
only 𝑥 : shared, a unique value is assigned to the field 𝑥.𝑓 . A function able to
determine the actual ownership of a path is defined in the subsequent section.

□

40

Example 5.7.2.2 : Given class 𝐶, context Δ and variable 𝑥 such that:

class 𝐶(𝑓 : shared) ∈ 𝑃
Δ = 𝑥 : unique

The result of the lookup for 𝑥.𝑓 is the following:

Δ⟨𝑥.𝑓⟩ = shared

Since 𝑥.𝑓 ∉ Δ, the lookup returns the default annotation, which is the one de-
clared in the class signature. □

5.7.3 Get

Δ⟨𝑥⟩ = 𝛼𝛽
Δ(𝑥) = 𝛼𝛽

Get-Var
Δ(𝑝) = 𝛼𝛽 Δ⟨𝑝.𝑓⟩ = 𝛼′

Δ(𝑝.𝑓) = ⨆{𝛼𝛽, 𝛼′}
Get-Path

As described in the previous subsection, the lookup function might not return the
correct annotation for a given path. The task of returning the right annotation for a
path within a context is left to the (partial) function described in this section.

() : Δ → 𝑝 → 𝛼𝛽

In the case that the given path is a variable, the function will return the same anno-
tation returned by the lookup function. If the given path is not a variable, the function
will return the least upper bound (⊔) between the lookup of the given path and all
its sub-paths. The LUB between a set of annotations can be easily obtained by using
the partial order described in Subsection 5.6.1.
It is important to note that if Δ(𝑝) = 𝛼𝛽 is derivable for some 𝛼𝛽 then the root of 𝑝 is
contained inside Δ. This is important because many rules in the subsequent sections
will use the judgment Δ(𝑝) = 𝛼𝛽 as a precondition and it also helps to guarantee that
the root of 𝑝 is contained inside Δ.
Furthermore, in the rule Get-Path, the premise Δ⟨𝑝.𝑓⟩ = 𝛼′ does not pair a 𝛽′ anno-
tation to 𝛼′. This omission is intentional because, by the design of the subsequent
typing rules, a field access lookup should never result in a borrowed annotation. Re-
gardless, the 𝛽 annotation for a field access should be determined solely by its root.

Example 5.7.3.1 : Given a context:

Δ = 𝑥 : unique, 𝑥.𝑦 : ⊤, 𝑥.𝑦.𝑧 : shared

The annotation that is returned for the variable 𝑥 is the same as the one returned
by the lookup.

Δ(𝑥) = Δ⟨𝑥⟩ = unique

The annotation returned for the path 𝑥.𝑦 is the LUB between the lookup of 𝑥.𝑦
and that of all its sub-paths.

Δ(𝑥.𝑦) = ⨆{Δ⟨𝑥⟩, Δ⟨𝑥.𝑦⟩}

= ⨆{unique, ⊤}
= ⊤

41

Finally, the annotation returned for the path 𝑥.𝑦.𝑧 is the LUB between the lookup
of 𝑥.𝑦.𝑧 and that of all its sub-paths.

Δ(𝑥.𝑦.𝑧) = ⨆{Δ⟨𝑥⟩, Δ⟨𝑥.𝑦⟩, Δ⟨𝑥.𝑦.𝑧⟩}

= ⨆{unique, ⊤, shared}
= ⊤

□

5.7.4 Standard Form

⋅ ⊢ std(𝑝, 𝛼𝛽)
Std-Empty ¬(𝑝 ⊏ 𝑝′) Δ ⊢ std(𝑝, 𝛼𝛽)

𝑝′ : 𝛼𝛽, Δ ⊢ std(𝑝, 𝛼𝛽)
Std-Rec-1

𝑝 ⊏ 𝑝′ root(𝑝) = 𝑥
(𝑥 : 𝛼𝛽)(𝑝′) = 𝛼″𝛽″ 𝛼′𝛽′ ≼ 𝛼″𝛽″ Δ ⊢ std(𝑝, 𝛼𝛽)

𝑝′ : 𝛼′𝛽′, Δ ⊢ std(𝑝, 𝛼𝛽)
Std-Rec-2

If the judgment Δ ⊢ std(𝑝, 𝛼𝛽) is derivable, inside the context Δ, all the super-paths
of 𝑝 carry the right annotations when 𝑝 is passed to a method expecting an argument
annotated with 𝛼𝛽. This type of judgment is necessary verify the correctness of the
annotations in a method-modular fashion.
Since a called method does not have information about Δ when verified, all the super-
paths of 𝑝 must have an annotation in Δ that is lower or equal (≼) to the annotation
that they have in a context containing just their root annotated with 𝛼𝛽.

Example 5.7.4.1 : Given the following program:

class 𝐶(𝑦 : unique)
𝑚1(𝑥 : unique) : shared
𝑚2(𝑥 : shared) : shared

Within the context

Δ = 𝑥 : unique, 𝑥.𝑦 : shared

• Δ ⊢ std(𝑥, unique) is not derivable, meaning that 𝑥 cannot be passed to the
method 𝑚1. The judgment is not derivable because Δ(𝑥.𝑦) = shared while in
a context Δ′ = 𝑥 : unique, Δ′(𝑥.𝑦) = unique, but shared ⋠ unique.

• Δ ⊢ std(𝑥, shared) is derivable, meaning that 𝑥 can be passed to the method
𝑚2 if all the preconditions, which would be formalized by statement’s typing
rules, are also satisfied.

□

5.8 Unification
This section introduces several functions essential for managing contexts in control
flow constructs such as branching and scope transitions.

5.8.1 Pointwise LUB

42

⋅ ⊔ ⋅ = ⋅
Ctx-LUB-Empty

Δ1 ⊔ Δ2 = Δ2 ⊔ Δ1
Ctx-LUB-Sym

Δ2⟨𝑝⟩ = 𝛼″𝛽″ Δ2 ∖ 𝑝 = Δ′
2

Δ1 ⊔ Δ′
2 = Δ′ ⨆{𝛼𝛽, 𝛼″𝛽″} = 𝛼′𝛽′

(𝑝 : 𝛼𝛽, Δ1) ⊔ Δ2 = 𝑝 : 𝛼′𝛽′, Δ′
Ctx-LUB-1

𝑥 ∉ Δ2 Δ1 ⊔ Δ2 = Δ′

(𝑥 : 𝛼𝛽, Δ1) ⊔ Δ2 = 𝑥 : ⊤, Δ′
Ctx-LUB-2

The rules in this section describe a function that takes two contexts and returns the
LUB between each pair of paths in the given contexts. If a variable 𝑥 is present in
only one of the two contexts, it will be annotated with ⊤ in the resulting context.

_ ⊔ _ : Δ → Δ → Δ

Example 5.8.1.1 :

Δ1 = 𝑥 : shared, 𝑦 : shared
Δ2 = 𝑥 : unique

Δ1 ⊔ Δ2 = 𝑥 : ⨆{shared, unique}, 𝑦 : ⊤
= 𝑥 : shared, 𝑦 : ⊤

□

5.8.2 Removal of Local Declarations

⋅ ◂ Δ = ⋅
Remove-Locals-Base

root(𝑝) = 𝑥 Δ1⟨𝑥⟩ = 𝛼′𝛽′ Δ ◂ Δ1 = Δ′

𝑝 : 𝛼𝛽, Δ ◂ Δ1 = 𝑝 : 𝛼𝛽, Δ′
Remove-Locals-Keep

root(𝑝) = 𝑥 𝑥 ∉ Δ1 Δ ◂ Δ1 = Δ′

𝑝 : 𝛼𝛽, Δ ◂ Δ1 = Δ′
Remove-Locals-Discard

The function formalized by these rules is used to obtain the correct context when
exiting a scope. When writing Δ1 ◂ Δ2, Δ1 represents the resulting context of a scope,
while Δ2 represents the context at the beginning of that scope. The result of the
operation is a context where paths rooted in variables that have been locally declared
inside the scope are removed.

_ ◂ _ : Δ → Δ → Δ

Example 5.8.2.1 :

Δ1 = 𝑥 : unique, 𝑦 : unique, 𝑥.𝑓 : unique, 𝑦.𝑓 : shared
Δ2 = 𝑥 : shared

Δ1 ◂ Δ2 = 𝑥 : unique, 𝑥.𝑓 : unique

43

□

5.8.3 Unify

Δ1 ⊔ Δ2 = Δ⊔ Δ⊔ ◂ Δ = Δ′

unify(Δ; Δ1; Δ2) = Δ′
Unify

Finally, the unify function groups the two functions described before. This function
will be fundamental to type if statements. In particular, unify(Δ; Δ1; Δ2) can be used
to type an if statement: when Δ is the context at the beginning of the statement
while Δ1 and Δ2 are the resulting contexts of the two branches of the statement.

unify : Δ → Δ → Δ → Δ

Example 5.8.3.1 : Given the following contexts:

Δ = 𝑥 : unique
Δ1 = 𝑥 : shared, 𝑥.𝑓 : shared, 𝑦 : unique
Δ2 = 𝑥 : unique, 𝑥.𝑓 : ⊤, 𝑦 : unique

Unification has the following result:

unify(Δ; Δ1; Δ2) = (Δ1 ⊔ Δ2) ◂ Δ
= (𝑥 : shared, 𝑥.𝑓 : ⊤, 𝑦 : unique) ◂ Δ
= 𝑥 : shared, 𝑥.𝑓 : ⊤

□

5.9 Normalization

normalize(⋅) = ⋅
N-Empty

⨆(𝛼𝑖𝛽𝑖 | 𝑝𝑖 = 𝑝0 ∧ 0 ≤ 𝑖 ≤ 𝑛) = 𝛼⊔𝛽⊔

normalize(𝑝𝑖 : 𝛼𝑖𝛽𝑖 | 𝑝𝑖 ≠ 𝑝0 ∧ 0 ≤ 𝑖 ≤ 𝑛) = 𝑝′
0 : 𝛼′

0𝛽′
0, …, 𝑝′

𝑚 : 𝛼′
𝑚𝛽′

𝑚

normalize(𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛) = 𝑝0 : 𝛼⊔𝛽⊔, 𝑝′
0 : 𝛼′

0𝛽′
0, …, 𝑝′

𝑚 : 𝛼′
𝑚𝛽′

𝑚
N-Rec

Normalize is a function that takes and returns a list of annotated paths. In the returned
list, duplicate paths from the given list are substituted with a single path annotated
with the LUB of the annotations from the duplicate paths. As already mentioned,
rules in Subsection 5.6.2 are not sufficient to type a method call because the same path
might be passed more than once to the same method. Normalization is the missing
piece that will enable the formalization of typing rules for method calls.

normalize : 𝑝 : 𝛼𝛽 → 𝑝 : 𝛼𝛽

Example 5.9.1 :

normalize(𝑥 : ⊤, 𝑥 : shared, 𝑦 : unique) = 𝑥 : ⨆{shared, ⊤}, 𝑦 : unique
= 𝑥 : ⊤, 𝑦 : unique

□

44

5.10 Statements Typing
Typing rules are structured as follows:

Δ ⊢ 𝑠 ⊣ Δ′

This judgment means that typing a statement 𝑠 in a context Δ leads to a context Δ′.
It is important to note that this refers only to the types involved and is not related
to the operational semantics of the program.
A program 𝑃 is well-typed if and only if the following judgment is derivable:

∀𝑚(𝑥 : 𝛼𝑓𝛽) : 𝛼𝑓{begin𝑚; 𝑠; return𝑚𝑒} ∈ 𝑃 . ⋅ ⊢ begin𝑚; 𝑠; return𝑚𝑒 ⊣ ⋅

This means that a program is well-typed if and only if, for every method in that pro-
gram, executing the body of the method within an empty context leads to an empty
context. Methods without a body are excluded from this judgment, as they can be
safely assumed to be well-typed without further analysis.

5.10.1 Begin

m-type(𝑚) = 𝛼0𝛽0, …, 𝛼𝑛𝛽𝑛 → 𝛼 args(𝑚) = 𝑥0, …, 𝑥𝑛

⋅ ⊢ begin𝑚 ⊣ 𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛
Begin

This rule is used to initialize the context at the beginning of a method. The initial
context will contain only the method’s parameters with the declared uniqueness an-
notations. The example below demonstrates how the rule works in practice. In this
and subsequent examples, the resulting context after typing a statement is shown on
the next line.

1 f(this: unique, x: unique ♭, y: shared ♭, z: shared): unique {
2 begin_f;
3 ⊣ Δ = this: unique, x: unique ♭, y: shared ♭, z: shared
4 ...
5 }

Listing 31: Typing example for Begin statement

5.10.2 Sequence

Δ ⊢ 𝑠1 ⊣ Δ1 Δ1 ⊢ 𝑠2 ⊣ Δ′

Δ ⊢ 𝑠1; 𝑠2 ⊣ Δ′Seq

This rule is straightforward, but necessary to define how to type a sequence of state-
ments. In a sequence, statements are typed in the order that they appear. After a
statement is typed, the resulting context is used to type the following one.

5.10.3 Variable Declaration

𝑥 ∉ Δ
Δ ⊢ var 𝑥 ⊣ Δ, 𝑥 : ⊤

Decl

After declaring a variable, it is inaccessible until its initialization and so the variable
will be in the context with ⊤ annotation. Note that this rule only allows to declare
variables if they are not in the context while Kotlin allows to shadow variables de-

45

clared in outer scopes. Kotlin code using shadowing is not currently supported by this
system.

1 f(): unique {
2 begin_f;
3 ⊣ Δ = ∅
4 var x;
5 ⊣ Δ = x: T
6 ...
7 }

Listing 32: Typing example for variable declaration

5.10.4 Call

∀0 ≤ 𝑖 ≤ 𝑛 : Δ(𝑝𝑖) = 𝛼𝑖𝛽𝑖

m-type(𝑚) = 𝛼𝑚
0 , 𝛽𝑚

0 , …, 𝛼𝑚
𝑛 𝛽𝑚

𝑛 → 𝛼𝑟

∀0 ≤ 𝑖 ≤ 𝑛 : Δ ⊢ std(𝑝𝑖, 𝛼𝑚
𝑖 𝛽𝑚

𝑖)
∀0 ≤ 𝑖, 𝑗 ≤ 𝑛 : (𝑖 ≠ 𝑗 ∧ 𝑝𝑖 = 𝑝𝑗) ⇒ 𝛼𝑚

𝑖 = shared
∀0 ≤ 𝑖, 𝑗 ≤ 𝑛 : 𝑝𝑖 ⊏ 𝑝𝑗 ⇒ (Δ(𝑝𝑗) = shared ∨ 𝛼𝑚

𝑖 = 𝛼𝑚
𝑗 = shared)

Δ ⊖ (𝑝0, …, 𝑝𝑛) = Δ′ ∀0 ≤ 𝑖 ≤ 𝑛 : 𝛼𝑖𝛽𝑖 ⇝ 𝛼𝑚
𝑖 𝛽𝑚

𝑖 ⇝ 𝛼′
𝑖𝛽′

𝑖

normalize(𝑝0 : 𝛼′
0𝛽′

0, …, 𝑝𝑛 : 𝛼′
𝑛𝛽′

𝑛) = 𝑝′
0 : 𝛼″

0𝛽″
0 , …, 𝑝′

𝑚 : 𝛼″
𝑚𝛽″

𝑚

Δ ⊢ 𝑚(𝑝0, …, 𝑝𝑛) ⊣ Δ′, 𝑝′
0 : 𝛼″

0𝛽″
0 , …, 𝑝′

𝑚 : 𝛼″
𝑚𝛽″

𝑚
Call

Typing a method call follows the logic presented in the rules of Subsection 5.6.2 (⇝)
while taking care of what can happen with method accepting multiple parameters.
• All the roots of the paths passed to a method must be in the context (also guar-

anteed by the language).
• All the paths passed to a method must be in standard form of the expected anno-

tation.
• It is allowed to pass the same path twice to the same method, but only if it passed

where a shared argument is expected.
• It is allowed to pass two paths 𝑝𝑖 and 𝑝𝑗 such that 𝑝𝑖 ⊏ 𝑝𝑗 when one of the following

conditions is satisfied:
‣ 𝑝𝑗 is shared.
‣ The method that has been called expects shared (possibly borrowed) arguments

in positions 𝑖 and 𝑗.
• The resulting context is constructed in the following way:

‣ Paths passed to the method and their super-paths are removed from the initial
context.

‣ A list of annotated paths (in which a the same path may appear twice) in con-
structed by mapping passed paths according to the “passing” (⇝) rules.

‣ The obtained list is normalized and added to the context.

Listing 33 shows the cases where it is possible to pass the same reference more than
once and how normalization is applied. In Listing 34 it is possible to call f by passing
x and x.f since Δ(𝑥.𝑓) = shared. In Listing 35 is not possible to call g by passing b
and b.f, this is because g, in its body, expects x.f to be unique, but it would not be
the case by passing b and b.f. Finally Listing 36 shows that it is possible to call h by
passing x and x.f since the method expects both of the arguments to be shared.

46

1 f(x: unique, y: shared ♭): unique
2
3 g(x: shared ♭, y: shared ♭): unique
4
5 h(x: shared, y: shared ♭): unique
6
7 use_f(x: unique) {
8 begin_use_f;
9 ⊣ Δ = x: unique
10 f(x, x);

11 // not derivable: 'x' is passed more than once but is also expected to
be unique

12 ...
13 }
14
15 use_g_h(x: unique) {
16 begin_use_g_h;
17 ⊣ Δ = x: unique

18 g(x, x); // ok, uniqueness is also preserved since both the args are
borrowed

19 ⊣ Δ = x: unique
20 h(x, x); // ok, but uniqueness is lost after normalization
21 ⊣ Δ = x: shared
22 }

Listing 33: Typing example for method call with same reference

1 class A(f: shared)
2
3 f(x: unique, y: shared): unique
4
5 fun use_f(x: unique) {
6 begin_use_f;
7 ⊣ Δ = x: unique
8 f(x, x.f); // ok
9 ⊣ Δ = x: T, x.f: shared

10 // Note that even if x.f is marked shared in the context, it is not
accessible since Δ(x.f) = T

11 ...
12 }

Listing 34: Typing example for correct method call with super-paths

47

1 class B(f: unique)
2
3 g(x: unique, y: shared): unique
4
5 use_g(b: unique) {
6 begin_use_g;
7 ⊣ Δ = b: unique
8 g(b, b.f);

9 // error: 'b.f' cannot be passed since 'b' is passed as unique and
Δ(b.f) = unique

10 // It is correct to raise an error since 'g' expects x.f to be unique
11 }

Listing 35: Typing example for incorrect method call with super-paths

1 class B(f: unique)
2
3 h(x: shared, y: shared) {}
4
5 use_h(x: unique) {
6 begin_use_h;
7 ⊣ Δ = x: unique
8 h(x, x.f); // ok
9 ⊣ Δ = x: shared, x.f: shared
10 ...
11 }

Listing 36: Typing example for correct method call with super-paths

5.10.5 Assignments
All rules for typing assignments have a path 𝑝 on the left-hand side and vary based
on the expression on the right-hand side. The common trait of these rules is that
they require the root of 𝑝 to be contained within the initial context using the premise
“Δ(𝑝) = 𝛼𝛽”. Additionally, in the resulting context, the annotation of 𝑝 is always up-
dated according to the expression on the right-hand side of the assignment.

5.10.5.1 Assign null

Δ(𝑝) = 𝛼𝛽 Δ[𝑝 ↦ unique] = Δ′

Δ ⊢ 𝑝 = null ⊣ Δ′Assign-Null

The definition of unique tells us that a reference is unique when it is null or is the
sole accessible reference pointing to the object that is pointing. Given that, we can
safely consider unique a path 𝑝 after assigning null to it. Moreover, all super-paths of
𝑝 are removed from the context after the assignment.

48

1 class C(t: unique)
2
3 f() {
4 begin_f;
5 ⊣ Δ = ∅
6 var b;
7 ⊣ Δ = b: T
8 ...
9 ⊣ Δ = b: shared, b.t: T
10 b = null
11 ⊣ Δ = b: unique
12 ...
13 }

Listing 37: Typing example for assigning null

5.10.5.2 Assign Call

Δ(𝑝) = 𝛼′𝛽′ Δ ⊢ 𝑚(𝑝) ⊣ Δ1

m-type(𝑚) = 𝛼0𝛽0, …, 𝛼𝑛𝛽𝑛 → 𝛼
(𝛽′ = ♭) ⇒ (𝛼 = unique) Δ1[𝑝 ↦ 𝛼] = Δ′

Δ ⊢ 𝑝 = 𝑚(𝑝) ⊣ Δ′Assign-Call

After defining how to type a method call, it is easy to formalize the typing of a call
assignment. Like all the other assignment rules, the root of the path on the left side of
the assignment must be in the context. First of all, the method call is typed obtaining
a new context Δ1. Then, the annotation of the path on the left side of the assignment
is replaced (↦) in Δ1 with the annotation of the return value of the method.

1 get_unique(): unique
2 get_shared(): shared
3
4 f(): unique {
5 begin_f;
6 ⊣ Δ = ∅
7 var x;
8 ⊣ Δ = x: T
9 var y;
10 ⊣ Δ = x: T, y: T
11 x = get_unique();
12 ⊣ Δ = x: unique, y: T
13 y = get_shared();
14 ⊣ Δ = x: unique, y: shared
15 ...
16 }

Listing 38: Typing example for assigning a method call

5.10.5.3 Assign Unique

49

𝑝′ ⋢ 𝑝 Δ(𝑝) = 𝛼𝛽 Δ(𝑝′) = unique Δ[𝑝′ ↦ ⊤] = Δ1

Δ ⊢ superPaths(𝑝′) = 𝑝′.𝑓0 : 𝛼0𝛽0, …, 𝑝′.𝑓𝑛 : 𝛼𝑛𝛽𝑛 Δ1[𝑝 ↦ unique] = Δ′

Δ ⊢ 𝑝 = 𝑝′ ⊣ Δ′, 𝑝.𝑓0 : 𝛼0𝛽0, …, 𝑝.𝑓𝑛 : 𝛼𝑛𝛽𝑛
Assign-Unique

In order to type an assignment 𝑝 = 𝑝′ in which 𝑝′ is unique, the following conditions
must hold:
• The root of 𝑝 must be in context.
• 𝑝′ must be unique in the context.
• Assignments in which 𝑝′ ⊑ 𝑝, like 𝑝.𝑓 = 𝑝, are not allowed.

The resulting context is built in the following way:
• Starting from the initial context Δ, a context Δ1 is obtained by replacing (↦) the

annotation of 𝑝′ with ⊤.
• The context Δ1 is used to obtain a context Δ′ by replacing (↦) the annotation of

𝑝 with unique.
• Finally, to obtain the resulting context, all the paths that were originally rooted in

𝑝′ are rooted in 𝑝 with the same annotation and added to Δ′.

1 class B(t: unique)
2 class A(b: unique)
3
4 f(x: unique, y: unique): unique {
5 begin_f;
6 ⊣ Δ = x: unique, y: unique
7 y.t = x.b.t;
8 ⊣ Δ = x: unique, y: unique, x.b.t: T, y.t: unique
9 x.b = y;
10 ⊣ Δ = x: unique, y: T, x.b: unique
11 ...
12 }

Listing 39: Typing example for assigning a unique reference

5.10.5.4 Assign Shared

𝑝′ ⋢ 𝑝 Δ(𝑝) = 𝛼 Δ(𝑝′) = shared
Δ ⊢ superPaths(𝑝′) = 𝑝′.𝑓0 : 𝛼0𝛽0, …, 𝑝′.𝑓𝑛 : 𝛼𝑛𝛽𝑛 Δ[𝑝 ↦ shared] = Δ′

Δ ⊢ 𝑝 = 𝑝′ ⊣ Δ′, 𝑝.𝑓0 : 𝛼0𝛽0, …, 𝑝.𝑓𝑛 : 𝛼𝑛𝛽𝑛
Assign-Shared

Typing an assignment 𝑝 = 𝑝′ in which 𝑝′ is shared is similar to the case where 𝑝′ is
unique, but with some differences:
• 𝑝 cannot be borrowed. This is necessary to guarantee the soundness of the system

when a unique variable is passed to a method expecting a shared borrowed argu-
ment.

• Obviously 𝑝′ must be shared in the context.

Also the resulting context is constructed in a similar way to the previous case. The
only difference is that in this case it is not needed to replace (↦) the annotation of 𝑝′.

50

1 class B(t: unique)
2
3 f(x: unique, y: shared): unique {
4 begin_f;
5 ⊣ Δ = x: unique, y: shared
6 x.t = y;
7 ⊣ Δ = x: unique, y: shared, x.t: shared
8 ...
9 }

Listing 40: Typing example for assigning a shared reference

5.10.5.5 Assign Borrowed Field

𝑝′.𝑓 ⋢ 𝑝 Δ(𝑝) = 𝛼𝛽 Δ(𝑝′.𝑓) = 𝛼′♭
𝛼′ ≠ ⊤ (𝛽 = ♭) ⇒ (𝛼′ = unique) Δ[𝑝′.𝑓 ↦ ⊤] = Δ1

Δ ⊢ superPaths(𝑝′.𝑓) = 𝑝′.𝑓.𝑓0 : 𝛼0𝛽0, …, 𝑝′.𝑓.𝑓𝑛 : 𝛼𝑛𝛽𝑛 Δ1[𝑝 ↦ 𝛼′] = Δ′

Δ ⊢ 𝑝 = 𝑝′.𝑓 ⊣ Δ′, 𝑝.𝑓0 : 𝛼0𝛽0, …, 𝑝.𝑓𝑛 : 𝛼𝑛𝛽𝑛
Assign-♭-Field

Fields of a borrowed parameter must be treated with caution to avoid unsoundness.
Borrowed fields can be passed as arguments to other methods if the preconditions for
typing the method call are respected. In addition, they can be used on the right-hand
side of an assignment with certain limitations. After being read, a borrowed field will
inaccessible even if shared. Finally, borrowed fields can be used on the left-hand side
of an assignment when a unique reference is on the right-hand side.
Ensuring inaccessibility after reading borrowed fields and restricting their reassign-
ment to unique references, along with respecting the preconditions for typing a return
statement stated in Subsection 5.10.7, is essential for maintaining soundness when
unique references are passed to methods that accept a borrowed-shared parameter.

1 class B(t: unique)
2
3 f(x: shared ♭): unique {
4 begin_f;
5 ⊣ Δ = x: shared ♭,
6 var z;
7 ⊣ Δ = x: shared ♭, z: T
8 z = x.t;
9 ⊣ Δ = x: shared ♭, z: shared, x.t: T
10 ...
11 }

Listing 41: Typing example for assigning a borrowed field

5.10.6 If

Δ(𝑝1) ≠ ⊤ Δ(𝑝2) ≠ ⊤
Δ ⊢ 𝑠1 ⊣ Δ1 Δ ⊢ 𝑠2 ⊣ Δ2 unify(Δ; Δ1; Δ2) = Δ′

Δ ⊢ if 𝑝1 == 𝑝2 then 𝑠1 else 𝑠2 ⊣ Δ′If

51

Once the unification function is defined, typing an if statement is straightforward.
First it is necessary to be sure that paths appearing in the guard are accessible in
the initial context. The then and the else branches are typed separately and their
resulting contexts are unified to get the resulting context of the whole statement.
The system does not allow to have null or a method call in the guard of an if state-
ment, as these constructs can be easily desugared.

Example 5.10.6.1 : Desugaring for if statements containing expressions differ-
ent from paths within the guard.

if (𝑝 == null)… ≡ var fresh; fresh = null; if(𝑝 == fresh)…

if (𝑝 == 𝑚(…))… ≡ var fresh; fresh = 𝑚(…); if(𝑝 == fresh)…

□

1 class A(c: unique)
2
3 consume_unique(c: unique): shared
4
5 consume_shared(a: shared): shared
6
7 fun f(a: unique, c: shared ♭) {
8 begin_f;
9 ⊣ Δ = a: unique, t: shared ♭
10 if (a.c == c) {
11 consume_unique(a.c);
12 ⊣ Δ1 = a: unique, a.f: T, t: shared ♭
13 } else {
14 consume_shared(a);
15 ⊣ Δ2 = a: shared, t: shared ♭
16 };
17 ⊣ Δ = a: shared, a.f: T, t: shared ♭

18 // unify(Δ; Δ1; Δ2) = a: LUB{ unique, shared }, a.f: LUB{ T, shared },
t: shared ♭

19 ...
20 }

Listing 42: Typing example for if statement

5.10.7 Return

m-type(𝑚) = 𝛼𝑚
0 , 𝛽𝑚

0 , …, 𝛼𝑚
𝑛 𝛽𝑚

𝑛 → 𝛼𝑟 Δ(𝑝) = 𝛼𝛽 𝛼𝛽 ≼ 𝛼𝑟

Δ ⊢ std(𝑝, 𝛼𝑟) ∀0 ≤ 𝑖, 𝑗 ≤ 𝑛 : (𝛼𝑖𝛽𝑖 ≠ unique) ⇒ Δ ⊢ std(𝑝𝑖, 𝛼𝑖𝛽𝑖)
Δ ⊢ return𝑚 𝑝 ⊣ ⋅

Return-p

By the construction of the grammar, a return statement is designed to be the final
statement executed within a method. As such, there is no need to maintain a result-
ing context after the return statement has been typed. However, several important
conditions must be satisfied when returning.

52

First, the annotation of the path being returned must be lower than or equal to (≼)
the annotation of the return value of the method. This ensures that a method cannot
return a value with greater aliasing than what was specified in the method’s signature,
effectively preventing borrowed values from being returned (Example 5.10.7.1).
Second, the path being returned must be in the standard form of the return type
(Example 5.10.7.2).
Finally, all parameters that are shared or borrowed (or both) must remain in the
standard form of their original annotations by the time the method returns.
These conditions are essential for maintaining the modularity, allowing each method
to be typed without knowing the implementation of the other methods.
The system does not allow returning null or a method call, since these cases can be
easily desugared, as shown in Example 5.10.7.3. Similarly, functions that do not return
a value can be represented by having them return a call to the Unit constructor.

Example 5.10.7.1 : Given the following program:

class 𝐶(𝑓 : unique)
𝑚(𝑥 : unique ♭) : unique {begin𝑚; …; return𝑚 𝑥.𝑓}

The following judgment is not derivable:

𝑥 : unique ♭ = Δ ⊢ return𝑚 𝑥.𝑓 ⊣ ⋅

This happens because the function returns a borrowed field, which is prohibited
by the third precondition of the rule. Specifically:

m-type(𝑚) = unique ♭ → unique
Δ(𝑥.𝑓) = unique ♭

However, the third precondition is not derivable since:

unique ♭ ⋠ unique

□

Example 5.10.7.2 : Given the following program:

class 𝐶(𝑓 : unique)
𝑚(𝑥 : unique) : unique {begin𝑚; …; return𝑚 𝑥}

The following judgment is not derivable:

𝑥 : unique, 𝑥.𝑓 : shared = Δ ⊢ return𝑚 𝑥 ⊣ ⋅

This occurs because the fourth precondition, Δ ⊢ std(𝑥, unique), is not derivable.
□

Example 5.10.7.3 : Desugaring for return statements that do not return a path.

{…; return null} ≡ {…; var fresh; fresh = null; return fresh}

{…; return 𝑚(…)} ≡ {…; var fresh; fresh = 𝑚(…); return fresh}

Where fresh refers to a variable that does not exist in the context prior to its
declaration. □

53

5.11 Stack Example
Listing 43 illustrates how the context evolves in the example presented in Section 4.3
when it is encoded using the grammar described in this chapter.

1 class Node(value: unique, next: unique)
2
3 class Stack(root: unique)
4
5 fun Node(value: unique, next: unique): unique
6
7 fun push(this: unique ♭, value: unique): shared {
8 begin_push;
9 ⊣ Δ = this: unique ♭, value: unique
10 var r;
11 ⊣ Δ = this: unique ♭, value: unique, r: T
12 r = this.root;
13 ⊣ Δ = this: unique ♭, value: unique, r: unique, this.root: T
14 this.root = Node(value, r);
15 ⊣ Δ = this: unique ♭, value: T, r: T, this.root: unique
16 return Unit();
17 }
18
19 fun pop(this: unique ♭): unique {
20 begin_pop;
21 ⊣ Δ = this: unique ♭
22 var value;
23 ⊣ Δ = this: unique ♭, value: T
24 if (this.root == null) {
25 value = null;
26 ⊣ Δ = this: unique ♭, value: unique
27 } else {
28 value = this.root.value;
29 ⊣ Δ = this: unique ♭, value: unique, this.root.value: T
30 this.root = this.root.next;
31 ⊣ Δ = this: unique ♭, value: unique, this.root: unique
32 }
33 // Unification...
34 ⊣ Δ = this: unique ♭, value: unique, this.root: unique
35 return value;
36 }

Listing 43: Typing for a Stack implementation

54

Chapter 6

Encoding in Viper

The annotation system for aliasing control introduced in Chapter 4 and formalized
in Chapter 5 aims to improve the verification process performed by SnaKt [20], an
existing plugin for the Kotlin compiler. SnaKt verifies Kotlin code by encoding it to
Viper and supports a substantial subset of the Kotlin language. However, as described
in Section 2.2, the lack of guarantees about aliasing presents a significant limitation
for the plugin. This chapter illustrates how uniqueness annotations can be used to
improve the encoding of Kotlin into Viper.

6.1 Classes Encoding
In Kotlin, as in most programming languages, classes can represent potentially un-
bounded structures on the heap, such as linked lists or trees. This characteristic was
a key factor in the decision to encode Kotlin classes into Viper predicates. Viper
predicates, in fact, are specifically designed to represent potentially unbounded data
structures.

6.1.1 Shared Predicate
The shared predicate of a class includes read access to all fields that the language
guarantees as immutable. Having access to these predicates allows the verification of
certain functional properties of a program, even without uniqueness guarantees. The
reason is that immutability is a stronger condition than uniqueness from a verifica-
tion point of view. Indeed, while uniqueness ensures that an object is only accessible
through a single reference, immutability guarantees that the object’s state cannot
change after its creation, eliminating the need to track or control access patterns for
verifying correctness.
As shown in Listing 44, the encoding process involves including access to all fields de-
clared as val, along with their shared predicate if they have one. Inheritance is encoded
by including access to the shared predicates of the supertypes (Line 18). Additionally,
the example illustrates how Kotlin’s nullable types are encoded by accessing the pred-
icate when the reference is not null through a logical implication (Lines 19-21).
All the encoding examples that follow are simplified to improve readability and focus
on the aspects pertinent to this work. In the plugin, avoiding name clashes is a crucial
concern. As a result, names generated by SnaKt are typically more complex than those
shown in the examples.
Furthermore, SnaKt extends the predicate’s body by incorporating Kotlin type infor-
mation using domain functions. Unlike other assertions within the predicate, these
domain functions are not resource assertions but rather logical assertions about the
Kotlin type of a reference. For example, instead of directly mapping Kotlin Int and
other primitive types to their corresponding built-in Viper types, SnaKt maps them to
Viper Ref type, each associated with a domain function that asserts the specific Kotlin
type of the reference. This approach ensures that the type information is logically rep-
resented within the verification process. Similarly, when dealing with classes, SnaKt

55

pairs them with domain functions to maintain consistent type information through-
out the verification. This representation, while crucial for accurate type tracking, is
omitted in the examples provided here, as it is not central to the primary focus of this
work. For a complete view, Listing 45 shows how the shared predicate of the classes
in Listing 44 appears in the plugin.

1 open class A(Kotlin
2 val x: Int,
3 var y: Int,
4)
5
6 class B(
7 val a1: A,
8 var a2: A,
9)
10
11 class C(
12 val b: B?,
13) : A(0, 0)

1 field x: Int Viper
2 field y: Int
3 field a1: Ref
4 field a2: Ref
5 field b: Ref
6
7 predicate SharedA(this: Ref) {
8 acc(this.x, wildcard)
9 }
10
11 predicate SharedB(this: Ref) {
12 acc(this.a1, wildcard) &&
13 acc(SharedA(this.a1), wildcard)
14 }
15
16 predicate SharedC(this: Ref) {
17 acc(SharedA(this), wildcard)
18 acc(this.b, wildcard) &&
19 (this.b != null ==>
20 acc(SharedB(this.b), wildcard))
21 }

Listing 44: Shared predicate encoding

56

1 field bf$a1: Ref Viper
2 field bf$a2: Ref
3 field bf$b: Ref
4 field bf$x: Ref
5 field bf$y: Ref
6
7 predicate pcA$shared(this: Ref) {
8 acc(this.bf$x, wildcard) &&
9 dfrtisSubtype(dfrttypeOf(this.bf$x), df$rt$intType())
10 }
11
12 predicate pcB$shared(this: Ref) {
13 acc(this.bf$a1, wildcard) &&
14 acc(pcA$shared(this.bf$a1), wildcard) &&
15 dfrtisSubtype(dfrttypeOf(this.bf$a1), df$rtTc$A())
16 }
17
18 predicate pcC$shared(this: Ref) {
19 acc(this.bf$b, wildcard) &&
20 (this.bf$b != df$rt$nullValue() ==>
21 acc(pcB$shared(this.bf$b), wildcard)) &&
22 acc(pcA$shared(this), wildcard) &&
23 dfrtisSubtype(dfrttypeOf(this.bf$b), df$rt$nullable(df$rtTc$B()))
24 }

Listing 45: Shared predicate non-simplified encoding

6.1.2 Unique Predicate
The unique predicate of a class grants access to all its fields with either write or
wildcard permission, depending on whether the field is declared as var or val. If a
field is marked as unique, the unique predicate also includes access to that field’s
unique predicate. Additionally, the predicate contains access assertions to the shared
predicates of the fields since, as explained in the previous section, accessing immutable
resources is always safe.
It is worth mentioning that some overlap might exist between the assertions in the
shared predicate and those in the unique predicate. However, this overlap cannot lead
to contradictions in Viper, such as requiring access with a total amount greater than
1, because the only assertions that can overlap are accessed with wildcard permission.

57

1 class A(Kotlin
2 val x: Int,
3 var y: Int,
4)
5
6 class B(
7 @property:Unique
8 val a1: A,
9 val a2: A,
10)
11
12
13
14 class C(
15 @property:Unique
16 val b: B?,
17) : A(0, 0)

1 predicate UniqueA(this: Ref) { Viper
2 acc(this.x, wildcard) &&
3 acc(this.y, write)
4 }
5
6 predicate UniqueB(this: Ref) {
7 acc(this.a1, wildcard) &&
8 acc(SharedA(this.a1), wildcard) &&
9 acc(UniqueA(this.a1), write) &&
10 acc(this.a2, wildcard) &&
11 acc(SharedA(this.a2), wildcard) &&
12 }
13
14 predicate UniqueC(this: Ref) {
15 acc(this.b, wildcard) &&
16 (this.b != null ==>
17 acc(SharedB(this.b), wildcard)) &&
18 (this.b != null ==>
19 acc(UniqueB(this.b), write)) &&
20 acc(UniqueA(this), write)
21 }

Listing 46: Unique predicate encoding

6.2 Functions Encoding
Access information provided by Kotlin’s type system and by the uniqueness annota-
tions is encoded using the predicates described in Section 6.1 within the conditions of
a method. On the one hand, shared predicates can always be accessed with wildcard
permission without causing issues. Therefore, they can always be included in the con-
ditions of a method for its parameters, receiver, and return value. On the other hand,
unique predicates can only be included in a method’s conditions in accordance with
the annotation system.

6.2.1 Return object
Since accessing immutable data is not a problem even if it is shared, every Kotlin
function, in its encoding can ensure access to the shared predicate of the type of the
returned object. In addition, a Kotlin function annotated to return a unique object
will also ensure access to its unique predicate. Listing 47 illustrates the differences
in the encoding between a function that returns a unique object and a function that
returns a shared one.

58

1 @Unique Kotlin
2 fun returnUnique(): T {
3 // ...
4 }
5
6 fun returnShared(): T {
7 // ...
8 }

1 method returnUnique() Viper
2 returns(ret: Ref)
3 ensures acc(SharedT(ret), wildcard)
4 ensures acc(UniqueT(ret), write)
5
6 method returnShared()
7 returns(ret: Ref)
8 ensures acc(SharedT(ret), wildcard)

Listing 47: Function return object encoding

6.2.2 Parameters
Annotations on parameters are encoded by adding preconditions and postconditions
to the method. Access to the shared predicate of any parameter can always be required
in preconditions and ensured in postconditions. Conversely, access to the unique pred-
icate can be required in preconditions only for parameters annotated as unique, and
it can be ensured in postconditions only for parameters annotated as both unique
and borrowed. Listing 48 shows how function parameters are encoded, while Table 1
summarizes the assertions contained within preconditions and postconditions based
on the parameter annotations.
In Kotlin, when passing a unique reference to a function that expects a shared bor-
rowed argument, fields included in the unique predicate can still be modified. The cur-
rent encoding does not fully capture this behavior. However, as shown in Section 6.4,
this limitation can be addressed by adding additional statements when such functions
are called.

1 fun arg_unique(Kotlin
2 @Unique t: T
3) {
4 }
5
6 fun arg_shared(
7 t: T
8) {
9 }
10
11 fun arg_unique_b(
12 @Unique @Borrowed t: T
13) {
14 }
15
16 fun arg_shared_b(
17 @Borrowed t: T
18) {
19 }

1 method arg_unique(t: Ref) Viper
2 requires acc(UniqueT(t))
3 requires acc(SharedT(t), wildcard)
4 ensures acc(SharedT(t), wildcard)
5
6 method arg_shared(t: Ref)
7 requires acc(SharedT(t), wildcard)
8 ensures acc(SharedT(t), wildcard)
9
10 method arg_unique_b(t: Ref)
11 requires acc(UniqueT(t))
12 requires acc(SharedT(t), wildcard)
13 ensures acc(UniqueT(t))
14 ensures acc(SharedT(t), wildcard)
15
16 method arg_shared_b(t: Ref)
17 requires acc(SharedT(t), wildcard)
18 ensures acc(SharedT(t), wildcard)

Listing 48: Function parameters encoding

59

Unique Unique
Borrowed Shared Shared

Borrowed

Requires Shared Predicate ✓ ✓ ✓ ✓

Ensures Shared Predicate ✓ ✓ ✓ ✓

Requires Unique Predicate ✓ ✓ ✗ ✗

Ensures Unique Predicate ✗ ✓ ✗ ✗

Table 1: Conditions for annotated parameters

6.2.3 Receiver
Encoding the receiver of a method is straightforward since the receiver is considered
as a normal parameter.

1 fun @receiver:Unique T.uniqueReceiver() {} Kotlin
2
3 fun @receiver:Unique @receiver:Borrowed T.uniqueBorrowedReceiver() {}

1 method uniqueReceiver(this: Ref) Viper
2 requires acc(SharedT(this), wildcard)
3 requires acc(UniqueT(this), write)
4 ensures acc(SharedT(this), wildcard)
5
6 method uniqueBorrowedReceiver(this: Ref)
7 requires acc(SharedT(this), wildcard)
8 requires acc(UniqueT(this), write)
9 ensures acc(SharedT(this), wildcard)
10 ensures acc(UniqueT(this), write)

Listing 49: Function receiver encoding

6.2.4 Constructor
Constructors are encoded as black-box methods returning a unique object. The en-
coding of a constructor requires access to the shared predicates for every property
that is not of a primitive type. In addition, the unique predicate is also required for
properties that are unique in the class declaration. Currently, SnaKt only supports
class properties declared as parameters. Properties declared within the body of a class
and initializing blocks are not supported yet, as they may construct objects that are
not necessarily unique.

60

1 class A(val x: Int, var y: Int) Kotlin
2
3 class B(@property:Unique var a1: A, var a2: A)

1 method constructorA(p1: Int, p2: Int) returns (ret: Ref) Viper
2 ensures acc(SharedA(ret), wildcard)
3 ensures acc(UniqueA(ret), write)
4 ensures unfolding acc(SharedA(ret), wildcard) in
5 ret.x == p1
6 ensures unfolding acc(UniqueA(ret), write) in
7 ret.x == p1 && ret.y == p2
8
9 method constructorB(p1: Ref, p2: Ref) returns (ret: Ref)
10 requires acc(UniqueA(p1), write)
11 requires acc(SharedA(p1), wildcard)
12 requires acc(SharedA(p2), wildcard)
13 ensures acc(SharedB(ret), wildcard)
14 ensures acc(UniqueB(ret), write)
15 ensures unfolding acc(UniqueB(ret), write) in
16 ret.a1 == p1 && ret.a2 == p2

Listing 50: Constructor encoding

6.3 Accessing Properties
While encoding the body of a function using predicates to represent classes, multiple
unfold, fold, inhale, and exhale statements may be necessary to access the proper-
ties of a class. If a property is part of a shared predicate, it is accessed through that
predicate. If no shared predicate contains the property, the plugin attempts to access
it through a unique predicate, if available. If the property is not even contained within
any unique predicate, the access is inhaled.

6.3.1 Accessing Properties within Shared Predicate
Accessing properties contained within a shared predicate is straightforward. This is
because shared predicates are always accessed with wildcard permission, meaning that
after unfolding, the predicate remains valid, so there is no need to fold it back. In
Listing 51, it is possible to note that the encoding of the function f does not require
folding any predicate after accessing b.a.n to satisfy its postconditions.

61

1 class A(Kotlin
2 val n: Int
3)
4
5 class B(
6 val a: A
7)
8
9 fun f(b: B): Int {
10 return b.a.n
11 }

1 field n: Int, a: Ref Viper
2
3 predicate SharedA(this: Ref) {
4 acc(this.n, wildcard)
5 }
6
7 predicate SharedB(this: Ref) {
8 acc(this.a, wildcard) &&
9 acc(SharedA(this.a), wildcard)
10 }
11
12 method f(b: Ref) returns(res: Int)
13 requires acc(SharedB(b), wildcard)
14 ensures acc(SharedB(b), wildcard)
15 {
16 unfold acc(SharedB(b), wildcard)
17 unfold acc(SharedA(b.a), wildcard)
18 res := b.a.n
19 }

Listing 51: Immutable property access encoding

6.3.2 Accessing Properties within Unique Predicate
When accessing a property through a unique predicate, the predicate must be unfolded
with write permission. Unlike shared predicates, which remain valid after unfolding
with wildcard permission, a unique predicate does not hold after it has been unfolded.
If the unique predicate is needed again, it must be folded back. This is necessary when
satisfying the postconditions of the method or the preconditions of a called method.

62

1 class A(Kotlin
2 var n: Int
3)
4
5 class B(
6 @property:Unique
7 var a: A
8)
9
10 fun f(
11 @Unique b: B
12): Int {
13 return b.a.n
14 }

1 field n: Int, a: Ref Viper
2
3 predicate UniqueA(this: Ref) {
4 acc(this.n, write)
5 }
6
7 predicate UniqueB(this: Ref) {
8 acc(this.a, write) &&
9 acc(UniqueA(this.a), write)
10 }
11
12 method f(b: Ref) returns(res: Int)
13 requires acc(UniqueB(b), write)
14 ensures acc(UniqueB(b), write)
15 {
16 unfold acc(UniqueB(b), write)
17 unfold acc(UniqueA(b.a), write)
18 res := b.a.n
19 fold acc(UniqueA(b.a), write)
20 fold acc(UniqueB(b), write)
21 }

Listing 52: Unique mutable property access encoding

6.3.3 Accessing Properties not Contained within a Predicate
When no predicates contain the access to a property that needs to be accessed, it
must be inhaled. After the property is used, its access is immediately exhaled. It is
important to note that once the access to a property is exhaled, all information about
it is lost. This is coherent with the idea that a property not contained within a pred-
icate is mutable and shared, making it impossible to reason about it. In fact, such a
property could be accessed and modified by other functions running concurrently.

63

1 class A(Kotlin
2 val x: Int,
3 var y: Int
4)
5
6 fun f(
7 a: A
8) {
9 a.y = 1
10 }

1 field x: Int, y: Int Viper
2
3 predicate SharedA(this: Ref) {
4 acc(this.x, wildcard)
5 }
6
7 method f(a: Ref) returns(res: Int)
8 requires acc(SharedA(a), wildcard)
9 ensures acc(SharedA(a), wildcard)
10 {
11 inhale acc(a.y, write)
12 a.y := 1
13 exhale acc(a.y, write)
14 }

Listing 53: Shared mutable property access encoding

6.4 Function Calls Encoding
Encoding method calls is straightforward for some cases, but requires attention for
some others.

6.4.1 Functions with Unique Parameters
Functions with a unique parameter, when called, do not need the inclusion of addi-
tional statements for their encoding, except for folding or unfolding statements, as
detailed in Section 6.3.

64

1 fun uniqueParam(Kotlin
2 @Unique t: T
3) {
4 }
5
6 fun uniqueBorrowedParam(
7 @Unique @Borrowed t: T
8) {
9 }
10
11 fun call(
12 @Unique @Borrowed t1: T,
13 @Unique t2: T
14) {
15 uniqueBorrowedParam(t1)
16 uniqueBorrowedParam(t2)
17 uniqueParam(t2)
18 }

1 method uniqueParam(t: Ref) Viper

2 requires acc(UniqueT(t), write) &&
acc(SharedT(t), wildcard)

3 ensures acc(SharedT(t), wildcard)
4
5 method uniqueBorrowedParam(t: Ref)

6 requires acc(UniqueT(t), write) &&
acc(SharedT(t), wildcard)

7 ensures acc(UniqueT(t), write) &&
acc(SharedT(t), wildcard)

8
9 method call(t1: Ref, t2: Ref)

10 requires acc(UniqueT(t1), write) &&
acc(SharedT(t1), wildcard)

11 requires acc(UniqueT(t2), write) &&
acc(SharedT(t2), wildcard)

12 ensures acc(UniqueT(t1), write) &&
acc(SharedT(t1), wildcard)

13 ensures acc(SharedT(t2), wildcard)
14 {
15 uniqueBorrowedParam(t1)
16 uniqueBorrowedParam(t2)
17 uniqueParam(t2)
18 }

Listing 54: Function call with unique parameter encoding

6.4.2 Functions with Shared Parameters
When functions with a shared parameter are called, their encoding may require the
addition of inhale and exhale statements. The annotation system allows functions
with shared parameters to be called by passing unique references. However, the func-
tion’s conditions alone are not sufficient to properly encode these calls.
For example, passing a unique reference to a function expecting a shared (non-bor-
rowed) parameter will result in the loss of uniqueness for that reference, which is
encoded by exhaling the unique predicate. Similarly, when a unique reference is passed
to a function expecting a borrowed-shared parameter, the uniqueness is preserved, but
any field of that reference can be modified. This is encoded by exhaling and then re-
inhaling the unique predicate of that reference.
Figure 3 summarizes the inhale and exhale statements added during the encoding of
a function call.

65

Figure 3: Extra statements added for functions call encoding

1 fun sharedParam(Kotlin
2 t: T
3) {
4 }
5
6 fun sharedBorrowedParam(
7 @Borrowed t: T
8) {
9 }
10
11 fun call(@Unique t: T) {
12 sharedBorrowedParam(t)
13 sharedParam(t)
14 }

1 method sharedParam(t: Ref) Viper
2 requires acc(SharedT(t), wildcard)
3 ensures acc(SharedT(t), wildcard)
4
5 method sharedBorrowedParam(t: Ref)
6 requires acc(SharedT(t), wildcard)
7 ensures acc(SharedT(t), wildcard)
8
9 method call(t: Ref)

10 requires acc(UniqueT(t), write) &&
acc(SharedT(t), wildcard)

11 ensures acc(SharedT(t), wildcard)
12 {
13 exhale acc(UniqueT(t), write)
14 sharedBorrowedParam(t)
15 inhale acc(UniqueT(t), write)
16
17 exhale acc(UniqueT(t), write)
18 sharedParam(t)
19 }

Listing 55: Function call with shared parameter encoding

6.5 Stack Example
Finally, Listing 56 shows how the example from Section 4.3 is encoded in Viper. In
this example, shared predicates are omitted for readability, as they would be empty.
Moreover, the UniqueAny predicate does not add additional value to the encoding.
However, it can be replaced with any class predicate without affecting the correctness
of the encoding.

66

1 field value: Ref, next: Ref, root: Ref Viper
2
3 predicate UniqueAny(this: Ref)
4
5 predicate UniqueNode(this: Ref) {
6 acc(this.value) && (this.value != null ==> UniqueAny(this.value)) &&
7 acc(this.next) && (this.next != null ==> UniqueNode(this.next))
8 }
9
10 predicate UniqueStack(this: Ref) {
11 acc(this.root) && (this.root != null ==> UniqueNode(this.root))
12 }
13
14 method constructorNode(val: Ref, nxt: Ref) returns (res: Ref)
15 requires val != null ==> UniqueAny(val)
16 requires nxt != null ==> UniqueNode(nxt)
17 ensures UniqueNode(res)
18 ensures unfolding UniqueNode(res) in res.value == val && res.next == nxt
19
20 method push(this: Ref, val: Ref)
21 requires UniqueStack(this)
22 requires val != null ==> UniqueAny(val)
23 ensures UniqueStack(this) {
24 var r: Ref
25 unfold UniqueStack(this)
26 r := this.root
27 this.root := constructorNode(val, r)
28 fold UniqueStack(this)
29 }
30
31 method pop(this: Ref) returns (res: Ref)
32 requires UniqueStack(this)
33 ensures UniqueStack(this)
34 ensures res != null ==> UniqueAny(res) {
35 var val: Ref
36 unfold UniqueStack(this)
37 if(this.root == null) { val := null }
38 else {
39 unfold UniqueNode(this.root)
40 val := this.root.value
41 this.root := this.root.next
42 }
43 fold UniqueStack(this)
44 res := val
45 }

Listing 56: Stack encoding in Viper

67

68

Chapter 7

Conclusion

7.1 Results
This thesis has introduced a novel uniqueness system for the Kotlin language, bringing
several important improvements over existing approaches [2,7,33]. The system pro-
vides improved flexibility in managing field accesses, particularly in handling nested
properties within Kotlin programs. It allows the correct permissions for nested field
accesses to be determined at any point of the program, without imposing any restric-
tions based on whether properties are unique, shared, or inaccessible. Furthermore,
the uniqueness of properties can evolve during program execution, similarly to vari-
ables. The system also introduces a clear distinction between borrowed-shared and
borrowed-unique references, making it easier to integrate uniqueness annotations into
existing codebases. Indeed, one of its key benefits is the ability to be adopted incre-
mentally, enabling developers to incorporate it into their Kotlin code without the need
for significant changes.
The uniqueness system has been rigorously formalized, detailing the rules and con-
straints necessary to ensure that unique references are properly maintained within a
program.
Finally, this work has demonstrated how the uniqueness system can be used to encode
Kotlin into Viper more precisely, enabling more accurate and reliable verification of
Kotlin programs.

7.2 Future Work

7.2.1 Extending the Language
Extending the range of Kotlin features supported by the annotation system is a nat-
ural next step for this work.
One area for extension is support for while loops. Currently, loops are not well sup-
ported by SnaKt due to the lack of support for inferring invariants. As a result, han-
dling loops was not a primary focus for the uniqueness system.
Lambdas are another important feature in Kotlin that the uniqueness system must
support. Lambdas often capture references through closures, which presents challenges
for maintaining uniqueness. Handling these references correctly requires careful track-
ing to ensure that the captured variables do not lead to unintended aliasing. Bao et al.
[5] have proposed a system for tracking aliasing in higher-order functional programs,
which could provide valuable insights for addressing these challenges.

7.2.2 Improving Borrowed Fields Flexibility
Currently, fields of borrowed parameters are subject to restrictions necessary for en-
suring system soundness when unique references are passed to functions expecting
shared borrowed parameters. Specifically, borrowed fields can only be reassigned us-
ing a unique reference. However, in some cases, allowing reassignment with shared
references would also be safe. Similarly, borrowed fields become inaccessible after be-

69

ing read, even though there are situations where they could safely remain shared.
Introducing rules to manage these scenarios would enhance the system’s flexibility in
handling borrowed fields, representing a significant improvement.

7.2.3 Tracking of Local Aliases
The uniqueness system proposed by Zimmerman et al. [33] guarantees the following
uniqueness invariant: “A unique object is stored at most once on the heap. In addition,
all usable references to a unique object from the local environment are precisely in-
ferred.” This invariant allows for the creation of local aliases of unique objects without
compromising their uniqueness.
In contrast, the uniqueness system proposed in this work takes a different approach.
When local aliases are created, the original reference becomes inaccessible, and the
local alias is treated as unique. This design choice prioritizes flexibility in the usage
of paths while maintaining simplicity in the typing rules.
However, there is potential for future improvements to the system. By refining the
existing rules, it may be possible to achieve a uniqueness invariant that allows the
creation of controlled aliases without losing the guarantees of uniqueness. Such an
enhancement would expand the range of Kotlin code supported by the system while
preserving the integrity of uniqueness guarantees.

7.2.4 Checking Annotations
This work presents a uniqueness system and shows how it can be used to verify Kotlin
code by encoding it into Viper. Currently, SnaKt assumes that any annotated Kotlin
program is well-typed according to the typing rules presented in Chapter 5.
To improve the system, a static checker is under development. This checker will use
Kotlin’s control flow graph to ensure that the annotations satisfy the typing rules of
the uniqueness system. By integrating this static analysis, SnaKt will start to encode
Kotlin into Viper only if the program is well-typed, reducing the need for manual
validation and increasing the reliability of the verification process.

7.2.5 Proving the Soundness of the Annotation System
Another area for future work is proving the soundness of the proposed annotation sys-
tem. Establishing soundness would involve formally demonstrating that the system’s
rules and annotations prevent illegal aliasing and correctly track ownership through-
out program execution. For instance, it would be important to prove that when a path
is unique at any given point in the program, no other accessible paths point to the
same object as that path. Additionally, it would be valuable to demonstrate that bor-
rowed parameters are not further aliased by any function, ensuring that the borrowing
mechanism preserves the integrity of reference uniqueness and prevents unintended
aliasing.

70

Bibliography

[1] Marat Akhin and Mikhail Belyaev. 2021. Kotlin language specification. Kotlin
Language Specification (2021).

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. 2002. Alias anno-
tations for program understanding. ACM SIGPLAN Notices 37, 11 (2002), 311–
330.

[3] V. Astrauskas, A. Bílý, J. Fiala, Z. Grannan, C. Matheja, P. Müller, F. Poli,
and A. J. Summers. 2022. The Prusti Project: Formal Verification for Rust. In
NASA Formal Methods (14th International Symposium), 2022. Springer, 88–108.
Retrieved from https://link.springer.com/chapter/10.1007/978-3-031-06773-0_5

[4] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. 2019. Leveraging Rust
Types for Modular Specification and Verification. In Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA), 2019. ACM, 1–30.
https://doi.org/10.1145/3360573

[5] Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark
Rompf. 2021. Reachability types: tracking aliasing and separation in higher-order
functional programs. Proc. ACM Program. Lang. 5, OOPSLA (October 2021).
https://doi.org/10.1145/3485516

[6] Robert L Bocchino Jr. 2013. Alias control for deterministic parallelism. Aliasing
in Object-Oriented Programming. Types, Analysis and Verification (2013), 156–
195.

[7] John Boyland. 2001. Alias burying: Unique variables without destructive reads.
Software: Practice and Experience 31, 6 (2001), 533–553.

[8] Dave Clarke, James Noble, and Tobias Wrigstad (Eds.). 2013. Aliasing in Object-
Oriented Programming: types, analysis, and verification. Springer-Verlag, Berlin,
Heidelberg.

[9] Dave Clarke, James Noble, and Tobias Wrigstad. 2013. Beyond the geneva con-
vention on the treatment of object aliasing. Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification (2013), 1–6.

[10] ETH Zürich Department of Computer Science. Viper Language. Retrieved from
https://www.pm.inf.ethz.ch/research/viper.html

[11] Marco Eilers and Peter Müller. 2018. Nagini: a static verifier for Python. In
Computer Aided Verification: 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I 30, 2018. 596–603.

[12] Marco Eilers, Malte Schwerhoff, and Peter Müller. 2024. Verification Algorithms
for Automated Separation Logic Verifiers. In International Conference on Com-
puter Aided Verification, 2024. 362–386.

71

https://link.springer.com/chapter/10.1007/978-3-031-06773-0_5
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3485516
https://www.pm.inf.ethz.ch/research/viper.html

[13] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987),
1–101. https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4

[14] Dana Harrington. 2006. Uniqueness logic. Theoretical Computer Science 354, 1
(2006), 24–41.

[15] S. Heule, I. T. Kassios, P. Müller, and A. J. Summers. 2013. Verification Condi-
tion Generation for Permission Logics with Abstract Predicates and Abstraction
Functions. In European Conference on Object-Oriented Programming (ECOOP)
(Lecture Notes in Computer Science), 2013. Springer, 451–476. Retrieved from
https://doi.org/10.1007/978-3-642-39038-8_19

[16] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard Holt. 1992.
The Geneva convention on the treatment of object aliasing. SIGPLAN OOPS
Mess. 3, 2 (April 1992), 11–16. https://doi.org/10.1145/130943.130947

[17] Apple Inc. and the Swift project authors. Swift Parameter Modifiers. Retrieved
from https://docs.swift.org/swift-book/documentation/the-swift-programming-
language/declarations/#Parameter-Modifiers

[18] Apple Inc. and the Swift project authors. Swift Ownership Manifesto. Retrieved
from https://github.com/swiftlang/swift/blob/main/docs/OwnershipManifesto.
md

[19] Samin S. Ishtiaq and Peter W. O'Hearn. 2001. BI as an assertion language for
mutable data structures. SIGPLAN Not. 36, 3 (January 2001), 14–26. https://
doi.org/10.1145/373243.375719

[20] JetBrains. 2024. SnaKt: a Formal Verification Plugin for Kotlin.
Retrieved from https://github.com/jesyspa/kotlin/tree/formal-verification/
plugins/formal-verification

[21] JetBrains. 2024. Kotlin Programming Language. Retrieved from https://
kotlinlang.org/

[22] JetBrains. 2024. Kotlin docs - Shared mutable state and concurrency. Retrieved
from https://kotlinlang.org/docs/shared-mutable-state-and-concurrency.html

[23] Ralf Jung. 2020. Understanding and evolving the Rust programming language.
(2020).

[24] Daniel Marshall, Michael Vollmer, and Dominic Orchard. 2022. Linearity and
Uniqueness: An Entente Cordiale. In Programming Languages and Systems, 2022.
Springer International Publishing, Cham, 346–375.

[25] P. Müller, M. Schwerhoff, and A. J. Summers. 2016. Viper: A Verification In-
frastructure for Permission-Based Reasoning. In Verification, Model Checking,
and Abstract Interpretation (VMCAI) (LNCS), 2016. Springer-Verlag, 41–62. Re-
trieved from https://doi.org/10.1007/978-3-662-49122-5_2

[26] P. Müller, M. Schwerhoff, and A. J. Summers. 2016. Automatic Verification of
Iterated Separating Conjunctions using Symbolic Execution. In Computer Aided
Verification (CAV) (LNCS), 2016. Springer-Verlag, 405–425. Retrieved from
http://link.springer.com/chapter/10.1007/978-3-319-41528-4_22

72

https://doi.org/https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/978-3-642-39038-8_19
https://doi.org/10.1145/130943.130947
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/declarations/#Parameter-Modifiers
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/declarations/#Parameter-Modifiers
https://github.com/swiftlang/swift/blob/main/docs/OwnershipManifesto.md
https://github.com/swiftlang/swift/blob/main/docs/OwnershipManifesto.md
https://doi.org/10.1145/373243.375719
https://github.com/jesyspa/kotlin/tree/formal-verification/plugins/formal-verification
https://github.com/jesyspa/kotlin/tree/formal-verification/plugins/formal-verification
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/docs/shared-mutable-state-and-concurrency.html
https://doi.org/10.1007/978-3-662-49122-5_2
http://link.springer.com/chapter/10.1007/978-3-319-41528-4_22

[27] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quanti-
tative program reasoning with graded modal types. Proc. ACM Program. Lang.
3, ICFP (July 2019). https://doi.org/10.1145/3341714

[28] Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local reasoning about
programs that alter data structures. In Computer Science Logic: 15th Interna-
tional Workshop, CSL 2001 10th Annual Conference of the EACSL Paris, France,
September 10–13, 2001, Proceedings 15, 2001. 1–19.

[29] J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures.
In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science,
2002. 55–74. https://doi.org/10.1109/LICS.2002.1029817

[30] Dmitry Savvinov. 2019. Kotlin Contracts. Retrieved from https://github.com/
Kotlin/KEEP/blob/master/proposals/kotlin-contracts.md

[31] The Rust Team. 2024. The Rust Programming Language. Retrieved from
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html

[32] F. A. Wolf, L. Arquint, M. Clochard, W. Oortwĳn, J. C. Pereira, and P. Müller.
2021. Gobra: Modular Specification and Verification of Go Programs. In Com-
puter Aided Verification (CAV) (LNCS), 2021. Springer International Publishing,
367–379. Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-
81685-8_17

[33] Conrad Zimmerman, Catarina Gamboa, Alcides Fonseca, and Jonathan
Aldrich. 2023. Latte: Lightweight Aliasing Tracking for Java. arXiv preprint
arXiv:2309.05637 (2023).

73

https://doi.org/10.1145/3341714
https://doi.org/10.1109/LICS.2002.1029817
https://github.com/Kotlin/KEEP/blob/master/proposals/kotlin-contracts.md
https://github.com/Kotlin/KEEP/blob/master/proposals/kotlin-contracts.md
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_17
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_17

74

Appendix A

Typing Rules

All the following rules are to be considered for a given program 𝑃 , where fields within
the same class, as well as across different classes, must have distinct names.

A.1 General

𝑚(𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛) : 𝛼{begin𝑚; 𝑠; return𝑚𝑒} ∈ 𝑃
m-type(𝑚) = 𝛼0𝛽0, …, 𝛼𝑛𝛽𝑛 → 𝛼

M-Type-1

𝑚(𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛) : 𝛼 ∈ 𝑃
m-type(𝑚) = 𝛼0𝛽0, …, 𝛼𝑛𝛽𝑛 → 𝛼

M-Type-2

𝑚(𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛) : 𝛼{begin𝑚; 𝑠; return𝑚𝑒} ∈ 𝑃
args(𝑚) = 𝑥0, …, 𝑥𝑛

M-Args-1

𝑚(𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛) : 𝛼 ∈ 𝑃
args(𝑚) = 𝑥0, …, 𝑥𝑛

M-Args-2

class 𝐶(𝑓 ′ : 𝛼′
𝑓 , 𝑓 : 𝛼𝑓 , 𝑓″ : 𝛼″

𝑓) ∈ 𝑃

default(𝑓) = 𝛼𝑓
F-Default

A.2 Well-Formed Contexts

𝑝 ∉ ⋅
Not-In-Base 𝑝 ≠ 𝑝′ 𝑝 ∉ Δ

𝑝 ∉ (𝑝′ : 𝛼𝛽, Δ)
Not-In-Rec

⋅ ctx
Ctx-Base Δ ctx 𝑝 ∉ Δ

𝑝 : 𝛼𝛽, Δ ctx
Ctx-Rec

A.3 Sub-Paths and Super-Paths

A.3.1 Definition

𝑝 ⊏ 𝑝.𝑓
Sub-Path-Base 𝑝 ⊏ 𝑝′

𝑝 ⊏ 𝑝′.𝑓
Sub-Path-Rec

75

𝑝 ⊑ 𝑝
Sub-Path-Eq-1 𝑝 ⊏ 𝑝′

𝑝 ⊑ 𝑝′
Sub-Path-Eq-2

A.3.2 Remove

⋅ ∖ 𝑝 = ⋅
Remove-Empty

(𝑝 : 𝛼𝛽, Δ) ∖ 𝑝 = Δ
Remove-Base

Δ ∖ 𝑝 = Δ′ 𝑝 ≠ 𝑝′

(𝑝′ : 𝛼𝛽, Δ) ∖ 𝑝 = 𝑝′ : 𝛼𝛽, Δ′
Remove-Rec

A.3.3 Deep Remove

⋅ ⊖ 𝑝 = ⋅
Deep-Remove-Empty

𝑝 ⊑ 𝑝′ Δ ⊖ 𝑝 = Δ′

(𝑝′ : 𝛼𝛽, Δ) ⊖ 𝑝 = Δ′
Deep-Remove-Discard

𝑝 ⋢ 𝑝′ Δ ⊖ 𝑝 = Δ′

(𝑝′ : 𝛼𝛽, Δ) ⊖ 𝑝 = (𝑝′ : 𝛼𝛽, Δ′)
Deep-Remove-Keep

A.3.4 Replace

Δ ⊖ 𝑝 = Δ′

Δ[𝑝 ↦ 𝛼𝛽] = Δ′, 𝑝 : 𝛼𝛽
Replace

A.3.5 Get Super-Paths

⋅ ⊢ superPaths(𝑝) = ⋅
Get-Super-Paths-Empty

¬(𝑝 ⊏ 𝑝′) Δ ⊢ superPaths(𝑝) = 𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛

𝑝′ : 𝛼𝛽, Δ ⊢ superPaths(𝑝) = 𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛
Get-Super-Paths-Discard

𝑝 ⊏ 𝑝′ Δ ⊢ superPaths(𝑝) = 𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛

𝑝′ : 𝛼𝛽, Δ ⊢ superPaths(𝑝) = 𝑝′ : 𝛼𝛽, 𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛
Get-Super-Paths-Keep

A.4 Relations between Annotations

A.4.1 Partial Ordering

𝛼𝛽 ≼ 𝛼𝛽
Rel-Id 𝛼𝛽 ≼ 𝛼′𝛽′ 𝛼′𝛽′ ≼ 𝛼″𝛽″

𝛼𝛽 ≼ 𝛼″𝛽″
Rel-Trans

76

shared ♭ ≼ ⊤
Rel-Shared-♭

shared ≼ shared ♭
Rel-Shared

unique ♭ ≼ shared ♭
Rel-Unique-♭

unique ≼ shared
Rel-Unique-1

unique ≼ unique ♭
Rel-Unique-2

A.4.2 Passing

𝛼𝛽 ≼ 𝛼′♭
𝛼𝛽 ⇝ 𝛼′♭ ⇝ 𝛼𝛽

Pass-♭ unique ⇝ unique ⇝ ⊤
Pass-Unique

𝛼 ≼ shared
𝛼 ⇝ shared ⇝ shared

Pass-Shared

A.5 Paths

A.5.1 Root

root(𝑥) = 𝑥
Root-Base root(𝑝) = 𝑥

root(𝑝.𝑓) = 𝑥
Root-Rec

A.5.2 Lookup

(𝑝 : 𝛼𝛽, Δ) ctx
(𝑝 : 𝛼𝛽, Δ)⟨𝑝⟩ = 𝛼𝛽

Lookup-Base
(𝑝 : 𝛼𝛽, Δ) ctx

𝑝 ≠ 𝑝′ Δ⟨𝑝′⟩ = 𝛼′𝛽′

(𝑝 : 𝛼𝛽, Δ)⟨𝑝′⟩ = 𝛼′𝛽′
Lookup-Rec

default(𝑓) = 𝛼
⋅ ⟨𝑝.𝑓⟩ = 𝛼

Lookup-Default

A.5.3 Get

Δ⟨𝑥⟩ = 𝛼𝛽
Δ(𝑥) = 𝛼𝛽

Get-Var
Δ(𝑝) = 𝛼𝛽 Δ⟨𝑝.𝑓⟩ = 𝛼′

Δ(𝑝.𝑓) = ⨆{𝛼𝛽, 𝛼′}
Get-Path

A.5.4 Standard Form

⋅ ⊢ std(𝑝, 𝛼𝛽)
Std-Empty ¬(𝑝 ⊏ 𝑝′) Δ ⊢ std(𝑝, 𝛼𝛽)

𝑝′ : 𝛼𝛽, Δ ⊢ std(𝑝, 𝛼𝛽)
Std-Rec-1

𝑝 ⊏ 𝑝′ root(𝑝) = 𝑥
(𝑥 : 𝛼𝛽)(𝑝′) = 𝛼″𝛽″ 𝛼′𝛽′ ≼ 𝛼″𝛽″ Δ ⊢ std(𝑝, 𝛼𝛽)

𝑝′ : 𝛼′𝛽′, Δ ⊢ std(𝑝, 𝛼𝛽)
Std-Rec-2

77

A.6 Unification

A.6.1 Pointwise LUB

⋅ ⊔ ⋅ = ⋅
Ctx-LUB-Empty

Δ1 ⊔ Δ2 = Δ2 ⊔ Δ1
Ctx-LUB-Sym

Δ2⟨𝑝⟩ = 𝛼″𝛽″ Δ2 ∖ 𝑝 = Δ′
2

Δ1 ⊔ Δ′
2 = Δ′ ⨆{𝛼𝛽, 𝛼″𝛽″} = 𝛼′𝛽′

(𝑝 : 𝛼𝛽, Δ1) ⊔ Δ2 = 𝑝 : 𝛼′𝛽′, Δ′
Ctx-LUB-1

𝑥 ∉ Δ2 Δ1 ⊔ Δ2 = Δ′

(𝑥 : 𝛼𝛽, Δ1) ⊔ Δ2 = 𝑥 : ⊤, Δ′
Ctx-LUB-2

A.6.2 Removal of Local Declarations

⋅ ◂ Δ = ⋅
Remove-Locals-Base

root(𝑝) = 𝑥 Δ1⟨𝑥⟩ = 𝛼′𝛽′ Δ ◂ Δ1 = Δ′

𝑝 : 𝛼𝛽, Δ ◂ Δ1 = 𝑝 : 𝛼𝛽, Δ′
Remove-Locals-Keep

root(𝑝) = 𝑥 𝑥 ∉ Δ1 Δ ◂ Δ1 = Δ′

𝑝 : 𝛼𝛽, Δ ◂ Δ1 = Δ′
Remove-Locals-Discard

A.6.3 Unify

Δ1 ⊔ Δ2 = Δ⊔ Δ⊔ ◂ Δ = Δ′

unify(Δ; Δ1; Δ2) = Δ′
Unify

A.7 Normalization

normalize(⋅) = ⋅
N-Empty

⨆(𝛼𝑖𝛽𝑖 | 𝑝𝑖 = 𝑝0 ∧ 0 ≤ 𝑖 ≤ 𝑛) = 𝛼⊔𝛽⊔

normalize(𝑝𝑖 : 𝛼𝑖𝛽𝑖 | 𝑝𝑖 ≠ 𝑝0 ∧ 0 ≤ 𝑖 ≤ 𝑛) = 𝑝′
0 : 𝛼′

0𝛽′
0, …, 𝑝′

𝑚 : 𝛼′
𝑚𝛽′

𝑚

normalize(𝑝0 : 𝛼0𝛽0, …, 𝑝𝑛 : 𝛼𝑛𝛽𝑛) = 𝑝0 : 𝛼⊔𝛽⊔, 𝑝′
0 : 𝛼′

0𝛽′
0, …, 𝑝′

𝑚 : 𝛼′
𝑚𝛽′

𝑚
N-Rec

A.8 Statements Typing

m-type(𝑚) = 𝛼0𝛽0, …, 𝛼𝑛𝛽𝑛 → 𝛼 args(𝑚) = 𝑥0, …, 𝑥𝑛

⋅ ⊢ begin𝑚 ⊣ 𝑥0 : 𝛼0𝛽0, …, 𝑥𝑛 : 𝛼𝑛𝛽𝑛
Begin

78

Δ ⊢ 𝑠1 ⊣ Δ1 Δ1 ⊢ 𝑠2 ⊣ Δ′

Δ ⊢ 𝑠1; 𝑠2 ⊣ Δ′Seq
𝑥 ∉ Δ

Δ ⊢ var 𝑥 ⊣ Δ, 𝑥 : ⊤
Decl

∀0 ≤ 𝑖 ≤ 𝑛 : Δ(𝑝𝑖) = 𝛼𝑖𝛽𝑖

m-type(𝑚) = 𝛼𝑚
0 , 𝛽𝑚

0 , …, 𝛼𝑚
𝑛 𝛽𝑚

𝑛 → 𝛼𝑟

∀0 ≤ 𝑖 ≤ 𝑛 : Δ ⊢ std(𝑝𝑖, 𝛼𝑚
𝑖 𝛽𝑚

𝑖)
∀0 ≤ 𝑖, 𝑗 ≤ 𝑛 : (𝑖 ≠ 𝑗 ∧ 𝑝𝑖 = 𝑝𝑗) ⇒ 𝛼𝑚

𝑖 = shared
∀0 ≤ 𝑖, 𝑗 ≤ 𝑛 : 𝑝𝑖 ⊏ 𝑝𝑗 ⇒ (Δ(𝑝𝑗) = shared ∨ 𝛼𝑚

𝑖 = 𝛼𝑚
𝑗 = shared)

Δ ⊖ (𝑝0, …, 𝑝𝑛) = Δ′ ∀0 ≤ 𝑖 ≤ 𝑛 : 𝛼𝑖𝛽𝑖 ⇝ 𝛼𝑚
𝑖 𝛽𝑚

𝑖 ⇝ 𝛼′
𝑖𝛽′

𝑖

normalize(𝑝0 : 𝛼′
0𝛽′

0, …, 𝑝𝑛 : 𝛼′
𝑛𝛽′

𝑛) = 𝑝′
0 : 𝛼″

0𝛽″
0 , …, 𝑝′

𝑚 : 𝛼″
𝑚𝛽″

𝑚

Δ ⊢ 𝑚(𝑝0, …, 𝑝𝑛) ⊣ Δ′, 𝑝′
0 : 𝛼″

0𝛽″
0 , …, 𝑝′

𝑚 : 𝛼″
𝑚𝛽″

𝑚
Call

Δ(𝑝) = 𝛼𝛽 Δ[𝑝 ↦ unique] = Δ′

Δ ⊢ 𝑝 = null ⊣ Δ′Assign-Null

Δ(𝑝) = 𝛼′𝛽′ Δ ⊢ 𝑚(𝑝) ⊣ Δ1

m-type(𝑚) = 𝛼0𝛽0, …, 𝛼𝑛𝛽𝑛 → 𝛼
(𝛽′ = ♭) ⇒ (𝛼 = unique) Δ1[𝑝 ↦ 𝛼] = Δ′

Δ ⊢ 𝑝 = 𝑚(𝑝) ⊣ Δ′Assign-Call

𝑝′ ⋢ 𝑝 Δ(𝑝) = 𝛼𝛽 Δ(𝑝′) = unique Δ[𝑝′ ↦ ⊤] = Δ1

Δ ⊢ superPaths(𝑝′) = 𝑝′.𝑓0 : 𝛼0𝛽0, …, 𝑝′.𝑓𝑛 : 𝛼𝑛𝛽𝑛 Δ1[𝑝 ↦ unique] = Δ′

Δ ⊢ 𝑝 = 𝑝′ ⊣ Δ′, 𝑝.𝑓0 : 𝛼0𝛽0, …, 𝑝.𝑓𝑛 : 𝛼𝑛𝛽𝑛
Assign-Unique

𝑝′ ⋢ 𝑝 Δ(𝑝) = 𝛼 Δ(𝑝′) = shared
Δ ⊢ superPaths(𝑝′) = 𝑝′.𝑓0 : 𝛼0𝛽0, …, 𝑝′.𝑓𝑛 : 𝛼𝑛𝛽𝑛 Δ[𝑝 ↦ shared] = Δ′

Δ ⊢ 𝑝 = 𝑝′ ⊣ Δ′, 𝑝.𝑓0 : 𝛼0𝛽0, …, 𝑝.𝑓𝑛 : 𝛼𝑛𝛽𝑛
Assign-Shared

𝑝′.𝑓 ⋢ 𝑝 Δ(𝑝) = 𝛼𝛽 Δ(𝑝′.𝑓) = 𝛼′♭
𝛼′ ≠ ⊤ (𝛽 = ♭) ⇒ (𝛼′ = unique) Δ[𝑝′.𝑓 ↦ ⊤] = Δ1

Δ ⊢ superPaths(𝑝′.𝑓) = 𝑝′.𝑓.𝑓0 : 𝛼0𝛽0, …, 𝑝′.𝑓.𝑓𝑛 : 𝛼𝑛𝛽𝑛 Δ1[𝑝 ↦ 𝛼′] = Δ′

Δ ⊢ 𝑝 = 𝑝′.𝑓 ⊣ Δ′, 𝑝.𝑓0 : 𝛼0𝛽0, …, 𝑝.𝑓𝑛 : 𝛼𝑛𝛽𝑛
Assign-♭-Field

Δ(𝑝1) ≠ ⊤ Δ(𝑝2) ≠ ⊤
Δ ⊢ 𝑠1 ⊣ Δ1 Δ ⊢ 𝑠2 ⊣ Δ2 unify(Δ; Δ1; Δ2) = Δ′

Δ ⊢ if 𝑝1 == 𝑝2 then 𝑠1 else 𝑠2 ⊣ Δ′If

79

m-type(𝑚) = 𝛼𝑚
0 , 𝛽𝑚

0 , …, 𝛼𝑚
𝑛 𝛽𝑚

𝑛 → 𝛼𝑟 Δ(𝑝) = 𝛼𝛽 𝛼𝛽 ≼ 𝛼𝑟

Δ ⊢ std(𝑝, 𝛼𝑟) ∀0 ≤ 𝑖, 𝑗 ≤ 𝑛 : (𝛼𝑖𝛽𝑖 ≠ unique) ⇒ Δ ⊢ std(𝑝𝑖, 𝛼𝑖𝛽𝑖)
Δ ⊢ return𝑚 𝑝 ⊣ ⋅

Return-p

80

	Introduction
	Contributions
	Structure of the Thesis

	Background
	Kotlin
	Mutability vs Immutability
	Smart Casts
	Null Safety
	Properties
	Contracts
	Annotations

	Aliasing and Uniqueness
	Separation Logic
	Viper
	Language Overview
	Permissions
	Predicates and Functions
	Domains

	Related Work
	The Geneva Convention
	Detection
	Advertisement
	Prevention
	Control

	Systems for Controlling Aliasing
	Controlling Aliasing through Uniqueness
	Programming Languages with Aliasing Guarantees

	Viper Verification Tools
	Prusti
	Gobra
	Nagini

	Uniqueness in Kotlin
	Overview
	Function Annotations
	Class Annotations
	Uniqueness and Assignments

	Benefits of Uniqueness
	Formal Verification
	Smart Casts
	Optimizations

	Stack Example

	Annotation System
	Grammar
	General
	Context
	Well-Formed Context
	Sub-Paths and Super-Paths
	Definition
	Remove
	Deep Remove
	Replace
	Get Super-Paths

	Relations between Annotations
	Partial Ordering
	Passing

	Paths
	Root
	Lookup
	Get
	Standard Form

	Unification
	Pointwise LUB
	Removal of Local Declarations
	Unify

	Normalization
	Statements Typing
	Begin
	Sequence
	Variable Declaration
	Call
	Assignments
	Assign null
	Assign Call
	Assign Unique
	Assign Shared
	Assign Borrowed Field

	If
	Return

	Stack Example

	Encoding in Viper
	Classes Encoding
	Shared Predicate
	Unique Predicate

	Functions Encoding
	Return object
	Parameters
	Receiver
	Constructor

	Accessing Properties
	Accessing Properties within Shared Predicate
	Accessing Properties within Unique Predicate
	Accessing Properties not Contained within a Predicate

	Function Calls Encoding
	Functions with Unique Parameters
	Functions with Shared Parameters

	Stack Example

	Conclusion
	Results
	Future Work
	Extending the Language
	Improving Borrowed Fields Flexibility
	Tracking of Local Aliases
	Checking Annotations
	Proving the Soundness of the Annotation System

	Bibliography
	Typing Rules
	General
	Well-Formed Contexts
	Sub-Paths and Super-Paths
	Definition
	Remove
	Deep Remove
	Replace
	Get Super-Paths

	Relations between Annotations
	Partial Ordering
	Passing

	Paths
	Root
	Lookup
	Get
	Standard Form

	Unification
	Pointwise LUB
	Removal of Local Declarations
	Unify

	Normalization
	Statements Typing

