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Abstract

Human Activity Recognition (HAR) is a time series classification task that
involves predicting the movement or action of a person based on sensor data (for
example, for fitness tracking applications). In the past the problem has been
tackled by hand crafting features, which is time consuming and doesn’t generalize
well. In this thesis we firstly analyze a Deep Learning model created for Time Series
data that has set the state of the art in HAR on smartphones and wearable devices
(using data from accelerometer and gyroscope), and we test the benefits of Data
Augmentation as a technique to add robustness against noise. We then propose
a customized version of the framework that is capable of adapting over time to a
specific user, improving the accuracy of its predictions. We show the effectiveness
of the proposed framework by testing its learning capabilities and evaluating the
improvements on the accuracy of the predictions.
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Notation

This section will describe the notation used throughout this thesis. Given it’s
simplicity and clarity, we decided to adopt the notation defined by GoodFellow,
Bengio and Courville, in their book “Deep Learning” [1].

Numbers & Arrays
x A scalar (integer or real)
x A vector
X A matrix
X A tensor

Indexing
xi i-th element of vector x
Xi,j Element (i, j) of matrix X
Xi,j,k Element (i, j, k) of tensor X
X:,:,k k-th 2-D slice of a 3-D tensor X

We will use a zero-based numbering for the indexes of vectors and matrices.
This means that the elements of an array of size n will have indexes that go from
0 to n− 1. Similarly, the rows and columns of a n×m matrix go from 0 to n− 1
and from 0 to m− 1.

Sets
X A set
{a, ..., b} A set containing all the integer values from a to b (extremes included)
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Chapter 1

Introduction

Modern devices, like smartphones and smartwatches, are equipped with several sen-
sors, like accelerometer, gyroscope, barometer, and magnetometer. This sensors
are used for a large variety of tasks that we can identify as regression or classifi-
cation. Regression tasks consist in all those problems where the output variable
(what we want to obtain or predict) takes continuous values. An example is a
map application that changes the orientation of the map based on what direction
you’re facing. The direction changes in a continuous way and can be represented
with a real value that describes an angle. Classification tasks instead, consist in
all those problems where we want to identify a group membership. An example is
when the measurements of the sensors inside of a smartphone are used to obtain
the orientation of the device, in order to adapt the user interface. In this case we
only have four classes (landscape right, landscape left, portrait up, portrait down)
and we want to identify the correct one in a given moment.

The biggest problem with on-device sensors is that their measurements are
noisy and it’s difficult to find a distribution that precisely describes the noise. For
regression tasks, we usually rely on physical models, but this means that the accu-
racy of our predictions is only as good as the noise assumptions. For classification
tasks the common practice is to use manually designed features, but this requires
a lot of experiments and there is no guarantee that the features will work well with
new users.

This thesis will analyze the DeepSense architecture proposed by Yao et al.
[2], whose aim is to improve the accuracy of mobile sensor exploitation. This ar-
chitecture defines a deep learning framework that combines convolutional neural
networks and recurrent neural networks, and that is able to “exploit local inter-
actions among similar mobile sensors, merge local interactions of different sensory
modalities into global interactions, and extract temporal relationships to model sig-
nal dynamics”. To demonstrate the effectiveness of DeepSense the authors showed
that it outperforms state of the art methods for three different tasks:

• Car tracking with motion sensors: the goal here is to determine the
position of a car, with respect to a starting point, using only acceleration
measurements obtained by an accelerometer.

• Heterogeneous Human Activity Recognition: the task consists in de-
tecting the activity (like “walking” or “cycling” for example) that a user is
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performing, taking advantage of data from the accelerometer and the gyro-
scope installed on a smartphone or a wearable device.

• User identification with biometric motion analysis: the idea is to
uniquely identify a user by his “walking style” (again by using data from
accelerometer and gyroscope obtained from a smartphone).

In the article the authors show that DeepSense is able to excel in all three tasks.
In this thesis we will focus only on Heterogeneous Human Activity Recognition be-
cause, of the three, it is the only one that is actually used in real-world commercial
applications. In fact all modern smartphones, smartwatches and fitness trackers
implement some kind of activity recognition system and this implies that an im-
provement in this field can have a big impact in devices that are used by millions
of people.

We will now describe the dataset that has been used in the experimental part
of this thesis (the same used by Yao et al. [2]) and we will explore some of the
previous work that has been done on the Human Activity Recognition problem. In
Chapter 2 we will explain all the deep learning structures and techniques that are
necessary to understand the DeepSense framework. In Chapter 3 we will present
the DeepSense framework in all its details, from both a theoretical and a practical
point of view. Chapter 4 presents the custom model we created to improve the
performances of DeepSense. Chapter 5 describes the experimental work that has
been done for this thesis; we will describe all the tools and the settings that we
adopted, the principal libraries used to write the code, and the the tests that have
been done. In Chapter 6 we will show the results we obtained from the tests and
finally in Chapter 7 we will discuss them and we will present some future work.

HHAR Dataset

The Heterogeneity Human Activity Dataset (HHAR) was first introduced in a
paper by Stisen et al. [3], and is available for download from the UCI Machine
Learning Repository1. The dataset is composed by data from two different experi-
ments, one where the device used for the measurements were positioned according
to some specific orientation and one were the orientation of the devices was not
specified. We will use the data from the second experiment (as it is done by the
authors in the DeepSense paper) because we want to be able to identify a specific
activity independently from how the device is positioned.

The activities that were considered are 6: “Biking”, “Sitting”, “Standing”, “Walk-
ing”, “Stair Up” and “Stair Down”. For the measurements, accelerometer and gy-
roscope were sampled at the highest possible frequency. The data was taken from
8 smartphones (2 Samsung Galaxy S3 mini, 2 Samsung Galaxy S3, 2 LG Nexus
4, 2 Samsung Galaxy S+) and 4 smartwatches (2 LG watches, 2 Samsung Galaxy
Gears), used by 9 different users. In particular each user performed all of the
6 activities with all the devices (one at a time). As done by the authors of the
DeepSense paper, we will only consider the data obtained from smartphones.

1https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
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The data is split into 4 .csv files divided by device (phone or watch), and sen-
sor (gyroscope and accelerometer). Each .csv file consists of the following columns:

Index Arrival Time Creation Time x y z User Model Device Ground Truth

Each field of the .csv file is described in Table 1.1.

Index Number of the row in the file.
Arrival Time The timestamp of when the measurement arrived to the sensing

application.
Creation Time The timestamp the OS attaches to the sample.
x The value provided by the sensor for the x axis.
y The value provided by the sensor for the y axis.
z The value provided by the sensor for the z axis.
User The user that generated this sample (a character from ‘a’ to

‘i’).
Model A string identifying the phone or watch model that generated

this sample.
Device A string identifying the specific phone or watch that generated

this sample (necessary to distinguish between two or more de-
vices of the same model).

Ground Truth A string identifying the activity that was being executed by the
user when this sample was taken (“Biking”, “Sitting”, “Stand-
ing”, “Walking”, “Stair Up” or “Stair Down”).

Table 1.1

Previous Work

The human activity recognition problem has been extensively studied in the past
and various datasets are available online. Previous work tackled the problem by
hand-crafting features (see [3] and [4]), but this requires a lot of experiments (and
time) and it is not guaranteed to generalize well.

Figo et al. [4] published a survey analysing the most representative domain
approaches and techniques. The three domains identified by the authors are:

• Time Domain: the techniques in this domain try to extract basic signal
information from raw sensor data. To perform this task mathematical/sta-
tistical functions are used (mean, variance, standard variation, root mean
square, cross correlation, etc.) and other functions like angular velocity, dif-
ferences, signal magnitude area, signal vector magnitude, etc. Sometimes
these measures have been used as the base for machine learning techniques
like neural networks and support vector machines.

• Frequency Domain: in this case the raw signal is first transformed using
the Fourier transform and then the features are extracted from the frequency-
domain representation of the signal. Some of the most used features are:
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DC component, spectral energy, information entropy, spectral coefficients.
Another technique in the frequency domain that doesn’t use the Fourier
transform is the Wavelet analysis.

• Symbolic Strings Domain: here the idea is to transform accelerometer
and other sensors’ signals into strings of discrete symbols. A typical way
of performing this task is to split the signal into windows of w consecutive
samples and then apply some kind of averaging and discretization to obtain
a value from a fixed sized alphabet. Once the signal has been transformed
into a string, it is possible to compute some metrics like Euclidian-related
distances, Levenshtein Edit distance or Dynamic Time Warping (DTW).

In the survey the authors analysed the computational complexity, storage costs
and memory operations and they studied the “suitability” of each technique for
mobile devices. Finally they performed some experiments to measure the accuracy
of the different methods. The results obtained showed that Frequency domain
techniques, on average, perform the best with an accuracy of 70.1% on the test
set.

Stisen et al. [3] conducted experiments with 36 smartphones and smartwatches
(consisting of 13 different device models from four manufacturers) using the most
popular feature representation and classification techniques for HAR. In this study
the authors analysed also methods based on the empirical cumulative distribu-
tion function (ECDF), that were not considered in the work by Figo et al. These
experiments showed that the sensor biases, the sample rate instability and hetero-
geneity of the different devices have a huge impact on classification results. The
authors also proposed some mitigation techniques, in the form of pre-processing
methods that seem to be effective but they also add more load to the CPU. In
the end the authors concluded that ECDF and time based features are the most
recommended, but it is clear that hand-crafted features are not the best solution
for human activity recognition.

With the recent “explosion” of Deep Learning, some studies tried to approach
the HAR problem with these technique. In fact, Deep Learning can automate the
extraction of features, and this has been done, for user identification, in a system
called IDNet proposed by Rossi and Gadaleta [5]. In more detail, IDNet is com-
posed by a first part that receives the raw data form the sensors and transforms
it into an orientation independent reference system, in order to eliminate the im-
pacts of disorientation and misplacement errors. Then there is a time interpolation
process (to remove sampling rate instabilities) and some noise elimination. After
this the authors developed an algorithm that identifies walking cycles, which are
then fed into a Convolutional Neural Network for feature extraction. The output
is then classified using support vector machines because the goal of IDNet is to
identify a user from it’s “walking style”. We can notice that IDNet had a lot of
“traditional” algorithms and only a small part of deep learning. DeepSense instead
is based entirely on deep learning. In fact, as we will see, all the parts of the
system are learned from the data used to train the architecture. Other kinds of
Deep Learning networks have also been used for HAR. For example, Radu et al. [6]
proposed a system based on Restricted Boltzman Machines (RBMs) [7]. In more
detail they created a structure with two hidden layers per sensor and a final hidden
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layer that combines the data obtained from the different sensors (this architecture,
as we will see, is similar to how DeepSense works). This fairly simple structure
obtained an accuracy of circa 80% on the test set, showing that Deep Learning is
a very promising technique for this kind of problems. Finally we cite another work
using Deep Learning, and in particular Restricted Boltzman Machines, that was
published by Bhattacharya and Lane [8]. This last work was one of the first to
show that DL techniques can be implemented also on devices with relatively low
hardware resources (both memory and CPU capacity), such as smartphones and
smartwatches (nowadays this is not problem anymore as even entry level smart-
phones have considerable computing power).
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Chapter 2

Deep Learning Tools

In this section the reader will find a review of basic Neural Networks and the
Backpropagation algorithm (which can be seen as the fundamental basics of Deep
Learning), followed by a more detailed explanation of Convolutional Neural Net-
works, Recurrent Neural Networks, and some very important techniques like the
Adam Optimizer, Batch Normalization, Regularization and Dropout. These con-
cepts are used to create DeepSense and it is important to understand them before
entering in the details of the architecture. Before we start, we want to remark that
there is no real theory behind deep learning. In fact many techniques are based on
intuitions or empirical results. The reader shouldn’t be surprised if some concepts
lack of mathematical motivations.

2.1 Neural Networks and the Backpropagation Al-
gorithm

Artificial Neural Networks [9] are a computing model introduced in 1943, inspired
by the structure of the biological neural networks that constitute our brain. A
neural network is composed by a number of neurons (simple nodes that perform
basic computations) that are connected to each other. In a more formal way,
a neural network can be described as a directed graph whose nodes correspond
to neurons and edges (also called arcs) correspond to links between them. Each
neuron receives as input a weighted sum of the outputs of the neurons connected
to its incoming edges. There are several types of neural networks, but we are
interested in feedforward networks (in which the graph does not contain cycles).
Usually we organise the network in layers: each layer contains a certain number
of neurons and the inputs of the neurons at layer l + 1 are the outputs of layer l.
Each layer has also a constant node and the weight of the arc that connects this
node to the nodes of the successive layer is called bias, while the weights of the
arcs that connect the other non-constant nodes to the nodes of the successive layer
are simply called weights. Figure 2.1 shows a graphical representation of a neural
network.

The first layer is called the input layer and the neurons in this layer don’t have
any incoming edges (in this case the neurons contain the values that are given as
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Figure 2.1: An example of feedforward neural network with L + 1 layers. Image
taken from the material for Machine Learning course, DEI, Univ. of Padova (Prof.
F. Vandin, 2017-2018).

input to the network); the last is the output layer and all the layers in between are
called hidden layers. The data flows from the input to the output layer. If we call
β
(l)
ij the weight of the arc from node Z(l−1)

i of layer l− 1 to node Z(l)
j of layer l and

we indicate the number of nodes at layer l as d(l)+1 (see Figure 2.2 for a graphical
representation), then we can write the output of a generic node as:

Z
(l)
j = θ

β(l)
0j +

d(l−1)∑
i=1

β
(l)
ij Z

(l−1)
i


where θ indicates a nonlinear transformation (usually a sigmoid, like the logistic

function or the hyperbolic tangent).
When we are training neural networks we want to determine the values of

the β(l)
ij for all the i, j, l such that the value of a certain cost (or loss) function

is minimized (this is a standard procedure in most machine learning algorithms).
The cost function compares the output of the neural network for a given input
with the ground truth associated to that input and returns a value that grows
with the prediction errors made by the network. To minimize this function we use
a Gradient Descent algorithm (for example Stochastic Gradient Descent) and to
calculate the gradient in an efficient way we use the Backpropagation algorithm.
This second algorithm works in a two phase cycle:

• Propagation phase: the input is propagated forward through the network
until it reaches the output layer. The output is then compared with the
ground truth using the cost function. The resulting error value is calculated
for each of the neurons in the output layer. The error values are then prop-
agated from the output back through the network, until each neuron has an
associated error value that reflects its contribution to the original output.
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Figure 2.2: The point of view of one node Z(l)
j . Image taken from the material for

Machine Learning course, DEI, Univ. of Padova (Prof. F. Vandin, 2017-2018).

• Weight Update phase: the errors obtained with the previous phase are
used to calculate the gradient of the loss function. The gradient is then fed
to an optimization method that updates the weights, in order to minimize
the cost function.

A very important parameter is the learning rate, which determines how much the
weights are updated at each iteration (it is a scalar that multiplies the quantity that
updates the weight). Intuitively a small learning rate means that each iteration
causes a “small” variation of the weights of the network, and so this could allow
the network to consider the contribution of all the training examples and reach a
good minimum point of the loss function, or it could just be too small and leave
the loss function distant from a minimum. On the other hand, a high learning
rate means the network updates the weights in a more ostensible way which could
bring to faster convergence of the loss function or it could make the network give
importance only to the more recent examples (since each iteration makes “big”
changes to the weights), bringing the loss function away from a good minimum.
Setting the learning rate to the right value is not easy and there are no formal
rules; the choice has to be made by trying different values.

Sometimes, specially when the networks are big, the training examples have to
be used more than once, since the update of the weights done by the backpropa-
gation algorithm is usually small. A pass through the entire training set is called
an epoch, and sometimes networks are trained for several epochs in order to reach
the final weights for the model (usually the final model is the one that gives the
best performance on the test set).

2.2 Adam Optimizer
As we saw in the previous section, the learning rate is a fundamental parameter for
the training of a Deep Learning network, but it also difficult to find the “perfect”
value. To alleviate the problem of finding the right learning rate, several optimiza-
tion algorithms have been proposed and one of the most used (at the moment of
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the writing it is almost considered standard) is the Adam Optimizer [10]. Adam is
an optimization algorithm that can be used to update the network weights based
on the training data, just as any other stochastic gradient descent algorithm. The
difference is that it changes the learning rate over time, and in particular, the rate
is adapted based on the average first moment (the mean) and the average of the
second moment of the gradients (the uncentered variance).

The algorithm has 3 main parameters: α (the learning rate), β1 (the exponential
decay rate for the first moment estimates), β2 (the exponential decay rate for the
second-moment estimates). There is also a fourth parameter ε which is used to
avoid a divide by zero error while updating the variable when the gradient is
almost zero, and is usually set to be very small (e.g. 10−8). If we let f(θ) be an
objective function that is differentiable with respect to the parameters θ (vector of
parameters), then we can write the pseudocode for the Adam algorithm as follows
(all operations on vectors are element-wise).

m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do

t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 ·vt−1 +(1− β2) · g2t (Update biased second raw moment estimate)
m̂t ← mt

(1−βt
1)

(Compute bias-corrected first moment estimate)
v̂t ← vt

(1−βt
2)

(Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t

(
√
v̂t+ε)

(Update parameters)
end
return θt

In the original paper [10] there is also a theoretical analysis of the effectiveness
of the algorithm and there is the pseudocode for a more efficient (but less clear)
implementation, in addition to several empirical results that prove the qualities of
the optimizer.

2.3 Convolutional Neural Networks
Convolutional Neural Networks (usually abbreviated as CNNs) are a class of feed-
forward artificial neural networks. They are used for processing data that can
be represented with a grid-like topology. In fact, the grid topology introduces a
notion of “distance” or “correlation” among points and CNNs, as we will see, with
their structure are able to exploit this information. Classic examples are images,
which can be represented as a matrix of pixels, and time series data, which can be
stored as a one dimensional vector with each element representing a sample at a
given time. Like traditional neural networks, they are composed by an input layer,
an output layer, and several hidden layers in between. The name “convolutional”
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comes from the fact that particular layers of the network, known as convolutional
layers, execute an operation called convolution on the data. In the next paragraphs
we will see how convolutional layers work and what are the parameters that define
them. We will then analyze the properties of CNNs and finally we will see other
types of layers that can be found in a CNN architecture.

The convolution operation, which is different from a real mathematical convo-
lution, takes two arguments: the input and the kernel (sometimes it is also referred
to as filter or neuron). In machine learning applications, the input is usually a
multidimensional array of data and the kernel is a multidimensional array of learn-
able parameters. If we have a two dimensional input I, with size mI × nI , and
a two dimensional kernel K, with size mK × nK , we can define the convolution
(denoted with the symbol ∗) as:

(I ∗K) (i, j) =

mK−1∑
x=0

nK−1∑
y=0

Ii+x,j+yKx,y with

i ∈ {0, ...,mI −mK} and j ∈ {0, ..., nI − nK}

As we can see from the definition, the convolution is basically a linear combination
between the input and the kernel. We can also notice that the output of the
operation is a matrix with size (mI −mK + 1) × (ni − nK + 1), which is smaller
than the input. Figure 2.3 shows an example of convolution in a graphical format.

The dimension of the kernel is called receptive field and the intuition behind
this is that it corresponds to the portion of the input that the kernel “sees”. In this
first example we used a stride of 1, which means that we are moving the filter of
one position, after each convolution, but it is possible to set the stride to higher
values. Stride values must be chosen carefully, in order to make sure that receptive
field of the kernel fits correctly across the input. If we define s1 as the “row-stride”
and s2 as the “column-stride”, the equation for the convolution becomes:

(I ∗K)(i, j) =

mK−1∑
x=0

nK−1∑
y=0

Is1·i+x,s2·j+yKx,y with

i ∈
{
0, ...,

(mI −mK)

s1

}
and j ∈

{
0, ...,

(nI − nK)
s2

}
Figure 2.4 provides a graphical intuition of the effects of the stride value. We can
immediately notice that stride affects the size of the output. In particular, the
bigger the stride, the smaller the size of the output. This may be a problem: if we
have an architecture composed of several convolutional layers, then the output size
may decrease faster than we would like. A strategy used to control the size of the
output volume is to pad the input with zeros around the borders. This technique
is called padding and it is usually used to obtain an output with the same size of
the input.

We can now define a convolutional layer as a layer where we convolve a certain
number of kernels with the input to produce the output. The parameters we have
to set are the number of kernels, their dimension, the stride used for each kernel
and the presence or absence of padding. The parameters we want to learn are the
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Figure 2.3: An example of 2D convolution: we convolve the kernel with subsequent
portions of the input. We start at the top left corner, execute a linear combination,
and then move to the right by one position. Once we arrive to the right end of the
matrix we return to the beginning and we move down of one position. Notice that
the output is a 2 × 3 matrix, this is because there are 6 different locations that a
2× 2 matrix can fit in the input. Image from [1].

Figure 2.4: Illustration of the effects of the stride value. The kernel is the vector
(1, 0,−1) and the grey cells at the bottom are the input. On the left we have a
stride of 1, while on the right we have a stride of 2. Image from [11].
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values of the kernels.

Convolution provides a mean for working with inputs of variable sizes, and has
three important attributes:

Sparse interactions In traditional neural networks, each output unit interacts
with every input unit and we have a parameter for each interaction. In
CNNs instead, we have sparse interactions because the kernel (which is usu-
ally smaller than the input) interacts with a small portion of the input. We
then have less parameters to store and computing the output requires fewer
operations.

Parameter sharing Parameter sharing means using the same parameters for
more than one function in the model. In a CNN, we saw that each ker-
nel is convoluted in all the “fitting” locations of the input. This means that
we are not learning a set of parameters for each location, we are only learning
one set for all locations. Considering that the size of the kernel is usually sev-
eral orders of magnitude smaller than the size of the input, parameter sharing
allows us to dramatically improve efficiency in terms of memory requirements.

Equivariant representation The property of equivariance means that if the in-
put changes, the output changes in the same way. In CNNs we have that
applying a transformation (for example a shift) to the input and then apply-
ing convolution is the same as applying convolution to the input (without
transformation) and then applying the transformation.

Until now we treated the input as a matrix, but in practical applications we
usually have a tensor as input. In mathematics a tensor can be defined in many
ways, we propose here the intrinsic definition: let V be a vector space of dimension
n over a field K and let V ∗ be its dual. A tensor T of type (m,n) is then a
multilinear application

T : V × · · · × V︸ ︷︷ ︸
m times

×V ∗ × · · · × V ∗︸ ︷︷ ︸
n times

→ K

A tensor can then be considered as an application that associates a scalar to m
vectors and n covectors.

In computer science we can consider a tensor as a multi-dimensional array. For
example in pictures we have that each pixel is composed by three components (one
for each RGB channel), and so the input is actually a tensor with the height and
width of the image and depth equal to 3. Everything we saw in this section can
easily be generalized to work with tensors, with only one additional detail: every
kernel extends through the full depth of the input.

In real world applications we have multiple convolutional layers, one after an-
other, and in each layer we have several kernels. Previously we saw that a con-
volution is simply a linear combination, so, if we only used convolutional layers,
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we would obtain a linear model, which may be too rigid to properly fit the data.
For this reason, between different convolutional layers, it is common practice to
include an activation layer. Activation layers apply a non-linear function to each
component of their input and give the result as output. Several functions have
been proposed over time, but we will focus on the Rectifier Linear Unit (usually
abbreviated with ReLu). A paper by Krizhevsky et al. [12], has shown the effec-
tiveness of this function and since then it became the “default” activation function
for deep learning architectures (at the moment of the writing). ReLu is defined as:

ReLu(x) = max{0, x}

Some of the reasons of its popularity are the fact that it is very efficient, in the
sense that it is easy to compute (and to implement), and the fact that its derivative
is either zero or one (except in the point zero, where it is not defined). The latter is
a desirable property because it reduces the likelihood of vanishing gradient and it
simplifies the back-propagation steps. The vanishing gradient problem occurs when
the gradient used to update the weights becomes too small, effectively preventing
the weight from changing its value. However, it is important to say that there is no
actual mathematical proof showing that ReLu is the best choice for the activation
layer, we are basing our choices on empirical results.

To obtain the final prediction (a classification of the input) from a CNN (or in
general a deep learning) architecture, it is common practice to put a fully connected
layer as final layer. This layer is exactly like a layer of a traditional neural network
and, for classification tasks, it is usually set to have a number of units which is
equal to number of possible predictions. From the values contained in this final
layer we can obtain the predicted label by looking for the unit with the highest
value, or instead we can apply the softmax function and obtain the probabilities
that the given input belongs to each different class.

The softmax function (also known as normalized exponential function) squashes
a n-dimensional vector v of real values to a n-dimensional vector s(v) of real values
between 0 and 1 (extremes included). The function is defined as:

s
(v)
j =

evj∑n−1
i=0 e

vi
for j = 0, ..., n− 1

The value returned for i-th element of the output can be interpreted as the prob-
ability that the input belongs to the i-th class.

There are also other types of layers that you can find inside CNN architectures
(like pooling layers or network-in-network layers, just to cite a few), but we will
not discuss them as, they are not needed for the DeepSense framework.

We conclude this section by saying that the kernels of the convolutional neural
network can be learnt from the training data by defining a loss function and using
the back-propagation algorithm and stochastic gradient descent (usually, mini-batch
stochastic gradient descent is used) or any other gradient descent method, as for
traditional neural networks.
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2.4 Recurrent Neural Networks
Recurrent neural networks (RNNs) are a class of artificial neural networks where
the connections between units form a directed cycle and they are used for processing
sequential data. Traditional neural networks do not have “memory”, in fact, for
each new input, there is no information about previous results. This is a major
shortcoming for tasks that involve sequential data, and RNNs were created exactly
to solve this problem. The idea behind recurrent neural networks is to introduce
cycles inside of the network, allowing information to persist. These cycles represent
the influence of the present value of a variable, on its own value at a future time
step. Loops inside of RNNs can be unfolded, composing a repetitive sequence of
neural networks (Figure 2.5 illustrates this concept). In fact, the architecture of
RNNs can be seen as a module that is repeated for every time step.

Figure 2.5: RNNs can be unfolded into a chain of traditional neural networks.

Many different recursive architectures have been proposed over time. We will
focus on Gated RNNs, and in particular on the Long Short-Term Memory (LSTM)
model, introduced in 1997 by Hochreiter and Schmidhuber [13]. This model, as of
this writing, is in fact the most used in practical applications like speech recogni-
tion, handwriting generation and recognition, and parsing.

The repeating modules of an LSTM structure are called LSTM blocks. Each
block can be thought of as a memory cell: it has a state, representing its stored
value and it has an input gate, an output gate and a forget gate. This gates are
regular artificial neuron units and, based on the value of their activation function,
they “open” or “close” the gates, letting the input flow or blocking it. Figure 2.6
shows a graphical representation of a LSTM block. From the figure we can notice
several things:

• an input can be accumulated into the state if the input gate allows it.

• the state has a linear self-loop whose weight is controlled by the forget gate.

• the output of the cell can be shut off by the output gate.

• the state unit can also be used as an extra input to the gating units.
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Figure 2.6: Diagram of an LSTM block. The black square indicates a delay of a
single time step. An unfolded version of the architecture can be seen in Figure 2.7.
Image from [1].

If we consider the input as a vector, each LSTM block receives the whole vector
as input. For this reason we usually have multiple blocks (also called cells), that
can be interpreted as a memory system, were each cell takes care of saving specific
information (or features) about the data. Before writing the forward propagation
equations we need to define some elements:

• x(t) is the input vector at time step t

• h(t) is the hidden layer vector (containing the outputs the LSTM cells) at
time step t

• s(t)i is the state unit of the i-th cell at time step t

• f (t)
i is the forget gate of the i-th cell at time step t

• g(t)i is the external input gate of the i-th cell at time step t

• q(t)i is the output gate of the i-th cell at time step t

• b,U ,W are the biases, input weights and recurrent weights into the LSTM
cell

• bf ,U f ,W f are the biases, input weights and recurrent weights for the forget
gate
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• bg,U g,W g are the biases, input weights and recurrent weights for the exter-
nal input gate

• bo,U o,W o are the biases, input weights and recurrent weights for the output
gate

• with the symbol σ we indicate a sigmoid function with an output between 0
and 1 (extremes included)

We can now write the forward propagation equations as follows:

f
(t)
i = σ

(
bfi +

∑
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U f
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j +

∑
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From equations (a), (c) and (b) we can see that all gates have the same structure,
they only have different weights that define their behaviour. Equation (a), shows us
that the input at time step t, and the output of the previous cell (h(t−1)) influence
how much of the state we want to forget. From equation (b) we can understand
how the LSTM cells updates work. In particular, in equation (b), we have that
the previous state (s(t−1)) is multiplied by the forget gate and then added to the
product of the external input gate g(t)i and the candidate values that could be
added to the state. It’s like if equation (a) decides what we want to forget and
equation (c) decides how much we want to update the state. After deciding what
to forget and how much to update we have equation (b), which actually forgets
what has to be forgotten and adds the new information. In equation (d) we can
see that the cell state is passed through tanh, to obtain a value between -1 and
1 and then it is multiplied by the output gate q(t)i , that decides how much of the
output we want to pass.

A successful variant of LSTM, that has recently been proposed, is the gated
recurrent unit model (abbreviated with GRU [14]). The main difference with the
LSTM structure is that a single gating unit simultaneously controls the forgetting
factor and the decision to update the state unit. In GRUs there is also no output
gate, so the final model is significantly “lighter” than LSTM, but it seems to give
very good results in practical applications. The update equation for GRUs is:
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i h
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(t−1)
j

)
(f)
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Figure 2.7: An unrolled representation of a LSTM structure showing the repeating
module.

where u stands for “update” gate and r for “reset” gate and their value is defined
as the other gates we saw previously:
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)
From equation (f) we can see that update and reset gates can individually ignore
part of the state vector, removing the need of separate gates.

2.5 Dropout
With deep learning architectures there is always a high risk of overfitting. Overfit-
ting occurs when a model doesn’t capture the underlying structure of the data, but
only adapts to the training data. This means that the model becomes extremely
good at predicting the data that has it has been trained on, but isn’t then able to
generalize and performs poorly on unseen data. A common practice that is used
to tackle this problem is called dropout [15]. This technique is applied only dur-
ing the training phase and it consists in randomly dropping units from the neural
network. In practice, this means that we randomly set to zero a certain amount
of activations in a layer. This amount is controlled by setting the probability of
dropout (usually 0.5 is used).

In a more formal way, if we define z(l) as the vector of the inputs into layer
l, y(l) as the outputs of layer l, W (l) and b(l) as the weights and biases al layer
l and f as an activation function, then the feed-forward operation with dropout
becomes:

r
(l)
j ∼ Bernoulli(p)
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ỹ(l) = r(l) ∗ y(l)

z
(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i

y
(l+1)
i = f(z

(l+1)
i )

where ∗ indicates an element-wise product and ỹ(l) is the output of layer l with
dropout. The parameter p of the Bernoulli random variable is the probability of
dropout that we can set. Figure 2.8 shows the graphical representation of a node in
a neural network when dropout is applied. The training of a dropout network is still

Figure 2.8: Dropout network. Image from [15].

done with a gradient descent technique and the Backpropagation algorithm. The
only difference is that for each training example we consider a “thinned” network
by dropping out units (forward and backpropagation for the training example are
done only on the thinned network). When we have finished training and we want
to use the network to predict the output for a given input, we don’t apply dropout
(in a certain sense it can be seen like if we set p = 1). Several empirical results have
shown the effectiveness of dropout and it is a common procedure for the training
of Deep Learning architectures.

2.6 L2 Regularization
In the previous section we already talked about the problem of overfitting and
how dropout can help, but there are also other ways to avoid (or at least reduce)
overfitting, and regularization is one of them. Regularization consists in adding
a penalty term to the loss function as the model complexity increases. In L2
regularization, also known as ridge regression, the penalty term is defined as:

λ
∑
i

β2
i
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Where βi are the weights of the model and λ is a parameter that defines how
much “importance” we are giving to the regularization (if it is equal to zero, then
there is no penalty, if it is large then it may add too much penalty and lead to
under-fitting). Intuitively the idea behind regularization is that we want to force
the weights to be as simple as possible, and this should make them more “general”
and less “specific” for the training examples.

2.7 Batch Normalization
When working with famous datasets available online, we usually have the training
data and the test data coming from the same distribution. However, in real world
problems, this happens very rarely. When the data from training and testing comes
from different distribution we are experiencing a dataset shift. There are several
types of dataset shifts, but the only one we can actually mitigate is covariate shift.

Covariate shift refers to the change in the distribution of the input variables
present in the training and the test data. In neural networks, covariate shift, ap-

Figure 2.9: Graphical example of covariate shift. Image from [16].

pears also between different layers of the network, and it is called internal covariate
shift. This happens because a change in the parameters of a layer affects all the
successive layers, and even small changes can have big effects on deeper layers.
These shifts in the distribution of each layers input, make it hard to train the net-
work and require careful parameter initialization and lower training rates (things
that considerably slow down the training process). A paper by Ioffe and Szegedy
[17] proposes a technique called batch normalization that is able to alleviate this
problem and that allows us to to use higher learning rates and be less careful
about initialization. Previous studies [18] have shown that, if the inputs of a NN
are transformed to have zero mean and unit variance, the speed of training can be
increased. Batch normalization follows this idea and works by fixing the mean and
the variance of the inputs of each layer in an efficient way. Simply normalizing each
input of a layer may change what the layer can represent, so there are also a pair
of parameters (for each activation), γ and β, which scale and shift the normalized
values. These parameters are learned during training.
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We can now see how the batch normalization process works. Since the nor-
malization is applied to each activation independently, we will focus only on one
particular activation of a certain layer. Let B = {x1, x2, ..., xm} be the set con-
taining the values of the activation, over a mini-batch of m inputs. With x̂1,...,m
we refer to the normalized values, while y1,...,m are their linear transformation. We
can now define the algorithm for batch normalization as follows:

1. µB ← 1
m

∑m
i=1 xi (mini-batch mean)

2. σ2
B ← 1

m

∑m
i=1(xi − µB)

2 (mini-batch variance)

3. x̂i ← xi−µB√
σ2
B+ε

(normalization)

4. yi ← γx̂i + β (scaling and shifting)

The final y values are passed as input to the next layer. The ε that can be found
at step 4 is a scalar (usually set to be very small), used to avoid a division by zero.
A compact way of defining the normalization for a generic vector h is:

BN(h;γ,β) = β + γ ∗ h− E[h]√
Var[h] + ε

Where the division is intended as component-wise. Batch normalization transform
is a differentiable transformation and so the network can still be trained using
gradient descent (or any of its variants) and the back-propagation algorithm.

There is also a version for recurrent neural networks that is called Recurrent
Batch Normalization [19]. In this case batch normalization is introduced in the
input-to-hidden and the hidden-to-hidden transformations. For example the equa-
tions for LSTM that we saw in chapter 2.4 become:
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(
s(t)
))

Where ∗ stands for the component-wise product. One particular observation is that
the β parameters of the normalization are set to zero, because there are already
the b vectors that account for bias.

Batch normalization has proven to be very effective and, at the moment of the
writing, it is considered a standard procedure for deep learning architectures.
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Chapter 3

DeepSense Architecture

The paper by Yao et al. [2] describes the structure of the DeepSense framework
(Figure 3.1). However, the authors do not enter into the details of the parameters
of the architecture. In fact, elements like the dimensions of the CNN filters, the
stride, the eventual padding added to the input, the number of units of the GRU
layers and the size of the fully connected layers are not specified. Unfortunately,
we do not have access to the source code that has actually been used for the work
described in the paper, but one of the authors released a Python implementation
of the DeepSense framework on github2, together with an already pre-processed
dataset3 and the code used for the pre-processing. From the code available on
github we can obtain the parameters that are missing in the article but we do not
have the certainty that we will be recreating the exact framework that the authors
implemented for their tests. We will see this as an opportunity to play with the
different parameters and to test which values give us the best results.

In the next sections we will illustrate the DeepSense framework and we will ex-
plicitly specify the differences between the Python implementation available online
and the architecture described in the paper. For each section we will present the
framework with a general notation (as in the paper), together with a more practical
point of view, by specifying the exact values for all the necessary parameters.

We will start by describing how the data obtained from the sensors is repre-
sented in theory. Let k be the number of available sensors (in our case k = 2, as
we have data from the accelerometer and from the gyroscope), and let S = {Si}
be the set containing all the sensors Si, with i ∈ {1, ..., k}. For each sensor Si we
will store its measurements with a matrix V and a vector u:

• V has size d(i) × n(i), where d(i) is the number of dimensions for each mea-
surement (in our case it is equal to 3 for both accelerometer and gyroscope)
and n(i) is the number of measurements.

• u has size n(i), and contains the timestamp of each measurement.

In other words, for every different sensor, we are considering each measurement as
a column vector (with one component for each measured dimension) and we are
stacking them, one after another, as we collect them from the sensor, composing

2https://github.com/yscacaca/DeepSense
3https://www.dropbox.com/s/z7zpnwh2ndthd2n/sepHARData_a.tar.gz?dl=0
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Figure 3.1: Scheme of the DeepSense architecture. Image from [2].
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a matrix. As we will see, in the implementation we will not have the vector u
of timestamps because we will interpolate the data and take a certain number of
uniformly distributed “measurements” from the function obtained with the interpo-
lation. Notice that if we wouldn’t perform this process of interpolation, the vector
u of timestamps would be necessary, because otherwise, we would lose the relation
in time of the different measurements (real sensors almost never take measurements
at a fixed rate and at fixed time intervals).

3.1 Data Pre-Processing
We will now propose the pre-processing as it presented in the paper, and then we
will see how it is actually done with the data from the HHAR dataset and what
problems we can encounter.

In theory

For each sensor Si, i ∈ {1, ..., k}:

• Split the input measurements V (i) and u(i) along time to generate a series
of non-overlapping intervals with width τ . Store this intervals in the set
W(i) = {(V (i)

t ,u
(i)
t )}, where |W(i)| = T and t ∈ 1, ..., T .

• For each pair inside of W(i) apply the Fourier transform and stack the inputs
into a d(i) × 2f × T tensor X(i), where f is the dimension of the frequency
domain containing f magnitude and phase pairs.

Finally, group all the tensors in the set X = {X(i)}, i ∈ 1, ..., k, which is then the
input of the DeepSense framework.

On the HHAR Dataset

In the code available online, the authors pre-processed the HHAR dataset and saved
it in a series of .csv files. This files will then be the input for their implementation
of DeepSense (in this way it is not necessary to perform the pre-processing each
time). We will now describe the process they used to obtain the .csv files. For
each of the 6 activities in the HHAR dataset:

• Collect all the raw measurements for the activity.

• Segment the raw measurement in 5 seconds samples.

• Divide each sample into time intervals of length τ = 0.25 seconds (this divi-
sion gives us T = 20).

• Interpolate the measurements of each time interval of length τ = 0.25.

• Take 10 uniformly distributed “measurements” from the resulting interpolated
function of each interval and apply the Fourier Transform to each of them.
Each measurement is a vector of length 3 of real values, so we have that
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the the FFT function will return a complex-valued vector of length 3. This
complex values are divided into real part and imaginary part pairs and this
gives us 6 real values for each measurement. In their code, the authors call
these pairs Spectral Samples. Notice that in the theoretical procedure we
took magnitude and phase, while here we are taking of real and imaginary
part (the results are the same, it is only necessary to choose a representation
and be consistent).

• Save the 10 spectral samples for each of the 20 intervals that compose the
5 second sample in a .csv file, for a total of 20 × 10 × 6 = 1200 real values
per sample. In the file, after all the spectral samples values, there is also
the one-hot encoding of the ground truth (inside each .csv file there are 1206
values).

In the DeepSense code provided by the authors, the framework is implemented
using the TensorFlow library [20]. TensorFlow has some specific requirements for
how the data has to be represented. For this reason we will see that the practical
implementation of the framework is very different from what the authors propose
in the paper.

When we need to use the data, we will read the values from the .csv files
and, for each 5 second sample, we will store them into two matrices (one for each
sensor) of size 20× 60 (we basically have one row for each time interval of length
τ containing 6 real values for each of the 10 spectral samples).

In real world scenarios, sensors do not guarantee fixed sample rates, so if we
collect data for a certain amount of time, we might have a different number n(i)

of measurements for each sensor Si. To deal with this problem, the authors make
sure that each 5 seconds sample is composed by 20 intervals of length τ , by adding
some all zero intervals at the end (if necessary). Successively, as we will see, they
take into account of this “fake” intervals in the RNNs layer and in the output layer.

The authors also used some data augmentation on the dataset to make it more
robust (it was not written in the article but it can be found in the code). In par-
ticular for each training example they added other 9 examples obtained by adding
noise (with a random normal distribution with zero mean and 0.5 variance for the
accelerometer and 0.2 variance for the gyroscope). Referring to the procedure we
described for the pre-processing the augmentation would be made at the second
step, where from each 5 seconds sample we would generate other samples. The
reasoning behind this is that the data generated by the sensor is already noisy,
and so having more samples with slightly different noise should make the network
more robust to it.

3.2 CNN Layers
The convolutional neural network layers of the DeepSense architecture can be di-
vided in two parts: Individual Layers and Merge Layers. The first part keeps the
data from different sensors separated, while the second part merges the data from
the two sensors.
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3.2.1 Individual Layers

On the theoretical side, for each sensor Si and for each time interval t, the matrix
X

(i)
:,:,t is fed into the architecture. On the practical side, the input of the architecture

is composed by a matrix of size 20× 60, for each 5 seconds sample (as we specified
in the pre-processing section). For simplicity, from now on, we will denote the
stride with a tuple, where the i-th element indicates the stride value for the i-th
dimension. For example, if we have a two-dimensional input, and we want to move
the kernel of 1 position on the first dimension and of 3 positions on the second
dimension, we have a stride of (1, 3).

1. The first CNN individual layer applies 64 2D filters with shape d(i) × cov1,
producing X

(i,1)
:,:,t as output.

In the article the value of cov1 is not specified, but from the Python imple-
mentation of DeepSense we obtained that each filter covers 3 samples and
has a stride of 1 sample. In detail this means a filter of size 1× (6 ∗ 3) and a
stride of (1, 6).
Right after this layer we apply batch normalization, then we apply a ReLu
activation layer and finally we apply dropout with probability 0.8 of keeping
the connections to the next layer (this probability was not specified in the
paper, but we obtained it from the Python implementation).

2. The second layer applies 64 1D filters with shape 1× cov2, producing X
(i,2)
:,:,t

as output.
The size of this filters are, again, not specified in the paper but from the code
we found that it is (1, 3) with stride (1, 1).
We then perform batch normalization, add a ReLu activation layer and per-
form dropout as before.

3. The third layer applies 64 1D filters with shape 1× cov3, producing X
(i,3)
:,:,t as

output.
The size and stride of the filters are the same of the previous layer.
Finally we apply batch normalization and pass the results through a ReLu
activation layer.

The intuition behind the first CNN layer is that we want to extract relationships,
within the frequency domain, across sensor measurement dimensions and look for
local patterns in neighbouring frequencies. For the second and third convolutional
layers, it is difficult to find a precise intuition, but we can say that they are learning
high-level relationships.

Finally, at the end of the individual layers, we flatten the matrix X
(i,3)
:,:,t into a

vector x
(i,3)
:,:,t and concatenate all k vectors into a k-row matrix X

(3)
:,:,t which is the

input of the merge convolutional subnet. To understand how the concatenation is
done in the implementation of DeepSense provided by the authors, we first need
to look at the size of the output of each convolutional layer (batch normalization
layers, ReLu layers and dropouts leave the size unchanged).

• The input (one sample) is a matrix 20× 60.
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• At the first layer, the stride and the size of the kernels give us an output of
size 20× 8 (for each of the 64 kernels applied).

• At the second layer we obtain an output of size 20 × 6 (for each of the 64
kernels applied).

• At the third layer we finally have an output of size 20× 4 (for each of the 64
kernels applied).

• The final 20×4 matrices are reshaped to obtain a 20×1×4 tensor (basically
we are just adding a dimension).

So at the end, for each kernel of the third layer, we have a 20×1×4 tensor. Remem-
ber that this is done for each sensor, so we will have one tensor (for each kernel)
for the accelerometer and another for the gyroscope. These two are concatenated
in a 20 × 2 × 4 tensor, that is the input of the Merge Layers. This concatenation
process may seem strange, but it is necessary for how the TensorFlow framework
works (we will enter in more details about TensorFlow in Chapter 5).

3.2.2 Merge Layers

The merge convolutional subnet is very similar to the individual convolutional
subnet in it’s structure, but from the code we can see that there are some important
differences in some of the parameters.

1. We first apply 64 2D filters with shape k × cov4 (here the intuition is that
we want to learn the interactions among all k sensors) with output X(4)

:,:,t. As
we did before, we apply batch normalization, a ReLu activation layer and
dropout with probability 0.8 of keeping the connections.
From the code we found that the size of the filters is 1 × 2 × 8 and the
stride is of (1, 1, 1). We also found that padding is applied in order to obtain
an output of the same size of the input. Notice that without padding it
wouldn’t be possible to have a kernel of the given size, because the input is
of size 20× 2× 4.

2. We then apply 64 1D filters with shape 1× cov5, and output X(5)
:,:,t.

The size of the filters is 1 × 2 × 6 and the stride is of (1, 1, 1). Padding is
applied as before.
Like in the previous layer, we apply batch normalization, then a ReLu activa-
tion layer and finally dropout with probability 0.8 of keeping the connections.

3. Finally we apply 64 1D filters with shape 1× cov6, and output X(6)
:,:,t.

The size of the filters is 1× 2× 4 and the stride is of (1, 1, 1). Again, in this
layer, padding is applied.
At the end of this layer batch normalization and a ReLu activation layer are
applied.

We then flatten the final output X(6)
:,:,t into vector x(f)

:,:,t; concatenate x
(f)
:,:,t with time

interval width τ , and obtain the vector x(c)
t . The vectors x(c)

t for t ∈ 1, ..., T are the
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input of the RNN layers. As for the individual layers, the concatenation done in
the Python implementation of DeepSense is different from what we have in theory.
In particular it is done by transforming each 20× 2× 4 tensor in a 20× 8 matrix.
From the code we also noticed that the time interval width τ is not concatenated
to the output, differently from the theoretical procedure.

3.3 RNN Layers
The recurrent neural network layers of the architecture are relatively simple. In
fact we have 2 GRU layers stacked one on top of the other. We apply dropout to
the connections between the two layers and we use Recurrent Batch Normalization
[19]. The output of the GRU layers is the set of vectors {x(r)

t } for t ∈ 1, ..., T .
In the GRU layers provided by TensorFlow it is possible to set the length of the

sequence of each sample. In this way we can take care of the problem of different
sequence lengths that appears in real world scenarios. The fact that TensorFlow
offers the possibility to specify the length of each sequence is probably the reason
why they didn’t concatenate the time interval τ at the end of the merge layers.

In the paper the authors do not specify the number of units in the two GRU
layers and they do not specify the probability of keeping a connection in dropout.
From the code on github we can see that the probability of keeping a connection
in dropout is 0.5 and that the number of units in the GRU layers is 120 for both.
120 is exactly the number of “features” for time interval. In fact we previously saw
that for each interval of length τ we have 10 spectral samples (each composed of 6
real values). Given that we have two sensors, there are exactly 10 × 6 × 2 = 120
values to represent each interval of length τ . We can confirm that the number of
units in the GRU layers is set to match the number of “features” that represent a
time interval by the fact that the authors explicitly write that x(r)

t is the “feature
vector at time interval t”.

In the Python implementation we obtain a 20× 120 matrix as output for each
5 seconds sample.

3.4 Output Layer
In the output layer we want to obtain the final prediction of the activity recognized
by the DeepSense framework. This is done by averaging the feature vectors x(r)

t

over all the time intervals of length τ , to obtain the final feature vector:

x(r) =

∑T
t=1 x

(r)
t

T

We then feed x(r) into a softmax layer to obtain the predicted category probability
vector ŷ. In the Python implementation this is done by performing the average
feature vector, as described, and then connecting it to a fully connected layer with
6 units (one for each activity). Finally softmax is applied to the output of this
fully connected layer to obtain the probabilities of the different activities.
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As we saw in the pre-processing section, in a real world scenario, not all the
intervals have the same length T , so we will need to take into account the real
length of each interval when calculating the final vector.

3.5 Loss Function and Regularization
The loss function chosen by the authors is Cross Entropy. The Cross Entropy loss
function is defined as:

L = − 1

|Training Set |
∑

x∈Training Set

M∑
c=1

yx,c log px,c

Where M is the number of classes (6 in our case), x is a training example, yx,c is a
binary indicator (0 or 1) if class label c is the correct classification for observation
x, and px,c is the predicted probability observation x is of class c. Cross Entropy
can be considered as the default loss function for multiclass classification tasks. It
wasn’t written in the paper, but from the code available on github we saw that the
authors applied L2 Regularization, with λ = 0.0005.
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Chapter 4

Customizing DeepSense

The authors of DeepSense wanted to create a “general” Deep Learning model to
work with time-series data coming from sensors, so they didn’t worry about pushing
the performances for a specific task. In fact, the framework proposed by the
authors, is meant to be trained only once and then to be deployed on device “as-
is”. Differently, we are focusing only on human activity recognition and we want to
achieve the best possible result. One thing that comes to mind about the human
activity recognition problem is that it is highly “personal”, in the sense that a single
smartphone or smartwatch is used by just one person, and the style of walking,
running or climbing stairs is peculiar to each individual. Our idea was then to
exploit this characteristic of the problem by modifying the framework in order to
make it able to adapt over time to a specific user, increasing the accuracy of its
predictions. Talking with a high level of abstraction, we want to utilize the original
framework trained on the HHAR dataset as a starting point for a more personalized
system. In particular, in the first period of utilization by the user, we will predict
the activity he is performing with the original framework, and then we will ask
if the prediction is correct. Each feedback given by the user will successively be
used to modify the system, making it more and more “personal”. Ideally, this will
increase the accuracy of the model over time.

To implement this strategy in practice we used the concept of transfer learning.
Transfer learning is a machine learning method where a model developed for a task
is reused as the starting point for a model on a second task. The typical scenario
in a transfer learning setting is to have a base network already trained on a certain
dataset, which is then repurposed as a part of a second network which is trained
on the target dataset. In our case we will use the the DeepSense framework, from
the input layer, to the GRU layers included, as our base model, and we will have
a separate network representing the output layer as our target network that will
be trained with the data generated by the user. In more detail we followed this
procedure:

1. We selected a user and we splitted he’s original data into two halves, one for
training, and the other for validation. The split was done at the activity level:
for each activity we took half of the data for training and half for validation
(this preserves the ratio of examples between the different activities).

2. We trained a full DeepSense model on the HHAR dataset (with the data of
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all the users, except the data of the user chosen at step 1), and we extracted
the values of the weights and bias of the output layer (which we remember is
a fully connected layer that receives as input the average of the vectors given
by the GRU layers).

3. We created a new network consisting only of a fully connected layer that
receives as input a vector of length 120 and gives as output a vector of length
6 consisting of the probabilities associated to each activity for the given input.

4. We initialized the second network with the weights and bias of the output
layer of the full DeepSense model that we trained in step 2.

5. We trained the second network with the training data of the specific user
selected at step 1.

6. We evaluated the performance of the second model with the validation data
of the specific user selected at step 1.

This procedure suggests a possible scenario where a user with a new device (or
application) inserts feedback on the predictions, generated by the application that
performs human activity recognition, for a certain number of times, in order to
make the model adapt to himself. The application then stops asking for feedback
and, from now on, generates new predictions using the adapted model. These pre-
dictions should be more accurate than the ones given by the “general” DeepSense
framework trained only on the HHAR dataset, since they are based on data ob-
tained directly from the user. In the next Chapter we will see exactly the tests that
have been done to evaluate the effectiveness of the transfer learning technique on
the DeepSense framework and in Chapter 6 we will show the results we obtained.

Before moving on to the tests section, we will spend a few words on how to
actually implement this kind of transfer learning strategy on a device. First of all
it is necessary to have a saved full DeepSense model trained on the HHAR dataset.
This model will never be modified and it will only be used to generate predictions,
and in particular to obtain the input to the output layer. Saving a model can easily
be done with TensorFlow’s savedModel format, as we will see in the next Chapter.
Then we will need to have a second model consisting of a fully connected layer
that will be trained with the feedback given by the user on the predictions. As
previously mentioned in this section, we will initialize this model with the values
of the weights and bias of the output layer of the full trained DeepSense model.
The second model will then require some training steps, and usually you would
not want to perform training on a smartphone or smartwatch, but in this case
we have a simple fully connected layer and it shouldn’t be a problem for modern
devices in terms of time, computing resources and power consumption to perform
this operation. We can then describe the prediction procedure as follows:

1. Collect the data form the sensors and execute the necessary pre-processing
(see chapter 3.1).

2. Pass the data as input the the full DeepSense model and obtain the output
of the GRU layers. We called this output x(r) in chapter 3.4.
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3. Pass x(r) to the second model consisting of a fully connected layer and obtain
the predicted activity.

4. Ask to the user if the prediction was correct.

5. Use the feedback given by the user to create a new training example that will
be used to perform a training step on the second model.

Points 4 and 5 could be skipped after a certain number of times in order to not
“disturb” the user requiring continuous feedback and to avoid overfitting.
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Chapter 5

Experimental Tools & Settings

All the code generated for this thesis was written in Python with an extensive
use of the TensorFlow library [20]. In particular the code requires Python 3.x,
TensorFlow 1.5.x or greater and the NumPy package4. The tests were ran on
a cluster composed of 40 Intel R©Xeon ES-2698 v3 cpus (each with 16 cores and
40960 Kb of L3 cache) and a total of 528 Gb of RAM. The code is organized in
the following files:

• deepSense.py This file contains the implementation of the DeepSense frame-
work.

• transferLearning.py This file contains the implementation of the custom
model we created (explained in Chapter 4).

• test01.py Implementation of Test 1 (see section 5.2)

• test02.py Implementation of Test 2 (see section 5.2)

• test03.py Implementation of Test 3 (see section 5.2)

• test_main.py This file contains a simple script that launches the tests.

• sepUsers.py This and the next files are the implementation of the pre-
processing required for DeepSense (see Chapter 3.1). The code in this file
creates one folder for each user, and inside each folder it creates two .csv files
that will contain accelerometer and gyroscope data for that user.

• augmentation.py This file performs data augmentation, as described in
Chapter 3.1.

• mergeSensors.py This file merges the measurements from accelerometer and
gyroscope, doing all the necessary pre-processing, and organizing the data in
.csv files with the structure described in Chapter 3.1.

• prepareCV.py This file contains a script that organizes the data in folders
for leave-one-out cross validation.

In the next sections of the chapter we will enter in more details about Tensor-
Flow, and the tests that we performed.

4Available at http://www.numpy.org/
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5.1 TensorFlow
TensorFlow [20] is an open-source library, first developed at Google, for dataflow
programming. It is a tool for machine learning in general but it is specifically
designed for deep learning models. TensorFlow is available on 64-bit Linux, macOS,
Windows, mobile computing platforms (including Android and iOS), and it can
run on multiple CPUs and GPUs.

TensorFlow works by expressing computations as stateful dataflow graphs. A
dataflow graph is a directed graph, where the nodes represent units of computation,
and the edges represent the data consumed or produced by a computation. Follow-
ing this computational model, a TensorFlow program firstly defines the dataflow
graph and then runs it in what is called a session. Different parts of the graph can
be executed by different devices (CPUs, GPUs, and also in local or remote ma-
chines). In fact, one of the advantages of the dataflow paradigm, is that the graph
of the operations shows all the dependencies between data, and so it becomes very
easy for the system to identify which operations can be executed simultaneously.
Another advantage is that the dataflow graph is language-independent and so it is
easy to build and restore models in different programming languages. Figure 5.1
shows the graphical representation of the dataflow graph created by TensorFlow
for the DeepSense model.

In TensorFlow dataflow graphs are represented with objects of the Graph class.
These objects contain two important informations:

• Graph Structure: the nodes and the edges of the graph. This structure
shows how individual operations are composed together.

• Graph Collections: metadata for the graph. For example it contains infor-
mations about the global variables (variables that should not change during
the training phase, and that can be shared across multiple devices) and the
trainable variables (variables for which TensorFlow will calculate gradients).

To execute a graph it is necessary to create a Session object. This object provides
access to devices both in the local machine, and on remote devices. It also caches
information about the graph.

As we saw, dataflow graphs are a very powerful tool, but when we are developing
Deep Learning models we want to work at a higher level of abstraction since the
number of individual operations to specify would be very big. For this reason
TensorFlow offers a set of high level APIs to create models. Just as an example,
we show how easy it is to create a convolutional layer with 32 filters of size 5× 5,
padding so that the output size is the same as the size of the input and a ReLu
activation function using the Python TensorFlow API.

1 conv1 = tf. layers .conv2d(
2 inputs=input_layer,
3 filters =32,
4 kernel_size=[5, 5],
5 padding="same",
6 activation=tf.nn.relu)
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Figure 5.1: The dataflow graph of the DeepSense framework. TensorFlow offers a
tool called TensorBoard that allows the user to visualize in a graphical way several
information about the current execution session. This image has been taken from
TensorBoard during an execution of the tests.
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The two fundamental high-level classes that are used to create models, are Estimator
and Dataset. Estimators provide a simple interface for training, prediction and
evaluation of a model. It is possible to use pre-made Estimators from the Ten-
sorFlow library or create custom ones. Dataset objects are the abstraction of a
real dataset and they provide several methods to import, manipulate, organize and
feed data to an Estimator. The recommended workflow (for the high level API)
for implementing a TensorFlow model requires the creation of an input function
that creates a Dataset object and a model function that creates the graph of the
operations that describe the model. The model function is then used to create an
Estimator object (which will receive data from the Dataset object) that can then
be trained, used for predictions and evaluated. This is exactly the strategy followed
for the implementation of DeepSense and of the custom transfer learning model
that we developed for this thesis (files deepSense.py and transferLearing.py).

TensorFlow provides a special “universal” format for saving models called Saved-
Model. The official programmer’s guide5 describes it as a “language-neutral, recov-
erable, hermetic serialization format that enables higher-level systems and tools to
produce, consume, and transform TensorFlow models”. Usually a model is trained
on a big dataset and the training process requires a lot of computational power and
memory space. On the contrary once the model is trained the prediction operation
doesn’t require that many resources. For this reason a model is trained on high
performance systems and then it is saved in the SavedModel format, so that it can
be passed to a less powerful device that can use it as a prediction tool, without
having to perform the training.

5.2 Tests
Several tests have been done to evaluate the potential of the DeepSense framework
and the effectiveness of our custom model. In this section we will describe the
procedure followed in each one of them. With the term hyperparameters we will
refer to the parameters of the Adam Optimizer (see section 2.2).

Test 1

The dataset of already pre-processed data published by the authors of DeepSense
contains circa 120′000 examples but this is not the actual number of examples we
would obtain if we performed the pre-processing on the HHAR dataset as it is
described in Chapter 3.1; the actual number is circa 12′000. In fact, the authors
augmented the dataset by generating 10 examples from each one obtained from
the pre-processing.

This first test uses the original DeepSense framework (with the same parame-
ters of the model published online by the authors) and evaluates its accuracy when
trained with the 120′000 examples dataset and when trained with the 12′000 exam-
ples dataset. The evaluation has been done with leave-one-out cross validation. In
particular, for each user, we trained the model on the data from all other users and

5https://www.tensorflow.org/programmers_guide/saved_model
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we evaluated its accuracy on the data for that user. We finally took the average
accuracy among all users.

The training for the model on the 120′000 examples dataset was done using
the hyperparameters found in the code provided by the authors: α = 0.0001,
β1 = 0.5, β2 = 0.9 and ε = 10−8, and was done for one epoch (which we remind
means one pass of the training set), as done by the authors in their code. The
hyperparameters for the model on the 12′000 dataset instead were the TensorFlow
default ones (which are the parameters suggested in the original Adam Optimizer
paper [10]): α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8.

Test 2

This second test evaluates the accuracy of our custom model. We compared the
results using the augmented and the non-augmented dataset and we used leave-
one-out cross validation, as in the previous test. The only difference is that for
each user we separated its data in two halves, one was used to train our custom
model, and the other was used to evaluate the model, as we explained in chapter
4. To be able to organize the test in a more structured and fast to use way, we first
created a dataset specific for this test. The procedure followed for the creation of
the dataset was: for each of the nine users that generated the data of the HHAR
dataset we

1. Took the full DeepSense model trained on the data from all the other users
in Test 1.

2. Passed as input one example and extracted the output of the GRU layers
(what we called x(r) in Chapter 3.4).

3. Saved the output in a .csv file with the values composing x(r) and the one-hot
encoding of the activity representing the ground truth.

The .csv files have been saved in an organized manner, in order to have one folder
for each user containing two subdirectories: one with the training examples and
one with the validation examples. In this way we created a dataset that can be
easily reused to train and evaluate our custom model without having to utilize the
full DeepSense framework to obtain the inputs for our model.

The hyperparameters for the training of the custom model were TensorFlow’s
default ones: α = 0.001, β1 = 0.5, β2 = 0.9 and ε = 10−8, and the model was
trained for one epoch.

Test 3

The aim of this test is to demonstrate the effectiveness of the improvements given
by our custom model. In particular we want to show that the personalization of
the output layer is in fact capable of learning the structure of the data generated
by a specific user. We can display this capability by training the base network on
the training set where the labels have been randomly permuted, and then training
and evaluating the final custom network on the same dataset used in Test 2. The
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base network trained on the examples with permuted labels should just learn noise
and it shouldn’t give an accurate model (in fact it should have the same accuracy
of a model that simply assigns a random class with probability proportional to
the number of examples in that class), so, if the custom network is then able to
improve the accuracy by training on correct data, we have then proven the learning
capability of the customization of the output layer.

The hyperparameters used for the training of both, the base network and the
final layer, were TensorFlow’s default ones: α = 0.001, β1 = 0.5, β2 = 0.9 and
ε = 10−8, and the model was trained for one epoch.
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Chapter 6

Results

Before showing the results we obtained from the test we have to make some clari-
fications. When we talk about the accuracy of the model we mean the number of
correct classifications (on the examples of the validation set) divided by the total
number of examples in the validation set. Similarly when we talk about class ac-
curacy we mean the number of correct classifications of examples of a given class
in the validation set, divided by the total number of examples of that class in the
validation set. Finally, with the term mean per-class accuracy we denote the mean
of all the class accuracies (6 in our case).

We have to use this two metrics, instead of just the accuracy (which one could
think is the most important and already describes the goodness of the model)
because, during the tests, we saw that there was sometimes a significant difference
between the accuracy and the mean per-class accuracy. After some investigations
we found that this behaviour was given by the composition of the dataset, in
particular we have that for some users there is a lack of examples, specially in
the validation set, for some classes. Table 6.1 shows for each user, the number
of examples used for training for each activity, and the number of examples for
validation for each activity. The numbers in the table are referred to the case
without data augmentation, since the augmentation adds new examples only to the
training set and it doesn’t change the proportions between the number of examples
for the classes. The differences in the number of examples in the validation set
have a huge impact on the accuracy of the model. In fact, if the model is good
at predicting examples of a certain class and this class is the one with the most
examples in the validation set, and a low accuracy in a class with a small number
of examples, then we will obtain a high accuracy but this doesn’t mean that the
model is good in general, it is only good for a certain class (which is something
that we clearly don’t want; ideally we would like to have the same, and possibly
high, accuracy on each class). For this reason in our opinion the mean per-class
accuracy metric is better at capturing the capabilities of the model, even if it was
not considered by the authors of the Deepsense paper. In the results below you
will find both, the accuracy, and the mean per-class accuracy.
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User Bike Sit Stand Walk Stairs-Up Stairs-Down
‘a’ Train 1415 1026 1218 783 3877 3605
‘a’ Eval 164 7 242 131 415 445
‘b’ Train 1367 875 1305 818 3711 3611
‘b’ Eval 212 158 155 96 581 439
‘c’ Train 1431 831 1279 704 3812 3562
‘c’ Eval 148 202 190 210 478 488
‘d’ Train 1471 841 1402 903 3725 3617
‘d’ Eval 108 192 58 11 567 433
‘e’ Train 1410 1022 1323 824 3792 3533
‘e’ Eval 169 11 137 90 499 469
‘f’ Train 1349 892 1286 854 3769 3600
‘f’ Eval 230 141 174 60 523 450
‘g’ Train 1383 917 1312 729 3968 3649
‘g’ Eval 196 116 145 185 320 401
‘h’ Train 1427 827 1323 784 3818 3555
‘h’ Eval 167 206 137 131 474 491
‘i’ Train 1379 1033 1238 914 3857 3620
‘i’ Eval 200 0 222 0 431 430

Table 6.1: Each row refers to the training set (Train) or the validation set (Eval)
for each user; in each column we have the number of examples for an activity inside
the set.

Test 1
The first consideration we can make by looking at Table 6.2 is that the model is not
so good. In fact we are very far from the results that the authors of the Deepsense
model present in their paper (they show a '93% accuracy on the validation set).
This could be because the parameters that we used were taken from the code that
the authors published online, and we don’t know if they correspond to the actual
parameters for the model used by the authors. In fact, the code available online,
could just be one of the models they developed while testing the framework, and
not necessarily the final one. We can’t exclude that there is a combination of the
parameters, and of the hyperparameters, of the model that reaches the accuracy
the authors talk about, but after two weeks of testing different configurations, on
our (limited capacity) cluster, we weren’t able to obtain better results than the
ones we present here.

Even if we didn’t reach some exciting results we can still find some interesting
insights. In particular we can see that the difference between the accuracy and the
mean per-class accuracy is significant, confirming the flaws of the dataset that we
saw in the first part of this chapter. We can also notice (and perhaps it is probably
the most interesting thing), by comparing Table 6.2 and Table 6.3, that the data
augmentation procedure is very effective and it gives us a much more robust and
accurate model (the mean per-class accuracy increases by 75.57%). This confirms
the intuition that adding noise to the data to create new examples, allows the
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network to deal with noisy measurements coming from the accelerometer and the
gyroscope.

Test 1 - Dataset 120’000
User Test Set Accuracy Mean per-class accuracy
‘a’ 69.8% 56.1%
‘b’ 64.7% 52.2%
‘c’ 63.4% 60.1%
‘d’ 59.9% 42.8%
‘e’ 74.8% 70.8%
‘f’ 56.0% 48.3%
‘g’ 66.2% 59.8%
‘h’ 75.2% 63.1%
‘i’ 71.6% 59.0%
Cross Validation Test Set Accuracy 66.85%
Cross Validation Mean per-class Accuracy 56.92%

Table 6.2

Test 1 - Dataset 12’000
User Test Set Accuracy Mean per-class accuracy
‘a’ 51.0% 38.3%
‘b’ 36.1% 29.6%
‘c’ 38.6% 33.7%
‘d’ 34.7% 29.0%
‘e’ 36.1% 29.9%
‘f’ 61.3% 44.2%
‘g’ 28.6% 17.0%
‘h’ 60.9% 43.5%
‘i’ 34.4% 26.5%
Cross Validation Test Set Accuracy 42.40%
Cross Validation Mean per-class Accuracy 32.42%

Table 6.3

Test 2
The results from this test, that can be found in Table 6.4 and Table 6.5, are
very promising, since we can immediately see that our custom model enhances
significantly the accuracy and the mean per-class accuracy of the model. In fact,
just by looking at the final cross validation results we can see a 30.17% improvement
on the accuracy and a 24.68% improvement on the mean per-class accuracy on the
model trained on the 120′000 examples dataset. On the 12′000 dataset we have
a 32.38% and a 17.95% improvement that confirms the capability of the custom
model to adapt to a specific user.
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Test 2 - Dataset 120’000
User Test Set Accuracy Mean per-class accuracy
‘a’ 86.9% 70.8%
‘b’ 87.2% 78.6%
‘c’ 69.2% 58.1%
‘d’ 86.9% 53.7%
‘e’ 97.3% 81.4 %
‘f’ 91.9% 79.4%
‘g’ 91.6% 90.7%
‘h’ 84.4% 72.5%
‘i’ 87.8% 53.5%
Cross Validation Test Set Accuracy 87.02%
Cross Validation Mean per-class Accuracy 70.97%

Table 6.4

Test 2 - Dataset 12’000
User Test Set Accuracy Mean per-class accuracy
‘a’ 47.8% 27.1%
‘b’ 75.8% 60.0%
‘c’ 29.3% 19.4%
‘d’ 80.5% 46.9%
‘e’ 58.7% 37.0 %
‘f’ 67.7% 52.1%
‘g’ 45.8% 37.7%
‘h’ 64.8% 46.7%
‘i’ 34.7% 17.4%
Cross Validation Test Set Accuracy 56.13%
Cross Validation Mean per-class Accuracy 38.24%

Table 6.5

Test 3
First of all, from Table 6.6 we can, again, see the flaws of the dataset. In fact we
have a mean per-class accuracy which is near 16% for each class (that is exactly
what we would expect, since it means that the model is as good as a random
predictor that chooses one class out of the six with uniform probability), but the
accuracy goes from 23% to 36%, because there are much more examples of some
classes with respect to others in the validation set.

In Table 6.7 we have the final confirmation of the effectiveness of our user-
adaptation approach since we can clearly see that the last layer is capable of learn-
ing and in fact we have a 156, 29% increase in accuracy and a 258% increase in the
mean per-class accuracy. These results transforms the basically random predictor,
obtained from the first training on the shuffled data, in a predictor that beats the
original framework (at least with respect to the results we obtained in Test 1) when
working with the data of the specific user it was adapted to.
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Train and Eval Full DeepSense Model on Shuffled Data
User Test Set Accuracy Mean per-class accuracy
‘a’ 29.8% 16.5%
‘b’ 36.4% 16.7%
‘c’ 27.6% 16.7%
‘d’ 30.2% 16.7%
‘e’ 33.2% 16.5 %
‘f’ 27.9% 16.4%
‘g’ 23.3% 16.7%
‘h’ 30.0% 16.5%
‘i’ 33.3% 16.7%
Cross Validation Test Set Accuracy 30.16%
Cross Validation Mean per-class Accuracy 16.64%

Table 6.6

Train and Eval of last layer on Regular Data
User Test Set Accuracy Mean per-class accuracy
‘a’ 65.4% 41.4%
‘b’ 87.7% 79.5%
‘c’ 66.6% 55.3%
‘d’ 77.0% 45.8%
‘e’ 83.0% 63.3 %
‘f’ 89.3% 77.4%
‘g’ 70.1% 65.5%
‘h’ 74.1% 56.2%
‘i’ 82.5% 51.8%
Cross Validation Test Set Accuracy 77.30%
Cross Validation Mean per-class Accuracy 59.57%

Table 6.7
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Chapter 7

Conclusions

In this thesis we tackled the Human Activity Recognition (HAR) problem with a
Deep Learning approach. In particular we first analysed some previous work that
has been done on this subject and we analysed the dataset used. We saw that the
early approach on the HAR problem was to create hand-crafted features. These
features were usually not very good in terms of generalization and required a lot of
work and tests to be created. We than introduced the theoretical elements behind
the Deep Learning structures that we were going to use. Successively we described
the DeepSense framework, proposed by S. Yao, S. Hu, Y. Zhao, A. Zhang, and
T. Abdelzaher. This framework provides a deep learning model that combines
convolutional neural networks (CNN) and recurrent neural network (RNN), that
is able to automatically extract relevant features from the data. The authors only
saw HAR as an example usage of their framework, so we decided to tailor the
model for this particular problem by making it able to adapt to a specific user.
We then presented the instruments that we used to implement our model, and the
tests that we performed to evaluate it. We weren’t able to obtain the same results
(in terms of accuracy) presented by the authors of the paper, but throughout the
work we highlighted that several important parameters of the framework were not
specified by the authors and so it was not possible to create the exact same model
they used. Nevertheless we were still able to gain several important insights. In
particular, the tests showed that our tailored model was very good at adapting to a
specific user, and has some promising learning capabilities. In fact, even if our time
and resources to perform tests were limited we obtained a significant increment in
the performance of the model when it is adapted to a specific user. We also saw
that the dataset had some problems when used to evaluate our model and that, in
our opinion, the mean per-class accuracy is a better validation metric with respect
to the accuracy.

7.1 Future Work
Given the mole of the number of parameters that constitute the model, and the
limited resources (and amount of time) available, we weren’t able to perform too
much tests to the structure of the DeepSense framework, but it would be very in-
teresting to try to tune the different parameters and also to change the structure of
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the network, seeing if there is a better configuration for the HHAR problem. Some
changes that could be made to the network were also tested by the authors of the
DeepSense framework in their paper, and that’s why we used the model parameters
that can be found in the code they published online. For example, they tried to
use a single GRU layer, they tried to remove the individual convolutional layers
and to remove the merge convolutional layers, and they saw that the performances
were not significantly worse.

It would be also very interesting to change the length of the samples in the pre-
processing phase, in order to see how the performance of the DeepSense framework
changes with shorter or longer sample lengths.

There is also some work that can be done to perfect our user-adaptation ap-
proach by fine tuning the custom model that we developed. In particular one could
try data augmentation and see if it can improve or speed up the process of adap-
tation. Or, in the same spirit, it could be interesting to try different structures for
the last layer of the framework.

Some work can also be done on the “hardware side”, in particular it would be
nice to see how much power consumption and computational costs are required to
perform the learning of the custom model.

Finally, with the right resources we think that a lot of interesting information
could be obtained by creating a new dataset for HAR, that is more oriented for
the use of Deep Learning approaches.
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