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Abstract

Financial markets have always been led by uncertainty, therefore Probability theory is an
essential tool to model them and to tackle pricing and hedging of options. Specifically,
instruments used also in Statistical Physics and Complex Systems, such as stochastic
processes (Brownian motion in particular), are the core of models for the dynamics of
underlying assets. As these models are based on stochastic differential equations, their
solutions cannot be always found analytically. In such cases pricing, which in practice
is equivalent to computing a (conditional) expectation, is performed, e.g., via numerical
procedures, such as Monte-Carlo or quantization, to cite a few of them. Quantization is
a discretization procedure: when applied to a (continuous) random variable, it produces
a set of points which optimally (in a sense to be made precise) approximates the original
distribution. The aim of this work is presenting and discussing quantization techniques.
Moreover, the analysis is focused on a particular quantization method, based on the
Fourier transform, and on its Lp error. As an application, in the famous Black-Scholes
model a study of the Lp quantization error, for different values of p ≥ 1 is performed,
with a special focus on pricing.

Sommario

I mercati finanziari sono stati da sempre guidati dall’incertezza, perciò la teoria delle
probabilità è uno strumento essenziale per modellizzarli e affrontare il prezzaggio e la
copertura delle opzioni. Nello specifico, gli strumenti usati anche in Fisica Statistica e
Sistemi Complessi, come i processi stocastici (il moto browniano in particolare), sono il
nucleo dei modelli per la dinamica degli assets sottostanti. In questi casi il prezzaggio,
che in pratica è equivalente a calcolare un’aspettazione (condizionale), è effettuato ad
esempio tramite metodi numerici, come Monte-Carlo o quantizzazione, per citarne alcuni.
La quantizzazione è una procedura di discretizzazione: quando applicata a una variabile
aleatoria (continua), genera una serie di punti che ottimamente (in un senso che defi-
niremo in seguito) approssimano la distribuzione originale. Lo scopo di questo lavoro è
presentare e discutere queste tecniche di quantizzazione. Inoltre, l’analisi è focalizzata su
un particolare metodo di quantizzazione, basato sulla trasformata di Fourier, e sul suo
errore Lp. Come applicazione viene mostrato uno studio dell’errore di quantizzazione Lp

nel famoso modello di Black-Scholes, per diversi valori di p ≥ 1, con uno speciale focus
sul prezzaggio.
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Introduction

Financial markets are multi-agent systems, where plenty of buyers and sellers interact to ex-
change any type of goods, called assets. In order for investors to hedge themselves, a class
of financial instruments called options was invented. Basically, these tools are contracts that
enable the holder to buy (or sell) an asset, called underlying (it can be a commodity, a stock,
or whatever), at a predetermined price on a specific date.
The option price should be fair, in the sense that the probability to profit is equal for both,
the underwriter and the holder. To pursue this purpose, many models have been developed,
so-called option pricing models, which consist of stochastic differential equations. These equa-
tions depend on some parameters and, most important, on the underlying asset price, for this
reason these contracts are also called derivatives. Stochastic calculus is essential to describe
the probability nature of the underlying asset price. A stochastic differential equation, which
has not an analytical solution, can be solved via numerical methods, for instance Monte-Carlo
or quantization.
The quantization technique is a fundamental concept in signal processing theory that involves
the representation of continuous signals using a finite number of discrete values. It has its root
from the 1950s decade in the Bell laboratories, where its usage consisted in optimally discretiz-
ing a continuous (stationary) signal in view of its transmission. Although Signal Processing
was its original application field, several fields started to adopt it after its discovery, such as
audio and image processing, information theory, pattern recognition, operations research, and
our research topic, mathematical finance.
In financial engineering, quantization techniques are commonly used in option pricing models
to approximate the continuous stochastic process of the underlying asset price with a finite set
of discrete states. The idea behind this approach is to reduce the complexity of the underlying
stochastic process while maintaining the accuracy of the pricing model.
This thesis will focus on a particular quantization method that involves the Fourier transform,
developed by Callegaro et al. (2019), and we will test this method on the Black-Scholes model
for option pricing, whose solutions are already known since they can be found analytically.
Because of that, we are allowed to use them as a benchmark to test the outputs of the quan-
tization method. Specifically, the aim of this thesis is to study the results of this method for
different values of p in the Lp norm.
At first, we want to see if the guessings, made in Callegaro et al. (2019, Sect. 2.4), are true and
how the quantization grids behave for different p-values. Furthermore, the main goal consists
of understanding if the pricing of European Call options gets better by changing the p-norm
for the values of the strike price lower or higher than the underlying asset price.
The thesis is organized as follows: Chapter 2 builds some basic concepts of stochastic processes
and Brownian motion to better understand what is an option pricing model, such as Black-
Scholes and gives some vocabulary about financial terms. Chapter 3 starts from the key bases
of probability theory and explains how the quantization method works and the contribution of
Fourier transform. Chapter 4 reports the calculation made and exposes the results achieved
with some comments and considerations. Finally, in Chapter 5 we express our conclusion.
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CHAPTER 2. BROWNIAN MOTION AND OPTION PRICING MODELS

Brownian motion and option pricing mod-
els

2.1 Brownian motion: definitions and applications
In its origin, Brownian motion models the seemingly random and unpredictable movement of
particles suspended in a fluid or gas, which was first observed by the botanist Robert Brown
in 1827. Brownian motion has since become a fundamental tool in Physics for the description
of random motion, i.e. random walk. Due to its ductility to describe phenomena that involve
randomness and probability, it has found applications in a wide range of fields, including
Chemistry, Biology, Finance, and Engineering.
The first pioneering work was done by Einstein (1905) in his famous paper "Über die von der
molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten
suspendierten Teilchen" (translation: "On the movement of small particles suspended in a
stationary liquid demanded by the molecular-kinetic theory of heat") where it has helped to
establish the existence of atoms and molecules. It is, noticeably, one of the first applications
of this concept outside Physics by Louis Bachelier in his "The Theory of Speculation" (1900),
who studied the potentiality of this tool in financial markets. The first one who developed a
rigorous mathematical theory of Brownian motion was Norbert Wiener in 1923.

For the aims of this thesis, we are going to give some definitions of stochastic processes and
Brownian motion, in such a manner we have the mathematical basis to understand an option
pricing model. For the mathematical references, the main sources are Mikosch (1998) and Björk
(2009).
First, let us define what a stochastic process is.

Definition 1. Let (Ω, F ,P) be a probability space and T ⊂ R. A stochastic process is a
collection of random variables (Xt, t ∈ T ) = (Xt(ω), t ∈ T, ω ∈ Ω) defined on a common Ω.

Recall that Ω is the sample space and ω is a possible outcome, t is the time variable. For our
purposes, we can take T as the interval [0, +∞). It is evident that Xt(ω) is a function of two
variables:

• fixing t, i.e. considering each time step, X(ω) is a random variable

• fixing ω, Xt is a sequence of real numbers called realizations, which represents a trajectory
or a sample path of the process X.

Brownian motion is then a particular type of stochastic process, which enjoys some properties
listed below.

Definition 2. A Brownian motion (or Wiener process) B = (Bt, t ∈ [0, +∞)) is a stochas-
tic process which satisfies:
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2.1. BROWNIAN MOTION: DEFINITIONS AND APPLICATIONS

1. For 0 ≤ s < t, the random variable (Bt − Bs) has a normal distribution N (0, t − s) 1;

2. B has independent increments; 2

3. B0 = 0;

4. P (B ∈ C[0, +∞)) = 1, it means that the sample paths of B are continuous with proba-
bility 1, i.e. there are no "jumps".

Considering a standard Brownian motion Bt, the process

Xt = rt + σBt, t ∈ [0, T ]

is called Brownian motion with drift, where r ∈ R is the drift and σ > 0 is the diffusion
coefficient.

Figure 2.1: Example of Brownian motion with drift from Kasumo (2011).

This concept takes us closer to the definition of Geometric Brownian Motion, a stochastic
process largely used in Finance, where it has a key role in the formulation of option pricing
models. Let us report the definition as in Björk (2009, Sect. 5.2).

Definition 3. A Geometric Brownian motion is a stochastic process X which satisfies
the stochastic differential equation (SDE):

dXt = rXtdt + σXtdBt X0 = x0, (2.1)

where r ∈ R is the drift, σ > 0 is the diffusion coefficient and B is a standard Brownian motion.
1For the Gaussian distribution is used the notation N (µ, σ2), where µ is the mean and σ2 is the variance.
2X has independent increments when ∀ti ∈ T with t1 < ... < tn and n ≥ 1, Xt2 − Xt1 , ..., Xtn − Xtn−1 are

independent random variables.
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CHAPTER 2. BROWNIAN MOTION AND OPTION PRICING MODELS

It is known that the corresponding deterministic linear equation has as a solution an exponential
function of time. Moreover, in stochastic calculus, the Itô formula expresses the differential for
a generic function Zt = f(t, Xt), where f is a sufficient differentiable function. We report it
below as in Björk (2009, Th. 4.10),

df(t, Xt) =
{︄

∂f

∂t
+ r

∂f

∂x
+ 1

2σ2 ∂2f

∂x2

}︄
dt + σ

∂f

∂x
dBt. (2.2)

In such a manner, we can define Zt = log Xt where it is assumed that X is strictly positive (see
Prop. 1) and applying the Itô formula to it, the result is:

dZt =
(︃

r − 1
2σ2

)︃
dt + σdBt Z0 = log x0,

and this equation can be integrated directly since the integral doesn’t require existence hypoth-
esis because the volatility σ is constant. Thus, we obtain

Zt = log x0 +
(︃

r − 1
2σ2

)︃
t + σBt.

After these calculations, the next Proposition is pretty clear.

Proposition 1. The solution of (3) is

Xt = x0 exp
{︃(︃

r − 1
2σ2

)︃
t + σBt

}︃
. (2.3)

Here we can see an example of a trajectory of a Geometric Brownian motion.

Figure 2.2: Example of Geometric Brownian motion from Björk (2009): r = 1, σ = 0.2 and
x0 = 1.

2.2 Financial assets and options
Let us now introduce some basic concepts about financial markets. Any regulated market
consists of goods and people who want to trade them. In particular, sellers are interested to
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2.2. FINANCIAL ASSETS AND OPTIONS

sell at the highest possible price and, on the other hand, buyers are interested to buy at the
lowest possible price. Nowadays, most trading assets are represented by commodities, stocks,
and cryptocurrencies. A special instrument that helps investors to deal with the risk that
an asset’s price can increase or decrease too much is called an option. Options are financial
contracts that give the holder the right, but not the obligation, to buy or sell an underlying
asset at a predetermined price (strike price) and time (maturity). Options can be used to hedge
against risk or to speculate on market movements, making them a valuable tool for investors.
They can be divided into two categories: call options and put options.

• A Call option gives the holder the right to buy the underlying asset at a predetermined
price.

• A Put option gives the holder the right to sell the underlying asset at a predetermined
price.

Within these two categories, there are several different types of options, including European
options, American options, and exotic options.
For the aims of this thesis, we will focus only on European call options. Let us give a definition
as in Björk (2009):

Definition 4. A European Call option on the underlying asset S, with strike price (or
exercise price) K and maturity (or exercise date) T is a contract written at time t = 0 which
respects the following properties:

• the holder of the contract has the right to buy the underlying asset S at the price K > 0
from the underwriter of the option;

• the holder of the option has no obligation to buy the underlying asset S;

• the right to buy the underlying asset S at the price K can only be exercised at the precise
time t = T .

A Put option, instead, gives to the holder the right to sell the underlying asset S at the strike
price K.

Remark 1. The difference between European and American options is that for the first ones,
the right can only be exercised at exactly the date of expiration t = T ; for the second ones, the
right can be exercised at any time before the maturity, i.e. 0 < t ≤ T .

The payoff of our European call option is given from the following formula:

Xcall = (ST − K)+ = max(ST − K, 0) =
⎧⎨⎩ST − K if ST > K

0 if ST ≤ K,
(2.4)

where ST is the underlying asset price at the time t = T and K is the strike price. In this
sense, an option is called a derivative asset since its value depends on the underlying asset. In
financial terms, at a fixed time t a Call option is said to be

• "in the money" if St > K,

• "out of the money" if St < K,
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CHAPTER 2. BROWNIAN MOTION AND OPTION PRICING MODELS

• "at the money" if St = K.

Now the challenge consists in determining the right price 3 for the option. Since it is known
only the underlying asset price at time t = 0, namely S0, we should do a future stochastic claim
to estimate the random variable ST , the value of the underlying asset at the maturity T . In
order to solve this problem, it is necessary to build some assumptions (more or less restrictive)
and create a stochastic model to estimate the fair option price.

2.3 Option pricing models: Black-Scholes equation

One of the most widely used models for option pricing is the Black-Scholes model, which was
developed by Fischer Black and Myron Scholes in 1973. Since the equation, for the evolution
of S, is analytically solvable, it is easier to work with it and compare its solutions with other
methods for solving stochastic differential equations (SDE). For these reasons, this model will
be the benchmark for our quantization method resolution. But first, let us give a quick overview
of options pricing models and then go deeper into the Black-Scholes solution formula. There
are several types of option pricing models, each with its own assumptions, inputs, and outputs.
They can be in discrete time, as the binomial model, or in continuous time, as Black-Scholes
itself, or other more complex models. Just to cite a few of them, they are the Heston model
and double-Heston, the Bates model, and so on. The application of the quantization method
to these models can be found in Callegaro et al. (2019).
The hypothesis we need to assume for the Black-Scholes model, as reported in Hull (2003), are
the following ones:

• The underlying asset price follows a Geometric Brownian motion.

• There are no transaction costs or taxes.

• The market is efficient 4 and there are no arbitrage opportunities.

• The risk-free interest rate and volatility are constant and known.

• The option is European-style.

3i.e. a price that excludes any arbitrage opportunities
4The price of an asset reflects all the available information
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2.3. OPTION PRICING MODELS: BLACK-SCHOLES EQUATION

Figure 2.3: Example of the functional quantization for a standard Brownian motion with
N = 10, from Pagès and Printems (2005).

Let us, from now on, uniform the notation and indicate the underlying asset price at time t
as St, as in Section 3.3, where ST is the price at the maturity and S0 the initial price. The
stochastic differential equation that Black and Scholes found is:

Proposition 2.
∂V

∂t
+ 1

2σ2S2 ∂2V

∂S2 + rS
∂V

∂S
− rV = 0 (2.5)

where V (S, t) is the price of our option, which it can be called C(S, t) in the case of a Call
option, r is the risk-free interest rate, and σ the volatility of our underlying asset which follow
a Geometric Brownian motion.

Proof See the derivation in Hull (2003, Sect. 15.6).
To find the price for a European call option, we use a risk-neutral valuation approach, as in
Björk (2009, Sect. 7.4), which means that the option price can be written as:

C(t) = e−r(T −t)E[max(ST − K, 0)]. (2.6)

The economic interpretation of the formula (2.6) is that the price of the derivative is calculated
by taking the expectation of the final payment E[max(ST − K, 0)] and then discounting this
expected value for the present value using the discount factor e−r(T −t).
Considering that, the solution can be expressed in the next proposition.

Proposition 3. The price of a European call option with strike price K and time of maturity
T is

C = S0N(d1) − e−r(T −t)KN(d2) (2.7)
where N(d1) and N(d2) are the cumulative distribution functions of the standard normal dis-
tribution N (0, 1) and

d1 =
log(S0

K
) + (r + σ2

2 )(T − t)
σ

√
T − t

, d2 = d1 − σ
√

T − t.
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CHAPTER 2. BROWNIAN MOTION AND OPTION PRICING MODELS

Proof See the derivation in Björk (2009, Sect. 7.5).
In Chapter 4, we will compare the analytical solutions of the Black-Scholes formula (2.7) with
the quantization method applied to this model, explained in Chapter 3.
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Quantization method

3.1 Concepts from probability theory
At first, it is useful to introduce the probability background and some definitions.
Let us consider a probability space (Ω, F ,P) and an Rd-valued random vector X with distri-
bution function µ : Rd → [0, 1].
To fix the ideas, let us introduce a few key concepts (see Klenke (2013)).

Definition 5. A probability space is a triple (Ω, F ,P), where:

• Ω is a set of all possible elementary outcomes ω;

• F is a σ-algebra 1;

• P is a probability measure on F 2.

A practical example to better understand this definition is related to the random experiment of
tossing a double-face coin. If we flip the coin, only two outcomes are possible, head (H) or tail
(T). This means that Ω = {H, T} and F is the power set of Ω 3, i.e. F = {∅, {H}, {T}, {H, T}}.
The probability measures are P(∅) = 0, P({H}) = P({T}) = 1

2 and P({H, T}) = 1.

On Section 3.3, we will use a filtered probability space (Ω, F , (Ft)t∈[0,T ],P) where the filtra-
tion satisfies the usual hypotheses 4.
A filtered probability space (Ω, F , (Ft)t∈[0,T ],P) is a standard probability space endowed with
a filtration (Ft)t∈[0,T ], which is defined as following:

Definition 6. A filtration on a probability space (Ω, F ,P) is an increasing family (Ft)t∈[0,T ]
of sub-σ-algebras of F , i.e., Ft ⊂ F is a σ-algebra ∀t ∈ [0, T ] and if s ≤ t with s, t ∈ [0, T ],
Fs ⊂ Ft.

In simpler terms, a filtered probability space is a way of adding more information to a basic
probability space, by defining a series of progressively more detailed "levels" of information.
For instance, in the stock market, we might define a filtered probability space that includes in-
formation about stock prices at various points in time, with each "level" of the set adding more
information about the future price movements of the stock. This makes this concept useful in
various fields of probability theory and stochastic calculus, where it allows us to model complex
systems that evolve over time, such as financial markets or future weather conditions.

1F is a σ-algebra if Ω ∈ F and F is closed under complements and countable unions.
2P : F → [0, 1] where P is normalized and σ-addictive.
3Only because the outcome set is discrete and finite.
4Filtration (Ft,P) satisfies the usual condition if F0 is complete in P and ∀t ≥ 0 Ft =

⋂︁
ϵ>0

Ft+ϵ (right-

continuous)
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3.2. QUANTIZATION: SOME DEFINITIONS

Observation 1. When the norm is Euclidean, the Voronoï cells are convex sets and they satisfy

{︃
ξ ∈ Rd : |ξ − xi| < min

1≤j≤N, j ̸=i
|ξ − xj|

}︃
= Ci̊(Γ) ⊂ Ci

¯ (Γ) =
{︃

ξ ∈ Rd : |ξ − xi| = min
1≤j≤N

|ξ − xj|
}︃

(3.3)

Figure 3.1: Example of optimal grid (points) and Voronoï cells (red edges) for a bivariate
(standard) Gaussian distribution with N = 50 from Callegaro et al. (2015)

Thus, for a given random vector X having values in Rd, it will be used the following notation
for the Voronoï Γ-quantization of X:

X̂
Γ = ProjΓ(X).

To notice the difference between the real distribution and the quantization function, it is useful
to define a quantization error

Definition 11. The Lp-mean quantization error ep,N(X, Γ), for p ∈ [1, +∞), induced by
a grid Γ is

ep,N(X, Γ) := ∥X − X̂
Γ
∥Lp(P) = ∥ min

1≤i≤N
|X − xi|∥Lp(P) =

(︃∫︂
Rd

min
1≤i≤N

|ξ − xi|pµ(dξ)
)︃1/p

. (3.4)

Definition 12. An Rd-valued random vector X is said to be in Lp
Rd(P), where p ∈ [1, +∞) and

P a probability measure, if its p-th moment is finite, i.e.,

∥X∥p := (E[|X|]p)1/p < ∞

where E is the expected value operator and |X|p is the p-th power of the absolute value of X.
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CHAPTER 3. QUANTIZATION METHOD

the characteristic function, in order to make it explicit in the distortion function. This method
makes the quantization of random variables efficient, in case they admit a characteristic function
in closed form.

3.4 Master Equation
In this Chapter, we are going to obtain the Master Equation, whose solutions will lead us to
the sub-optimal (stationary) quantizers.
As anticipated in Section 3.3, the procedure consists of writing the distortion function using
the Fourier transform method to represent the price density, and differentiating it.

At first, in the one-dimensional case the grid Γ = {x1, ...xN} is a set of points in the pos-
itive number line since we assume ST ≥ 0. Thus the Voronoï cells are intervals such as
Cj(Γ) = [x−

j , x+
j ], where x−

j and x+
j are

x−
j = 1

2(xj−1 + xj) ∀j = 2, ..., N, x+
j = 1

2(xj + xj+1) ∀j = 1, ..., N − 1,

and
x−

1 = 0 x+
N = +∞.

The distortion function can be written as

Dp(Γ) = Dp(x1, ..., xN) =
N∑︂

j=1

∫︂
Ci(Γ)

|z − xj|pdPST
(z). (3.9)

where PST
is the distribution of ST .

Since the density of ST is assumed to be continuous and concentrated on (0, +∞), it is possible
to differentiate the distortion function under the integral sign.
Thus, the procedure consists of solving the N-dimensional system given by the gradient of the
distortion function ∇D(Γ) = 0, whose equations are explicitly expressed by the next theorem:

Theorem 2. (The Master Equation) Let p ∈ [1, +∞). Then the N-quantization grid
Γ = x1, ..., xN is p-stationary for the distortion function (3.9) if for all j = 1, ..., N

∫︂ +∞

0
Re

[︄
ϕT (u)e−iu log(xj)

(︄
β̄

(︄
x−

j

xj

, −iu, p

)︄
− β̄

(︄
xj

x+
j

, 1 − p + iu, p

)︄)︄]︄
du = 0 (3.10)

where for a ∈ C, Re(b) > 0 and x ∈ (0, 1), the function β̄ is defined as 7

β̄(x, a, b) :=
∫︂ 1

x
ta−1(1 − t)b−1dt. (3.11)

Proof See Callegaro et al. (2019, Appendix A).
7The function β̄(x, a, b) can be expressed as

β̄(x, a, b) = β(a, b) − β(x, a, b) =
∫︂ 1

0
ta−1(1 − t)b−1dt −

∫︂ x

0
ta−1(1 − t)b−1dt,
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3.5. THE NEWTON-RAPHSON ALGORITHM

3.5 The Newton-Raphson Algorithm
Now the last step is to solve the nonlinear system given in eq. (3.10), in order to find the p-
stationary grid. Since this system is not directly solvable, we use the fact that the derivatives of
every equation can be computed analytically and as a consequence, it is efficient to implement
a Newton–Raphson algorithm to find the solution. In order to keep the notation simpler, we
will use Lj to indicate the xj-derivative of the distortion function in eq. (3.9), which is

Lj(Γ) := p

π
xp−1

j

∫︂ +∞

0
Re

[︄
ϕT (u)e−iu log(xj)

(︄
β̄

(︄
x−

j

xj

, −iu, p

)︄
− β̄

(︄
xj

x+
j

, 1 − p + iu, p

)︄)︄]︄
du.

(3.12)
As we specified in the section 3.4, the goal is to solve the N-dimensional system L(Γ) = 0
(called ∇D(Γ) = 0 with the old notation), and to do that with the algorithm it is necessary to
compute the N ×N Jacobian matrix ∇L, which is basically the Hessian matrix of the distortion
function. As it is evident, Lj depends only on xj−1, xj and xj+1 and these property makes ∇L
a tridiagonal matrix 8.
To conclude, the following theorem shows explicitly how to make the algorithm work with the
calculation’s expression to find the final solution, i.e. the sub-optimal (stationary) quantization
grid Γ.

Theorem 3. (The Fourier Quantization Algorithm) Let p ∈ [1, +∞). Starting with an N-
quantization grid Γ(0) = x1, ..., xN , the recursive formula of the Newton-Raphson algorithm
is

Γ(n+1) = Γ(n) −
(︂
∇L(Γ(n))

)︂−1
L̇(Γ(n)), n = 0, 1, ...

where the expressions for the non-zero elements of the tridiagonal matrix ∇L(Γ(n)) are:
UPPER DIAGONAL

∇Lj,j+1(Γ) = − p

2π

1
x+

j

(︃
xj+1 − xj

2

)︃p−1 ∫︂ +∞

0
Re

[︂
ϕT (u)e−iu log(x+

j )
]︂

du,

j = 1, ..., N − 1;

LOWER DIAGONAL

∇Lj,j−1(Γ) = − p

2π

1
x−

j

(︃
xj − xj−1

2

)︃p−1 ∫︂ +∞

0
Re

[︂
ϕT (u)e−iu log(x−

j )
]︂

du,

j = 2, ..., N ;

MAIN DIAGONAL

∇Lj,j(Γ) = p(p − 1)
π

xp−2
j

∫︂ +∞

0
Re

[︄
ϕT (u)e−iu log(xj)

(︄
β̄

(︄
x−

j

xj

, −iu, p − 1
)︄

+β̄

(︄
xj

x+
j

, 2 − p + iu, p − 1
)︄

du + ∇Lj,j+1(Γ) + ∇Lj,j−1(Γ),

j = 1, ..., N.
8It has nonzero elements only on the main diagonal, the diagonal upon the main diagonal, and the diagonal

below the main diagonal
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Proof See Callegaro et al. (2019, Appendix B).
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Data analysis and simulation

4.1 Calculation method
As it is specified in the assumptions of the Black-Scholes model (2.3), we assume the underlying
asset follows a Geometric Brownian motion; it means that the random variable ST representing
the underlying asset price at the maturity T is given by

ST = S0 exp
{︃(︃

r − 1
2σ2

)︃
(T − t) + σ (BT − Bt)

}︃
. (4.1)

We can use the trick as in Björk (2009, Sect. 7.5) and call the exponent as a unique random
variable Z, in such a way it is possible to express ST = S0e

Z . Thus, this Z will have a Gaussian
distribution N [(r − 1

2σ2)(T − t), σ2(T − t)]. Considering an initial time of t = 0 and taking the
logarithm of ST , the underlying asset price will follow the above Gaussian distribution:

(log ST ) ∼ N
(︃

log S0 +
(︃

r − 1
2σ2

)︃
T, σ2T

)︃
. (4.2)

Once an N-optimal quantization grid Γ = {x1, ..., xN} for the random variable ST is given (by
the quantization grid of Z), it is easy to find the formula for the pricing of our European call
option. Assuming a Lipschitz continuous function F : Rd → R, we can exploit the following
cubature formula as in Pagès (2018, Chapter 5.2)

E[F (ST )] ∼= E[F (ŜT )] =
N∑︂

l=1
F (xl)P(ŜT = xl), (4.3)

making all the calculations explicitly

E[max(ST − K, 0)] = E[max(S0e
Z − K, 0)] ∼=

N∑︂
l=1

max(S0e
xl − K, 0)P(ŜT = xl), (4.4)

where Γ = {x1, ..., xN} is the quantization grid of the Gaussian distribution N
(︂(︂

r − 1
2σ2

)︂
T, σ2T

)︂
.

Let us call the mean and the standard deviation of this Gaussian, a and b, such as N (a, b2),
in such a manner it is easier to calculate the probability P(ŜT = xl). Fixing a point of the
quantization grid xi and its Voronoï cell Ci, the work consists of calculating the probability
that the random variable Z = a + bZ̄ with distribution N (a, b2) is in the cell Ci, this means

P (Z ∈ Ci) = P
(︂
a + bZ̄ ∈ Ci

)︂
= P

(︂
x−

i < a + bZ̄ < x+
i

)︂
= P

(︄
x−

i − a

b
< Z̄ <

x+
i − a

b

)︄

Since Z̄ is a standard variable with distribution N (0, 1), it is trivial to calculate this probability
using the Cumulative Distribution Function 1:

1Φ(z) = 1√
2π

∫︁ z

−∞ e−t2/2dt
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P (Z ∈ Ci) = Φ
(︄

x+
i − a

b

)︄
− Φ

(︄
x−

i − a

b

)︄
. (4.5)

4.2 Results and considerations

Now we are ready to calculate the price of our European call option, using as an input the
quantization grid (choosing an appropriate N), the maturity T , the initial underlying asset
price S0, the risk-free interest rate r and the volatility σ.
We consider some ideal European Call options with maturity T = 1 year written on an un-
derlying with initial price S0 = 100, interest rate r = 2%, volatility σ = 20% and strike K
ranging between 20 and 150, with a step of 10. The grid size is fixed at N = 120 and we study
the result for 1 ≤ p ≤ 15. The quantization grids are given by MATLAB code, developed in
Callegaro et al. (2019); meanwhile for the price computations and the graphs, we implement
them using Python.
In the tables below, we give some examples of the prices calculated, comparing with the bench-
mark (the prices obtained from the analytical formula of Black-Scholes) with the relative error
expressed in basis points 2 , computed as:

Rel error (bs) =
|XCall

bench − XCall
quant|

XCall
bench

· 104 (4.6)

Only the results for the grid with p = 2, 5, 10, and 15 are reported, since it would have taken
too much space writing them for every p.

K Benchmark 2-Quantization 2-Rel error (bs) 5-Quantization 5-Rel error (bs)
20 80.3960 82.0255 202.6849 82.0306 203.3147
30 70.5940 72.0255 202.7781 72.0306 203.4954
40 60.7921 62.0255 202.9015 62.0306 203.7345
50 50.9907 52.0262 203.0761 52.0313 204.0696
60 41.2069 42.0452 203.4485 42.0506 204.7566
70 31.5766 32.2224 204.5318 32.2302 207.0197
80 22.5429 23.0104 207.4045 23.0013 203.3756
90 14.8065 15.1258 215.6410 15.1437 227.7151
100 8.9160 9.1204 229.2146 9.1432 254.7432
110 4.9439 5.0513 217.3717 5.0860 287.5367
120 2.5469 2.6162 272.1618 2.6095 245.5858
130 1.2320 1.2642 261.2176 1.2730 332.7150
140 0.5655 0.5806 266.6804 0.5850 344.1790
150 0.2487 0.2574 351.4118 0.2619 533.9466

Table 4.1: Call option prices for a 2-quantization and a 4-quantization grid.

2One basis point corresponds to 0.01%
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4.2. RESULTS AND CONSIDERATIONS

K Benchmark 10-Quantization 10-Rel error (bs) 15-Quantization 15-Rel error (bs)
20 80.3960 82.0360 203.9831 82.0408 204.5845
30 70.5940 72.0360 204.2566 72.0408 204.9415
40 60.7921 62.0360 204.6184 62.0408 205.4138
50 50.9907 52.0367 205.1315 52.0415 206.0819
60 41.2069 42.0559 206.0353 42.0612 207.3161
70 31.5766 32.2363 208.9444 32.2462 212.0723
80 22.5429 23.0175 210.5573 23.0463 223.3140
90 14.8065 15.1420 226.6034 15.0926 193.2440
100 8.9160 9.1673 281.8577 9.1891 306.2782
110 4.9439 5.0386 191.6585 5.0692 253.4590
120 2.5469 2.6511 408.8575 2.6061 232.3973
130 1.2320 1.2788 379.8014 1.2848 428.0761
140 0.5655 0.5682 47.9883 0.5978 571.7990
150 0.2487 0.2545 234.6524 0.2645 635.2484

Table 4.2: Call option prices for a 10-quantization and a 15-quantization grid.

To show all the grids used, they are plotted into a graph, which displays how they spread when
the p increases.

Figure 4.1: Comparison of the different grids used

The main work is shown in graphs 4.2(a) and 4.2(b), where the relative error in basis point
is related to the strike price K for every p ∈ [1, 15]. The two versions make more clear what
happens "in the money", i.e. for K < S0, and "out of the money", i.e. for K > S0.
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(a) Errors for 20 ≤ K ≤ 70 (b) Errors for 50 ≤ K ≤ 150

Figure 4.2: Comparison of the relative errors, in basis points, "in the money" and "out of the
money".

As it is evident in 4.1, the points in the grids are more sparse around the origin at the increasing
of p, but not linearly. In contrast to what is written in Callegaro et al. (2019, Sect. 2.4), the
grids start with a progressive spreading for the first p-values but they stop around p = 6. Here,
they decrease a little to enlarge again in the end. However, we have to admit that when p rises,
the calculation of the quantization grids by the MATLAB code starts to become inaccurate and
the algorithm unstable. This happens because the algorithm requires to invert a tridiagonal
matrix and for a certain p-value the matrix is closed to be singular or badly scaled. In this
sense, it is more difficult for us to make consistent claims about the results for big p-values.
Our initial hypothesis was based on this conjecture, which means that with a larger p, the grids
are wider and so we can have more information on the tails of our distribution. In this sense,
we expected to price better the European Call options for K "deep in the money" or "deep out
of the money". How it is visible from the error graphs 4.2, it reveals to be not true tough.
Indeed, looking at the graph 4.2(a) with smaller strike prices, the better pricing shows up to
be at small p-values. The same observations can be made for the graph 4.2(b) with bigger
strike prices, but here instability of the algorithm and a payoff close to zero makes this data
less precise.
All things considered, we may guess how the p-norm of an Lp space influences the princing of a
European Call option with respect to the power of its payoff. According to this guessing, using
the quantization method Fourier-based, a European Call option with a linear payoff

XCall = max(ST − K, 0)

has its best pricing at p = 1; instead for a power payoff

XCall = max(Sn
T − K, 0)

the pricing that minimizes the relative error should be for an Lp space with p = n.
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Conclusion

In this thesis, we introduce Black-Scholes model and its assumptions for European Call options.
Furthermore, we explored how the stochastic equation of this model can be solved by the new
quantization method based on the Fourier transform.
As we knew since the beginning from Callegaro et al. (2019), the changing of the p-norm in
our Lp space, used in the quantization method, can modify the distribution of the quantization
grids. In this sense, we confirm the guessing in Callegaro et al. (2019, Sect. 2.4) about the grid
dynamics and its spreading at the rising of p, but for large p-values data are too inaccurate to
make a hypothesis for a precise trend.
Regarding the pricing, we wondered if the accuracy could change with different p-values. Specif-
ically, our hypothesis was about payoff with a strike price very far from the underlying asset
price, i.e. in the tails. So we were particularly interested in such cases very "in" or "out of
the money". Our expectations were about the fact that a more spread quantization grid would
have given more information about tails events.
Nevertheless, our simulations show as the best pricing is made for lower p-value, in contrast
with our previous assumptions. To conclude, we make a guess that the p-norm of an Lp space
could be a key factor for the pricing of options with a power payoff.
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