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Sommario

L’industria 4.0 è un processo che sta portando alla produzione industriale del tutto autom-
atizzata e interconnessa. Una direttrice di questo fenomeno è costituita dagli analytics: una
volta raccolti i dati, bisogna ricavarne valore. Anche in ambito industriale le aziende stanno
cercando di valorizzare la grande mole di dati che ne consegue. In questo contesto, i temi
dell’apprendimento automatico forniscono uno strumento di indiscutibile rilevanza in svari-
ate applicazioni. Questa tesi tratta l’utilizzo di un metodo di riconoscimento delle anomalie
relativo ad un caso studio di un’ azienda del settore dell’intrattenimento. Nello specifico si
tratta di un contesto non supervisionato in quanto l’etichettatura dei dati non è disponibile
a priori. In sinergia a ciò viene adoperato uno strumento che fornisca un’interpretabilità ai
risultati ottenuti in modo da fornire un aiuto nell’analisi delle cause principali.
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Abstract

Industry 4.0 is a process that is leading to fully automated and interconnected industrial pro-
duction. A guideline of this phenomenon is constituted by analytics: once the data has been
collected, it is necessary to derive value from it. Even in the industrial field, companies are try-
ing to exploit the large amount of data that follows. In this context, machine learning topics
provide a tool of indisputable relevance in a variety of applications. This thesis deals with the
development of a feature-based anomaly detectionmethod related to a case study of a company
in the entertainment field. Specifically, motivated by the lack of a reliable labeled set, the ap-
proach takes shape in an unsupervised scenario. In synergy with this, a tool is adopted that
provides the interpretability of the results. Understanding why a point is labeled anomalous is
becoming increasingly important, especially by virtue of root cause analysis.
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1
Introduction

1.1 Machine Learning and Industry 4.0

Industry 4.0 has been at the center of economic transformation in Italy and in the world for
some years. During theCOVID-19 pandemic, Industry 4.0 and related technologies proved to
be fundamental in countering the crisis. But what exactly is Industry 4.0?

Up to now, reference has been made to three major industrial revolutions in the Western
world, each of which has led to a gradual improvement in working methods and has allowed
the involvement of various production sectors thanks to the affirmation of new technologies.

• The first industrial revolution was the one that in the second half of the 18th century
made it possible to mechanize production in the textile and metallurgical sector thanks
to use of the steam engine.

• The second industrial revolution was instead conventionally started in 1870 with the
introduction of electricity, chemicals, with the advent of the internal combustion en-
gine and the consequent increase in the use of oil as a new energy source. It has favored
the emergence of new communication and transport systems, mass production and the
assembly chain with consequent increases in production capacities.

• The third industrial revolution finally took hold in 1970 with the birth of information
technology. Hence the beginning of the digital era which was then destined to increase
the levels of industrial automation using electronic systems and IT (Information Tech-
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nology). During this period there was a strong push for technological innovation closely
linked to the birth of computers, robots, the first spacecraft and satellites.

The change we are about to witness have an important role such as to have earned the signifi-
cant title of the Fourth Industrial Revolutionwhichwill see the birth of newmodels, strategies
and paradigms: the so-called Industry 4.0. While there is no commonly accepted definition,
Industry 4.0 is generally seen as a process that will culminate in a new conception of the in-
dustry, from the development of new products and services, to research and innovation, to
validation and production, with the least common denominator consisting of a high degree of
automation and interconnection.

What are the main aspects of this phenomenon? The first relates to the management and
storage of large amounts of data available on the network (big data) and acquired by objects
with the ability to interact with each other thanks to a network, the so-called internet of things:
remote controls, appliances, cars. These objects, suitably equippedwith sensors, will be able to
be interconnected to a network as today we are used to doing with smartphones or computers.

What to do with this huge amount of data? Here comes the second aspect consisting of the
so-called analytics, that is the set of techniques and algorithms necessary to extract useful infor-
mation from the data and, ultimately, derive a value from it. In this regard, the development
of artificial intelligence techniques can play a fundamental role: machine learning, that is the
automatic learning of machines, currently very little widespread on an industrial level, should
undergo a real explosion in the coming months and years. The development of smart factories
represents an incredible opportunity to enter the fourth industrial revolution for the manufac-
turing sector. Analyzing the large amounts of data collected by production department sen-
sors provides real-time visibility into production assets and can provide tools for performing
predictive maintenance to minimize equipment downtime. The use of highly technological
IoT devices in smart factories leads to greater productivity and an improvement in quality. Re-
placing manual inspection business models with AI-based visual insights reduces production
errors and saves time and money. With minimal investment, QA personnel can set up a cloud-
connected smartphone to monitor production processes from virtually any location. By ap-
plying machine learning algorithms, manufacturers can detect errors immediately rather than
later, when repair work is more expensive. The concepts and technologies of Industry 4.0 can
be applied to all types of industrial companies, including discrete and process manufacturing
companies, as well as to the oil, mining and other industrial segments.

We talked about machine learning before, but what exactly is machine learning? It is a data
analysis method that automates the construction of analytical models. Basically it is based on
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the idea that systems (machines) can learn from available data, so as to identifymodels indepen-
dently andmake decisionswithminimal human intervention. Sincemachine learning software
needs large amounts of data to “learn”, it is a technology that fits perfectly with the theme of In-
dustry 4.0 which. Indeed the latter, as we have seen, leads to the creation of enormous volumes
of data. In this sense, a machine learning solution - for example - is able to use the data flows
available to teach its algorithm what to expect from the production machines it is monitoring.
In this way the software can make the most appropriate decisions at a given time and under
certain circumstances, without the need for a newphysical rewriting of code by a ”human” pro-
grammer. Leveraging machine learning models in many cases can avoid physical modeling of
a system which is usually a very onerous operation because it requires considerable knowledge
and experience of the domain. Since we are talking about machine learning, that is, learning,
it is good to clarify that algorithms must be appropriately ”trained” before operating in a real
industrial context, thanks to the use of specific training data.

1.2 University-Industry Collaboration (UIC)

The thesis work is in collaborationwith the companyAntonio Zamperla S.p.Awhich embraces
this digital change and wants to implement intelligence in their machines through the use of
machine learning. The company in question has been involved in the development and mar-
keting of attractions for amusement parks since 1966. The topic concerns the improvement of
the diagnostic andmonitoring techniques of the equipment in order to detect possible anoma-
lies. In this scenario it must be pointed out that safety is one of the main cornerstones of the
Zamperla company. For this reason the machine is equipped with sophisticated systems that
guarantee the safety of passengers. The termanomaly is therefore linked to something that devi-
ates from the usual and optimal behavior of themachine thus detection of anomalies is reduced
to detecting sub-optimal working conditions. By monitoring the various data acquired by the
machine, we would like to detect anomalous behaviors linked to them and also to justify the
model’s predictions in terms of factors causing the anomaly. In general terms, the costs arising
directly and indirectly from support or assistance activities (as well as from any replacement
or repair of equipment) necessary to keep customer satisfaction high, they heavily affect the
company’s profit. Without the use of tools for analysis and prediction, it is not infrequently
necessary to send specialized technical personnel to the customers with relative travel, board
and lodging costs. Being able to detect and establish the cause of the anomaly from the first
moments in which it occurs becomes essential to provide the right service to customer and to

3



evaluate the type of assistance. In this thesis we also employ the services provided by Statwolf, a
company whose goal is to make the benefits of complex data science accessible to a wide range
of industries that embrace the current digital revolution. With advanced knowledge of data sci-
ence, and state-of-the-art machine learning techniques, Statwolf helps companies navigate and
interpret highly complex projects. In the context of this thesis, data are integrated through Stat-
wolf ’s Platform. The premise of data integration is tomake datamore freely available and easier
to consume. The platform allows the use of some tools for automatic monitoring of the data
quality. Moreover, filtering, slicing, aggregating and visualizing the data interactively is very
simple since no code is required and operations are efficient. Once the required datasets have
been configured within the platform, a direct access via Statwolf API allows users to download
data in different ways.

In the following, the thesis is structured as follows. Chapter 2 will present the case study,
namely the attraction realized byZamperla S.p.A on which intelligence has been implemented
with a view to detecting anomalies. A description of the operation of the attraction will be
introduced in the latter chapter. Chapter 3 introduces the main signals acquired by the ma-
chine which will be subsequently cataloged in terms of their function. Since the data was ac-
quired mainly during the testing phase of the machine, it is necessary to clean up the data to
remove unreliable data. Chapter 3 also covers the data cleaning phase. In Chapter 4 the raw
data in form of time series are transformed into features that can be used in machine learning
algorithms. The features will be analyzed to understand the distribution of their values. To
continue with Chapter 5, which will cover some basic theoretical background of anomaly de-
tection in machine learning and will introduce the anomaly detection method adopted in the
case study. Chapter 6 covers some of the concepts related to the interpretability of amodel and
introduces the related methods adopted. The motivation that led to the use of interpretabil-
ity is that detecting an anomaly is becoming no longer enough and providing a reason why a
cycle has been labeled as anomalous is getting more and more importance. In Chapter 7 some
results obtained by applying the proposed approach to the data acquired by the machine are
illustrated. The thesis work is concluded with Chapter 8 which will discuss the results with
some considerations.
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2
ProblemOverview

This chapter is divided into two main sections: Section 2.1, Section 2.2.
Section 2.1 aims to present the case study in question, namely theNebulaZ which is an attrac-
tion of the entertainment industry Antonio Zamperla S.p.A. The same section describes how
the attraction works in order to have a more intuitive and complete overview of the role of
its components. To conclude, in Section 2.2 we want to exhibit the approach used to detect
anomalies in the operation of the machine and why the role of interpretability is crucial.

2.1 Case Study: NebulaZMachine

2.1.1 General Operation

In this workNebulaZ is the vehicle created by Zamperla which is used as a case study to iden-
tify sub-optimal working conditions. NebulaZ is a family ride in which four arms rotate in fast
intermeshing orbits. Eight gondolas at the end of the arms allow seating for four passengers
each. The gondolas always remain upright so that in this way riders are never upside down.
The central tower rotates around itself while the arms swing about horizontal axes in a circular
motion to let riders catch air as they fly over the top of the ride. The arms are synchronized
by a redundant central gearing system guaranteeing their intertwining. Figure 2.1 provides an
illustration of the machine under consideration.
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The activity of the attractionbeginswith the passenger loading phase. During this phase, the
gondolas that are already at the ground level of the ride are occupied and then a partial rotation
of the arms is carried out to allow the occupationof the gondolas thatwere previously at the top.
As soon as the passenger loading procedure is completed, the central tower rises in altitude by
means of a systemwith an hydraulic pump to allow the complete rotation of the four arms and
the consequent play experience. At the end, as soon as the rotation of the four arms is stopped,
the central tower is brought back to the home position and the loading procedure is repeated in
this case to let the passengers get off. Laterwewill use the terms central tower ormachine center
without distinction, and we denote as “home position” the position in which the machine
center is on the ground while with “top position” the position in which the machine center is
at its maximumheight. Moreover, fromhere onwewill refer to themain engine to indicate the
motor dedicated to the rotation of the four arms. The entire operation of the attraction and
cooperation between all its devices are managed by one or more PLCs (Programmable Logic
Controller), capable of issuing the necessary commands in a synchronous manner so that each
device works in a cohesive manner.

Figure 2.1: Case study: NebulaZ ride.
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2.1.2 Operativity Conditions

According to a previous case study [1] on a different attraction of Zamperla , the same terms
that will be used in the following are introduced here:

• Cycle: it is the unit of reference for data acquisition and it refers to the activity of the
machine for the time of use of a single user.

• Session/Acquisition: means the collection of data including a set of successive cycles,
usually captured during the same day.

• Signal: one of the time series acquired during a cycle which represents one of the mea-
surable quantities acquired by the PLC.

In the following we identify a cycle by means of the session date and the corresponding num-
ber assigned to it by the machine acquisition system. Usually, but not necessarily, a progressive
number is assigned to successive cycles. For the NebulaZ attraction, four main types of oper-
ativity conditions during a cycle have been implemented by Zamperla group. These configu-
rations differ from each other according to the direction of rotation of the main engine and
consequently of the arms with attached gondolas. Clockwise rotation is defined as the direc-
tion of rotation such that the sensor used to measure the rotational speed of the main engine
acquires a positive quantity. Similarly, the anticlockwise direction of rotation is defined as the
direction of rotation such that the sensor used to measure the rotational speed of the main
engine acquires a negative quantity. The four types of operation in a cycle can therefore be
represented as follows:

• Cycle type 2A: characterized bymaintaining the same direction of rotation for the entire
duration of the cycle. The gondolas run clockwise.

• Cycle type 2B: characterized bymaintaining the same direction of rotation for the entire
duration of the cycle. The gondolas run anticlockwise.

• Cycle type 1A: it is characterized by a change of rotation of themainmotor in themiddle
of the cycle. The gondolas initially turn clockwise and then counterclockwise. This type
of cycle can be understood as a kind of subsequent composition of types 2A and 2B.

• Cycle type 1B: it is similar to the type 1A cycle, but it can be considered its dual case as
the rotation occurs first in an anticlockwise direction and then in a clockwise direction.
This type of cycle can be understood as a kind of subsequent composition of types 2B
and 2A.
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For future reference, it is worth mentioning that the tag that identifies the type of cycle is
not yet available in the acquisitions made during this work. For this reason, a basic logic has
been implemented to tag cycle types. Hence the fact that the name assigned to cycle types
was assigned unilaterally. The choice of the type of cycle to be adopted is up to the customer
who installs the attraction. Besides the types of cycles mentioned above, the available data also
contain cycles that correspond to the so-called passenger loading and unloading phase. We
refer to them as type 3 cycles. With a view to detecting anomalies for theNebulaZ ride, it was
decided to exclude type 3 cycles from the analysis since they are very short in time and can be
considered as a marginal part that does not contribute to the play experience. Furthermore, in
any case, given the scarcity of data available regarding type 3 cycles, the aforementioned case
could be incorrectly modeled.

In addition to the type of cycle, another parameter that can be tuned by the customer is
the duration of the cycle itself, i.e., the duration of the playful experience. In this context, it
is necessary to mention that there may be other environmental/operational factors concerning
the state of the machine that can influence the overall duration of the cycle.

2.2 Proposed Approach

After a brief description of the machine under study, for a full understanding of the following
chapters, it is necessary to summarize the approachused to recognize anomalies in theoperation
of themachine. In an industrial scenario like the one addressed in this work, supervised settings
are rarely available. The unsupervised scenario is the most common in real world applications.

In theNebulaZ case study, the data are indeed obtained by observing and collecting, and the
labelling procedures are time consuming and typically require domain experts to be involved.
Hence, we deal with unlabeled data. The approach used for the detection of anomalies is of
a multivariate type. This case take into account that an anomaly can occur as combinations
of variables that if considered individually do not denote anomalous behavior. In the unsu-
pervised scenario the learning algorithm lacks a ground truth of what is anomalous and what
is not. Given that, the goal of the algorithm is to detect the most abnormal data, assigning to
each one an Anomaly Score (AS). Under the assumption that outliers are few, different and
easier to be separated from the rest of the data, the proposed method for detecting anomalies
is Isolation Fores (IF) [2]. The method can be grouped among Ensemble-based methods and
its goal is to quickly model the anomalies by isolating them, rather than spending resources
on the modeling of the normal distribution. In the proposed multivariate approach, from the
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acquired signals, a finite number of distinctive attributes are extracted. These scalar quantities,
called features, are important in order to characterize the behavior of the signals. The features
extracted from the signals related to each single cycle are concatenated into a vector which is
used as the actual input of the Anomaly Detection (AD) model. Due to the unsupervised set-
tings, the domain knowledge is especially essential in this phase because it is able to validate
the choice of features. Although AD algorithms have proved to be useful and effective, their
widespread adoption is far from being a reality. This is mainly due to the lack of confidence
from the users in AD algorithm outcomes and not immediate association between AD algo-
rithmoutcomes and root causes. The concept of interpretability of themodel naturally follows
from the scenario in which we find ourselves. Adopting the principle of eXplainable Artificial
Intelligence (XAI) [3] we would like to determine why a point has been labelled as anomalous
to enable root cause analysis. Regarding this, in this work both a well-known state-of-the-art
method, namely, SHapley Additive exPlanations(SHAP)[4] and a more recent one, namely,
AcceleratedModel-agnostic Explanations (AcME)[5] will be adopted.
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3
Data Description and Cleaning

Section 3.1 describes the nature of the data acquired by themachine. The acquired data will be
grouped here according to their role. The focus will be on the most relevant sensors. When it
is informative, the signals will be represented with respect to each of the cycle types introduced
in the previous chapter. In relation to this, Section 3.2 reports some qualitative considerations
regarding the variability of the data. Section 3.3 covers the cleaning phase. After integrating the
data, it is indeed crucial to execute a preliminary processing to remove unreliable data which
could adversely affect the AD analysis.

3.1 Data Description

The process of acquiring the raw data by means of the on-board PLC led to the acquisition
of about Ns = 67 signals. Each of these signals has the form of a univariate* time series and
represents a sequence of temporally ordered values assumed by an equipment sensor at certain
sampling instants. The signals available for the analysiswere acquired in themonths ofOctober,
November and December 2021. The data comes from 3 different NebulaZ attractions. For
when it will be appropriate to discriminate between the different rides, reference is made to the
following models:

*refer to a single observation over a time period.
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• NebulaZ_C21111

• NebulaZ_C20174

• NebulaZ_C21148

As it is possible to see from Figure 3.1, the acquisitions of NebulaZ_C21111 are only those
related to October, while those ofNebulaZ_C20174 are related to November. Finally, during
December data were acquired fromNebulaZ_C21148. The tests took place inside the factory
hall for theNebulaZ_C21111 andNebulaZ_C21148,while outside for theNebulaZ_C20174.

Figure 3.1: Cycle count over time, ( ) NebulaZ_C21111, ( ) NebulaZ_C20174, ( ) NebulaZ_C21148.

The acquired signals can be analyzed to monitor the behavior of the attraction and can also
be grouped in terms of the function for which they are intended. Starting from the domain
knowledge of Zamperla S.p.A. it is possible to roughly identify the following types of signals:

• Signals relating to physical quantities of the main engine.

• Signals necessary to supervise the correct operation of the machine and the status of the
acquisition device.

• Signals which detect the status or transit of some of the machine components. For in-
stance, there are sensors that can detect the transit of the arms.

• Signals that represent commands to perform a specific task. For instance, the command
to operate the safety mechanism that locks the machine center in the top position.

• Meteorological data

The following types of signals will now be treated individually and the most significant signals
for each of them will be listed and displayed (if necessary with respect to each one of the cycle
types).
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3.1.1 Driver’s Signals

Driver’s signals mainly concern the signals coming from the equipment sensors relating to the
main engine, which is the one dedicated to the rotation of the arms. Among these can be found
signals representing consumption in terms of electrical voltage and current and other quanti-
ties such as the number of rotations per minute. As mentioned in Subsection 2.1.2, given the
differences in operating conditions available to the machine, the signals will therefore be illus-
trated according to each one of the cycle types. The signals belonging to this category are:

• DrActualspeedRpm
This signal represents the rotational speed in [RPM] of the main engine. A graphical
representation of the latter (for the acquisition time related to a cycle) is available in Fig-
ures 3.2, 3.3. Regardless of the type of cycle, it can be noted that this signal is null in
the initial portion. The same is valid for all the signals concerning the main engine that
will be subsequently treated. The reason for this can be guessed by thinking about the
operation of the machine in general terms according to what is reported in Subsection
2.1.1. In the initial fraction, the main motor is not powered as it is necessary to wait
for the central tower to rise in altitude. Only when the central tower reaches the top
position the four arms are free to rotate without hitting the ground. Consequently, the
main engine is then powered.

(a) Cycle 1452 ( ) type 1A, October 15th. (b) Cycle 1250 ( ) type 1B, October 18th.

Figure 3.2: DrActualspeedRpm [RPM], cycle type 1.

(a) Cycle 1168 ( ) type 2A, October 13th. (b) Cycle 1167 ( ) type 2B, October 13th.

Figure 3.3: DrActualspeedRpm [RPM], cycle type 2.
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• DrOutputvoltageV
This signal represents the power supply voltage in [V ] of the main engine. A graphical
representation of the latter is available in Figures 3.4, 3.5. It is worth noting that this
signal is very similar in terms of waveform to the velocity signal shown above.

(a) Cycle 1452 ( ) type 1A, October 15th. (b) Cycle 1250 ( ) type 1B, October 18th.

Figure 3.4: DrOutputvoltageV [V], cycle type 1.

(a) Cycle 1168 ( ) type 2A, October 13th. (b) Cycle 1167 ( ) type 2B, October 13th.

Figure 3.5: DrOutputvoltageV [V], cycle type 2.

• DrOutputcurrentA
This signal represents the supply current in [A] of the main engine. A graphical repre-
sentation of the latter during a cycle is available in Figures 3.6, 3.7.

(a) Cycle 1452 ( ) type 1A, October 15th. (b) Cycle 1250 ( ) type 1B, October 18th.

Figure 3.6: DrOutputcurrentA [A], cycle type 1.
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(a) Cycle 1168 ( ) type 2A, October 13th. (b) Cycle 1167 ( ) type 2B, October 13th.

Figure 3.7: DrOutputcurrentA [A], cycle type 2.

3.1.2 Control and Supervision Signals

These signals are designed to supervise the correct functioning of the devices of the machine.
They are of binary type andmost of them constantly maintain a logic value, high or low, corre-
sponding to the situation of correct operation of themachine’s device under control. A change
in value in some of these signals would lead to the occurrence of an unexpected event concern-
ing the monitored section of the system. Due to their little variability during a cycle, only the
description in terms of the function for which they are intended is given. Some of these signals
are:

• ManualEstop
It is the signal indicating the status of the emergency button. There pressure of the latter
would bring the machine into an emergency state with consequent interruption of the
cycle.

• StartTrigger
It is the signal that identifies the beginning of an acquisition cycle, thus establishing the
start of the signal recording.

• StopTrigger
It is the signal that identifies the end of an acquisition cycle, thus establishing the end of
the signal recording.

• PlcSafetyLocked
It is the signal that indicates the activation or not of the safety function of the PLC.

• PlcSafetySignaturePresent
It is the signal indicating the presence of the safety signature generated by the PLC. It is
used to track any alterations made to the program.
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• PlcOnline

It is a signal consisting of a square wave and allows to check the operating status of the
PLC.

• RideRunning, PlcRemRemrunmodeRunning, PlcRunmodeRunning

These signals indicate, respectively, the running status of the machine, the status of the
PLC in remote operatingmode and the status of the PLC in active operatingmode. The
distinction between these last two is represented by access to the editing function, which
is possible only in remote operation mode.

• TotalDispatch

It is the signal indicating the total number of cycles performed by the machine from the
moment it is installed.

• ResettableDispatch

It is the signal indicating the number of cycles performed by the machine from the mo-
ment of the start of an acquisition, therefore this value is reset at the beginning of each
session.

3.1.3 Transit and Status Signals

Transit and Status signals are also binary signals and they switch their logic values according to
the event they are monitoring and for which they have been used. It is worth illustrating these
signals together with the speed signal to have an idea of the phase the machine is in.
Some relevant signals that can be used to detect the transit of the machine’s arms are:

• HomesensCarA,HomesensCarB

Once the passengers are seated, themachine arms are in a position such that four gondo-
las are at ground level while the remaining four of the corresponding arms are in the top
position. Suppose we denote as type A the four gondolas on the ground while as type
B the four gondolas in top position. The former signal assumes a high logic value every
time that typeA gondolas pass through their starting position, i.e., theymake a complete
rotation. Similarly, HomesensCarB assumes a high logical value every time that type B
gondolas pass through the starting point of type A gondolas. In light of their operation,
to avoid redundancy, the signals in question are shown with respect to the cycle types
2B and 1B only, respectively, in Figure 3.8 and Figure 3.9.
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Figure 3.8: HomesensCarA ( ), HomesensCarB ( ), DrActualspeedRpm ( ). Cycle 1171 type 2B, October 13th.

As can be seen, for type 2 cycles the gondolas of the same type that start from the ground
end in the topposition and vice versa. On the other hand, since the cycles of type 1 canbe
considered as a kind of composition of two cycles of type 2, it follows that the gondolas
of the same type end up in the position from which they started.

Figure 3.9: HomesensCarA ( ), HomesensCarB ( ), DrActualspeedRpm ( ). Cycle 0006 type 1B, November 19th.

Some of the signals that can be used to retrieve information on the position of the machine
center are:

• HomesensClm, TopsensClm

The former assumes a high logic value whenwhen themachine center is in the home po-
sition, while TopsensClm is the signal that assumes a high logic value when the machine
center is in the top position. These signals refer to the movement of the machine center,
so they do not depend on the type of cycle, i.e., on the direction of rotation of the arms.
A graphical representation is given in Figure 3.10.
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Figure 3.10: HomesensClm ( ), TopsensClm ( ), DrActualspeedRpm ( ). Cycle 1170 type 2A, October 13th.

In the machine, two safety grippers are adopted to ensure that the machine center maintains
the top position when appropriate. The status of the safety grippers can be monitored by the
following:

• Actuator1Locked, Actuator2Locked
These signals assume a high logical value when the corresponding safety gripper is fully
inserted.

• Actuator1Unlocked, Actuator2Unlocked
These signals assume a high logical value when the corresponding safety gripper is fully
extracted. The case where both locked and unlocked signals are at a low logic level can
happen. It is enough to consider the situation in which the gripper is not completely
inserted or extracted. Figure 3.11 illustrates both “Locked” and “Unlocked” status signals.
The two safety grippers are inserted/extracted almost at the same instant, therefore it
is not possible to appreciate differences between the signals of both grippers. For this
reason, only the signals related to the first gripper are displayed. Moreover, the signals
do not depend on the type of cycle.

Figure 3.11: Actuator1Locked ( ), Actuator1Unlocked ( ), DrActualspeedRpm ( ). Cycle 1170 type 2A, October 13th.
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3.1.4 Commands

In addition to the previous signals, some binary signals that have been acquired have the role of
representing the command to perform a certain action. These types of signals can be identified
as the cause of an event, while the corresponding status signals can be considered as confirma-
tion that the required action has been taken. Some examples of these so-called commands are:

• CmdCntQ15901F, cmdCntQ15904F

These signals represent the command for inserting the two corresponding safety grip-
pers. As soon as the command is at a high logic level, the procedure for inserting the
corresponding safety gripper begins. These commands do not depend on the type of
cycle. Again in this case, given the simultaneous action of the two commands, reference
is made to the command related to a single gripper. It is also worth illustrating the corre-
sponding status signal which identifies when the gripper is fully inserted. To appreciate
the differences between the command and the relative status signal, it is necessary to de-
pict the signals in a restriction, as shown inFigure 3.12. The insertion time of the gripper
is the time that elapses between between the corresponding rising edges of status signal
and command.

Figure 3.12: CmdCntQ15901F ( ), Actuator1Locked ( ), DrActualspeedRpm ( ). Cycle 1170 type 2A, October 13th.

• cmdCntQ15902F, cmdCntQ15905F

These signals represent the command for extracting the two corresponding safety grip-
pers. Similarly to the previous case, a graphical representation is provided in Figure 3.13.
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Figure 3.13: cmdCntQ15905F ( ), Actuator2Unlocked ( ),DrActualspeedRpm ( ). Cycle 1170 type 2A, October 13th.

3.1.5 Meterological Signals

Meteorological signals are signals indicating the meteorological conditions of the environment
that have been integrated by means of an online API service [6] by inserting the position† of
the company. This service gives us information about the meteorological conditions in Zam-
perla’s company location, so the conditions may slightly differ from the one where the ma-
chine is placed to carry the tests. Moreover, the service offers meteorological data with hourly
sampling. The signals retrieved from the service are the following ones: the mean, maximum
and minimum of the temperature, “feels like” temperature, pressure, humidity, wind velocity,
wind direction.

3.2 Considerations on the variability of Signals

After the description of the available signals, it is interesting to evaluate the influence of some
of the environmental/operational factors. In particular, it is significant to analyze, in a qual-
itative manner, the effects of the gondolas load variation. In this regard, the signals that will
now be considered concern the driver’s signals as the effect of the load is evident in the wave-
forms of the latter. In order to do so, we have tried to consider cycles of the same ride in which
the load has varied but which are part of the same acquisition. This can avoid weighing the
contribution of other environmental/operational factors and therefore allows to discriminate
more accurately the effect of the load variation alone. For instance, considering two different
acquisition cycles, there could be other variables involved such as the fact that one cycle was
performed after lubrication while the other was not. From here on we refer to ArmiA, ArmiB
as a way to denote the load value of the corresponding gondolas for i = 1 . . . 4. For instance,

†Altavilla Vicentina (VI), Veneto, Italy
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Arm2A denotes the value of the load in the gondolas A of arm 2. Up to now, we have talked
about load variation, but this should not be understood as a variation of the overall load value.
To visually appreciate, in a qualitative fashion, the variability in all of the drivers’ signals, it
is indeed more significant to intend the load variation as a variation of the load such that an
imbalance is created in the structure. If this is not the case, consider, for example, the cycles
0011 and 0037 depicted in Figure 3.14. These cycles have been acquired on November 23rd
and they were performed with an overall load of 900 [Kg] and 2100 [Kg], respectively. Even
though in cycle 0037 the current signal could reveal a higher current draw, it is still not possible
to visually appreciate any variability in the speed and voltage signals despite such a difference
in the overall load value.

(a) DrActualspeedRpm [RPM] (b) DrOutputvoltageV [V]

(c) DrOutputcurrentA [A]

Figure 3.14: Driver’s signals comparison, Cycle 0011 ( ) overall load = 900. Arm1A = 0, Arm1B = 0, Arm2A = 300, Arm2B
= 0, Arm3A = 300, Arm3B = 300, Arm4A = 0, Arm4B = 0. Cycle 0037 ( ) overall load = 2100. Arm1A = 300, Arm1B =
300, Arm2A = 300, Arm2B = 300, Arm3A = 300, Arm3B = 300, Arm4A = 300, Arm4B = 0, November 23rd.

With this in mind, i.e., not to associate the load variation as the mere variation of its overall
value, the driver’s signals will be shownwith respect to different load configurations in order to
report their variability. The load configurations subject to comparison are listed in Table 3.1.
The purpose of these considerations is that being able to determine which parts of the signals
vary the most with load is very informative regarding extracting features.
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Session ·Cycle Type Arm1A Arm1B Arm2A Arm2B Arm3A Arm3B Arm4A Arm4B

2021-12-30 · 0111 1A 0 75 0 0 0 75 0 0

2021-12-30 · 0112 1A 0 0 0 0 0 0 0 0

2021-11-19 · 0008 1B 0 300 0 0 0 300 0 0

2021-11-19 · 0036 1B 300 300 0 0 300 300 0 0

2021-10-25 · 1718 2A 125 125 300 0 300 300 125 125

2021-10-25 · 1770 2A 0 0 0 0 0 0 0 0

2021-11-19 · 0009 2B 0 300 0 0 0 300 0 0

2021-11-19 · 0043 2B 300 300 0 0 300 300 0 0

Table 3.1: Load configurations subject of comparison.

The behaviour of the speed signalDrActualspeedRpm is illustrated in Figure 3.15. As it is possi-
ble to notice, it seems that the load variationmainly affects the part of the signalwhere the speed
is at its maximum value. In particular, oscillations are formed. In general, it can be intuitively
deduced that the amplitude of the oscillations is influenced by the imbalance to which the ma-
chine is subjected. It follows that, beyond the cases examined here, cycles which correspond
to slightly lower or higher levels of oscillations can be found. The voltage signalDrOutputvolt-
ageV is represented in Figure 3.16. The latter seems to be affected by the variability of the load
in the same way as the speed signal. The scenario seems different with regards to the current
signalDrOutputcurrentA. From Figure 3.17 it can be seen that the load variation seems to lead
to differences in the signal as a whole.

There are certainly other environmental/operational factors that can affect the driver’s sig-
nal. For instance, the effect of lubrication in the machine could play a role as after lubrication
the influence of friction could be less. For now there are no acquired data on this from the
NebulaZ machine, nevertheless, in principle, it is still necessary to be aware of the fact that in
a real context like this there are many other variables that can influence the signals of interest.

.
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(a) Load distribution: Uniform ( ) cycle 0112, Not
Uniform ( ) cycle 0111.

(b) Load distribution: Uniform ( ) cycle 0036, Not
Uniform ( ) cycle 0008.

(c) Load distribution: Uniform ( ) cycle 1770, Not
Uniform ( ) cycle 1718.

(d) Load distribution: Uniform ( ) cycle 0043, Not
Uniform ( ) cycle 0009.

Figure 3.15: Effect of load variation on DrActualspeedRpm [RPM]

(a) Load distribution: Uniform ( ) cycle 0112, Not
Uniform ( ) cycle 0111.

(b) Load distribution: Uniform ( ) cycle 0036, Not
Uniform ( ) cycle 0008.

(c) Load distribution: Uniform ( ) cycle 1770, Not
Uniform ( ) cycle 1718.

(d) Load distribution: Uniform ( ) cycle 0043, Not
Uniform ( ) cycle 0009.

Figure 3.16: Effect of load variation on DrOutputvoltageV [V]
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(a) Load distribution: Uniform ( ) cycle 0112, Not Uni‐
form ( ) cycle 0111.

(b) Load distribution: Uniform ( ) cycle 0036, Not Uni‐
form ( ) cycle 0008.

(c) Load distribution: Uniform ( ) cycle 1770, Not Uni‐
form ( ) cycle 1718.

(d) Load distribution: Uniform ( ) cycle 0043, Not Uni‐
form ( ) cycle 0009.

Figure 3.17: Effect of load variation on DrOutputcurrentA [A]

3.3 Data Cleaning

Since the data was acquired during the testing phase of the machine, it is necessary to remove
corrupted cycles as they could negatively influence the analysis in detecting real anomalies. This
preliminary step consists of removing the data that have the following problems:

• Type 3 cycle
As anticipated in Subsection 2.1.2, this type of cycle can be considered as amarginal part
of the activity of themachine, i.e. the passenger loading/unloading phase, and therefore
it has not been considered with a view to detecting anomalies.

• Partial Information
This include:

– Missing information on drivers’ signals
Some acquired cycles have been used to verify the partial operation of themachine.
For instance, it was checked whether the central tower moved from the home po-
sition to the top position, but the rotation of the arms was not performed.
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– Aborted cycles
This refers to the interruption of the acquisition of a cycle, probably due to the
pressing of the emergency buttonby an operator or a problemwith the acquisition
system. Figure 3.18 shows an example of an aborted cycle in terms of the drivers’
signals.

(a) (b) (c)

Figure 3.18: Aborted cycle 0003, December 27th.
(a) DrActualspeedRpm ( ), (b) DrOutputcurrentA ( ), (c) DrOutputvoltageV ( ).

– Atypical cycle type
These cycles do not reflect the typical operation of the machine in terms of the
types of cycles introduced in Subsection 2.1.2. They are the result of testing and
therefore have been excluded. An example of atypical cycle type from the point of
view of driver’s signals is shown in Figure 3.19

(a) (b) (c)

Figure 3.19: Atypical cycle 0022, December 27th.
(a) DrActualspeedRpm ( ), (b) DrOutputcurrentA ( ), (c) DrOutputvoltageV ( ).

– Missing information on binary signals
In some cycles, Transit and Status signals have switching instants that are not cor-
rectly acquired. This lack of information is a problem in the sense that it does not
allow us to calculate certain interesting time intervals. For example, in Figure 3.20,
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it is not possible to calculate the time elapsed by the machine center in transition-
ing from thehomeposition to the topposition. Indeed, there is no informationon
when the machine center leaves the home position based on transit/status signals.

Figure 3.20: Actuator1Locked ( ), Actuator1Unlocked ( ), TopsensClm ( ), HomesensClm ( ), DrActualspeedRpm
( ). Cycle 0026 type 1A, November 19th.
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4
Feature Engineering

The feature engineering pipeline is the preprocessing step that transform raw data in form of
time series into features that can be used in machine learning algorithms. Basically, all classic
machine learning algorithms use some input data to create outputs. This input data comprise
features, which are usually in the formof structured columns. Algorithms require featureswith
some specific characteristic to work properly, indeed, regardless of the data or architecture, the
quality of features in the dataset bears a strong influence on the quality of the output derived
frommachine learning algorithms. Here, the need for feature engineering arises.
Summarizing, the intention of feature engineering is to achieve two primary goals:

• Preparing an input dataset that is compatible with and best fits the ML algorithm;

• Improving the performance of MLmodel.

Among the various processes involved in feature engineering, Section 4.1 will focus on fea-
ture extraction, whereas Section 4.2 will cover feature selection.
In addition Section 4.3 will show graphs relating to the features so as to intuitively understand
their behavior. This includes informationon thedistributionof the features in order toprovide
an immediate visual representation of the values assumed by each of them.
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4.1 Feature Extraction

Feature extraction refers to the process of transforming raw data, which are the time series that
have been analyzed in Section 3.1, into numerical features that can be processedwhile trying to
preserve the information of the original data set. The purpose of this step is to automatically
reduce the volume of data into a more manageable set for modeling, namely, reducing the di-
mensionality of the dataset. The aim is indeed to represent the information content of every
acquired cycle of theNebulaZ in terms of a vector of features. It is worth mentioning that au-
tomated feature engineering has been available in somemachine learning software for a couple
of years now. Automated feature engineering extracts useful and meaningful features using a
framework that can be applied to any problem. This in theory will increase the efficiency of
data scientists by helping them spend more time on other elements of machine learning but
to the detriment of full understanding the nature of features. Furthermore, it is also true that
feature extraction is a subjective process that requires human intervention and creativity, and
the latter approach would neglect advices based on domain knowledge ofZamperla Group. In
this work the features will be chosen without the use of auxiliary tools to have full control over
which aspects to consider more important or not.

4.1.1 Driver’s signals related features

The signals selected for the extraction of themajority of the features are driver’s signals (Subsec-
tion3.1.1). The reason is that from thedomain knowledge they emerged as themost significant,
moreover, from the graphical inspection in chapter 3, they have indeed shown a significantly
variable waveform over the course of various cycles. Their variability can provide information
that could be used to discriminate between cycles. This cannot be said for other signals which,
given their binary nature, remain virtually unchanged in terms of waveforms. Apart from this,
it would not be significant to insert binary signals to detect sub-optimal conditions as their
anomalous behavior, i.e., an abnormal change of logic value, could be detected regardless of
multivariate analysis. Some binary signals are still useful for identifying time intervals. In par-
ticular, they will be used later as a trigger for delimiting time intervals. These times will be
monitored because they are associated with a significant machine phase which adds informa-
tion to the characterization of a cycle.

The raw data provides information for each session, and each session is composed of differ-
ent cycles carried out during the day. For each of the cycles, there have been calculated different
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features for each of the following selected signals:

□ DrActualspeedRpm

□ DrOutputcurrentA

□ DrActualvoltageV

The features have been calculated considering a restriction on the signals, that is, the condi-
tion that both binary sensorsActuator1Locked andActuator2Locked assume a high logical value.
As mentioned in Section 3.1, these binary sensors are at a high logic level when both locking
pins are fully inserted. Only after this safety measure, the main motor is powered. For this
reason, in the features’ calculation it would not be informative to take into account the whole
signal since the additional acquired values of the affected signal would be always zero.
After analyzing the signal behavior in chapter 2, the extracted features (see Figures 4.2, 4.3) for
each of the signals are listed below. The features obtained are independent on the type of cycle
adopted by the machine.

• Max: represents the maximum value assumed by the signal.

• Min: represents the minimum value assumed by the signal.

• Peak-to-Peak: is the difference between the maximum positive and the maximum nega-
tive amplitudes of the signal.

For future reference, it is worth mentioning that it is necessary to extract some features that
are independent on the cycle’s duration. Figure 4.1 illustrates a comparison between two cycles
inwhich the only operativity difference is the duration of the cycles themselves. As it is possible
to notice, it seems that in this case the only part of the signal that is scaled in terms of duration
is the one such that the speed oscillates around its maximum value. For instance, due to this,
some statistical properties such as themean are quite different between these two cycles despite
the same operating conditions and being the same cycle type. Accordingly, during the feature
extraction, these considerations should be taken into account.

FromZamperla’s domain knowledge and from the considerations of Section 3.2 it emerged
that themost variable part of the driver’s signals (during different cycles) is the interval inwhich
the speed oscillates around its maximum value. For this reason, further features based on this
interval have been calculated.
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(a) DrActualspeedRpm [RPM], (b) DrOutputvoltageV [V]

(c) DrOutputcurrentA [A]

Figure 4.1: Cycles 0011 ( ), 0015 ( ), type 2A, December 27th. Restriction on Actuators1Locked=Actuators2Locked=1.

Up to now, there is no binary signal capable of identifying the aforementioned range, thus the
interval has been identified by exploiting the condition that the moving average of the signal is
almost constant. In this case, the features collected (see Figures 4.2, 4.3) are:

• Mean: represents the mean value of the signal.

• RMS: is the square root of the mean square.

• SD: represents the standard deviation of the signal.

• Osc: is the difference between the maximum positive and the maximum negative ampli-
tudes of the signal.

Figure 4.2: DrActualspeedRpm ( ), DrOutputcurrentA ( ), DrOutputvoltageV ( ). Cycle type 2A.
Restriction ( ), extracted features: Max,Min, Peak‐to‐Peak
Restriction ( ), extracted features: Mean, RMS, SD, Osc
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Figure 4.3: DrActualspeedRpm ( ), DrOutputcurrentA ( ), DrOutputvoltageV ( ). Cycle type 1A.
Restriction ( ), extracted features: Max,Min, Peak‐to‐Peak
Restriction ( ), extracted features: Mean, RMS, SD, Osc

4.1.2 Time andWeather related features

As anticipated, other features have been extracted concerning the time that the machine takes
to cover some salient phases. Domain knowledge has suggested that these timings could be
variable over the course of several cycles. The following features were then added to highlight
the characterization of the cycles.

• Time before rise: it concerns the time that elapses from the start of the cycle until the
machine center leaves the home position. It is calculated as the difference between the
instant in which the binary sensorHomesensClm commutates to zero and the cycle start
time.

• Rise time: it concerns the time that elapses from the moment the machine center leaves
the home position to when it reaches the top position. In the perspective of general
operation, the raising of the central tower is carried out to allow the fully rotations of
the arms. The aforementioned feature is calculated as the difference between the instant
in which the binary sensorTopsensClm commutates to one and the instant in which the
binary sensorHomesensClm commutates to zero.

• Descent time: it concerns the time that elapses from the moment the machine center
leaves the top position to when it returns to the home position. It is calculated as the
difference between the moment in which the binary sensorHomesensClm commutates
to one and the moment in which the binary sensor TopsensClm commutates to zero.

Regarding the weather signals, some considerations were made after a meeting with domain
experts. In particular the fruitlessness related to the extraction of features concerning some of
the weather conditions emerged. First of all, in principle, themachine can be installed in a park
outside or inside. Specifically, as alreadymentioned in Section 3.1, in the available dataset there
are data derived from machines that were located outside and inside the factory building. For
this reason, and generally because it was considered unreliable and unpredictable, the wind sig-
nal was rejected. Ultimately, it was decided to include only the features related to humidity
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and temperature. Indeed, there could be an effect of the latter on the grease of the fifth wheel
in the sense that as the temperature increases, the grease becomes less viscous. The expertsmen-
tioned that in the first machine cycles, when temperatures are low, higher currents delivered
by the driver can be noted. In the context of this thesis, the aforementioned meteorological
features have been adopted for all the machines. Although some machines are located in the
factory shed, they are still relatively exposed to changes in temperature and humidity as they
are not completely isolated from the outside.

4.2 Feature Selection

When building a machine learning model in real-life, it’s usually rare that all the features in
the dataset are useful to build a model. Adding redundant variables reduces the generalization
capability of the model. Furthermore, adding more and more features to a model increases (in
general terms) the overall complexity of the model. As per the Law of Parsimony of ‘Occam’s
Razor’, the best explanation to a problem is that which involves the fewest possible assump-
tions. Thus, feature selection becomes a fundamental part of building machine learning mod-
els. The feature selection techniques essentially analyze and evaluate the various features to
determine which are irrelevant or redundant and can therefore be removed and which ones are
more useful for the model and must therefore be prioritized. Feature selection is one essential
method for multiple objectives: improving the prediction accuracy by eliminating irrelevant
features, accelerating the model training and prediction speed, reducing the monitoring and
maintenanceworkload for feature data pipeline, andprovidingbettermodel interpretation and
diagnosis capability. In the case study the data is obtained by observing and collecting, thus we
dealwith unlabeled data. It follows that the feature selection process needs to be contextualized
to that effect. An important distinction to bemade in feature selection is that of supervised and
unsupervised methods. The difference has to do with whether features are selected based on
the target variable or not. Unsupervised feature selection techniques ignore the target variable,
such as methods that remove redundant variables using correlation. Supervised feature selec-
tion techniques use the target variable, such as methods that remove irrelevant variables. In
general terms, as mentioned in [7]:

“The goal of feature selection for unsupervised learning is to find the smallest
feature subset that best uncovers “interesting natural” groupings (clusters) from
data according to the chosen criterion.”
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Hence, weneed to definewhat “interesting” and “natural”mean. These are usually represented
in the form of criterion functions. Recall that our goal is to find the feature subset that best dis-
covers “interesting” groupings from data, a criterion function is what generally allows to assess
the cluster quality and therefore to select an optimal feature subset. For instance, a property
typically desired among groupings is cluster separation andwith Scatter SeparabilityCriterium
we can quantify the fact that we are interested in features that can group the data into clusters
that are unimodal and separable.

That being said, as for the case study,wemainly reliedondomain knowledge toovercome the
difficulties in the choice of features given by the unsupervised context. A correlation analysis
between features can be helpful to remove redundant variables, but the domain knowledge
played a bigger role in understanding whether it is significant to include or exclude features
because they canprovide feedback,moreover, the domain experts can evaluate if the correlation
of the feature is coherent with what they expect from the machine.

4.2.1 Elimination of redundant features

Feature vectors constructed with the procedure described so far in Section 4.1 are found to
have dimension equal toNfeat = 26. However, by virtue of the feature selection procedure,
some of these are eliminated in order to obtain the definitive inputs to be provided to the AD
algorithm. Some of the extracted features are in fact redundant, therefore, a correlation anal-
ysis is used to eliminate them. Regarding correlation analysis, it can help with getting some
insights and spot patterns within the dataset. A positive correlation result means that both
variables increase in relation to each other, while a negative correlation means that as one vari-
able decreases, the other increases. The correlation matrix contains the correlation coefficients
between each variable and thus it can be used to investigate the dependence between multiple
features at the same time. Among the several different measures for the degree of correlation
in data, we will adopt one of the measures of linear correlation, namely, Pearson Correlation
Coefficient (PCC). Given a pair of random variables (X,Y ), the PCC, represented by ρ, is the
ratio between the covariance of the variables and the product of their standard deviation. We
have [8]:

ρX,Y =
cov(X,Y )

σXσY

(4.1)

Of course, in our case we can obtain a practical formula for equation 4.1 by substituting the
estimates of the covariance and variances based on samples.
An interpretation of the absolute value of the PCC can be:
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• Exactly 1→A perfect downhill (or uphill) linear relationship

• 0.70→A strong downhill (or uphill) linear relationship

• 0.50→Amoderate downhill (or uphill) relationship

• 0.30→Aweak downhill (or uphill) linear relationship

• 0→No linear relationship

It was chosen to consider a feature as redundant, and therefore to exclude it, in the case that the
absolute value of PCC is greater than or equal to 0.99. This threshold has been voluntarily set
very high because, as alreadymentioned, in the unsupervised context it is not trivial to evaluate
the contribution of the features, consequently wewanted to eliminate only the very redundant
features. Asmentioned in Section3.1 thedata comes fromthree different rideswhichhavebeen
tested in different environments. In view of the fact that wewould like a set of features that can
be applied to any other NebulaZ and by virtue of wanting to reduce the loss of information,
only the features that are redundant in all three cases have been discarded.

Figure 4.4: Correlation matrix: driver’s signals related features and time related features, NebulaZ_C21111.
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Correlation matrices about driver’s signals related features and time related features of Nebu-
laZ_C21111, NebulaZ_C20174, NebulaZ_C21148 are available, respectively, in Figure 4.4,
4.5 and 4.6. Recall Section 3.1, the voltage signal has many similarities in terms of waveform
with the speed signal. This redundancy has repercussions in a high correlation between the
features of the two signals. In conclusion, according to the chosen threshold, the following fea-
tures have been excluded: MaxVoltage,MinVoltage,MeanVoltage, SDVoltage, Peak-to-Peak
Speed, Peak-to-Peak Voltage,Osc Speed.

Figure 4.5: Correlation matrix: driver’s signals related features, and time related features NebulaZ_C20174.
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Figure 4.6: Correlation matrix: driver’s signals related features, and time related features NebulaZ_C21148.

4.3 Features Visualization

At the end of the extraction and subsequent selection of the features, it is important to provide
a summary of the quantities obtained to outline a precise scenario for the continuation of the
work. The aim of this part is to provide some insights on the features calculated for each cycle
in the previous section. This mainly concerns frequency distribution analysis with histograms
or possibly other analysis that might be significant in interpreting the behavior of the features.
Another covered technique is Principal component Analysis (PCA), which will be introduced
below in Subsection 4.3.2. Perhaps the most popular use of principal component analysis is
dimensionality reduction, but besides this, we will mainly use it to help visualize data. A final
summary including the definitive features is available in Table 4.1. The final dataset consists of
1103 cycles which include all three rides. The feature selection procedure led to a number of
features equal toNfeat = 19.
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# Feature Signal

(1) Max - Maximum value DrOutputcurrentA - restriction: ActuatorLocked1=ActuatorLocked2=1.

(2) Min - Minimum value
...

(3) Peak-to-Peak value

(4) Mean DrOutputcurrentA - restriction: constant Moving Average.

(5) RMS - Root Mean Square
...

(6) SD - Standard Deviation

(7) Osc =Max -Min

(8) Max - Maximum value DrActualspeedRpm - restriction: ActuatorLocked1=ActuatorLocked2=1.

(9) Min - Minimum value
...

(10) Mean DrActualspeedRpm - restriction: constant Moving Average.

(11) RMS - Root Mean Square
...

(12) SD - Standard Deviation

(13) RMS - Root Mean Square DrOutputvoltageV - restriction: constant Moving Average.

(14) Osc =Max -Min
...

(15) Temperature Metereological

(16) Humidity
...

(17) Time before rise HomesensClm

(18) Rise time HomesensClm, TopsensClm

(19) Descent time
...

Table 4.1: Final extracted features.

4.3.1 Features Distirbution

Since the data was collected from differentmachines, it is reasonable to take this difference into
accountwhen viewing the data. It is also significant to discriminate between the different types
of cycles that canbe adoptedby themachine to analyze thebehavior of the features as a function
of the latter. The histograms of the majority of the extracted features are shown below.
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Figure 4.7: (1)Max Current Figure 4.8: (2)Min Current

Figure 4.9: (3) Peak‐to‐Peak Current Figure 4.10: (4)Mean Current

Figure 4.11: (5) RMS Current Figure 4.12: (6) SD Current
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Figure 4.13: (7) Osc Current Figure 4.14: (8)Max Speed

Figure 4.15: (9)Min Speed Figure 4.16: (10)Mean Speed

Figure 4.17: (11) RMS Speed Figure 4.18: (12) SD Speed
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Figure 4.19: (13) RMS Voltage Figure 4.20: (14) Osc Voltage

Figure 4.21: (17) Time before rise Figure 4.22: (18) Rise time

Figure 4.23: (13) Descent time
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In some of the histograms presented, the count of some values assumed by the features are not
perfectly appreciable due to the scarcity of data whose value is within the range. In this case,
it is better to refer to the ranges of values constituting the horizontal axis of each histogram
to outline the range of variability of features. In conclusion, the trend of Temperature and
Humidity acquired over the course of the cycles is illustrated in Figure 4.24. We remind that
the weather data have been associated with the cycles on an hourly basis.

Figure 4.24: (15) Temperature and (16) Humidity over the course of the acquired cycles.

4.3.2 Dimensionality Reduction: PCAMethod

Principal Component Analysis (PCA) is an unsupervised technique for reducing the dimen-
sionality of a dataset, increasing interpretability but at the same time minimizing information
loss. It does so by creatingnewuncorrelated variables that successivelymaximize variance. Find-
ing such new variables, the principal components, reduces to solving an eigenvalue/eigenvector
problem. The principal components are obtained as a linear combination of the starting fea-
tures. The number of these PCs are either equal to or less than the original features present
in the dataset. In this work, the use of PCA is related to the visualization of the acquired cy-
cles of the NebulaZ in terms of the first two principal components. We denote the latter as
PC1 and PC2. For further information on the PCA technique see [9]. Figure 4.25 shows the
loadings and the explained variance obtained from the available data. The loadings can be in-
terpreted as the coefficients of the linear combination of the initial variables from which the
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principal components are constructed, while the explained variance represents the information
explained using a particular principal components.

Figure 4.25: PCA: Loadings and Explained Variance

A graphical representation of the cycles by means of the first two main components is pro-
vided in Figure 4.26. In the figure, the cycles are characterized by color according to the ride to
which they belong. The predominance of blue dots suggests that most of the data comes from
the first machine, theNebulaZ_C21111. Figure 4.27 provides an illustration in which the cy-
cles are characterized by color according to the type of cycle towhich they belong. Based on the
loadings in Figure 4.25, theMeanCurrent andMean Speed features play an important role in
determining PC2. Moreover, according to Figures 4.10 and 4.16, these features assume very
different values depending on the type of cycle. It follows that along PC2 the cycles are kind
of divided into three clusters corresponding to the type of cycles 2A, 2B, and 1. As regards the
characterization of PC1 it can be seen from Figure 4.25 that the greatest contribution is due
to the features Osc Current/Voltage, Min, Max, RMS, SD and PeaktoPeak Current. Given
the considerations in Section 3.2, it follows that the aforementioned features are strongly influ-
enced by the variation of the load. The first main component therefore takes into account the
variability between cycles due to the different load configurations. In this regards, Figure 4.28
provides an illustration in which the cycles are characterized by color according to the value of
the feature Osc Current. For the purpose of a final consideration, consider Figure 4.29. The
latter characterizes the cycles according to the overall load value. It can be verified that, accord-
ing to Section 3.2, the variability in terms of oscillations introduced in the driver’s signals is not
necessarily proportional to the overall load value of the machine.
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Figure 4.26: PCA: Ride.

Figure 4.27: PCA: Cycle type.

Figure 4.28: PCA: Osc Current.

Figure 4.29: PCA: Overall load.
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5
Anomaly Detection: Multivariate Approach

This chapter includes Section 5.1 and Section 5.2.
In Section 5.1 some basic Anomaly Detection (AD) concepts are covered. Here it is chosen
not to list any particular state-of-the-art ADmethods except what will be used in the case study.
The reason for this is that Section 5.1 is not a review of all the AD techniques, rather we want
to provide the minimum concepts to understand the choices made for theNebulaZ vehicle of
Antonio Zamperla S.p.A.
Section5.2 is dedicated to explain the anomalydetectionmethod that hasbeen adopted, namely,
the Isolation Forest [2]. The main concepts and properties of the Isolation Forest’s algorithm
will be addressed.

5.1 Anomaly Detection Problem

When providing an anomaly definition, we often find ourselves in a condition that implies the
possibility of different interpretations of the term [10]. This ambiguity may be due to the area
of application in which we focus. Areas of different domains contain different types of anoma-
lies and it often happens that an anomaly in one domain may be a normal behavior in another
and vice versa. For example, in healthcare, a small deviation from normal conditions (think of
variations inbody temperature) may indicate an anomaly, where in financial markets the more
or less significant fluctuations in prices can be considered normal. Despite the vagueness and
complexity in defining an anomaly (outlier), the latter can generally be described as:
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“Observation which deviates somuch from other observations as to arouse suspi-
cion it was generated by a different mechanism”.[11]

Even if the definition does not mention the numerousness, it can be understood that an
anomaly must rarely occur, otherwise it could be traced back to normal behavior. Preliminar-
ily, if desired to carry out an attempt to reveal anomalies, it seems to be necessary to define
one region representing normal behavior and declare as an outlier each observation that differs
from it. Clearly, several factors make this approach delicate and complex. Define a region as
normal and such that it contains every possible ordinary behavior is evidently difficult. The real
world is indeed not stationary. The boundary between normal and anomalous is never clear
and predeterminable with certainty. Patterns indicating normal behavior or trends are usually
constantly evolving, therefore the current representation of normal behavior may no longer
be valid or reliable in the future [12]. Detecting outliers translates into significant actionable
information in a wide variety of applications. Some examples from the literature may be fraud
detection [13, 14, 15, 16], intrusion detection in cybersecurity [17], health diagnosis [18], de-
fect detection from behavioral patterns of industrial machines [19] and many others [20, 21].
There are quite a lot of different issues that cause outliers. Some of the most common causes
of outliers are a result of mechanical failure, changes in system behavior, fraudulent behavior,
malicious activity, human error, instrument error, setup error, sampling errors, data entry er-
ror, and environmental changes. For instance, outliers from data errors are usually the result
of human error, such as in data collection. Before listing the main categories of methods to be
used to identify outliers, a first distinction can be made with respect to the nature of the data
under consideration [21].

• Unsupervised AD. In the unsupervised approach, the available data are not labeled and
it is not required knowledge or classification of normal behavior or anomalies that may
arise. In this approach, it is assumed that normal data are much more frequent than
anomalies. These techniques are the most applicable because to be performed they only
need a database of data to be analyzed. In fact, it is not always easy to obtain labeled data
as the labeling is usually done manually by an expert operator and therefore the effort
to obtain a complete dataset is considerable. It is difficult to get a complete overview
of all the anomalous behaviors that the systemmay incur, moreover the behavior of the
anomalies is by its nature dynamic and new types of anomalies can always arise.

• Supervised AD. Supervised techniques are based on the assumption that the data are
labeled, i.e., that both anomalous and normal data are classified with an appropriate la-
bel. This approach has the advantage of being able to exploit the a priori information of
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anomalies during the construction phase of the classifier. Whenwe have a new data, it is
compared through statistical techniques with the two classes (normal data and anoma-
lies) to determine which one it belongs to. The problems that arise with the use of this
approach are of two types. The first is related to the difference in the number of sam-
ples available for the two classes; typically there are more normal than anomalous data
available. The second concerns the difficulty of obtaining labels for anomalies and the
difficulty of obtaining the dataset since anomalous data are rare.

• Semi-supervisedAD. In the semi-supervised case, it is assumed that only the labels of nor-
mal data are available and that there is no information available on the type of anomalies
that may arise. The fact that this technique does not require knowledge of the anoma-
lies that may arise makes it more easily usable in practical applications than supervised
techniques. The typical approach used for these kinds of techniques is to build a model
for normal behavior and use the information obtained from normal data to recognize
anomalies.

Another distinction of AD techniques based on the number of features being examined can be
as follows:

• Univariate techniques look for anomalies in each individual metric or feature. Univari-
ate methods are simpler, so they are easier to scale to many metrics and large datasets.

• Multivariate techniques consider two ormore features. This case takes into account that
an anomaly can occur as combinations of variables that, if considered individually, do
not denote anomalous behavior. Usually, this case is of difficult interpretation because
all the metrics are inputs that generate a single output from the anomaly detection sys-
tem.

Finally, it is possible to categorize the outlier identification methods into the following [20]:

• Ensemble-basedmethods. Ensemblemethods focus on the idea of combining the results
of dissimilar models to produce more robust models to detect outliers efficiently. Since
it will be used in the case study, it is worth mentioning the Isolation Forest method [2].

• Statistical-based methods. In statistical-based AD methods, the data points are some-
times modeled using a stochastic distribution, and some data points can be labeled as
outliers depending on the relationship with the distribution model. These methods are
usually classified into two main groups - the parametric and non-parametric methods.
Some of the methods adopted for outlier detection are the Gaussian Mixture model,
Regression model, Kernel Density EstimationMethods, histogram and other statistical
tests.
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• Distance-based methods. The underlying principle of distance-based detection algo-
rithms focuses on the computation of the distance between observations. A data point
that is at a far distance from its nearest neighbor is regarded as an outlier.

• Density-basedmethods. The core principle of the density-based outlier detectionmeth-
ods is that an outlier can be found in a low-density region, whereas non-outliers (inliers)
are assumed to appear in dense neighborhoods. The objects that differ considerably
from their nearest neighbors, i.e., those that occur far from their nearest neighbors, are
flagged and always treated as outliers.

• Clustering-basedmethods. Clustering-based techniques generally rely on the use of clus-
teringmethods to describe the behavior of the data. To do this, the smaller-sized clusters
that comprise significantly fewer data points than other clusters are labeled as outliers. It
is important to note that the clusteringmethods are different from the outlier detection
process. The main aim of clustering methods is to recognize the clusters, while outlier
detection is to detect outliers.

• Model-basedmethods. It refers to the adoption ofmodels that learn the characterization
of a normal behavior and consequently label as anomalous the data that deviate from
this representation. This category of methods, althoughmuchmore general, is partially
superimposed on the statistical methods. For instance, deep learning techniques for the
purpose ofADare part of it. DeepAnomalyDetection (DAD)methods canbe based on
supervised, semi-supervised, and unsupervised approaches. These techniques learn hier-
archical discriminative features from data. In the context of unsupervisedDADmodels,
it is worth mentioning autoencoders since they play a central role.

Among the various categories of algorithms available, it is necessary to keep in mind some of
the possible limitations that may arise. First of all, even though some density-based methods
are shown to have improved performance, they are in general computationally expensive. They
are sensitive to parameter settings such as in determining the size of the neighbors. They need
to cautiously take into consideration several factors, which consequently results in expensive
computations. Statistical-based approaches, due to their dependency and the assumptions of a
distribution model in parametric models, produce results that are mostly unreliable for practi-
cal situations and applications due to the lack of preceding knowledge regarding the underlying
distribution. Distance-based methods share some similar drawbacks as statistical and density-
based approaches in terms of high dimensional space, as their performance declines due to the
curse of dimensionality. In clustering settings, outliers are binary; that is, there is no quan-
titative indication of the object’s outlierness. Regarding ensemble techniques, difficulties in
evaluating the features of the ensembles arise.
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To conclude this subsection, it is worth mentioning the output of the anomaly detection
method, that is, the way in which anomalies are detected. Typically, the outputs are of two
types:

• Labels. It provides a binary output by assigning a label “normal / anomaly” to each data
to indicate if it is an outlier or not.

• Scores. These techniques assign a weight that indicates howmuch a given data is an out-
lier. The higher the weight, the more abnormal the data. The weight can be calculated
through considerations on the sparsity of the region, considerations on the distances to
the neighbors, or the match with a certain distribution of data.

Score-based AD techniques allow the analyst to use a domain-specific threshold to select the
most relevant anomalies. Techniques that provide binary labels to test instances do not directly
allow analysts tomake such a choice, although this can be indirectly controlled through param-
eter choices within each technique.

5.2 Anomaly Detection: Isolation Forest

In the case study, it has been chosen an algorithm that is able to work without particular as-
sumptions in an unsupervised scenario and multidimensional data with possibly many irrele-
vant attributes. In particular, we deal with the isolation forest (IF)method. Thanks to its linear
time complexity, low memory requirements and capacity in handling high volume databases,
IF is highly desirable for real-life applications. Some basic concepts on the functioning of the
algorithm will now be addressed in order to better understand the choices made by the latter
as soon as the results are presented. For further information, please refer to the original article
[2].

5.2.1 Description of the Algorithm

Isolation Forest (IF) [2], similar to Random Forest, is built based on decision trees. Since there
are no predefined labels here, it is an unsupervised model. The IF is founded on the fact that
anomalies are data points that are few and different. The innovation of this algorithm is that
it isolates anomalies rather than profiling normal points. In an isolation forest, randomly sub-
sampled data are processed in a tree structure based on randomly selected features. The samples
that travel deeper into the tree are less likely to be anomalies as they require more cuts to iso-
late them. Similarly, the samples which end up in shorter branches indicate anomalies as it was
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easier for the tree to separate them from other observations. As mentioned earlier, Isolation
Forests are nothing but an ensemble of binary decision trees. And each tree in an Isolation
Forest is called an Isolation Tree (iTree). The algorithm starts with the training of the data by
generating Isolation Trees. The training phase can be summarized as follows.

1. Given a dataset, a random sub-sample of the data is selected and assigned to the root
node of an iTree.

2. Branching of the tree starts by selecting a random feature (in our case from the set of
all Nfeat features) and a random threshold ( any value in the range of minimum and
maximum values of the selected feature).

3. If the value of a data point is less than the selected threshold, it goes to the left branch
else to the right. And thus a node is split into left and right branches.

4. This process from step 2 is continued recursively till each data point is completely iso-
lated or till max depth, if defined, is reached.

5. The above steps are repeated to construct random Isolation Trees.

After creating an ensemble of iTrees (Isolation Forest), model training is complete. During
scoring a single path length h(x) is derived by counting the number of edges e from the root
node to a terminating node as instancex traverses through an iTree. Whenx is terminated at an
external node which is associated withmore than one data point, the length of the path h(x) is
given by e plus an adjustment that accounts for an unbuilt subtree beyond the tree height limit.
When h(x) is obtained for each tree in the ensemble, an Anomaly Score (AS) is produced by
computing s(x, n) as:

s(x, n) = 2−E(h(x))/c(n) (5.1)

In equation (5.1), E(h(x)) denotes the expected path length for each test instance and it is
derived by passing instances through each iTree in an iForest, c(n) is the average path length of
unsuccessful search in Binary Search Tree and n is the number of external nodes.

5.2.2 Characteristics

It is worth mentioning some characteristics of the IF algorithm. Among these is the fact that
the presence of anomalies in the dataset is quite irrelevant to the performance of the algorithm,
i.e., it is reasonable to train the model using normal instances only. Moreover, the unique char-
acteristic of isolation trees allows iForest to build a partial model by sub-sampling which inci-
dentally alleviates the effects of swamping andmasking. It is because: 1) sub-sampling controls
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data size, which helps iForest better isolate examples of anomalies and 2) each isolation tree can
be specialized, as each sub-sample includes a different set of anomalies or even no anomaly. As
already highlighted, the IF algorithm also has excellent performance in terms of time complex-
ity and memory usage, as it does not need to perform distance or density calculations between
data. Furthermore, hyperparameter tuning is often unnecessary as it usually provides good
performance when working with predefined hyperparameters.

However, one of the main limitations of the Isolation Forest is related to its interpretability,
given that the algorithm provides indications regarding the anomaly levels of the data under
examination, but is unable to provide information to enable root cause analysis. In fact, given
its random nature, it is very difficult to understand the choices of the algorithm. From this sce-
nario follows Chapter 6 on eXplainable Artifical Intelligence (XAI) which aims to understand
why a point has been labeled as anomalous.
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6
eXplainable Artifical Intelligence (XAI)

The goal of this chapter is to give an introduction to interpretability inMLand to introduce the
model-agnostic state-of-the-art interpretability methods adopted for the NebulaZ ride. The
motivation that led to the use of interpretability is that detecting an anomaly is becoming no
longer enough andproviding a reasonwhy a cycle has been labeled as anomalous is gettingmore
and more importance. In the context of AD the explainability of the model allows to identify
the underlying causes of an anomaly so that the most effective solutions can be identified and
implemented. Indeed, in this scenario, evaluating feature importance is fundamental to enable
Root Cause Analysis (RCA).
In Section 6.1 tha main concepts related to the interpretability/explainability of a model will
be discussed. Section 6.2 covers a well-known state-of-the-art method, namely SHapley Ad-
ditive exPlanations (SHAP) [4], while Section 6.3 deals with a more recent method, namely
AcceleratedModel-agnostic Explanations (AcME) [5].

6.1 Introduction

As it has been in introduced inChapter 1 of this work, due to the current digital revolution, the
use of Artificial Intelligence (AI) in the modern world continues to grow. As a consequence of
this, also the topic of XAI becomes increasingly important. Explainable AI and Interpretable
ML are all about making our models more transparent and interpretable, helping us answer
important questions such as:
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Why should I trust the model? How does the model make predictions?
An intuitive definition of interpretability can be stated as:

“Interpretability is the degree to which a human can understand the cause of a
decision.”.[22]

ModernAI orMLmethods can be used to build sophisticatedmodels that obtain fantastic pre-
diction performance or classification accuracy in a wide range of challenging domains. How-
ever, they typically have a complex, black-box nature. There is no definitive threshold for when
amodel becomes a black box. Generally, simplemodelswith easy-to-understand structures and
a limited number of parameters, such as Linear Regression or Decision Trees, usually can be
interpreted without requiring additional explanation algorithms. In contrast, complex mod-
els, such as Deep Neural Networks with thousands or even millions of parameters (weights),
are considered black boxes because the model’s behavior cannot be comprehended, even when
one is able to see its structure and weights. Indeed there is a sort of a trade off between the per-
formance of the model and its interpretability. Unfortunately, the superior performance of
the more complex models often comes at the cost of model transparency and interpretability.
The more complex a model is, the more difficult it is to understand what is important to the
model and why it behaves the way it does. For these reasons, improving model transparency
and interpretability not only helps us build safer, explainable models, but can also help build
confidence and trust in the model and its output in the eyes of technical and non-technical
stakeholders. This is especially important in environments where a poorly understood model
could take actions that bring financial or reputational risks.

Researchers have developed a lot of different types of model interpretability technics over
the years. These technics can be classified according to various criteria [23]. Themethods used
to provide explanations are either model-specific or model-agnostic:

• Model-specific. Model-specificmethodsworkby inspectingorhaving access to themodel
internals. Interpreting regression coefficient weights in a linear model is an example of
model-specificmethod. Themain challenge ofmodel-specific interpretability is to come
up with models that are simple enough to be easily understood by the audience, while
maintaining high predictive accuracy.

• Model-agnostic. Model-agnostic methods work by investigating the relationship be-
tween input-output pairs of trained models. They do not depend on the internal struc-
ture of the model. These methods are very useful for when we have no theory or other
mechanism to interpret what is happening inside the model.

54



The types of “explanations” can typically be grouped into:

• Global explanations - A global explanation of a ML model details what features are im-
portant to the model overall. This can be measured by looking at effect sizes or deter-
mining which features have the biggest impact on model accuracy. Global explanations
are helpful for finding evidence or rejecting a hypothesis that a particular feature is im-
portant.

• Local explanations - A local explanation details how a ML model arrived at a specific
prediction.

6.2 SHAP

Shapley values are a concept of the Cooperative Game Theory field, whose objective is to mea-
sure each player’s contribution to the game. Shapley values emerge from the context wherem
players participate collectively obtaining a reward r which is intended to be fairly distributed
at each one of them players according to the individual contribution. Such contribution is a
Shapley value. Among explainability techniques that can provide both global and local inter-
pretation, Shapley Additive Explanations (SHAP) [4], is a method introduced by Lundberg
and Lee in 2017 based on Shapley values for interpreting machine learning predictions, both
in unsupervised and supervised tasks. In this case, SHAP quantifies the contribution that each
feature brings to the prediction made by the model, so the players of this cooperative game are
replaced by the features of the ML model and the payoff by the model output itself. Follows
that this contribution φi of feature i is defined as:

φi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |! [f(S ∪ {i})− f(S)] (6.1)

where f(S) corresponds to the output of the machine learning model to be explained using a
set S of features, andN is the complete set of all features.

One innovation that SHAP brings to the table is that the Shapley value explanation is repre-
sented as an additive feature attributionmethod, a linear model. The advantage of this form of
explanation is that it is really easy to interpret; we can see the exact contribution and importance
of each feature. Lundberg andLee argued that only SHAP satisfies a set of three desirable prop-
erties. In particular, if the feature attributions in the additive explanatory model are chosen to
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be the Shapley values of those features, then all three properties are upheld. These properties
are:

• Local Accuracy

f(x) = g(x′) = φ0 +
M
∑

i=1

φix
′
i, (6.2)

whereM is the number of simplified input features and φ0 represents the model output
with all simplified inputs toggled off. We recall that the simplified input x′ is a binary
vector that representswhether or notwewant to include the contribution of that feature
to the overall prediction. When approximating the original model f for a specific input
x, local accuracy requires the explanation model to at least match the output of f for
the simplified input x′. In other words, if the input x and the simplified input x′ are
roughly the same, then the actual model f and the explanationmodel g should produce
roughly the same output. Recall that by hypothesis φi are the Shapley values.

• Missingness

If the simplified inputs represent feature presence, then missingness requires features
missing in the original input to have no impact. Missingness constrains features where
x′
i = 0 to have no attributed impact.

x′
i = 0⇒ φi = 0 (6.3)

• Consistency

Consistency states that if a model changes so that some simplified input’s contribution
increases or stays the same regardless of the other inputs, that input’s attribution should
not decrease. This is a more important property that essentially says: if we have two
(point-wise) models (f, f ′) and feature i consistently contributes more to the output in
f ′ compared to f , we would want the coefficient of our explanation model for f ′ to be
bigger than f (i.e. φi(f

′, x) ≥ φi(f, x)). It is a sensible requirement that allows us to
fairly compare different models using the same explainability techniques. We recall that
the mapping function hx(x

′) = x converts a binary vector of interpretable inputs into
the original input space. Note that this mapping function hx(·) is specific to the data
point x.

In particular, let fx(z′) = f(hx(z
′)) and z′\i denote setting z′i = 0. For any two

models f and f ′, if

f ′
x(z

′)− f ′
x(z

′\i) ≥ fx(z
′)− fx(z

′\i) (6.4)
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for all inputs z′ ∈ {0, 1}M , then:

φi(f
′, x) ≥ φi(f, x) (6.5)

The problem with this, however, is that computing Shapley values means you have to sample
the coalition values for each possible feature permutation, which in a model explainability set-
ting means we have to evaluate our model that number of times. For example, for 32 Features
it is over 17.1 billion. To get around this, Lundberg and Lee devise the ShapleyKernel, ameans
of approximating Shapley values throughmuch fewer samples. Shapley values can be obtained
by tracing the problem back into a case of linear regression [4]. There are a lot of other forms
of SHAP that are presented in the original paper, ones thatmake use ofmodel-specific assump-
tions to speed up the algorithm and the sampling process, but Kernel SHAP is the one among
them that is universal and can be applied to any type of machine learning model. It is worth
mentioning TreeSHAP [24], a variant of SHAP for tree-based machine learning models such
as decision trees, random forests, and gradient-boosted trees.

Results Visualization

Before introducing AcME, it is reasonable to introduce the visualizations of SHAP results
which will be used later. As for global interpretation, the summary plot combines feature im-
portance with feature effects. Each point on the summary plot is a Shapley value for a feature
and an instance. The position on the y-axis is determined by the feature and on the x-axis by
the Shapley value. The color map, from blue to red, represents the value of the feature from
low to high. Overlapping points are jittered in the y-axis direction. In the summary plot, we
see first indications of the relationship between the value of a feature and the impact on the
prediction. We can also display a bar plot in which the features are sorted by decreasing global
importance. The global importance of each feature is calculated as the mean absolute value of
that feature overall. As for local interpretation, wewill adopt thewaterfall plot. The prediction
starts from a baseline, that is, the average of all predictions. In this local importance plot, each
positive Shapley value is an arrow that increases the prediction, while negative values decrease
it. Balancing each other, the arrows point to the actual prediction for the selected observation.
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6.3 AcME

In a scenario like the case study, interpretability insights must be provided to the user in a
reasonable amount of time to avoid losing money. Most state-of-the-art interpretability ap-
proaches require time-consuming procedures for computation that do not allow for ’on-the-
fly’ operation. Accelerated Model-agnostic Explanations (AcME) [5] is an interpretability ap-
proach that, among the various aspects, quickly provides feature importance scores both at the
global and the local level. Indeed, similarly to SHAP [4], AcMEproduces an effective data visu-
alization for global interpretability. Moreover, it brings the same effectiveness to visualization
for local interpretability. The importance scores provided by AcME rely on perturbations of
the data based on quantiles of the empirical distribution of each feature. These perturbations
are performed w.r.t. a reference point in the input space, the baseline vector ( xb ).

6.3.1 Global Interpretability

In this case, we consider xb as the mean vector x̄, that is, the p-dimensional vector whose com-
ponents are the mean values of the features. Based on the original paper, the whole procedure
for computing the global importance score for the feature j can be summarized as follows.

1. xb = x̄ =
[

x̄1, . . . x̄j−1, x̄j, x̄j+1, . . . x̄p

]T

2. For each q ∈ {0, 1/(Q − 1), 2/(Q − 1), . . . , 1}, create zj,q ∈ R
p by substituting x̄j

with xj,q i.e., the value of quantile q for the j-th variable:

zj,q =
[

x̄1, . . . x̄j−1, xj,q, x̄j+1, . . . x̄p

]

3. Create the variable-quantile matrix for feature j ∈ {1, . . . , p}:

Zj =











zj,0
zj,1/(Q−1)

...
zj,1











=











x̄1 x̄2 . . . xj,0 . . . x̄p

x̄1 x̄2 . . . xj,1/(Q−1) . . . x̄p
...

...
...

...
...

...
x̄1 x̄2 . . . xj,1 . . . x̄p











4. Compute predictions associated with the variable-quantile matrix rows:

ŷj =











ŷj,0
ŷj,1/(Q−1)

...
ŷj,1











=











f(zj,0)
f(zj,1/(Q−1))

...
f(zj,1)










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5. Calculate the standardized effect:

∆j,q =
ŷj,q−f(xb)√

var(ŷj)
(max(ŷj)−min(ŷj))

6. The global feature importance score for the generic feature j can be computed by aver-
aging the magnitude of standardized effects over the quantiles:

Ij =
1
Q

∑Q
q=1 |∆j,q|

AcME has in general lower computational complexity than KernelSHAP. Indeed, AcME only
needs to apply the model onQ× p observations, corresponding to the vectors zj,q. It is worth
mentioning the results visualization thatAcMEprovides. For the visualizationof global feature
importance scores, the authors propose two different kinds of plots. The first is just a bar plot
that shows the feature scores in decreasing order computed according to point 6 of the previous
list. As for the second visualization on the y axis, the features are sorted in decreasing order of
importance according to point 6 of the previous list, while the standardized effects for each
element of the variable-quantile matrix are plotted along the x axis. Moreover, the ACME
visualization provides a black dashed line, corresponding to the prediction for the base point,
to separate positive effects, i.e. those pushing the prediction to higher values, from negative
effects, i.e. those pushing the prediction to lower values.

6.3.2 Local Interpretability

When the scopeof the analysis is the interpretationof individual predictions, we set the baseline
vector xb equal to the specific data point to be explainedx∗ , instead of setting xb = x̄ as in the
global interpretability scenario. The procedure to get importance scores is similar to the one
just reported, but in the local case it only serves to order features in the displayed plot, which
is meant to convey a different kind of information. The visualization for local interpretability
resembles the global one of AcME. Specifically, in the local case the algorithm does not display
standardized effects but the actual predictions associatedwith the perturbed data points (based
on the selected Q quantiles). A dashed line is placed in correspondence with the prediction
associated with the original observation x∗, so that it is clear which variables are pushing to
increase (or decrease) the prediction.
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7
Experiments and Results

Up to now, in the previous chapters, the data and theoretical foundations of the multivariate
approach used for AD have been introduced. This chapter is structured in three sections and
its aim is to present some results obtained from the data acquired from theNebulaZ case study.
Section 7.1 plays an introductory role in laying out the main hypotheses and the main consid-
erations with respect to the results. In Section 7.2 a focus is devoted to the evaluation of the
interpretability methods in a global fashion in order to certify the consistency of the model. In
this context, global explanations are helpful for finding evidence or rejecting a hypothesis that
a particular feature is important. Section 7.3 proposes the results obtained by applying the IF
algorithm and related interpretability methods (SHAP [4] and AcME [5]) as an actual tool to
detect anomalies and enableRootCauseAnalysis. In this case some of the data deemed asmore
anomalous by the IF algorithm are examined locally.

7.1 Introduction

Data Distribution

Before presenting the results obtained, it is necessary to specify some aspects that affect the
application of the proposed approach. As already mentioned, the data that make up the final
dataset come from different rides. First, the diversity of the rides must be considered. This
diversity should not be understood in a general sense of functioning but rather in the change
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of the distribution underlying the data. The different rides can be under different operating
conditions that are not quantifiable, such as different wear of the components, different type
or degree of lubrication, etc. It follows that a cycle of a ride evaluated by anADmethod that has
been trained for a different ride could be labeled as anomalous despite the same configuration
between the two machines in terms of quantifiable operating conditions. Considering the net
minority of data coming from NebulaZ_C20174 - NebulaZ_C21148 and considering what
has just beenmentioned, itwouldbe that the cycles coming fromthese last twomachineswould
bemore likely to be labeled as anomalous by IF since they require fewer cuts to be isolated. The
same considerations can be extended regarding the cycles of the same ride, which represent a
clear minority in terms of the operating conditions adopted. For instance, consider the case of
very few cycles that have been performed in a certain load configuration which has never been
performed until then. Given the considerations on the variability of the signals of Section 3.2,
we have that in such cycles the values of the affected features are muchmore marginal than the
general trend. This leads to a greater likelihood of being labeled as an anomaly.

How to handle outliers

Now it is worthmaking some brief considerations on what to do when an anomaly is detected.
So far, in Chapter 5, some considerations have been made regarding what could give rise to
outliers and how to identify outliers. It was found that providing a definition of anomaly is
a task that requires domain knowledge. Similarly, dealing with outliers is dependent on the
application domain. For instance, in cases where the influence of outliers might cause seri-
ous issues such as critical environment safety scenarios, or in real-time situations (fraud detec-
tion/intrusion detection), an alarm could be set up. While, in a no cause for alarm scenario,
in a case like in a population census survey where few people stand out in some features, these
outliers can be noted and verified since they are just naturally occurring outliers. Moreover,
in the context of AD, we are faced with a trade-off between false positives and false negatives.
Depending on the application, it has to be decided how abnormal a point must be for it to
be labeled as anomalous. In terms of Anomaly Score, it is a question of defining an anomaly
threshold. In applications where errors cannot be accepted, this threshold will tend to favor a
higher rate of false positives. Inmost cases, to answer the question about how tohandle outliers,
one has to use intuition, analytic argument through some experiments and also thoughtful de-
liberation before making decisions. In a scenario such as the case study, the role played by the
algorithms canfind applicationwithin aDecision Support System (DSS) to support judgments
and actions. A DSS should provide comprehensive information that can be used to help hu-
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man operators in decisionmaking. The operator can consider andweigh the importance of the
algorithmoutcomes for the purpose of an optimal choice in line with the company’s objectives.

Experimental Setup

Some practical aspects have been adopted by virtue of data distribution considerations. A first
empirical choice led to the exclusion ofNebulaZ_C20174 -NebulaZ_C21148 from the appli-
cation of the anomaly detection approach. The data available for these two rides are, in fact,
too few to outline any reliable consideration. In conclusion, a last consideration can be about
the initialization of the IF algorithm in terms of its hyperparameters. In this case, the default
values recommended in the original paper [2] have been adopted. These include an isolation
forest consisting of 100 iTrees, each obtained using 256 randomly extracted data. The adopted
notation foresees that a negative AS is associated with an anomalous point. In contrast, the
more positive the AS, the less anomalous the point. This AS assignment is a trivial review of
the formulation in Equation 5.1 in terms of an affine transformation. Labels −1, +1 are as-
signed, respectively, to an anomalous cycle or not. It is important to reiterate that the cycles
are not a priori labeled as anomalous or not, therefore the evaluation of the results obtained is
based on the experience gained during the data analysis, on the results provided by the inter-
pretability method, on the visual comparison with the rest part of the available cycles, and on
the comparison with domain knowledge.

7.2 NebulaZ_C21111: Consistency of the model
Afirst significant evaluation can bemade by analyzing the evolution of the AS provided by the
Isolation Forest: Figure 7.1 shows the trend of the score over the course of the cycles acquired
from the NebulaZ_C21111. The cycles are sorted in chronological order. The trend of the
AS obtained during the cycles of different sessions could be relevant to determine if there is a
global pattern for which the cycles are labeled as anomalous. An interesting evaluation of the
result provided in Figure 7.1 can be made by observing the tendency of the data related to the
first cycles of every acquisition to be more anomalous than the following ones. In simplistic
terms, this tendency to sub-optimality could be due to a lower heating state of the machine.
Domain experts confirmed the trend of a general increase in energy expenditure in the first few
cycles of a session, especially on cold days.
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Figure 7.1: IF Anomaly Score, NebulaZ_C21111.

Asmentioned previously, given the intrinsic nature of the IF, it follows that cycles that repre-
sent a clear minority in terms of operating conditions adopted are more likely to be associated
with a higher AS. In the specific case, during the acquisitions of October 25th and October
27th, the majority of the cycles were performed with load configurations that had never been
adopted until then. For this reason, the load variation can be considered as one of the main
aspects that has influenced the AS of these cycles the most. Looking ahead, more data should
favor a data set that is homogeneously distributed among the most adopted operating condi-
tions. This should avoid the bias intrinsically introduced by the IF in judging the cycles as
anomalous. However in this section, as a first approach, it is interesting to apply and evalu-
ate the interpretability methods to all available data relating to theNebulaZ_C21111machine.
This approach can be useful for testing the reliability of the model. Subsequently, in Section
7.3 the focus will be specifically on a fixed operating condition. In the latter case, the IF al-
gorithm and related interpretability methods are proposed as a tool to detect anomalies and
enable Root Cause Analysis.

A first global evaluation can be made in terms of the importance of the features provided
by the AcME and SHAP methods. Figure 7.2 (←) shows the bar graph of the importance
score of the global AcME. The features are ordered from the most important to the ones that
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have the least impact on the model. It can be seen that some of the features have a relatively
lower importance score. In retrospect, this global classification of features can be interesting
for understanding whether the extracted features are significant or whether their presence is
irrelevant to the model. This tool can aid in the feature evaluation and selection process in
an unsupervised context. Among the features considered less significant by the model are the
features related to the weather signals of Temperature, Humidity and the features related to
Descent time, Time before rise. During the acquisitions made onNebulaZ_C21111, the afore-
mentioned features, if compared to the rest, are not very variable between cycles, so they are not
very informative in characterizing a cycle. In hindsight, the feature Time before rise should be
determined by the software choices related to the logic of the PLC. Consequently, this feature
should assume scarcely variable values over the course of different cycles and therefore is not
considered important in influencing the output of the model. As far as weather features are
concerned, it is more than legitimate to expect their little influence as all tests were carried out
with stable atmospheric conditions during the various days.

Figure 7.2: Global AcME (←) and SHAP (→) : Bar plot of the importance of the features.

These considerations also seem to be shared by the global interpretability result provided by
SHAP. Figure 7.2 (→) illustrates the bar plot of the global SHAP designed to display a sum-
mary of the features that the model considers the most important in influencing the output
itself. The global importance of each feature is calculated as the mean absolute value of the
Shapley values for that feature. In particular, it can be seen that the feature Time before rise
assumes the lowest score in terms of global importance. Even for SHAP this feature is not very
relevant in discriminating the level of anomaly of the cycles.
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In a more detailed picture, Figure 7.3 shows the summary graphs of the global SHAP and
AcME, designed to display an information-dense summary of how the features impact the
model’s output. In this case, interpretability is useful as a tool for investigating the behavior
of themodel and the degree to which it is consistent with expectations. First of all, it is possible
to notice a first characterization of the features, which, independently of the type of cycle, are
dedicated to quantify the oscillations of the driver’s signals. Consider, for example, the features
Osc, Peak-to-Peak. Bothmethods of interpretability share the same results on the fact that very
high or low values of the aforementioned features tend to characterize a cycle as anomalous.
This is justified in retrospect by the fact that the acquisitions of 25 and 27 October, which
tend to be considered the most anomalous, are the only ones performed with different load
configurations. In particular, on October 25th, the load was changed so that a higher level of
imbalance occurred in the machine. Consequently, as mentioned in Section 3.2, this induces
higher oscillations in the driver’s signals. However, on October 27th the tests were carried out
without using the load. In this case, since the machine is fully balanced, not much variability
is appreciated in terms of oscillations of the driver’s signals.

Figure 7.3: Global SHAP (←) and AcME (→): Summary plot.

Another interesting consideration can be seen from the importance assigned by both methods
to the featureRise time. In general terms, shorter rise times appear to be associated with abnor-
mal behavior. This can be validated considering that on October 25th the overall load value
was half that of the previous days. Also, as already mentioned, on October 27th there was no
load at all. Through correlation analysis, a positive correlation (Figure 7.4) is observed between
the overall load value and the rise time. Intuitively, if the weight is less, it is reasonable to think
that slightly less time is needed to lift it.
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Figure 7.4: NebulaZ_C21111. Rise‐time distribution; focus on the overall load value.

7.3 NebulaZ_C21111: Results

As anticipated, let us now consider the analysis at a fixed operating point so as not to be condi-
tioned by the scarcity of data relating to the different operating conditions. In particular, the
acquisitions of NebulaZ_C21111 which were carried out with the same load are considered.
These acquisitions include the days from October 18 to October 22, 2021. In this context,
anomaly detection by IF and the relatedmethods of interpretability can be significant in detect-
ing sub-optimal conditions and providing information onwhy a point is labeled as anomalous.
Even in this case, a first significant evaluation can bemade by analyzing the evolution of the AS
provided by the IF: Figure 7.5 shows the trend of the latter over the course of the cycles. The
cycles are sorted in chronological order.

Figure 7.5: IF Anomaly Score, NebulaZ_C21111, October 18 . . . 22, 2021, Contamination = 0.03.

Afurther global assessment canbe done in a similarway towhatwas presented above. In fact,
it is possible to assess in general terms how features impact the model output. In this regard,
Figure 7.6 illustrates the summary graphs of the global SHAPandAcME.Looking at the results
of SHAP and, in particular, those provided byAcME, it seems that formost of the features the
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values in the highest or lowest range (represented by the red and blue colors, respectively) are
positively affecting the model output in having a higher AS. Indeed, values that differ from a
possible steady-state behavior can be a symptomof anomaly. A further evaluation can bemade
considering features such as RMS Current. The latter tends to provide information in terms
of a positive correlation with the current draw. As mentioned by domain experts, early cycles
tend to suffer from a slight increase in consumption, especially on cold days. Given the fact that
the first cycles of each acquisition are considered among the most anomalous by IF, we could
assess that explainability methods tend to confirm what experts report. In fact, according to
Figure 7.6 higher values ofRMS Current push the prediction towards abnormal behavior.

Figure 7.6: Global SHAP (←) and AcME (→): Summary plot.

Beyond the behavior on a global level, it is more interesting to evaluate the anomalous cycles
from a local point of view. In this way it is possible to delineate case-by-case considerations of
which features havemost influenced the outcome in order tomotivate the predictions provided
by the IF.

7.3.1 Anomalies Detected

The analysis procedure presented in the following is adopted to analyze some of the anomalies
detected by themultivariate approach in the case studyNebulaZ_C21111. To avoid redundan-
cies, reference is made to a subset of all the anomalies detected, i.e., those caused by different
reasons. In particular, the cycles marked with a circle in Figure 7.5 are treated. These cycles are
reported in Table 7.1.
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Acquisition Cycle Start hour:minute:second Anomaly Score Color

2021-10-21 1521 07:24:52 −0.026
2021-10-18 1203 08:22:20 −0.04
2021-10-18 1214 09:08:02 −0.057
2021-10-18 1270 13:00:48 −0.066

Table 7.1: Anomalies subject of analysis.

The first cycle analyzed is the one corresponding to the first row of Table 7.1, namely the
cycle 1521 of October 21 . To understand and justify the AS assigned to this cycle, it is sig-
nificant to rely on interpretability tools. Figure 7.7 illustrates the SHAP local waterfall plot
which creates a local feature importance plot where the bars are the Shapley values for each fea-
ture. The feature values are shown in gray to the left of the feature names. The waterfall plot
powerfully shows why a case receives its prediction given its variable values. From Figure 7.7 it
seems that a great influence in labeling the cycle as anomalous is due to the featuresPeak-to-Peak
andMinCurrent.

Figure 7.7: Local SHAP: Cycle 1521, October 21th.

A complementary analysis can be performed by evaluating the local interpretability result pro-
vided by AcME. In this case, Figure 7.8 illustrates the results of the local AcME on the cycle
under examination. The larger dots represent the quantile value of each feature in this specific
observation. This view can provide awhat-if analysis, that is, information aboutwhatwill hap-
penwith the observation ifwe change the quantile value of a specific featurewhile keepingfixed
all the other features. It can be seen that the current observation presents a high Peak-to-Peak
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Current value (highest quantile) and a lowMinCurrent value (lowest quantile). Furthermore,
it can be observed that higherMinCurrent values or lower Peak-to-PeakCurrent values (than
those currently assumed by the observation) would lead the observation to be labeled normal.

Figure 7.8: Local AcME: Cycle 1521, October 21th.

To verify the anomalous behavior of this cycle a posteriori, it is significant to look at the driver’s
signals of theprevious/subsequent cycles of the same type that are part of the sessionofOctober
21. Figure 7.9 illustrates the comparison just mentioned. A blue mark is intended for cycle
1521. The current and voltage signals do not appear to have an observable difference, while a
negative current pulse is observed in proximity to the moment in which the machine reverses
the direction of rotation.

Figure 7.9: Driver’s signals: A comparison between cycle 1521 ( ) and the previous/subsequent cycles of the acquisition
of October 21.
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The second case analyzed concerns the cycle 1203 of October 18th. In analogy to the pre-
vious case, it is useful to seewhat is proposed by the local SHAPmethod. Figure 7.10 illustrates
the assignment of the local importance of the features. In this case, it appears that the feature
RMS Current plays a major role in categorizing this cycle as anomalous. As mentioned above,
this feature is positively influenced by a general increase in current consumption. In any case,
it can be observed that different features synergistically tend to contribute to the attribution of
an anomalous score. The cycle under review highlights themultivariate perspective of anomaly
detection. From a temporal point of view, this cycle ranks as one of the first to be performed
during a session. The considerations made with respect to a general increase in consumption
in the first cycles seem to be verified by the local importance that has been assigned.

Figure 7.10: Local SHAP: Cycle 1203, October 18th.

A concomitant analysis can also be provided by the AcME local interpretability tool. Figure
7.11 provides the AcME local importance of features. It can be seen that the feature RMS
Current of the actual observation assumes a value relative to the highest quantile. In this case,
regardless of whether we increase or decrease the quantile value of any feature, the prediction
score of the cycle will still be negative.

71



Figure 7.11: Local AcME : Cycle 1203, October 18th.

Another case to examine is represented by the cycle 1214 of October 18th. Similarly
to the previous cases, Figure 7.12 illustrates the local importance of the features assigned by
SHAP. The feature Peak-to-Peak Current is of fundamental importance in classifying this cy-
cle as anomalous. From the local interpretability of AcME in Figure 7.13, it can be seen how
the value of the feature Peak-to-Peak Current is relative to the highest quantile. Furthermore,
through the what-if analysis it can be deduced that, by changing the Peak-to-Peak Current
value towards lower quantiles, the cycle would be classified as normal.

Figure 7.12: Local SHAP: Cycle 1214, October 18th.
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Figure 7.13: Local AcME: Cycle 1214, October 18th.

Similarly to the first case, an evaluation can be made by comparing the signals of the driver.
Figure 7.14 illustrates the driver’s signals of the previous/subsequent cycles of the same type
that are part of the session ofOctober 18. A blackmark is intended for cycle 1214. It is possible
to observe a positive current pulse in proximity of the end of the cycle.

Figure 7.14: Driver’s signals: A comparison between cycle 1214 ( ) and the previous/subsequent cycles of the acquisition
of October 18.

The last case subject to analysis concerns cycle 1270 of October 18th. In this case, the
cycle was detected as anomalous because it does not represent a normal behavior with respect
to the hypothesis of operation, that is, with respect to the types of cycles that the machine can
perform. More in detail, the causes can be guessed by exploiting the results of the SHAP and
AcME local interpretability methods, respectively, in Figure 7.15 and Figure 7.16.
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Figure 7.15: Local SHAP: Cycle 1270, October 18th.

The role of the most significant features in classifying this cycle as anomalous can be traced
back to the featuresMean Speed,MeanCurrent, SD Speed. With the introduction in Section
2.1 of the type of cycle 1, the latter has been defined as a cycle in which the motor changes
the direction of rotation at half the duration. As for the current cycle under examination, the
features identified asmost important are representative of the fact that one directionof rotation
has been employedmore than another. To verify this, Figure 7.17 illustrates the driver’s signals
of the previous/subsequent cycles of the same type that are part of the session of October 18th.
An olive color mark is intended for cycle 1270. We recall that, contrary to this, the features are
independent of the cycle duration as the latter is a tunable parameter.

Figure 7.16: Local AcME: Cycle 1270, October 18th.
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Figure 7.17: Driver’s signals: A comparison between cycle 1270 ( ) and the previous/subsequent cycles of the acquisition
of October 18.

A conclusive analysis can be made by viewing the values of the features in the anomalous
cycles. To this end, Figure 7.18 shows the distribution histograms of some of the features con-
sidered among the most important by the previous local interpretability results. Each of these
highlights the value of the feature for each of the four anomalous cycles examined.

Figure 7.18: Features distribution: cycle 1521 ( ) October 21th, cycle 1203 ( ) October 18th, cycle 1214 ( )
October 18th, cycle 1270 ( ) October 18th.
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8
Conclusion and Future Work

In this thesis a problem of AD related to a real case study ofAntonio Zamperla S.p.A. has been
addressed. The proposed approach includes a multivariate feature-based AD method in syn-
ergy with the interpretability tools. Initially, as data were acquired during the testing phases,
the data cleanup and preparation procedure played a significant role. In particular, by inter-
polating the domain knowledge inputs with the data analyzes, it was possible to evaluate with
critical thinking any inconsistencies in the data tagging. By virtue of the AD approach, a pre-
liminary analysis was performed in order to identify and assess the causes of possible variability
of the signals. The feature extractionprocedurewas focused on the analysis of themost variable
traits of the signals most relevant to machine monitoring. In this case, the concomitant discus-
sion with the domain experts allowed the validation of some considerations and the filling of
the gaps due to the unsupervised settings. The application of the IF algorithm has highlighted
an aspect related to the lack of data due to the fact that we are in a preliminary phase of data
acquisition and it is therefore reasonable to expect that the variety and quantity of the tests
carried out is rather limited. In spite of this, it was possible to obtain significative results which
confirmed the observations of the domain experts and highlighted behaviors not in line with
the hypotheses of normal functioning. In this work, we proposed two approaches to model
explainability, AcME and SHAP, aimed at analyzing the role played by each feature (at both
global and local scale) in order to support RCA. The rationale behind AcME allows for a sub-
stantial reduction in computational time, while retaining a quality of explanations comparable
to state-of-the-art interpretabilitymethod SHAP. Being able to quickly identify the roots cause
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of an anomalous behavior is particularly important in the scenario under examination. This
capability can lead to important savings both in terms of time and costs. Although SHAP is
supported by a refined theoretical basis, the specific context of use does not always allow its use
due to the relative calculation times. The adoption of both interpreatibility methods has pro-
vided consistent results which have proved to be considerably informative when, in retrospect,
we wanted to investigate the reason why the problem arose.

In conclusion, a more informative data collection could achieve an improvement of the cur-
rent approach. First of all, in general terms, it is necessary to have a greater amount of data
regarding the different operating conditions carried out. To this end, the set of measured vari-
ables could also be extended, including, for example, the lubrication state of themachine. This
could provide information to discriminate in a more distinctive way the main aspects that in-
fluence the state of the machine. Second, a substantial improvement may arise with respect
to the current unsupervised nature of data collection. Stimulating the data tagging of some
of the anomalous and normal cases could make it possible to evaluate the performance of the
algorithm in terms of an accuracy metric. Furthermore, the labeling of the data could lead to
the use of more advanced supervised or semi supervised approaches.
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