
University of Padova

Academic year 2014-2015 (793rd)

Department of Information Engineering (DEI)

Master’s thesis in Telecommunications Engineering

Reinforcement learning algorithms for
DASH video streaming

Author: Federico Chiariotti

Advisors: Pascal Frossard*, Andrea Zanella◦

Co-advisors: Stefano D’Aronco*, Laura Toni*

◦ University of Padova

* Ecole Polythecnique Fédérale de Lausanne

To my family, who supported me and helped me up to the last hurdle
To Francisco, Kristi and Robert, for all the good times in Lausanne

It should be noted that no ethically-trained software engineer would ever
consent to write a DestroyBaghdad procedure. Basic professional ethics
would instead require him to write a DestroyCity procedure, to which Bagh-
dad could be given as a parameter.

N. Borenstein

Abstract

Dynamic Adaptive Streaming over HTTP (DASH) is a video streaming stan-
dard developed in 2011; the servers have several copies of every video at dif-
ferent bitrates, leaving the clients complete freedom to choose the bitrate of
each segment and adapt to the available bandwidth.

The research on client-side strategies to optimize user Quality of Expe-
rience (QoE) is ongoing; one of the most promising approaches is based on
Reinforcement Learning (RL). RL controllers do not have a pre-set model of
the situation, but learn the optimal policy by trial and error.

This thesis presents two RL-based algorithms: Offline and Online. The
Offline algorithm relies on a training phase to gain information about its
environment and refine its policy, while the Online algorithm has a slimmer
model and focuses on learning as quickly as possible, allowing immediate
deployment and short convergence times without a training phase.

Contents

1 Introduction 3

1.1 Thesis outline . 6

2 Framework 7

2.1 DASH video streaming . 8

2.1.1 The DASH data model 9

2.1.2 QoE issues . 11

2.1.3 QoE metrics . 12

2.2 Reinforcement learning . 14

2.2.1 Exploration strategies 15

2.2.2 Q-learning . 17

2.2.3 Eligibility traces . 18

2.2.4 Continuous states . 19

2.3 Optimization of streaming strategies 21

2.3.1 Reinforcement learning and DASH 22

3 RL-based DASH optimization 25

3.1 Optimization problem . 27

3.1.1 Markov decision problem 28

3.1.2 Soft borders . 30

3.2 The Offline and Online algorithms 31

3.2.1 Video complexity model 32

3.2.2 Buffer constraints . 33

3.2.3 The Offline algorithm 34

3.2.4 Post-decision states . 36

1

3.2.5 The Online algorithm 38

4 Simulation and results 41

4.1 Simulation settings . 42

4.2 Simulation scenarios . 43

4.3 Offline algorithm: results . 44

4.3.1 Static scenario . 44

4.3.2 Variable scenes scenario 47

4.3.3 Dynamic scenario . 51

4.3.4 Complete scenario . 56

4.4 Online algorithm: results . 59

4.4.1 Static scenario . 59

4.4.2 Variable scenes scenario 63

4.4.3 Dynamic scenario . 65

4.4.4 Complete scenario . 69

4.5 Comparison . 72

5 Conclusions and future work 75

Bibliography 77

Acronyms 81

List of algorithms 83

2

Chapter 1

Introduction

In the last 10 years, the data rates of both mobile and fixed networks have

improved dramatically; this paved the way for the rise of video traffic, which

has rapidly become the most important traffic source on the Internet. By

2012, video traffic represented more than 50% of total consumer traffic [1],

and mobile video has a predicted growth rate of 70% until 2018. The total

monthly video traffic should reach an impressive 100 EB in three years’ time,

more than all the traffic on the Internet right now, as Fig. 1.1 shows.

Fig. 1.1: Predicted Internet traffic by category (source: [1])

3

CHAPTER 1. INTRODUCTION

This extremely fast increase in demand poses a challenge to network

operators and researchers; while the infrastructure continues to improve its

capacity, the software optimization to provide high-quality video streaming

without congesting it has established itself as an important research field.

While video streaming research in the late 1990s and early 2000s mostly

focused on the User Datagram Protocol (UDP) along with a control stream

[2], due to the overhead issues of the Transmission Control Protocol (TCP),

it has shifted to TCP-based streaming in the late 2000s. The reason for

this shift is mostly compatibility: the existing infrastructure of servers and

network switches is based on TCP traffic, as most of the Internet relies on

the HyperText Transfer Protocol (HTTP) which runs over it. The overhead

cost of HyperText Transfer Protocol (HTTP) streaming was an acceptable

price for efficient caching, no firewall problems and easier deployment of Con-

tent Delivery Networks (CDNs). Another advantage is that TCP effectively

eliminates any error artifacts, as the transmission is reliable; freezes are the

major quality issue in HTTP streaming, as they are due to delays that are

hard to control in HTTP/TCP.

HTTP streaming systems use adaptive bitrate streaming to optimize user

Quality of Experience (QoE); Apple, Adobe, Microsoft and other software

companies have developed streaming systems based on it. In 2011, the Mov-

ing Picture Experts Group (MPEG) presented the new Dynamic Adaptive

Streaming over HTTP (DASH) standard [3], the first international standard

HTTP-based streaming solution.

Adaptive video streaming is a technique to dynamically change the video

bitrate, adapting to network conditions. An adaptive client can measure

the available bandwidth and choose one of several video representations at

different compression levels, keeping the best possible QoE while avoiding

rebuffering events, i.e., emptying the playout buffer completely and freezing

the video until a new segment is available.

All current commercial implementations of DASH clients use heuristic

algorithms, often extremely simple, to perform bitrate adaptation; these

heuristics have been proven to be far from optimal, and the complexity of

the problem makes it hard to find the optimum algorithm.

4

Reinforcement Learning (RL) is an efficient solution for this kind of prob-

lem: rather than relying on a fixed algorithm, learning agents can try differ-

ent actions and gradually learn the best strategy for each situation. This is

achieved by trial and error, with a reward function to provide reinforcement

for efficient behavior. RL has been applied in a number of different applica-

tions, and if the problem is well-formulated it can become extremely efficient

after a short training period. However, the research on the applications of

RL for DASH systems has only just begun; the few published works about

it have only been tested in limited and tightly controlled situations [4].

This work focuses on a novel RL solution, proposing two algorithms and

testing them with extensive simulations in several different scnarios. Their

efficiency and adaptability is shown to be superior to the existing examples

in the literature [5].

In order to solve the bitrate adaptation problem with RL techniques, I

developed a Markov Decision Process (MDP) that models its most impor-

tant aspects; the Markov model focused on QoE aspects, and the prevention

of rebuffering events was explicitly stated as a constraint in the problem

formulation.

The two RL algorithms that work on the MDP are called Offline and On-

line. The Offline algorithm uses Q-learning [6], a standard RL algorithm, on a

slightly expanded Markov model; it requires an extensive offline pre-training

phase, but it can achieve a very high efficiency. The Online algorithm can

learn to optimize the bitrate online, as the name suggests, and does not need

a pre-training phase; it can achieve this through the use of parallelization

techniques, which tweak the Q-learning algorithm to generalize its experi-

ence and update several states at once.

While the Online algorithm’s performance is slightly worse, its extreme

flexibility and reactiveness to changes in the model make it perfect for appli-

cations in fast-varying scenarios; the Offline algorithm is the other extreme

in the trade-off, having better performance when the scenario fits its pre-

training but having a harder time reacting to sudden changes.

5

CHAPTER 1. INTRODUCTION

1.1 Thesis outline

The rest of this thesis is organized as follows: Chapter 2 presents the general

framework of the work, explaining the main ideas behind the DASH standard

as well as the theoretical underpinnings of the RL algorithms. It also gives

an overview of the state of the art on video bitrate optimization. Chapter 3

models the streaming problem as an MDP and describes the two proposed

algorithms, outlining all the relevant modeling and design choices. Chapter 4

presents the simulation results for both algorithms, while Chapter 5 contains

the conclusions and some possible avenues for future research on the topic.

6

Chapter 2

Framework

This chapter provides an overview of the systems and techniques underlying

the whole work. It first presents the DASH standard and the video bitrate

adaptation mechanism it supports, with a review of the most important video

QoE issues.

As the DASH system architecture gives clients total control over the video

bitrate, the client-side adaptation algorithm have to make foresighted choice

to provide a high QoE. The dual objective of a video bitrate adaptation

system is to provide the highest possible quality without emptying the buffer.

This is an ideal application for a reinforcement learner, as it can be formal-

ized as an MDP and the optimal action policy can be learned by experience

(either with an offline training or on the fly) even if the future evolution of

the channel rate is unknown. The learner will optimize the expectation of

the reward function, but since it can re-evaluate its choices for every segment

it will never stray far from the correct path.

Although the advantages of learning systems in DASH video bitrate op-

timization are clear, the examples of RL-based algorithms for dynamic video

quality adaptation in the literature are few and limited in scope; before de-

scribing these attempts, which share the general perspective of this work, we

will introduce the basic theoretical concepts of RL, specifying the equations

behind the most common RL algorithms.

7

CHAPTER 2. FRAMEWORK

2.1 DASH video streaming

As HTTP adaptive streaming was rapidly growing in the late 2000s, with

several commercial implementations, the MPEG started to work on creating

an open international standard for the technique. DASH was published in

2011, and it has rapidly become pervasive: the newest version of the Hyper-

Text Markup Language (HTML), HTML5, supports JavaScript-based DASH

players as a way to embed video in webpages without using external plugins

with the Media Source Extensions standard. Fig. 2.1 shows an example of

how a DASH adaptive system might work.

Fig. 2.1: An example of DASH video bitrate adaptation (source: Qualcomm
DASH project)

One of the most important features of the DASH standard is the Media

Presentation Description (MPD), a document containing all the metadata

that the client needs in order to stream the video in Extended Markup Lan-

guage (XML). As the video is divided into short segments to make quality

adaptation possible, the MPD contains the location and playout information

of each segment [7]. When a client requests a segment, it can download it

with a simple HTTP GET request, as all the necessary information is em-

bedded in the MPD. The DASH standard is also codec agnostic; it works

with several of the main codecs, leaving decodification entirely to the client.

8

2.1. DASH VIDEO STREAMING

2.1.1 The DASH data model

In the DASH data model, a video is split into different adaptation sets,

containing different aspects such as the video stream, the audio stream and

subtitles. Each adaptation set has a series of representations, whose number

is constant throughout the video (or at least a video period, such as the

first act of a movie). Clients can choose among different representations in

the same adaptation set, as they effectively represent the same content; this

allows the user to choose the compression level for each video segment and

to adapt the requested video bitrate to the available channel rate [8].

The different segments are identified by their Uniform Resource Locators

(URLs), and may be either separate files or within the same file (using byte

offsets to separate them); using separate files allows for more efficient caching,

so it is often preferred. The MPD entry about each segment also contains

its video bitrate, resolution and duration, as well as optional fields such as

a number of QoE metrics. Each segment must begin with a Stream Access

Point (SAP), allowing the client to decode and play it without any previous

information. This is necessary to avoid errors during quality switches, as the

previous segment may be part of a different representation and have different

characteristics.

The length of segments must be decided by the server when preparing

the representation, and it is the result of an application-dependent tradeoff

between reaction speed to changing network conditions and overhead. Short

segments allow the client to adapt to the channel rate faster, but they increase

the HTTP overhead.

The type of compression schemes used to adapt the video bitrate also has

an effect on the resulting QoE: the most common are reducing the video frame

rate or resolution and increasing the Quantization Parameter (QP) to get a

coarser compression. The QoE strongly depends on the encoder, as well as on

the content itself; [9] shows that H.264 [10] outperforms other encoders and

that high QoE can be obtained by tuning the QP. Combinations of various

adaptation techniques are also possible to optimize the tradeoff between QoE

and video bitrate.

9

CHAPTER 2. FRAMEWORK

Fig. 2.2: Structure of a typical DASH system (source: [11])

As DASH servers are basically standard HTTP servers, the video bitrate

adaptation algorithm is entirely client-side (see Fig. 2.2); a client only needs

to send the appropriate HTTP requests to implement any policy. This means

that DASH clients are free to choose the quality for each segment from the

available adaptations, performing video bitrate adaptation to avoid exceeding

the available channel rate, which may otherwise lead to the most important

source of QoE drops: rebuffering events. Whenever the video buffer empties,

the client has to wait for the next segment to finish downloading, stopping

the video playback and annoying the user [12].

Most of the commercially available systems implement simple heuristics

that try to stabilize the buffer levels: intuitively, this avoids most rebuffering

events by keeping a high buffer level, while increasing the quality every time

10

2.1. DASH VIDEO STREAMING

the channel rate is high enough to fill the buffer over the desired level. These

heuristics do not take QoE effects into account, and several studies have

found them to be inefficient in terms of QoE optimization [13].

A possible performance enhancement to the DASH paradigm is Pipelined

DASH: a pipelined client can send more than one HTTP 1.1 request at the

same time [14], downloading either more than one segment or several parts of

the same segment (using byte offset). Pipelining can be beneficial in mobile

networks with high packet loss and latency [15].

The DASH standard also supports live streaming (although the server

needs to support it), as the MPD can be fragmented and downloaded piece-

wise as the new content appears on the web server; obviously, live stream-

ing presents additional problems, as both the information and the segments

available to the client are limited by the real-time constraint.

2.1.2 QoE issues

One of the characteristics that make video transmission challenging is the

complex structure of videos: the effects of errors, compression and delay

depend on the video compression algorithm as well as the video content itself.

Several attempts at correlating user QoE and lower-layer Quality of Service

(QoS) parameters have been made [16], and most optimization algorithms

consider explicit QoE metrics as well as QoS.

The TCP retransmission mechanism overcomes most of the main sources

of QoE issues in UDP streaming: as the application-layer transmission unit is

a video segment whose length is measured in seconds, normal Internet latency

does not affect the user experience, and out-of-order packets are sorted out

by the transport layer. Furthermore, while in UDP-based streaming a lost

packet simply propagates to the application layer, in TCP it manifests as

lower channel rate as the packet retransmission adds strain to the channel.

The QoS parameter that impacts the most on DASH streaming QoE

is the channel rate, which imposes a strict limit on the video bitrate. As

DASH is an Application layer standard, the channel rate that DASH systems

experience already accounts for TCP packet retransmission, which happens

11

CHAPTER 2. FRAMEWORK

on the Transport layer. Its relation with QoE is approximately logarithmic,

i.e., a channel rate increase has a stronger effect on QoE if the channel rate

is low, while when the channel rate is already high the benefits are minimal.

Along with the limit given by the channel rate, streaming clients must

take into account the dynamic nature of most channels: a variation in chan-

nel rate may cause the available video buffer to empty out before the next

segment has been fully downloaded, triggering a rebuffering event. Rebuffer-

ing events always damage QoE, but their impact depends on their frequency

and duration [12], and a series of several rebuffering events in a short time

seems to be the most undesirable pattern even if the freezing time is rela-

tively short [17]. The initial buffering delay also plays a role in video QoE,

but [18] shows that the impact on Mean Opinion Score (MOS) of delays up

to 16 seconds is marginal, and 90% of users prefer it to rebuffering.

Another problem is caused by the time variance of the video quality:

significant video bitrate adjustments by the DASH client may result in no-

ticeable quality switches, which have been proven to be detrimental to user

QoE [19]. Choosing between maintaining a constant quality level and follow-

ing the channel rate closely to prevent rebuffering events and get the highest

possible quality is the most important trade-off in DASH video bitrate adap-

tation.

2.1.3 QoE metrics

The first and most immediate metric for QoE is MOS: it is simply the average

of a series of users’ evaluations, going from 1 to 5, in controlled experiments.

For obvious reasons, MOS is not a practical metric for online applications or

when the dataset is large; its subjective nature makes an automatic calcula-

tion impossible. MOS is often used as a benchmark to compare the accuracy

of objective metrics; the more strongly a metric correlates with MOS, the

closer it is to representing the actual user QoE.

One of the most used metrics in the scientific literature is Peak Signal to

Noise Ratio (PSNR); it is a very simple metric, and it requires a reference

image to measure similarity. It is usually expressed in dB, and it represents

12

2.1. DASH VIDEO STREAMING

the ratio between the highest possible value of a pixel and the Mean Square

Error (MSE) between the reference image and the received image; one of the

issues with PSNR is that it does not take the dynamic characteristics of the

video into account, but only operates on a frame-by-frame level.

PSNRdB = 20 log10(MAXi)− 10 log10(MSE) (2.1)

Another important metric is the Structural Similarity Index (SSIM) [20];

it calculates errors locally, providing a better model for the human perception

of images than PSNR, but it is also more complex. Like PSNR, SSIM is a full

reference metric, as it measures similarity to a reference image on a frame-

by-frame level. Mathematically, the SSIM of a frame X with respect to a

reference frame Y is given by

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.2)

where x and y are usually 8× 8 pixel windows. SSIM values have a dynamic

range that goes from -1 to 1; an SSIM value of 1 is reached only if the two

images or videos are exactly identical, while an SSIM value of -1 means they

are perfect negatives. In Eq. (2.2), µj stands for the average of j, σj stands

for the variance of j and σij stands for the covariance of i and j. The two

constants c1 and c2 depend on the dynamic range of the pixel values and are

needed to stabilize the division, and

More complex metrics have been developed in the past few years, often

using neural networks to approximate the human evaluation of images and

videos, such as the Pseudo-Subjective Quality Assessment (PSQA) metric

[21]. In [22], Singh et al. adapted the PSQA metric to DASH with H.264

encoding and trained a neural network on a series of videos, obtaining values

close to the empirically measured MOS. These learning-based metrics are

quite accurate but extremely complex, making them less common in the

literature than PSNR and SSIM, which provide good accuracy with a limited

computational cost.

13

CHAPTER 2. FRAMEWORK

2.2 Reinforcement learning

RL is a machine learning paradigm inspired by behaviorist psychology [23].

The basic mechanism behind RL is trial and error: the agent does not have

a complete model of the environment or the effects of its actions, but it

gradually learns how to maximize the reward by trying different actions and

making mistakes. Learners memorize the consequences of their actions and

avoid them if they yielded low rewards in the past or if they led to a low-

rewarding state. Fig. 2.3 summarizes the main concepts of RL, with a clear

distinction between the agent and its environment.

Fig. 2.3: The reinforcement learning basic concept (source: [23])

RL problems are formulated as MDPs [24], which can be defined by the

5-tuple (S,As, Pa(st, st+1), Ra(st, st+1), γ).

• S is a finite set of states

• As is a finite set of actions available to the agent in state s ∈ S

• Pa(st, st+1) is the transition probability from state st to state st+1 when

the agent chooses action a ∈ Ast

• Ra(st, st+1) is the immediate reward that the agent gets when it chooses

action a ∈ Ast and the state changes from st to st+1

14

2.2. REINFORCEMENT LEARNING

• γ is an exponential discount factor on future rewards. In order to avoid

divergence, it needs to be in the [0, 1] interval. The long-term reward

is given by
∑∞

τ=t rτγ
τ−t

Basically, the learner’s environment is a Markov chain whose transition

probabilities depend both on the learner’s action and on its external envi-

ronment [25].

A policy π(s) is a function that links every state to an action; it usually

depends on the expected long-term reward of each actions that the learning

agent estimated from previous experiments. The objective of the agent is to

find the optimal policy π∗(s) that maximizes the long-term reward in each

state. The long-term reward is an exponentially weighted sum of the future

rewards: the learner’s reward depends on the future evolution of the MDP,

so a myopic choice that maximizes instantaneous reward but puts the learner

in a low-yielding state may not be the best course of action.

When the time window for the long-term reward is finite, and the MDP

is relatively small, standard dynamic programming techniques can find the

optimal policy. RL algorithms do not provide an exact solution, but they

do not need complete knowledge of the MDP to converge and can work for

very large MDPs, with state spaces that would be unmanageable for dynamic

programming.

Unless the learner acts on a predefined learning set, one of its most impor-

tant parameters is the exploration rate: if it always tries to take the optimal

action given its limited information, it may never learn the whole system

and get stuck on a sub-optimal policy. On the other hand, taking random

actions increases the learner’s knowledge of the system, even if it is far from

the optimal policy. The balance between exploration and exploitation is one

of the central problems in RL.

2.2.1 Exploration strategies

Different policies can have different balances of exploration versus exploita-

tion. One extreme is the greedy policy: a greedy agent always tries to maxi-

mize its reward to the best of its current knowledge, without any concession

15

CHAPTER 2. FRAMEWORK

to exploration. The greedy policy is optimal if the agent has perfect knowl-

edge of the environment, but it can lead the RL agent to getting stuck on

sub-optimal actions, as it will never try actions it thinks are sub-optimal to

verify its information. Because of this, the greedy policy is not very suited

to learning agents, who must be able to converge to the optimal policy with

little or no initial information. It may however be a good choice after the

training phase is complete and the learner does not need further exploration.

One of the most common RL policies is ε-greediness [26]: an ε-greedy

client behaves greedily with probability 1−ε and chooses a non-greedy action

at random with probability ε. This strategy guarantees a certain degree of

exploration, which can be changed by adjusting the ε parameter. However,

this strategy does not distinguish between the non-greedy actions, and so it

does not discard very damaging actions.

Softmax [27] is another policy that deals explicitly with the exploration

problem; it works by converting each action’s expected reward to a probabil-

ity and choosing the action to take according to the resulting distribution,

which is given by the following formula:

P (aj) =
e
Qt(aj)

τ

|As|∑
i=1

e
Qt(ai)

τ

(2.3)

In Eq. (2.3), the parameter τ , usually referred to as “exploration temper-

ature” or simply “temperature”, can be adjusted to control the exploration

rate; Qt(a) represents the estimate of the expected reward if the learner took

action a. Actions with high expected rewards Qt(a) have a higher probabil-

ity to be chosen, so the exploration is directed towards the most promising

directions.

Both Softmax and the ε-greedy policy can use time-dependent parame-

ters, reducing the exploration rate as the agent gains more knowledge about

the MDP and converges towards the optimum actions for all states.

Learning algorithms have a behavior policy and an estimate policy. The

estimate policy is used for updating expected rewards for each state-action

16

2.2. REINFORCEMENT LEARNING

pair, while the behavior policy is used for choosing the next action. Al-

gorithms with the same behavior and estimate policies are called on-policy

algorithms, while the others are called off-policy. Off-policy algorithms usu-

ally have a greedy estimation policy, while their behavior policy allows for

more exploration.

2.2.2 Q-learning

Q-learning is a method for off-policy control developed by Watkins in 1989

[6]. It is a Temporal Difference (TD) algorithm, as it can deal with delayed

rewards. The algorithm keeps a table of the expected long-term rewards (or

Q-values) for all the possible state-action pairs, gradually improving its esti-

mates by adjusting them to its experience. The Q-learning update formula

guarantees that the Q-values will eventually converge to the real long-term

expected reward [28], and it is given by:

Qt(st, at) = Qt−1(st, at) + α[rt+1 + γmax
a
Qt(st+1, a)−Q(st, at)] (2.4)

The long-term rewards are approximated using the next state’s Q-values,

with a greedy estimate policy; this ensures convergence, although rewards

delayed by more than a few steps might take a long time to propagate to the

choice that caused them. The learning rate α is a parameter that adjusts the

update speed; it is usually decreased at the end of the training phase.

The algorithm needs some initial Q-values to start, as it does not spec-

ify an initial state; the common solution is to set all Q’s to a high value,

encouraging exploration until some reliable values are estimated.

The on-policy equivalent of Q-learning is the State-Action-Reward-State-

Action (SARSA) algorithm [29], in which the max operator in Eq. (2.4) is

replaced by the behavior policy.

Although the difference between Q-learning and SARSA seems to be min-

imal, it can make a significant difference in terms of results: SARSA gen-

erally tends to be more conservative, as it needs to take into account the

sub-optimal exploration actions and avoids actions that take the agent to a

17

CHAPTER 2. FRAMEWORK

risky state (i.e., if one of the sub-optimal actions in state st+1 has damaging

consequences, SARSA tends to avoid actions that take the learner to that

state, while Q-learning just assumes the next action will be the optimal one).

2.2.3 Eligibility traces

TD algorithms can use different strategies to get an estimate of the long-

term reward when updating Q-values; as Q-learning and SARSA do not look

beyond a single step in their state updates, relying on the Q-value of the next

state to get an estimate of the long-term reward, they are called TD(0).

TD(λ) algorithms [30] can converge faster by using eligibility traces: in-

stead of updating the Q-values of the previous state at each step, they wait

for a number of steps and then update all the visited states. This is a way to

increase the accuracy of the estimate of the long-term reward, using actual

rewards for a number of steps before relying on an estimate. The weight of

the estimate can even become negligible, depending on the number of steps

and on the exponential discount term λ.

Using eligibility traces makes state updates more efficient, thus speeding

up the convergence of the Q-values by reducing estimation errors; most TD(0)

algorithms can be modified to add eligibility traces.

Q(λ) is a combination of standard Q-learning and the TD(λ) approach,

adding eligibility traces to Watkins’ original algorithm. There are several

versions of Q(λ); one of the most used is Watkins’ implementation, which only

looks ahead until the next non-greedy action (see Fig. 2.4). If an exploratory

action is taken n steps after step t, the backup formula for the state-action

pair (st, at) is

Rt+n(st, at) =
n−1∑
i=1

λirt+i + λn max
a
Qt(st+n, a) (2.5)

Qt+n(st, at) = Qt(st, at) + α(Rt+n(st, at)−Qt(st, at)) (2.6)

Eq. (2.6) is almost identical to Eq. (2.4), but the future reward is given

by the actual discounted reward instead of the next state’s Q-value. The

18

2.2. REINFORCEMENT LEARNING

eligibility trace is derived in Eq. (2.5).

Watkins’ Q(λ) is one of the simplest implementations of Q(λ), and more

complex implementations might converge faster as they do not stop updating

at every exploratory action. However, its convergence is still guaranteed.

2.2.4 Continuous states

All the RL algorithms presented in the previous sections work on MDPs,

learning the optimal action for each of the states of the underlying Markov

chain. Each of the states is discrete and clearly separated from the others;

however, any continuous variable (such as network capacity) needs to be

quantized in order to be represented as a Markov chain.

Quantizing a variable, i.e., mapping it to a finite number of discrete val-

ues, always results in a loss of information, whose magnitude depends on the

quantization step, i.e., on the size of the intervals mapped on the same value.

Fig. 2.4: Eligibility trace generation in Watkins’ Q(λ) (source: [23])

19

CHAPTER 2. FRAMEWORK

If the quantization step is small enough, the dynamic range of the variable

within a given state will be very small, and thus have a small impact on the

learning agent.

If the quantization step is too coarse, border effects may arise: depending

on the choice of the quantization intervals, the states may not capture the

behavior of the system and small transitions close to the border between two

states may be perceived as huge changes by the learner, which only knows

that the state of the system has changed.

On the other hand, a fine quantization increases the complexity of the

system, which grows with the number of states. If the number of states is too

large, there may be problems with the training or even with the in-memory

storage of the Q-value table. In order for the learner to converge, the training

process should involve visiting most of the states several times so that the

learner can try out different actions and discover their consequences. This

is especially true when the learner has no experience at the beginning of

the training (i.e., all of its Q-values are set to the same value). This poses

limits on the number of states, as the computational cost of the training can

become overwhelming.

The trade-off between capturing the full complexity of the state and

achieving an acceptable computational performance is one of the main prob-

lems of Markovian models; one method of overcoming it is clustering states

[31], another is using softer borders. Soft state borders mean that whenever

the learner is close to the border between two states it can use a linear combi-

nation of both states’ Q-values, avoiding hard transitions and the associated

border effects.

Generalizations to states based on fuzzy rules [32] and more rigorous

studies of state approximation [33] [34] can be found in the literature.

20

2.3. OPTIMIZATION OF STREAMING STRATEGIES

2.3 Optimization of streaming strategies

After introducing the DASH standard and the theoretical basis of RL, this

section gives an overview on the optimization of video bitrate adaptation

strategies, with a particular focus on RL-based strategies.

The current commercial streaming clients use buffer-based heuristics to

perform video bitrate adaptation. Ever since HTTP streaming became popu-

lar and commercial solutions based on it started appearing, academic research

has focused on providing better algorithms for video bitrate adaptation.

An early example is a centralized dynamic programming-based resource

allocation algorithms for cellular networks by Thakolsri et al. [35]. They

aimed at providing resource fairness between DASH clients connected to the

same base station, but the complexity of the dynamic programming puts a

heavy computational load on the base station itself.

A more systematic approach has been proposed by Jiang et al. with the

FESTIVE framework [36]: along with other video streaming optimization

techniques, they proposed a multi-user algorithm that aims at fairness and

efficiency. They also addressed an important problem of streaming over TCP:

if the client waits between segment downloads, the channel rate estimation

may not be accurate and suffer from vicious cycles with competing clients,

which results in wasted resources and increased unfairness. The authors

included a random component in the waiting times to avoid this problem.

Another scheme is proposed by Li et al. in [37]; the authors use dy-

namic programming with a reward function tuned to decrease needless qual-

ity switches that negatively impact user QoE. The algorithm is also tested in

a multi-user environment, and it manages to improve quality, but it tends to

increase the buffer needlessly, which may be suboptimal in variable network

conditions and is generally considered wasteful.

The dynamic programming-based algorithms are all extremely compu-

tationally expensive, and they might not be ideal for mobile devices with

battery and computational power limitations.

Xing et al. propose a dynamic programming-based algorithm [38] for

multiple access networks (specifically, WiFi+3G) that optimizes video quality

21

CHAPTER 2. FRAMEWORK

while privileging the WiFi link over the expensive 3G link. This algorithm

also penalizes frequent quality fluctuations.

A comprehensive review of QoE issues and adaptation algorithms in

DASH is presented by Seufert et al. in [11].

2.3.1 Reinforcement learning and DASH

Video bitrate adaptation is a textbook use case for RL: there is a clearly

defined reward (the QoE, measured with one of the established metrics)

and an environment (both the video content and the channel, which are

outside the client’s direct control) which can be modeled as an MDP. Due

to the newness of DASH, the current attempts at designing RL-based video

streaming clients are all very limited in scope.

One of the first applications of Q-learning to video streaming is the cen-

tralized algorithm proposed by Fei et al. [39]. The authors considered a

cellular system with intelligent base stations and applied Q-learning to op-

timize Call Admission Control (CAC) and video bitrate adaptation in order

to try to reduce handoff dropping probabilities in 3G networks. This ap-

proach is similar to that adopted in [35], but its centralized nature makes it

unsuitable for distributed systems such as DASH clients.

A number of works on Q-learning in DASH systems have been published

by Claeys, Petrangeli et al. since 2013. In [5], the authors designed a sys-

tem based on the Q-learning algorithm that uses a quality-based reward

function, with penalties for “buffer panic” states. The algorithm rewarded

filling the buffer as well as keeping a high quality level, testing both the

Softmax and VDBE-Softmax exploration policies and different discount fac-

tors. Their simulations showed a significant improvement over the Microsoft

Smooth Streaming (MSS) heuristic, but the scenario is limited to a very

simple channel with a constant channel rate and slow-varying cross-traffic.

In [40], the same research group modified the Q-learning algorithm they

used in [5] to speed up updates of low-frequency states, improving perfro-

mance in a scenario with a sinusoidally varying channel rate without effects

on the static scenario.

22

2.3. OPTIMIZATION OF STREAMING STRATEGIES

The same authors investigated a way to achieve fairness in multi-user sce-

narios using RL algorithms [41]; by including a global fairness signal into the

reward function, each client behaves less greedily towards network resources.

The global signal needs to be transmitted, and the authors propose inserting

network elements called fairness proxies at the bottleneck links in order to

propagate it. Although this approach is very expensive in terms of network

infrastructure, achieving fairness in a complex network scenario with cross

traffic and multiple links is a difficult problem and no efficient solutions are

currently available.

Finally, in [4] the same research group proposed a learning adaptation to

the existing heuristic: instead of using a learning agent to control the dynamic

video bitrate adaptation, they used a variant of the MSS heuristic with the

same basic algorithm but different parameters and optimized the parameters

by reinforcement learning. The learning-based algorithm reacted better than

MSS to changes in the channel rate and was able to reduce playout delay in

live streaming situations by keeping the buffer shorter, while avoiding buffer

panic events.

Although these works show promise in the application of RL techniques

to HTTP video streaming, the limitation of these first systems are evident:

the simulations only use very simple cases, and the complexity of the states

makes a practical implementation daunting.

Other RL-based DASH clients focus on different aspects of the problem; a

work by Changuel et al. [42] focused on time-varying channels. The authors

used a different Markov model and considered the case of partial or even

no channel rate information in a varying channel in their simulations. They

used the reference algorithm for Scalable Video Coding (SVC) as a baseline

and showed that the learning-based client performed slightly better in all the

situations they considered.

Another important aspect of the DASH optimization problem is the es-

timation of the network condition and its impact on RL algorithms; this

issue has been addressed by Marinca et al. in [43]. In their work, the au-

thors created a Partially Observable MDP (POMDP) model of the streaming

problem, considering the fact that some of the network characteristics may

23

CHAPTER 2. FRAMEWORK

be unkown to the client, and solved the optimization problem offline in a

series of examples. After creating a simplified MDP that represented part

of the complete POMDP problem and solving it, they compared the results

with the optimal solution and found that RL algorithms can perform well in

this scenario even when only part of the data is available.

The approach in this work radically simplifies the MDP model, aiming

at a simple but descriptive formulation with a limited number of states that

increases convergence speed and adaptability without negatively affecting

system performance.

24

Chapter 3

RL-based DASH optimization

RL-based solutions in the literature often use very complex Markov chains

with millions of states, created ad hoc for a particular scenario; the optimiza-

tion problem and MDP formulation in this work avoid this by making the

underlying model as simple and powerful as possible, increasing the conver-

gence speed of the Q values and the adaptability of the algorithms that work

on the model.

The function of the learning agent is to choose an action at, i.e., choose

which of the available representations to use for the next video segment

download. The segment is the basic download unit for the video streaming

client, as it is not possible to switch representations in mid-segment; its

duration does not influence the formulation of the optimization problem.

The quality qt of a segment can be measured with any of the standard

quality metrics, and is a function of the chosen representation and the com-

plexity Dt of the segment: qt = g(at, Dt). Complexity is a parameter that

reflects the relation between video bitrate and QoE; as the effect of video

compression on QoE is strongly dependent on the video content, considering

the complexity of the video is fundamental. The other parameters that the

learner uses are the buffer level Bt and the estimated channel rate ht. Both

are easily available to a video streaming client, and the quality of a segment

can be calculated as g(at, Dt) or estimated online. The buffer Bt is measured

in seconds instead of bits, as the agent’s objective is to avoid rebuffering

25

CHAPTER 3. RL-BASED DASH OPTIMIZATION

events during playout (which is measured in seconds) and not to manage the

buffer memory.

The download time Dt of a segment is a function of the chosen repre-

sentation at and the channel rate ht: Dt = f(at, ht). Estimating ht for

downloaded segmengs is possible by simply inverting the function, as both

the chosen representation and its download time are known.

The notation used in the problem formulation is the following:

• qt−1: the quality level at which the last segment has been downloaded

at time t

• ht−1: the average channel rate during the last segment download at

time t

• Dt: the complexity parameter of the current segment that the user

needs to download at time t

• Bt: the status of the buffer before downloading the segment at time t

• st: the MDP state, corresponding to the 4-tuple {qt−1, ht−1, Dt, Bt}

• Ast : set of possible actions in state st

• at: action (i.e., video bitrate level) at time t

• R(at): size of the enxoded segment at

• A: possible sequence of future actions from time t onwards

• Pt: playout duration of the next downloaded segment at time t

• γ: exponential discount parameter

• V (st): state value function

The symbols β, γ, ρ, σ and BM represent the parameters of the reward

function.

26

3.1. OPTIMIZATION PROBLEM

3.1 Optimization problem

The client has to select a representation at for segments with t = τ, . . . ,∞,

where τ is the current time instant. In a deterministic case in which the

future dynamics of both the channel and the video are known for any instant,

the client should select the best set of actions A? among all possible action

vectors A = [aτ , aτ+1, . . . , a∞], so that

A? : argmax
A

{
∞∑
t=τ

γt [g(at, Dt) + β|g(at, Dt)− qt−1|]

}
s.t. Bt − f(at, ht) ≥ 0, ∀t (3.1)

where γt is an exponential discount factor. The reward function is essentially

the current segment quality, with a penalty for variations (a similar model

for QoE has been proposed and validated in [19]).

Note that the constraint on the buffer imposes that the current action at

does not lead to a rebuffering event. In particular, starting from a buffer Bt

and taking the action at when a channel ht is experienced leads to a future

buffer state Bt+1 expressed as

Bt+1 = Bt + Pt − f(at, ht) (3.2)

where we sum Pt, and we subtract the downloading time f(at, ht) = R(at)/ht,

where R(at) is the size of the encoded segment at (in bits) and ht is the

estimated channel rate (in b/s). The new segment is added to the buffer

only when it has been downloaded completely, so it does not appear in the

buffer constraint equation.

Implementing the buffer constraint with stochastic channels is a challenge:

as the value of f(at, ht) is unknown, any action may trigger a rebuffering

event. Rather than having a hard constraint on the buffer, a simpler solution

is imposing a soft constraint through a penalty function ru[B, f]. This leads

27

CHAPTER 3. RL-BASED DASH OPTIMIZATION

to the following optimization problem:

A? : argmax
A

{
∞∑
t=τ

γt [g(at, Dt) + β|g(at, Dt)− qt−1|]− ru [Bt, f(at, ht)]

)
(3.3)

The function ru[Bt, f(at, ht)] gets the form

ru [Bt, f(at, ht)] = ρ(max[0, f(at, ht)−Bt]) + σ(max[BM −Bt+1, 0])2 (3.4)

where BM is a “safe” buffer level above which there is no penalty, and ρ and

σ are relative weights given to the two buffer management terms.

We can then call the quality component of the reward rk(at, Dt, qt−1) and

define the total reward r(at, st, st+1):

rk(at, Dt, qt−1) = g(at, Dt) + β|g(at, Dt)− qt−1| (3.5)

r(at, st, st+1) = rk(at, Dt, qt−1) + ru [Bt, f(at, ht)] (3.6)

3.1.1 Markov decision problem

We can model the system as an MDP to solve the optimization problem in

Eq. (3.3). We characterize the state at time t as st : {qt−1, ht−1, Dt, Bt}.

As the possible actions at correspond to the available representations for

the next segment, qt−1, ht−1 and Bt are necessary to calculate the reward;

the value of Dt comes into play only if the video’s complexity changes over

time, while it is constant for a constant complexity video.

We denote by Ast the set of possible actions that can be taken from

st. The total reward for an action at taken from the state st leading to a

state st+1 is given by the sum of the quality component rk and the buffer

component ru, which is stochastic: as the channel rate can only be estimated

after the segment download, the variable ht is unknown when the decision is

28

3.1. OPTIMIZATION PROBLEM

made (it is, in fact, part of the next state st+1).

r(at, Dt, qt−1, Bt︸ ︷︷ ︸
st

, ht︸︷︷︸
st+1

) = rk(at, Dt, qt−1)− ru [Bt, f(at, ht)]) (3.7)

Given the current state and the taken action, the transition to state st+1 :

{qt, ht, Dt+1, Bt+1} is Markovian. In particular, qt depends on the current

action and on the complexity level Dt, the buffer Bt+1 is given by Eq. (3.2).

We assume that the complexity of the video Dt+1 and the future channel

are both random components of the system, and that the two processes are

mutually independent and Markovian. Finally, note that the future status

of the buffer, Bt+1, depends on the channel ht; this means that we can only

evaluate the penalty function ru [Bt, f(at, ht)] if we know the future state

st+1. For this reason, we separated the reward function in two components,

as done in [44]: The reward component rk(at, st) is known given the current

state and the action, while ru [Bt, f(at, ht)] is unknown until the end of the

transition to st+1.

If we introduce the non-deterministic component into Eq. (3.1), we obtain

the following optimization problem

A? : argmax
A

{
∞∑
t=τ

γtr(at, Dt, qt−1, Bt, ht)

}
(3.8)

that can be solved with the Bellman’s equation introducing the state value

function V (st) as follows

V ? (qt−1, ht−1, Dt, Bt)︸ ︷︷ ︸
st

= max
at∈A(st)

{
rk(at, Dt, qt−1) +

∑
ht,Dt+1

p(ht|ht−1)p(Qt+1|Dt)

[−ru [Bt, f(at, ht)]) + γV (qt, ht, Dt+1, Bt+1)]
}

(3.9)

where p(ht|ht−1) is the one-step transition probability of the process that

29

CHAPTER 3. RL-BASED DASH OPTIMIZATION

describes the channel rate. Equivalently, Eq. (3.9) can be expressed as:

V ?(st) = max
at∈A(st)

{
rk(at, st) +

∑
st+1

p(st+1|st, at) [−ru(at, st, st+1) + γV ? (st+1)]

}
(3.10)

where V ?(st) is the state value function of V (st) under the optimal policy

π?.

3.1.2 Soft borders

The channel rate is the variable that influences the learner’s behavior the

most; as it is also continuous, the border effects between adjacent states

can be very noticeable and lead to unstable behavior. For this reason, the

learning agent uses a soft border (see Section 2.2.4) with a simple linear

rule. On the border between states hi and hi+1, the learner uses a linear

combination of the two states’ Q-values, with the following rule:

h = αhi + (1− α)hi+1 (3.11)

α =

0.5 + 2 bi+1−h
bi+1−bi h < bi+bi+1

4

1 h ∈
[
bi+bi+1

4
, 3bi+bi+1

4

]
1.5− 2 bi+1−h

bi+1−bi h > 3bi+bi+1

4

0.5 h = bi+1

(3.12)

where bi+1 is the border between states hi and hi+1. Eq. (3.12) can be

tuned to increase or decrease the softness of the border, changing the linear

combination and even including more than two states.

30

3.2. THE OFFLINE AND ONLINE ALGORITHMS

3.2 The Offline and Online algorithms

After modeling video bitrate adaptation as an optimization problem and

defining the associated MDP, it is possible to define RL-based algorithms

to solve the optimization problems. The two algorithms described in this

section represent the main contribution of this thesis: they are both rooted

in standard Q-learning, but they focus on two slightly different situations.

The Offline algorithm relies on an extensive training set; after the train-

ing, its Q-values are frozen and the algorithm works as a purely exploitative

table lookup: the client chooses the action with the best Q-value every time.

This method is computationally lighter than continuing to update the values

and exploring the state space, but if the statistics of the channel and video

complexity change in time the algorithm has no way to correct its actions

and adapt to the new situation. We decided to add a more detailed charac-

terization of ht−1 to the state st of the Offline algorithm in order to make it

more adaptable: if its state definition is more precise, it will have a clearer

picture of the state and the impact of changes in the model may be softened.

As the name suggests, the Online algorithm does not have any offline

pre-training phase: it can be deployed immediately, and it learns the appro-

priate policy online. In order to achieve a good performance on an acceptable

timescale, the algorithm was designed to speed up the updates by exploiting

symmetries and redundancies in the MDP. This also makes the Online al-

gorithm reactive to changes in the statistics of the channel and in the video

dynamics; as long as the Markov assumption is valid, this algorithm can react

optimally to any kind of channel after a short transition phase.

Before introducing the two algorithms and their specific characteristics,

the following sections will present two features that are shared by both:

the video complexity model, which is necessary to implement the function

g(at, Dt) linking video bitrate and quality, and the buffer control mechanism.

31

CHAPTER 3. RL-BASED DASH OPTIMIZATION

3.2.1 Video complexity model

The quality metric used by the learning agent is SSIM [45], which has been

described in Section 2.1.3. The curves in the MDP state are based on a

QoE model proposed in [46]. The expected SSIM value is approximated as

a fourth-degree polynomial of the logarithm of the relative rate. If R1 is the

full-quality bitrate and Ri is the bitrate of adaptation i, we can set:

ρi = log

(
Ri

R1

)
(3.13)

qi ' 1 + d(1,v)ρi + d(2,v)ρ
2
i + d(3,v)ρ

3
i + d(4,v)ρ

4
i (3.14)

The vector dv represents the complexity of a video scene with four real

values.

−2.5 −2 −1.5 −1 −0.5 0
0.75

0.8

0.85

0.9

0.95

1

ρ

S
S

IM

Fig. 3.1: The 5 reference SSIM curves for Dt (in blue) over the whole dataset

Using a reference set of curves can summarize the complex relation be-

32

3.2. THE OFFLINE AND ONLINE ALGORITHMS

tween QoE and QoS in a single parameter; if a representative set is chosen,

the error in the approximation can be limited.

The reference set was elaborated from the EvalVid CIF video trace ref-

erence database (http://www2.tkn.tu-berlin.de/research/evalvid/cif.html) ac-

cording to the model, and specifically from the Claire, News, Bridge (far),

Harbor and Husky videos. The 5 reference curves were chosen so as to be

representative of the whole dataset. Four of the curves have the same ba-

sic shape, but different complexity, while the last one exhibits a different

behavior and intersects the others.

The value of Dt is extrapolated from the next segment’s available repre-

sentations by calculating the quality values for each available video bitrate

and choosing the curve that results in the smallest MSE.

Dt = min
D

∑
a

|g(a,D)− q(a)|2 (3.15)

3.2.2 Buffer constraints

Both algorithms use the same mechanism for implementing the soft buffer

constraint: namely, the penalty function ru, given in Eq. (3.4). However,

streaming systems also avoid buffer overflow: having a limited buffer is more

efficient, avoiding wastes of battery and traffic if the user does not watch the

whole video, and reducing the memory requirements of the video player.

In order to make the learning algorithms aware of this principle, a waiting

mechanism was implemented: whenever the buffer exceeds a threshold level

Bmax (which could be set to the safe value BM multiplied by two), the client

pauses the download until the buffer has returned to its previous value Bt−1.

As segments are 2 seconds long, the waiting time is calculated as

tw = 2− f(at, ht) (3.16)

33

CHAPTER 3. RL-BASED DASH OPTIMIZATION

3.2.3 The Offline algorithm

The Offline algorithm uses standard Q-learning, which has been proven to

converge to the optimal policy. Its advantage over dynamic programming is

its low complexity: while dynamic programming can only work over limited

state spaces due to the heavy computational cost of policy iteration, the Q(λ)

algorithm can learn the expected long-term reward of each action-state pair

through trial and error. The algorithm uses a Softmax behavior policy.

The main phase of the Offline algorithm’s deployment happens, as the

name suggests, offline: the learning agent starts its training phase with no

knowledge of its environment, and all its Q-values are set to 1
λ
. As the maxi-

mum achievable long term reward is exactly 1
λ
, this initial setting encourages

the algorithm to explore every action before trying to optimize its policy.

The initial value of the exploration temperature is high, as is the learning

rate; both can be gradually lowered as the algorithm refines its estimate

of the long-term reward for each state-action pair, allowing its Q-values to

slowly converge. The pseudocode for the training phase is given in Algorithm

3.1. Note that tmax is the number of segments, and tu keeps track of the last

update.

Algorithm 3.1 Offline algorithm: training phase

tu ← 1
for t = 1 to tmax do

st ← findState(qt−1, Bt, ht−1, Dt,∆ht−1)
at ← softmax(Q(st))
rt ← reward(st, at)
if Q(st, at) < maxaQ(st, a) then

qUpdate(Q, tu, s, a, r)
tu ← t

The Q(λ) algorithm only updates its Q-values when an exploratory action

is taken, i.e., when the chosen action’s Q-value is not the maximum for

the current state. The pseudocode for the qUpdate function is given in

Algorithm 3.2.

The findState function is extremely simple: it takes the relevant pa-

rameters of the state and maps them to a state.

34

3.2. THE OFFLINE AND ONLINE ALGORITHMS

Algorithm 3.2 Offline algorithm: Q(λ) update function

function qUpdate(Q, tu, s, a, r)
r ← maxaQ(st+1, a)
for τ = t to tu do

r ← λr + rτ
Q(sτ , aτ)← Q(sτ , aτ)(1− α) + αr

After the Q-values have converged and the pre-training phase is over,

the Offline algorithm can be deployed: its learning rate and exploration

temperature are set to 0, so its policy becomes purely greedy. The Offline

algorithm is very computationally light in this phase: as there are no learning

updates, its operation only involves a simple table lookup. Its pseudocode is

given in Algorithm 3.3.

Algorithm 3.3 Offline algorithm: deployment phase

for t = 1 to tmax do
st ← findState(qt−1, Bt, ht−1, Dt,∆ht−1)
at ← maxaQ(st, a)

The simplicity of the Offline algorithm is also its biggest limit: as learning

is no longer performed once it has been deployed, the algorithm is close to the

optimal policy when the environment is the same as during the training, but

major changes in the environment make the algorithm perform suboptimally.

In order to limit its weakness to changes, the Offline algorithm uses an

extension of the state st as it is described in Section 3.1.1, introducing an ad-

ditional parameter ∆ht−1 that represents the difference between the channel

states ht−2 and ht−1. This additional parameter captures part of the channel

dynamics, giving a more accurate picture of the situation and compensating

for the lack of flexibility of the Offline algorithm. As the parameter is part of

the state, it does not affect the algorithm directly; its state space is simply

larger, with a larger Q-value table.

35

CHAPTER 3. RL-BASED DASH OPTIMIZATION

3.2.4 Post-decision states

Before presenting the Online algorithm, it is worth indtroducing the main

mathematical concept behind it: Post-Decision States (PDSs).

A PDS is an intermediate state between two states of the MDP that

already considers the consequences that follow deterministically from an ac-

tion at: right after making the decision, the learning agent already knows

the quality reward rk, while the buffer component ru is unknown until the

transition to state st+1.

It has been shown that introducing PDSs can significantly speed up the

learning process [44]. As Fig. 3.2 shows, it is possible to separate the state

transition in a deterministic component and a random one: knowing st and

at, the learning agent can find the PDS s̃t deterministically, as it only depends

on the agent’s choices. The transition from the PDS s̃t to the state st+1 is

random, and entirely independent of the previous state st.

Fig. 3.2: Post decision process and parallel updates

We can then define the value function of the post decision state as

Ṽ ?(s̃t) =
∑
st+1

pu(st+1|s̃t) [−ru(s̃t) + γV ? (st+1)] (3.17)

36

3.2. THE OFFLINE AND ONLINE ALGORITHMS

where

V ?(st) = max
at∈A(st)

{
rk(at, st) +

∑
s̃t

pk(s̃t|s̃t, at)Ṽ ?(s̃t)

}
(3.18)

In Eq. (3.17), pu(st+1|s̃t) is an unknown transition probability; the action at

is already accounted for in s̃t. At the same time, pk(s̃t|s̃t, at) in Eq. (3.18) is

a deterministic probability, equal to 1 only for one allowed transition.

The reward is split in two parts: the quality component r (see Eq. 3.1)

can be calculated before the random transition, while the buffer control com-

ponent ru only depends on the PDS s̃t, and not on st. This validates the

PDS formulation, as the value function of the PDSs is a valid estimate of

long-term reward.

It is interesting to note that states with the same quality qt−1 lead to the

same PDS, as that component only appears in the formula of r and does not

affect the random transition.

The update equation in the learning process becomes:

Ṽt+1(s̃t)← (1− αt)Ṽt(s̃t) + αt [−ru(s̃t) + γVt (st+1)] (3.19)

Fig. 3.3: The quality function and its inversion

The random transition probability from s̃t to st+1 does not depend on

the action at. This means that when a transition from st to st+1 is expe-

rienced, we can update all post decision states with the common transition

37

CHAPTER 3. RL-BASED DASH OPTIMIZATION

(Dt, ht−1)→ (Dt+1, ht). Fig. 3.2 shows how the system can extrapolate sev-

eral possible transitions after experiencing only one, learning from the virtual

transitions (highlighted in green in Fig. 3.2).

This means that the following updating process is computed for ∀qt,∀Bt,

Ṽ t+1(qt, ĥt−1, Q̂t, Bt)← (1− αt)Ṽ t(qt, ĥt−1, Q̂t, Bt) + αt[
− ru(qt, ĥt−1, Q̂t, Bt) + γV t(qt, ĥt, Q̂t+1, Bt+1))

] (3.20)

3.2.5 The Online algorithm

The Online algorithm learns the Q-values online: instead of having a pre-

training phase, it starts trying to optimize the video bitrate with no knowl-

edge of the environment and gradually refines its estimates. In order to do

this, it must converge faster than standard Q-learning: the algorithm uses

the PDS model to exploit symmetries and redundancies in the MDP to apply

its experience to as many states as possible. The pseudocode for the Online

algorithm is given in Algorithm 3.4.

Algorithm 3.4 Online algorithm

for t = 1 to tmax do
st ← findState(qt−1, Bt, ht−1, Dt)
for a = 1 to amax do

rk(a)← qualityReward(st, a)
s̃t ← findPDS(st, a)
Q(st, a)← rk(a) + Q̃(s̃t, a)

at ← softmax(Q(st) + rk)
rk,t ← rk(at)
ru,t ← bufferReward(s̃t, at)
qUpdate(Q̃, s, s̃, a, r)

The decision-making part of the algorithm is similar to the Offline training

phase (Algorithm 3.1), while the rest of the algorithm is centered on the use

of PDSs. As the algorithm does not store the Q-values for the states st

but only for the PDSs s̃t, the algorithm reconstructs the Q-values for every

potential action a by summing its quality reward r and its PDS’s Q-value

Q̃(s̃t, a). Both r and s̃t can be found deterministically from st and a.

38

3.2. THE OFFLINE AND ONLINE ALGORITHMS

The Online algorithm’s update function updates the Q-values of the Post-

Decision State, as well as generalizing the experience to other PDSs with the

same ht and Dt. For easier comprehension, the pseudocode was split: the

singleUpdate function updates a single PDS and is given in Algorithm

3.5, while the qUpdate function performs the parallel update and is given

in Algorithm 3.6.

Algorithm 3.5 Online algorithm: Q̃ update function

function singleUpdate(Q̃, st, s̃t−1, a, rk)
for a = 1 to amax do

rk(a)← qualityReward(st, a)
s̃t ← findPDS(st, a)
Q(st, a)← rk(a) + Q̃(s̃t, a)

r ← rt + maxaQ(st, a)
Q̃(s̃t−1, at−1)← Q̃(s̃t−1, at−1)(1− α) + αr

Algorithm 3.6 Online algorithm:parallel update function

function qUpdate(Q, tu, s, s̃, a, r)
singleUpdate(Q, tu, st, s̃t−1, a, r)
for all q′t−1, B

′
t−1 do

s′t−1 ← findState(q′t−1, B
′
t−1, ht−2, Dt−1)

r′k ← qualityReward(s′t−1, at−1)
s̃′t−1 ← findPDS(s′t−1, at−1)
s′t ← findState(qt, B

′
t, ht−1, Dt)

singleUpdate(Q̃, s′t, s̃
′
t−1, a, r

′
k)

r ← rt + maxaQ(st, a)
Q̃(s̃t−1, at−1)← Q̃(s̃t−1, at−1)(1− α) + αr

The parallel update relies on the fact that the buffer Bt can be determined

for every Bt−1 if the update function knows the download time of the last

segment.

It should be noted that the Online algorithm is TD(0), as it does not use

eligibility traces; the extreme parallelization of the updates makes frequent,

though imprecise, updates more efficient than slower but more precise up-

dates. Along with a non-zero learning rate, this makes the Online algorithm’s

39

CHAPTER 3. RL-BASED DASH OPTIMIZATION

choices less stable, sacrificing a little reward in the trade-off with adaptabil-

ity. The main strength of the Online algorithm is its adaptability: while the

Offline algorithm is limited by its training set, the Online algorithm reacts

to changes in the environment and it can learn entirely new models after

deployment.

40

Chapter 4

Simulation and results

Both the Offline and Online algorithms were tested in several scenarios via

Matlab simulation.

The performance baseline is given by the Benchmark algorithm, a simple

heuristic that is defined in Algorithm 4.1 (in which a is the chosen action,

represented by a number from 1 to amax ordered by decreasing bitrate).

In relatively stable channel rate condition, this is a simple but efficient

strategy to get a high average quality while avoiding rebuffering events.

Algorithm 4.1 Benchmark algorithm

if segment = 1 then
a← amax

else
a← 1
while a ≥ ht & a < amax do

a← a+ 1

The algorithm uses a different procedure for the first segment: as channel

rate is unknown, the benchmark tries to build up the buffer and speed up

the loading time of the video by choosing the lowest possible rate.

41

CHAPTER 4. SIMULATION AND RESULTS

4.1 Simulation settings

The basic parameters of the optimization problem are set as in Table 4.1 and

used for all the simulations.

Parameter α β ρ σ BM Bmax γ

Value 1 2 50 0.001 12 s 20 s 0.9

Table 4.1: Parameters of the optimization problem

In order to implement the MDP, we first needed to define the range of

values of the 4-tuple that defines the state st : {qt−1, ht−1, Dt, Bt}. Except for

Dt, the variables were all continuous, so state borders were set to discretize

the state space. A special first state is defined for the first segment, as there

are no previous segments and no channel rate information is available. It

may also be interesting to note that the buffer at decision time can never go

below 2 s (except for the first segment), as all decisions the learning agent

makes happen right after the previous segment has been downloaded. The

state border values are listed in Table 4.2.

qt−1 (SSIM) 0.84 0.87 0.9 0.92 0.94 0.96 0.98 0.99 0.995

Bt (s) 3 4 5 6 8 10 12 15 18

ht−1 (Mb/s) 0.5 1 2 3 4 5 6 8 10

∆ht−1 -1 -0.5 0 0.5

Table 4.2: State borders

The available rates in Mb/s are fixed in the set {0.3, 0.5, 1, 2, 3, 4, 6,

8, 10}. The video clips (episodes) last 800 s, divided into 400 segments of 2

seconds each.

The main metric we used to measure the performance of the algorithms

was the mean quality reward: we averaged rk over 10 episodes and compared

42

4.2. SIMULATION SCENARIOS

the two algorithms’ results with the benchmark’s. The values of rk are on a

scale from 0 to 1, but even small variations can have a perceptible effect on

QoE.

4.2 Simulation scenarios

The simulation scenario is extremely simple: a client streams a DASH video

by downloading the segments, while playing the available video. The chan-

nel is assumed to be single-hop and its channel rate is constant during the

download of a segment. The videos have a complexity curve chosen from the

5 reference curves defined in Section 3.2.1, and the complexity is constant

for a single segment.

We first tested the validity of the algorithms in the simple case of videos

with constant complexity and a constant channel rate. The Static sce-

nario used the “Harbor” video curve and three different channel rates: first

with h = 3 Mb/s (equal to one of the available video bitrates), then h =

3.5 Mb/s (halfway between two of the available video bitrates) and finally

h = 3.9 Mb/s (close but slightly lower than one of the available bitrates).m

The next scenario is called Variable scenes: while the channel rate was

kept constant (h = 3.5 Mb/s), the video complexity varied, adding a layer

of complexity. The video had scenes with a constant complexity and an

exponential duration (with an average of 1, 5, or 10 segments). At the end of

a scene, the complexity of the video was chosen randomly among the other

four reference curves.

The Dynamic scenario used a video with a constant complexity with

a Markovian channel: after each segment, the channel’s underlying Markov

chain could change its channel rate. By changing the transition matrix,

the various scenarios covered a variety of cases, with both fast-varying and

low-varying channels. The transition matrices we used had either jumps

to adjacent states or allowed two-state jumps. We also tested a completely

random channel, in which the channel rate ht was independent of the previous

value ht−1, corresponding to a uniform Markov transition matrix.

Finally, the Complete scenario had a Markov channel and scene changes:

43

CHAPTER 4. SIMULATION AND RESULTS

this represented the most difficult test for the learning algorithms, as all the

parameters in the environment were dynamic and the learning agent had to

adapt to their changes without having a pre-existing model.

4.3 Offline algorithm: results

As the Offline algorithm needs extensive training before being deployed, its

convergence times are not significant in its evaluation; its main limitation is

its training regime, but it should be more effective than the Online algorithm

in static situations. In order to confirm this, the algorithm was tested in the

scenarios described in the previous section.

The results in the following sections were obtained by extensively train-

ing the learner on the scenarios (200000 episodes with decreasing exploration

temperature), then setting the learning rate α and the exploration tempera-

ture τ to zero.

4.3.1 Static scenario

The tests in the Static scenario confirm the validity of the algorithm in

simple situations: when h = 3 Mb/s, the algorithm builds up the buffer

in the first few segments, then chooses the same actions as the benchmark.

Fig. 4.1 shows the quality reward for one episode, while the buffer dynamics

are plotted in Fig. 4.2.

A more interesting case is the convergence of the learner when the channel

rate is between two available rates: the two cases considered here are the

channel rates h = 3.5 Mb/s and , h = 3.9 Mb/s. In the first case, shown in

Fig. 4.3, the learner found that the penalty for changing the quality is not

worth switching back and forth and settled on the lower rate. The second

case is different: the learner found that switching to the higher video bitrate

and using the buffer to keep a higher quality for a while is beneficial (see

Fig. 4.4). The learner behaves in a cyclical manner, switching the quality

when it reaches a certain buffer level, as Fig. 4.5 shows.

44

4.3. OFFLINE ALGORITHM: RESULTS

0 50 100 150 200 250 300 350 400
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.1: Reward (quality component) for one episode, h = 3 Mb/s

0 50 100 150 200 250 300 350 400
2

3

4

5

6

7

8

9

10

11

12

Segment

B
u

ff
e

r
(s

)

Learner

Benchmark

Fig. 4.2: Buffer plot for one episode, h = 3 Mb/s

45

CHAPTER 4. SIMULATION AND RESULTS

0 50 100 150 200 250 300 350 400
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.3: Reward (quality component) for one episode, h = 3.5 Mb/s

0 50 100 150 200 250 300 350 400
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.4: Reward (quality component) for one episode, h = 3.9 Mb/s

46

4.3. OFFLINE ALGORITHM: RESULTS

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

20

Segment

B
u

ff
e

r
(s

)

Learner

Benchmark

Fig. 4.5: Buffer plot for one episode, h = 3.9 Mb/s

4.3.2 Variable scenes scenario

The next results have been obtained in the Variable scenes scenario, with

a constant channel rate of h = 3.5 Mb/s and a variable video. The video for

each episode was randomly generated from the reference dataser using the

model described in Section 3.2.1; each scene had an exponentially distributed

duration.

The mean of the scene length distribution was set to 10, 5 and 1 in the

three considered cases, corresponding to 20, 10 and 2 seconds; we expected

the learner to compensate for more complex scenes by increasing the video

bitrate, using the accumulated buffer to get through the difficulty.

Nothing of the sort happened when the mean scene duration was 10 seg-

ments: as Fig. 4.6 (plotting rk over the downloaded segments) shows, the

Offline algorithm shows no improvement over the benchmark, and its mean

reward is exactly the same as the benchmark’s. This effect is probably due

to the length of the scenes, as the accumulated buffer is not enough and the

47

CHAPTER 4. SIMULATION AND RESULTS

learner finds itself in the middle of a complex scene with a depleted buffer if

it tries to compensate.

The learner shows a slight improvement over the benchmark with a mean

scene duration of 5 segments: as Fig. 4.7 shows, the learner avoids the worst

quality drops, but its gain over the benchmark is still very small: the quality

reward rk is higher by 0.002, which is almost negligible even if we consider

that it is a mean value over several episodes and that in most cases the

benchmark still makes the optimal choice.

The difference between the Offline algorithm and the benchmark becomes

noticeable with a mean scene duration of only 1 segment: in this dynamic sit-

uation, the learner’s use of the buffer makes the quality level much smoother,

as Fig. 4.8 and Fig. 4.9 show. The average quality reward is higher than the

benchmark’s by 0.006, enough to make a significant difference in the user

QoE. Fig. 4.10 shows the Offline algorithm’s buffer management, with cyclic

phases of buffer build-up and complexity compensation.

0 50 100 150 200 250 300 350 400
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.6: Reward (quality component) with a dynamic video (mean scene
duration 10 segments)

48

4.3. OFFLINE ALGORITHM: RESULTS

0 50 100 150 200 250 300 350 400

0.4

0.5

0.6

0.7

0.8

0.9

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.7: Reward (quality component) with a dynamic video (mean scene
duration 5 segments)

0 50 100 150 200 250 300 350 400
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.8: Reward (quality component) with a dynamic video (mean scene
duration 1 segment)

49

CHAPTER 4. SIMULATION AND RESULTS

0 50 100 150 200 250 300 350 400
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Segment

S
S

IM

Learner

Benchmark

Fig. 4.9: SSIM plot with a dynamic video (mean scene duration 1 segment)

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

20

Segment

B
u

ff
e

r
(s

)

Learner

Benchmark

Fig. 4.10: Buffer plot with a dynamic video (mean scene duration 1 segment)

50

4.3. OFFLINE ALGORITHM: RESULTS

4.3.3 Dynamic scenario

The Dynamic scenario had a static video with constant complexity and a

Markovian channel rate. The first transition matrix only considers a positive

transition probability p between adjacent states, so that the channel is a

random walk. The second Markov channel had transition probability 2p
3

to

each of the adjacent states, and p
3

to the second-next states. Transitions

from the border states to themselves have a higher probability than for other

states, as they only have one adjacent state instead of two.

With p = 0.25, the Offline algorithm only has a small gain over the

benchmark; the average reward rk was higher than the benchmark’s by 0.002

with both transition matrices (see Fig. 4.11). The Offline algorithm tends to

keep a more stable SSIM than the benchmark, as Fig. 4.12 shows. However,

it sometimes needs to drop the quality to avoid rebuffering events, and this

has a negative impact on the quality, as Fig. 4.13 shows.

0 50 100 150 200 250 300 350 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.11: Reward (quality component) with p = 0.25 (transitions to adjacent
states)

51

CHAPTER 4. SIMULATION AND RESULTS

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

Segment

S
S

IM

Learner

Benchmark

Fig. 4.12: SSIM plot with p = 0.25 (with two-state jumps)

0 50 100 150 200 250 300 350 400
0.4

0.5

0.6

0.7

0.8

0.9

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.13: Reward (quality component) with p = 0.25 (with two-state jumps)

52

4.3. OFFLINE ALGORITHM: RESULTS

With p = 0.5 and a fast-varying channel rate, the Offline algorithm’s

efficient use of the buffer proves very effective: the average reward rk with the

first transition matrix is higher than the benchmark’s by 0.005, as Fig. 4.14

shows. The SSIM plot in Fig. 4.15 shows that the Offline algorithm manages

to avoid most of the quality drops due to changes in the channel rate.

The Offline algorithm performs even better with the second transition ma-

trix, as Fig. 4.16 shows; its efficient buffer management, shown in Fig. 4.17,

prevents quality drops and keeps a more constant SSIM. The SSIM plot in

Fig. 4.18 shows that the worst quality drops are almost always avoided by

the Offline algorithm, which also avoids switching back and forth between

video bitrates too frequently. The algorithm’s mean rk is higher than the

benchmark’s by 0.013.

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.14: Reward (quality component) with p = 0.5 (transitions to adjacent
states)

53

CHAPTER 4. SIMULATION AND RESULTS

0 50 100 150 200 250 300 350 400
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Segment

S
S

IM

Learner

Benchmark

Fig. 4.15: SSIM plot with p = 0.5 (transitions to adjacent states)

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.16: Reward (quality component) with p = 0.5 (with two-state jumps)

54

4.3. OFFLINE ALGORITHM: RESULTS

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

20

Segment

B
u

ff
e

r
(s

)

Learner

Benchmark

Fig. 4.17: Buffer plot with p = 0.5 (with two-state jumps)

0 50 100 150 200 250 300 350 400
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Segment

S
S

IM

Learner

Benchmark

Fig. 4.18: SSIM plot with p = 0.5 (with two-state jumps)

55

CHAPTER 4. SIMULATION AND RESULTS

The random uncorrelated channel shows the power of the Offline algo-

rithm in challenging situations: while the benchmark is hopelessly swamped

and often triggers rebuffering events due to the absence of a buffer manage-

ment strategy, the Offline algorithm ignores the channel variations and keeps

the quality more or less constant, choosing video bitrates between 1 Mb/s

and 2 Mb/s, as Fig. 4.19 shows. Its mean reward rk is higher than the

benchmark’s by an impressive 0.047, which would typically mark the differ-

ence between a satisfactory and an annoying user experience.

0 50 100 150 200 250 300 350 400
0.7

0.75

0.8

0.85

0.9

0.95

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.19: Reward (quality component) with a uniform transition matrix

4.3.4 Complete scenario

The Complete scenario, the video had variable scenes, with a mean duration

of 5 segments, and the channel was Markovian, using the second transition

matrix. This is the most realistic case, and the Offline algorithm clearly

outperforms the benchmark, as its reward rk is higher by 0.008 on average.

Fig. 4.20 shows this clearly.

This is even clearer with p = 0.5: the Offline algorithm’s mean rk is

56

4.3. OFFLINE ALGORITHM: RESULTS

higher than the benchmark by 0.013, and Fig. 4.21 shows that it has fewer

and shallower quality drops and keeps a higher overall quality.

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.20: Reward (quality component) with p = 0.25 (complete scenario)

Finally, an adaptation test was performed in the Complete scenario: the

mean scene duration was set to 1 segment, and the learner was trained with a

mean scene duration of 5 segments. As expected, the Offline algorithm does

not react well to changes in the environment, as it has no way to update

its Q-values to the new scenario, and even if it had they would still need a

considerable time to converge.

As Fig. 4.22 shows, the learner does not adapt to the new situation and

makes some sub-optimal choices, lowering the average reward to just 0.006

above the benchmark’s.

57

CHAPTER 4. SIMULATION AND RESULTS

0 50 100 150 200 250 300 350 400

0.4

0.5

0.6

0.7

0.8

0.9

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.21: Reward (quality component) with p = 0.5 (complete scenario)

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.22: Reward (quality component) for the first episode after the switch

58

4.4. ONLINE ALGORITHM: RESULTS

4.4 Online algorithm: results

The first and foremost quality of the Online algorithm is its quick conver-

gence: while the Offline learner needs an extended training sequence, the

Online learner should be able to reach convergence relatively quickly, even

from a “cold start” with no information on the Q-values. The initial Q-values

were set to 10 to encourage exploration, as 10 is the highest achievable long-

term reward, and the Online algorithm was run for 10 consecutive episodes of

400 segments. The learning rate α was 0.2 in all the convergence simulations,

except where otherwise stated.

4.4.1 Static scenario

The algorithm’s first run was in the Static scenario. Fig. 4.23 shows the

Online algorithm converging extremely quickly to the optimal policy: after

the third episode, the algorithm’s actions stabilize, except for an initial buffer

build-up for each new episode (visible in the downward spikes in the plot

every 400 segments). The algorithm maintains a a buffer level that allows

it to avoid a high low-buffer punishment and the risk of rebuffering (see

Fig. 4.24).

Setting a low exploration temperature from the start instead of decreasing

it gradually increases the learner’s convergence speed; its actions stabilize

after only one episode, as shown in Fig. 4.25.

With a channel rate h = 3.5 Mb/s, the learner takes slightly longer to

converge, but ultimately finds that the penalty for changing the quality was

not worth switching back and forth and settles on the lower rate (see Fig. 4.26

and Fig. 4.27). Its behavior after reaching convergence with h = 3.9 Mb/s

is interesting: it parallels the Offline algorithm’s, switching back and forth

between the higher and lower video bitrate, but its cycles are far less stable

due to the continuous updates of the Q-values, as shown in Fig. 4.28. The

buffer plot parallels this instability, as Fig. 4.29 shows.

59

CHAPTER 4. SIMULATION AND RESULTS

0 500 1000 1500 2000 2500 3000 3500 4000
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.23: Reward (quality component) for 10 consecutive episodes, h =
3 Mb/s

0 500 1000 1500 2000 2500 3000 3500 4000
2

4

6

8

10

12

14

16

18

20

Segment

B
u
ff
e
r

(s
)

Learner

Benchmark

Fig. 4.24: Buffer level plot for 10 consecutive episodes, h = 3 Mb/s

60

4.4. ONLINE ALGORITHM: RESULTS

0 500 1000 1500 2000 2500 3000 3500 4000
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.25: Reward (quality component) for 10 consecutive episodes (low ex-
ploration temperature), h = 3 Mb/s

0 500 1000 1500 2000 2500 3000 3500 4000
0.7

0.75

0.8

0.85

0.9

0.95

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.26: Reward (quality component) for 10 consecutive episodes, h =
3.5 Mb/s

61

CHAPTER 4. SIMULATION AND RESULTS

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Segment

R
e
q
u
e
s
te

d
 b

it
ra

te
 (

k
b
p
s
)

Learner

Benchmark

Fig. 4.27: Requested rate for 10 consecutive episodes, h = 3.5 Mb/s

0 50 100 150 200 250 300 350 400
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.28: Reward (quality component) for one episode, h = 3.9 Mb/s

62

4.4. ONLINE ALGORITHM: RESULTS

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

20

Segment

B
u

ff
e

r
(s

)

Learner

Benchmark

Fig. 4.29: Buffer plot for one episode, h = 3.9 Mb/s

4.4.2 Variable scenes scenario

In the Variable scenes scenario, the Online algorithm was slightly outper-

formed by Offline: there were no differences with a mean scene duration of

10 segments, as the Online algorithm also had the same performance as the

benchmark, and Fig. 4.30 shows that its improvement over the benchmark

with a mean scene duration of 5 segments is close to the Offline algorithm’s.

The mean rk was higher than the benchmark’s by only 0.002, just like the

Offline algorithm.

The difference between the Offline algorithm and the benchmark is no-

ticeable with a mean scene duration of only 1 segment: in this dynamic

situation, the Offline algorithm’s stability makes it more efficient than the

Online algorithm. Fig. 4.31 shows how the learner uses its buffer to mitigate

SSIM variations when the scene is extremely dynamic, but the mean rk is

higher than the benchmark by 0.005, 0.001 less than the Offline algorithm.

Fig. 4.32 shows the algorithm’s buffer management in the last case.

63

CHAPTER 4. SIMULATION AND RESULTS

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

Segment

S
S

IM

Learner

Benchmark

Fig. 4.30: SSIM of the last episode with a dynamic video (mean scene dura-
tion 5 segments)

0 50 100 150 200 250 300 350 400
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Segment

S
S

IM

Learner

Benchmark

Fig. 4.31: SSIM of the last episode with a dynamic video (mean scene dura-
tion 1 segment)

64

4.4. ONLINE ALGORITHM: RESULTS

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

20

Segment

B
u

ff
e

r
(s

)

Learner

Benchmark

Fig. 4.32: SSIM of the last episode with a dynamic video (mean scene dura-
tion 1 segment)

4.4.3 Dynamic scenario

In the Dynamic scenario, the difference between the Offline and Online

algorithms was clearer.

With p = 0.25, the Online algorithm’s mean rk was higher than the

benchmark by 0.002 with both transition matrices. Fig. 4.33 and Fig. 4.34

show how the learner was able to effectively use the buffer to maintain a

higher SSIM throughout the video with a Markov channel using the first

transition matrix, avoiding most of the damaging quality drops when the

channel channel rate was low. A plot of the SSIM values over time for a

Markov channel using the second transition matrix is shown in Fig. 4.35.

65

CHAPTER 4. SIMULATION AND RESULTS

0 50 100 150 200 250 300 350 400
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Segment

S
S

IM

Learner

Benchmark

Fig. 4.33: SSIM of the last episode with a Markov channel (p = 0.25)

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

20

Segment

B
u

ff
e

r
(s

)

Learner

Benchmark

Fig. 4.34: Buffer of the last episode with a Markov channel (p = 0.25)

66

4.4. ONLINE ALGORITHM: RESULTS

0 50 100 150 200 250 300 350 400
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Segment

S
S

IM

Learner

Benchmark

Fig. 4.35: SSIM of the last episode with two-state jumps (p = 0.25)

With p = 0.5, Online is clearly outperformed by the Offline algorithm:

while the Online algorithm’s rk with the second matrix is higher than the

benchmark’s by 0.008, 0.005 less than the Offline algorithm, its performance

with the first transition matrix is essentially the same as the benchmark’s.

In that situation, the Offline algorithm’s mean rk is higher by 0.005.

Fig. 4.36 and Fig. 4.37 show how the learner’s intelligent exploitation of

the buffer gives it an advantage over the benchmark with a Markov channel

using the second transition matrix. However, a comparison between Fig. 4.18

and Fig. 4.36 clearly shows that the Offline algorithm performs better in this

scenario.

The case with the uncorrelated channel shows an interesting side effect of

the difference in the MDP formulations: while the Offline algorithm’s chosen

video bitrate is not constant, the Online algorithm settles on a constant rate,

getting the same results in terms of rk but keeping the quality constant at

all times by always choosing the 1 Mbs video bitrate.

67

CHAPTER 4. SIMULATION AND RESULTS

0 50 100 150 200 250 300 350 400
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Segment

S
S

IM

Learner

Benchmark

Fig. 4.36: SSIM of the last episode with a Markov channel (p = 0.5)

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

20

Segment

B
u

ff
e

r
(s

)

Learner

Benchmark

Fig. 4.37: Buffer of the last episode with a Markov channel (p = 0.5)

68

4.4. ONLINE ALGORITHM: RESULTS

0 50 100 150 200 250 300 350 400
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Segment

S
S

IM

Learner

Benchmark

Fig. 4.38: SSIM of the last episode with a uniform Markov transition matrix

4.4.4 Complete scenario

The next simulations concerned the Complete scenario, with a Markov

channel and a dynamic video: the average scene duration was set to 5 seg-

ments, and the Markov transition matrix was set to allow two-state transi-

tions as before.

The Online algorithm’s performance shows no significant differences with

the Offline algorithm’s with p = 0.25; both algorithms managed to combine

its awareness of the variability of the channel and of the video complexity,

achieving a higher gain than in the static simulations. A plot of rk is shown

in Fig. 4.39.

With p = 0.5, the algorithm’s mean reward rk is 0.01 higher than the

benchmark’s, 0.003 less than the Offline algorithm. Fig. 4.40 shows a plot of

the SSIM for one episode after convergence.

69

CHAPTER 4. SIMULATION AND RESULTS

0 50 100 150 200 250 300 350 400

0.4

0.5

0.6

0.7

0.8

0.9

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.39: Reward (quality component) with p = 0.25 and a dynamic video

0 50 100 150 200 250 300 350 400

0.4

0.5

0.6

0.7

0.8

0.9

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.40: Reward (quality component) with p = 0.5 and a dynamic video

70

4.4. ONLINE ALGORITHM: RESULTS

Finally, the adaptation test proved that reactiveness to changes in the

environment is the Online algorithm’s main strength: while the Offline al-

gorithm’s performance degraded after a sudden change in the environment,

the Online algorithm’s mean rk is higher than the benchmark’s by 0.015 over

the 10 episodes after the change. Fig. 4.41 shows the first episode after the

shift; the learner clearly avoids the worst quality drops, resulting in a better

performance even if its Q-values are still adapting to the new situation.

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

Segment

R
e
w

a
rd

 (
q
u
a
lit

y
 c

o
m

p
o
n
e
n
t)

Learner

Benchmark

Fig. 4.41: Reward (quality component) after changing the video

71

CHAPTER 4. SIMULATION AND RESULTS

4.5 Comparison

0 2 4 6 8 10 12 14
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

h (Mb/s)

r k

Online

Offline

Benchmark

Fig. 4.42: Average reward (quality component) over channel rate

As Fig. 4.42 shows, the two learning algorithms have a significant advan-

tage at low channel rates when the channel is Markovian. The comparison

was performed in the complete scenario, with a Markov channel with two-

state jumps and p = 0.5 and an average scene duration of 5 segments; the

results in the figure were obtained by averaging the reward (considering only

the quality component rk) over 100 episodes after convergence, sorting the

segments by channel rate.

The slight advantage (0.004 at its highest) of the benchmark at high

capacities is probably due to the learners’ reluctance to fully exploit the

channel, knowing its inherent instability, and it is more than compensated

by the gains when the channel channel rate is low, which amount to almost

0.05 in terms of the mean reward rk.

72

4.5. COMPARISON

The Offline algorithm proved to have an edge over the Online algorithm in

complex situations, as its more detailed Markov model allows it to react to the

channel changes with a higher precision. The lack of the need for continued

learning also makes its actions more regular in some situations (e.g. when

h = 3.9 Mb/s, see Fig. 4.4 and Fig. 4.28), as updating the Q-values online

occasionally upsets the perceived optimal action in some states.

73

Chapter 5

Conclusions and future work

The results of the simulation proved that the two RL bitrate adaptation

algorithms are effective in a variety of environments, and their performance

is satisfactory even in challenging scenarios. Part of the credit goes to the

MDP model, which has shown remarkable descriptive power and flexibility.

The MDP formulation has another advantage over the existing examples

in the literature: the Markov chains underlying the MDP that the bitrate

adaptation algorithms solved were relatively small, reducing both the con-

vergence times of the Q-values and the memory requirements on the client

device. The combination of high performance, flexibility and simplicity rep-

resent a significant step forward over existing RL solutions, which were both

highly complex and with a limited scope.

The simplicity of the Online and Offline algorithms constrasts even more

starkly with the complex stateful algorithms in the literature: once the train-

ing phase is over, the Offline algorithm involves a simple look-up operation,

and the model can be made more complex with no computational cost. The

training phase will necessarily be longer, but it can be pre-loaded on the

device. An even simpler implementation might not save all the Q-values,

but just the best action for each state, considering the algorithm does not

have to perform any exploration. The Online algorithm’s higher complexity

is justified by the fact that it is not based on a fixed model, but progressively

learns the model and adapts it to environmental changes. However, even the

75

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Online parallel updates are not computationally expensive.

On the other hand, the Online algorithm converges quickly enough to

allow it to quickly react to changes in the model. This means that the

system can be deployed without a significant pre-training effort and, more

importantly, without any detailed prior knowledge of the channel model. As

long as the channel is approximately Markovian from one segment to the

next, the algorithm can adapt to varying channel and video conditions, and,

although it is not as efficient as the Offline algorithm, its adaptability makes

it more suited to applications that operate in unpredictable environments,

such as mobile video streaming.

Possible future extensions on the work on the two learning algorithms in-

clude a more comprehensive simulation study, using the full TCP stack. Al-

though the simulation results prove their efficiency and resilience to different

network situations, a test with the full TCP stack would provide additional

information to further refine the system parameters.

In parallel, further work can be devoted to the improvement of the al-

gorithms: a possibility is to limit errors and speed up the convergence of

the system by giving the learning agent additional information on the video

model. An interesting enhancement to the current system can be a fluid

Markov model: the learner may use pattern matching and other machine

learning techniques to change its own model (e.g., shift the state borders).

Investigation into soft state transitions for other parameters, such as the

buffer, or even use of function approximation techniques would make the

state space a better fit for the continuous variables involved, making the

system perform better without the need to increase the number of states or

the complexity level of the learning algorithm itself.

A final interesting avenue of research is the interaction of several learning

systems that share a single network bottleneck: in this work, the system has

been developed from the perspective of a single client, but a network-wide

approach would be very useful. The use of game theoretical models [47] and

emergent behavior theory [48], which have already been successfully applied

in other communications problems [49], represents a novel perspective on an

exciting challenge.

76

Bibliography

[1] Cisco, “Cisco visual networking index: forecast and methodology, 2013–2018,” Cisco
Public Information, 2014.

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol
for real-time applications,” RFC 3550, vol. 7, 2003.

[3] MPEG, “Dynamic Adaptive Streaming over HTTP (DASH) – Part 1: Media Presen-
tation Description and segment formats.”

[4] J. van der Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. De Turck, “A learning-
based algorithm for improved bandwidth-awareness of adaptive streaming clients,”

[5] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and F. De Turck, “Design
of a Q-learning-based client quality selection algorithm for HTTP adaptive video
streaming,” in Adaptive and Learning Agents Workshop, part of AAMAS2013 (ALA-
2013), pp. 30–37, 2013.

[6] C. J. Watkins, Learning from delayed rewards. PhD thesis, University of Cambridge,
England, 1989.

[7] T. Stockhammer and M. G. Luby, “DASH in mobile networks and services,” in Visual
Communications and Image Processing (VCIP), pp. 1–6, IEEE, 2012.

[8] T. C. Thang, Q.-D. Ho, J. W. Kang, and A. T. Pham, “Adaptive streaming of audio-
visual content using MPEG DASH,” IEEE Transactions on Consumer Electronics,
vol. 58, no. 1, pp. 78–85, 2012.

[9] S. Jumisko-Pyykkö and J. Häkkinen, “Evaluation of subjective video quality of mo-
bile devices,” in Proceedings of the 13th annual ACM international conference on
Multimedia, pp. 535–538, ACM, 2005.

[10] L. Aimar, L. Merritt, E. Petit, M. Chen, J. Clay, M. Rullgrd, C. Heine, and
A. Izvorski, “X264 - a free H264/AVC encoder,” Online (last accessed on: 04/01/07):
http://www. videolan. org/developers/x264. html, 2005.

[11] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hobfeld, and P. Tran-Gia, “A survey
on quality of experience of http adaptive streaming,” Communications Surveys &
Tutorials, IEEE, vol. 17, no. 1, pp. 469–492, 2014.

[12] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the quality of experience
of HTTP video streaming,” in IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 485–492, IEEE, 2011.

77

BIBLIOGRAPHY

[13] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation of rate-
adaptation algorithms in adaptive streaming over HTTP,” in Proceedings of the sec-
ond annual ACM conference on Multimedia systems, pp. 157–168, ACM, 2011.

[14] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. W. Lie, and C. Lil-
ley, “Network performance effects of HTTP/1.1, CSS1, and PNG,” in ACM SIG-
COMM Computer Communication Review, vol. 27, pp. 155–166, ACM, 1997.

[15] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic adaptive stream-
ing over HTTP in vehicular environments,” in Proceedings of the 4th Workshop on
Mobile Video, pp. 37–42, ACM, 2012.

[16] M. Alreshoodi and J. Woods, “Survey on QoE\QoS correlation models for multimedia
services,” International Journal of Distributed and Parallel Systems, vol. 4, no. 3,
p. 53, 2013.

[17] Y. Qi and M. Dai, “The effect of frame freezing and frame skipping on video quality,”
in International Conference on Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP’06), pp. 423–426, IEEE, 2006.

[18] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen, “Initial
delay vs. interruptions: between the devil and the deep blue sea,” in Fourth Inter-
national Workshop on Quality of Multimedia Experience (QoMEX), pp. 1–6, IEEE,
2012.

[19] J. De Vriendt, D. De Vleeschauwer, and D. Robinson, “Model for estimating QoE
of video delivered using HTTP adaptive streaming,” in IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013), pp. 1288–1293, IEEE,
2013.

[20] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE Transactions on Image Processing,
vol. 13, no. 4, pp. 600–612, 2004.

[21] S. Mohamed and G. Rubino, “A study of real-time packet video quality using random
neural networks,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 12, no. 12, pp. 1071–1083, 2002.

[22] K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino, “Quality of experience estimation for
adaptive HTTP/TCP video streaming using H.264/AVC,” in Consumer Communi-
cations and Networking Conference (CCNC), pp. 127–131, IEEE, 2012.

[23] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. MIT Press,
1998.

[24] R. Bellman, “A Markovian decision process,” tech. rep., DTIC Document, 1957.

[25] D. L. Poole and A. K. Mackworth, Artificial Intelligence: foundations of computa-
tional agents. Cambridge University Press, 2010.

[26] S. B. Thrun, “Efficient exploration in reinforcement learning,” tech. rep., 1992.

[27] J. S. Bridle, “Probabilistic interpretation of feedforward classification network out-
puts, with relationships to statistical pattern recognition,” in Neurocomputing,
pp. 227–236, Springer, 1990.

78

BIBLIOGRAPHY

[28] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–
292, 1992.

[29] G. A. Rummery and M. Niranjan, “On-line Q-learning using connectionist systems,”
1994.

[30] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
learning, vol. 3, no. 1, pp. 9–44, 1988.

[31] S. P. Singh, T. Jaakkola, and M. I. Jordan, “Reinforcement learning with soft state
aggregation,” Advances in neural information processing systems, pp. 361–368, 1995.

[32] P. Y. Glorennec and L. Jouffe, “Fuzzy Q-learning,” in Proceedings of the Sixth IEEE
International Conference on Fuzzy Systems, vol. 2, pp. 659–662, IEEE, 1997.

[33] J. C. Santamaŕıa, R. S. Sutton, and A. Ram, “Experiments with reinforcement learn-
ing in problems with continuous state and action spaces,” Adaptive behavior, vol. 6,
no. 2, pp. 163–217, 1997.

[34] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of state abstraction
for MDPs,” in ISAIM, 2006.

[35] S. Thakolsri, W. Kellerer, and E. Steinbach, “QoE-based rate adaptation scheme
selection for resource-constrained wireless video transmission,” in Proceedings of the
international conference on Multimedia, pp. 783–786, ACM, 2010.

[36] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability in
HTTP-based adaptive video streaming with FESTIVE,” in Proceedings of the 8th in-
ternational conference on Emerging networking experiments and technologies, pp. 97–
108, ACM, 2012.

[37] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran, “Streaming video over
HTTP with consistent quality,” in Proceedings of the 5th ACM Multimedia Systems
Conference, pp. 248–258, ACM, 2014.

[38] M. Xing, S. Xiang, and L. Cai, “Rate adaptation strategy for video streaming over
multiple wireless access networks,” in Global Communications Conference (GLOBE-
COM), pp. 5745–5750, IEEE, 2012.

[39] Y. Fei, V. W. Wong, and V. Leung, “Efficient QoS provisioning for adaptive multime-
dia in mobile communication networks by reinforcement learning,” Mobile Networks
and Applications, vol. 11, no. 1, pp. 101–110, 2006.

[40] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and F. De Turck, “De-
sign and optimisation of a (FA) Q-learning-based HTTP adaptive streaming client,”
Connection Science, vol. 26, no. 1, pp. 25–43, 2014.

[41] S. Petrangeli, M. Claeys, S. Latré, J. Famaey, and F. De Turck, “A multi-agent
Q-learning-based framework for achieving fairness in HTTP adaptive streaming,”
in Network Operations and Management Symposium (NOMS), 2014 IEEE, pp. 1–9,
IEEE, 2014.

[42] N. Changuel, B. Sayadi, and M. Kieffer, “Online learning for QoE-based video stream-
ing to mobile receivers,” in Globecom Workshops (GC Wkshps), pp. 1319–1324, IEEE,
2012.

79

BIBLIOGRAPHY

[43] D. Marinca, D. Barth, and D. De Vleeschauwer, “A Q-learning solution for adaptive
video streaming,” in 2013 International Conference on Selected Topics in Mobile and
Wireless Networking (MoWNeT), pp. 120–126, IEEE, 2013.

[44] N. Mastronarde and M. van der Schaar, “Fast reinforcement learning for energy-
efficient wireless communication,” IEEE Transactions on Signal Processing, vol. 59,
no. 12, pp. 6262–6266, 2011.

[45] S. Wang, A. Rehman, Z. Wang, S. Ma, and W. Gao, “SSIM-motivated rate-distortion
optimization for video coding,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 4, pp. 516–529, 2012.

[46] M. Zanforlin, D. Munaretto, A. Zanella, and M. Zorzi, “SSIM-based video admis-
sion control and resource allocation algorithms,” in 12th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
pp. 656–661, IEEE, 2014.

[47] S. Parakh and A. K. Jagannatham, “Game theory based dynamic bit-rate adapta-
tion for H.264 scalable video transmission in 4G wireless systems,” in International
Conference on Signal Processing and Communications (SPCOM), pp. 1–5, IEEE,
2012.

[48] M. J. Prietula and K. M. Carley, “Computational organization theory: Autonomous
agents and emergent behavior,” Journal of Organizational Computing and Electronic
Commerce, vol. 4, no. 1, pp. 41–83, 1994.

[49] I. Kassabalidis, M. El-Sharkawi, I. Marks, R.J., P. Arabshahi, and A. Gray, “Swarm
intelligence for routing in communication networks,” in Global Telecommunications
Conference (GLOBECOM), vol. 6, pp. 3613–3617 vol.6, IEEE, 2001.

80

Acronyms

CAC Call Admission Control.

CDN Content Delivery Network.

DASH Dynamic Adaptive Streaming over HTTP.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

MDP Markov Decision Process.

MOS Mean Opinion Score.

MPD Media Presentation Description.

MPEG Moving Picture Experts Group.

MSE Mean Square Error.

MSS Microsoft Smooth Streaming.

POMDP Partially Observable MDP.

PSNR Peak Signal to Noise Ratio.

PSQA Pseudo-Subjective Quality Assessment.

QoE Quality of Experience.

QoS Quality of Service.

RL Reinforcement Learning.

SARSA State-Action-Reward-State-Action.

SSIM Structural Similarity Index.

SVC Scalable Video Coding.

TCP Transmission Control Protocol.

TD Temporal Difference.

UDP User Datagram Protocol.

URL Uniform Resource Locator.

81

List of Algorithms

3.1 Offline algorithm: training phase 34

3.2 Offline algorithm: Q(λ) update function 35

3.3 Offline algorithm: deployment phase 35

3.4 Online algorithm . 38

3.5 Online algorithm: Q̃ update function 39

3.6 Online algorithm:parallel update function 39

4.1 Benchmark algorithm . 41

83

Acknowledgments

I would like to thank prof. Frossard for his help and ready advice, as well as

for the time and patience it took to guide me through the complicated first

steps.

Another huge thank you goes to Stefano and Laura, who talked with me

for dozens of hours and wrote me hundreds of emails to help make everything

work.

I would not have had the opportunity to even begin this thesis if it weren’t

for prof. Zanella and prof. Zorzi, who I thank for all the support before and

during my stay in Lausanne.

Finally, a big hug to all the friends who had to bear my frustrated mes-

sages when things went wrong, even if they were scattered all over Europe:

Leo, Irene, Elena, Daina, Giorgia, Chiara, Giovanni and Luca.

85

