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Abstract

The goal of this project is to study the effects predicted by scalar-tensor
theories of dark energy on small scales. Scalar-tensor theories has been in-
troduce to modify gravity in the infrared. However, large scale modifications
of gravity are necessarily associated to short-scale ones. In order to be in ac-
cordance with current observational tests on small scales, one can introduce
a screening mechanism that is effective in environments where nonlinearities
of the scalar field become important, suppressing the extra degrees of free-
dom. The Vainshtein screening has been already proven to work in many
scalar-tensor theories, in particular in the most general second-order covari-
ant theory for gravity coupled to a scalar degree of freedom, the so-called
Horndeski theory. The focus of this thesis is on the breaking of this mecha-
nism in the extensions of Horndeski: we retrieve the failure of the screening
for beyond Horndeski theories, starting from more general premises. Fi-
nally, we tackle the challenge of generalising this result further to DHOST
theories.
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Chapter 1

Introduction

Scalar-tensor theories for DE and small scale phe-
nomenology

One of the main courses that cosmological research has followed with the
purpose of dealing with the accelerated expansion of the universe is repre-
sented by modified gravity.
With this term many models of new physics are encompassed, that extend
General Relativity in the infrared region and share the goal to give a dy-
namical alternative to the standard ΛCDM model that would suitably deal
with the CC problem.
Since it can be shown that Einstein’s theory of gravity is the unique inter-
acting theory of a (graviton) Lorentz invariant helicity-2 massless particle
[10][6], it is clear that such models of modified gravity can only proceed all in
the same direction: modifying GR by considering additional degrees of free-
dom. The simplest form that this addition can take is that of a scalar d.o.f.
coupled (with even complicated couplings) to the standard 2-d.o.f. tensorial
gravity. From here the name given to a wide class of models, which are all
together invoked when using the term "scalar-tensor theories".
Finally, General Relativity is a very robust theory, thanks to the considerable
number of tests conducted on the astronomical scales and in laboratories.
For this reason, any modification to GR should feature some kind of screen-
ing mechanism that hinders effects coming from the extension of the theory
to arise on small scales (meaning from those that are comparable with the
size of our solar system, downwards; the ones on which the great deal of
observational tests has been conducted) and thus result in incompatibilities
with these stringent constraints.
In this work, we will deal with a wide class of scalar-tensor theories that
go under the name of DHOST theories and also restrict to a more specific
sub-class, called Horndeski theory along with its more immediate extension.
For these theories, we will study a particular screening mechanism that
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8 CHAPTER 1. INTRODUCTION

arises from terms in the lagrangian containing second-order derivatives that
grow in importance in the small scale limit. This type of screening is called
Vainshtein screening, and is applicable to many ST models[11], the most
famous example of which is given by galileon theory[12].
The mechanism has been proven to work also in the immediate generaliza-
tion to curved space-times of galileons[13], which is the Horndeski theory.
However, one might wonder whether this mechanism will still remain solid
while jumping from Horndeski to even more general ST theories.

In chapter I we will give an introduction of the Horndeski theory and its
most immediate extension. Further on, we will discuss briefly the issues
of Ostrogradski’s theorem and the degeneracy as a solution to circumvent
its limitations. As a natural consequence, we will introduce the degenerate
scalar-tensor theories that we can build from this new perspective, and give
a classification inside of this set of models.
In chapter II, we will build the effective theory starting from the quadratic
DHOST lagrangian, which will be later restricted to the effective actions
used in [1] and to the one relative to class I DHOST theories.
After deriving the equations of motion for both cases, we are ready to anal-
ize and discuss the screening mechanism breaking, which is done in chapter
III. After a short introduction to the principle of the Vainshtein screening,
completed with an example, we produce the proof of the breaking in the
case studied by Kobayashi et alii.
Finally, we will deal with the equations of motion of the small-scales pertur-
bations around massive sources from the qDHOST effective theory and will
show some manipulations in order to approach their solution.



Chapter 2

DHOST theories

For long time the Horndeski theory was thought to be the most general
scalar-tensor theory that has the correct number of propagating degrees
of freedom (2 tensor modes for the metric sector and a scalar d.o.f.). The
requirement of having Euler-Lagrange equations at most of the second order
was thought to be crucial to avoid extra ghost-like d.o.f. in the theory and
dangerous instabilities, argument supported by the Ostrogradski theorem.
In what follows, we will argue that there exist some immediate and more
complex generalizations, that revolve around the key-notion of degeneracy.

2.1 Horndeski theory

The Horndeski theory, originally introduced 44 years ago [14], can be thought
as the answer to the question: what is the most general theory of a scalar
field non-minimally coupled to gravity, featuring equations of motion that
are at most of the second order?
In this sense, Horndeski’s theory is the most general non-degenerate ST
model that respects Ostrogradski’s theorem. As such, the theory presents
itself in the form of

SH ≡
∫
d4x
√
−g

5∑
i=2

LHi (2.1)

Where the Horndeski lagrangian operators are defined as
LH2 ≡ G2(φ,X)
LH3 ≡ −G3(φ,X)φµµ
LH4 ≡ G4(φ,X)R+G4X(φ,X)[(φµµ)2 − (φµν)2]
LH5 ≡ G5(φ,X)Gµνφµν − 1

6G5X(φ,X)[(φµµ)3 − 3φµµ(φµν)2 + 2(φµν)3]
(2.2)

Here a couple of useful notations are introduced, and are used throughout all
these pages. The {Gi} are a set of four independent arbitrary functions of
the scalar field and its "kinetic term", X ≡ −1

2g
µν∂µφ∂νφ. The derivatives

9



10 CHAPTER 2. DHOST THEORIES

of these functions with respect to their arguments are indicated as Giφ ≡
∂Gi
∂φ and GiX ≡ ∂Gi

∂X , respectively. Instead, the notation for the covariant
derivatives of the scalar field is here φµ ≡ ∂µφ.

2.2 Beyond Horndeski

The Horndeski theory is a non-degenerate theory, in the sense that will
be better precised in the next sections. In [2] the existence of two terms
extending the Horndeski theory was proven.{

LbH4 ≡ F4(φ,X)εµνρσ εαβγσφµφαφνβφργ
LbH5 ≡ F5(φ,X)εµνρσεαβγδφµφαφνβφργφσδ

(2.3)

These two terms were introduced in this paper as the result of a disformal
transformation on the quartic and quintic Horndeski lagrangian operators.
This is a particular generalization of conformal transformations, were an
additional term quadratic in the derivatives of the scalar field is added,
along with coefficients that share an arbitrary dependance on X. A generic
disformal transformation looks like

g̃µν ≡ A(φ,X)gµν +B(φ,X)φµφν (2.4)

In fact, these two terms belong to subclasses of degenerate higher order the-
ories that avoid the instability feature thanks to their degeneracy properties
(they are respectively terms that fall into specific subsets of quadratic and
cubic DHOST theories1) In this sense, these terms are a first step towards
extending the set of viable scalar-tensor theories beyond the request of hav-
ing second order e.o.m.
As it will be clear from the detailed analysis in the third chapter, these terms
(in particular, the quartic bH one) are responsible for the nonlinear effects
arising on small scales and breaking the Vainshtein screening mechanism.

2.3 Ostrogradski instability

Theories described by an action that contain higher order derivatives and
a lagrangian that is non-degenerate encounter the so called Ostrogradski
instabilities.
These are negative energy solutions to the e.o.m. that propagate inevitably
in higher-order non-degenerate theories, as shown in [3].

We will follow briefly the Ostrogradski construction of the hamiltonian
1In this work we focused our attention on the first ones.
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for a non-degenerate lagrangian of a system describing a point particle,
L[x, x(1), · · · , x(N)], where x(j) represents j time derivatives acting on the
variable. Although the argument here is presentend for finite d.o.f. systems,
it can be easily applied also when dealing with fields.
The Euler-Lagrange equations are linear in the 2N -th derivative:

N∑
i=0

(− d

dt
)i ∂L
∂x(i) = 0 (2.5)

We introduce now the Ostrogradski choice for the canonical variables in the
phase space:

Qi ≡ x(i−1) Pi ≡
N∑
j=i

(− d

dt
)j−1 ∂L

∂x(j) (2.6)

The non-degeneracy statement translates into ∂2L
∂x(N)∂x(N) 6= 0, condition that

basically allows the existance of a function A(Q1, · · · , QN , PN ) such that

∂L

∂x(N)

∣∣∣x(i−1)=Qi

x(N)=A

= PN (2.7)

As a consequence, the following Hamiltonian construction due to Ostrograd-
ski is allowed:

H ≡
N∑
i

Pix
(i) − L

= P1Q2 + P2Q3 + · · ·+ PN−1QN + PNA− L(Q1, · · · , QN ,A)
(2.8)

with time evolution equations given by:

Ṗi ≡
∂H

∂Qi

Q̇i ≡ −
∂H

∂Pi

(2.9)

From these 2N equations, 2(N − 1) merely restate the (2.6) relations, the
other two are equivalent to the relation (2.7) and to the Euler-Lagrange
equation.
One immediately sees that the solution of the e.o.m. of this theory generally
requires the specification of N initial conditions, hence indicating that we
have many d.o.f. propagating.
In addition to that, the Ostrogradski hamiltonian is explicitly unbounded
from below with respect to the set of conjugated momenta {P1, · · · , PN−1},
as the dependancy from these fields is linear.
Consequently, unpleasant features appear in our theory, such as negative en-
ergy states and vacuum states decaying into groups of positive and negative
energy particles.



12 CHAPTER 2. DHOST THEORIES

2.4 Degeneracy

One way to generalize the Horndeski scalar-tensor theory and to overcome
the Ostrogradski theorem is to focus on degenerate theories, that feature
a non-invertible kinetic lagrangian. Generally, a dynamical system is thus
allowed to have higher order derivatives present at the lagrangian level and
higher order time derivatives at the e.o.m. level. Nonetheless, the degener-
acy of the kinetic lagrangian implies the existence of additional constraints
on the phase space that reduce the actual number of propagating degrees of
freedom.

In the case of scalar-tensor theories, one can follow a thorough hamiltonian
analysis in order to properly analyze the number of degrees of freedom and
study the consequences of a degenerate lagrangian on it. We will first review
here in brief the analysis as conducted in [4] on a simplified toy model, in
order to show how degeneracy can circumvent Ostrogradski theorem and
avoid the instabilities predicted by it.

Let’s take a point particle, φ(t), who’s dynamics is regulated by terms with
higher number of time derivatives, coupled to n regular degrees of freedom,
qi(t), i = 1, · · · , n, who feature only standard first time derivative lagrangian
terms. The lagrangian describing this toy model is thus taken to be:

L = a

2 φ̈
2 + k0

2 φ̇
2 + 1

2kij q̇
iq̇j + biφ̈q̇

i + ciφ̇q̇
i − V (φ, q) (2.10)

The equations of motion, obtained by variation of (2.10) with respect to,
respectively, φ(t) and qi(t) are:

a
....
φ − k0φ̈+ bi

...
q i − ciq̈i −

∂V

∂φ
= 0

kij q̈
i + bj

...
φ + cjφ̈+ ∂V

∂qj
= 0

(2.11)

One can immediately guess from this higher order equations at this stage
that this toy model features extra ghost-like d.o.f. propagating, since the
solution of (2.11) generally requires the specification of more than two initial
conditions.

To conduct the analysis we first should replace the higher order time deriva-
tives by introducing a new variable, Q, and associate it to φ̇ with an addi-
tional constraint in the lagrangian:

L = a

2 Q̇
2 + k0

2 Q
2 + 1

2kij q̇
iq̇j + biQ̇q̇

i + ciQq̇
i − V (φ, q)− λ(Q− φ̇) (2.12)
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The equation of motion for the theory reformulated in this fashion are:

aQ̈+ biq̈
i = k0Q+ ciq̇

i − λ
bjQ̈+ kij q̈

i = −cjQ̇− Vj
Q = φ̇

λ̇ = −Vφ

(2.13)

Where the notations ∂V
∂φ ≡ Vφ and ∂V

∂qi ≡ Vi were used for simplicity. It is
immediate to check that the two systems of equations (2.11) and (2.13) are
equivalent.
Defining now the kinetic matrix as the one built up with the coefficients of
the terms in (2.12) that are quadratic in the time derivatives, we can write
it explicitly as:

M ≡
( a bi
bj kij

)
(2.14)

This matrix is the key to the presence or not of instabilities in this model.
Basically, when it is invertible, the first two equations of (2.13) can be solved
to express Q̈ and q̈i in terms of the first order time derivatives. This way,
it is clear that the solution of (2.13) requires 2(n + 2) initial conditions
to be specified for the variables {qi, q̇i, Q, Q̇, λ, φ}. Thus, there are (n + 2)
degrees of freedom propagating in this system, including the extra ghost-like
d.o.f. that is the Ostrogradski instability, with consequences as seen in the
previous section.

Degeneracy of (2.14) is the key for introducing those constraints on the
phase space that will cancel the ghost.
We require the degeneracy to be restricted to the φ-sector and its couplings
to the n ordinary d.o.f.: the kij matrix is assumed to be invertible. Hence,
the degeneracy condition translates into:

0 = detM = det(k)(a− bibj(k−1)ij)
a− bibj(k−1)ij = 0

(2.15)

From this condition, a null eigenvector for the kinetic matrix can be singled
out:

v =
( v0

vi

)
=
( −1

(k−1)ijbj

)
(2.16)

which generates the one-dimensional kernel of (2.14). The system of equa-
tions (2.13) can be projected along v, operation that will eventually result
in an equivalent system but with reduced number of d.o.f.; in particular,
we can introduce the new variable xi = qi + viQ that will replace the qi
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variable, and obtain the equivalent system:

ciẋ
i + k0Q+ viVi = λ

kij ẍ
i + cjQ̇+ Vj = 0

Q = φ̇

λ̇ = −Vφ

(2.17)

After replacing the third and fourth of these equations back in the first two,
and taking the derivative of the first one, one gets the result:

(k0 − vivjVij)φ̈+ ciẍ
i = −viVij ẋj − viViφφ̇− Vφ

cjφ̈+ kij ẍ
i = −Vj

(2.18)

In this new system, equivalent to the original degenerate one, we see that
the kinetic matrix looks like

M̃ ≡
( (k0 − vivjVij) ci

cj kij

)
(2.19)

and we can recognize right away that the variables are now {φ, xi}, thus the
initial conditions to specify are now 2(n + 1) and there are (n + 1) d.o.f.
propagating in the degenerate version of the toy model, just as desired.
This conclusion in valid if we assume the new kinetic matrix (2.19) to be
non-degenerate. The degeneracy can be extended further, by taking M̃ to
be degenerate and repeating the same steps, one can reduce even more the
number of degrees of freedom.

As for the hamiltonian analysis, one first needs to introduce conjugated
momenta associated with the configuration variables

( P
pi

)
≡
( ∂L

∂Q̇
∂L
∂q̇i

)
= M

( Q̇
q̇i

)
+
( 0
ciQ

)
πφ ≡

∂L

∂φ̇
= λ

(2.20)

and then construct the Hamiltonian through a Legendre transformation of
the (2.10) lagrangian

H = PQ̇+ piq̇
i + πφφ̇− L (2.21)

resulting in an hamiltonian system describing the dynamics of the 2(n+ 2)
canonical variables {P, qi, πφ} and {Q, qi, φ} or, in other words, the (n+ 2)
degrees of freedom, in the non-degenerate case.

The final step left to complete is to construct the two constraints that will
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eventually effectively cancel out 2 of the canonical variables.
The first constraint can be extracted from the existence of the non trivial
kernel of the kinetic matrix, exploiting the same null eigenvalue defined in
the previous lagrangian analysis:

Ω ≡
(
v0 vi

)
·
( P
pi − ciQ

)
= vi(pi − ciQ)− P = 0 (2.22)

as a consequence of projecting (2.20) along the eigenvector. Evidently, this
constraint allows express P as a function of the variables (pi, Q) and doing
so eliminate one of the two variables.
The second constraint, arises from the request of the Ω constraint being
constant in time. In other words, we want the time evolution defined by the
"projected" Hamiltonian function2

HT = 1
2(k−1)ij(pi − ciQ)(pj − cjQ)− k0

2 Q
2 + V (φ,Q) + πφQ+ µΩ (2.23)

to leave Ω invariant:

Ψ ≡ Ω̇ = {Ω, Ht} = ci(k−1)ij(pj −Qcj) + k0Q+ viVi − πφ = 0 (2.24)

Clearly, with this constraint one can replace πφ with a function of other
canonical variables, canceling out an additional momenta from the count of
independent variables in the system, leaving only (n+1) degrees of freedom.
One could go on with this procedure, looking for a third constraint. The
candidate would be

{Ω,Ψ} = ∆ (2.25)
where ∆ is defined as detM̃ = det(k)∆. As a consequence, as long as
the determinant of the kinetic matrix isn’t furtherly degenerate, additional
constraints reducing the phase space dimension are not given.

In this work, the subject is focused on the quadratic DHOST theories.
For this reason, the following lines will be dedicated to the construction of
the quadratic DHOST lagrangian only, leaving out of this pages the cubic
DHOST theory.

2.5 Quadratic DHOST
We start here with an action composed by a term that is basically a general-
ization of Einstein-Hilbert action, and a second term that depends quadrat-
ically on the second derivatives of the field, φµν ≡ ∂µ∂νφ:

S =
∫
d4x
√
−gf(φ,X)R+

∫
d4x
√
−gCµν,ρσφµνφρσ (2.26)

2HT features a lagrange multiplier,µ, that encodes the first constraint in the dynamics
of the system.
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where here the tensor Cµν,ρσ is a function of only φ and φµ. By imposing
the natural symmetries

Cµν,ρσ = Cνµ,ρσ = Cµν,σρ = Cρσ,µν

we are able to obtain the general structure of the C tensor:

Cµν,ρσ =1
2a1(gµρgνσ + gµσgνρ) + a2g

µνgρσ + 1
2a3(φµφνgρσ + φρφσgµν)

+ 1
4a4(φµφρgνσ + φνφσgµρ + φµφσgνρ + φνφρgµσ) + a5φ

µφνφρφσ

(2.27)

Substitution of (2.27) in the action (2.26) brings us as a result the quadratic
DHOST action, in terms of the 5 DHOST lagrangian operators, LI ,

SDHOST =
∫
d4x
√
−g[f(φ,X)R+

∑
I

aI(φ,X)LI ] (2.28)

L1 ≡ φµνφµν L2 ≡ (φµµ)2 L3 ≡ φσσφµφµνφν
L4 ≡ φµφµνφνρφρ L5 ≡ (φµφµνφν)2 (2.29)

In fact, other terms could be added to (2.28), such as terms that are at most
linear in the second derivatives of the field∫
d4x
√
−gLother =

∫
d4x
√
−g[P (φ,X)+Q1(φ,X)gµνφµν+Q2(φ,X)φµφµνφν ]

(2.30)
For the sake of the degeneracy analysis, these terms are neglegible as they
do not interfere with the kinetic matrix. For this reason, we will forget
about them when deriving the degeneracy conditions for quadratic DHOST
theories. Nonetheless, we will actually take into consideration the shift
symmetric one of these terms in the study of the effective theory, later on,
as it have a certain contribution to it.

2.6 Degeneracy in scalar-tensor theories
In order to study the possible degeneracy of the (2.28) lagrangian we need to
reformulate it, analogously to what we did in the toy model in the previous
chapter.
As in [4] we shall introduce Aµ ≡ φµ and replace the new variable in the
lagrangian of the theory, adding also a lagrange multiplier to enforce its
relation to the original scalar field. The reformulated lagrangian should
look like

S[gµν , φ,Aµ, λµ] =
∫
d4x
√
−g[fR+ Cµν,ρσ∇µAν∇ρAσ + λµ(Aµ − φµ)]

(2.31)
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Second of all, since the degeneracy study involves time derivatives we need
to "dig them out" of the covariant formalism: we shall conduct a covariant
ADM decomposition on our lagrangian, in order to separate time-like and
space-like components of the tensors in our theory.
Assuming the existence of a slicing of the spacetime into 3-dimensional
space-like hypersurfaces and a normal time-like direction, we can intro-
duce the time-like unit vector na, normal to the hyper-surfaces, such that
nana = −1.
This slicing allows us to introduce the metric induced on the 3-D hypersur-
faces, which we can also use to project tensors on the hypersurfaces them-
selves, and thus recover the tensor’s space-like component:

hab ≡ gab + nanb (2.32)

The decomposition of Aµ into its spatial and normal projections is thus given
by {

Âa = hbaAb
A∗ = naAa

(2.33)

The next step is to introduce the time direction ta ≡ ∂
∂t , in order to define

the lapse function, N , and the shift vector, Na

ta ≡ Nna +Na (2.34)

Now we can define the time derivative of the projected tensors, for example{
Ȧ∗ ≡ ta∇aA∗
˙̂
A ≡ hbaLtÂb = hba(tc∇cÂb + Âc∇btc)

(2.35)

The key now is the decomposition of the derivative ∇µ, which will allow
us to extract the terms quadratic in the time derivatives and compose the
elements of the kinetic matrix for this theory.
Such a decomposition would look like this

∇aAb ≡ DaÂb−A∗Kab+n(a(Kb)cÂ
c−Db)A

∗)+ 1
N
nanb(Ȧ∗−N cDcA

∗−NÂcac)
(2.36)

Here we used Da, the covariant derivative induced on the hypersurfaces,
and ac, the acceleration defined as ac ≡ nb∇bnc. We also made use of the
extrinsic curvature tensor, defined as

Kab ≡
1

2N (ḣab −D(aNb)) (2.37)

The only time derivatives appear to be Ȧ∗ and the derivative of the induced
metric elements, present in Kab. The relevant part of the derivative term
we just decomposed, hence appear to be

∇aAb
∣∣∣
kinetic

= λabȦ
∗ + ΛcdabKcd (2.38)
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where, for brevity, λab ≡ nanb
N and Λcdab ≡ −A∗hc(ah

d
b) + 2n(ah

(c
b)Â

d).
Eventually, the kinetic part of the lagrangian results in

Lkin = Cab,cdλabλcdA
∗2 + 2Cab,cdλabΛefcdA

∗Kef + Cab,cdΛefabΛ
gh
cdKefKgh

(2.39)
This is the result for what concerns the scalar sector. To complete the cal-
culation of the kinetic matrix, though, we need to evaluate also the contri-
bution coming from the gravitational term of the action, the one containing
the Ricci scalar.
To do this, we need the Gauss-Codazzi equation

R = (3)R+KµνK
µν −K2 − 2∇µ(aµ −Knµ) (2.40)

Substituting this in the original action, we get

Sg =
∫
d4x
√
−g{f [KµνK

µν −K2 + (3)R] + 2∇µ(aµ −Knµ)} (2.41)

From this part of the action, two contributions to the kinetic emerge: one
to the mixed term

Babgrav ≡ 2fX
A∗

N
habȦ

∗Kab (2.42)

and one to the term quadratic in Kab

Kab,cdgrav ≡ fha(chd)b − fhabhcd + 2fX(ÂaÂbhcd + ÂcÂdhab) (2.43)

Together with the contribution coming from the scalar sector, that is

A ≡ Cab,cdλabλcd
Befφ ≡ C

ab,cdΛefabλcd
Kef,ghφ ≡ Cab,cdΛefabΛ

gh
cd

(2.44)

so that the kinetic matrix is finally given by

M≡
( A Bcdφ + Bcdgrav
Babφ + Babgrav K

ab,cd
φ +Kab,cdgrav

)
(2.45)

The degeneracy condition wants the determinant of this matrix to be zero,
and imposing such a condition on (2.45) leads to the expression

D0(X) +D1(X)A∗2 +D2(X)A∗4 = 0 (2.46)

Evidently, the three terms must vanish indipendently, resulting in the set of
three degeneracy conditions 3

0 = D0(X) ≡ 4(a1 + a2)[2Xf(2a1 − 2Xa4 − 2fX) + 2f2 + 8X2f2
X ] (2.47)

3In the literature about this topic, one can find these three degeneracy conditions
expressed in an alternative fashion, due to the different definition of X.
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0 = D1(X) ≡ 4[X2a1(a1 + 3a2)− 2f2 + 8Xfa2]a4 + 16X2f(a1 + a2)a5 − 16Xa3
1

− 4(f + 4XfX + 12Xa2)a2
1 − 16(f + 5XfX)a1a2 − 8X(3f − 4XfX)a1a3

−X2fa2
3 − 16fX(f + 2XfX)a2 + 8ffXa1 − 8f(f −XfX)a3 + 12ff2

X

(2.48)

0 = D2(X) ≡ 4[2f2 − 8Xfa2 − 4X2a1(a1 + 3a2)]a5 + 4a3
1 + 4(2a2 + 2Xa3 + 2fX)a2

1

+ 12X2a1a
2
3 + 8Xfa2

3 + 8(f +XfX)a1a3 + 16fXa1a2 + 4f2
Xa1 + 8f2

Xa2 + 8ffXa3
(2.49)

2.7 DHOST classification

The quadratic DHOST theories can be classified based on these three de-
generacy conditions, as seen in [5].
Up to now, the entire quadratic DHOST space of theories is spanned by
6 indipendent functions of the scalar field and its kinetic term. From the
three degeneracy conditions, (2.47)-(2.49), one can obtain a classification of
the quadratic DHOST theories based on some fixed relations between the
coefficients {ai} that reduce the number of independent functions. Actually,
based on the first degeneracy condition, one can immediately distinguish
three main classes. Indeed, the D0(X) function vanishes if one of the fol-
lowing cases is true

a1 + a2 = 0 (I)
2Xf(2a1 − 2Xa4 − 2fX) + 2f2 + 8X2f2

X = 0 (II)
f = 0 (III)

(2.50)

2.7.1 Class I

In the first case, the class (I) is defined by the relation

a1 = −a2 (2.51)

The degeneracy conditions (2.48) and (2.49) can be used to express a4 and
a5 coefficients in terms of the others. Two sub-cases arise now.

In the first, by assuming f − 2Xa2 6= 0, we can express this sub-class, that
we should call class Ia, through the relations

a4 = 1
2(f − 2Xa2)2 [−8Xa3

2 + (3f + 16XfX)a2
2 + (−8X2fX + 6Xf)a3a2

−X2fa2
3 − 2fX(3f + 4XfX)a2 + 2f(XfX − f)a3 + 3ff2

X ]
(2.52)

a5 = 1
2(f − 2Xa2)2 (a2 −Xa3 − fX)(fXa2 + 2fa3 − a2

2 − 3Xa2a3) (2.53)
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The theories in this class are defined by means of three independent functions
{a2, a3, f}.

In the second sub-class, class Ib, we assume instead that f = 2Xa2, so that

a1 = −a2 = − f

2X (2.54)

a3 = 1
2X (f − 2XfX) (2.55)

In class Ib, however, dwell theories that are degenerate in the metric sector,
thus not interesting for us that require degeneracy in the φ-sector or in the
scalar-tensor coupling.

2.7.2 Class II

Class II, characterized by

2Xf(2a1 − 2Xa4 − 2fX) + 2f2 + 8X2f2
X = 0 (2.56)

also features two sub-classes. As before, we can express a4 and a5 in terms
of the other coefficients. By plugging the result in (2.56), one can get

(f + 2Xa1)[(4f2 − 2Xf(8a2 + 2a1 − 2Xa3 + 2fX) + 8X2fX(a1 + 3a2)] = 0
(2.57)

By assuming f + 2Xa1 6= 0, one can define class IIa as

a3 = 1
4X2f

[−4f(f −XfX) + 4X(f −2XfX)a1−8X(−2f + 3XfX)] (2.58)

a4 = 1
2X2f

[f2 − 2fXfX + 4X2f2
X + 2Xfa1] (2.59)

a5 = 1
4f2X3 [4f(f2−3fXfX+2X2f2

X)+(−6Xf2+16X2ffX−12X3f2
X)a1−4X(2f−3XfX)2a2]
(2.60)

The three arbitrary functions spanning the space of theories in class IIa are
{f, a1, a2}.

The second sub-class, is defined by the condition f = −2Xa1. This class is
very similar to class Ib, in the sense that here also the metric sector is the
one hiding the degeneracy. This class is defined by the relations

a1 = − f

2X (2.61)

a4 = 2fX(fX
f
− 1

2X ) (2.62)
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a5 = 1
−32X3f(f − 2Xa2) [−16X(4XfXf − f2 − 4X2f2

X)a2 − 2Xf(−16X2fX

− 8X3a3 − 4f)a3 + 4(XfXf2 − 2X3f3
X + 2X2f2

Xf − f3)]
(2.63)

2.7.3 Class III

The last class is characterized by f = 0. From this condition,

D1(X) = 0 D2(X) = 0 (2.64)

can be exploited to obtain

a4 = a1
X a5 = a2

1+2a1a2+2a1a3X+3a2
3X

2

4X2(a1+3a2) (2.65)

as these relations describe the sub-class IIIa, as long as a1 6= −3a2. This
subset of DHOST theories is spanned by the three independent functions
{a1, a2, a3}. Furthermore, the intersection Ia∩IIIa is not only a non-trivial
one, but sub-class of particular interest: being spanned by only two arbitrary
coefficients, it contains the quartic beyong Horndeski lagrangian, LbH4 .

The case in which a1 = −3a2 instead, characterizes the class IIIb through
the set of relations:

a1 = −3a2 a2 = Xa3 f = 0 (2.66)

Finally, the third sub-class, IIIc, specified by

f = 0 a1 = 0 (2.67)

And is spanned by four independent functions of (φ,X).

2.8 LH
4 + LbH

4 as quadratic DHOST
The quartic lagrangian operators of the Horndeski theory

LH4 = G4(φ,X)R+G4X(φ,X)[(φµµ)2 − (φµν)2] (2.68)

can be retrieved from the general quadratic DHOST lagrangian as a partic-
ular case, corresponding to the choice of coefficients:

f = G4 a1 = −a2 = −G4X a3 = a4 = a5 = 0 (2.69)

From these relations it is clear that this term belongs to the class Ia.
The quartic beyond Horndeski lagrangian, instead,

LbH4 = F4(φ,X)εαβγσ εµνρσφαφµφβνφγρ (2.70)
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appears as the choice of coefficients

f = 0 a1 = −a2 = −2XF4 a3 = −a4 = 2F4 a5 = 0 (2.71)

This set of relations select too a subclass of class Ia. In particular, we saw
in the previous section that LbH4 belongs to the intersection with class IIIa.

But in particular, a more interesting class of theories is represented by the
one featuring degeneracy due to the scalar sector alone.
By this definition, this class, that we shall call from now on class A, is
associated to theories that satisfy the condition

0 = A = (a1 + a2) + (a3 + a4)A∗2 + a5A
∗4 (2.72)

The three degeneracy conditions to which (2.72) is equivalent, select a pe-
culiar subset of class Ia (as one can read out from a1 = −a2) characterized
by

a5 = 0 =⇒ fX − a2 +Xa3 = 0 (2.73)

This condition reduces the number of independent functions to two, {f, a2},
and allows the indentification of class A with the LH4 + LbH4 theory, upon
the choice of the combination of coefficients

f = G4 a1 = −a2 = −G4X − 2XF4 a3 = −a4 = 2F4 (2.74)

This identification supports the statement that the combination of quartic
Horndeski and beyond lagrangians is the most general quadratic ST theory
that is degenerate in the φ-sector alone, and thus remains degenerate even
when the metric is non-dynamical (that is, even in the case of a flat space-
time).



Chapter 3

Effective theory of dark
energy

3.1 Perturbations in quasi-static approximation
We start from the lagrangian of a quadratic DHOST scalar-tensor theory,
plus the matter lagrangian featuring a minimal coupling to the metric,

S = SDHOSTg [gµν , φ] + Smat[gµν , ψm, Aµ, · · · ] (3.1)

that describes non-relativistic matter sources that are composed of standard
model particles and cold dark matter. That means that the stress-energy
tensor associated to the matter component is that of a perfect preassureless
fluid, Tµν = diag(−ρm, 0, 0, 0).
In details, the gravitational part of the action is taken to have the form
of a generic quadratic DHOST theory of a scalar degree of freedom non-
minimally coupled to gravity, plus an arbitrary function of the scalar field
and its kinetic term (the shift symmetric term among the ones that in [4]
go under the name of "others"):

SDHOSTg [gµν , φ] =
∫
d4x
√
−g[F (φ,X)R+ aI(φ,X)LI + P (φ,X)] (3.2)

with the lagrangian operators LI represented explicitly by:

L1 =φµνφµν L2 = (φµµ)2 L3 = (φµµ)(φρφρσφσ)
L4 = φµφµνφ

νρφρ L5 = (φρφρσφσ)2 (3.3)

Here we remind the reader that we make use of the notation in which
X = −1

2g
µνφµφν and the greek indices on scalar fields stand for covari-

ant derivatives acting on the fields themselves, φµν = ∇µ∂νφ.

From this starting point we want to build the effective theory, valid for small

23
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scales, for the small fluctuations of the metric potentials and of the scalar
field having the matter overdensity, δ, as a source.
To do so, we proceed by perturbing the metric and the scalar field around a
flat Friedman-Robertson-Walker background, expanding the (3.1) action in
terms of the perturbations hµν , π and δ following

gµν → gµν(t) + hµν(t, ~x)
M̃Pl

, h00 = −2Φ(t, ~x) hij = −2a2(t)Ψ(t, ~x)δij (3.4)

φ→ φ(t) + π(t, ~x) (3.5)

ρ→ ρ(t)[1 + δ(t, ~x)] (3.6)

where M̃Pl is a mass scalle of order of the actual Planck mass.
The expansion of the lagrangian in (3.1) has been done in the Newtonian
gauge, in order to keep only the scalar perturbations of the metric.
Moreover, this procedure was conducted under the quasi-static approxima-
tion, as the galaxies and halos, that constitute the matter sources around
which our analysis is thought to be conducted, are assumed to be fixed in
the same configuration; similarly, also the scalar field’s profile is assumed to
be basically frozen in time: it’s dynamics, around small scales, is thought
to be dominated by spatial derivatives. This idea translates in terms of
lagrangian operators as

(∇ε)2 � (∂tε)2 (3.7)

where ε stands for the any of the fields π,Φ or Ψ. Furthermore, we want to
select only those terms in the equation of motion that present at least two
spatial derivatives per field, because they grow in importance as we go to
smaller scales: these are generated by terms in the effective lagrangian that
contain a number of derivatives, #(∇), and a number of fields, #(ε), that
satisfy

#(∇) ≥ 2(#(ε)− 1)

and are the operators that will significally contribute to the mechanism of
screening.
All these steps were conducted by first splitting the metric and the resulting
perturbations in an ADM-like fashion into components respectively parallel
and orthogonal to space-like hypersurfaces. These calculations were con-
ducted with the help of the Mathematica package xPand. [7]

This said, the results for every quadratic DHOST lagrangian operator
are listed below, organized in quadratic and non-linear part:

3.1.1
√
−gF [φ,X]R

L(NL)
R,Eff = 1

a
[−2FX(∇iΦ)(∇jπ)[Πij ] + 4FX(∇iΨ)(∇jπ)[Πij ]] (3.8)
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L(2)
R,Eff = a[(4XFX)Φ∇2Φ + (−2F )Ψ∇2Ψ+

(2Hφ̇FX + 2φ̈FX + 4Xφ̈FXX − 2Fφ + 4XFφX)Φ∇2π+
(−4Hφ̇FX − 4φ̈FX − 8Xφ̈FXX + 4Fφ − 8XFφX)Ψ∇2π+
(4F − 8XFX)Ψ∇2Φ + (2φ̇FX)Φ̇∇2π + (−4φ̇FX)Ψ̇∇2π+

(6H2FX + 3ḢFX)π∇2π] (3.9)

3.1.2
√
−ga1[φ,X]L1

L(NL)
1,Eff = 1

a3 [(−a1X
2 )(∇π)2[Π2]]+1

a
[(a1φ)π[Π2]+(φ̇a1X)π̇[Π2]+(−2Hφ̇a1X)LGal3 +

(a1 − 2Xa1X)Φ[Π2] + (2a1)ΨEGal3 + (a1)Ψ[Π2] + (2a1)(∇iΨ)(∇jπ)[Πij ]]
(3.10)

L(2)
1,Eff = a[(7H2a1 + 4Ḣa1 + 5H2Xa1X + 2ḢXa1X + 7HẊa1X+

1
2 φ̈

2a1X + Ẍa1X + 2HXẊa1XX + Ẋ2a1XX + φ̈a1φ+

+ 2Hφ̇Xa1φX + 3Hφ̇a1φ + 4Xφ̈a1φX + 2Xa1φφ)π∇2π − (2a1)π̈∇2π+
(6Hφ̇a1 + 6φ̈a1 + 4Hφ̇Xa1X + 4Ẋφ̇a1X + 8Xa1φ)Φ∇2π + (4φ̇a1)Φ̇∇2π+

(2φ̇a1)Ψ̇∇2π + (4Xa1)Φ∇2Φ] (3.11)

3.1.3
√
−ga2[φ,X]L2

L(NL)
2,Eff = 1

a3 [(−a2X
2 )(∇π)2[Π]2]+1

a
[(a2φ)π[Π]2+(φ̇a2X)π̇[Π]2+(−6Hφ̇a2X−2φ̈a2X)LGal3 +

(−2a2)ΦEGal3 + (a2 − 2Xa2X)Φ[Π]2 + (2a2)(∇iΦ)(∇jπ)[Πij ]+
(2a2)ΨEGal3 + (a2)Ψ[Π]2 + (−2a2)(∇iΨ)(∇jπ)[Πij ]] (3.12)

L(2)
2,Eff = a[(4Xφ̈a2X + 12Hφ̇Xa2X + 4φ̈a2 + 12Hφ̇a2)Φ∇2π+

(4H2a2 + 3Ḣa2 + 15H2Xa2X + 6ḢXa2X + 13HẊa2X + 1
2 φ̈

2a2X + Ẍa2X+

6HXẊa2XX +Ẋ2a2XX−3Hφ̇a2φ−2φ̈a2φ+6Hφ̇Xa2φX +2Xφ̈a2φX)π∇2π+
(2φ̇a2)Φ̇∇2π + (6φ̇a2)Ψ̇∇2π + (−2a2)π̈∇2π] (3.13)

3.1.4
√
−ga3[φ,X]L3

L(NL)
3,Eff = 1

a3 [(a3)LGal4 +(a3)(∇iπ)(∇jπ)[Π2]ij ]+1
a

[(−2φ̇a3)(∇iπ̇)(∇jπ)[Π]ij+

(−3Hφ̇a3 − 3φ̈a3 − 2Xφ̈a3X − 4Xa3φ)LGal3 +
(−2Xa3)ΦEGal3 + (2Xa3)(∇iΦ)(∇jπ)[Π]ij ] (3.14)
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L(2)
3,Eff = a[(12H2Xa3 + 6ḢXa3 + 7HẊa3 + 2HẊXa3X − 3Xφ̈2a3X+
−XẌa3X −XẊ2a3XX + 6Hφ̇Xa3φ + 2Xφ̈a3φ − φ̇XẊa3φX)π∇2π+

(2Xa3)π̈∇2π+(−2φ̇Xa3)Φ̇∇2π+(6Hφ̇Xa3−6Xφ̈a3−2φ̇XẊa3X)Φ∇2π]
(3.15)

3.1.5
√
−ga4[φ,X]L4

L(NL)
4,Eff = 1

a3 [(a4)(∇iπ)(∇jπ)[Π2]ij ]+1
a

[(4Xa4)(∇iΦ)(∇jπ)[Π]ij+(−2φ̇a4)(∇iπ̇)(∇jπ)[Π]ij ]
(3.16)

L(2)
4,Eff = a[(−4X2a4)Φ∇2Φ+(−4Hφ̇Xa4−12Xφ̈a4−4φ̇XẊa4X−8X2a4φ)Φ∇2π+

(ẊHa4−H2Xa4−ḢXa4−2HXẊa4X−3Xφ̈2a4X−XẌa4X−XẊ2a4XX+
−2Hφ̇Xa4φ−3Xφ̈a4φ−4X2φ̈a4φX−2X2a4φφ)π∇2π+(−4φ̇Xa4)Φ̇∇2π+(2Xa4)π̈∇2π]

(3.17)

3.1.6
√
−ga5[φ,X]L5

L(NL)
5,Eff = 1

a
[(4Xφ̈a5)LGal3 ] (3.18)

L(2)
5,Eff = a[(−8X2φ̈a5)Φ∇2π + (−8HXẊa5 − 8Xφ̈2a5 − 4XẌa5+

− 3XẊ2a5X − 8X2φ̈a5φ)π∇2π] (3.19)

3.1.7
√
−gP [φ,X]

L
(2)
P,eff = PX

2 π∇2π (3.20)

3.1.8
√
−gLm

Leffm = −a
3ρm

M̃Pl

Φδ (3.21)

3.2 DHOST Effective Action
To sum up the previous results in a more compact formula, we can write

L(2)
DHOST =a[FΨ∇2Ψ +GΨ∇2Φ +KΦ∇2Φ + ηπ∇2π + ηtπ̈∇2π

ξ1Φ∇2π + ξ2Ψ∇2π + χ1Φ̇∇2π + χ2Ψ̇∇2π]− a3ρm

M̃Pl

Φδ
(3.22)



3.3. ET FOR CLASS I DHOST THEORIES 27

for the quadratic operators, and

L(NL)
DHOST = 1

a3Λ6 [νLGal4 + θ1(∇π)2[Π]2 + θ2(∇π)2[Π2] + σ∇iπ∇jπ[Π2]ij ]

+ 1
aΛ3 [µLGal3 + µt∇iπ̇∇jπΠij + α1ΦEGal3 + α2ΨEGal3 + α∗∇iΨ∇jπΠij

+ β∗∇iΦ∇jπΠij + p1π[Π]2 + p1tπ̇[Π]2 + p2π[Π2] + p2tπ̇[Π2]
+ f1Φ[Π2] + f2Φ[Π]2 + g1Ψ[Π2] + g2Ψ[Π]2]

(3.23)

for the nonlinear terms, instead. An additional mass scale, Λ, typical of the
effective theory now appeares explicitly.
Compared to the result showed in [1], in which the EFT for a combination
of Hordenski and beyond Hordenski terms is listed, a set of new operators
appear when dealing with the EFT for a quadratic DHOST theory:

{∇iπ∇jπ[Π2]ij ,∇iΦ∇jπ[Π]ij , (∇π)2[Π]2, (∇π)2[Π2],∇iπ∇jπ[Π]ij ,
π[Π]2, π̇[Π]2, π[Π2], π̇[Π2],Φ[Π2],Φ[Π]2,Ψ[Π2],Ψ[Π]2,Φ∇2Φ, Φ̇∇2π, π̈∇2π}

(3.24)

The goal of this thesis work is now clearer: first we need to retrieve from
this effective action the results presented in [1]. To do so we will impose
the relations between the coefficients that appear in (3.22) and (3.23) that
select the combination of quartic Horndenski lagrangians. Then we will de-
rive the equations of motion of the perturbations and manipulate them in
spherical cohordinates and under the spherical symmetry assumption: with
this procedure we will solve them and then we will study the behavior of
the solution to check the integrity of the Vainshtein mechanism.
Second step, consequently, will then be to redo the same analysis in a more
general case, the study of the effective theory to understand what is the effect
of these new nonlinear operators arising in the generalized case of consider-
ing a wider class of DHOST theories. What we expect is that the effect of
these operators will reproduce similar effects as seen those already seen in
the case of the beyond Horndeski terms, effectively breaking the Vainshtein
screening mechanism inside the region in which it would be expected to work.

3.3 ET for Class I DHOST theories
We will choose to restrict to the case of a DHOST theory with the additional
constraint a1 = −a2: in this way, the contributions of some of the new
operators are canceled or reabsorbed in the coefficient of other operators.
This is the condition that defines the class I DHOST theories, without
specifying the actual degenerate subclass.
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We can see that, for example, as a result of the addition of this constraint,
p1 = −p2 and so the operators proportional to these coefficients sum up to
a term that is equivalent, once integrated by parts, to the LGal4 operator.
This is still a more general case than the one studied in [1] and showed in the
previous section, but we exploit the simplification that this relation between
DHOST coefficients brings in. Eventually, the result, where the {Ai, Bi, Ci}
coefficients have been introduced for simplicity, is:

Leffa1=−a2 = a(A1Φ∇2π +A2Ψ∇2π +A3π∇2π +A4Ψ∇2Φ +A5Ψ∇2Ψ
+A6Ψ̇∇2π +A7Φ∇2Φ +A8Φ̇∇2π +A9π̈∇2π)

+ 1
aΛ3 (B1LGal3 +B2ΦEGal3 +B3ΨEGal3

+B4∇iΨ∇jπΠij +B5∇iΦ∇jπΠij +B6∇iπ̇∇jπΠij)

+ 1
a3Λ6 (C1LGal4 + C2∇iπ∇jπ[Π2]ij)− a3Φ

M̃Pl

δρm

(3.25)

where the conversion table from the {Ai, Bi, Ci} dimensionful coefficients to
the original {f, ai, P} DHOST coefficients is given in the appendix A.

3.4 Equations of motion: Class I
From the effective lagrangian built in the previous section we would like now
to derive the equations of motion of the perturbations, by variating Leffa1=−a2
with respect to {Φ,Ψ, π}. By doing so, we obtain three equations that can
be re-expressed in spherical coordinates and assuming spherically symmetry,
can be integrated once to obtain

δΦ :
A1x+ 2A7y +A4z − Ȧ8x− 3A8Hx−A8ẋ− 2Λ3x(−2B2x+B5(x+ rx

′)) = A(r, t)
(3.26)

δΨ :
A2x+A4y + 2A5z − Ȧ6x− 3A6Hx−A6ẋ− 2Λ3x(−2B3x+B4(x+ rx

′)) = 0
(3.27)

δπ :
2A3x+A1y + 2A8Hy +A2z + 2A6Hz + 6Ȧ9Hx+ Ä9x+ 2Ȧ9ẋ+A8ẏ +A6ż

+A9(13H2x+ 5Ḣx+ 10Hẋ+ 2ẍ) + 2Λ3(2B1x
2 +B6(rẋx′ +Hx(9x+ 5rx′)

+ x(5ẋ+ 2rẋ′)) + x(4Λ3C1x
2 + 4B2y + 3B5y + 4B3z + 3B4z + Ḃ6x+ Ḃ6rx

′

+B5ry
′ +B4rz

′ + 4Λ3C2(3x2 + r2x
′2 + rx(6′ + rx

′′)))) = 0
(3.28)
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Here we introduced the new unknown functions x,y,z related to the original
perturbations through the definitions

x(t, r) ≡ ( π′

Λ3a2r
) y(t, r) ≡ ( Φ′

Λ3a2r
) z(t, r) ≡ ( Ψ′

Λ3a2r
) A(t, r) ≡ M(r, t)

M̃PlΛ38πr3

(3.29)
and moreover,

M(t, r) ≡
∫ r

0
dr̄4πr̄2ρm(t)δ(t, r̄) (3.30)

is the source mass, contained in a sphere of comoving radius r and with the
prime notation we here refer in short to the derivatives with respect to the
comoving radial coordinate, ′ ≡ d

dr . The dot notation instead is a shortcut
for usual cosmological time derivatives, ˙≡ d

dt .

3.5 ET for quartic Horndeski

We can also easily retrieve the effective theory for the theory described
by the combination of the two quartic Horndeski and beyond Horndeski
lagrangians by imposing the conditions (2.71) to the results of the pertur-
bation procedure, (3.8) to (3.19). The effective lagrangian thus obtained is
equivalent to the one showed in [1], without the contributions offered by the
quintic Horndeski terms

Leff4 = L(2)
H + L(2)

bH + LNLH + LNLbH (3.31)

where the quadratic lagrangians are described as

L(2)
H = −aFΨ∇2Ψ+2aGΨ∇2Φ+aη

2 π∇2π−2aξ1Φ∇2π+4aξ2Ψ∇2π−a3ρmΦδ
(3.32)

L(2)
bH = 4aξt

Λ3 Ψ̇∇2π (3.33)

and the nonlinear lagrangians are

LNLH = µ

aΛ3L
Gal
3 + ν

a3Λ6L
Gal
4 + α1

aΛ3 ΦEGal3 + α2
aΛ3 ΨEGal3 (3.34)

LNLbH = − 4α∗
aΛ3∇iΨ∇jΠ

ij (3.35)

the {F ,G, η, ξ1, ξ2, ξt, µ, ν, α1, α2, α∗} dimensionless coefficients are functions
of the Horndeski coefficients {G4, G4X , F4, F4X}, and their definition can be
found in [1], [8] without the contributions of {G5, G5X , F5, F5X}.
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3.6 Equations of motion:LH4 + LbH4
The procedure here is the same as the one already shown in the class I case,
but as we will see the result is way simpler to handle in order to be able to
derive a physical interpretation.
Indeed, the generalization to a wider class of DHOST brings into play many
additional terms, among which we encounter some featuring up to second
order time and radial derivatives. Of course, these terms complicate the
solution of the eom, but in the next chapter we will see that in a particular
regime of interest part of these terms are neglegible.
After the derivation of the eom and their integration under the spherical
symmetry assumption, we obtain the following equations:

δΦ :
Gz − ξ1x− α1x

2 = A
(3.36)

δΨ :

2ξ2x+ Gy −Fz + α2x
2 + 2α∗x(rx′ + x)− 2

a3∂t(a
3ξtx) = 0

(3.37)

δπ :
ηx− 2ξ1y + 4ξ2z + 2µx2 + 2νx3 − 4α1xy + 4α2xz − 4α∗(rxz′ + 3xz)

+ 4ξt
a2 ∂t(a

2z) = 0
(3.38)

We will deal with the solution of these equations and of the equations in the
previous section in the next chapter, when we will eventually complete the
analysis of the Vainshtein mechanism in both these classes of ST theories.



Chapter 4

Screening

As anticipated in the introduction, modified gravity models require all some
sort of censorship around those scales for which the last century of obser-
vational physics has provided us with precision tests. These tests General
Relativity has endured up to now, and this fact contributes to the rea-
sonable convintion with which we do not expect effects of physics beyond
GR to arise around scales such as the solar system size. What is needed
in modified gravity, thus in particular in the ST theories we study in this
work, is a screening mechanism that hides on small scales the propagation of
the additional degrees of freedom introduced to extend GR, while allowing
for significant deviantions from Einstein’s phenomenology on cosmological
scales.
In this chapter we will introduce a classification of the main type of screen-
ing mechanisms; then we will deal with the Vainshtein mechanism and a
simple example in which this artefact works. In the next chapter, finally, we
will build the effective theory for small scales, with which we will study the
Vainsthein screening in LH4 +LbH4 , via the more general qDHOST lagrangian.

4.1 Zoology of screening mechanisms
The classification is here presented as was introduced in [6]: it is a phe-
nomenological classification based on the criterion around which the mech-
anism themselves work. In general, the operating principle is that a certain
operator in the lagrangian describing the MG theory becomes more relevant
on certain scales than the others and by doing so, kill the propagation of
the expected additional d.o.f.
There are three cases to distinguish:

1. φ-based screening: the screening mechanisms in this class all oper-
ate on the principle that the fifth force is screened in regions of high
density, ρ, or equivalently, high Newtonian potential, Φ. These mech-
anisms all arise from an effective potential, built with contributions
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from the self-interaction potential of the scalar field, V (φ), and the
non minimal coupling between the scalar and the matter sector, A(φ),
from which emerges a dependance on the local density. In the case of
the chameleon screening, this is the key to the mechanism: in context
of high density regions, the scalar acquires a consistent mass, hindering
the propagation. In low density media, instead, the effective potential
is shallower and thus the effective mass lighter, allowing for the fifth
force to propagate.
In the symmetron or dilaton mechanisms, instead, the ρ-dependance
of the effective potential determines a symmetry breaking behavior: in
situations of low density, the local field acquires a null vacuum expec-
tation value; in high density environments, instead, a non trivial VEV
is restored. By choosing smartly the non minimal coupling, one can
demonstrate that the coupling between the scalar fluctuations and the
matter sector is proportional to the VEV: low values of density are
thus associated to an effective decoupling of fluctuations and matter,
coupling that is restored instead in high density regions.

2. ∂φ-based screening This is the first class of derivative based screening.
This type of mechanisms, also called kinetic screening are based on the
first order derivatives of the relevant fields. That means they operate
when ∂φ & Λ2; or, equivalently, when the value of the gradient of the
Newton potential exceeds a threshold value, |∇Φ| & Λ2. Thus the fifth
force is shut down when the gravitational acceleration overcomes the
critical value ~a = −~∇Φ.
Examples of theories featuring the kinetic screening are the k-mouflage
or, more in general, P (X) models.

3. ∂2φ-based screening The Vainshtein screening mechanism belongs to
this class. The principle is that on small scales, terms built with
second-order derivatives of the fields become relevant while higher-
order terms remain neglegible. The mechanism activates when ∂2φ &
Λ3, or equivalently when the curvature terms or local density exceeds
the threshold as described by R ∼ |∇2Φ| & Λ3. The well known
example featuring the Vainshtein screening is the galileon theory, as
will be better explained in the next section.

4.2 Vainshtein screening: cubic galileon theory

Galileon theories are the most general theory of a scalar field, π(x), in flat
space-time (thus the metric is non-dynamical), that features only terms not
higher than second order in the derivatives of π(x). In fact, also terms in-
volving non-derived powers of the scalar field, or terms containing only once
derived π(x) must be rejected in building galileon theories. The covarianti-
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zation, in the sense of the extension to curved-space galileons, is represented
by the Horndeski ST theory.

In order to show how the Vainshtein mechanism works, we will present here
a famous example of the cubic galileon theory:

L = −3(∂φ)2 − 1
Λ32φ(∂φ)2 + g

MPl
φTµµ (4.1)

and the screening acting on it.
The equation of motion for φ is

62φ+ 2
Λ3 [(2φ)2 − (∂µ∂νφ)2] + g

MPl
Tµµ = 0 (4.2)

The Vainshtein screening relies on the non-linear term, 1
Λ32φ(∂φ)2, becom-

ing much more relevant than the kinetic term around massive sources, such
that 2φ� Λ3.
To actually see this effect, let’s take a static point-like source such that
Tµµ = −Mδ(3)(~x). We then further assume that the scalar field profile is
spherically symmetric and static as well, φ = φ(r), for simplicity. Finally,
we integrate once the equation (4.2) under these assumptions to obtain

6φ′ + 4
Λ3

φ
′2

r
= gM

4πr2MPl
(4.3)

This is a simple second order equation, and to select the physically relevant
solution between the two we will just impose the reasonable condition for
the scalar field’s radial derivative φ′ → 0 at spatial infinity. This way we
select the solution

φ′(r) = 3Λ3r

4
(
− 1 +

√
1 + 1

9π (rV
r

)3
)

(4.4)

and we define the peculiar Vainshtein radius as rV ≡ 1
Λ( gMMP l

)
1
3 . This is a

specific distance scale introduced for the screening mechanism, and has the
role of a threshold that distinguishes between two regimes:

• r � rV , far outside the Vainshtein typical radius, the solution acquires
the form

φ′ ' g

3
M

8πMPlr2

Hence, the galileon force to gravitational force ratio is approximately

Fφ
Fgrav

∣∣∣
r�rV

' g2

3
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• r � rV , inside the Vainshtein radius, instead, we can see that the
galileon force is highly suppressed. The profile being,

φ′ ' Λ3rV
2

√
rV
r

and the ration between the forces resulting in

Fφ
Fgrav

∣∣∣
r�rV

' (rV
r

)
3
2 � 1

The effective theory built from scalar tensor theories much more general
than this galileon example (aka Horndeski [9]) still feature nonlinear opera-
tors that behave similarly as seen in this section, with the introduction of a
threshold distance scale that distinguishes between screened and unscreened
regimes.
However, is has been shown that even the simplest generalization of Horn-
deski theory seems to introduce higher order nonlinear operators that inter-
fere with the Vainshtein mechanism and thus impede the screening. In the
following chapter, we will deal with what has been already shown in this
direction by [1] and we will set the foundations of the argument that goeas
in the direction of generalizing this proof to a wider class of ST theories.

4.3 Breaches in the screening mechanism
In this section we will finally focus on cases in which the Vainshtein screen-
ing is broken: the Horndenski plus beyond Horndeski theory and a more
generalized DHOST case.
The effect of nonlinear lagrangian operators on small scales becomes rele-
vant, and implies the appearance of second order derivatives in r and time
derivatives: the solutions of the eom for the metric potentials in general is
expected to hide some unpleasant surprises, in the form of Φ 6= Ψ even for
some small scale regime, thus signaling the presence of beyond GR effects
where we wouldn’t like them to arise.
Here follows the detailed solution of the two models presented in the previous
chapter.

4.3.1 Vainshtein breaking in LH4 + LbH4
In dorder to solve equations (3.36)-(3.38) we will first select the nonlinear
regime corresponding to A � 1. This regime is equivalent to selecting the
proximity limit to the source, in which we expect the nonlinearities in our
theory to gain more significance and breaking effects to show up.
The procedure here follows closely the one adopted in [1]: we make use of
equations (3.36) and (3.37) to eliminate y and z from (3.38).
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In this simple case, the time and radial derivatives of x disappear in a
seemingly miracolous fashion. We are left with an ordinary third grade
equation in x, where the only complications hide in the explicit form of its
coefficients

Ξx3 − κ2x
2 − 2[κ1 + (Fα1 − Gα2 + 3Gα∗)A+ Gα∗rA′]x

+ [2G
2ξt

Ma2 ∂t(
a2

G
A)− (Fξ1 − 2Gξ2)] = 0

(4.5)

The explicit form of the coefficients being

κ1 ≡
−G2η

2 + Fξ
2
1

2 − 2Gξ1ξ2 −
Gξ2

t

aM
∂t(

aξ1
Gξt

) (4.6)

κ2 ≡ 3Fα1ξ1 − G(Gµ+ 3α2ξ1 + 6α1ξ2 − 4α∗ξ1)− 2a4Gξ3
t

M
∂t(

α1
a4Gξ2

t

) (4.7)

Ξ ≡ G(4α1α2 − 2α1α∗ + Gν)− 2Fα2
1 (4.8)

Furthermore, we look for solution that are x� 1: for such, we may expect
(in the absence of the beyond Honrdenski terms) the existence of a Vain-
shtein radius inside of which ordinary GR is reproduced.
Considering A ∼ ε and x ∼

√
ε we can conduct an expansion in the ε pa-

rameter and keep only leading order terms in it. In doing so, we will assume
that rA′ ∼ O(A). The result of this limit is the approximate solution

x2 ' 2[(Fα1 − Gα2 + 3Gα∗)A+ Gα∗rA′]
Ξ +O(A1/2) (4.9)

Now, by taking the same limit in equations (3.36) and (3.37), thus neglecting
the terms that are of lower order than O(A), such as linear terms in x we
obtain the following approximate equations

z ' α1
G
x2 +A (4.10)

y ' 1
G

[Fz − α2x
2 − α∗r

d

dr
(x2)− 2α∗x2] (4.11)

All that is left to do now is to substitute (4.9) in these two equations to
obtain

y = 8πGNA−
2α2
∗

Ξ
(r3A)′′

r
(4.12)

z = 8πGNA+ 2α1α∗
Ξ

(r3A)′

r2 (4.13)

where GN stands for the effective Newton constant, that actually has a
time dependence inherited from the Horndeski coefficients G4, F4 and their
derivatives with respect to X, of which GN is a function defined as:

8πGN (t) ≡ [2G4 − 8X(G4X +XG4XX)− 4X2(5F4 + 2XF4X)]−1 (4.14)
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This relation can be derived from the background equations of motion, which
are reproduced in the appendix A.

The two solutions for the metric potentials share a common term, hence it is
clear that if there is a limit in which the second terms are neglegible, then in
that limit we retrieve simple GR. Yet, it still has to be proven that the time
dependancy of GN (t) is such that it varies sufficiently slow to effectively
reproduce a universal constant.
We choose to take a density profile such that the mass source is confined in
a limited region, to which we will refer from now on as ovedensity region,
determined by a specific radius, rs(t). The density fluctuations are consid-
ered to vanish for all the points that r > rs(t).
We can then define a Vainshtein radius as

rV (t) ≡ [ M(t, rs)
8πM̃PlΛ3 ]1/3 (4.15)

We implicitly assume here that the overdensity region is enclosed in the
Vainshtein covered region: rs < rV . Consequently we see that outside the
confinement region we have

A = (rV
r

)3 (4.16)

Instead the first and second derivatives of the quantity A(t, r) vanish in this
limit, since it is true that

(r3A)′ ∝M(t, r)′ ∝ r2δ = 0

For this reason the second terms that distinguish the potentials one from
another vanish for r > rs, so that

Φ
M̃Pl

= Ψ
M̃Pl

= −GN (t)M(t, rs)a2

r
(4.17)

This is the ordinary Newtonian potential, as soon as we assume thatGN (t) ∼
GN , for slow varying effective constants.

Nonetheless, it is clear that the Vainshtein mechanism ceases to work inside
the overdensity region, r < rs, where the terms proportional to A′ and A′′
do not vanish anymore, in general. In the overdensity region, finally, we
have

Φ 6= Ψ
thus signaling the presence of modified gravity effects to which observational
tests could be sensible, in principle.

We observe that in the limit α∗ → 0, that is in the limit in which beyond
Horndeski terms are turned off, we reactivate the screening mechanism, as
the two terms responsible for the breaking vanish. This prooves that the
actual term responsible for the rupture of the Vainshtein is the nonlinear
effective operator (3.35).
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4.3.2 Vainshtein breaking in Class I

The manipulations required in this case in order to solve the eom are slightly
more complex. As was already pinpointed before, the presence of second or-
der time and radial derivatives, not to mention mixed derivatives, of the
unknown function x,y and z complicate the solution of the system of equa-
tions (3.26) to (3.28). It is impossible to recover the same simplification of
the time and radial derivatives by simple substitution of y and z exploting
the first two equations and substituing in the third one.
Nevertheless, there are some manipulations that we can conduct in order to
ease the task of solving the eom.

First of all, we are still interested in the same vicinity limit to the source
to which we restricted our search for a solution previously. This translates
again in the limits A� 1 and x� 1.
In this limit we know already that the nonlinear terms are expected to gain
in importance over other neglegible terms. In fact, we can look again for
solutions that have a defined gerarchy in terms of the function A(t, r): again
we could search for x ∼ O(A1/2) and y, z ∼ O(A), and throw away all the
terms in the eom that are of lower order in A.
In order to implent this argument, we can operate the following rescalings

x→ xε y → yε2 z → zε2 A→ Aε2 (4.18)

and then take only the leading order of the expansion in terms of ε of (3.26),
(3.27) and (3.28), for big values of ε. The result of this step is

A4y + 2A5z + 2Λ3(2B3 −B4)x2 − Λ3rB4(x2)′ −A = 0 (4.19)

2A7y +A4z + 2Λ3(2B2 −B5)x2 − Λ3rB5(x2)′ = 0 (4.20)

8Λ3(C1 + 3C2)x3 + 2(4B2 + 3B5)xy + 2(4B3 + 3B4)xz + 16Λ3rC2(x3)′

+ 8Λ3r2C2x(x′)2 + 8Λ3r2C2x
2x′′ + 2rB5xy

′ + 2rB4xz
′ = 0

(4.21)

In the first two equations the LO is represented by O(ε2) terms, while in the
third one the terms O(ε3) terms are LO.
Before proceeding with the (y, z) substitution in (4.21), we shall first notice
that there is a change of variables that could lead us to a linear system of
equations which is still equivalent to this one

x(t, r) ≡
√

X(t,r)
r3

y(t, r) ≡ Y (t,r)
r3

z(t, r) ≡ Z(t,r)
r3

A(t, r) ≡ M̄(t,r)
r3

(4.22)
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Thanks to the substitutions (4.22) the system of equations is now linear in
the new unknown functions {X,Y, Z}, and features only radial derivatives
at most of the second order

2A7
r3 Y + A4

r3 Z + 4Λ3B2 +B5
r3 X − Λ3B5

r2 X ′ = M

r3 (4.23)

A4
r3 Y + 2A5

r3 Z + 4Λ3B3 +B4
r3 X − Λ3B4

r2 X ′ = 0 (4.24)

4B2
r2 Y + 4B3

r2 Z + 4Λ3C1
r2 X + B5

r
Y ′ + B4

r
Z ′ + 2Λ3C2X

′′ = 0 (4.25)

From this point we can now obtain a master equation in X, which will result
to be a non-homogeneous second-order Euler-Cauchy equation of the form

T (t)X ′′(t, r) +R(t)X(t, r)
r2 + S1(t)M(t, r)

Λ3r3 + S2(t)M
′(t, r)

Λ3r2 = 0 (4.26)

The explicit expression of the coefficients in this equation can be found in
the appendices.
The solution to the homogeneous equation results in the combination

K1(t)r
1
2 (1−ζ(t)) +K2(t)r

1
2 (1+ζ(t)) (4.27)

Where we defined, for simplicity

ζ(t) ≡
√

1− 4R(t)
T (t) (4.28)

The particular solution, instead, can be written as

P+(t)
∫ r

1

r̄
1
2 [1+ζ(t)]

T (t)ζ(t) (S1(t)M(r̄, t)
Λ3r̄2 − S2(t)M

′(r̄, t)
Λ3r̄

)dr̄

− P−(t)
∫ r

1

r̄
1
2 [1−ζ(t)]

T (t)ζ(t) (S1(t)M(r̄, t)
Λ3r̄2 − S2(t)M

′(r̄, t)
Λ3r̄

)dr̄
(4.29)

The solutions obtained for the master equation, thus, are hard to interpret
and give a physical meaning. This is obviously due to the complexity of
the maste equation itself. In fact, what can be already observed from the
is that the generalization to class I theories brings along a promotion of
the master equation to a differential equation, compared to the simple third
grade equation obtained in [1] and retrieved a few section before. What we
expect is of course to retrieve the Kobayashi solution in the limit of T (t)→ 0,
and with the proper application of the degeneracy conditions equivalent to
the choice of quartic Horndeski + beyond.



Chapter 5

Conclusions

In this project we managed to construct the effective theory for the gen-
eral quadratic degenerate higher-order scalar-tensor theories on small scales
around quasi-static non-relativistic massive sources. The purpose of this
ET, being the verification of the Vainshtein mechanism in the proximity of
spherically symmetric overdensities.
From this more general starting point, we completed the goal of retrieving
the results obtained by Kobayashi et alii in [1], which has been done by re-
stricting our ET theory to that one employed in this last mentioned paper.
This is a further proof of the actual failure of the Vainshtein mechanism in
the Horndeski theory extended with the "beyond" terms introduced in [2].
Finally, we tackled the question on the Vainshtein validity in the generalized
case of class I qDHOST theories: we managed to obtain a master equation
for the perturbations of the scalar field, which already presents some non
trivial effects that do not appear in the simpler case considered in [1]. A
deeper analysis of the solution of this equation is postponed to an eventual
future pubblication.
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Appendix A

Equations of motion:
background

δa(t) :
9fH2 − 18a2H

2X + 6FḢ − 12a2XḢ − 12a2HẊ − 12a2XHXẊ + 6fXHẊ

− 3
2a4Ẋ

2 + 3a5XẊ
2 − 3a2XẊ

2 + 3fXXẊ2 + 3
2a3φ̇Ẋ − 3a2Ẍ + 3fXẌ = −p

(A.1)

δN(t) :
3fH2 − 12a2XH

2X2 − 12fXH2X + 6a2ḢX − 6fXḢX − 3a2HẊ − 6a4HXẊ

+ 12a5HX
2Ẋ + 3fXHẊ + 1

2a4Ẋ
2 + a5XẊ

2 − a4XXẊ
2

+ 2a5XX
2Ẋ2 + 3a3HXφ̇− 2a4X

2Ẍ + 4a5X
3Ẍ = −ρ

(A.2)

δφ(t) :
9a3H

2X + 3a3ḢX + 3a3HẊ + 3a3XHXẊ + 9a2H
3φ̇− 18a2XH

3Xφ̇

− 18fXH3φ̇+ 15a2HḢφ̇− 12a2XHḢXφ̇− 21fXHḢφ̇+ 3a2H
2φ̈

− 9a4H
2Ẋφ̇+ 18a5H

2XẊφ̇− 6a2XH
2Ẋφ̇− 6a2XXH

2XẊφ̇

− 6fXH2φ̈− 6fXXH2Ẋφ̇+ 3a2Ḣφ̈− 3a4ḢẊφ̇+ 6a5ḢXẊφ̇

+ 3a2XḢẊφ̇− 3fXḢφ̈− 3fXXḢẊφ̇− 3a4HẊφ̈+ 12a5HẊ
2φ̇− 9

2a4XẊ
2φ̇

+ 9a5XHXẊφ̇+ a5Ẋ
2φ̈− 1

2a4XẊ
2φ̈− 1

2a4XXẊ
3φ̇+ 5a5XXẊ

2φ̈+ 2a5XXX
2Ẋ2φ̈

+ 3a2Ḧφ̇− 3fXḦφ̇− 6a4HẌφ̇+ 12a5HXẌφ̇− a4Ẍφ̈+ 5a5ẌẊφ̇

− 2a4XẌẊφ̇+ 4a5XXẌẊφ̇− a4
...
Xφ̇+ 2a5X

...
Xφ̇ = 0

(A.3)
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Appendix B

{Ai,Bi,Ci} coefficients

A1 = −4φ̇(HX + Ẋ)a2X + 4(3Hφ̇+ φ̈)(Xa2X + a2)− 8Xa2φ − 6(Hφ̇+ φ̈)a2

+ 2X
[
3(Hφ̇− φ̈)a3 − Ẋφ̇a3X

]
− 4X

[
Ẋφ̇a4X + 2Xa4φ(φ,X) + a4(Hφ̇+ 3φ̈)

]
− 8X2φ̈a5 + 2(Hφ̇+ φ̈)fX + 4Xφ̈fXX + 4XfφX − 2fφ , (B.1)

A2 = −4(Hφ̇+ φ̈)fX − 8Xφ̈fXX + 4fφ − 8XfφX , (B.2)
A3 = 2(2XḢ + 3HẊ − 5H2X)a2X + 4HXẊa2XX − 3(2Hφ̇+ φ̈)a2φ

− 2(φ̈− 2Hφ̇)Xa2φX − 2Xa2φφ − (Ḣ + 3H2)a2 − (2HẊ + Ẍ + 3φ̈2)Xa4X

− (2Hφ̇+ 3φ̈)Xa4φ −XẊ2a4XX − 4X2φ̈a4φX − 2X2a4φφ − (XḢ −HẊ +H2X)a4

− 3XẊ2a5X − 8X2φ̈a5φ − 4(2HẊ + Ẍ + 2φ̈2)Xa5 + 3(Ḣ + 2H2)fX + PX
2 ,

(B.3)
A4 = 4(f − 2XfX) = 2M2(1 + αH) , (B.4)
A5 = −2f = −M2(1 + αT ) , (B.5)

A6 = 4(a2 − fX) = M2φ̇

X
αH , (B.6)

A7 = −4X(a2 + a4X − fX) = −M
2

2 β3 , (B.7)

A8 = −2φ̇ [a2 + (a3 + 2a4)X − fX ] = −M
2φ̇

2X (2β2 + β3) , (B.8)

A9 = 2X(a3 + a4) = M2

4X (4β2 + β3) , (B.9)

B1 = 4Xφ̈a5 − 3(Hφ̇+ φ̈)a3 − 3(Hφ̇+ φ̈)a2X − 2Xφ̈a3X − Ẋa2XX − 4Xa3φ − φ̇a2φX ,
(B.10)

B2 = −2 [2a2 + (a3 − 2a2X)X] , (B.11)

B3 = −2a2 = −M
2

2X αT , (B.12)

B4 = −4(a2 − fX) = −M
2

2X αH , (B.13)

B5 = 2 [a2 + (a3 + 2a4)X − fX ] = M2

2X (2β2 + β3) , (B.14)

B6 = −2φ̇(a3 + a4) = −M
2φ̇

4X2 (4β2 + β3) , (B.15)

C1 = (a3 + a2X) , (B.16)

C2 = a3 + a4 = M2

8X2 (4β2 + β3) . (B.17)
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In this appendix the matching between the effective DHOST coefficients and
the effective coefficients introduced in [15] is also produced.
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Appendix C

Coefficients of the master
equation

T (t) = −2A7(t)B4(t)2 + 2A4(t)B4(t)B5(t)− 2A5(t)B5(t)2 + 2A4(t)2C2(t)
− 8A5(t)A7(t)C2(t) (C.1)

R(t) = 32A5(t)B2(t)2 − 32A4(t)B2(t)B3(t) + 32A7(t)B3(t)2 − 4A4(t)B2(t)B4(t)
+ 8A7(t)B3(t)B4(t) + 8A5(t)B2(t)B5(t)− 4A4(t)B3(t)B5(t) + 4A4(t)2C1(t)
− 16A5(t)A7(t)C1(t) (C.2)

S1(t) = −8A5(t)B2(t) + 4A4(t)B3(t) (C.3)
S2(t) = A4(t)B4(t)− 2A5(t)B5(t) (C.4)
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