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Abstract

Ultra-short period (USP) planets, which orbit their host stars in less than a day, represent one of the most intrigu-
ing areas of development in exoplanetary science. These planets canoffer unique insights intoplanetary formation,
migration, and survival under extreme conditions, such as intense stellar radiation and strong tidal forces. With
a growing catalogue of USP planets from missions like Kepler, CoRoT, and TESS, as well as spectroscopic data
from high-resolution spectrographs such as HARPS, HARPS-N, and ESPRESSO, we are now capable of charac-
terizing these planets with the indirectly obtained radii, masses, and bulk densities. However, usually only some
system configurations are tested based on theGeneralized Lomb-Scargle Periodogram (GLS) and the effect of stel-
lar activity is not properly considered, which can lead to inaccurate results. This thesis aims to homogeneously
re-analyse a sample of USP planets using radial velocity (RV) data by testing different models, finding more likely
configurations and obtaining or improving the previously obtained planetary parameters. To this end, stellar pa-
rameters are uniformly determined through isochrone fitting, while RV and stellar activity data are gathered from
literature and available catalogues. Tomitigate the impact of stellar noise in the RV data, Gaussian processes (GP)
are used within a Bayesian framework implemented in PyORBIT, a Python package that supports both Markov
ChainMonte Carlo (MCMC) andNested Sampling algorithms for robust parameter estimation andmodel selec-
tion. Multiplemodels are tested, including differentmethods for stellar activitymitigation usingGPs and varying
number of planets for eachplanetary system. We also verify the equivalence of twomathematical implementations
of the same kernel for GPs. The statistical relevance of each model is calculated with the Bayesian evidence and
information criteria. The final set of planetary parameters are obtained with MCMC algorithms. The derived
properties of the USP sample are presented, together with the orbital architecture of their planetary systems. The
sample is situated in a mass-radius plot to contextualize it within planetary composition theoretical models.

vi



Resumo

Planetas de período ultra-curto (USP), que orbitam as suas estrelas em menos de um dia, representam uma das
áreas mais intrigantes atualmente a ser desenvolvida em ciências exoplanetárias. Estes planetas proporcionam per-
spetivas únicas sobre a formação de planetas, processos de migração e de sobrevivência sob condições extremas,
como exposição a radiação solar intensa e forças de maré acentuadas. Com o crescente catálogo de planetas USP
descobertos por missões como Kepler, CoRoT e TESS além dos dados espectroscópicos provenientes de espetró-
grafos de alta-resolução comoHARPS,HARPS-NeESPRESSO, épossível caracterizar estes planetas comamassa,
raio e densidade determinados indiretamente. Contudo, geralmente apenas algumas configurações dos sistemas
planetários são testadas com base em periodogramas generalizados Lomb-Scargle, e o efeito da atividade estrelar
não é propriamente considerado, o que pode levar a resultados imprecisos. Esta tese tem como objetivo reanalisar
uma amostra de planetas USP utilizando dados de velocidade radial (RV). Diferentesmodelos são explorados para
identificar configurações mais prováveis além de refinar os parâmetros planetários previamente obtidos. Para tal,
os parâmetros estrelares são determinados uniformemente através do uso de curvas isócronas, enquanto os dados
de velocidade radial e de atividade estrelar são recolhidos da literatura ou de catálogos disponíveis. De modo a
mitigar o impacto do ruído estrelar nos dados de velocidade radial, processos gaussianos (GP) sãomodelados num
esquema estatístico baseado no teorema de Bayes implementado no PyORBIT. Este é um pacote de Python que
suporta tantoMarkov ChainMonte Carlo (MCMC) comoNested Sampling, permitindo a obtenção robusta de
parâmetros e a seleção domodelomais adequado. Diversosmodelos são testados, incluindo diferentesmaneiras de
mitigar a atividade estrelar através dousodeGPsbemcomomodelos comdiferentes números de planetas para cada
sistema planetário. Também verificamos a equivalência de duas implementações matemáticas do mesmo kernel
para GPs. Os conjuntos finais de parâmetros planetários são obtidos com algoritmos MCMC. As propriedades
desta amostra de planetas são apresentadas, juntamente com a arquitetura orbital dos sistemas planetários. A
amostra é situada num gráfico de massa-raio para contextualizá-la com modelos teóricos de composição interior
planetária.
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1
Introduction

Exoplanetary science has developed rapidly over the past three decades. While technically the first detection
of an exoplanet occurred in 1992 around a pulsar [1], the field is generally considered to have begun in 1995 with
the discovery of an exoplanet orbiting a Sun-like star, 51 Pegasi b [2]. Early discoveries were dominated by “Hot
Jupiters”—massive gas giants in close orbits around their stars. However, advancements in instrumentation and
data analysis have enabled the detection of Earth-like planets within the habitable zones of their stars. Over the
years, the focus has expanded from merely detecting exoplanets to characterizing them and their atmospheres.
Multiple detectionmethods have been developed, including radial velocity (RV)measurements, transit photome-
try, astrometry, direct imaging, transit timing variations, and gravitational microlensing [3]. Each technique, with
its inherent observational biases, contributes uniquely to our understanding of the diversity and formation pro-
cesses of planetary systems. In parallel, specialized space- and ground-based observatories have been dedicated to
exoplanetary studies, resulting in the detection of over 5,700 exoplanets to date*, a number that continues to grow
rapidly. Among these methods, the transit technique has been the most prolific, followed by the RV technique.
The RVmethod is particularly valuable because it relies on gravitational effects to determine a planet’s mass, one
of the most crucial parameters for characterizing an exoplanet. When combined with photometric transit obser-
vations that provide the planet’s radius, the bulk density can be calculated, offering key insights into the planet’s
internal structure and surface gravity.

As our observational capabilities and techniques have advanced, we have not only discovered Earth-like planets
and giant gas worlds but also identified a variety of unusual and extreme exoplanetary types. Among these, ultra-
short period (USP) planets are an interesting group. These are planets that orbit extremely close to their host stars,
completing a full orbit in less than a day. Such tight orbits expose these planets to intense stellar radiation and tidal
forces, creating environments that challenge our understanding of planetary formation, migration, and survival.

*according to the NASA Exoplanet Archive.
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Figure 1.1: Logarithmic plot of orbital period vs. planetary mass of all confirmed exoplanets. Red points
represent ultra-short period planets. Data used to produce these plots sourced fromNASA Exoplanet Archive.

1.1 Ultra-Short Period Planets

Ultra-short period planets, or USPPs, are exoplanets that orbit their stars with a very short orbital period (< 1
day) and have a small radius (R < 2R⊕). They occur in around 0.5% of Sun-like stars [4].

In 2006, the Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPS) transit survey was conducted
using theHubble Space Telescope. It detected five giant planet candidates with an orbital period shorter than one
day that were dubbed ultra-short period planets or USPPs [5]. However, what is considered the first confirmed
transiting USP planet is CoRoT-7b, detected in 2009 with the Europeanmission CoRoT.With an orbital radius
of 1.68R⊕ andorbital period of 0.85days, it was the first exoplanet shown to have a rock ormetal-dominated com-
position [6]. The planet 55Cnc e, initially observed in 2004with theMcDonaldObservatory [7], was confirmed
as a USP planet after revision to its orbital parameters [8][9]. The launch of NASA’s Kepler Space Telescope
in 2009 marked a turning point. Designed to find Earth-sized planets in or near the habitable zone, Kepler also
identified a wide variety of exoplanets throughout the 4 years of observations on about 200,000 stars, including
USPPs [10]. Discovered in 2011, Kepler-10 b was one of the first rocky planets found by Kepler, with an orbital
period of just 20 hours [11]. Two years later, Kepler-78 b was found to orbit its star in just 8.5 hours [12]. While
the searches of the Kepler telescope did not target USP planets, Sanchis-Ojeda et al. 2014 [4] managed to isolate
the periodic USP planetary transits via Fourier transforms to the light curves of Kepler target stars, increasing
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the number of USP planet candidates. Kepler’s extended mission K2 [13] continued to amass USP candidates.
The most recent mark was in 2018 with the launch of TESS, a mission focused on the brightest stars near Earth
and that, unlike Kepler/K2, covers almost the entire sky [14]. One big advantage of this wide-field brightest stars
approach is that it makes it possible to have RV follow-up studies on the detected USP planets and obtain mass
measurements.
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Figure 1.2: Cumulative number of ultra-short period planets detected. USPPs that have radial velocity mea-
surements and thus a mass measurement are in red. Data used to produce this plot sourced from the .

Many open questions remain about this population of planets, one of the most significant being their forma-
tion. The orbits of these planets are so small that it is very unlikely that an Earth-mass core formed there, since
it is inside the dust sublimation radius [15][16]. Some theories on how these planets came to be at such short
distances to their host stars include low-eccentricity orbital migration [17] and origin in situwith tidal dissipation
[18]. Their close proximity to their stars also causes strong tidal forces that can lead to tidal locking, orbital de-
cay and circularization of the planetary orbits. Furthermore, the intense stellar radiation and gravitational forces
USPPs endure result in extreme surface and atmospheric conditions. Initially, it was thought that they lost com-
pletely theH-He atmospheres and were bare rocky cores. It has been shown that an incident flux of F/F⊕ > 650
in sub-Neptunes can lead to the total evaporation of atmospheres [19]. It could thus be that USP planets are
the bare cores of sub-Neptunes, which would then tell us about what lies beyond the atmospheres of the latter.
The same study revealed a paucity of hot super-Earths with radius greater than 2R⊕. This value could represent
the maximum radius of the rocky interior of a sub-Neptune, in agreement with theoretical models [20]. On the
other hand, there have been discoveries of planets with unusually low densities — TOI-561 b [21] — as well as
unusually high ones — K2-229 b [22]. The first case could be explained by a water/low-density envelope while
the second has been explained by an iron-core [23]. It is possible that some USPPs retain residual atmospheres,
and while interior models are useful for studying the true composition of the planets, there are degeneracies that
can only be resolved through atmospheric observations. In this regard, transmission spectroscopywith JWSTwill
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be highly valuable, as well as studying phase curve variations [24]. In any case, precise mass measurements are es-
sential, firstly to get a more accurate bulk density and secondly to infer the atmospheric properties and internal
composition [25].

The properties that USP planets present are advantageous to their study. Firstly, the geometric probability
for transits increases the shorter the orbital radius (or period) is [26]. So even if USP planets are rare, they are
much easier to detect than an Earth-sized planet with a much longer period [27]. Secondly, since they are so
close to their host star they also produce bigger radial velocity amplitudes — the RV technique favours shorter
periods with the signal amplitude scaling with P −1/3. In this way, it is our best bet in order to detect Earth-like
planets in other systems with our present-day precision limits. There are currently more than 60 confirmed USP
planets according to the NASA Exoplanet Archive, almost all discovered with the transit method. Out of these,
almost 30 have bothmass and radiimeasurements (Figure 1.2). Accuratemeasurements of both are essential to get
the planetary density and composition. High precision spectrographs like HARPS that can go to the sub-ms−1

domain are needed for detection and mass measurements. Still, the presence of other RV variations, in particular
due to stellar activity, can make it challenging to distinguish signals from the star and the planet. A Bayesian
framework can help remedy this.

Toproperly study theultra-short periodplanet population, it is crucial tohave ahomogeneous analysismethod.
The biggest problem is that planetary parameters are obtained indirectly and depend both on stellar parameters
and on the method of dealing with time-correlated noise, specially stellar noise, in the radial velocity data. The
stellar parameters are model-dependent, as they are obtained by matching the star’s properties to theoretical pre-
dictions, and the method of handling time-correlated noise varies considerably between research groups. Dis-
crepancies in the results can arise when different statistical methods are applied to the datasets, particularly when
calculating Bayes’ factors. Such inconsistencies can lead to unreliable or conflicting interpretations of the USP
planet population. In this study, we focus on a sample of 16 USP planets selected for their well-characterized
datasets. While this sample size may not be statistically robust on its own, it serves as an important starting point
for exploring this population.

1.2 Thesis structure
Thiswork is divided in 5 chapters. In the current chapter, I provided a brief overviewof ultra-short period plan-

ets, explaining the history of discovery, their unique characteristics and advantages to their study. In Chapter 2,
the main concepts and techniques used in this research are described. Firstly, the radial velocity (RV) method
and the process of extracting the planet-induced signals is explained. This section also discusses stellar activity
and its indicators, which help distinguish stellar noise from planetary signals. Additionally, the fundamentals of
Bayesian inference are outlined, including concepts like Gaussian Processes (GP), Markov Chain Monte Carlo
(MCMC), nested sampling algorithms and model selection techniques. InChapter 3, the methodology section,
I describe the instruments used in this study, namelyHARPS,HARPS-N, andHIRES, detailing their capabilities
for obtaining high-precisionRVmeasurements. I also outline the sample selection process and how the stellar and
planetary parameters were determined. This includes an explanation of the workflow and the use of PyORBIT,
which can use bothMCMC analysis and nested sampling for parameter estimation. InChapter 4, I confirm the
validity of using the ESP kernel as a good approximation of the QP kernel and select one model for each system
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after assessing the Bayesian evidence, information criteria, and the posterior distributions. I discuss the derived
planetary parameters for the USP sample and situate it in amass-radius plot alongside theoretical planetarymodel
composition curves. InChapter 5, I present the main conclusions of this work.
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2
Theoretical background

In this chapter, I provide the theoretical foundation necessary for understanding the key methodologies used
throughout this thesis. I begin by introducing the radial velocity method (Section 2.1), covering its basic princi-
ples, the process of measuring stellar spectra, and the techniques used to extract precise radial velocities. I then
address stellar activity (Section 2.2), describing the types of noise it introduces, along with the indices and indi-
cators that can be used to assess and correct for these effects. Finally, in Section 2.3, I explain the fundamentals
of Bayes’ theorem, Gaussian Processes, parameter estimation, and model selection, all of which form the basis for
the statistical analysis applied in subsequent chapters.

2.1 Radial VelocityMethod

2.1.1 Basic Principle

The RV method for detecting exoplanets is conceptually simple. The presence of a planet around a star will
cause a periodic reflex motion in the star as they both move around their common centre of mass. The star’s
spectrumwill shift towards shorterwavelengths as itmoves towards the observer (blueshift) and largerwavelengths
as it moves away from the observer (redshift). Bymeasuring these Doppler shifts, we obtain the radial component
of the velocity of the star, from which we can get information on the planet and the orbit.

A stellar spectrum is filled with thousands of absorption lines, produced by ions, atoms, and molecules in the
upper layers of the stellar atmosphere absorbing photons. The rest wavelengths of these lines arewell-known from
atomic physics. By denoting λ0 as the wavelength of the star’s light if the star was at rest and λ as the wavelength
of the star’s light that undergoes a Doppler shift, we observe a shift in the lines of the stellar spectrum equal to
Δλ = λ− λ0.
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Figure 2.1: Illustration of the Doppler effect on a portion of a stellar spectrum. The spectrummoves towards
bluer or redderwavelengths relative to the positionof reference spectral lines (grey dashed) as the star orbits around
the star-planet centre of mass. The observer is located at the point O.

The wavelength shifts relate to the RV, in a non-relativistic approximation, as

Δλ
λ0

=
RV
c

(2.1)

By capturing the star’s spectrum at multiple instances, we can track the relative radial velocity of the star over
time, denoted asRV(t).

To derive precise radial velocity values from the spectrum, several corrections must be applied, such as wave-
length calibration and barycentric correction, which will be discussed later. For now, focusing purely on the
gravitational influence, the RV induced by a single planet at any given time is described by the followingKeplerian
signal:

RVp(t) = Kp
[
cos(νp(t) + ωp) + ep cos(ωp)

]
. (2.2)

Here, Kp is the RV semi-amplitude, νp the true anomaly, ep the orbital eccentricity, and ωp the argument of peri-
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Figure 2.2: The original radial velocity curve of the star 51 Peg that revealed the first exoplanet around
another solar-type star. The radial velocity is in function of the orbital phase. Credits: Mayor &Queloz 1995.

astron. The true anomaly is given by

tan
(
νp(t)
2

)
=

√
1+ ep
1− ep

tan
(
Ep(t)
2

)
. (2.3)

To obtain the eccentric anomaly Ep(t), Kepler’s equation needs to be numerically solved:

Ep(t)− ep sinEp(t) =
2π(t− TP,p)

Pp
≡ Mp(t). (2.4)

This equation defines themean anomalyMp(t) and it depends on the planet’s orbital periodPp and onTP,p. This
last one, TP,p, defines the time of passage at periastron. This leaves us with five observables that can be fit using
RV data: ep, Pp, TP,p, ωp, andKp.

To generalize the RV measurements to a multi-planet system, the most correct plan of action would be to
consider planet-planet interactions which would cause deviations from the Keplerian model. But in practice, for
most systems, it is a reasonable approximation toneglect their interactions and simply add the individualKeplerian
contributions. We should also add a constant offset and a linear term to account for the stellar barycentric motion
with respect to the centre of the galaxy. For a star with n planets the RVmeasurements will be

RVKepler(t) = c0 + c1t+
n∑

p=1

RVp(t). (2.5)

The RV variation semi-amplitudes over the course of an orbital period are related to the stellar and planetary
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masses,M⋆ andMp,

Kp =

(
2πG
Pp

)1/3 Mp sin ip
(M⋆ +Mp)

2/3
1

(1− e2p)
1/2 , (2.6)

whereG is the gravitational constant and ip is the orbital inclination. This angle is measured between the normal
of the orbital plane and the observer’s line of sight. When ip is near 0°, the orbit is nearly face-on,making the radial
velocity component difficult to detect. Conversely, when ip approaches 90°, the system is nearly edge-on, maxi-
mizing the observable Doppler effect. By using the approximation thatMp ≪ M⋆, we can get the planetarymass
if we know the stellarmassM⋆. The stellarmass can be obtained from comparing spectroscopic, photometric and
astrometric data with grids of stellar evolutionary models. Note that we do not measure the true planetary mass
Mp, only the minimum mass,Mp sin ip. This is because the angle of projection of the orbital plane is unknown
and an edge-on system (sin ip = 1) is assumed. However, if the planet is transiting we can measure ip and obtain
the true planetary mass.

From Equation 2.6 we can immediately identify the observational biases inherent in RV measurements. As-
suming the planetary mass is negligible compared to the mass of the parent star, we have an RV semi-amplitude
proportional toMp/(M

2/3
⋆ P1/3p ). This indicates that it is easier to detect high-mass planets that are close to their

star (or equivalently, have shorter orbital periods, as per Kepler’s third law), particularly around lower-mass stars.
To detect anEarth twin at 1AUwewould need to go to 0.1ms−1 precisionwhile for anEarth twin closer to its star,
at 0.1 AU, around 1 ms−1 [28] is sufficient. Current high-resolution spectrographs can reach the latter precision,
and this is the reason why many Earth-like planets detected with the RVmethod have very short periods.

A sample of RV measurements will contain both periodic variations from planetary signals as well as instru-
mental and astrophysical noise, which are harder to model. The astrophysical noise comes mostly from stellar
activity and it is the current limitation for finding small planets.

2.1.2 Measuring the spectrum

To go from light to measurable radial velocities, multiple instrumental steps are required. For a sub ms−1

precision in the RVs we need to measure wavelength shifts of around 10−5 Å (for the mid-visible λ = 500 nm).
This, in turn, corresponds to miniscule shifts in the width of a spectral line or a fraction of a pixel on a typical
CCD detector. The signal-to-noise ratio (SNR) of a single spectral line is too low to reach this precision. For this
reason, thousands of spectral lines are used. From an instrumental point of view, a broad spectral range, a high
SNR, and high resolution (R = λ/Δλ) are required to get very precise RVs.

Firstly, light is collected in the telescope and is directed into the spectrograph either by a slit or by optical fibres.
Traditionally, the slit, a narrow opening at the focal plane of the telescope, was used, which allowed a specific
portion of the star’s light to enter and then be dispersed by a diffraction grating to produce a spectrum. However,
the slit presents two disadvantages: there can be variable illumination due to changes in atmospheric conditions
or guiding errors, and the position of the slit relative to the spectrograph optics can change. The first affects
the stability of the spectral lines while the second leads to a shift in the wavelength calibration, both reducing
the precision and accuracy of RV measurements. Consequently, optical fibres are now used in modern high-
precision instruments. The fibre is positioned at the focal plane of the telescope, where it collects the starlight
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and transmits it to the spectrograph, usually located in a stable environment away from the telescope itself. These
fibres scramble the incoming light before injecting it to the spectrograph. Thus, variations in illumination caused
by seeing conditions or guiding errors are averaged out. Additionally, since the spectrograph can be located in
a highly controlled environment (vibration, temperature, and pressure are all considered), mechanical flexure is
minimized. This leads to more stable and accurate RVmeasurements [29].

When it reaches the spectrograph, the incoming light will be dispersed and the spectrum will be recorded in a
detector, usually a Charge-Coupled Device (CCD). For diffraction, échelle gratings are used, a specialized type of
diffraction grating. With a seconddispersing element, these gratings are able to create a two-dimensional spectrum
where each row corresponds to a different diffraction order. What we want is the flux of the star as a function of
wavelength so, from the dispersed light in a 2D format, the different orders are extracted, calibrated, and merged
into a continuous one-dimensional spectrum.

An important calibration step worth mentioning is the calculation of the wavelength solution. The photons
fall as pixels in the detector and we must translate pixel positions into wavelengths and, as such, reference lines
are needed. The two main calibration sources are iodine cells and ThAr hollow cathode lamps. The iodine cell
technique involves placing a cell filled with iodine gas which imprints a dense set of absorption lines onto the
starlight before it enters the spectrograph. The wavelength range is between 5000 Å to 6200 Å. Since these lines
are also subjected to the the same instrumental shifts as the starlight, the wavelength scale can be calibrated during
the observation itself. A downside is that it later requires sophisticated modelling to separate the stellar spectrum
from the iodine spectrum, especially since changes in iodine pressure lead to complex line shapes [29]. Moreover,
a range of 1200 Å is quite limited.

Unlike the iodine cell, which imprints lines directly on the star’s spectrum, the ThAr technique involves tak-
ing separate calibration exposures. The thorium and argon gases in the lamp, when electrically excited, emit light
with a well-known set of spectral lines across a wide range of wavelengths. The thorium lines are particularly
dense and stable. In this type of calibration, the spectrograph has two channels, a science and reference one. Be-
fore observing a star, both channels are illuminated with light from the ThAr lamp while, during observations,
only the reference channel is. The two channels should be affected by instrumental drifts, namely variations in
the air refraction index and mechanical flexures, in the same way. So the reference channel keeps track of any vari-
ation, which is useful for calibration. The calibration is over a broader wavelength range compared to the iodine
cell technique, but ThAr lamps have a limited lifetime. Therefore, attention must be paid to see if the lines are
moving or broadening over time. Other types of lamps can be used, either one that emits white light such as a
tungsten lamp or one with reference emission spectral lines similarly to the mentioned ThAr lamps [30]. Two
recent developments have been the Fabry-Perot interferometer and the laser frequency comb. They can be used
in conjunction with traditional calibration methods, such as ThAr lamps or iodine cells, to enhance the overall
precision and accuracy of spectrograph calibration, like it has been done with HARPS [29].

A barycentric correction is applied as well. The observed wavelengths are in the Earth’s reference frame and
both the Earth’s rotation and movement around the Sun will introduce Doppler shifts. These need to be con-
sidered to isolate the true RV of the star. After this correction, the spectrum is in the inertial frame co-moving
with the Solar System’s centre of mass [31]. The correction is made with precise ephemeris data that describe the
Earth’s position and motion relative to the Solar System’s barycentre. It also accounts for the time it takes light
to travel from the star to the Earth, ensuring that the measurements are based on the star’s actual position and
velocity.
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There are additional instrumental effects. Telluric absorption lines coming from the Earth’s atmosphere con-
taminate the spectrum and should be de-trended [28][29]. Others effects like colour variation of the spectrum
with airmass and sunlight scattered by the moon are harder to remove but are being studied [30].

2.1.3 Extracting Precise Radial Velocities

Stellar spectrum and Weighted mask CCF profile

Wavelength RV

Figure 2.3: Schematic of the CCF method with a weighted mask. On the left, the cross-correlation of the
observed stellar spectrum (blue) with a weighted mask (black), with the weights representing the line depths. On
the right, the resulting CCF profile. The minimum of the CCF profile, fitted by a Gaussian, is taken as the radial
velocity of the star. Real masks are constructed for each spectral type and contain thousands of lines.

There are different ways of extracting the velocity of each spectrum. One way would be to measure the RV
of each line and do a weighted average to get the overall stellar RV, but that is computationally intensive. Cur-
rently, the most widely used technique consists in cross-correlating the measured spectrum with a mask [32][33].
This numerical mask will be based on where the spectral lines should appear, according to the type of star being
observed. The measured spectrum is multiplied by the numerical mask that is Doppler shifted. This process is
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repeated for a range of velocity shifts, resulting in a cross-correlation function (CCF) that shows how well the
observed spectrummatches themask at each velocity. This is illustrated in Figure 2.3. Theminimum of the CCF,
fitted with a Gaussian function, is taken as the radial velocity of the star. In this way, this method can be viewed as
computing an average line shape because it effectively combines information frommany individual spectral lines
into a single, averaged profile:

CCF (v) =
∑
i

∫
Sp(λ)Mi(λv)dλ, (2.7)

where λv = λ
√

1−v/c
1+v/c , Sp(λ) is the spectrum andM is the mask shifted by the velocity v for each absorption line

i.
The mask isolates the regions of the spectrum that contribute most to the RV signal, typically focusing on

strong, well-defined lines. Lines that are likely contaminated are excluded. A simple binary mask consists of a
series of 0 and 1 regions, with the 1 value zones at the wavelengths of the selected spectral lines. It can also be
weighted, with larger weight being given to lines with a larger relative depth, as they in principle should contain
more information on the radial velocity [33].

Many masks have been constructed for different spectral types such as G2, G7, K5, and M2. However, the
CCFmethod becomes worse for later type stars whose lines are blended. Other ways of extracting theRVs include
using a template spectrum and Taylor expanding the observed spectrum as a function of velocity [34] or building
a forward model of the spectrum [35][36].

2.2 Stellar activity
Stellar activity can cause deformations on the spectral lines that can be mistaken as Doppler shifts caused by

an orbiting planet. It is quite important therefore to be able to understand and mitigate these activity-induced
variations to differentiate them from planetary signals. It is especially so in the case of USPwhichmostly need sub
ms−1 precision in order to be detected.

2.2.1 Types of Stellar Noise
Different sources of stellar noise or astrophysical noise will cause variations in different timescales [28]. On

the shorter term, in the timescale of minutes, we have p-mode oscillations. These are asteroseismic oscillations in
main-sequence solar-mass stars and the superposition of these modes can induce RV variations of 1 ms−1 ormore.
Fortunately, by choosing an exposure time that is more than 1 to 2 typical oscillation periods, this source of noise
is mostly averaged out. On the range of minutes to about 1 day, there are different phenomena of granulation
(granulation, mesogranulation, and supergranulation). They are caused by convective motions of increasingly
larger structures in the outer layers of stars with a convective envelope. The convective motion in each cell in the
envelope is uncorrelated with the others so the overall signal averages out to about the ms−1 scale.

Then, on longer time scales, we have the effect of themagnetic activity. Magnetic fields produce cool spots and
bright plages that modify the spectral line profiles as they move across the stellar disk, as illustrated in Figure 2.4.
This movement is due to the rotation of the star so these modulations can be quasi-periodic at the rotation period
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or its harmonics. This will typically be of the order of days but could also be hours or months depending on the
age and spectral type of the star. For example, younger stars typically have shorter rotation periods and larger RV
variations making it harder to detect planets around them [37]. Furthermore, stars exhibit differential rotation
and the starspots are not permanent features, they appear and disappear over time, which further complicates the
observed modulations.

RV
Gaussian profile
Observed CCF

Figure 2.4: Illustration of the effect of a stellar spot on the observed CCF as the star rotates. The blockage
of flux by starspots introduces asymmetries in the CCF, leading to variations in the measured radial velocity.

Finally, the longest time scale variations are due to magnetic activity cycles. Similarly to the Sun, which has a
activity cycle of around 11 years, stars also experience activity cycles whose period can range from years to decades
[38]. In this sense, there will be times of maximum and minimum activity which in turn will make the RV jitter
vary.

Some short term activity can bemitigated by the observational strategy but the longer term effects are harder to
model [39]. Overall, since the stellar activity signals are incoherent and vary quasi-periodically, there is currently
no general analytical model we can use [29]. To identify stellar activity signals in the RV data and disentangle
them from exoplanetary reflex motion, we can use activity proxies that are not sensitive to the presence of planets.
These can be either generated by chromospheric emissions, such as the S-index, or derived from the shape of the
cross-correlation function, which will be analysed in the following subsections.
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Figure 2.5: Illustration of the timescales associated to stellar activity. The timescales are represented by the
power spectrum of the different activity-induced signals. Credits: Faria (2018).

2.2.2 Activity indicators
(
S-index and logR′

HK
)

Certain spectral lines, like the Ca II H & K and the Na I D lines, are recognized as reliable indicators of mag-
netic stellar activity. This is because in active regions the temperature difference between stellar plages and their
surroundings alters the rate of atomic transitions.

The Mount Wilson S-index consists in the Ca II core flux, normalized by the flux in the bandpasses to the
red and blue sides of the Ca II lines. Specifically, the K and H lines have a triangular shape with a Full Width at
Half Maximum (FWHM) of 1.09 Å and are located at 3933.664 Å and 3968.470 Å, respectively. The V and R
continuum passbands have a width of 20 Å and are centered at 3901.070 Å and 4001.070 Å, respectively.

The S-index can be defined as
SMWO = α

NH +NK

NR +NV
, (2.8)

whereNx represents the counts of the band x, and α is a proportionality constant that equatesmeasurementsmade
by theHKP-2 andHKP-1 spectrophotometer. This value is usually set at 2.40 [40], or 2.3 [41]. Additionally, for
spectrographs like HARPS, the value needs to be multiplied by 8 to account for the fact that in Mount Wilson
the line core is exposed 8 times more than the continuum bandpasses.

The scale defined by this index became the standard way of measuring chromospheric activity. The S-index
contains bothphotospheric and chromospheric components. Ideally,wewouldmeasure solely the chromospheric
flux, the one directly related to the magnetic field [42]. Therefore, in order to be able to usefully compare the
activity level between stars, we should subtract the photospheric component and normalize the chromospheric
flux to the total (bolometric) luminosity of the star. Amore useful comparative quantity, theR

′

HK [43], is defined
as

R′
HK = RHK − Rphot. (2.9)
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The surface flux ratioRHK is defined as:

RHK =
NH +NK

Ntot
=

FHK

σT 4
eff
, (2.10)

whereFHK = FH+FK is the total fluxper cm2 at the stellar surface in theHandKbands, σ is the Stefan-Boltzmann
constant, and Teff is the effective temperature.

The photospheric flux ratio, in turn, is given by

Rphot =
Fphot

σT4
eff

, (2.11)

whereFphot is the flux in the wings of the H and K lines, where we can neglect the chromospheric contribution.
The surface flux ratio RHK is obtained with a conversion from the S-index while the photospheric flux ratio

Rphot is given by an empirical relation. Specifically, Noyes et al. 1984 calculatedRHK using the equation

RHK = 1.34× 10−4Ccf SMWO, (2.12)

where Ccf ≡ Ccf
(
B − V

)
is a colour-dependent conversion factor that corrects flux variations in the continuum

passbands and normalizes to the bolometric luminosity. Multiple relations have been proposed in different colour
ranges.

The originalMiddelkoop et al. 1982 [44] relation is valid in the colour range 0.45 < B−V < 1.2 and is given
by

logCcf = 1.13(B− V)3 − 3.91(B− V)2 + 2.84(B− V)− 0.47. (2.13)

Rutten et al. 1984 [45] extended this relation to 0.3 < B− V < 1.6 and obtained

logCcf = 0.25(B− V)3 − 1.33(B− V)2 + 0.43(B− V) + 0.24. (2.14)

For theRphot, Noyes et al. 1984 [43] used the relation fromHartmann et al. 1984 [46],

logRphot = −4.898+ 1.918(B− V)2 − 2.893(B− V)3, (2.15)

valid for 0.44 < (B− V) < 0.82.

2.2.3 Asymmetry indices
(
BIS, FWHM, Contrast

)
The stellar cross-correlation function between the spectrum and a chosen spectral type mask changes in time.

Particularly, we can analyse the bisector inverse span (BIS), the full width at half maximum (FWHM) and the
contrast of the CCF to obtain information on the stellar activity. The bisector of a spectral line is constructed
by tracing the midpoints of horizontal segments across the line profile, from the line’s core to its wings. In an
ideal line profile, the bisector has a constant curved shape independent of time but, in the presence of stellar
activity, the curvature of this profile changes with time. The BIS value is the difference between the wavelength
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corresponding to the midpoint at the continuum (top) and the wavelength corresponding to the midpoint at the
maximum absorption (bottom), converted to a velocity. The FWHM represents the width of the line at half the
maximum depth and it increases due to the presence of active regions on the stellar surface. The contrast is the
depth of the spectral lines relative to the surrounding continuum and changes are related to the overall brightness
of the star, which can also fluctuate with activity, for example with the presence of starspots.

FWHM

Bisector

C
on
tra
st

Figure 2.6: Illustration of CCF shape parameters. Bisector (green), full width at half maximum (red) and
contrast (purple). The bisector divides the spectral line into two equal parts of equivalentwidth. TheCCFprofile
gets distorted due to stellar activity and this distortion changes with time depending on the position of the stellar
region on the surface of the star (see Figure 2.4). We can use the BIS, FWHM and contrast to measure these
variations.

2.3 Bayesian inference

We have seen that radial velocity data can be noisy and influenced by various factors such as stellar activity,
instrumental noise, and other planets in the system. Our goal is to refine the planetary parameters of detected
USP planets. For that, we need to determine the number of planets that can be confidently detected in each
system, and their orbital elements.

One way to extract the planetary signal is to use the (Generalized) Lomb-Scargle periodogram [47][48][49],
which shows the dominating frequencies in the dataset. It can be applied iteratively to identify the orbital periods
of multiple planets. A drawback is that aliasing may occur, leading to mistaken physical signals [30].

Bayesian inference provides a framework for incorporating prior knowledge and uncertainties, allowing for
more reliable interpretation of RV data. The following section covers Bayesian inference methods and how they
can be used both to estimate the parameters of a model and to decide between different models.

2.3.1 Bayes’ theorem
Starting with some observed dataD and a givenmodelM conditioned on this data, our goal is to estimate the

posterior probability distribution function of a set of parametersΘ. Bayes’ theorem can be written as
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p(Θ|D,M) =
p(D|Θ,M)p(Θ|M)

p(D|M)
. (2.16)

Here, p(Θ|D,M) is theposterior probability distributionof theparameters, p(D|Θ,M) the likelihood, p(Θ|M)

the prior and p(D|M) the evidence. We can drop theM when discussing parameters of only one model. These
quantities can also be written as:

p(Θ|D,M) ≡ P(Θ),

p(D|Θ,M) ≡ L(Θ),

p(Θ|M) ≡ π(Θ),

p(D|M) ≡ Z,

(2.17)

For parameter estimation of a given model the important quantity is the posterior probability distribution.
Since the evidenceZ is independent of the parametersΘ, it can be viewed as a normalization factor and ignored.
But as it will be seen in subsequent sections, the evidence is essential for model selection and it will need to be
calculated then.

The likelihood function, describing how likely the data is for a certain set of parametersΘ in a givenmodelM,
can be assumed to be Gaussian:

L(Θ) =
1√

2 π |K|
exp

(
− 1

2 (y−m)TK−1(y−m)
)
. (2.18)

Here, K is a covariance matrix. We could assume it is a diagonal matrix, which translates to white uncorrelated
noise. However, to account for the contamination from instrumental errors and astrophysical noise, it is better
to model these contaminating signals as correlated Gaussian noise using a non-diagonal matrix. In this way, the
matrixK will be specified with a kernel, which gives the correlation between the value of the stellar RV at time t
and t+Δt. The data y represents the RV time series and the mean functionm is given by the physical model (the
sum of Keplerians and an affine function seen in Equation 2.5). The data y can also be a concatenation of the RV
time series with ancillary time series.

The logarithmic likelihood is more convenient to work with and can be written as

lnL(Θ) = −N
2
ln 2π − 1

2 ln |K| −
1
2
rTK−1r, (2.19)

with r = y − m the vector of residuals and N the number of observations of types considered (NRV or NRV +

Nauxiliary)

2.3.2 Gaussian Processes

We can use Gaussian Processes (GP) to represent the RV signal and ancillary data. GPs have been increasingly
used in the past few years tomitigate and correct the effects of stellar-inducedRV variability [50][51]. Particularly,
to properly characterize planets, quasi-periodic GP models have been used [52][53].
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AGaussian Process is a collection of random variables, any finite number of which have a joint Gaussian distri-
bution. Mathematically, we can say that the joint probability distribution over any finite sample y = {yi}i=1,...,N

from the GP is a multi-variate Gaussian,
p(y) = N (m,K), (2.20)

wherem is the mean vector andK the covariance matrix.

The elements of the mean vector and covariance matrix are given by the mean functionm and the covariance
function k, respectively,

mi = m(xi, θ), (2.21)

Kij = k(xi, xj, φ), (2.22)

where xi is the set of independent variables corresponding to the i th sample. The parameters θ and φ of the mean
function and the kernel are the hyper-parameters of the GP and can be given a physical meaning.

In this case, as we have an RV time series, there is just one independent variable, time t. The observations are
given by yi = m(ti, θ)+ εi where εi is the noise on the ith observation. The noise vector is what is drawn from the
multivariate Gaussian distribution with covariance matrixK. We can rewrite the last equations as

mi = m(ti, θ), (2.23)

Kij = k(ti, tj, φ) + δij (σ 2
i + S 2), (2.24)

where δij is the Kronecker delta, σ 2
i represents the reported RV uncertainties (such as the known photon noise or

instrumental errors) and S 2 represents an additional unknown noise term called jitter. The mean function repre-
sents the expecteddeterministic planetary-induced radial velocity at any given time (Equation2.5). The covariance
function, which gives the covariance element between any two sample times ti and tj, encodes assumptions about
the smoothness, periodicity, and variability of the RV data. The choice of this kernel function is very important
for the GPmodel and several kernels have been tested for RV time series data. The kernel choice will be discussed
in Subsection 2.3.4.

GPs present several advantages: firstly, they are non-parametric models, meaning they do not assume a specific
form for the underlying function. This makes them highly flexible as they can adapt to the specific characteristics
of the data, providing better fits than pre-defined models. Different kernels can capture various aspects of the
data, such as smooth trends, periodic signals or abrupt changes. Additionally, RV observations are often taken at
irregular intervals and can be sparse due to observational constraints. Most times, GPs can interpolate between
observations and, in the case of limited data, use the information about the covariance structure of the data to
make reliable predictions.

GPs are theoretically robust: the Central Limit Theorem states that the sum of a large number of independent
randomvariables, regardless of their original distributions, tends toward aGaussian distribution soGaussianmod-
els are often a reasonable approximation.

There are other ways of constructing stochastic process models that are also non-parametric. The reason why
GPs are extremely useful for this type of RV analysis, however, is that they make inference easier by allowing for
exact marginalization over the function space analytically.
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2.3.3 Gaussian ProcessModels

Trained GP

In a standard Gaussian process model, each dataset, such as the RVmeasurements and ancillary time series, is
described with its own independent covariancematrix, while sharing some hyper-parameters across these datasets.
This allows for the independent treatment of noise and variations in each dataset while maintaining commonali-
ties through shared hyper-parameters.

The same kernel can be used to model the periodic signals due to stellar activity across the RV and ancillary
datasets. For example, with the quasi-periodic kernel, Prot, Pdec and Oamp are common GP parameters, but the
amplitude h is different for each dataset.

Multidimensional GP

In a multidimensional GP framework, there is a joint covariance matrix structure that accounts for the cor-
relations between different datasets. This means that the noise and variations in one dataset can influence the
predictions in another dataset. This approach makes a stronger assumption about the relationship between the
RVs and the ancillary time series data.

In the original GP framework [54], this relationship is a linear combination of an underlyingGaussian process
G(t) and its first derivative Ġ(t), allowing for the simultaneous modelling of the RV data and activity indicators:

ΔRV = Vc G(t) + Vr Ġ(t) (2.25)

logR′
HK = Lc G(t) (2.26)

BIS = Bc G(t) + Br Ġ(t) (2.27)

These equations were obtained by building upon the FF
′
framework developed by Aigran et al. 2012 [50].

They presented simple formulas using F(t), the fraction of the visible stellar hemisphere covered in spots, and
F ′(t), its time derivative, to predict RV variations even when the stellar rotation period is not known. The RV
variations caused by spots are modelled considering both the spots’ flux and the convective blueshift effects as

ΔRV(t) = ΔRVrot(t) + ΔRVc(t). (2.28)

The first term comes from the fact that the presence of spots attenuates the flux of a portion of the rotating
stellar disk, perturbing the disk-averaged RV. In the most simple case of a simple spot, the RV changes according
to the projected area of the spot and the RV of the stellar surface at the location of the spot as

ΔRVrot(t) = −F(t)Veq cos δ sinφ(t) sin i (2.29)

with
Veq =

2πR⋆

Prot
(2.30)
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Here, δ is the latitude of the spot relative to the star’s rotational equator, φ(t) is the phase of the spot relative to
the line of sight and i the stellar inclination. Prot can be taken as the equatorial rotational velocity of the star or
modelled as a function of the spot latitude.

The second term in Equation 2.28 has to do with the the fact that spots are associated with magnetized areas.
In these areas where the magnetic field is stronger convection is partially suppressed, leading to a reduction in the
convective blueshift. It can be modelled as

ΔRVc(t) = F(t)ΔVc κ cos β(t), (2.31)

where κ is the ratio of the area of the magnetized area to the spot surface, ΔVc is the difference between the con-
vective blueshift in the unspotted photosphere and the magnetized area, and β(t) is the angle between the spot
normal and the line of sight.

Although so far only a single spot and associated magnetized area were considered, as a first-order approxima-
tion, this formalism can be used to describe the combined effects of multiple active regions in the visible hemi-
sphere. Equation 2.28 is rewritten in Rajpaul et al. 2015 [54] as

ΔRV = Vr F(t) F ′(t) + Vc F 2(t), (2.32)

withVr andVc as free parameters. Since photometry alone is insensitive to some spot configurations, two activity
indicators are added to help constrain the activity induced RV variations. The logR′

HKindex is related to active
regions so it should behave as the second term, of the convective blueshift effect. The bisector span is related to
both the convective blueshift effect and the velocity of the active region’s surface. This leads to the equations

logR′
HK = Lc F 2(t) (2.33)

BIS = Br F(t)F ′(t) + Bc F 2(t) (2.34)

which are then transformed into Equations 2.25, 2.26 and 2.27 by using the GP variableG(t) ≡ F 2(t).

2.3.4 Kernel choice

Selecting an appropriate kernel is important to accurately capture the underlying patterns in stellar activity.
Valid kernel functions can be constructed by adding or multiplying simpler kernel functions [55]. The following
section discusses a commonly used kernel and one that approximates it.

Quasi periodic kernel

The quasi-periodic (QP), also called squared-exponential periodic (SEP), is built by multiplying a periodic
term, specifically an exponential of a sine-squared function, with a decaying envelope — a squared exponential
function. This function is controlled by 4 hyper-parameters and is able to produce signals with different ampli-
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tudes, periods, evolution time, and degree of harmonic complexity. It is given by

γ(G,G)qp (t, t′) = η21 exp

{
− sin2 [π(t− t′)/P ]

2λ2p
− (t− t′)2

2λ2e

}
, (2.35)

where P and λp are the period and length scale of the periodic component of the variations, λe is the evolutionary
time-scale and η1 is the amplitude of the covariance function.

This kernel function has some physical motivations, since it implies that the underlying signal should be quasi-
periodic. There are also somephysical interpretations of the hyper-parameters, namely correlations betweenP and
the stellar rotation period and between the λp length scale and spot evolution time. The λe parameter correlates
moderately with the rotation period and spot evolution time [52].

Performing these direct interpretations is not always theoretically sound, primarily because there are degenera-
cies between the hyper-parameters [54]. However, the QP remains a popular kernel since active stellar regions
produce RV variations that can be easily modelled with it.

The ESP approximation

A critical consideration when using GPs is their computational cost. The likelihood computation requires
solving a linear system with the full covariance matrix of the measurements. For a dataset of nRVmeasurements,
the covariance matrix of the noise has a size of n × n and the operations needed for the likelihood calculation,
such as inversion and calculating the determinant, scale as O(n3). Storing these matrices is also costly, with the
memory footprint scaling asO(n2). When using RV data and 2 additional spectroscopic time series, such as the
BIS and logR′

HK, it becomes even worse: the matrix has a size of 3n× 3n and the cost scales asO((3n)3). On top
of that, samplingmethods used to estimate posterior distributions for individual hyper-parameters of interest, like
MCMC or nested sampling, require a large number (typically > 104) of likelihood evaluations. Since multiple
models with different configurations for each planetary system will be tested, a less computationally intensive
method becomes essential.

One effective way to reduce computational cost is to represent the covariance matrix in a semi-separable form,
which allows the use of specialized algorithms designed for sparse matrices, such as banded or block-diagonal
matrices. The s+leaf [56][57] model does just that by introducing a matrix which is the sum of one favoured
matrix (S) with a general class of sparse matrix leaf.

A general symmetric semi-separable matrix S is defined as

S = diag(A) + tril
(
UVT )+ triu

(
VUT ) , (2.36)

and it can represent a correlated noise model. The rank of the S matrix is r = 2nc, where nc is the number of
components in the correlated noise model:

k(Δt) =
∑
s<nc

(as cos(νsΔt) + bs sin(νsΔt)) e−λsΔt. (2.37)

The leaf matrices, on the other hand, are a class of matrices that are close to being diagonal (banded, block-
diagonal, staircase, etc.). They must be symmetric so
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Fij = Fji = 0 for j < i− bi, (2.38)

with bi the number of non-zero entries left to the diagonal at line i. Thesematrices are related to the calibration er-
rors. There are periodic calibrations, typically done once per night, and themeasurements taken during that time
have the same calibration error. This leads to block-diagonal calibration noise matrix where one block represents
one night.

The s+leaf matrix is thus

C = diag(A) + tril
(
UVT )+ triu

(
VUT )+ F. (2.39)

Here, A represents the diagonal part of C while U and V are n × r matrices that represent the symmetric semi-
separable part of C, with n the number of points and r = 2nc the number of components of the semi-separable
part. F is the symmetric leaf part of C with the diagonal of F filled with zeros. bi is the number of non-zero
entries left to the diagonal at line i of F and b is the average band width of F. The memory footprint of this model
scales asO

((
r+ b

)
n
)
and the computational cost asO

((
r2 + rb+ b2

)
n
)
.

s+leaf can also be used for the multidimensional GP framework. s+leaf2, released in 2022, generalized
the s+leaf method to GPs trained simultaneously on multiple time series. However, to make use of s+leaf
or s+leaf2, a new kernel needs to be introduced. The quasi-periodic kernel or SEP talked in Subsection 2.3.4,
wanted for the way it can model the quasi-periodic signals in RV data, is not semi-separable. A semi-separable
representation is needed in order to model the covariance matrix with s+leaf2 and have faster computations
times. Fortunately, there are ways of constructing a semi-separable kernel that reproduces themain characteristics
of the SEP kernel.

The SEP kernel can be approximated by

kSEP(Δt) ≈ kSE(Δt)kP(Δt) (2.40)

where kSE is the squared-exponential kernel and kP is the periodic part, given respectively by:

kSE(Δt) = σ2 exp
(
− Δt2

2ρ2
)

(2.41)

kP(Δt) =
1+ f cos (νΔt) + f 2

4 cos (2νΔt)

1+ f+ f 2
4

(2.42)

Though twice mean square differentiability is not obligatory, it is wanted to generate a smoother model, as we
are dealing with G and its derivative Ġ in our GP multidimensional framework. We define the exponential-sine
(ES) kernel as

kES(Δt) = σ2e−λΔt
(
1+

1− 2μ−2

3
(cos(μλΔt)− 1)

1− 2μ−2

3
+ μ−1 sin(μλΔt)

)
. (2.43)

We can then build upon this last onewith a periodic term, constructing the exponential-sine periodic (ESP) kernel.
It essentially follows the same structure as the SEP kernel but with an ES term, which is semi-separable, instead of
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an SE term, which is not:

kESP(Δt) = kES(Δt)kP(Δt). (2.44)

The ESP kernel is semi-separable since it is the product of two semi-separable terms. It is positive definite with
rank 15 and it has been shown to reproduce the SEP kernel very closely. Despite the high rank, it still greatly
reduces the computation time compared to the original full covariance matrix way with the SEP kernel [57].

2.3.5 Parameter estimation methods
After defining the model and selecting an appropriate kernel function, we can start to estimate the parameters

that best describe the data. The following steps outline the general process of parameter estimation.
First, we select the kernel function along with initial guesses for hyper-parameters, often with incorporated

priors. The choice of prior represents the original beliefs about the parameters before looking at the data at hand.
The motivations are usually what is physically possible, and what is known from previous data/studies. For in-
stance, uniform priors are used when we want uninformative priors but still need to impose physical boundaries
on the parameters. We compute the GP covariance matrix for the data and evaluate the log-likelihood of the
model. We then compute the posterior distribution. For this, sampling methods such as MCMC or nested sam-
pling are employedwhere the samples are used to estimate posterior distributions for individual hyper-parameters
of interest.

2.3.6 Markov ChainMonte Carlo
Computing the exact posterior distribution of the elements involves integrating over a high-dimensional space

and is analytically intractable. With Markov Chain Monte Carlo (MCMC) algorithms, we can approximate this
distribution by generating samples from it without the normalizing constant, the evidence, which is an integral
over the parameter space.

The key idea of MCMC is to construct a Markov chain whose equilibrium distribution is the desired target
distribution. The Markov property is that the future state depends only on the current state and not on the
sequence of events that preceded it. Initial guesses for the parameters are defined, and a jump in parameters is
attempted. Themove is accepted or rejected based on an acceptance rule. This process continues with subsequent
jumps, stopping after a very large number of jumps (e.g., 106), ensuring convergence and the removal of burn-in
points. Once the chain samples are produced, a histogram of the samples projected into the parameter subspace
can be taken to obtain the properties of the distribution of that parameter.

TheMetropolis-Hastings method is a simpleMCMCmethod whose acceptance criterion is given by the ratio
of the target posterior densities at the new and current sample pointsmultiplied by a a transition distribution [58].
The transition distribution canbe defined to allow for asymmetric jumps, which is good for skewedormultimodal
data. It is more general than the simpleMetropolis algorithmwhere the transition distribution is factored out and
that therefore is only good for data that is not skewed.

Recent advancements in MCMC algorithms have focused on improving convergence speed, which is crucial
for reducing computational costs. One such method that has gained popularity is the affine-invariant ensemble
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sampling algorithm emcee [59][60]. This approach uses an ensemble of “walkers” to explore the parameter space
simultaneously. For each walker, a new position is proposed by “stretching” a vector between its current position
and a randomly selected walker from the rest of the ensemble. This vector is in theN-dimensional space,N being
the number of parameters. The new position is then accepted or rejected based on a probability proportional to
the ratio of the posterior densities at the new and current positions. This process is repeated sequentially for every
walker in the ensemble. To further speed up the sampling, the ensemble can be divided into two subsets, S0 and
S1. First, the positions of all walkers in subset S0 are updated using the positions of walkers in subset S1. Then, the
positions of walkers in S1 are updated based on the newly updated positions of S0.

There are multiple reasons why this type of sampler is particularly well-suited for estimating the planetary
parameters from radial velocity data. Firstly, there are many correlated parameters in the data (orbital eccentricity
and argument of periastron, for example). This would require a careful tuning of the proposal distribution in
traditional MCMC methods, but for affine-invariant samplers is not as much of a problem— due to the affine-
invariance it can handle distributions with complex geometries. Secondly, the posteriormay exhibit amultimodal
distribution, for instance a system containing multiple planets could have different possible configurations of
planets. In addition, the number of parameters can be very high, especially for models with multiple planets.
Affine-invariant ensemble samplers are good at escaping from local minima and exploring multiple modes even at
those high dimensions simultaneously.

2.3.7 Model selection

Bayesian inference methods are used to estimate the parameters of a certain model. But they can also provide
a powerful framework for model selection, such as models with different covariance matrix structure (due to dif-
ferent kernel functions or frameworks) or with a different number of planets in a planetary system. Unlike the
traditional frequentist approach, which focuses on rejecting the null hypothesis (such as the hypothesis that no
planets exist based on radial velocity data), Bayesian methods enable the computation of quantitative evidence in
favour of different models.

The Bayesian evidence or marginal likelihood is given by

Z = p(D|M) =

∫
L(Θ)π(Θ)dDΘ, (2.45)

whereD is the number of dimensions of the parameter space. The ratio of the Bayesian evidences of two models
is the Bayes factor. To compare two models, the model posterior odds ratio can be calculated,

p(M1|D)

p(M2|D)
=

Z1

Z2

p(M1)

p(M2)
, (2.46)

which is given by the Bayes factor (B12 = Z1/Z2) multiplied by the model prior odds ratio. The latter is set to
1 if there is no prior reason for preferring one model over the other. In that case, comparing the posterior odds
ratio (POR) or the Bayes factor is equivalent. If the Bayes’ factor is bigger than unity thenM1 is preferred over
M2. The larger the value of the Bayes factor the stronger the evidence of modelM1 compared toM2. If models
with varying planet counts are being evaluated, the n + 1, n + 2, n + 3, and so on are compared to the n-planet
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model. When a certain threshold is reached, the model is selected. This threshold is given by empirical scales,
such as the one suggested by Kass and Raftery (1995) [61], shown in Table 2.1, which is a modification on the
one by Jeffreys (1961) [62]. The scale presented uses the natural logarithm of the Bayes factor, which is useful for
numerical accuracy reasons since evidences can span multiple orders of magnitude.

2 lnB12 Bayes factor (B12) Evidence Interpretation
0 to 2 1 to 3 Weak
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
> 10 > 150 Very strong

Table 2.1: Interpretation of Bayes factors (Kass and Raftery, 1995).

2.3.8 Information criteria
To evaluate the best model efficiently, besides the Bayes Factor, it is often useful to employ computationally

inexpensive methods that balance model fidelity against overfitting. Information criteria, such as the Akaike In-
formation Criterion (AIC) [63] and the Bayesian Information Criterion (BIC) [64], are commonly used for this
purpose.

The AIC comes from information theory and it identifies the model that minimizes the expected Kullback-
Leibler (KL) divergence [65] between the true data-generating process and the candidate model. It is defined as

AIC = −2 lnL(θ̂ ) + 2k, (2.47)

where L(θ̂) is the maximized value of the likelihood function under the model and k represents the number of
free parameters. Smaller AIC values suggest higher model probability. Byminimizing it, you can obtain a balance
between data alignment andmodel complexity. Importantly, this balance does not require the true model to exist
within the candidate set, making the AIC useful for analyses where the true model is unknown ormisspecified, as
in our case.

In practical applications, the AIC is often supplemented by its corrected version, the AICc, which accounts
for small sample sizes, given by

AICc = AIC+
2k(k+ 1)
n− k− 1

, (2.48)

where n is the sample size. TheAICc is recommended over theAICwhen n < 40k [66]. One potential limitation
of the AIC is its fixed penalty term, 2k, which can favour overly complex models in large-sample scenarios.

An alternative criterion is the BIC, whose penalty term scales with the sample size. It is defined as:

BIC = −2 lnL(θ̂ ) + k ln(n). (2.49)

As with the AIC, smaller BIC values indicate a more favourable model. The first term encapsulates model fit,
favouringmodels with higher likelihoods, while the second term constitutes a penalty proportional to themodel’s
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complexity. Notably, the ln(n) term imposes a stricter penalty on complex models as the sample size increases.
This alignswithOccam’s razor, favouring simplermodels in large-sample contexts. In practice, thismeans theBIC
is likely to favour models with fewer planets compared to the AIC, particularly for datasets with a large number
of RV observations. The BIC is derived with a lot of assumptions, namely a large sample size. In that case, it is
asymptotically equivalent to the logarithm of the Bayes factor.

Both of these information criteria are based off the best-fit location; as a consequence, theymight bemisleading
in caseswhere the likelihoodhas amulti-modal shape, as canhappen inRVanalyseswithmultiple planets or strong
stellar activity [67].

2.3.9 Nested sampling

The Bayesian evidence ln(Z) is generally considered the most robust and comprehensive method for model
selection since it integrates over the entire parameter space and inherently penalizes overfitting by spreading prob-
ability mass across parameter values for overly complex models.

The computation of the integral of Equation 2.45 cannot be performed analytically in our cases and it is ex-
tremely challenging numerically due to the high dimensionality. One technique is thermodynamic integration,
which uses a modified form of MCMC sampling. Nonetheless, an order of 106 MCMC samples per chain are
needed to determine the evidence, making it about an order of magnitude more costly than parameter estimation
[68][69].

Nested sampling algorithms are a numerical approach recently developed to compute the Bayesian evidence
[70]. Since it produces samples from the posterior PDFs of model parameters for the integral estimation, it can
also be used for parameter estimation.

NS algorithms refactor the multidimensional integral of the evidence over positionΘ into a one dimensional
integral taken over the prior volume X of the enclosed parameter space. Starting from equation

Z =

∫
L(Θ)π(Θ)dDΘ (2.50)

we define a prior volume X(λ)where the likelihood is above a certain threshold λ:

X(λ) =
∫
L(Θ)>λ

π(Θ)dDΘ. (2.51)

The priors are normalized and they need to be integrable. We start with the full volumeX = 1 when λ = 0 and as
we increase the value λ, the volume shrinks, eventually reaching 0 in the case that the maximum-likelihood value
Lmax is a singular point.

The evidence integral then becomes

Z =

∫ ∞

0
Xdλ, (2.52)
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or, rewritten in terms ofL(X), which is the iso-likelihood contour defining the edge of the prior volume X,

Z =

∫ 1

0
L(X)dX. (2.53)

L(X) is the inverse of X(λ), and it decreases monotonically as a function of X. We can determine Li at a discrete
numberN of points Xi and approximate the evidence numerically, for example with a Riemann sum,

Z =

N∑
i=1

L(Θi)× wi, (2.54)

where
wi =

1
2
(Xi−1 − Xi+1) (2.55)

with 0 < XN < ... < X1 < X0 = 1.

Once the evidenceZ is estimated, the posterior distributions can also be estimated using the generated points,

pj =
Ljwj

Z
. (2.56)

The likelihood at a given position L(Θ) is simple to obtain, while for the associated prior volume X(Θ) only
noisy estimates can be obtained. In particular, we need to generate samples Θi+1 from the prior distribution π(Θ)

with increasing likelihoodsL(Θi+1) > L(Θi). For this,N “live points” are drawn, fromwhich the pointwith the
smallest likelihood is removed and replaced by a new point with a likelihood L > L0. This will make the prior
volume shrink at each iteration into smaller and smaller nested shells of increasing likelihood. When a certain
precision in the evidence is reached the algorithm stops.

The most challenging part of the process is guaranteeing the condition of increasing likelihood (L(Θi+1) >

L(Θi)) at every step. One approach is ellipsoidal nested sampling proposed byMukherjee et al. 2006 [71]. Ellip-
soidal nested sampling consists in approximating the iso-likelihood contour by a D-dimensional ellipsoid deter-
mined from the covariancematrix of the current set of active points. Then, new points are selected from the prior
within this ellipsoidal bound until one meets the criterion of increasing likelihood. The MultiNest python
package [69] adds some improvements to this approach. Firstly, the parameter space is transformed into a D-
dimensional unit hypercube from which samples are drawn uniformly, which is easier to do than to sample from
an arbitrary prior. Plus, at each step of sampling, active points are partitioned into clusters which are then en-
closed in ellipsoids. This is much more efficient for highly degenerate and multimodal problems. However, this
algorithm maintains a constant number of live points at all times and as such the rate of posterior integration is
constant.

Another algorithm developed recently is that of dynesty [72], which instead uses a dynamical number of live
points. LikeMultinest, dynesty generates samples from a prior normalized to the volume, this normalization
being done to increase the acceptance rate since the volume continuously decreases at each step. It also samples
from a D-dimensional unit cube, with D the number of parameters Θ. Therefore, the original problem of sam-
pling from the posterior directly is likewise transformed into one of repeatedly sampling uniformly within the
transformed constrained prior:
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π′λ(Φ) ≡

1/X(λ) L(Θ = T (Φ)) ≥ λ

0 otherwise.
(2.57)

Themain difference is that the number of live points vary during the runtime. Specifically, it allows the number
of live points, which depend on the prior volume,K(X), to follow an importance functionK(X) ∝ I(X), given
by

I(X) = f PIP(X) + (1− f P)IZ(X). (2.58)

The posterior importance function IP(X) is defined to be the probability density function of the importance
weight which is used to estimate the evidence integral:

IP(X) ≡ p̂i ≡ [L(Θi−1) + L(Θi)]×
[
X̂i−1 − X̂i

]
. (2.59)

The evidence importance function is

IZ(X) ≡ 1−Z(X)/Z∫ 1
0 (1−Z(X)/Z)dX

. (2.60)

Giving a bigger relative amount of importance on estimating the posterior f P translates into allocating more
live points in regions where the posterior mass L(X)dX is higher. On the other hand, a bigger importance given
to IZ(X) translates into allocating more live points when we have not integrated over much of the posterior and
are thus less confident in the estimated value ofZ . We do not have the actual values of X nor of I(X), only noisy
estimators which come from generating samples from the posterior. The dynesty algorithm starts with perform-
ing a static baseline run to obtain the location of the posterior mass as well as an evaluation of the importance
function. More points are allocated where Ii is larger. These new points are merged into the previous sample set
and the steps are repeated until the stopping criterion is reached. The stopping criterion now instead of being
just about the evidence estimate is a criterion based on both the uncertainty in the current posterior and on the
evidence estimates. It is given by

S = sPSP + (1− sP) SZ < ε, (2.61)

where ε is the chosen tolerance, SP is the posterior stopping criterion, SZ is the evidence stopping criterion, and
sP is the relative amount of weight given to each one of these.

dynesty implements five bounding methods: unit cube, single or multiple ellipsoids, overlapping balls or
overlapping cubes. By default, dynesty uses multiple ellipsoids to construct the bounding distribution, which,
again, is more effective for multimodal distributions. Yet, they are more conservative than the MultiNest ap-
proach when separating live points into clusters. To generate samples the options are uniform sampling, random
walks, multivariate slice sampling, and Hamiltonian slice sampling. The chosen method is given by the number
of dimensions of the problem since each one works better in different regimes.
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3
Methods

In this chapter, I discuss the methodology used for the determination of the USP planets’ parameters. I begin
by describing the instrumentation thatwas used to collect data on the targets, specifically theHARPS,HARPS-N,
andHIRES spectrographs. Following this, I detail the criteria for sample selection and how the stellar parameters
of this sample were re-analysed in order to ensure consistency in our dataset. The updated stellar parameters of
the sample are presented. I then discuss the sources and methods to gather the radial velocity and stellar activity
data. Finally, I explain the planetary parameters’ derivation, including theworkflow in PyORBIT and the sampling
methods used.

3.1 Instrumentation

3.1.1 HARPS
The High Accuracy Radial velocity Planet Searcher or HARPS is a high-precision échelle spectrograph in-

stalled at the 3.6-meter telescope at the La Silla Observatory in Chile [73]. It was designed to achieve a radial
velocity precision of 1 ms−1, enabling the detection of exoplanets with masses similar to that of Earth. It has a
spectral resolution of R ∼ 115000 and a wavelength range of 3780 - 6910 Å. The spectrograph is housed in a
temperature-controlled (17°±0.01°) vacuum vessel to minimize environmental variations [29].

3.1.2 HARPS-N
HARPS-N is essentially a northern hemisphere counterpart to HARPS, located at the 3.58-meter Telescopio

NazionaleGalileo (TNG) inLa Palma, Canary Islands [74]. It sharesmany design featureswithHARPSbut is op-
timized for observing from the northern hemisphere. It has a spectral resolution of R∼ 115000 and wavelength
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coverage between 3830 and 6900Å. It is also housed in a temperature-controlled vacuum vessel for extreme stabil-
ity. Installed in 2012 and with levels of precision as good or slightly better thanHARPS [75], it has since become
a critical tool for exoplanet research in the northern hemisphere.

Both HARPS and HARPS-N utilize thorium-argon (ThAr) lamps for wavelength calibration. The ThAr
lamps produce a rich spectrum of lines that are used to precisely determine the instrument’s wavelength scale,
ensuring that the radial velocitymeasurements remain accurate over long periods, as described in Subsection 2.1.2.
A Fabry-Pérot is used for simultaneous calibration for stars brighter thanV = 11.

3.1.3 HIRES

The HIgh Resolution Échelle Spectrometer (HIRES, [76]) is located at the 10-meter Keck I Telescope. Its
wavelength range is between 3000 and 11000 Å and it can reach a maximum resolution of about 85000. HIRES
was majorly upgraded in 2004 with a new CCD and other optical improvements [77] so now it can reach a max-
imum precision in radial velocities of about 1 ms−1 [78]. Differently than HARPS and HARPS-N, it uses an
iodine reference cell for wavelength calibration. It is not in a vacuum enclosure but the temperature is between 0°
and 2°, making it a stable instrument [29].

3.1.4 CARMENES
CARMENES (CalarAlto high-Resolution search forM-dwarfswithExoearthswithNear-infrared andoptical

Échelle Spectrographs) was built for the 3.5m telescope at theCalar AltoObservatory. It consists of two separated
spectrographs, one of visible-light covering the wavelength ranges from 5200 to 1050 Å and another for the near-
infrared from 9500 to 1710 Å. Each channel has a spectral resolution of 94600 and 80400, respectively [79].
The spectrographs are housed in vacuum tanks and simultaneous calibration is performed with an emission-line
lamp or with a Fabry-Pérot etalon. In this manner, it is possible to reach 1 ms−1 radial velocity precision. The
CARMENES first light with the two NIR and VIS channels working simultaneously occurred in November
2015 [80].

3.2 Sample selection

The first step in performing the homogeneous analysis is to select a sample of USP planets, according to their
definition of P < 1 day and R < 2 R⊕. Bright targets were needed since those are the ones that have had spec-
troscopic radial velocity measurements so I selected stars with a magnitude in the Johnson system of V < 14.
Moreover, I looked for planets that were observed with either HARPS, HARPS-N or ESPRESSO since these
spectrographs provide activity indices that are needed for the GP methods of using three spectroscopic series si-
multaneously. All of these constraints were applied to the NASA Exoplanet Archive*.

*https : / / exoplanetarchive . ipac . caltech . edu / cgi-bin / TblView / nph-tblView ? app =
ExoTbls&config=PS
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Some of these targets wereM-dwarfs which had very high error bars in the activity indices. As was discussed in
Rainer et al. 2020 [81], the onlineHARPSDRSpipeline uses aM2maskwhich results in strangely shapedCCF’s
bisectors without much physical meaning. To analyse M-dwarfs some works use template-matching algorithms
like TERRA or serval [34][36], which can provide better RV measurements but they do not provide activity
indicators such as the bisector span or the FWHM. For that reason, I decided to excludeM-dwarfs. The threshold
between the K and the M stars was done with help of the table from Pecaut andMamajek 2013 [82].

The planet TOI-1416 b with a period of slightly above 1 day (1.067 days) technically did not belong in the list.
The 1 day cutoff, however, is somewhat arbitrary as up to 10 days there is no sharp distinction in the planetary
occurrence rate or mean metallicity of the host stars [83]. Thus, I kept the planet as it satisfied the other criteria.

The final sample is made of 16 systems with USPPs with mass measurements.

3.3 Stellar Parameters Re-analysis
After selecting the sample, I needed to collect the stellar parameters since they are extremely important to de-

duce the planetary parameters. For example, the planetary mass directly depends on the stellar mass as Mp ∝
M 2/3

⋆ . A homogeneous analysis of the stellar parameters will then also help in the homogeneity of the final plan-
etary parameters.

To determine the stellar mass and radius I used the isochrones python package (version 1.2.2, [84]) with a
posterior sampling performed by MultiNest [68][69]. As inputs, I included the effective temperature, surface
gravity and metallicity (Teff, log(g), [Fe/H]). These values come from literature, mostly fromHARPS, HARPS-
N, ESPRESSO, but also from other spectrographs (CARMENES, HIRES, APF, etc.) given that reliable stellar
parameters such asTeff can often be obtained even from spectrographswithmoderate resolution. Where literature
provided only two of the three parameters, priority was given in decreasing order to Teff, [Fe/H], and log(g),
allowing for inclusion as long as Teff was available. To avoid biasing the analysis toward methods with artificially
low internal errors, I standardized uncertainties to 60 K for Teff, 0.1 for log(g), and 0.03 for [Fe/H] when the
reported errors were smaller than these values, as was done in Sousa et al. 2011 [85]. Otherwise, I retained the
original values. In addition to these three photospheric parameters, I included the parallax of the target from
the newest Gaia DR3 catalogues [86] [87] and multiple magnitudes in several bands, since isochrones also
performs a Spectral Energy Distribution (SED) fit. These were the AAVSO Photometric All-Sky Survey B and
V magnitudes [88], the Two Micron All Sky Survey J, H and K magnitudes [89] and, where available, the Wide-
field Infrared Survey Explorer W1, W2,W3 andW4magnitudes [90]. To perform the isochrone fitting, a library
of theoretical isochrones is needed. Two stellar models were used: MESA Isochrones and Stellar Tracks (MIST,
[91][92][93]) and the Dartmouth Stellar Evolution Database (DART, [94]). The identifying information and
input parameters used for the analysis are shown in the Appendix, Table A.1.

I varied the spectroscopic parameters (Teff, log(g), [Fe/H]), with each set derived from a different source in
the literature, and tested two stellar models (MIST and DART). Each of these ensembles was run with 1000 live
points. The stellar age was also constrained to be between 0.1 and 13.7 Gyr. In some systems, the stellar age has
been determined through independentmethods (e.g., gyrochronology), so I applied aGaussian prior to the age to
refine the fit. BothMIST andDARTmodels produced consistent results, so I utilized both sets. I then combined
all the posteriors and extracted the final values and errors by taking the median and the 16th and 84th percentiles.
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Combining posteriors from different sources—each using slightly varied methodologies—results in a final uncer-
tainty slightly larger than those from individual fits, yet likely improves overall accuracy. In this way, the values
and errors of radius, mass and density for each star, were obtained (Table 3.1). While stellar age estimates were
also calculated, they generally show a larger spread due to the challenges in constraining age precisely. Figure 3.1
shows the combined posterior distributions of the mass and radius and for the age and density for star Kepler-78.
Similar graphs were obtained for the rest of the targets.
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Figure 3.1: Posterior distributions of mass and radius (left) and of the density and age (right) for Kepler-
78 from isochrone fitting. Each colour corresponds to a certain stellar evolution model (DART or MIST) with
input parameters from a certain literature source. The combined value for themass is 0.829±0.007M⊙ and for
the radius 0.745± 0.004R⊙. The combined value for the density is 2.00± 0.02 ρ⊙ and for the age 0.60± 0.13
Gyr.

In Figure 3.2, I show the mass and radius of the sample of stars with values from literature and the values
derived from combining the posteriors from the isochrone fits. We can see that the uncertainties for both the
stellar masses and radii decreased considerably.

In Figure 3.3, the spectral type and metallicity of the sample of stars is shown.
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Figure 3.2: Mass-radius plot of the sample of stars with literature values (top) and the derived values from
this analysis (bottom). A simple empirical line representing themass-radius relation for low-massmain-sequence
is included for reference. References for the literature plot: Serrano et al. 2022 [95], Bonomo et al. 2023 [117],
Lacedelli et al. 2022 [98], Nardiello et al. 2022 [37], Dai et al. 2019 [15], Osborn et al. 2021 [102], Deeg et al.
2023 [103], Espinoza et al. 2020 [121], Murgas et al. 2022 [122]
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Figure 3.3: Mass-radius plot of the sample of stars with the derived values from this analysis colour-coded
according to the star’s metallicity. The different shapes represent the stellar type. A simple empirical line repre-
senting the mass-radius relation for low-mass main-sequence is included for reference.

3.4 Collecting RV and Stellar Activity Data
For most systems, I took the the radial velocity data and the activity indicators (BIS, FWHM and S-index or

logR′
HK) directly from reference papers in case they had used the HARPS DRS or equivalent softwares.

The raw spectra obtainedwithHARPSare automatically processedusing theDataReductionSoftwarepipeline
developed by the HARPS Consortium, and this has been the case since operations began in 2003. It consists of
bias and flat field corrections, wavelength calibration and calculation of the cross correlation function fromwhich
the radial velocities and stellar activity indicators are extracted. In 2015, there was amajor upgrade to the fibre link
between the telescope and the spectrograph which led to a slight shift in the RV zero point. Accordingly, there
was a recalibration done to the data reduction; consequently, data obtained before 29May 2015 is processed with
version 3.5 of the pipeline while data obtained after that is processed with version 3.8 of the pipeline. For this
reason, datasets from before and after that date should have different offsets.

The first public data release of 20 years ofHARPSRadial Velocity catalogue wasmade onDecember 12, 2023.
The data is accessible through the ESO Archive Science Portal (version 2.3.3). Within this portal, users can filter
the dataset based on several parameters, such as target name, instrument used andobservation data. After selecting
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and downloading the filtered files, it is possible to extract the wanted variables, for example, the Barycentric Julian
Date (HIERARCH DRS BJD), Radial Velocity (HIERARCH DRS CCF RVC), Cross-Correlation Function
Mask (HIERARCHDRS CCFMASK), and many others.

RegardingHARPS, for some systems there were observations done after the papers’ release, and subsequently
new data in the ESO Archive Portal. For those, I used the ACTIN2 python tool combined with pyrhk[124][125].
ACTIN2 can easily extract data from the different spectrographs’ FITS files and calculate spectroscopic activity
indices for different lines. In particular, I used the Ca II H and K lines to calculate the S-index and converted it
to logR′

HKwith the pyrhk python package. The Rutten relation (Equation 2.14) was used since the colour range
where it is valid applied to our sample composed of FGK stars.

For certain HARPS-N targets, I utilized the Data & Analysis Center for Exoplanets (DACE, [126]), a web
platform developed by PlanetS and hosted at theUniversity of Geneva. DACE provides access to both public and
private observational data, including radial velocities. TheHARPS-N data fromGuaranteed TimeObservations
(GTO) were processed using the latest Data Reduction Software (DRS), offering enhanced precision and fewer
systematic issues compared to previously published data. In some cases there were also new observations after a
paper’s release.

Radial velocity data fromHIRES was sourced exclusively from literature. These datasets only include RV and
associated uncertainties, with no activity indices. Despite this limitation, their high precision aids in the overall
analysis as within PyORBIT it is possible to have different sized datasets.

HARPS and HARPS-N are very similar to each other, hence data of a target from these instruments were
stored in the same file but assigned distinct jitter and offset parameters. I treated HIRES data, when available, as
an independent dataset. These sets of instruments have different spectral ranges, so even though the underlying
Gaussian process should be the same, the coefficients could be different.

There are multiple variables associated with each dataset in PyORBIT, such as activity coefficients, jitter and
offset; as such, it was only worth adding a dataset from a computational and informational point of view if there
were 10 or more points.

When the error of the BIS or FWHMwas not explicitly given, it was calculated by simply doubling the error of
the RVmeasurement. I discarded points with an error 5σ away from the median error. Those points were flagged
in all 3 datasets since if, for example, there was a very low SNR at one moment, all datasets should be affected.

Following the process outlined above, I obtained the datasets, consisting of RV, BIS, logR′
HK and associated

errors, for all targets. Table 3.2 shows the spectrograph(s) used to observe each system, the number of points from
each spectrograph and the data source.
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Table 3.2: RV and auxiliary data size and source for each target of the sample used.

System Instruments Number of points Data Reference
TOI-500 HARPS 197 [95]
Kepler-78 HARPS-N, HIRES 117 + 83 [117], [97], [96]
TOI-561 HARPS-N, HIRES 168 + 62 DACE, [98], [21], [99]
TOI-1807 HARPS-N 161 [37]
K2-229 HARPS, HARPS-N 12+120 ACTIN, DACE, [22], [100]
TOI-431 HARPS 162 [102]
TOI-1416 HARPS-N, HIRES, CARMENES 96+12+34 [103]
Kepler-10 HARPS-N, HIRES 292+40 [117], [104], [11]
CoRoT-7 HARPS 180 ACTIN, [53], [127]
HD 3167 HARPS, HARPS-N, HIRES 53+215+55 ACTIN, DACE, [117], [109], [111], [112]
K2-141 HARPS, HARPS-N 28+49 ACTIN,[117], [115], [114]
HD 80653 HARPS-N 208 [117], [116]
K2-106 HARPS, HARPS-N, HIRES 20+43+35 [118], [117], [119]
HD 213885 HARPS 47 ACTIN, [121]
HD 20329 HARPS-N 120 [122]
K2-131 HARPS-N 83 [117], [123]
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3.5 Deriving the Planetary parameters

Planetary parameterswere derived using aBayesian approach implemented in PyORBIT, requiring as inputs the
stellar mass — determined through isochrone fitting, as detailed in Section 3.3 — along with the RV and stellar
activity data, described in Section 3.4.

3.5.1 Workflow
To refine the planetary parameters, I followed a structured approach, delineated in Figure 3.4. First, I per-

formed an MCMC analysis using the planets listed in the discovery paper to obtain initial estimates of the plan-
etary parameters, as well as the offset and jitter parameters for each spectroscopic time series. Next, I conducted
nested sampling analyses with boundaries constrained by the initial MCMC results to prevent the sampler from
exploring low-likelihood regions of parameter space. I started with the number of confirmed transiting planets
and incrementally increased the number of planets until the model no longer showed a significant improvement
over the previous one. MCMC analyses were also performed for the same number of models as in the NS. The
choice of the best model for each planetary system relied on evaluating the Bayesian evidence, information criteria
as well as the posterior distribution. The final planetary parameters were derived from this selected model.

RV and auxiliary data
from literature or extracted

Stellar parameters from
isochrone fitting

Initial MCMC ofModel 0 to
estimate parameters

NS analyses of multiple models constrained
by initial MCMC run

MCMC analyses of multiple models

Model selection
based on BF, ICs,
checking posteriors

Final planetary parameters

Figure 3.4: The general workflow used for determining the planetary parameters using MCMC and nested
sampling. Model 0 represents a model with only the transiting planets.
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3.5.2 PyORBIT

PyORBIT† is a python package used to model planetary transits and RVs [128][115]. It can simultaneously
model stellar activity on the light curves or RVs by using Gaussian Processes. For this analysis I used the latest
version, 10.8.

Multiple RV datasets and activity indicator datasets can be added, each with its own unique offset and jitter
flag. Different types of prior distributions are available, offering flexibility in setting up the model. The model
specifies the number of planets, the parametrization of the orbital parameters, the type of orbit, and the parameter
ranges for each planet. Stellar parameters, especially the stellar mass, are also required to accurately derive the
planetary parameters. For handling stellar activity, there aremany kernel options and it is possible to use a Trained
or a Multidimensional GP. In terms of sampling, the choice between Markov Chain Monte Carlo (MCMC)
and nested sampling algorithms is available and both provide posterior probability density distributions for the
parameters.

PyORBIT can also use photometry data which allows for precise constraints on the planet’s radius and, if multi-
ple transits are observed, on the orbital period aswell. Both photometric and radial velocitymodels share common
parameters, such as the orbital period and the central time of transit. Whether modelled separately or jointly, the
derived planetary radius remains consistent, and any variations in the mass estimate typically stem from the radial
velocity data. Modelling both photometric and radial velocity data together requires a sophisticated model, care-
ful selection of transit data points, and a more time-consuming analysis. For this reason, only radial velocity data
was used in the analysis. Nevertheless, information coming from photometry from past papers was included by
adding Gaussian priors on some parameters such as the central time of transit T0 and period P.

3.5.3 NS andMCMC configurations

The Bayesian evidence was computed using the dynesty nested sampling algorithm [72], described in Subsec-
tion 2.3.9. For all analyses 2000 live points were used. Each dataset in the model had constrained jitter and offset
parameters that came from the preliminary MCMC run to make it converge faster.

When usingMCMC, first a global optimisation of the parameters is performed with the differential evolution
code PyDE and the resulting parameters are used as a starting point for the MCMC analysis. The MCMC algo-
rithm chosen for this analysis is the python package emcee [59], a type of affine-invariant ensemble sampler [60],
described in Subsection 2.3.6.

The first MCMC run is performed with a number of points which is not enough for convergence, instead
its purpose is to get estimates of the jitter and offset parameters needed to constrain the parameter space for the
nested sampling analysis.

The subsequent runs are done with a very high number of chains, 105, to properly sample the posterior distri-
bution of the parameters. There are different ways to diagnose the convergence of theMCMC. Away to check if
the analysis is to be “trusted” is to check the autocorrelation of the chains. This is done automatically in the emcee
package with the integrated autocorrelation time τf. Due to theMarkovian property of anyMCMCmethod, the

†Available at https://github.com/LucaMalavolta/PyORBIT.
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iterations in the chain will always be somewhat correlated. This means it is necessary to compute how many iter-
ations are effectively independent.

To initiate the sampler, the number of burn-in points (nburn) must be specified. These points reflect the ini-
tial phase of the sampling process, during which the sampler has not yet converged on the target distribution.
Consequently, the burn-in points are removed to prevent them from biasing the derived parameters. Generally,
using about 25% of the chain for burn-in is sufficient. The parameter nthinmust also be set, the number by which
the total number of points is divided by to minimize correlation between points. The autocorrelation function
(ACF) is then computed on the thinned chains, with each parameter having a unique integrated autocorrelation
time. The authors of the emcee paper found that with parallel chains, each chain should ideally run for a duration
approximately 50 times the integrated autocorrelation time, denoted as τf. In PyORBIT, a warning is triggered if
the chains are considered too short, along with a suggested minimum run length for adequate sampling.

We can check the trace plots which show the progress of the chain throughout time. Ideally, they are wiggly
with a lot of “up and down movement”, which is a sign that the chains are mixing well and are not stuck in any
one part of the parameter space. Another valuable diagnostic is the Gelman-Rubin statistic, which compares the
variance within a single chain to the variance between multiple chains to see if the chains have “forgotten” their
initial conditions. Typically, values less than 1.1 indicate that convergence is likely achieved. All these diagnostics,
the trace plots, GR plots and tables with ACF values, are provided by PyORBIT.

3.5.4 Priors for planetary parameters

The first model tested for each system is one where only the transiting planets are considered. Table B.1 in
the Appendix shows the priors for this model for each target. Besides this one, models with increasing number
of planets were tested. These extra planets had the following priors: uniform prior in the period U(2, 500) and
in the RV semiamplitude U(0.01, 100) and a half-normal prior in the eccentricityHN (0.00, 0.098). The latter
prior choice comes from Van Eylen et al. 2019 [129].

For each system, 3 spectroscopic time series were included (RV, BIS, logR′
HK), whichwere considered indepen-

dent— the “Trained”— or assumed to share an underlying GP process— the “Multidimensional”, described in
Subsection 2.3.3.

For the GP coefficients, the same non-informative uniform priors were used for all systems, shown in Ta-
ble 3.3. In the Trained case, each spectroscopic dataset from each instrument has its own coefficient (H RV,HARPS

amp ,
H BIS,HARPS

amp , H logR′
HK,HARPS

amp , H RV,HIRES
amp , etc.), but the same boundary was used. In the Multidimensional ap-

proach, it is already explicitly divided by spectroscopic dataset but, again, each instrument will have its own co-
efficient (ex: V HARPS

r ,V HIRES
r ). Additionally, with the Multidimensional model there is a coupling between the

two coefficients (Xr and Xc). To solve this degeneracy, one coefficient was forced to be positive, in this caseVr.
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Table 3.3: Priors for the GP coefficients in the Trained and Multidimensional case.

Trained GP
Hamp (m s−1) U(0, 100)
Multidimensional GP
Vc (m s−1) U(−100, 100)
Vr (m s−1) U(0, 100)
Bc (m s−1) U(−100, 100)
Br (m s−1) U(−100, 100)
Lc (m s−1) U(−1, 1)
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4
Results

In this chapter, I present the results obtained. The effectiveness of the ESP kernel approximation compared to
the QP is tested. The Bayesian evidences, information criteria and posteriors for the various models are assessed
to choose the most likely configuration of each planetary system. The final planetary parameters are presented. A
homogeneous mass-radius plot of the sample of USP planets is shown.

4.1 SPLEAF’s ESP kernel validity

Firstly, I aimed to verify whether the ESP kernel implemented in s+leaf produces results consistent with the
QP kernel implemented in tinyGP. This comparison was motivated by the significantly reduced computational
cost of the ESP kernel, achieved through its semi-separable matrix representation. The test runs were performed
for the Kepler-78 system.

The posterior distributions of all parameters using tinyGP’s QP and s+leaf’s ESP kernels were compared for
all models tested. These were the 1-planet, 2-planet and 3-planet models for both the Trained and Multidimen-
sional GP models and for both the dynesty and emcee samplers. Corner plots were created using pygtc*[130].
I show here the results for one in particular: the Multidimensional GP 1-planet model with sampling done by
dynesty. Figure 4.1 presents the posteriors of the planetary and stellar activity parameters. The two contour lev-
els correspond to the 68% and 95% containment ranges for the two-dimensional projections. The blue contours
correspond to the ESP kernel of s+leaf, while the orange contours represent the QP kernel of tinyGP. As can
be seen, s+leaf’s ESP kernel and tinyGP’s QP give very good agreement between each other. Corner plots with
the same 1-planet model and Multidimensional GP but with sampling done for emcee instead of dynesty also
show also very good agreement. Similarly, the 1-planet model using a Trained GP showed very good agreement

*Available at https://github.com/SebastianBocquet/pygtc.
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for both emcee and dynesty sampling.
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Figure 4.1: Kepler-78’s main planetary (left) and stellar activity parameters (right) posterior distributions
from the 1-planetMultidimensional GPwith dynesty. The twodistributions come from theESP andQPkernel
implemented in s+leaf and tinyGP, respectively.
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Figure 4.2: Kepler-78’smain planetary parameters posterior distributions for the 2-planetmodel. Left: With
Trained GP and emcee. Right: With Multidimensional GP and dynesty. The two distributions come from the
ESP and QP kernel implemented in s+leaf and tinyGP, respectively.
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As follows, in the 1-planet model, which is the current one according to literature, s+leaf and tinyGP are
equivalent across samplers and across GP models.

For the 2-planet model, the ESP and QP are again perfectly superimposed both for emcee and dynesty but
only for theTrained case. In theMultidimensional case, they start to diverge slightly on the 2ndplanet and activity
parameters. In Figure 4.2, the planetary parameters of two 2-planet models are shown. In the 3-planet model,
the ESP and QP results show more significant discrepancies in the activity parameters and the parameters of the
second and third planets. This divergence is expected, as there is likely only one planet, Kepler-78 b, in this system,
making it challenging to constrain the “extra” parameters introduced.

Overall, we are able to get the same posteriors distributions independently of the sampler and of theGPmodel
for the 1-planet model and very similar distributions in the 2-planet model. For this reason, SPLEAF’s ESP kernel
is considered a very good approximation to tinyGP’s QP kernel with the added benefit of much lower computa-
tional cost. As such, it was implemented for all the remaining targets.

4.2 Model selection criteria comparison
In addition to analysing the parameter posteriors, I examined whether the same model was preferred based on

Bayesian evidence and information criteria. This comparison was conducted for the Kepler-78 system, utilizing
both s+leaf’s ESP kernel and tinyGP’s QP kernel.

Both the Trained and Framework GP were tested across the 1-planet, 2-planet and 3-planet models. The BIC,
AIC andAICcwere computed for the samples generated by both the emcee and dynesty samplers. The bayesian
evidence ln(Z) can only be obtained with the dynesty nested sampler. The differences to the 1-planet model were
calculated for each one of the model selection criteria. For the information criteria, −(ICn+1 − ICn) is plotted,
and for the Bayesian evidence 2(ln(Z)n+1 − ln(Z)n). These adjustments ensure that all criteria are aligned in
direction, since higher model probabilities correspond to lower BIC/AIC/AICc values and higher ln(Z). In this
manner, values above 0 indicate a model more likely than the 1-planet model. The results for the Trained and
Multidimensional GP are shown in Figure 4.3.

For this particular system, Kepler-78, the uncertainties in the information criteria are too large to make a deci-
sion. It is interesting to note that from the ln(z) for the Framework GP we could be led to select the 2-planet or
even the 3-planet model. But as can be seen from the posterior distributions, the period is very badly constrained
and the semi-amplitude for the 2nd and 3rd planet is extremely close to 0, which suggests that there are likely no
additional planets beyondKepler-78 b. TheTrained case seems to givemore accurate results, penalizing allmodels
more complex than the 1-planet one.

It can also be observed that emcee and dynesty, represented by solid colours and hatched patterns respec-
tively, generally lead to the same model selection outcomes. The main exceptions are the AIC/AICc values in the
Framework case.
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Figure 4.3: Difference in evidence to the 1-planet model for Kepler-78’s system. Top: Using theMultidimen-
sional GP. Bottom: Using the Trained GP. Darker and lighter shades of the same colour correspond to s+leaf
and tinyGP, which implement the ESP and the QP kernel, respectively. Solid colours correspond to nested sam-
pling performed by dynesty while hatched bars correspond to MCMC performed by emcee. The information
criteria metrics BIC, AIC, AICc were calculated for both samplers while ln(z) is only given by nested sampling.
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4.3 Model selection for the targets
To select the best model, in principle, one could calculate the Bayesian evidence for all models (the 1-planet,

2-planet, 3-planet, for example) and select the one that gives a difference substantial enough to be considered
“Strong” evidence. In Figure 4.4 this is represented, where the green, red and blue lines represent the Positive,
Strong and Very Strong thresholds from Kass and Raftery’s Table 2.1. In this simple example for K2-131 the 1-
planet model is favoured.

2v1 3v1

2

6

10

2
ln

(z
)

Multidimensional
Trained

Figure 4.4: Difference in Bayesian evidence for K2-131’s system using the Trained and Framework GP. A
positive value suggest higher model probability relative to the 1-planet model. The green, orange and red lines
represent the empirical Positive, Strong and Very Strong model selection thresholds from Kass and Raftery’s Ta-
ble 2.1.

Alternatively, a more computationally efficient approach involves selecting the model that minimizes the BIC
or AIC, followed by a finalMCMCor nested sampling run with a sufficient number of chains to better constrain
the parameters. This single, large final run is often preferred due to the computational time and cost involved.
However, as was discussed in the previous Section 4.2, there seemed to be some problems with this theoretically
straightforward approach of model selection. Firstly, the information criteria (ICs) did not always align with
each other or with the Bayesian evidence. This is illustrated in Figure 4.5 for Kepler-10’s system. Secondly, some
favoured models either by the ICs, the Bayesian evidence, or both, in reality had poor constrains on the added
parameters. Given that the ESP kernel in s+leaf was shown to provide a good approximation for the QP kernel
and significantly reduced computational costs, it became feasible to perform both MCMC and nested sampling
runs for all target configurations. This allowed for a more thorough approach, where instead of relying solely on
model selection criteria, the focus was shifted to examining the parameter distributions across different models
for each target.

I observed that in some targets, a more complex model was favoured by one or more model selection criterion,
yet the periods of the added signal did notmatch between theTrained andFrameworkmodels, which suggests that
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Figure 4.5: Difference in Bayesian evidence and Information Criteria metrics to the baseline 2-planet model
for Kepler-10’s system. Using SPLEAF’s ESP kernel and the Multidimensional GP. A positive value suggest
higher model probability relative to the 2-planet model.

the added signal is not likely to be planetary in nature. I would expect that the parameters coming from Trained
and Framework to be consistent, that is, they could have different levels of detection, but the period shouldmatch
since the periodicity of the underlying signal should be the same.

For some other targets, where a more complex model was favoured by one or more model selection criterion,
the period of the added signal was found to be a harmonic of the stellar rotation period, such as 1/2 or 2/3. This
couldmean that stellar activity is still being incorrectlymodelled as a planetary signal, despite theGPattempting to
account for the stellar activity. This issue is particularly pronounced in young stars, where stellar activity signals
often have a sinusoidal shape that closely resembles planetary signals. These “extra” signals in some cases had a
sigma level of detection in the semi-amplitude of around 5 so they could be mistaken as planets were they not
checked against the stellar rotation period. For those occurrences, a global fit incorporating both photometry and
radial velocity data, along with more refined data treatment, would be beneficial.

4.4 Derived planetary parameters
Finally, after checking the consistency of the derived planetary parameters across models with varying number

of planets, for both emcee and dynesty sampling and stellar activity modelling Trained/Framework, a set of
parameters for each system was obtained. The set of parameters coming from s+leaf’s ESP kernel using the
Multidimensional GP Framework and emcee sampling are displayed in Table 4.1.
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A Keplerian model is created for each planet by computing the expected radial velocities based on the derived
orbital parameters for each planet. Themodel is then plottedwith the observed data to see howwell the Keplerian
orbit matches the RV measurements. These are shown in Figure 4.6, where they were folded with respect to
the transit time. Black lines represent the modelled RV curves and the shaded region shows the range of RV
values across the model samples, representing the uncertainty in the model. The points represent the observed
RV measurements with different colours representing the different instruments. Residuals show the difference
between the modelled and observed RVmeasurements.

(a) TOI-500 b. Model: Multidimensional GP,
4-planet, emcee sampling.

(b) Kepler-78 b. Model: Multidimensional GP,
1-planet, emcee sampling.
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(c) TOI-561 b. Model: Multidimensional GP,
4-planet, emcee sampling.

(d) TOI-1807 b. Model: Multidimensional GP,
1-planet, emcee sampling.
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(e) K2-229 b. Model: Multidimensional GP,
2-planet, emcee sampling.

(f ) TOI-1416 b. Model: Multidimensional GP,
1-planet, emcee sampling.

(g) Kepler-10 b. Model: Multidimensional GP,
3-planet, emcee sampling.

(h) CoRoT-7 b. Model: Multidimensional GP,
3-planet, emcee sampling.
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(i)HD 3167 b. Model: Multidimensional GP,
4-planet, emcee sampling.

(j)HD 80653 b. Model: Multidimensional GP,
2-planet, emcee sampling.

(k) K2-106 b. Model: Multidimensional GP,
2-planet, emcee sampling.

(l)HD 20329 b. Model: Multidimensional GP,
1-planet, emcee sampling.

Figure 4.6: RV plots of USP planets using the derived parameters.
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In Figure 4.7, the RV and BIS data of K2-229 are plotted with different instruments in different colours. The
grey area represents the GPmodel.
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Figure 4.7: GP model of the combined effect of planetary motion and stellar activity coming from RV (left)
and BIS (right) measurements of K2-229.

4.5 Comparison of configurations with literature
For most systems, I obtained a configuration that closely matches those reported in the literature. However,

for a few systems, some derived parameters did not match or it was not possible to detect a confirmed planet at all.
In this section, I take note of some observed mismatches.

For TOI-500, the derived period for the 4th planet was 102.21±0.80 compared to 61.30±0.28 from Serrano
et al. 2022 [95].

ForTOI-1807, though a secondplanetary signal is detectedwith a 8 and 6 sigma level on the semi-amplitude for
the Multidimensional and Trained GP, respectively, the period of this signal has a substantial difference between
the two. With emcee, the Multidimensional gives a period of 8.7527 ± 0.0053 and the Trained gives 5.5068 ±
0.0056. This difference was also reported by Nardiello et al. 2022 [37]. For this reason, I reported only the
1-planet model.

ForHD3167, the 4th planet was detected using emceewith at least 6σ for bothMultidimensional andTrained
but it was not detectedwith dynesty. With emcee the period obtainedwithMultidimensional was 79.53±0.22
while with Trained was 115.79 ± 0.50. The values for the period of the fourth planet in previous papers were
96.630± 0.292 and 102.09± 0.51 [117] [109].

For K2-141, there are two confirmed transiting planets which were put in the baseline model. In spite of that,
in this analysis, the second planet is not correctly recovered, with less than 2σ detection for all emcee/dynesty
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and Trained/Multidimensional combinations. The previous analysis of this system byMalavolta et al. 2018 [115]
was done also with both Trained and Multidimensional GPs and different samplers, but on a smaller number
of data points, and the mass of the second planet was not recovered. A new analysis using tinyGP on the same
dataset recovered the mass of the planet with a 4σ confidence, only in the Multidimensional GP case. This is the
only case when s+leaf and tinyGP gave different results, and it could represent a benchmark case to investigate
the differences between different stellar activity modelling in future works.

For HD 213885, only one planet is detected instead of the two planets reported by Espinoza et al. 2020 [121],
even after adding HARPS and FEROS datasets.

Fortunately, across all configurations tested, the USP planets have well-constrained parameters, largely due to
the strict priors coming from photometry, as all of these planets are transiting. Consequently, even in models
where the extra signals’ detection is not sure or there are somemismatches with literature, the USPP’s parameters
remain consistent across configurations, with similar derived parameters.

4.6 Homogeneous mass-radius analysis of USP
planets

The key properties of the USP planets, including their mass, radius and density, are summarized in Table 4.2.
To gain insight into the density and composition of planets, they can be placed on amass-radius diagram along-

side theoretical mass-curves for different planet compositions. I generated mass-radius plots for the sample of 16
USP planets using the package mr-plotter†[23], shown in Figure 4.8. The plot on top uses values drawn from
literature with the reference paper in parenthesis. The bottom one uses the values coming from this analysis. The
planetary masses come from the RV analysis and are reported in Table 4.1. The planetary radii were calculated
withRp/Rs from literature and the stellar radii from the isochrone fitting reported in Table 3.1.

The derived stellar radii had lower uncertainties than the ones used in previous papers, which translated into
lower uncertainties for the majority of the planetary radii. Some exceptions to this were when Rp/Rs had larger
reported uncertainties, for example TOI-431. Regarding the derived masses, some have lower uncertainties com-
pared toprevious studies (TOI-1807,TOI-500,TOI-561,K2-229 andTOI-1416)while the remaininghave similar
or slightly larger uncertainties. The latter cases occur primarily when the orbital architecture of the systems could
not be fully recovered. The overall scatter in the M-R plot did not decrease, but considering that all of the values
were obtained using the same methodology, a direct comparison between planets is more reliable. The fact that
there is still scattermightmean that indeed these planets have different internal compositions. This, in turn, could
point to different formationmechanisms or evolutionary histories. Most of these planets seem to have a composi-
tion ranging between 0 and 33%Fe. Some planets have very low densities, namelyTOI-561 b andTOI-1416 b. On
the other hand, TOI-431 b andK2-229 b have very high densities, and appear close to a 100 % Fe composition. At
a first glance, these differences do not seem to be related to themetallicity of the star, e.g., TOI-561 is a metal-poor
star ([Fe/H]=0.33+0.08

−0.05) while TOI-1416 is slightly supersolar ([Fe/H]=0.07 ± 0.04); a detailed analysis of the
star-planet connection is beyond the scope of this thesis. By comparing the values from the literature with those
obtained here, we can conclude that even when using the same datasets, altering the treatment of stellar activity

†Available at https://github.com/castro-gzlz/mr-plotter.
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can significantly impact the results. Therefore, population studies are likely to be reliable only if conducted in a
homogeneous manner.

USP Planet Mp(M⊕) Rp(R⊕) Density (g/cm3) Reference forRp/Rs

TOI-500 b 1.45± 0.21 1.234± 0.057 4.25+1.00−0.97 [95]
Kepler-78 b 1.63± 0.28 1.197± 0.031 5.35± 0.94 [117]
TOI-561 b 2.10± 0.19 1.419± 0.037 4.1± 0.49 [98]
TOI-1807 b 2.67± 0.44 1.390± 0.046 5.48± 1.06 [37]
K2-229 b 2.52± 0.51 1.188± 0.042 8.29+1.88−1.92 [15]
TOI-431 b 4.65± 0.35 1.313± 0.083 11.33+2.31−2.28 [131]
TOI-1416 b 3.36± 0.42 1.602± 0.047 4.51+0.69−0.68 [103]
Kepler-10 b 3.37± 0.30 1.505± 0.013 5.45+0.50−0.51 [15]
CoRoT-7 b 5.66± 0.68 1.562± 0.096 8.19+1.74−1.85 [15]
HD 3167 b 4.80± 0.30 1.618+0.082−0.057 6.25+1.03−0.76 [109]
K2-141 b 4.43± 0.76 1.535+0.042−0.034 6.75+1.26−1.27 [15]
HD 80653 b 5.35± 0.47 1.595± 0.054 7.77+0.93−0.92 [116]
K2-106 b 8.18± 0.84 1.664+0.075−0.037 9.791.67−1.20 [110]
HD 213885 8.13± 0.086 1.814± 0.053 7.51+1.05−1.00 [121]
HD 20329 10.40± 1.20 1.685± 0.061 11.99± 1.90 [122]
K2-131 8.20± 1.30 1.674+0.064−0.054 9.64+1.89−1.79 [110]

Table 4.2: Derived main properties of the USP planets from this work.
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Figure 4.8: Mass-radius plot of my sample of USP planets. Top: Literature values. Bottom: Derived planetary
parameters from this analysis. The theoretical mass-radius curves for the planet compositions come from Zeng
et al. (2019). Background points in grey come from NASA Exoplanet Archive. References for literature plot in
order of appearance: Serrano et al. 2022 [95], Bonomo et al. 2023 [117], Lacedelli et al. 2022 [98], Nardiello et al
2022 [37], Dai et al. 2019 [15], Osborn et al. 2021 [102], Deeg et al. 2023 [103], John et al. 2022 [132], Espinoza
et al. 2020 [121], Murgas et al. 2022 [122]. Additional references forRp/Rs values for bottom plot: Kokori et al.
2023 [131], Bourrier et al. 2022 [109], Frustagli et al. 2020 [116], Adams et al. 2021 [110].
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5
Conclusions

This homogeneous analysis of 16 ultra-short period planets has demonstrated both the power and limitations
of current methods for characterizing these extreme worlds.

A uniform approach to stellar parameter determination was taken through isochrone fitting, which combined
input parameters frommultiple sources, two stellar evolutionmodels (MIST andDART) and standardized uncer-
tainty treatments. This provided a homogeneous set of stellar parameters, which is a more consistent foundation
for planetary parameter derivation.

The incorporation of activity indicators (BIS and logR′
HK), through a Trained or Multidimensional GP, was

essential for reliable parameter estimation. The standardized treatment of activity across all systems enabledmore
reliable comparisons within this sample.

A faster approximation to the standard quasi-periodic kernel but which still retains its main characteristics was
tested. The ESP kernel implemented in s+leaf provided a good approximation to theQP kernel, showing nearly
identical posterior distributions for confirmed planets while offering significant computational advantages.

Model selection criteria exhibited concerning inconsistencies across different methods. While information
criteria (AIC, BIC, AICc) and Bayesian evidence should theoretically provide clear model selection guidance, it
was found that different criteria often disagree on the optimal model and the reported uncertainties in nested
sampling evidence calculations appear to be underestimated. Models favoured by traditional selection criteria
sometimes yield poorly constrained parameters, suggesting that these criteria alone may be insufficient for model
selection. This highlights the importance of combining quantitative model selection with qualitative evaluation
of posterior distributions to avoid misinterpreting spurious signals as genuine planets.

When evaluating the posteriors, it was important to look not only at the strength of detection in the semi-
amplitude but also to check if the period of the signal was well constrained. Some systems showed discrepancies
with literature values, particularly in the detection and characterizationof additional planets. These apparent addi-
tional signals sometimesdidnotmatchwhenusingdifferent stellar activitymodelling (Trained/Multidimensional)
or they did match but were a harmonic of the stellar rotation period. For these systems, a more in-depth activity
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analysis is required.
In most instances, the choice of sampler was indifferent, with sampling done either by emcee or dynesty

giving perfectly consistent results. However, in some cases emcee demonstrated greater stability in parameter
estimation, making it more reliable than dynesty for the final parameter determination.

The USP planet parameters remain consistently well-constrained across different modelling approaches, in
part due to the strong constraints coming from transit photometry. The mass-radius analysis of this sample of
USP planets reveals that most planets fall within the 0-33% Fe composition range. Several outliers exist, including
very low-density planets (TOI-561 b, TOI-1416 b) and high-density planets (TOI-431 b, K2-229 b). There were
notable changes in the final derived parameters compared to literature values, highlighting that the treatment of
stellar activity can significantly impact the results. When conducting population studies, it is crucial to apply a
consistent methodology across all targets. While Gaussian Process (GP) models are computationally intensive
— especially for large datasets and when combining multiple spectroscopic time series — they represent the cur-
rent state-of-the-art approach. Establishing a standardized methodology would be highly beneficial for ensuring
reliability and comparability in such studies.

Future work would benefit from the joint analysis of photometric and RV data to further constrain system
architectures and from the development of more robust model selection criteria for GP models. A major chal-
lenge remains the proper treatment of stellar activity, which continues to introduce significant uncertainties in
RVmeasurements. Targeted studies of stellar activity and its time-correlated noise, potentially building upon the
multidimensionalGP framework or usingmore activity indices, could help disentangle these effects from genuine
planetary signals. Finally, this homogeneous analysis can be extended to a larger sample of USP planets as more
high-precision RV data becomes available. Upcoming missions and spectrographs will offer even greater preci-
sion, which will enable the detection of lower-mass USPPs, extend precise RV measurements to fainter stars as
well as increase the number of observations for previously detected USP planets. Together, these advancements
could help provide more definitive insights into the nature of USP planets and their place in the broader context
of planetary formation and evolution.
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