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Abstract

Neutron stars (NSs) are the endpoints of the evolution of massive stars (8M⊙ ≲M ≲

25M⊙), the remnants of the core collapse which follows the supernova explosion
which marks the death of the progenitor. With a mass of the order of the solar
mass and a radius of only 10-15 km, NSs are the most compact stellar objects in
the present universe, reaching higher densities than those of atomic nuclei. Besides,
they are endowed with extremely strong magnetic, the highest recorded to date.

NSs are born very hot (T ≈ 1011 K), and cool down as they age. Their thermal
evolution is inherently coupled to that of their magnetic field. Knowledge of the sec-
ular magneto-thermal evolution can discriminate between different cooling scenarios
when compared to observations, thus constraining the equation of state (EOS) of
ultra-dense matter. Moreover, it provides a self-consistent map of the surface tem-
perature, which is key in deriving any reliable estimate of the star radius from X-ray
observations. This, again, directly bears to the determination of the NS EOS.

The aim of this study is to model the evolution of the temperature and the mag-
netic field in the NS crust by means of numerical simulations performed with PAR-
ODY, a 3D, pseudo-spectral code which solves the coupled induction and temper-
ature equations in the crust of an highly-magnetised isolated NS (B ≳ 1014 G). A
fully 3D approach is required in order to treat non-axysimmetric magnetic configu-
rations and the explore small-scale structures which naturally arise as a consequence
of the Hall term, the role of which has been recently elucidated.

As in previous studies on the subject, we compute the magnetic field and temper-
ature evolution in the NS crust, relying on the assumption that the Meissner effect is
able to expel any magnetic flux from the type I, superconducting core on a timescale
shorter than the typical timescales of magnetic and thermal evolution. We present
in this work some of the first 3D magneto-thermal simulations, considering different
initial configurations for the magnetic field. We start with axisymmmetric cases,
to have a better comparison with previous investigations, and then turn to non-
axisymmetric models, for which a 3D approach is indeed necessary for a complete
study of the magnetic topology and the temperature configuration in the crust.
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Sommario

Le stelle di neutroni (NS) sono lo stadio evolutivo finale di stelle con massa suf-
ficientemente elevata, i resti del nucleo collassano a seguito dell’esplosione di una
supernova che segna la morte del progenitore. Con una massa dell’ordine di quella
solare e un raggio di solo 10-15 km, esse sono i corpi più compatti dell’universo,
raggiungendo densità maggiori dei nuclei atomici. Inoltre, sono dotate di campi
magnetici estremamente forti, i cui valori sono i più alti registrati ad oggi.

Le NS nascono con alte temperature (T ≈ 1011 K), e si raffreddano invecchian-
do. La loro evoluzione termica é intrinsecamente legata a quella del loro campo
magnetico. Facendo un confronto con le osservazioni, la conoscenza dell’evoluzione
secolare magneto-termica permette una distinzione tra diversi scenari di raffred-
damento, vincolando, quindi, l’equazione di stato (EOS) della materia ultra-densa.
Inoltre, fornisce una mappa auto-consistente della temperatura superficiale, che rap-
presenta la chiave per derivare una stima affidabile del raggio della stella a partire
dalle osservazioni in banda X. Questo porta alla determinazione della EOS per le
NS.

Lo scopo di questo studio è di creare un modello per l’evoluzione della temperatura
e delle componenti del campo magnetico nella crosta delle NS attraverso simulazioni
numeriche eseguite con PARODY, un codice 3D pseudo-spettrale che risolve l’equa-
zione di induzione accoppiata con quella per la temperatura nella la crosta di una
NS isolata con un campo magnetico molto intenso (B ≳ 1014 G).

È necessario, dunque, un approccio interamente in 3D per trattare le confi-
gurazioni magnetiche non-asimmetriche ed esplorare le strutture su piccola scala
che derivano direttamente dal termine di Hall, il cui ruolo é stato recentemente
delucidato.

Come fatto in precedenti studi sull’argomento, calcoliamo il campo magnetico
e l’evoluzione della temperatura della crosta della NS, basandoci sul presupposto
che l’effetto Meissner é in grado di espellere qualunque flusso magnetico dal nu-
cleo superconduttivo di tipo I, in un tempo minore rispetto a quelli dell’evoluzione
magnetica e termica.

In questo lavoro presentiamo alcune delle prime simulazioni 3D magneto-termiche,
considerando diverse configurazioni iniziali per il campo magnetico. Iniziamo dai ca-
si assisimmetrici, per poter fare un miglior paragone con i precedenti studi, per poi
considerare i modelli non-assisimmetrici, per cui é certamente necessario un approc-
cio 3D per fare uno studio completo della topologia magnetica e della configurazione
della temperatura nella crosta e sulla superficie.
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Introduction

Neutron stars are one of the possible endpoint of stellar evolution and the most
compact objects with a surface in the universe. With masses of 1 − 2M⊙ (where
M⊙ = 1.99 ·1033 g is the solar mass) and radii of about 10−15 km (105 smaller than
the solar radius), their central density reaches ∼ 1015 g cm−3 comparable and even
larger than nuclear saturation density. Furthermore, NSs spin very fast with typical
periods of the order of P ∼ (10−3 − 10) s.

The existence of astrophysical objects supported by the neutron degenerate gas
pressure, in analogy to the case of white dwarfs which are supported by electron
degenerate gas pressure, was first proposed in the 1930s by Baade and Zwicky (1934)
and even before by Landau (1932) and then confirmed later on with the discovery
of Pulsars. Landau improvised the concept of neutron stars in a discussion with
N. Bohr and L. Rosenfeld in March 1931, before the discovery of the neutron by
J. Chadwick. In 1937, G. Gamow and Landau independently suggested that any
star could contain a NS in its core. This would have initiated a slow “accretion” of
stellar matter onto its core, so that the stellar energy could have been supplied by
the gravitational energy release during the accretion. However, very soon the idea
was almost forgotten since Bethe and Critchfield (1938) showed that the energy of
stars is provided by thermonuclear reactions.

The next most important step was done by Tolman (1939) and independently by
Oppenheimer and Volkoff (1939) who derived the equation of hydrostatic equilibrium
for a spherically symmetric star in the framework of General Relativity. The Tolman-
Oppenheimer-Volkoff (TOV) equation is the basic relation for building a NS model,
once an equation of state (EOS) is fixed.

Until the beginning of the 1960s, NSs had been treated as the work of theoreticians
and the theory had been developing slowly. The first simplified calculations of the
NS cooling were proposed in mid ’60s, emphasizing the strong dependence of the
cooling rate on neutrino emission processes and pointing out that this dependence
can be used to explore the EOS of dense matter by comparing theoretical cooling
models with observations of thermal radiation from NSs. The situation started
changing later, with the hope to discover NS in observations. In particular, the first
object to be identified as a NS was the pulsating star at the center of the Crab
Nebula in 1967 (Hewish et al., 1968).

Neutron stars harbour extremely strong magnetic fields within their solid outer
crust which are the strongest presently known in the universe, with typical values
B ∼ 1010 − 1013 G and up to 1015 G in ultra-magnetized neutron stars, the so-
called magnetars (Duncan and Thompson, 1992). This broad range of magnetic
field intensities combined with the fact that magnetars show activity powered by
the magnetic field and usually have relatively young inferred ages provides evidence
that the magnetic field evolves with time. Moreover, NSs cool down as they age
and their thermal evolution is coupled to that of their magnetic field, described by
the Hall induction equation. The magneto-thermal evolution can be model with
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the help of a fully 3D pseudo-spectral code (PARODY) for numerical simulations.
The aim of this work, one of the first using a fully 3D approach, is to illustrate
the basic equations governing the magneto-thermal evolution of an isolated highly-
magnetised NS and present the results of some simulations exploring different kind
of initial conditions, with the focus on non-axisymmetric configurations. The work
is organized as follows:

• in Chapter 1, the general structure of NSs are reviewed, including general
relativistic structure equations and, in particular, focusing the attention on
the crust structure and its properties;

• in Chapter 2, the main cooling processes occuring in a NS core are decribed
through the thermal evolution equation together with the role of neutrinos;

• in Chapter 3, starting from the electron magneto-hydrodynamics (eMHD), we
derived Hall induction equation describing the magnetic field evolution in the
crust. Then, this can be coupled with the thermal evolution equation;

• in Chapter 4, the main characteristics of the code are described together with
the boundary and initial conditions for our simulations;

• in Chapter 5, the results of a number of magneto-thermal simulations of a
NS provided by PARODY are illustrated for a range of different initial con-
figurations of the magnetic field, considering both axisymmetric and non-
axisymmetric topologies.
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1. Neutron Stars

Neutron stars are from the a gravitational core-collapse Supernova of a star with
quite high mass, 8M⊙ ≲ M ≲ 25M⊙. Massive stars (M ≳ 8M⊙), at variance with
solar mass stars, can proceed past the He-burning phase and arrive to synthesize
elements of the iron group. When the core is mainly made of Fe and Ni, no other
exothermic nuclear fusion reactions can take place and the high temperature causes
the photo-disintegration of nuclei and neutrino production and emission. With no
pressure support, the core collapses under its own gravity, the density starts to
increase and at ρ ≳ 1014 g cm−3, nuclei are completely broken up and matter is
mainly composed by neutrons. If the star has sufficiently high mass, the degeneracy
pressure of neutrons can stop the collapse and trigger a shock that propagating
outward blows up the star envelope (Supernova event).

1.1 Structure

A neutron star can be divided in different layered regions as shown in Figure 1.1
(Haensel et al., 2007):

• The outer region (Atmosphere) is a thin plasma layer composed of heavy
elements (Fe, Ni) and possibly H and He coming from accreted interstellar
medium. The atmosphere layer is very thin due to the strong gravity of the
neutron star, but can be optically thick.

• The envelope (or ocean) is about 100m thick and is made up of a Coulomb
liquid of ions and electrons with relatively low density (ρ ≲ 109 g cm−3). It
is the region with largest temperature and pressure gradients while density
decreases down smoothly. Together with the atmosphere represents only a
very small fraction of the total mass.

• The outer part of the crust is mainly composed by a Coulomb lattice of 56Fe
nuclei, free neutrons and ultra-relativistic degenerate electrons. The nuclei are
more and more neutron rich as the density grows (ρ ≥ 107 g cm−3) as the result
of electron capture. The transition between the crust and the envelope takes
place at density below which the matter is in a liquid state. Free degenerate
neutrons, electrons and heavy nuclei make up the inner crust. The thickness
of the entire crust is about 1 km.

• The next layer is the mantle in which the nuclei are condensed in a superfluid.
Due to the high energy given by Coulomb interaction, nuclei are deformed
into cylindrical or planar forms (nuclear pasta). The existence of the mantle
is strictly correlated to the stability of nuclei and its very existence is hence
debeated.

• The outer core that has extremely high densities (0.5ρ0 ≲ ρ ≲ 2ρ0, where
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CHAPTER 1. NEUTRON STARS

Figure 1.1: Schematic representation of a neutron star structure (Haensel et al., 2007).

ρ0 is the normal nuclear density) at which matter consists in a plasma of
protons, neutrons and leptons (npeµ-matter). The thickness of the outer core
is generally of the order of few kilometers and it makes up the bulk of the NS
mass.

• The central part (inner core) has very high density and it exists only for stars
with M ≳ 1.5M⊙. The inner core composition is still not well understood.
Classically, it is described as a superfluid of baryons most of which are neu-
trons. Neutrons degeneracy pressure can maintain the star against gravity.
The presence of heavy particles, mainly Λ− and Σ+ hyperons, is also possi-
ble (npeµΛΣ-matter). But there is the possibility to have exotic state matter
instead hyperons, like the formation of Bose-Einstein condensate of K or π
mesons or a quark-gluon plasma.

For a cold non-accreting neutron star, complete thermodynamic equilibrium can
be assumed with respect to all interactions at zero temperature. In this way, the
matter will be in its ground state sketched in Figure 1.2. For a given baryon density
nB, charge neutrality and β-equilibrium, the ground state is the one that minimize
the total energy density.

The β-equilibrium corresponds to the chemical equilibrium reached between direct
and inverse β-decay :

{︄

n→ e− + p+ ν̄e

e− + p→ n+ νe.

We know that only degenerate neutrons can provide the pressure to sustain the star
against gravity. However, inverse β-decay may occur only if protons and electrons
are completely degenerate because in this case their energy, which correspond to
the Fermi energy, can make up for the proton-neutron mass defect Q = mn −mp ≃
2.5me ≃ 1.3MeV. Complete degeneracy is reached in the limit of temperature going
to zero and the Fermi-Dirac distribution function at thermodynamic equilibrium
becomes

f(T ) =
1

1 + e(E−µ)/T

T→0
−−−→ Θ(EF − E)

where µ is the chemical potential and Θ(EF −E) is the Heaviside step function. We
also define the Fermi energy as EF = limT→0 µ(T ). It means that for E ≤ EF all
quantum energy states are occupied. We can rewrite the Fermi energy also as:

EF = mc2
√︂

1 + x2F (1.1)
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CHAPTER 1. NEUTRON STARS

Figure 1.2: Schematic representation of the ground state structure of neutron stars as
function of density or depth (Newton et al., 2011).

where xF is the adimensional Fermi momentum defined as a function of the number
density n:

xF ≡
pF
mc

=
h

mc

(︃

3n

8π

)︃ 1

3

. (1.2)

where c = 2.99 × 108 ms−1 is the speed of light and h = 4.135 × 10−15 eV s is the
Planck constant. In neutron stars we can always assume complete degeneracy for all
the species because temperature is much lower than the Fermi temperature defined
as TF = kBEF ≃ 1012 K. Furthermore, the density inside the neutron stars is so
high that degenerate electrons also become relativistic (xF,e ≫ 1) while neutrons
and protons remain non-relativistic (xF,n, xF,p ≪ 1). Finally, the β-equilibrium
can be expressed using the Saha equation for the chemical potentials equilibrium,
neglecting the contribution of neutrino (µν = µν̄ = 0):

µe + µp = µn. (1.3)

Our main goal is to model the magneto-thermal evolution of a neutron star crust
using also numerical simulations provided by PARODY (Chapter 4). So now we
focus our attention more in detail on the crust structure.

1.2 Outer Crust

The total energy density for a given neutron star layer can be expressed as a sum
of the energy of each nucleus E(A,Z) with Z protons and A − Z neutrons, the
electron kinetic energy density εe and the lattice energy density εL taking account
for all possible Coulomb (self)-interactions between electrons and ions:

εtot = nNE(A,Z) + εe + εL (1.4)

being nN the number density of nuclei.
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CHAPTER 1. NEUTRON STARS

Electrons can be assumed as a quasi-ideal Fermi gas for densities ρ≫ 10AZ g cm−3,
so that their energy density is (Baym et al., 1971)

εe =
m4

ec
2

8π2ℏ3

[︃

xe(2x
2
e + 1)

√︁

x2e + 1− ln(xe +
√︁

x2e + 1)

]︃

(1.5)

where xe is the adimensional Fermi momentum for electrons. The effects of electron
charge-screening can be neglected for dense and cold neutron star crusts.

To compute the lattice energy density, the crystal lattice of the crust is divided
into many spheres centered (Wigner-Seitz cell approximation) around each nucleus
with radius defined as

Rcell =

(︃

4πnN

3

)︃−1/3

. (1.6)

The radius of these spheres is chosen so that their volume is exactly 1/nN and each
sphere contains the same number Z of electrons and protons, i.e. it is neutral. The
lattice energy density is given by (Shapiro and Teukolsky, 1983)

εL = −
9

10

(︃

4π

3

)︃1/3

Z2/3e2n4/3
e (1.7)

and does not take into account the nucleus Coulomb energy already inside E(A,Z).
We note that the total Coulomb energy is reduced by the lattice contribution (εL <
0).

From the total energy density (1.4), total pressure P can be derived as

P ≡ n2
B

d

dnB

(︃

εtot

nB

)︃

= Pe +
1

3
εL (1.8)

where the dominant contribution comes from electrons, whose pressure Pe is defined
as

Pe = εe − µene. (1.9)

To determine the ground state structure of the crust, the total energy density
εtot has to be minimized imposing charge neutrality. Since the baryon number
density may show jumps or discontinuities due to the one-component plasma model
assumption, the ground state can be found at T = 0 and at fixed pressure P (Chamel
and Haensel, 2008). The pressure should be indeed continuous and monotonically
increasing with respect to the depth. Hence the problem corresponds to minimizing
the Gibbs free energy per nucleon at fixed pressure,

g(P ) ≡
εtot + P

nB

(1.10)

and imposing charge neutrality, i.e. np = ne.
The minimum energy configuration at P = 0 is reached for a body-centered-cubic

(bcc) crystal lattice of 56Fe with Gibbs free energy g = E(56Fe) = 930.4MeV. This
configuration remains the ground state of cold matter up to densities ∼ 106 g cm−3

at which matter composed by a plasma of nuclei and electrons is a nearly Fermi gas.
For higher densities, there is a jump of density every time that the ground state

shifts to a different nucleus with smaller proton fraction, i.e. (A,Z) → (A′, Z ′)
(Haensel et al., 2007). The shift between the to two states is energetically advanta-
geous and it is the reason why neutronization happens inside the nuclei.
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CHAPTER 1. NEUTRON STARS

Experimental nuclear data
ρmax[ g cm

−3] Element Z N Rcell[fm]
8.02× 106 56 Fe 26 30 1404.05
2.71× 108 62 Ni 28 34 449.48
1.33× 109 64 Ni 28 36 266.97
1.50× 109 66 Ni 28 38 259.26
3.09× 109 86 Kr 36 50 222.66
1.06× 1010 84 Se 34 50 146.56
2.79× 1010 82 Ge 32 50 105.23
6.07× 1010 80 Zn 30 50 80.58

Skyrme model BSk8
ρmax[ g cm

−3] Element Z N Rcell[fm]
8.46× 1010 82 Zn 30 52 72.77
9.67× 1010 128 Pd 46 82 80.77
1.47× 1011 126 Ru 44 82 69.81
2.11× 1011 124 Mo 42 82 61.71
2.89× 1011 122 Zr 40 82 55.22
3.97× 1011 120 Sr 38 82 49.37
4.27× 1011 118 Kr 36 82 47.92

Table 1.1: Ground state structure of the outer crust of a neutron star computed using
nuclear experimental data for ρ ≲ 6× 1010 g cm−3 and the Skyrme model BSk8 for higher
density (Rüster et al., 2006).

This reflects into a jump also of the baryon number density which arises from the
pressure continuity

∆nB

nB

≈
∆ρ

ρ
≈
Z

A

A′

Z ′
− 1.

For densities ρ ≲ 6 × 1010 g cm−3, the structure of the neutron star outer crust is
completely determined by the data from nuclear experiments. At higher densities
the matter composition is model dependent because the nucleus energy E(A,Z) has
to be computed and there are no experimental studies. The ground state structure of
the outer crust is shown in Table 1.1 using experimental nuclear data and a Skyrme
effective potential model BSk8 (Rüster et al., 2006).

1.3 Inner Crust

Going deeper towards the neutron star centre, as density increases the neutrons
start to be less and less bound into nuclei and start to drip out forming a fermionic
gas. The neutron drip point can be defined imposing a condition on the net neutron
chemical potential for a neutron inside a nucleus

µ′
n ≡ µn −mnc

2 =

(︃

∂E(A,Z)

∂N

)︃

Z

−mnc
2. (1.11)

Neutron drip happens when µ′
n = 0, while if µ′

n < 0, neutrons are all bound within
nuclei. Performing the full calculation (Baym et al., 1971), the neutron drip density
is ρND ≈ 4 × 1011 g cm−3. The conformation of neutron star crust for densities
beyond neutron drip relies on theoretical models only. Most of models are based
on a purely classical analysis while others are semi-classical models, such as the
Thomas-Fermi approximations and its extension (Negele and Vautherin, 1973).

An example of purely classical model is the compressible liquid drop model. The
contribution to the energy density of the neutron gas must be included in the equa-
tion (1.4) as

εtot = nNE(A,Z) + εe + εL + εn (1.12)

and the nuclei are treated as liquid drops of nuclear matter whose energy can be
decomposed into volume, surface and Coulomb terms

E(A,Z) = EN,Vol + EN,Surf + EN,Coul

7



CHAPTER 1. NEUTRON STARS

Figure 1.3: Composition of nuclear clusters (a) and structure (b) of the ground state of
the inner crust as function of baryon number density nB (Douchin and Haensel, 2000).

in which each terms can be parameterized in terms of A and Z.
It is easy to understand that the volume and surface energy terms are related

respectively to the volume VN and the surface area AN of neutron clusters. The
Coulomb energy for a uniformly-charge spherical drop of radius rp can be computed
as

EN,Coul =
3

5

Z2e2

rp
. (1.13)

The electron contributions εe to the total energy density εtot is given by (1.5), while
the lattice energy εL can be derived as

εL = −
9

10

(︃

4π

3

)︃1/3

Z2/3e2n4/3
e

(︃

1−
1

3

r2p
R2

cell

)︃

(1.14)

which is exactly the same form as before (1.7) with an additional correction related
to the dimensions of the spherical drops compared to the cell ones.

As for the outer crust, the minimization of the total energy density εtot with
respect to the free parameters of the model, imposing charge neutrality and fixing
the baryon density nB determines the structure of the nuclear matter.

Performing the full calculations (Haensel et al., 2007) neglecting the curvature
corrections to the surface energy, the mechanical equilibrium condition for the crystal
lattice reads

EN,surf = 2EN,Coul + 2VcellεL. (1.15)

The lattice energy density is very relevant for the equilibrium shape of the neutron
cluster and can reduce the Coulomb energy term up to 15% at the neutron drip
point. Moreover the equilibrium configuration is a result of the competition between
Coulomb effects and surface effects, which favor respectively small and large clusters.
We can also notice from the first plot of Figure 1.3 that the number of protons
is almost constant in the inner crust, Z ∼ 40, while the baryon number A and
the number of neutrons on the surface of the cluster Ns are both increasing. As
density increases, the distance between clusters decreases while their size rp is almost
constant and grows up a little at highest density (Figure 1.3 b).

This analysis of neutron stars inner crust structure is purely classical and do not
take into account any quantum effects, which must be included in the treatment.
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CHAPTER 1. NEUTRON STARS

Figure 1.4: Critical temperatures for the onset of superfluidity as function of number
density and for a given pairing type.

1.4 Superfluidity and Superconductivity

Inside a neutron star, nucleons can pair due to their attractive interactions (Bardeen
et al., 1957). The BCS theory of electron superconductivity was successfully ex-
tended to nuclei by Bohr et al. (1958). In particular the strong interactions between
neutrons, protons and possibly hyperons can provide attractive channels for pairing
(Migdal, 1960).

The strength of the interaction determines the critical temperature Tcrit at which
the pairing phase transition occurs. Superfluidity disappears whenever the temper-
ature exceeds the critical threshold. Performing full BCS theory calculation, it can
be shown that the critical temperature is given by

Tcrit =
∆0

kBγg
(1.16)

where γg is parameter depending on the pairing type and ∆0 is the energy gap at
zero temperature. A phenomenological formula for ∆0 is given by (Kaminker, A. D.
et al., 2001)

∆0 = D
(kF − k0)

2

(kF − k0)2 + k1

(kF − k2)
2

(kF − k2)2 + k3

with kF = (3π2n)1/3 being the Fermi wavenumber and D, ki related to the pairing
type. The energy gap is vanishing outside the range k0 < kF < k2.

The temperature dependence of the pairing gap, for T ≤ Tcrit, can be approxi-
mately written as (Levenfish and Yakovlev, 1994)

∆F (T ) ≃ kBT

√︃

1−
T

Tcrit

(︃

αg − βg

√︃

Tcrit

T
+ γg

Tcrit

T

)︃

with αg, βg parameters related to the pairing type. Nucleons can pair in states
with different angular momentum, this determines the kind of pairing. In the crust,
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CHAPTER 1. NEUTRON STARS

neutrons are expected to pair in 1S0 states while in the core 3P2. Also protons are
expected to pair in 1S0 states in the core of a neutron star. The net result is the
a superfluid state related to neutron pairing, while the proton pairing also provides
superconductivity.

The number density dependence of the critical temperature is reproduced in Fig-
ure 1.4 using values for D, ki and γg taken from Ho et al. (2012). The maximum
critical temperature for crustal neutrons is Tmax

crit,n ≃ 8.5 × 109 K, while for protons
in the core is a little lower, Tmax

crit,p ≃ 7× 109 K. Therefore, the transition to the su-
perfluid and superconducting phase for neutron in the crust stars soon after birth.
Moreover, the proton pairing ceases to exist at high densities, ρ ≳ 1015 g cm−3.

1.5 Global Structure

Spherically symmetry can be assumed for matter distribution in neutron stars to
high accuracy. Deformations could be induced by very fast rotation (P ≲ 1ms ) or
extremely strong fields, B ≳ 1018 G (Haskell et al., 2006). Present values of P and
B, as derived from observations, are however outside these ranges.

To introduce general relativistic effects in neutron star structure and cooling, a
space-time metric has to be considered. The equilibrium configuration of the neutron
star crust is the result of the competition between pressure, electromagnetic and
elastic stresses and the gravitational pull. The global structure can be derived from
Einstein’s equations

Rµν −
1

2
Rgµν = 8πTµν (1.17)

where Rµν is the Ricci curvature tensor coming from the contraction of the Riemann
curvature tensor, R = gµνRµν is the Ricci scalar and gµν is the spacetime metric.
The stress-energy tensor Tµν takes into account pressure, electromagnetic and elastic
stresses. Using spherical coordinated (r, θ, φ), it is possible to write the the most
general form of a spherically symmetric spacetime (Misner et al., 1973) as

ds2 = −e2Φ(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2θdφ2) . (1.18)

The presence of matter for r < R∗, where R∗ is the stellar radius, modifies the
metric (interior Schwarzschild solution). Describing the matter as a perfect fluid
of energy density ρ, isotropic pressure P and 4-velocity uµ, the function λ in the
metric coefficient can be computed as

λ(r) = −
1

2
ln

[︃

1−
2m(r)

r2

]︃

while the lapse function e2Φ(r) is determined by

dΦ(r)

dr
=
m(r)

r2

(︃

1 +
4πr3P

m(r)

)︃(︃

1−
2m(r)

r

)︃−1

(1.19)

with the boundary condition at the stellar radius e2Φ(R∗) = 1− 2M/R∗ where M ≡
m(R∗) is the total gravitational mass of the central object. We define the enclosed
gravitational mass within a radius r as

m(r) = 4π

∫︂ r

0

ρ(r̃)r̃2dr̃

10



CHAPTER 1. NEUTRON STARS

where ρ is the mass-energy density. In empty space surrounding a spherically sym-
metric distribution of matter, i.e. P = ρ = 0, the exterior Schwarzschild’s so-
lution is recovered. The total radius of the star is determined by the condition
P (R) = 0 . The hydrostatic equilibrium condition in this configuration is described
by the Tolman-Oppenheimer-Volkoff (TOV) equation (Oppenheimer and Volkoff,
1939; Tolman, 1939) and the pressure profile P (r) is

dP (r)

dr
= −(ρ+ P )

dΦ(r)

dr
. (1.20)

The TOV equation completely determines the structure of a spherically symmetric
body of isotropic material in equilibrium. We can recover Newtonian limit simply
setting the exponential terms eλ = eΦ = 1.

For a fluid mixture taking account also for superfluidity, the stress-energy tensor
is given by (Carter and Langlois, 1998)

T µ (mix)
ν =

∑︂

X

nµ
Xπ

X
ν +Ψδµν

where the sum runs over all matter constituents, πν is the particle momentum and
Ψ is a generalized pressure. The electromagnetic contribution can be included into
a term related to the electromagnetic tensor Fµν

T µ (em)
ν =

1

4π
F µρFνρ −

1

8π
F 2δµν

For a rotating object such as a NS, the spherical symmetry is not valid anymore.
However, the deviations from the static solution are negligible for typical spin values
of neutron stars, i.e. the adimensional angular momentum is negligible, a = J/M ≪
1, where J is the angular momentum.
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2. Neutron Star Cooling

The internal energy of a NS, and hence its temperature, changes in time because of
the emission of radiation and neutrinos (Tsuruta and Cameron, 1966). In principle,
also the energy losses due to gravitation wave emission should be taken into account.
However, for an isolated neutron star, this can be neglected since the rotational speed
and the quadrupole moment are quite small.

The energy equation, including general relativistic effects, describes the temper-
ature evolution at each point of the neutron stars interior (Pons and Viganò, 2019;
Thorne, 1977)

cV
∂(T eΦ)
∂t

+∇ · (e2ΦF) = e2Φ(H −Q) (2.1)

where cV is the specific heat, H is the heating rate and Q the energy loss rate per
unit volume repectively, which, in general are both function of the temperature T .
The heat flux density F is defined in terms of the thermal conductivity tensor k as

F = −e−Φk ·∇(eΦT ) (2.2)

and the nabla operator ∇ includes curvature effects

∇ ≡

(︃

e−λ ∂

∂r
,
1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)︃

. (2.3)

For a spherically symmetric isolated neutron star, the heat transfer equation (2.1)
can be rewritten as two partial differential equations (Page et al., 2004):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cV eΦ
∂T

∂t
+

1

4πr2eλ
∂(Le2φ)
∂r

= e2Φ(H −Q)

∂(T eΦ)
∂r

= −
eλ

4πr2k
eΦ

(2.4)

where L is the luminosity of the star and accounts for both photon and neutrino
losses. The first one is due to photon emission from the surface of the star and is
given by the Stefan-Boltzmann law for purely thermal emission. The second one,
instead, is given by the energy loss via neutrino emission Lν and depends on the
neutrino production processes in the star crust and, mainly, in the core.

Matter inside a NS is highly degenerate, so that the specific heat per unit volume
c̃V is the sum of all the contributions from each particle species (Page, 2009)

c̃V =
∑︂

i

c̃V,i =
∑︂

i

(︃

m∗
i pF,i

3π2ℏ3

)︃

π2k2BT

where pF,i and m∗
i are respectively the Fermi momentum and the effective mass for

each species i. The specific heat cV appearing in equation (2.4) is the integral of

13



CHAPTER 2. NEUTRON STAR COOLING

c̃V over the whole volume of the star. However, the presence of superfluidity and
superconductivity in the neutron stars interior can strongly alter the value of the
specific heat cV .

At relatively low temperature in any degenerate system of fermions with attractive
interactions between particles Cooper pairs can arise (Cooper, 1956). In particular
the strong interactions between neutrons, protons and possibly hyperons can provide
effective channels for pairing (Migdal, 1960). When the temperature T is of the order
of a critical temperature Tcrit, many pairs are formed but also broken down since
kBT ≫ ∆(T ) where ∆ is the energy gap, i.e. half of the binding energy of a Cooper
pair. The net effect is a jump in the specific heat cV

cpairV = R(T/Tcrit)× cV (2.5)

where R is a coefficient taking account for the previous effects (Levenfish and
Yakovlev, 1994).

2.1 Neutrino Emission

As shown in section 1.1, neutrino are produced in the core of a neutron star via
direct and inverse β-decay (also known as direct Urca process)

n→ p+ e− + ν̄e and e− + p→ n+ νe.

Only if the energy and momentum conservation are satisfied, the previous two re-
actions can occur. The energy conservation simply becomes the chemical potential
equilibrium (1.3) because for degenerate matter the energy of each particle is just
the Fermi energy EF,i = µi and the chemical equilibrium is always satisfied.

Momentum conservation for direct Urca reactions demands

pF,n < pF,p + pF,e.

Because of charge neutrality np = ne, i.e. pF,p = pF,e from the definition of Fermi
momentum, hence last relation reads pF,n < 2pF,p or in terms of number density
nn < 8np. Defining now the proton fraction Rp ≡ np/nB with nB the baryon
number density, the momentum conservation for direct Urca requires

Rp ≥
1

9
≃ 11%. (2.6)

Hence, to have the direct Urca processes take place, the number of protons must
be of the order of 11 % of all baryons. For neutron stars only made of neutrons,
protons and electrons (npe-model) the xp-condition (2.6) can not be satisfied and
the direct Urca is kinematically forbidden.

This condition is almost never reached even using more realistic EOS models
except for some cases in the inner core in the presence of exotic state of matter,
such as deconfined quark or charged meson condensate (Page, 2009). The direct
Urca is allowed by conservation laws with other baryon species such as Λ hyperons

Λ → p+ e− + ν̄e and p+ e− → Λ + νe

or in deconfined quark matter

d→ u+ e− + ν̄e and u+ e− → d+ νe.

14
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Let us consider instead the modified Urca (mUrca) process which is a standard Urca
with a bystander particle x, which can be either a neutron or a proton. The presence
of the bystander ensures the total momentum conservation:

n+ x→ p+ e− + x+ ν̄e and p+ e− + x→ n+ x+ νe

The main difference between the two processes is that the direct Urca is much more
efficient than the modified Urca, i.e. the energy loss rate is much higher. The
neutrino energy loss rate as function of temperature can be written as (Friman and
Maxwell, 1979; Lattimer et al., 1991)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ϵmUrca
ν ≈ 6.22× 1021αn βn

(︃

ne

n0

)︃1/3(︃
m∗

n

mn

)︃3(︃m∗
p

mp

)︃

T 8
9 erg cm−3 s−1

ϵdUrca
ν ≈ 4× 1027

(︃

ne

n0

)︃1/3m∗
nm

∗
p

m2
n

Θnpe T
6
9 erg cm−3 s−1

where T9 = T/109 K, m∗
i are the effective particle mass, n0 = 0.16 fm−3 and Θnpe is

the step function, that is Θnpe = 1 if the Fermi momenta of neutrons, protons and
electrons satisty the momentum conservation and Θnpe = 0 otherwise. Furthermore,
αn = 1.13 and βn = 0.68 are two parameters proposed by Friman and Maxwell
(1979).

This reflects in different evolution timescales ranging from few second for direct
Urca processes (fast cooling scenario) to months for modified Urca (slow cooling
scenario). The energy lost via neutrino emission in the two cases can be computed
by simply integrating the energy rate ϵν over the volume:

Lslow
ν =

∫︂

V

ϵmUrca
ν dV = NsT

8,

Lfast
ν =

∫︂

V

ϵdUrca
ν dV = NfT

6.

(2.7)

where Ns and Nf are two coefficients of proportionality including all the other de-
pendencies. Considering the neutrino cooling era during which the energy loss via
neutrino is dominant with respect to photon emission (Lν ≫ Lγ) and remembering
that, for a mixture of degenerate particles cV = cT , the energy balance equation
reduces to

cT
dT

dt
≃ −Lν = −NcT

a

where a = 8 or 6 depending on the Urca process choice. This simplified version of
energy balance equation is valid in a Newtonian formulation and for an isothermal
core. Young stars, for example, does not fulfil this assumption and they evolves
differently toward isothermality. However, all observed neutron stars are old enough
to consider their core at uniform temperature.

Fixing the initial conditions, the previous equation can be solved to find a relation
between T and time t:

T ≃

[︃

c

(a− 2)Nc

]︃ 1

a−2

t−
1

a−2 . (2.8)

The neutrino energy loss rate is strongly modified in the presence of superfluidity
and superconductivity. The net effect is very similar to the specific heat one and
the energy loss rate for a process X changes according to

ϵpair
ν,X = RX(T/Tc)× ϵν,X .

This results in a faster cooling evolution compared to the case without considering
pairing and superfluidity.
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2.2 Photon Emission

If the emission of photon is purely thermal, the photon luminosity is

Lγ = 4πR2σT 4
s (2.9)

where σ ≃ 5.67 · 10−5 erg cm−2 s−1 K−4 is the Stefan-Boltzmann constant and Ts is
the surface effective temperature, i.e. the temperature of the blackbody that would
radiate the same flux as the star. An external observer at large distances will observe
a different luminosity due to gravitational redshift

L∞ = 4πR2
∞σT

4
∞ (2.10)

where the quantities measured far away from the star are given in terms of those at
the star surface by R∞ = e−ΦR and T∞ = eΦTs, both potentially observable.

Similarly to what has been done for neutrinos, during the photon cooling era
the energy loss via neutrino emission is negligible compared to photon luminosity
(Lγ ≫ Lν) so that the energy equation becomes:

cT
dT

dt
= −Lγ = −4πR2σT 4

s .

A relation between the temperature at the outer core T and the surface temperature
Ts is needed. The effect of the neutron star envelope is not negligible and the
approach is to consider it separately using a plane-parallel approximation.

If no energy losses or gains occur in the envelope, the gradient of the temperature
evaluated at the top of the crust will be (Tsuruta and Cameron, 1966):

−(k ·∇T ) · r̂ = σT 4
s (T,B) (2.11)

where the surface temperature has been chosen to be

Ts(T, g, B,Θ) = T (0)
s (T, g)X(T,B,Θ) , (2.12)

g is the gravitational acceleration on the surface and X(T,B,Θ) represents a mag-
netic correction (Potekhin and Yakovlev, 2001).

For an envelope mainly made of iron and not considering magnetic effects, T (0)
s

has been exactly calculated by Gudmundsson et al. (1983) but can be modelled more
in general as a power-law dependence (Tsuruta, 1964):

Ts ∝ T
1

2
+α . (2.13)

The photon luminosity (2.9) can be rewritten as

Lγ = 4πR2σT 4
s = ST 2+4α.

Using Tsuruta law in the thermal evolution equation and solving it, one obtains

T =

(︃

c

4αS

)︃ 1

4α

t−
1

4α . (2.14)

The evolution is very sensitive to the nature of the envelope since α ≪ 1 and to
changes in the specific heat due to pairing.
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Figure 2.1: Examples of cooling curves for two standard neutron stars with M = 1.4 M⊙

and 2.1 M⊙ corresponding to slow cooling (blue) and fast cooling (red) scenario.

The temperature T∗ at which photon cooling starts to become important can be
estimated by equating the photon luminosity Lγ to neutrino emission Lν finding for
slow/fast neutrino cooling scenario

T s
∗ ≃

(︃

S

Ns

)︃ 1

6

∼ 108 K (Slow cooling scenario)

T f
∗ ≃

(︃

S

Nf

)︃ 1

4

∼ 106 K (Fast cooling scenario)

In conclusion, three main cooling stages can be identified (Yakovlev et al., 2010):

i. The first stage (which can last for few centuries depending on the specific
model) during which the core is thermally decoupled from the crust and the
crustal neutrino emission dominates the cooling emission.

ii. The second neutrino cooling phase with isothermal core inside which neutrinos
are produced (102 y ≲ t ≲ 105 y).

iii. The final stage, the photon cooling era, during which the main emission mech-
anism is the surface emission of thermal photons.

Up to now the effects due to magnetic field has been neglected, which is correct only
for weakly magnetized NS (B ≲ 1012 G). Heating terms indeed can arise from the
dissipation of magnetic field.

Examples of cooling curves are shown in Figure 2.1 for two standard neutron stars
with M = 1.4 M⊙ and 2.1 M⊙ which highlight the two different cooling scenarios:
the blue curve, indeed, is an example of slow cooling scenario while for the red one
direct Urca processes are active above a certain density. The cooling curves are
derived with a 1D code develop by Page (2016).
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2.3 Neutrino Emission in the Crust

Neutrino reactions in the neutron star crust are an important source of energy loss
during the initial stages of the life of a star before the isothermal cooling phases
(first 10−100 years). These processes are associated with weak interaction between
electrons, positrons, nuclei and free neutrons (Chamel and Haensel, 2008).

In our numerical simulations, the emission of neutrino entering in the heat equa-
tion (Section 3.3) is due to four dominant contributions

Nν(n, T,B) = Npair(n, T ) +Nph(n, T ) +Nbrem(n, T ) +Nsyn(n, T,B) (2.15)

where the phonon decay, the pair production, the neutrino bremsstrahlung and the
neutrino synchroton emission are taken into account. Explicit relation for the four
neutrino emissivities taken from Yakovlev et al. (2001), Ofengeim et al. (2014) and
Kantor and Gusakov (2007) are implemented in our code.

In the presence of positrons, therefore at high temperature and low densities, a
pair of neutrino can be produced by the annihilation of an electron-positrons pair
(Chiu and Morrison, 1960)

e− + e+ → ν + ν̄.

In the case of non-degenerate electrons and positrons, i.e. kBT > µe, the neutrino
emissivity for electron-positron pair annihilation can be estimated as

Qeē−pair
ν ∝ ne−ne+⟨Eν⟩σeē→νν̄ ∝ T 9 (2.16)

where ⟨Eν⟩ is the mean energy of neutrinos and σeē→νν̄ is the cross section of the
annihilation process (Yakovlev et al., 2001). With increasing density, in the limit
of degenerate ultra-relativistic electrons kBT ≪ µe, the positron density is expo-
nentially smaller. Hence, the pair annihilation process is strongly suppressed for
degenerate electrons.

Neutrino emission from the crust is dominated by plasmon decay and it is ex-
tremely efficient at high temperatures. A plasmon is a quantum of electromagnetic
waves in a plasma and can be described classically ad an oscillation of electron den-
sity with respect to the fixed ions. A free electron cannot emit a neutrino pair since
this is forbidden by energy-momentum conservation. However, if the electron is in-
teracting with the surrounding medium, the energy is enough to trigger the plasmon
γ̄ decay process

γ̄ → ν + ν̄.

The total plasmon emissivity ϵpl is the sum over the different flavors of neutrinos.
Performing the full formal calculation (Yakovlev et al., 2001), the total emissivity can
be computed using the dispersion relations for the plasma along the longitudinal and
transversal directions in the limit of ultra-relativistic degenerate electrons at long
wavelenght (kc≪ ωpe)

ω2
l = ω2

pe +
3

5
k2c2, ω2

t = ω2
pe +

6

5
k2c2 (2.17)

where ω2
pe = 4πe2ne/m

∗
e is the electron plasma frequency and k = 2π/λ the wave-

number. In the opposite regime, i.e. kc≫ ωpe, the longitudinal plasmons experience
strong Landau damping and the transverse ones are transformed into ordinary elec-
tromagnetic waves.
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The final expression for the plasmon neutrino emissivity is

Qpl ≃
G2

F c

96π4e2

(︃

mec

ℏ

)︃9

Ipl (2.18)

where GF = 1.436× 10−49 erg cm3 is the Fermi weak interaction constant and Ipl =
Il+It is the sum of two dimensionless functions, which in the high-temperature limit
(T ≫ ωpe) for ultra-relativistic degenerate electrons are (Braaten and Segel, 1993)

Il = 0.349
Tω8

pe

m9
e

, It = 16.227
T 3ω6

pe

m9
e

and the main contribution comes from the transverse plasmons. For low temperature
the emissivity is exponentially suppressed due to the small number of plasmons. The
emissivity grows as Qpl ∝ ρ2 since ωpe ∝ ρ1/3 in the high-temperature domain and
it reaches the maximum value at ωpe ∼ T .

For ground-state matter at neutron drip point ρND, the electron plasma energy
is very high, ℏωpe ≈ 1.5MeV. This means that the plasmon decay is effecient only
at high temperatures in the early stages of neutron star cooling.

The plasmon decay is influenced by a strong magnetic field B because the plasma
dispersion relation gets modified and, in particular, new plasma modes may appear.
In general, the presence of B can alter the neutrino crustal emission and can make
possible new channels of neutrino emission, such as electron synchrotron neutrino
production (Kaminker et al., 1992). If we assume the magnetic field to be con-
stant and uniform on microscopic scales, and directed along the z axis, it forces the
electrons to rotate around the magnetic field lines. The electron momentum is not
conserved, which opens the process

e
B
−→ e+ νl + ν̄ l

where B indicates that the process can occur only in the presence of magnetic field.
The process is similar to the one happening with photons but much weaker. The
calculation of the synchrotron emissivity Qsyn is analogous to the one for the pair
annihilation process. Following a quasiclasiccal treatment (Kaminker et al., 1991)
for typical temperature values, the synchrotron emissivity is independent of the
electron number density and can be written as

Qsyn ≈ 9.04× 1014B2
13T

5
9 erg cm−3 s−1 (2.19)

where B13 is the magnetic field in units of 1013 G. Furthermore, Qsyn is indipendent
of the electron mass and this implies that all plasma particles should, in principle,
produce the same neutrino emission.

Some other processes might happen such as photoneutrino emission, but another
major contribution comes from neutrino Bremsstrahlung from electron-neutron col-
lisions (Kaminker et al., 1999)

e− + (A,Z) → e− + (A,Z) + ν + ν̄.

It proceeds via neutral and charged electro-weak currents and leads to the emission
of neutrinos of all flavors. The general expression for the neutrino emissivity due to
the neutrino-pair bremsstrahlung of the relativistic degenerate electrons in a plasma
(Haensel et al., 1996) is

Qbr ≈ 3.23× 1017ρ12
Zne

nB

T 6
9 L erg s−1 cm−3 (2.20)
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Figure 2.2: Total neutrino emissivity as function of temperature T and electron volume Ve

at given magnetic field B = 1013 G.

where ρ12 is the density in units of 1012 g cm−3 and L is a dimensionless function
made up of two terms coming from static-lattice contribution and from the electron
scattering by the nuclear charge fluctuations due to lattice vibrations.

The total neutrino contribution can be represented as function of temperature T
and electron volume Ve at given magnetic field B (Figure 2.2). The total emissiv-
ity (2.15) takes into account the plasmon decay, the electron-positron decay, weak
bremsstrahlung and synchrotron emission.

2.4 Thermal Conductivity

Since in the previous analysis, the thermal conductivity κ has been treated as a
scalar, we have assumed no anisotropies in the heat transport. However, in the
presence of strong magnetic field, the heat flow may be anisotropic due the classical
Larmor rotation, so that the thermal conductivity is no longer a scalar but becomes
a tensor (Page, 2009). If the magnetic field B is along the z-axis, the conductivity
can be written as

k =

⎛

⎝

κ⊥ κ∧ 0
κ∧ κ⊥ 0
0 0 κ∥

⎞

⎠ (2.21)

where the three components are

κ⊥ =
κ0

1 + (ωB/ν)2
, κ∧ =

κ0
1 + (ωB/ν)2

ωB

ν
, κ∥ = κ0 (2.22)
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with ωB = eB/m∗
ec being the electron gyrofrequency and ν is the collisional fre-

quency. For strong anisotropy, i.e. ωB ≫ ν, the motion of electrons is controlled
by the magnetic field so they move along the magnetic field lines and not perpen-
dicularly to it, κ⊥ ≪ κ∥, κ0. A strong magnetic field ≳ 1010 G can also change the
properties of heat transport.

According to the Wiedemann-Franz law, the thermal conductivity tensor k is
related to the electron conductivity σ as

k =
π2k2BT

3e2
σ. (2.23)

If the temperature of the crust is well below the electron degeneracy temperature
but still above the ion plasma temperature, the electron conductivity can be divided
into two terms

(σ−1)ij = σ−1δij +
ϵijkBk

ecn
(2.24)

where the first term on the right-hand side is the symmetric part of the tensor

σ = e2c2
nτe(µ)

µ
(2.25)

with τe associated to the electron scattering as function of the electron chemical po-
tential µ (Urpin and Yakovlev, 1980). The anti-symmetric part corresponds instead
to the Hall drift effect (Pons and Geppert, 2007).
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3. Magneto-Thermal Evolution

Having introduced the thermal evolution of a NS in the previous chapter, we now
turn to the evolution of the star’s magnetic field and on how this couples with
the thermal one. We focus on the crustal magnetic field, since the core of NSs
is in a superfluid and superconducting state (Type-I superconductor), so that the
magnetic field is likely expelled via the Meissner effect from the core (Pons and
Viganò, 2019). Indeed, in a region permeated by a magnetic field below a critical
value, the superconductor exhibits a perfect diamagnetism expelling the field lines
from the inside. This happens through the generation on the superconductor surface
of currents inducing a magnetic field which compensates for the external one. Hence,
the magnetic field is confined in the crust and can not penetrate into the core but
can cross the outer crust surface.

The external magnetic field of a NS, responsible for the spin-down of pulsars and
magnetospheric activity, is anchored in the crust (Goldreich and Julian, 1969). The
Hall induction equation, instead, governs the crustal magnetic evolution in the crust
and electron MHD (eMHD) provides us with the tools to study it.

3.1 Magneto-Hydrodynamics

In a magnetized plasma, the equation of motion for electrons and ions (Euler equa-
tion) reads

∂vl

∂t
+ (vl ·∇)vl +

1

ρl
∇Pl = −∇Ψ+

Zle

m∗
l

(︃

E+
vl

c
×B

)︃

−
∑︂

k

vl − vk

τlk
(3.1)

where vl, Pl, ρl, Zl are respectively the velocity, pressure, mass density for each
particle l and m∗

l are the effective masses defined in terms of the Fermi momentum
and single particle excitation energy ε(p) as

m∗ ≡ pF

(︃

∂ ε(p)

∂p

⃓

⃓

⃓

⃓

pF

)︃−1

.

The right-hand side of the equation (3.1) corresponds to the sum of external forces.
The first term is the gradient of the gravitational potential Ψ while the second
is the Lorentz force. Finally, the last one represents the frictional forces between
different components due to collisions (Goldreich and Reisenegger, 1992). Collisions
are characterized through the relaxation time τlk, which is the inverse of the collision
frequency.

Using the hydrostatic equilibrium condition

∇P + ρ∇Ψ = 0, (3.2)
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the pressure term and the gravitational potential gradient simplify in the equation
of motion (3.1). The equation of motion can be split into two dynamical equations
for the motion of electrons and ions

nZZe

(︃

E+
vZ

c
×B

)︃

− nZ
m∗

Z

τZn

vZ − nZ
m∗

Z

τZe

(vZ − ve) = 0 ,

− nee

(︃

E+
ve

c
×B

)︃

− ne
m∗

e

τen
ve − ne

m∗
e

τeZ
(ve − vZ) = 0 .

(3.3)

Inside the neutron star charge neutrality holds, ne = ZnZ , so the current density is
microscopically defined as

J ≡ e(ZnZvZ − neve) = ene(vZ − ve) . (3.4)

Furthermore, the conservation of momentum implies that

nZ
m∗

Z

τZe

= ne
m∗

e

τeZ
.

Hence, combining the two-fluid equations of motion, charge neutrality condition and
momentum conservation leads to

J×B

cne

=
m∗

Z

τZn

vZ +
m∗

e

τen
ve ≡

(︃

m∗
Z

τZn

+
m∗

e

τen

)︃

vamb (3.5)

where the ambipolar velocity vamb is defined as the weighted mean velocity of the
fluid. Interactions between neutrons and electrons are much weaker compared to
those between ions and electrons or neutrons. Consequently, the ambipolar velocity
is due only to the ion velocity vamb = vZ .

3.2 Hall Induction Equation in eMHD

Inside the crust of a neutron star ions constitute the background reference frame,
i.e. a component with very large inertia m∗

Z → ∞. Therefore the ions velocity vZ ,
the relaxation time τZn and also the ambipolar velocity are all zero. Only electrons
can move and produce all the crustal current J = −eneve (eMHD regime).

Considering the standard static metric (1.18), the Maxwell equations are

∇ · E = 4πρq ,
1

c

∂E

∂t
= ∇× (eνB)−

4π

c
eνJ ,

∇ ·B = 0 ,
1

c

∂B

∂t
= −∇× (eνE) .

(3.6)

where also ∇ contains the GR corrections (2.3).
The electron velocity can be computed from the relativistic Ampère’s law neglect-

ing the displacement current

ve = −
c e−ν

4πene

∇× (eνB) . (3.7)

so that the electron equation of motion (3.3) becomes

nee

(︃

E+
ve ×B

c

)︃

+m∗
ene

ve

τe
= 0 (3.8)
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where τe is the electron relaxation time. Combining the previous equation with the
one for the electron velocity (3.7), the electric field is given by

E =
c e−ν

4πσ
∇× (eνB) +

e−ν

4πene

[∇× (eνB)]×B (3.9)

where σ is the electrical conductivity. By replacing the previous relation inside the
last of Maxwell equation (3.6), one obtains the Hall induction equation

∂B

∂t
= −∇×

[︃

η∇× (eνB) +
c

4πene

∇× (eνB)×B

]︃

(3.10)

where the magnetic diffusivity η is defined as

η =
c2

4πσ
.

The first term on the right-hand side of the induction equation (3.10) describes
Ohmic dissipation. Magnetic energy is converted into heat and this heating source
is thought to maintain strongly magnetized neutron stars hot longer than the weakly
magnetized ones (Page et al., 2000). The second term is the nonlinear Hall term,
which has an important role in the evolution of neutron stars with large magnetic
fields, B ≳ 1014 G (Pons and Geppert, 2007). The Hall term dominates for young
and middle-aged strongly magnetized stars, 103 − 105 yr. As the star cools down,
the Ohmic dissipation must be taken into account. However, the Hall term may
dominate even for much lower values of the magnetic field strength if the Ohmic
time-scale becomes very long (Viganò, 2013). The Hall cascade is a non-dissipative
process (Goldreich and Reisenegger, 1992) and it just reconfigures the magnetic field
and redistributes magnetic energy, mainly transferring the energy from the larger
to the smaller scales, where it is rapidly dissipated due to Ohmic dissipation.

The Hall induction equation can be recast as

∂B

∂t
= −∇× η

[︄

∇× (eνB) + ωBτe
∇× (eνB)×B

B

]︄

, (3.11)

where the magnetization parameter ωBτe is useful to compare the relative impor-
tance between the two terms on the right-hand side. This form of the induction
equation makes explicit that the magnetization parameter ωBτe determines the de-
gree of anisotropy in the heat transfer. If ωBτe ≪ 1, the leading term is the Ohmic
diffusive term since collisions dominate and the effects of magnetic field on transport
properties are negligible. Instead, if ωBτe ≫ 1, the heat transport is anisotropic.
The electric currents are squeezed in a smaller volume and the main effect of the
Hall term is to allow magnetic energy transfer between poloidal and toroidal compo-
nents and from large to small scales. For strong toroidal components, the Hall term
also leads to the formation of current sheets, i.e. discontinuities in the tangential
components of the magnetic field where dissipation is strongly enhanced (Viganò
and Pons, 2012).

3.3 Evolution Equations in a NS Crust

For our purposes, we can drop the general-relativistic corrections and use instead
non-relativistic eMHD. Since the thickness of the crust is small, the relativistic effects
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have limited importance and will not change qualitatively the results. Moreover, for
3D-simulations the inclusion of general-relativistic effects can become computation-
ally quite demanding, in particular when boundary conditions are imposed (section
4.3).

To couple magnetic and thermal evolution, we need to include in the Hall induc-
tion equation (3.11) also thermo-electric effects related to the temperature gradient
∇T . Hence, the non-relativistic induction equation, including the thermal coupling
effects, is

∂B

∂t
= −c∇×

[︃

σ−1 · J+G ·∇T −
∇µ

e

]︃

(3.12)

with σ being the electric conductivity tensor (2.24) and µ the electron chemical
potential. The electron current is given by J = c∇ × B/4π. The thermopower
tensor G is related to the thermal and electric conductivity tensor by Mott relation
(Geppert and Wiebicke, 1991)

G = e
∂σ−1

∂µ

⃓

⃓

⃓

⃓

T

· k ≃ −
π2k2BT

eµ
δij (3.13)

where electrons are assumed to be a perfect Fermi gas. The anisotropic part of
the thermopower tensor related to the conductivity, the so-called Ettingshausen-
Nernst term, is not considered and we keep only the isotropic part responsible for
the Biermann battery effect, called the Seebeck term. This is associated to electrons
at the Fermi level and can be understood as the entropy dragged along by the flow
of electric currents (Ziman, 1972).

The magnetic field evolution is now coupled with the heat equation governing the
temperature evolution

CV
∂T

∂t
= −∇ ·

(︃

TG · J− k ·∇T −
µ

e
J

)︃

+ E · J+Nν (3.14)

where CV is the heat capacity per unit volume, k is the thermal conductivity (2.21)
and Nν is the neutrino emissivity related to weak processes (2.15). The first term
on the right-hand side represents the electron energy flux.

The evolution equations for magnetic field (3.12) and for temperature (3.14) can
be recast in terms of typical values of the crust in a strongly magnetized neutron
star (magnetar). Then each quantity is normalised compared to reference values,
i.e. T0 = 108 K, B0 = 1014 G, µ0 = 2.9 × 10−5 erg and τ0 = 9.9 × 10−19 s. We can
define four relevant dynamical length scales, the Debye length

λ =

√︃

kBT0
4πn0e2

, (3.15)

with n0 ≃ 2.6× 1034 cm−3, the skin-depth

d =

√︃

µ0

4πn0e2
, (3.16)

the Larmor radius
L =

µ0

eB0

, (3.17)

and finally the electron mean free path

l = cτ0 . (3.18)
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In addition, the radius is scaled with respect to the star radius RNS = 10 km and
CV 0 = kBn0 is the relevant scale for the heat capacity. The neutrino emissivity is
expressed in units of N0

ν = 8πe2c2R2τ0/µ0kBT0 = 1.3× 1014 erg s−1cm−3.
The induction equation for B (3.12) and the heat equation for T (3.14) can be

recast as

∂B

∂t
= Se∇

(︃

1

µ

)︃

×∇T 2 +Ha∇×

[︃

1

µ3
B×

(︁

∇×B
)︁

]︃

−∇×

(︃

1

τµ2
∇×B

)︃

(3.19)

1

Ro
CV

T

∂T 2

∂t
= ∇·(τµ2χ ·∇T 2)+

Pe
Se

|∇×B|2

τµ2
+Peµ(∇×B)·∇

(︃

T 2

µ2

)︃

+
Nν

Ro
(3.20)

where we defined the tensor χ

χij =
δij + Ha2(τ/µ)2BiBj − Ha(τ/µ)ϵijkBk

1 + Ha2(τ/µ)2|B|2
(3.21)

and introduced the following adimensional numbers

Ha ≡
l

L
≃ 50 Hall

Se ≡
π2Llλ4

2d6
≃ 0.05 Seebeck

Pe ≡
3d2

Ll
≃ 6× 10−5 Peclet

1

Ro
≡

√︃

3

2π2

Pe

SeHa2
≃ 3× 10−4 Roberts.

If we also assume CV = τµ2T to have the thermal diffusivity constant over the
whole domain, the heat equation (3.20) becomes a differential equation depending
on temperature only through T 2. This results in a great advantage for the efficiency
of the numerical implementation (Chapter 4). However, this assumption holds only
for the electron contribution and not the lattice contribution. Nevertheless, this
term is negligible in most situations, since it is suppressed by a large factor 1/Ro,
so that this assumption is reasonable when studying magnetic dominated evolution.

In the eMHD approximation, the time-independent number density for electrons
and protons in the crust is the same. Since we assume that the crust is spherically
symmetric, n is a function of the radius r only. Furthermore, we need to specify
explicit relations for µ and τ . For simplicity, we can assume that both are indepen-
dent on temperature and depend on r alone. We consider the realistic profile used
in Gourgouliatos and Cumming (2013)

µ =

(︃

1 +
1− r

0.0463

)︃4/3

and τ = 1 . (3.22)

These profiles are only rough approximations to the (highly uncertain) profiles in
real neutron stars but are good analytical fits at temperatures ≈ 108 K (Gourgou-
liatos et al., 2016). The assumption that the relaxation rate τ is independent of
temperature holds well in the lower crust where scattering by impurities dominates,
while it is just an approximation in the upper crust, where scattering by mostly by
phonons (Potekhin et al., 2015).
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The relevant timescales for the magnetic evolution are the Hall and Ohm ones
defined as

τH =
4πn0eL

2

cB0

≈ 104 yr , (3.23)

τO =
4πσ0L

2

c2
≈ 107 yr . (3.24)

On the Hall timescale, magnetic field reconfiguration takes place and small scale
structures are formed by the action of the Hall term. Dissipation occurs on the
Ohm timescale. The ratio between the two timescales is simply the magnetization
parameter ωBτ (3.11). Long-term thermal evolution also occurs on timescale ≲ τO.

3.4 Poloidal-Toroidal decomposition

In the numerical simulations, the initial conditions are given in term of poloidal and
toroidal components of magnetic field. Any three-dimensional, solenoidal vector
field B can be expressed in terms of poloidal and toroidal components

B = Bpol +Btor . (3.25)

The two component can be defined in terms of two scalar functions Φ(r, t) and
Ψ(r, t) as follows

Bpol = ∇× [∇× (Φk)] ,

Btor = ∇× (Ψk) ,
(3.26)

where k is an arbitrary vector. Using spherical coordinates (r, θ, φ), the suitable
choice is k = r and, since ∇× r = 0, we can rewrite

Bpol = ∇× (∇Φ× r) ,

Btor = ∇Ψ× r .
(3.27)

For axial symmetry with respect to the ẑ axis, the two scalar functions depend only
on r and θ and the toroidal magnetic field is directed along the azimuthal direction
φ. Alternatively, the poloidal component can be recast in terms of the magnetic flux
function Γ

B =
∇Γ(r, θ)× êϕ

r sin θ
+Bt(r, θ)êϕ . (3.28)
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4. Numerical Implementation

Numerical simulations are essential to solve the magnetic evolution equation (3.19)
together with the heat equation (3.20). To this end we used a version of PARODY,
a pseudo-spectral and parallel 3D code, originally developed by Dormy et al. (1998)
and Aubert et al. (2008), suitably modified to include the NS evolution equations
and boundary conditions (Wood and Hollerbach, 2015).

4.1 Spectral Decomposition

Spherical harmonics provide the basis for spectral decomposition in our algorithm.
The angular part of all the quantities are decomposed in term of spherical harmonics
Y m
l

T (θ, ϕ) =
∞
∑︂

l=0

+l
∑︂

m=−l

TlmY
m
l (θ, ϕ) . (4.1)

The expansion coefficients are

Tlm =

∫︂

4π

T (θ, ϕ)Y ∗
lm(θ, ϕ)dΩ (4.2)

where we integrate over dΩ = sin θdθdϕ. Spherical harmonics are a set of complex
functions defined over the sphere

Y m
l (θ, ϕ) = Cm

l P
m
l (cos θ) eimφ (4.3)

with Cm
l a normalization constant and Pm

l the associated Legendre polynomial of
degree l and order m defined as

Pm
l (x) = (−1)m(1− x2)m/2 d

m

dxm
Pl(x) (4.4)

where Pl(x) is the Legendre polynomial of degree l (see Appendix A.1). The nor-
malization factor is chosen as

Cm
l =

√︄

(2− δm0)(2l + 1)
(l −m)!

(l +m)!
(4.5)

to have normalized spherical harmonics,
∫︂ π

−π

∫︂ π

0

Y m
l (θ, ϕ)∗ Y m′

l′ (θ, ϕ) sin θ dθ dϕ = 4πδll′δmm′ (4.6)

with δij being the Knonecker delta.
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4.2 Spectral Algorithms

PARODY is a pseudo-spectral meaning that it treats the radial part of the differ-
ential operators by means of a finite-difference scheme grid while for the angular
part a spectral decomposition is used. Spectral algorithms are a class of methods
to solve partial differential equations (PDEs) in which the solution of the equations
is written as a sum of certain basis function, such as the spherical harmonics, and
the coefficients in the sum are chosen to satisfy the PDEs.

The time-stepping algorithm is Crank-Nicholson for the Ohmic diffusion, backward-
Euler for the isotropic part of the thermal diffusion, and Adams-Bashforth for all
other terms. The Crank-Nicholson algorithm is a finite difference method used for
numerically solving partial differential equations, such as the heat equation. This
method is based on the trapezoidal rule giving second-order convergence in time
and its equation is a combination of the forward Euler method at step n and the
backward Euler method at n+1. The Adam-Bashfort algorithm is an explicit linear
multistep method used to numerically solve ordinary differential equations based on
the idea of approximating the integrand with a polynomial within the time interval.

In explicit algorithms to solve PDEs involving propagating waves, the time step is
limited by the Courant condition, which essentially states that waves cannot travel
more than one cell length on each time step, avoiding numerical instabilities. The
time step is computed in an adaptive way using a Courant condition preserving
method.

The angular grid is of Gauss-Legendre type in colatitude θ and longitude ϕ,
whereas the radial grid is uniformly spaced in radius r. The Gauss-Legendre grid
is characterized by gridpoints equally spaced in latitude while spacing of latitudes
at each longitude is dbased on Gaussian quadrature points so gridpoints along each
longitude are not equally spaced. The spatial resolution of the code in the two di-
mensions orthogonal to r depends on the adopted number of modes, l and m. Using
≈ 100-modes, a typical resolution of ≈ 100 m is obtained on the surface. The code is
run on a cluster of CPUs at CloudVeneto, a high performance computing (HPC) fa-
cility jointly owned by the University of Padova and INFN, using also parallelisation
with MPI.

4.3 Boundary Conditions

The solution of the Hall induction equation (3.12) combined with the temperature
evolution equation (3.14) requires some boundary conditions at the core-crust inter-
face and at the outer crust surface.

As for the temperature, the thermal evolution of the NS core determines the
boundary condition between core and crust. Assuming an isothermal cooling model
(see chapter 2) for the core, the evolution of the crust-core temperature Tcc due to
neutrino emission is obtained solving the equation

∂Tcc
∂t

= −
Nc(T )

Cc

(4.7)

where Cc is the specific heat of the core while Nc(T ) = NcT
k is the core neutrino

emissivity. In particular, the code assumes a standard, slow-cooling model with
k = 8, Cc = 1020 erg s−1 K−2 and Nc = 1021 erg cm−3 K−8 (Page et al., 2004).

The surface temperature is controlled by the properties of the thermal blanketing
envelope. The equation linking the surface temperature Ts with the temperature
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gradient in the envelope has been already introduced in section (2.2) and it serves
as the second boundary condition for temperature.

All magnetic flux is expelled from the superconducting core since we have con-
sidered a Type-I superconducting core (Meissner condition). This requires that the
normal component of the magnetic field and tangential electric field must vanish
at the core-crust interface r = rc. The previous condition results in a non-linear
boundary condition for the magnetic field due to the presence of the Hall term Since
near the crust-core interface the electron density is high, the contribution of the
non-linear term is negligible (Hollerbach and Rüdiger, 2004). So that, the bound-
ary conditions can be written in terms of the radial magnetic field and tangential
current:

Br(rc) = 0 Jt(rc) = 0 . (4.8)

This is a simplifying assumption, as the core may be a Type-II superconductor and
magnetically coupled to the crust.

The magnetic currents in the magnetosphere are negligible compared to those in
the crust, so the magnetic field is irrotational at the outer crust boundary

∇×B|RNS
= 0 . (4.9)

This can be achieved in a very natural way by exploiting the spectral nature of
our code, using the poloidal-toroidal decomposition (3.26) and spherical harmonics
Y m
l (θ, ϕ) as the basis (section 4.1). In this representation, each mode of a poten-

tial field is purely poloidal and such that Φm
l ∝ r−(l+1). Therefore, the boundary

conditions is given by

∂Φm
l

∂r
+
l + 1

r
Φm

l

⃓

⃓

⃓

⃓

RNS

= 0 Ψm
l |RNS

= 0 . (4.10)

4.4 Initial Conditions

The initial temperature profile is considered to be a function of radius only and, in
particular, it is taken to be a constant, T (r, t = 0) ≡ 1 × 108 K. This translates
into a monopole distribution in the spherical harmonics space. However, the overall
evolution is virtually independent on this choice inasmuch as the first term in the
temperature equation (3.14) is suppressed by a factor Ro−1 ≈ 10−4. So the magnetic
evolution drives the thermal one and this quickly washes out the initial condition.

In order to set the initial magnetic configuration for our simulations, we followed
the widespread approach (see e.g. Rüdiger and Hollerbach, 2005), to start with some
large-scale field and study the subsequent evolution. In particular we chose solutions
of the force-free equation as initial conditions.

From the standard magneto-hydrodynamics equation (3.1) assuming no collisions
and that pressure force are negligible with respect to the Lorentz one, we can recover
the force-free equation

(∇×B)×B = 0 . (4.11)

This implies that
∇×B = α(r, θ)B (4.12)

where, a priori, the proportionality factor α is a generic function of the position.
Inserting the general expression for an axisymmetric field (3.28) into the force-
free condition (4.11), one obtains two independent scalar equations for the toroidal
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component Bt and the flux function Γ. The first one for the toroidal part is

Bt(r, θ) =
1

r sin θ
F (Γ) (4.13)

where F is an arbitrary function of Γ only (Low and Lou, 1990). Combining the
previous relation with the one for the magnetic flux, leads to the Grad-Schlüter-
Shafranov (GSS) equation (see e.g. Pavan et al., 2009)

∂2Γ

∂r2
+

1− µ2

r2
∂2Γ

∂µ2
+ F (Γ)

dF

dΓ
= 0 (4.14)

with µ = cos θ. The GSS equation can be reduced to an ordinary differential equa-
tion by making suitable assumptions on the dependence of Γ on the coordinates.

Using spherical polar coordinates (r, θ, ϕ) and spherical harmonics decomposition,
the magnetic field satisfiyng the force-free equation is

B =
∞
∑︂

l=0

+l
∑︂

m=−l

Y m
l (θ, ϕ)Blm (4.15)

where Blm is the sum of a poloidal field B
pol
lm and a toroidal field B

tor
lm . Indeed, given

any poloidal field, we can find a toroidal field B
tor which, when added to B

pol makes
the total field force-free and viceversa.

From (3.26) fixing k = rêr, the two components can be derived as (Chandrasekhar
and Kendall, 1957)

B
pol
lm =

[︃

l(l + 1)

αr
Zl(αr)Y

m
l (θ, ϕ)

]︃

êr +

{︃

1

αr
Cm

l eimφ ∂

∂θ
Pm
l (cos θ)

∂

∂r

[︂

r2Zl(αr)
]︂

}︃

êθ

+

{︃

m

α sin θ
Y m
l (θ, ϕ)

∂

∂r

[︂

rZl(αr)
]︂

}︃

êφ (4.16)

and

B
tor
lm =

[︃

m

sin θ
ψm
l (r, θ, ϕ)

]︃

êθ −

[︃

Zl(αr)C
m
l eimφ ∂

∂θ
Pm
l (cos θ)

]︃

êφ (4.17)

where ψm
l are a set of fundamental solutions of scalar Helmholtz equation

∇2ψ + α2ψ = 0 (4.18)

where are given by
ψm
l (r, θ, ϕ) = Zl(αr)Y

m
l (θ, ϕ) (4.19)

and Zl(αr) is a linear combination of the spherical Bessel functions jl(αr) and yl(αr)
(see Appendix A.2)

Zl(αr) = aljl(αr) + blyl(αr) (4.20)

where the coefficients al and bl are constants determined by the boundary conditions.
The previous relations for poloidal (4.16) and toroidal (4.17) components, provide

us the tools to set multipolar and/or non-axisymmetric initial configuration for the
magnetic field since the code requires initial conditions in spherical harmonics space.
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We present now the results of 3D numerical simulations of coupled magneto-thermal
evolution of isolated neutron stars starting from a range of different initial conditions
for the magnetic field. First, we deal with axisymmetric configuration to have a
better comparison with previous works (Viganò et al., 2013). This axisymmetric
cases tend to maintain their symmetry during the long-term evolution.

Then, our focus will be on initial configurations that allow us to fully exploit the
three-dimensionality of our code and, in particular, we consider the case of a dipolar
field tilted with respect to a quadrupolar component. These are non-axisymmetric
configurations for which 3D maps of magnetic field and temperature are necessary
to analize the NS evolution.

5.1 Axisymmetric Configurations

The first configuration taken into consideration is a pure dipolar field. Its evolution
is followed for about t ≈ 104 yr ≈ τH to compute the magnetic field components
and the temperature map of the crust and the NS surface.

Then we show that, after a few Hall timescale, the dipole initial field (and also a
more general one considering a toroidal component) evolves towards a configuration
dominated by odd modes. So this solution, the so-called Hall attractor, can be
considered as the initial condition to follow the late-stage evolution of a NS.

5.1.1 Dipole Configuration

After a Hall timescale the magnetic field tends to exhibit an equatorial structure
where the field is stronger (Gourgouliatos et al., 2016) and small scale structures due
to the effect of the Hall term. This can be seen in Figure 5.1, showing the magnetic
field spherical components Br, Bθ and Bφ at the beginning of the simulation and
after t ≃ 5× 104 yr for an initial configuration with Bpol(0) ≈ 1013 G. Since there is
no initial toroidal field, Bt(0) = 0, there is no Bφ component at the beginnig of the
run so the last plot (Figure 5.1, top right) displays the field lines of the magnetic
topology.

According to the Hall induction equation (3.12), the poloidal field will immediately
induce a toroidal field as well, which, according to the symmetry properties discussed
in Hollerbach and Rüdiger (2002), will have the same equatorial symmetry as the
case of a toroidal quadrupole. So we expect that a toroidal field is very rapidly
induced, and immediately starts “compressing” the poloidal field into the equatorial
region in which the field is stronger. The maximum amplitude of this induced
toroidal field rapidly increases then gradually decays. It turns out that the sign of
this field is negative/positive in the northern/southern hemisphere. The equatorial
structure related to the appearance of a strong toroidal component reflects into a
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Figure 5.1: Meridional cuts of the crust along the prime meridian (φ = 0) displaying the
magnetic field components Br, Bθ and Bφ (from left to right) at the beginning of our
simulation (top row) and after 5 × 104 yr ≈ τH (bottom row) for an initial configuration
characterized by Bp(0) ≈ 1013 G (the thickness of the crust is 4 times stretched for better
visualization).

Figure 5.2: Temperature maps after t ≃ 5× 104 yr ≈ τH for a case with Bp(0) ≈ 1013 G.
On the left, the meridional cut is shown with the magnetic field lines while, on the right,
the temperature map of the NS surface is displayed (the thickness of the crust is 4 times
stretched for better visualization).

hotter equatorial region in the temperature distribution (Figure 5.2, left panel),
according to the magnetic evolution drives the thermal one.

Moreover, for equation (2.23) heat tends to be transported along the field lines
so that the equatorial region is hotter not only because of higher dissipation, but
also because heat is trapped by the closed field lines appearing in that region. The
surface temperature map (Figure 5.2, right panel) is derived using the Tsuruta law
(2.11) to take into account the properties of the heat blanketing envelope. The
overall topology of the two maps is quite different: the equatorial region shows a
colder ring surrounded by a hotter belt.
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Figure 5.3: Time evolution of the first seven l modes for three different initial magnetic
field configurations: a purely poloidal field (solid) and two cases with an added toroidal
field of opposite polarity (dashed and dotted).

5.1.2 Hall Attractor

The Hall term in the magnetic evolution equation (3.12) will transfer energy be-
tween poloidal and toroidal components, so that, even by assuming an initial we
assumed a purely poloidal field, a toroidal component will appear during the evo-
lution and viceversa. Considering three different initial magnetic configurations, a
purely poloidal field (Bt(0) = 0) and a field with poloidal and toroidal components
of the same order but opposite polarity (Bp(0) ∼ ±Bt(0)), the magnetic evolution
can be followed over a few Hall timescale (De Grandis et al., 2020). The code,
indeed, provides us the values of the magnetic energy Ul step by step for the first
seven l-modes. Figure 5.3 shows the magnetic energy spectrum as function of time
and in all our cases the magnetic field evolves towards a configuration dominated
by the modes l = 1, 2, 3, 5, 7. This is a general feature of the so-called Hall attractor
(Gourgouliatos and Cumming, 2014).

After a few τH , under the assumption of axial symmetry, the Hall evolution sat-
urates and the magnetic field relaxes to a particular stable configuration which is
insensitive to the choice of initial conditions. This consists of a dipole component
(l = 1) and an octupole (l = 3) whose relative intensity depends on the crust proper-
ties, and is counter-aligned with the dipole. Higher multipoles are present, but their
intensity is smaller. The weak toroidal field developed is in the l = 2 component
and is responsible for the transfer of energy from the dipole poloidal component
into the octupole to compensate for the losses due to dissipation. This evolution
is an advection-diffusion equilibrium where the system maintains its structure and
evolves self-similarly in time, with energy dissipation related to the Ohmic term and
the slightly imbalanced Hall term rearranging the field so that the changes in the
structure are annulled. Once a NS reaches the attractor stage, it will spend about
a Myr of its life in this state, until the field has dissipated so much that the Ohmic
timescale is comparable with the Hall one and the successive evolution is driven
mainly by the relatively slow Ohmic dissipation. Then higher multipoles dissipate
faster with the dipole surviving the longest.
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Figure 5.4: Meridional cuts of the crust along the prime meridian (φ = 0) displaying the
magnetic field components Br, Bθ and Bφ (from left to right) at the beginning of our
simulation (top row) and after 5 × 104 yr ≈ τH (bottom row) for an initial configuration
with l = 1, 2, 3, 5 modes for the poloidal component (the thickness of the crust is 4 times
stretched for better visualization).

Figure 5.5: Temperature maps after t ≃ 5 × 104 yr ≈ τH for an Hall attractor case. On
the left, the meridional cut is shown with the magnetic field lines while, on the right,
the temperature map of the NS surface is displayed (the thickness of the crust is 4 times
stretched for better visualization).

Following Gourgouliatos and Cumming (2013), we mimicked the Hall attractor
stage as initial condition adopting a magnetic field topology with l = 1, 2, 3, 5 modes
for the poloidal component. In particular, we consider a combination of dipolar
and octupolar components with opposite polarity and polar ratio ρ3 = 0.6, with
the addition of a small quadrupolar field with ρ2 = 0.1 and an l = 5 component
characterized by ρ5 = 0.3. According to the measured values of P and Ṗ for the
neutron star RX J1856.5-3754 taken into consideration by Popov et al. (2016), we
set the magnetic field intensity for the dipolar component at the poles at Bdip ≃
5× 1013 G.

A toroidal fiels is immediately induced by the poloidal components according to
the Hall equation (3.12) and will grow up as the magnetic field evolves in time
reaching values of about 1014 G at t ≈ 5 × 104 yr. The radial component of the
magnetic field Br tend decreases during the NS evolution except in the equatorial
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Figure 5.6: Maps displaying the magnetic field components Br, Bθ and Bφ (from left
to right) at the top of the crust, at the beginning of our simulation (top row) and after
5 × 104 yr ≈ τH (bottom row) for a run with BDip(0) ≃ 1013 G tilted by ΘB = 45◦ with
respect to BQuad(0) ≃ 7.5× 1012 G (run45B0.75).

Run Tag BDip(0) BQuad(0) βB ΘB

run45B0.75 1013 G 7.5× 1012 G 0.75 45◦

run45B1.25 1013 G 1.25× 1013 G 1.25 45◦

run45B10 1013 G 1014 G 10 45◦

run90B1 1013 G 1013 G 1 90◦

Table 5.1: Tags, initial magnetic field values and the disalignment angle ΘB of the sim-
ulations in section 5.2 characterized by non-axisymmetric configuration of the magnetic
topology.

region where the field is stronger. Furthermore, the initial configuration ofBr is quite
similar to the dipole one but two parallel structures, related to higher multipoles,
in which the magnetic field is slightly stronger can be highlighted near the outer
crust at latitude ≈ 25◦, one in each hemisphere. Temperature maps are shown in
Figure 5.5 and the equatorial hotter region related to the strong toroidal component
is clearly evident as in the case of a pure dipole field. Both temperature maps are
quite similar to the one of the dipole configuration (Figure 5.2) as we expect, since
all the magnetic field configurations evolve toward the Hall attractor stage. The
surface temperature map exhibits the same cold equatorial ring with nearby hotter
regions.

5.2 Non-Axisymmetric Configuration

We can now turn to the study non-axisymmetric cases. Recently, Kondratyev et al.
(2020) (KON20 hereafter) proposed a field configuration made of a dipole and a
quadrupole with misaligned axes in order to explain observations of non-symmetric
pulse profile and amplified pulsations in comparison to the pure-dipolar case. The
non-coaxial dipole and quadrupole magnetic configuration, indeed, can significantly
affect the thermal light curve, amplifying the pulsations and making the pulse profile
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Figure 5.7: Evolution of the temperature (Mollweide projection) at the top of the crust
for run45B0.75, see Table 5.1. Time increases from left to right and from top to bottom.
Snapshots are separated by ≈ 6000 yr and the first one (top left) is at t ≈ 6000 yr.
Note that the colour bar range decreases between the top and the bottom row to improve
visualisation.

Figure 5.8: Temperature maps at the top of the crust (left) and on the NS surface (right)
after t ≃ 104 yr for the same run as in Figure 5.7 (run45B0.75).

asymmetric with respect to the pure-dipolar case. However, their model relied on
a stationary state approximation for crustal temperature given a fixed magnetic
field. We extend this work using a “tilted” configuration as an initial condition,
and then following its evolution consistently. Furthermore, since our simulations
provide the evolution of the magnetic field, we can check how the angle between the
two components evolves to see if they tend to realign with each other or the initial
configuration is maintained.

Following KON20, we describe our magnetic field configuration by two parameters
ΘB, which corresponds to the angle between the dipolar and quadrupolar compo-
nent, and βB = BQuad/BDip describing the strength of the quadrupolar component
with respect to the dipole. Consequently, if βB ≪ 1 then the temperature ap-
proaches to a pure dipolar configurations, while if βB ≫ 1 a pure-quadrupolar one
will be observable. In order to set an initial magnetic configuration rotated with
respect to an axis, a tool to rotate spherical harmonics is required. Under a generic
rotation Λ(α, β, γ) where α, β and γ are the Euler angles, each spherical harmonic
is transformed into a linear combination of Y n

l with −l ≤ n ≤ l and same degree l
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Figure 5.9: Maps displaying the magnetic field components Br, Bθ and Bφ (from left
to right) at the top of the crust, at the beginning of our simulation (top row) and after
5× 104 yr ≈ τH (bottom row) for run45B10, see Table 5.1.

(Driscoll and Healy, 1994):

Λ(α, β, γ)Y m
l (θ, ϕ) =

l
∑︂

n=−l

Y n
l (θ, ϕ)D

(l)
nm(α, β, γ) . (5.1)

Here D(l) is an irreducible representation of the group SO(3), the so-called Wigner
matrix, and can be written as:

D(l)
nm(α, β, γ) = e−inγ d(l)nm(cos β) e−imα , (5.2)

where d(l)nm are related to Jacobi Polynomials (see Appendix A.3). Hence the effect
of a rotation is expressed in the basis of spherical harmonics as a product with
a semi-infinite block diagonal matrix, with the (2l + 1) × (2l + 1) blocks for each
l ≥ 0. This procedure allows us to start from tilted initial conditions after evaluating
numerically the coefficients of the rotation matrix.

For our simulations, the initial temperature profile is assumed to be a constant,
T (0) = 108 K and the initial magnetic configuration consists in a dipole field rotated
by ΘB with respect to a quadrupolar component which is directed along the z-axis.
We consider an initial dipole BDip(0) ≃ 1013 G and different values of BQuad(0) as
shown in Table 5.1 where some values of βB are chosen to have a direct comparison
with the field configurations studied by KON20.

The magnetic field components Br, Bθ and Bφ at the top of the crust are shown
in Figure 5.6 at the beginning and after t ≃ 5×104 yr for the first run (run45B0.75).
Note that, in this case, even if we started from a purely poloidal configuration made
up of a dipole and a quadrupole, the ϕ-component is not vanishing since the field is
no more axisymmetric. As in the axisymmetric case, the radial component decreases
in time since its energy is transferred to the other components and the region with
inversion of polarity becomes thinner. Moreover, due to the Hall term (3.12), some
structures in which the magnetic field is stronger are visibile in both Bθ and Bφ

maps at colatitude ≈ π −ΘB.
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Figure 5.10: Evolution of the temperature (Mollweide projection) at the top of the crust
for the same run as in Figure 5.6 (run45B10). Time increases from left to right and from
top to bottom. Snapshots are separated by ≈ 5000 yr and the first one (top left) is at
t ≈ 6000 yr.

Figure 5.11: Temperature maps at the top of the crust (left) and on the NS surface (right)
after t ≃ 104 yr for the same run as in Figure 5.9 (run45B10).

These structures reflect into an hotter belt at colatitude ≈ π − ΘB in the tem-
perature map of the crust (Figure 5.8) since the heat tends to be transported along
the field lines (2.23). Unlike the case of a purely dipolar field (5.1.1), the presence
of the misaligned quadrupole makes the belt non-uniform and asymmetric. The
net effect is the creation of a spot in the northern hemisphere which is hotter than
the belt and the other regions of the NS crust and its evolution is shown in Figure
5.7. The thickness of the hot belt tends to decrease as the NS cools down, and the
temperature tends to become more and more uniform.

Figure 5.8 shows the temperature map of the crust (right panel) and the tem-
perature distribution on the NS surface considering the effects of the envelope (left
panel). The surface temperature map is inverted with respect to the crust one, i.e.
the crust temperature is smaller in regions where the magnetic field is nearly radial,
while it is larger in the regions with an almost tangential field. The heat flux is sup-
pressed most severely in the envelope and causes the decrease of the temperature
gradient in the equatorial regions where the field is tangential, so that a variation
of the crust temperature on the magnetic poles, where the field lines are radial, is
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Figure 5.12: Evolution of the temperature (Mollweide projection) at the top of the crust
for run90B1, see Table 5.1. Time increases from left to right and from top to bottom.
Snapshots are separated by ≈ 4000 yr and the first one (top left) is at t ≈ 5000 yr.
Note that the colour bar range decreases between the top and the bottom row to improve
visualisation.

Figure 5.13: Temperature maps at the top of the crust (left) and on the NS surface (right)
after t ≃ 104 yr for the same run as in Figure 5.12 (run90B1).

higher than the equatorial one (Kondratyev et al., 2020). The surface temperature
distribution, hence, is characterized by a small cold belt, which becomes irregular
in shape with respect to the case of a pure-dipolar configuration tilted by ΘB if the
parameter βB ≲ 1.

By increasing the value of the quadrupole field, i.e. by increasing the value of
βB, a second hotter belt appears in the temperature distribution of the crust and its
shape is more circular. We consider, indeed, a configuration with a quadrupole much
stronger than the dipolar component, hence βB = 10 (run45B10), and ΘB = 45◦ to
have a direct comparison with the previous example (run45B0.75).

As in the previous cases, the radial component decreases in time since its energy
is transferred to the θ and ϕ components. Moreover, due to the Hall term (3.12),
some belts in which the magnetic field is stronger arise at latitude ≈ ΘB both in the
northern and southern hemisphere. The general magnetic topology is quite different
from the one of the previous run (run45B0.75) and it tends to approach the pure-
quadrupolar case, which is characterized by a crustal temperature map with two
parallel hotter belt, one in each hemisphere.
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Figure 5.14: Comparison between plots of the temperature (Mollweide projection) at the
top of the crust (top row) and on the NS surface (bottom row) for the same run as in
Figure 5.12 (left) and the same configuration without the quadrupole component (right).

The effect of the dipole field is clearly evident when looking at the crustal and
surface temperature maps after ≈ 104 yr (Figure 5.11): the two hotter belts are
not uniform and the one in the northern hemisphere is hotter and thicker than the
other due to the presence of the dipolar component. Considering the effects of the
envelope, the surface temperature map is inverted with respect to the crustal one,
i.e. two small colder belt arise at colatitude ≈ π − ΘB. The belt in the northern
hemisphere is surrounded by hotter regions reaching values of ≈ 0.08 keV while the
same structures in the southern region are colder.

The evolution in time of the belt structures is shown in Figure 5.10, where the
initial snapshot corresponds to the configuration after ≈ 2000 yr and the other plots
are separated by ≈ 8000 yr. The shape of the hotter belts becomes more and more
narrow, non-uniform and non-circular while the hotter spot remains in the northern
region.

As final case is the one with a dipole field rotated by ΘB = 90◦ with respect to a
quadrupole and relative strenght βB = 1 (run90B1). This configuration is interesting
to see the effect of quadrupole perpendicular to a dipolar field for which we expect
an equatorial hotter belt in the crust (Figure 5.2). Since the dipole is tilted by 90◦,
the hotter belt should be not on the equatorial region but along the meridians at
ϕ = ±90◦. The effect of the quadrupole changes the crustal temperature distribution
so that the belt shape is more like a “jaw” and not along the meridian, as shown in
Figure 5.13.

Moreover, the belt is not uniform in temperature but two hotter spots can be
identified one in each hemisphere, unlike the case of a pure dipole with axis tilted
by 90◦ (Figure 5.14, right panels). The hot belt evolution in time is shown in Figure
5.12. As in the previous cases, run45B0.75 and run45B10, the thickness of the hotter
belt tends to decrease in time as it cools down maintaining its general shape. The
hotter region in crustal temperature map reflects into a small colder belt on the
surface as in the previous case due to the effects of the NS envelope (Figure 5.13).

An intriguing question is whether configurations characterized by a tilted compo-
nent are stable or if the multipoles tend to align. We can extract from the code the
angles between the dipole and the quadrupole, respectively ΘDip and ΘQuad, with
respect to the z-axis at each timestep. Hence, the parameter ΘB = ΘDip − ΘQuad

can be followed in time. In particular, we consider three different runs (Table 5.1)
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Figure 5.15: Evolution in time of the parameter ΘB for three different magnetic field initial
configurations.

starting from configurations with the same initial ΘB = 45◦ but different values of
βB (Figure 5.15).

The disalignment ΘB tends to grow in time and its increase depends on the value
of tha parameter βB. However, the change in ΘB is quite modest (≲ 2 %) over all
the timespan of our simulations. The bigger βB, the bigger the change, but even
in the case of run45B10 with βB = 10, the increase does not exceed ≈ 1◦ in about
5× 104 yr years of evolution.

We checked the behaviour in time of the disalignment ΘB also for run90B1 and,
as in the previous cases, we found that the dipole remain perpendicular to the
quadrupole for all the simulated time (5× 104 yr) up to machine precision.

Hence, the dipolar component does not tend to realign with the quadrupole in
an astrophysically relevant timescale and the magnetic field configuration can be
considered quite stable with respect to the magnetic induction equation. However,
the effect of the NS spin would make the dipole to realign with the rotation axis.
Indeed, the electromagnetic radiation emitted by an oblique rotating dipole results
in a torque on the star that causes the angular velocity axis to migrate through the
neutron star toward alignment with the magnetic axis.
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6. Conclusions and Future Perspectives

In this work, we studied the magneto-thermal evolution of isolated highly-magnetised
neutron stars. After introducing the theoretical details of the Hall induction and
thermal evolution equations (Chapter 3), we presented some of the first fully coupled
magneto-thermal numerical simulations in three dimensions. A fully 3D, pseudo-
spectral code opens up countless possibilities in the study of neutron star magneto-
thermal evolution.

Owing to the inherent numerical complexity, the present version of the PARODY
code has nevertheless some limitations. In fact, we had to reduce the microphysical
input to a realistic yet unsophisticated model for the computing time to be man-
ageable. This concerns in particular the use of a simplified form for the hydrostatic
equilibrium density profile of equation (3.22), which was also assumed independent
on temperature and magnetic field, that has not been obtained from a realistic equa-
tion of state of ultradense matter, and the use of a constant τ throughout the crust.
Other strong prescriptions come from the boundary conditions (4.8). As already
mentioned in section 4.3, the condition on the magnetic fields at the crust-core in-
terface assumes that the core is a Type I superconductor, so that no magnetic field
is allowed to penetrate it. However, the question of which is the superconducting
phase of the NS core is still a hotly debated one. Would the core be a Type II
supeconductor then some field lines can enter in the core (see e.g. Baym et al.,
1969).

6.1 Discussion

As a benchmark, we started from an axisymmetric configuration of the magnetic
field, checking the existence of a stable solution after a few τH , the Hall attractor,
for which the magnetic field is dominated by odd modes. A NS will spend about a
Myr of its life in the attractor stage, until the Ohmic dissipation starts to dominate.
The magnetic field is stronger near the equator, where the field lines close up. Hence,
heat is trapped in the equatorial region since it tends to follow the magnetic field
lines (Figure 5.2). The surface temperature map for this configuration (Figure 5.5)
is quite similar, as expected, to the one obtained for a purely-dipolar field (Figure
5.2) and it exhibits a small colder belt along the equator, surrounded by two hotter
regions.

Then, we presented some of the first 3D numerical simulations of the coupled
magneto-thermal evolution starting from a non-axisymmetric configuration for the
magnetic field. The temperature maps at the top of the crust and on the NS surface
are derived for magnetic topologies characterized by a dipole and a quadrupole with
axes tilted by an angle ΘB and different relative strenghts βB. The temperature
distribution reflects the magnetic field configuration, so that its general structure
is determined by the dominant component between the dipole and the quadrupole
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while the other makes the hotter region non-uniform and irregular in shape.
Unlike the axisymmetric configurations, in which a hot equatorial belt is persistent

in time, we show that in non-axisymmetric cases the hotter structures survive only
for few τH , and the crust becomes almost isothermal afterwards (see Figures 5.7,
5.10, 5.12).

The reason is two-fold: first, a more complex magnetic field does not allow the
flow of strong, large scale currents throughout the crust (as the one flowing around
the equator in the dipolar case) that can efficiently heat the crust. Second, when
the structure of the field lines is more complex there are less closed lines, which
act as a thermal insulator for the region they enclose. Hence, we expect that in
general a highly multipolar and asymmetric field configuration translates in a more
complex thermal structure of the crust in the early stages (t ≲ τH), but in a nearly
isothermal crust in the later times.

6.2 Future Applications

Cooling, isolated NSs have the right temperature, a few MK, to shine at X-ray
energies (0.1 - 10 keV) for millions of years. Surface temperature maps are a key
ingredient in modelling the emission of objects, such as X-ray pulsars and the XDINS
(X-ray dim isolated neutron stars). The XDINSs, known also as The Magnificent
Seven (M7) (Treves et al., 2001), are isolated, middle aged NS exhibiting a very
soft, purely thermal X-ray spectrum with typical temperatures in the range of ∼
0.05− 0.1 keV and a very large X-ray-to-optical flux ratio.

The spin-down measure of the dipole field in the M7 gives values somewhat in
excess of those typical of radio pulsars and not too far from those of magnetars
(≈ 1013 G), but none of them exhibits magnetar-like activity (Turolla, 2009). This
led to the suggestion that the M7 could be elderly magnetars, kept hotter than
normal isolated NSs of comparable age by field decay (see e.g. Pons et al., 2007).
Different sources among the M7 can be at different evolutionary stages, and so they
can be closer or farther from the Hall attractor stage.

Although the emerging spectrum is thermal, it is not a blackbody because their
(thermal) emission can originate either in an atmosphere covering the star surface,
or in a condensate (see e.g. Turolla, 2009). At any rate, the observed spectrum will
produced by the superposition of the emission from those patches which are in view,
each with a different value of the temperature and magnetic field.

The observed flux can be calculated at each spin phase γ, if the specific intensity
Iν is known

Fν(γ) = (1− x)
R2

NS

D2

∫︂ 2π

0

dΦ

∫︂ 1

0

Iν(k, θ, ϕ) du
2 , (6.1)

where RNS, MNS are the NS mass and radius, x = Rs/RNS with Rs = 2GMNS/c
2

and D is the source distance (Zane and Turolla, 2006). The previous expression ac-
counts also for general-relativistic effects (ray-bending) produced by the star strong
gravity. The specific intensity Iν depends, in general, on the photon direction k

and on position of the emitting point on the surface, i.e. on θ and ϕ. However, the
components of k, θ and ϕ can be expressed in terms of γ, the colatitude and the
azimuthal angle relative to the line of sight (LOS) Θ and Φ, and two geometrical an-
gles χ and ξ which give, respectively, the inclination of the LOS and of the magnetic
axis with respect to the star spin axis. We plan to extend this formalism to compute
synthetic spectra and light curves starting from our 3D surface temperature maps
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for non-axisymmetric configurations.
Pulse profiles produced by the thermal surface distribution induced by a simple

core-centred dipolar magnetic field were investigated by Page (1995), under the
assumption that each surface patch emits (isotropic) blackbody radiation. The pulse
shape is always symmetrical, regardless of the viewing geometry if the temperature
distribution is itself symmetric.

However it seems difficult to explain the quite large pulsed fraction and the pulse
asymmetry observed in XDINSs by assuming that the thermal surface distribution
is induced by a simple dipolar magnetic field. In this respect, the non-axysimmetric
models we considered are indedd promising, since it has been shown that the pres-
ence of multipolar componentes induces large temperature variations even between
nearby regions (Zane and Turolla, 2006).

Recently, Kondratyev et al. (2020) calculated thermal light curves using a com-
posite black-body model starting from computed surface temperature distribution,
similar to those presented in section 5.2, but not taking into account GR effects.
In particular, the misaligned quadrupole influences the light curves by enhancing
the pulsed fraction and changing also the shape of the pulse profiles, as well as
making it non-symmetric. Hence, the existence of a quadrupolar component in the
magnetic field can be also detectable, because the light curves differ both from the
pure-dipolar ones and ones with inclusion of the coaxial toroidal in the NS crust.

The next step is to built thermal light curves and compare them with real ob-
servations, considering e.g. RX J1856.5-3754 since its spectral properties are very
well characterized. RX J1856.5-3754 is the prototype and the brightest member of
M7 and may be representatives of sources close to the Hall equilibrium. In par-
ticular, the goal is to check if RX J1856.5-3754 properties are indeed compatible
with the crustal distribution of temperature and magnetic field predicted by our
non-axisymmetric simulations.
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Appendix

Some useful definitions and properties of special functions are illustrated in this
Appendix. Legendre polynomials are used to define the spherical harmonics Y m

l

(Section 4.1) which constitutes the basis of our decomposition. Then, spherical
Bessel functions are introduced in order to derive the general form of the harmonic
decomposition of the initial poloidal and toroidal component as solution of the Grad-
Shafranov equation (Section 4.4).

A.1 Legendre Polynomials

The Legendre polynomials Pl(µ) are a system of complete and orthogonal polyno-
mials which satisfy the Legendre’s differential equation in the domain µ ∈ [−1, 1]
(Olver et al., 2010)

d

dµ

[︃

(1− µ2)
dPl(µ)

dµ

]︃

+ l(l + 1)Pl(µ) = 0 . (A.1)

Each Legendre polynomial Pl(µ) is an lth-degree polynomial and can be expressed
using Rodrigues’ formula

Pl(µ) =
1

2l l!

dl

dµl

[︂

(µ2 − 1)l
]︂

. (A.2)

Since they are orthogonal, the following relation holds:
∫︂ 1

−1

Pl(µ)Pl′(µ)dµ =
2

2l + 1
δll′ , (A.3)

where δll′ is the Kronecker delta. The associated Legendre polynomials Pm
l of degree

l and order m is defined as

Pm
l (x) = (−1)m(1− x2)m/2 d

m

dxm
Pl(x) (A.4)

and can be used to define the spherical harmonics. The associated Legendre poly-
nomials are the canonical solutions of the general Legendre equation

d

dµ

[︃

(1− µ2)
d

dµ
Pm
l (µ)

]︃

+

[︃

l(l + 1)−
m2

1− µ2

]︃

Pm
l (µ) = 0 . (A.5)

When m is zero and l an integer, these functions corresponds to the Legendre poly-
nomials. For the associated Legendre polynomials, assuming 0 ≤ m ≤ l, the orthog-
onality conditions for fixed m reads

∫︂ 1

−1

Pm
l (µ)Pm

l′ (µ)dµ =
2(l +m)!

(2l + 1)(l −m)!
δll′ . (A.6)

The behaviour of the associated Legendre polynomials as function of µ is shown in
Figure A.1 for the first five degrees l given m = 0, 1, 2.
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Figure A.1: Plots of the associated Legendre polynomials for m = 0 (left), m = 1 (center)
and m = 2 (right) as function of µ ∈ [−1, 1] .

A.2 Spherical Bessel Functions

The Bessel equation arises when finding separable solutions to the Laplace equation
and the Helmholtz equation in cylindrical or spherical coordinates. Bessel functions
are canonical solutions y(x) of Bessel differential equation (Olver et al., 2010)

x2
d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 (A.7)

for an arbitrary complex number α, which defines the order of the Bessel function.
Because this is a second-order linear differential equation, there must be two linearly
independent solutions.

The general solution of the Bessel equation can be found as a linear combination
of Bessel functions of the first Jα and second Yα kind

y(x) = AJα(x) +BYα(x) (A.8)

where A and B are arbitrary constants. The Bessel functions of the first kind Jα(x)
are non-singular at the origin (x = 0) for integer or positive α and are defined by
the infinite power series expansion

Jα(x) =
∞
∑︂

k=0

(−1)m

m! Γ(k + α + 1)

(︃

x

2

)︃2m+α

=
∞
∑︂

k=0

(−1)m

m!(k + α)!

(︃

x

2

)︃2m+α

(A.9)

where Γ(z) is the gamma function. The Bessel functions of the second kind Yα, also
known as Weber or Neumann functions, are singular at x = 0 and are related to the
Bessel function of the first kind as follows

Yα(x) =
Jα(x) cos(απ)− J−α(x)

sin(απ)
. (A.10)

Solving the Helmholtz equation in spherical coordinates, the radial equation has the
form

x2
d2y

dx2
+ x

dy

dx
+ [x2 − n(n+ 1)]y = 0 (A.11)

and two linearly independent solutions to this equation are the so-called spherical
Bessel functions jl and yl and are related to the ordinary Bessel function Jl and Yl
by

jl(x) =

√︃

π

2x
Jl+ 1

2

(x) ,

yl(x) =

√︃

π

2x
Yl+ 1

2

(x) = (−1)l+1

√︃

π

2x
J−l− 1

2

(x) .

(A.12)
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Figure A.2: Plots of spherical Bessel function jl (right panel) and yl (left panel) of order
l = 0, 1, 2.

The spherical Bessel functions can be also recast as (Rayleigh’s formulas)

jl(x) = (−x)l
(︃

1

x

d

dx

)︃l
sin x

x
,

yl(x) = −(−x)l
(︃

1

x

d

dx

)︃l
cos x

x
.

(A.13)

The trend of the spherical Bessel functions jl and yl of order l = 0, 1, 2 is shown in
Figure A.2 and both tend to 0 for large x. Moreover, jl is always finite as the Bessel
function of the first kind while yl diverges for x→ 0.

A.3 Jacobi Polynomials

The Jacobi polynomials P (a,b)
n (z) are a class of orthogonal polynomials which are

solutions to the Jacobi differential equation:

(1− z2)y′′ + [b− a− (a+ b+ 2)z]y′ + n(n+ a+ b+ 1)y = 0 . (A.14)

Using the Rodrigues’ formula, the Jacobi polynomials can be defined as

P (a,b)
n (z) =

(−1)n

2nn!
(1− z)−a(1 + z)−b d

n

dzn

[︂

(1− z)a(1 + z)b(1− z2)n
]︂

, (A.15)

and, if a = b = 0, then these polynomials reduce to the Legendre polynomials (A.2).
The Wigner (small) matrix d

(l)
nm can be defined in terms of Jacobi polynomials as

(Biedenharn and Louck, 1981)

d(l)nm(β) =

√︄

(l +m)!(l −m)!

(l + n)!(l − n)!

(︃

sin
β

2

)︃m−n(︃

cos
β

2

)︃m+n

P
(m−n,m+n)
l−m (cos β) . (A.16)
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