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A B S T R A C T
The Travelling Salesman Problem (TSP) is a well-known optimization

problem that has many applications in a wide array of fields. It is well-
known that the TSP is a NP-hard problem, thus heuristic approaches are
fundamental to be able to obtain good solutions in a reasonable amount of
time.

In this work, we explore a new heuristic approach to the TSP problem.
We aim at improving an already existing solution by using a proximity or
distance function, and iteratively looking for improvements in the “neigh-
borhood” of the provided solution. We iteratively solve two subproblems,
called master and slave; the first is an ILP relaxation of the TSP without the
Subtour Elimination Constraints that tries to find the cheaper solution (com-
pared to the existing one) which is closer to the solution of the previous
iteration, while the second tries to heuristically enforce the missing con-
straints by finding the Shortest Spanning Tree that minimizes the Hamming
Distance with the main subproblem.

The thesis, in addition to a formal presentation of the aforementioned
concepts, also provides a computational analysis of the approach, tested
over synthetically generated instances with various parameters settings.

The results of our testing show that our algorithm is consistently able to
find the optimal value in a reasonable amount of time over our test instances.
While more specialized algorithms are much faster than the implementation
provided here, our approach still looks promising: it is more general, and
can easily be adapted to other NP-hard problems that currently do not have
good heuristics available; also, it is a new approach, so a higher degree
of optimization and improvement compared to already established ones is
predictable.
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I N T R O D U C T I O N

overview
The Travelling Salesman Problem (TSP) is one of the most relevant prob-

lems in combinatorial optimization, and has been widely studied in the
fields of operational research and computer science. Informally it is the task
of finding the shortest route that, given a list of “cities” and their pairwise
distances, visits all of them once and returns to the origin “city”. It has
an extremely wide number of practical applications, ranging from planning,
logistics and chip manifacturing to apparently unrelated ones, for example
DNA sequencing.

Unfortunately, it is well-known that the TSP problem belongs to the class
of NP-hard problems. This means that the time required to solve an ar-
bitrary instance of the problem can, at worst, increase exponentially with
the size of said instance, making an exact algorithm unpractical for many
applications.

For this reasons, heuristic algorithms are extremely important to obtain
“acceptable” solutions in a reasonable amount of time. A very large amount
of works investigates the task of finding an almost-optimal solution in short
computing time. Nowadays, we can find a good solution to instances with
thousands, or even millions of “cities”, using modern heuristic methods.

Our work approaches the subject in a slightly different manner. As al-
ready said, finding a good solution to even large instances is often not
too difficult; however, it could be interesting to try to improve it further.
To rephrase the concept, we will investigate if it is possible to find effec-
tive algorithms that obtain a better solution by taking a “good” one as in-
put. Obviously, we still aim at obtaining a heuristic method, since the NP-
completeness of the problem still prevents us to reach an optimal solution
in a reasonable amount of time on some instances.

The main idea behind our algorithm is that, given a good solution to a
TSP instance, it is likely that other good solutions (possibly better ones) are
not too far from the given one, using a suitable metric. Thus an effective
method that iteratively tries to lower the solution cost while minimizing the
distance from the incumbent could be effective in finding an improvement.
This kind of heuristic would take advantage of the information contained
in the given solution, providing a practical tool to use in combination with
other heuristic methods.

ix



x List of Tables

content structure
the first chapter offers a brief introduction to the Travelling Salesman

Problem, its Integer Linear Programming formulation, relaxations of
the model, and some exact and heuristic algorithms.

the second chapter introduces the particular approach to the Travelling
Salesman Problem which is addressed in our work.

the third chapter presents in detail the implementation of the main top-
ics of Chapter 2.

the fourth chapter reports the main experimental results found while
testing the code.

the fifth chapter analyzes the outcome of the testing phase and out-
lines possible future improvements of the ideas developed in our work.



1 T H E T R AV E L L I N G S A L E S M A N
P R O B L E M

This chapter provides a brief introduction to the Travelling Salesman Prob-
lem, along with definitions and concepts that will be used in following chap-
ters. We formally define the TSP, give its ILP model and some relaxations
of it, and also illustrate some heuristic algorithms that can either create or
improve a tour for a given TSP instance.

1.1 problem definition
An informal definition of the Travelling Salesman Problem was already

sketched in the introduction. A more precise one follows.

Definition 1. Given a weighted graph G = (V ,E) the Travelling Salesman
Problem requires to find a cycle such that:

1. every vertex v ∈ V is visited exactly once;

2. the weight (or cost) of the cycle is minimum.

If the graph is undirected, the problem is called Symmetric Travelling
Salesman Problem (STSP). If the graph is directed, the problem is called
Asymmetric Travelling Salesman Problem (ATSP). The focus of this work
is on the STSP variant of the problem. In the following, we will refer to
the undirected version when generically talking of the TSP problem unless
otherwise stated.

1.2 integer linear programming model
The Travelling Salesman Problem is modeled in an elegant way as an

Integer Linear Programming problem. Since such approach will be widely
used in the rest of this work, a brief introduction to Linear Programming
and Integer Linear Programming is given.

1.2.1 Linear Programming
Linear Programming (LP) is a framework used to optimize a linear ob-

jective function subject to linear equality or inequality constraints. A LP
problem is usually stated as follows:

max cTx

Ax > b

x > 0

It is known that Linear Programming belongs to the P class, thus there
exists an algorithm that solves every instance of a LP problem in polynomial

1



2 the travelling salesman problem

time. Also, there exist practically efficient algorithms to solve these kinds
of problems, like the simplex algorithm (which, despite not having a poly-
nomial worst-case complexity, is often preferred thanks to many desirable
properties, for example the relative ease of adding new constraints to an
already solved problem).

Unfortunately, the LP is not powerful enough to effectively model the
TSP1. Representing a problem like the TSP requires some variables of the LP
to be integer, which is possible in an Integer Linear Programming problem.

1.2.2 Integer Linear Programming
An Integer Linear Programming problem looks exactly like a LP problem,

except that it allows to express integrality constraints over some variables of
the model.

max cTx

Ax > b

x > 0 integer.

Adding integrality constraints to the model allows one to represent a
much broader class of problems than it was previously possible with Linear
Programming. In many cases, it is useful to force some variables to assume
a value of either 0 or 1. Those variables are called binary variables, and are
often used when the model needs to make a “choice”; for example, as it will
be explained soon, in a TSP model, an edge is chosen in a solution only if
the corresponding variable has a value of 1, and discarded otherwise.

However, an ILP model is, in its general case, NP-hard, which implies the
lack of efficient, exact algorithms to solve a problems stated in that form.
For this reason, heuristics for general ILP models are often the only way to
approach problems modeled as ILP for practical applications.

1.2.3 An ILP model for the Travelling Salesman Problem
As already mentioned, the most natural way to represent mathematically

the TSP is using an ILP model. Using the notation intruduced in Definition
1 and assuming that edge e ∈ E has a weight of we, we obtain the following:

min
∑
e∈E

wexe (1)

∑
e∈δ(i)

xe = 2 i ∈ V (2)

∑
e∈δ(S)

xe > 2 S ⊂ V , 2 6 |S| 6 |V |− 2 (3)

xe ∈ {0, 1} e ∈ E (4)

In the model, each variable xe is binary, as stated by the constraints (4),
and each edge e is selected if and only if the corresponding variable xe is 1
in the solution of the ILP. The set of constraints (2)2 ensures that each node

1 If it could, it would imply that the conjecture P = NP actually holds, while the opposite is
widely thought.

2 Notation δ(i) represents all the edges incident at i, and by extension δ(S) with S ∈ V is the
set of all edges with one vertex in S and the other one outside S.



1.3 relaxations of the ilp model 3

has exactly two incident edges, and the constraints (3), called Subtour Elim-
ination Constraints (SECs), are necessary to avoid subtours in the solution.

Constraints (3) can also be formulated in an alternative way: instead of
requiring each subset of nodes S ∈ V to have at least two edges in their δ(S),
it is also possible to force all the selected edges with both ends inside S to
be less or equal to |S|− 13:∑

e∈E(S)
xe 6 |S|− 1 S ⊂ V , 3 6 |S| 6 |V |− 2 (5)

It is possible to show that the two forms (3) and (5) are equivalent to
enforce the absence of subtours in the final solution. Both of them, however,
include a number of constraints that increases exponentially with the size
of the problem. So, not only solving the ILP model associated with a TSP
problem is a NP-hard problem itself, as described in Subsection 1.2.2, but
the size of the problem itself is also exponential. This makes impossible to
utilize this model as-is for practical applications.

1.3 relaxations of the ilp model
Since, as already said in Subsection 1.2.3, trying to directly solve the ILP

formulation for the Travelling Salesman Problem is not a feasible approach,
it is possible to relax some constraints of the formulation to obtain a solv-
able model. Doing so may destroy the feasibility of the solution found, but
allows us to obtain a lower bound of it in a reasonable amount of time.

Formally, a relaxation of a minimization problem (as the TSP is) is defined
as follows:

Definition 2. Assume that our problem, P, is a minimization problem:

z = min f(x), x ∈ F(P).

Then a new problem R is defined as follows:

zR = min Φ(x), x ∈ F(R).

The problem R is called a relaxation of the problem P if the following condi-
tions hold:

(a) F(P) ⊆ F(R)

(b) Φ(x) 6 f(x) ∀x ∈ F(P)

Two relaxations are mainly useful for this work, so a brief explanation of
them is provided.

1.3.1 Relaxation by SECs elimination
The first, and maybe most obvious idea to “simplify” the model is to just

remove the SECs. After doing so, the problem becomes both theoretically
and practically easy.

This relaxation for the TSP model reads:

3 The set of all the edges with this property is written as E(S).



4 the travelling salesman problem

min
∑
e∈E

wexe (6)

∑
e∈δ(i)

xe = 2 i ∈ V (7)

xe ∈ {0, 1} e ∈ E (8)

It is also possible to obtain an exact algorithm to solve the TSP from this
relaxation by simply checking if each node is reachable from a fixed node.
If the answer is positive, we have a solution of the original TSP; if not, the
SECs corresponding to the subtours found in the current solution are added
to the model, that is solved again. Iterating this process, however, can at
worst generate every SEC present in the original TSP formulation, severely
diminshing the approach’s usefulness.

1.3.2 1-tree relaxation
Another way to relax the TSP is to notice that, if the two edges incident

on some node (say, node 1) are removed from the solution, the remaining
edges form a spanning tree on the subgraph induced by V \ {1}. Thus, any
solution of the TSP problem has the following structure:

(a) every node v 6= 1 has degree 2;

(b) the node 1 has two incident edges;

(c) removing the node 1 from the graph (and the two associated edges) we
obtain a tree on the subgraph induced by V \ {1}.

Removing (a), we obtain a relaxed problem whose solution is:

1. find the Shortest Spanning Tree (SST) on the subgraph obtained re-
moving the node 1;

2. add to the solution the cheapest two edges incident at node 1.

A solution constructed as previously described is called a 1-tree.
An ILP model to solve the SST problem involved can be obtained easily

by the ILP model illustrated in Subsection 1.2.3.

min
∑
e∈E

wexe (9)

∑
e∈δ(1)

xe = 2 (10)

∑
e∈E

xe = n (11)

∑
e∈δ(S)

xe > 1 S ⊂ V , 1 6 |S| 6 |V |− 2 (12)

xe ∈ {0, 1} e ∈ E (13)

The constraint (11) forces the solution to have exactly n selected edges, while
constraint (10) ensures that two edges incident on node 1 are selected. Since
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the connection is guaranteed from the set of constraint (12), this ILP formu-
lation is indeed a model of the 1-tree problem. However it is preferrable
to not solve the 1-tree problem with an ILP solver, since the Shortest Span-
ning Tree (SST) problem is solvable in polynomial time with simple greedy
algorithms, like Kruskal’s one4. The 1-tree relaxation can be easily obtained
after having solved the SST over the graph induced by V \ {1} by just adding
the two cheapest edges incident on node 1.

1.4 some heuristic approaches
This section gives a brief outline of some simple heuristic approaches to

the Travelling Salesman Problem.

1.4.1 Tour Construction Procedures
These heuristics work iteratively on the TSP instance they are processing.

To build the heuristic solution, they define three rules, that control the choice
of the starting node (or the starting subtour, depending on the method), the
selection of the next node to be added to the solution, and the pair of nodes
what will be the immediate predecessor and successor of the new node.
Different choices for these rules generate different heuristics. We list three
examples, that work better on average.

1. The Nearest Neighbour Algorithm starts from a random node on the
graph, then it selects the node that has the lowest distance from the
last picked node, and it adds it to the solution. The algorithm has a
time complexity which is O(n2), where n is the number of nodes of
the graph.

2. The Cheapest Insertion Algorithm chooses a random node at first, and
its initial subtour is composed of the most “expensive” edge incident
from the first node. Then the algorithm iteratively chooses the node
that minimizes the insertion cost of any unselected node between any
pair of already selected nodes. The insertion cost of adding node k be-
tween node i and node j is simply calculated as the difference between
the cost of the two edges (i,k) and (k, j) and the cost of the edge pre-
viously part of the subtour (i, j). The algorithm has a time complexity
which is O(n2 logn) for with graph of n nodes.

3. The Multi-Path Algorithm is somewhat similar to Kruskal’s algorithm
to determine the Sortest Spanning Tree on a graph. It first sorts the
edge set in nondecreasing order, then it starts examining the edges in
the sorted list. If an edge does not form a subtour with the already
selected ones and one of its vertices does have less than two incident
edges, then it is added to the solution. Considering a graph of n
nodes, the algorithm terminates after selecting n edges, and its time
complexity is 0(n2 logn).

These heuristic procedures will not be used in this work, however they
can be extremely valuable. They allow, in fact, to obtain a good solution in
a very short amount of time; that solution can be then fed to our algorithm,
which will try to improve it.

4 See Section 2.4 for additional details.
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1.4.2 Tour Improvement Procedures
These procedures start from an already existing solution and try to im-

prove it. The most natural idea to locally search for improvements when
given a TSP solution is to swap out some edges and substitute them with
some others. More formally, if we consider a generic solution s described
with its successor vector σ(i), i ∈ V , we can remove k edges from s and
add another k edges not previously in s. If k = 2, a possible example is
shown in Figure 1; the edges (i,σ(i)) and (j,σ(j)) are removed and (i, j)
and (σ(i),σ(j)) are added. The variation in the solution cost can be easily
evaluated:

∆C = −ci,σ(i) − cj,σ(j) + ci,j + cσ(i),σ(j)

The number of edges that have to be considered this way is O(nk).
This strategy, apparently very simple, has been implemented with great

success by Lin & Kernighan, and is useful in many applications.

i j

σ(j) σ(i)

i j

σ(j) σ(2)

Figure 1: Example of swap of k edges for k = 2.



2 A N E W H E U R I S T I C A P P R OA C H
F O R T H E T S P

This chapter presents the main ideas behind our approach: we define our
heuristic method and discuss its main implementative challenges.

2.1 the basic idea
In this work, we aim at constructing a new algorithm that can improve an

existing solution of a TSP instance. While similar procedures already exist,
like the one described in Subection 1.4.2, the problem will be tackled by a
different perspective, as explained below.

The main idea behind our approach is that, given a good solution of the
instance, we can find a better solution by searching the “neighborhood” of
it. Hopefully, a good solution already contains a portion of the optimal
solution, and needs only a few changes in the set of selected edges to be
improved. We can then iteratively exploit such a procedure to lower the
cost as much as possible, or until we reach a target cost, or we run out of
execution time.

To do so, we need to define the distance between different solutions to
a given TSP instance. After doing so, we will define a subproblem, called
master, using a particular ILP model that solves a relaxed version of the TSP
formulation of Subsection 1.2.3 with some added constraints and a modi-
fied objective function to take into account the distance between the two
solutions. Since the result is likely to violate one or more of the relaxated
constraints, we will then use another procedure for the slave subproblem,
which will try to enforce the constraints without going “too far” from the
solution of the master. Iteratively solving the master and the slave should
produce a succession of solutions which is likely to converge to a both im-
proved and feasible solution, if not optimal.

The approach is somewhat inspired by previous works; in particular, [5]
uses a similar approach while looking for feasible solutions instead of optimal
ones.

2.2 distance function
A solution of a TSP instance is easily represented as the set of values

the binary variables in its formulations assume. For this reason, the most
natural way to define a distance function between two different solutions is
to use a Hamming-like distance, which is basically equivalent to taking the
binary XOR of the two arrays and then summing over all the components.

More formally, given a TSP instance over the graph G = (V ,E), with
|E| = n, and two solutions x = (x1, x2, . . . , xn) and x̄ = (x̄1, x̄2, . . . , x̄n), the
distance between them will be defined as follows in the rest of this work:

∆(x, x̄) =
n∑
i=1

|xi − x̄i| (14)

7



8 a new heuristic approach for the tsp

2.3 the master subproblem
As already mentioned, we construct the Master subproblem as an ILP

problem that is based on a relaxation of the TSP general ILP model previ-
ously presented. In particular, we will relax the subtour elimination con-
straints, to obtain a model that can be actually handled by commercial
solvers. Then, instead of asking for the cheapest solution using the orig-
inal edge costs, we want to retrieve the closest solution to the given one
(which we will refer as x̃) that also costs less than a “target” parameter, T ,
provided on input to the algorithm.

The ILP model follows.

min ∆(x, x̃) (15)∑
e∈δ(i)

xe = 2 i ∈ V (16)

∑
e∈E

wexe 6 T (17)

xe ∈ {0, 1} e ∈ E (18)

In other words, we avoid requiring the model to find us the largest cost
improvement over the given solution. Instead we require to get the closest
one which also happens to fulfill a provided cost requirement. This is done
via a modified objective function (15) which completely ignores the weights
w and just minimizes the distance function defined in Section 2.2. The
additional constraint (17) ensures that any feasible solution of the model
satisties our demand on the cost. The choice of T will be discussed in more
detail later.

The solution produced by this ILP is not feasible for the original TSP in-
stance, in general. While being close to an another feasible solution is more
likely to fulfill all the SECs even if they are not included in the model, this is
not guaranteed, and the solution can contain subtours that prevent it to be
feasible. For this reason, we need another procedure that heuristically tries
to enforce those constraints without adding them to the ILP formulation.

2.4 the slave subproblem
The task that the slave subproblem performs is to try to remove any sub-

tour present in the output of the master. It does not need to necessarily
produce a feasible solution for the TSP instance we are processing, it just
needs to select a set of edges that makes very unlikely to find subtours (or
at least the same subtours that were already present) in the next iteration of
the master subproblem.

While there are multiple ways to do so, a simple yet effective method to
obtain this kind of effect in our specific application is to find a 1-tree over
the given graph, modifying each edge weight to properly mirror its presence
on the master output. The fact that a tree must be connected by definition
should have the desired effect, forcing the outcome to break each subtour to
be connected with the remaining subgraph. Modifying the original weights
is also crucial since we do not want to completely destroy the informations
contained in the solution of the master.
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That being said, the slave subproblem is defined as finding a 1-tree over
the graph underlying the TSP instance we are processing, where each edge
e has the following weight:

ŵe =M(1− x∗e) −Mx
∗
e +we (19)

=M(1− 2x∗e) +we

where x∗ is the 0-1 solution returned by the current master subproblem,
and M is a constant such that:

M� we ∀e ∈ E.

This redefinition of the edges weights has the following meaning: always
prefer an edge already selected by the solution produced by the master
subproblem; if two edges are both selected (or not selected) in the solution
of the master, then prefer the one that is cheaper in the original TSP instance.
Defining the weights in this way makes “cheaper” for the slave to produce a
1-tree which contains the greatest possible amount of edges already present
beforehand, and thus is as close as possible to the master output while
ensuring that all the nodes are reachable one from each other.

To actually solve the SST subproblem, we use a slightly modified ver-
sion of the Kruskal’s algorithm. This choice is not immediately evident
while looking at the subproblem formulation, but becomes very clear to a
closer analysis. The slave subproblem repeatedly solves a SST over the same
graph, and while the weights indeed depend on the x∗ vector produced by
the master, the possible values that ŵe can assume are only two: M+we
or −M+we. This is an obvious consequence of the fact that x∗ is a binary
vector. Since the Kruskal’s algorithm needs to sort the weights each time it
runs, and then greedily sweeps the ordered array selecting the best edges
that do not violate the tree structure, it would be very valuable to avoid re-
peating this operation for each iteration of the algorithm. This is possible by
sorting the edges by nonincreasing weight we‘ first, then at each iteration,
create a copy of the sorted array and re-sort it, this time by nondecreasing
value of x∗e; this operation can be implemented in linear time quite easily,
as x∗e ∈ {0, 1}. This simple trick provides us a list which is sorted exactly
as it would be by utilitzing the ŵe, but it does not need to compute them1,
and it also avoids to perform multiple sortings. The computational cost of
performing the Kruskal’s algorithm at each iterationg becomes then O(n),
where n is the cardinality of the edge set E, and an initial overhead of com-
plecity O(n logn) is performed only once at the start-up of our procedure.

2.5 a first version of the algorithm
In this section we will combine the master and slave subprocedures to

obtain a first version of the algorithm we aim at constructing. In addition to
the TSP instance and a solution of it that we want to improve, on input we
require a target T , which is the value we want to reach.

Here is a first pseudocode for our algorithm. The subproblems, master
and slave, are described in the previous two sections 2.3 and 2.4; we combine
them together as illustrated in Algorithm 1.

1 This also removes the problem of choosingM, that could be nontrivial if the application is not
known beforehand.
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Data: A graph G = (V ,E),
the weights we ∀e ∈ E,
x̃ solution of the TSP induced by G and w,
a target value T
Result: An improved solution x̂
initialize x̂ to x̃;
repeat

x∗ = solve the master with objective function ∆(x, x̂);
x̂ = solve the slave with weights defined as in (19);

until
∑
e∈Ewex̂e 6 T and x̂ is a feasible solution of the TSP;

return x̂
Algorithm 1

So, in this first pseudocode, at each iteration we solve the master to find a
solution better than the target T given in input, and then solve the slave, that
will return a connected set of edges. We hope that the sequence of solutions
found this way can eventually converge to a feasible solution of the initial
TSP instance which is cheaper than T .

However, early analysis and testing of this approach allowed us to realize
that there are two issues that prevent the algorithm to perform efficiently
(and even correctly) if using the implementation given.

1. Stalling: It is possible for the algorithm to loop indefinitely on a pair of
solutions that solve respectively the master and the slave subproblem.
In fact, there is not mechanism that prevents the master from returning
multiple times the same solution. This can be a problem, especially if
we ask to reach a target T which is lower than the optimal TSP solution
for that instance: the solution x∗ of the master will contain subtours
every time (if the subproblem is feasible), and we have no way to
detect such a situation.

2. If T is much lower than the cost of the provided solution x̃, it is un-
reasonable to ask the master to return us a vastly improved solution
in one iteration; this basically destroys the meaning of our objective
function ∆(x, x̃): in fact, the master will be likely forced to choose a
solution not that close to x̃ to fulfill the cost constraint, thus losing the
benefits of searching locally for improvements.

3. It is unreasonable to ask a target T to be reached as a parameter for the
algorithm. The user will probably be interested in the best solution
we can find within a prederetmined amount of time. It would be
desirable for the algorithm to not require such a parameter, and then
just terminate if it can reach the optimal solution (and prove that is
indeed optimal) or if it runs out of time.

In the following sections we discuss ideas to prevent stalling and to pre-
serve locality. We will deal with points 2 and 3 first, since the solution to
the first one partially depends on the others.

2.6 step-by-step improvement
As already noticed in the previous section, it is not reasonable to ask

our ILP formulation to immediately find a solution not greater than T ,
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which is likely to be very low compared to the cost of our initial solution
x̃. Furthermore, requiring the user to provide T is itself not desirable, so we
should find a way to deal with this parameter internally.

To solve this issue, we implement a simple policy that handles the target
T internally. The idea is to lower the target by a tiny bit each time we find
an improvement over the current best solution, and to let it unchanged if
we do not find any in the current iteration. A first implementation of this
idea does the following:

1. Initialize T to (
∑
e∈Ewex̃e) − 1;

2. If the master or the slave finds a solution x̄ that is feasible for the
TSP instance we are considering, and is cheaper than the best solution
encountered until now, update T to (

∑
e∈Ewex̄e) − 1.

This approach completely removes the need for the user to provide T
externally, and also allows the ILP model to improve more gradually, al-
lowing to find solutions effectively close to the previous one. However, the
drawback is that the improvement proceeds slowly, since we only require a
minimal improvement for each iteration.

To capture the best properties of both metods, we actually implemented
a different update strategy for T , that slightly resembles the one we just
presented, but it tries to be a little more aggressive and lower the cost of the
solution more steadily if possible. This strategy is explained below:

1. Initialize a variable m to 1
10 that represents the minimum relative im-

provement that a solution needs to achieve in order to be considered
effectively an “improvement”.

2. Initialize T to (1−m)
∑
e∈Ewex̃e;

3. If the master or the slave finds a solution x̄ that is feasible for the
TSP instance we are considering, and is cheaper than the best solution
encountered so far, update the incumbent x̃ and redefine T to (1 −

m)
∑
e∈Ewex̃e;

4. If the master becomes infeasible at a certain iteration (i.e. we lowered
too much T ), revert T to the last one that did not cause the master to
be unfeasible (call it Tp), then cut m in half and update T again as
(1−m)

∑
e∈Ewex̃e;

5. If m
∑
e∈Ewex̃e becomes smaller than one at any given iteration, fall

back to the previously proposed improvement strategy.

The rationale behind this approach is that we can ask for a fairly large
improvement to our MIP model at first, since the initial tour is likely to
be far from the optimal solution, then we start lowering the minimum im-
provement required as soon as we detect infeasible subproblems. When the
first infeasible subproblem is detected, the update strategy for T turns into
a kind of binary search, that will lower m as much as it is needed to regain
feasibility of the master subproblem. This should,as hinted previously, al-
low us to retain the advantages of both strategies, since we are progressing
faster than just lowering the solution by 1 every time.

However, we still are not guaranteed to obtain an unfeasible master sub-
problem if T is lower than the optimal solution. While such a solution
is possible, the most likely scenario is a loop between an unfeasible and
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cheaper-than-T master solution, and a feasible, but more expensive than T
slave solution. Without a stalling prevention mechanism, both strategies
cannot detect when they have to stop, and the second one is likely to fail
completely.

2.7 stalling
The core issue with stalling is that nothing prevents the master to produce

the same solution twice. This situation is especially likely to show up if our
target value T is close to the optimal solution to our TSP instance. While
obtaining an unfeasible master is possible, the more likely scenario is a loop
as described in the previous section. A too low T will force subtours in the
master solution, and the slave subproblem is likely to be either more expen-
sive than T or not a feasible TSP solution (if T is lower than the optimum,
the slave solution cannot have both properties, obviously).

To avoid this problem, we implement an idea that is borrowed from the
technique called tabu search. The tabu search is a local search method for
mathematical optimization problems, searching for improvements of a cur-
rent solution in its neighborhood, but are likely to get stuck in local minima.
To solve this problem, the tabu search keeps a tabu list, that is, a list of solu-
tions that are “forbidden” for the algorithm to consider again within a short
amount of time.

In our case, the approach is slightly different. We will keep a tabu list of
subtours, and each time the master subproblem is unfeasible, a subprocedure
will extract the shortest subtour and add it to the list. Then, the master
subproblem is slightly redefined, with a little abuse of notation, as follows.

min ∆(x, x̃) (20)∑
e∈δ(i)

xe = 2 i ∈ V (21)

∑
e∈E

wexe 6 T (22)

∑
e∈E(S)

xe 6 |S|− 1 S ∈ tabu list (23)

xe ∈ {0, 1} e ∈ E (24)

In this model we represented the tabu list as a set of subtour, which are
sets of nodes that violate the constraints (5) explained in section 1.2.3.

The use of a tabu list approach has two positive effects on the algorithm,
as previously mentioned:

• it removes the possibility of loops;

• it allows us to detect unfeasible subproblems.

The first point is straightforward. To better explain the second one, we
notice that the only thing that keeps the master subproblem from being
infeasible is the fact that its solution can have subtours because of the re-
laxation of the SECs. By adding the violated SECs to the formulation, we
gradually disallow the only way the model has to provide a solution that
costs less than T , and thus we force it to produce different values.
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This procedure can indeed generate all the SECs in the worst case, which
is obviously not tractable since solvers are unable to handle such a large
amount of constraints. We allow the user to provide the maximum size of
our tabu list, and if more subtours have to be added to it, older ones are
replaced with newer ones. The size of the model remains small this way,
and the tabu list should fulfill its role in almost all cases (the exception
being a particularly long loop of solutions with similar value, however this,
while technically possible, is very unlikely and fixable by expanding the
maximum tabu size).

2.8 a revised version of the algorithm
As a reference, we provide the pseudocode of our algorithm (Algorithm

2) after the modifications we illustrated in Sections 2.6 and 2.7.

The code is similar to the one already illustrated in Section 2.5. The key
differences are already benn explained in the previous sections. In addi-
tion, we now avoid solving the slave subproblem if the master subproblem
updated the value of T ; in that case, the master solution is already a valid
solution of the underlying TSP instance, thus there is no need to try to
heuristically enforce connectivity. The other slight difference, which is con-
nected to the contents of Section 2.6 is that we check for improvements both
solutions (slave and master), not only the output of the slave.

Data: A graph G = (V ,E),
the weights we ∀e ∈ E,
x̃ solution of the TSP induced by G and w
Result: An improved solution x̂
initialize x̂ and ξ to x̃;
initialize m and T as described in Section 2.6;
while

∑
e∈Ewex̂e > T or x̂ is not a feasible solution for the TSP do

x∗ = solve the master with objective function ∆(x, ξ);
if x∗ is feasible for the TSP and

∑
e∈Ewex

∗
e 6 T then

update T as described in Section 2.6;
x̂ = x∗;
continue;

else if the master is unfeasible then
update T and m as described in Section 2.6;
find the shortest subtour and add it to tabu list;

else
find the shortest subtour and add it to tabu list;

end
ξ = slave optimal solution with weights defined as in (19);
if ξ is feasible for the TSP and

∑
e∈Eweξe 6 T then

x̂ = ξ;
update T as described in Section 2.6;

end
end
return x̂

Algorithm 2
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This is the final version of our procedure, and its implementation will be
discussed in detail in the next chapter.



3 I M P L E M E N TAT I O N

In this chapter we will describe the main choices done and issues encoun-
tered while implementing the ideas presented in Chapter 2.

The programming language chosen to code the algorithm is C, that is
preferred over any other high level programming language because of its
better efficiency and performance.

3.1 data structures
The main data structures used in our implementation are quite simple.

The main things we need to represent are the graph underlying the TSP in-
stance we process, and edge sets corresponding to various solutions to the
subproblems we solve. These data are stored in global variables, so each
function can access them freely and modify their value. This eases imple-
mentation a bit, since we do not need to pass all the arrays multiple times to
the various function implemented. While this can hurt the reusability of the
code, most of it is quite specific to our particular application, and it is hard
to imagine a practical situation in which this choice would create problems.

We illustrate briefly how such entities are implemented.

3.1.1 Graph representation
To represent our graph G = (V ,E), we implicitly number the nodes from

0 to |V |− 1. An edge e ∈ E has three attributes we want to keep track: the
two vertices on which the edge is incident, and the cost of the edge. This is
achieved with a simple struct shown below.

1 typedef struct edge{

2 double cost;

3 int first_node;

4 int second_node;

5 } edge;

This structure allows us to simply define the graph as an array of edges.
In addition to this array, we create a data structure (called **nodes in the
code) that, for each node, mantains a list of each edge incident at that node.
The list is implemented as an array of integers: for example, if nodes[0][a]
has a certain value, then edges[nodes[0][a]] is an edge that is incident T
node 0; the value of a is arbitrary. This data structure introduces a little
overhead in terms of memory, however it saves time, especially for sparse
graphs, and allows us for an easier and more understandable implementa-
tion.

15
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3.1.2 Solutions representation
Each solution of both the master or the slave subproblem is represented

as an array of binary integers of length |E|. The following edge sets are kept
in memory throughout the execution of the algorithm:

• the solutions to the master subproblem at the present iteration and at
the previous one;

• the solutions to the slave subproblem at the present iteration and at
the previous one;

• the cheapest solution encountered that is feasible for the underlying
TSP instance.

3.1.3 Tabu list
The algorithm needs to keep and update a tabu list, whose details are

explained in Section 2.7. We coded this data structure in a slightly different
way than the one described previously. The table does not store the edge sets
that violate a SEC in the previous iterations, instead it directly memorizes
the corresponding SEC. This allow us to use a simple bidimensional array
of integers to model the tabu list. The previously mentioned array (called
**tabu) basically represents a matrix of coefficients; this eases the interaction
with the ILP solver utilized, since such a representation is close to the native
one used by it. The list is empty at first, and is expanded whenever a
violated SEC is encountered.

3.1.4 Other data structures
There is data structure that we did not illustrate in the previous section,

and is worth a brief mention. It is a sorted list of edges in order of nonde-
creasing cost. This list is necessary for the considerations done in Section 2.4.
It is implemented as an array of integers, called *sorted_list; if an integer
a is encountered before another integer b while sweeping the array from the
first element to the last, this means that edges[a].cost is no greater than
edges[b].cost.

Other than that, every parameter that controls the execution of the algo-
rithm (like the time limit iteration limit, the current target formerly referred
as T , and other miscellaneous variables) are mostly kept global to allow any
procedure to access it.

3.2 the master subproblem
The main implementative choice to do while implementing the master

subproblem defined in Section 2.3 is the one concerning the solver utilized
to obtain a solution of the master ILP model. We considered two main
alternatives to cover this functionality:

• Concorde1, a state-of-the-art TSP solver widely used in many applica-
tions;

1 See Section A.1 for additional informations.
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• ILOG CPLEX, a commercial LP/ILP/MILP solver by IBM.

Utilizing Concorde is very desirable for our application: the ILP formula-
tion is only slightly different from a common relaxation of the general ILP
model, the only differences being the objective function and the additional
constraint (17) Section 2.3. Concorde allows the insertion of custom con-
straints; however, it handles them internally in hypergraph format, which
makes very difficult to do so for our constraint.

For these reasons, we chose ILOG CPLEX as our solver. The CPLEX and
CPLEX callable library functions we used are described in more detail in
A.2.

We implemented a couple of subroutines to solve the master subproblem:

• solve_master() wraps the initialization of the ILP problem, the calls
to CPLEX, and the updates to the target and to the tabu list;

• setproblemdata() initializes all the arrays that we need to pass to
CPLEX for it to solve the ILP model;

• get_subtour() searches the current master solution for subtours, and
returns the shortest one if found;

• add_to_tabu_list() and new_sec() are used to keep the tabu list up
to date; the SEC correspondent to the previously extracted subtour (if
any) is calculated and added to the tabu list.

3.2.1 CPLEX parameters setting
Since the calls to the CPLEX solver in the master subproblem represent the

vast majority of the computational effort of our algorithm, we spent a fair
amount of time trying to lower the time to complete the call, even at expense
of finding the optimal solution (as expected from a heuristic algorithm).

The first approach we adopted is the following. Since the whole algorithm
is a heuristic method, it is not essential for CPLEX to return us the best so-
lution that fulfills all the constraints; we can be fine with a reasonably good
one, too. Since CPLEX exploits heuristic methods before switching to an
exact B&B strategy, we implemented the possibility to set to 1 the parameter
CPLEX_PARAM_INTSOLLIM. Doing so forces CPLEX to stop after having found
one feasible solution, which will not be the closest one to the previous iter-
ation, but will be “reasonably close” while saving a considerable amount of
computational time. This approach actually does not affect the optimality of
the solution found, since we are just requiring a solution “reasonably close”
to the previous one.

The second approach is aimed at avoiding an excessive computational
time at each call to CPLEX. We limited the number of nodes of the decision
tree CPLEX uses internally to solve ILP problems to a fixed (and reasonably
small) amount. If CPLEX exceeds this number, the problem is considered
unfeasible, so we either reduce the percentual improvement, if it happens
during a binary search, or terminate otherwise. This setting will be differ-
entiated between binary search and the less aggressive approach, that have
been presented in Section 2.6. We will describe the particular settings we
used for these parameters in Chapter 4.

We also used a third approach, which deserves a separate section to be
better explained.
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3.2.2 RINS Heuristic exploiting
The CPLEX solver we used in the master subproblem employs a wide set

of heuristics. We are in particular interested to its RINS heuristic method.
However, this method works best if CPLEX is provided with a starting fea-
sible solution. Obviously we can not provide it, otherwise we would al-
ready have a good solution to update our target and go further in the exe-
cution. However, we can slightly modify the ILP model used in the master
to achieve this result:

min ∆(x, x̃) +Mz (25)∑
e∈δ(i)

xe = 2 i ∈ V (26)

∑
e∈E

wexe − z 6 T (27)

xe ∈ {0, 1} e ∈ E z > 0 integer. (28)

where M� 0 (50000 in our implementation).
Using this variation allows us to always provide a feasible solution — the

best TSP solution found — since the model new can arbitrarily weaken the
cutoff constraint.

Note that this approach is incompatible with CPLEX_PARAM_INTSOLLIM set
to one (the algorithm would immediately stop, since the solution we pro-
vide to it is already feasible). We instead used another parameter, CPLEX
_PARAM_OBJDIF, which allows to do roughly the same: it tells CPLEX to stop
when it encounters a solution costing less than M− 2n, where n = |V |; this
means that the first solution with z = 0 is returned.

3.3 the slave subproblem
The slave subproblem is relatively unchallenging when it comes to imple-

mentation. As already explained in 2.4, a slightly modified version of the
Kruskal’s algorithm for the Shortest Spanning Tree is the core of the slave
subproblem. The only remaining task is to select the two cheapest edges in-
cident on the excluded vertex (which is, in our case, the last one; the choice
of it is irrelevant anyway from a theoretical point of view, and doing so
eases slightly the implementation), which is trivial.

The functions used for the slave subproblems are:

• solve_slave(), that is a wrapper for every other function call used for
the solution of the slave, in analogy with solve_master();

• kruskal_setup(), that is actually called in the main loop of our algo-
rithm and not from the slave; however, it is described here since it is
related to the custom implementation of Kruskal’s algorithm. Its func-
tion is to fill the sorted list as described in Subsection 3.1.4, which is
done using a standard implementation of a Quicksort algorithm;

• kruskal(), that solves the SST problem defined in Section 2.4;

• has_subtour(), that is a wrapper for the previously defined get_sub

tour(); it returns zero if the graph is a feasible solution, and a nonzero
value otherwise.
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3.4 main loop
The only relevant aspect to mention about the main loop is the handling

of the stopping condition. We require the user to input both a time limit
and an iteration limit; if either one is met at the end of any given iteration,
the program stops. The only other fact that may cause the algorithm to
terminate is bound to the update process described in Section 2.6: if we are
lowering the target of one unit at a time, and we obtain an unfeasible master,
we terminate. In fact, this means that the current best solution is optimal
thanks to the assumption of having integer costs.

3.5 input and output
We have two dedicated functions, parseinput() and print_results().

We briefly illustrate input and output formats, and the parameters that need
to be passed to the algorithm for the parser to work correctly.

The function parseinput() implements a very basic parser for the input
files that represent the graph underlying the TSP instance we are processing,
and the initial tour. In the edge file, the first row is required to contain the
number of nodes and edges of the graph, then each subsequent line is a
triple of integers that represents an edge: the first two integers are the two
vertices on which the edge is incident, and the third one represents the cost.
For a simple graph with 5 nodes and 7 edges, the file would look like this:

5 7

0 1 3

1 2 2

2 3 1

3 4 6

0 4 2

1 4 5

1 3 4

0

14

23

In the tour file, each line must contain only one integer, which represents
a node. Reading the lines from the first one defines the edges of the starting
tour. Obviously, each pair of nodes in the tour file must correspond to an
edge on the edge file; if an illegal pair is detected, the parser halts and
returns an error message. This is a sample tour file for the previous graph:

0

1

2

3

4

0

14

23

The function print_results() prints on the file results.dat the best tour
encountered in the execution of the algorithm. The format is the same used
for the tour file.
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Our routine also produces a log, that is extremely useful for monitoring
the algorithm’s performance. Various figures are reported, such as the Ham-
ming distances between master and slave and the amount of nodes CPLEX
used to solve the master, along with the values of the objective function (an
“*” is displayed ach time an improvement is found). Below it is reported an
execution on a test instance.

Figure 2: A sample execution of our algorithm



4 T E S T I N G A N D E X P E R I M E N TA L
R E S U LT S

In this chapter we describe the testing methodology we used to test the
algorithm, on which instances we did such testing, and the experimental
results we gathered.

4.1 test instances
The TSP instances we used to test the performance of our algorithm are

synthetic ones; they are produced using the following steps:

1. randomly choose a set of k points in R2 (also called point cloud), where
k is the number of desired nodes;

2. find a greedy tour in the instance defined by the nodes we just gener-
ated and their distance on the plane;

3. randomly generate j edges starting from the point cloud;

4. merge the edges in the greedy tour with the randomly generated ones
to obtain the initial edge list for our instance.

This procedure achieves two valuable objectives while generating an in-
stace to be solved:

• it ensures that the graph has already a tour (the greedy one), so the
TSP defined on that graph has surely a solution;

• it easily produces a good, but not optimal, tour that we can use to
initialize our algorithm.

The point cloud, the edge set, and the greedy tour are produced using the
executable edgegen provided in the Concorde solver1. See also Appendix B
for the code we used to generate our instances.

Table 1 illustrates the characteristics of our test instances.

4.2 parameters to be tested
In our tests, we ran our algorithm with a variety of settings, to verify

which set better works towards getting a good solution as soon as possible.
We briefly describe them.

• Use of the slave subproblem: we are interested to see if the slave sub-
problem effectively helps the algorithm to converge faster towards a
heuristically good solution. We call this setting “Slave” in the follow-
ing tables, and a value of 1 denotes an active slave, while a value of 0

means the opposite.

1 For more details, see Section A.1.

21
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Number Nodes Edges Starting Tour Optimal Solution
1 300 2243 4703 4661

2 300 4485 4490 4375

3 300 6728 4491 4311

4 400 3990 7104 6975

5 400 7980 7128 6620

6 400 11970 6836 6587

7 500 6238 9378 9194

8 500 12475 9301 9169

9 500 18713 9941 9117

10 600 8985 12791 12551

11 600 17970 13133 12437

Table 1: Test Instances

• Use of the binary search approach: we want to test if doing a binary
search introduces an excessive amount of computational effort or if the
execution is sped up by this approach. This setting can be seen from
field “PercImp” in our tables, that represent the minimum percentual
improvement at the starting iteration. We tested two possible values:
0% (binary search disabled) and 10%. In the first case, we set the
number of nodes CPLEX is allowed to explore in the decision tree to
5000, while in the second case we use 50 nodes as long as the binary
search is active, and 1000 nodes when it is disabled.

• Number of Integer Solutions limited to one: we want to check if this
setting effectively speeds up the exectution, as we hope. The param-
eter is noted as “IntSol” in our tables, and has been set to one if the
tables reports an 1, and let to its defult value (+∞) otherwise.

• Use of the z – RINS approach: it is very interesting to see if and how
much RINS speeds up the computation. Again, this is marked as
“RINS” in our tables, and a value of 0 means the normal approach,
while a value of 1 refers to the one explained in 3.2.2.

Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 4703 4661 4661 1

0 0% 0 1 4703 4661 4661 2

0 0% 1 0 4703 4661 4661 1

0 10% 0 0 4703 4661 4661 2

0 10% 0 1 4703 4661 4661 2

0 10% 1 0 4703 4661 4661 2

1 0% 0 0 4703 4661 4661 1

1 0% 0 1 4703 4661 4661 1

1 0% 1 0 4703 4661 4661 1

1 10% 0 0 4703 4661 4661 2

1 10% 0 1 4703 4661 4661 1

1 10% 1 0 4703 4661 4661 3

Table 2: Test Results, Instance 1 (300 nodes, 2243 edges)
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4.3 test results
We include a number of tables that illustrate the test results we obtained.

Note that the fields “StartTour”, “OptSol”, “Output” actually refer to the
objective function value, not to the solution itself.

Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 4490 4375 4375 28

0 0% 0 1 4490 4375 4375 18

0 0% 1 0 4490 4375 4375 29

0 10% 0 0 4490 4375 4375 32

0 10% 0 1 4490 4375 4375 26

0 10% 1 0 4490 4375 4375 41

1 0% 0 0 4490 4375 4375 20

1 0% 0 1 4490 4375 4375 16

1 0% 1 0 4490 4375 4375 24

1 10% 0 0 4490 4375 4375 29

1 10% 0 1 4490 4375 4375 33

1 10% 1 0 4490 4375 4375 44

Table 3: Test Results, Instance 2 (300 nodes, 4485 edges)

Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 4491 4311 4311 60

0 0% 0 1 4491 4311 4311 71

0 0% 1 0 4491 4311 4311 53

0 10% 0 0 4491 4311 4324 31

0 10% 0 1 4491 4311 4311 43

0 10% 1 0 4491 4311 4311 84

1 0% 0 0 4491 4311 4311 59

1 0% 0 1 4491 4311 4311 70

1 0% 1 0 4491 4311 4311 48

1 10% 0 0 4491 4311 4312 45

1 10% 0 1 4491 4311 4311 38

1 10% 1 0 4491 4311 4313 73

Table 4: Test Results, Instance 3 (300 nodes, 6728 edges)

Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 7104 6975 6975 19

0 0% 0 1 7104 6975 6975 7

0 0% 1 0 7104 6975 6975 13

0 10% 0 0 7104 6975 6975 34

0 10% 0 1 7104 6975 6975 21

0 10% 1 0 7104 6975 6975 26

1 0% 0 0 7104 6975 6975 38

1 0% 0 1 7104 6975 6975 12

1 0% 1 0 7104 6975 6975 10

1 10% 0 0 7104 6975 6975 21

1 10% 0 1 7104 6975 6975 25

1 10% 1 0 7104 6975 6975 29

Table 5: Test Results, Instance 4 (400 nodes, 3990 edges)
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Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 7128 6620 6651 179

0 0% 0 1 7128 6620 6620 55

0 0% 1 0 7128 6620 6620 67

0 10% 0 0 7128 6620 6620 62

0 10% 0 1 7128 6620 6620 51

0 10% 1 0 7128 6620 6620 102

1 0% 0 0 7128 6620 6620 67

1 0% 0 1 7128 6620 6620 39

1 0% 1 0 7128 6620 6620 52

1 10% 0 0 7128 6620 6620 40

1 10% 0 1 7128 6620 6620 50

1 10% 1 0 7128 6620 6620 65

Table 6: Test Results, Instance 5 (400 nodes, 7980 edges)

Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 6836 6587 6587 88

0 0% 0 1 6836 6587 6587 102

0 0% 1 0 6836 6587 6587 79

0 10% 0 0 6836 6587 6587 83

0 10% 0 1 6836 6587 6587 101

0 10% 1 0 6836 6587 6587 131

1 0% 0 0 6836 6587 6587 84

1 0% 0 1 6836 6587 6587 67

1 0% 1 0 6836 6587 6587 100

1 10% 0 0 6836 6587 6587 77

1 10% 0 1 6836 6587 6587 85

1 10% 1 0 6836 6587 6587 137

Table 7: Test Results, Instance 6 (400 nodes, 11970 edges)

Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 9378 9194 9194 25

0 0% 0 1 9378 9194 9194 6

0 0% 1 0 9378 9194 9194 17

0 10% 0 0 9378 9194 9194 28

0 10% 0 1 9378 9194 9194 11

0 10% 1 0 9378 9194 9194 15

1 0% 0 0 9378 9194 9194 20

1 0% 0 1 9378 9194 9194 6

1 0% 1 0 9378 9194 9194 9

1 10% 0 0 9378 9194 9194 24

1 10% 0 1 9378 9194 9194 9

1 10% 1 0 9378 9194 9194 21

Table 8: Test Results, Instance 7 (500 nodes, 6238 edges)



4.3 test results 25

Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 9301 9169 9169 86

0 0% 0 1 9301 9169 9169 91

0 0% 1 0 9301 9169 9169 114

0 10% 0 0 9301 9169 9169 74

0 10% 0 1 9301 9169 9169 72

0 10% 1 0 9301 9169 9169 120

1 0% 0 0 9301 9169 9169 84

1 0% 0 1 9301 9169 9169 63

1 0% 1 0 9301 9169 9169 132

1 10% 0 0 9301 9169 9169 92

1 10% 0 1 9301 9169 9169 69

1 10% 1 0 9301 9169 9169 120

Table 9: Test Results, Instance 8 (500 nodes, 12475 edges)

Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 9941 9117 9235 282

0 0% 0 1 9941 9117 9117 345

0 0% 1 0 9941 9117 9117 363

0 10% 0 0 9941 9117 9117 204

0 10% 0 1 9941 9117 9117 168

0 10% 1 0 9941 9117 9118 319

1 0% 0 0 9941 9117 9117 244

1 0% 0 1 9941 9117 9117 149

1 0% 1 0 9941 9117 9117 228

1 10% 0 0 9941 9117 9122 168

1 10% 0 1 9941 9117 9117 171

1 10% 1 0 9941 9117 9117 381

Table 10: Test Results, Instance 9 (500 nodes, 18713 edges)

Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 12791 12551 12643 42

0 0% 0 1 12791 12551 12551 25

0 0% 1 0 12791 12551 12551 39

0 10% 0 0 12791 12551 12551 63

0 10% 0 1 12791 12551 12551 45

0 10% 1 0 12791 12551 12551 91

1 0% 0 0 12791 12551 12551 56

1 0% 0 1 12791 12551 12551 36

1 0% 1 0 12791 12551 12551 46

1 10% 0 0 12791 12551 12551 66

1 10% 0 1 12791 12551 12551 38

1 10% 1 0 12791 12551 12551 84

Table 11: Test Results, Instance 10 (600 nodes, 8985 edges)
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Slave PercImp IntSol RINS StartTour OptSol Output Time
0 0% 0 0 13133 12437 12437 125

0 0% 0 1 13133 12437 12437 64

0 0% 1 0 13133 12437 12437 86

0 10% 0 0 13133 12437 12437 149

0 10% 0 1 13133 12437 12437 60

0 10% 1 0 13133 12437 12437 98

1 0% 0 0 13133 12437 12437 137

1 0% 0 1 13133 12437 12437 69

1 0% 1 0 13133 12437 12437 89

1 10% 0 0 13133 12437 12437 121

1 10% 0 1 13133 12437 12439 60

1 10% 1 0 13133 12437 12439 85

Table 12: Test Results, Instance 11 (600 nodes, 17970 edges)

Figure 3: Evolution of master and slave values on Instance 11, with
CPLEX_PARAM_INTSOLLIM=1

Figure 4: Evolution of master and slave values on Instance 11, with the RINS ap-
proach active
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Figure 5: Evolution of master and slave values on Instance 9, with
CPLEX_PARAM_INTSOLLIM=1 and binary search active

4.4 test comments
There are a couple of observations we can draw from the results of these

tests.
The first one is that our algorithm, even with the limitation to the number

of nodes, manages to find the optimal solution with almost all parameter
settings, and with almost every instance. This is a positive thing, in a sense,
however it may suggest a “not sufficiently heuristic” approach to the prob-
lem. It would be interesting to repeat the tests with different settings for the
node limits, however this was not possible because of strict time constraints
for the completion of our work.

The second one is that it does not emerge a clear winner between all the
approaches tested. This is partly expected, since many of the settings can
work well for a particular instance and not-so-well for another one. A more
extensive testing would help in better outlining which approach, on average,
yields the best results, and which one should be avoided. The impression
is that both exploiting RINS heuristic and the limit of the number of integer
solutions to one can greatly help the algorithm to reduce it execution time,
although in some runs this effect is much less prominent. Furthermore,
the binary search is probably the less successful expedient to speed up the
computation: it is required a large amount of effort to effectively show that
the current percentual improvement is too high, and while each update
improves a lot the best solution, it is not worth it when compared to small,
but very frequent updates by the less aggressive approach.

The plots provided also show how the master subproblem seems to “lead”
the computation; the slave often produce edge sets with a very high cost just
to enforce connection. This phenomenon is more pronounced if the binary
search is active, as one can see in Figure 5, and may suggest a secondary
role of the slave in the computation.





5 C O N C L U S I O N
In this work, we outlined and described a new approach for a heuristic

Tour Improvement Procedure for the TSP problem, based on the concept of
proximity. A variety of different parameter settings and slightly different
implementations is proposed and evaluated with extensive testing.

The results of our testing suggest that many of the proposed parame-
ter settings help to reduce the execution time of the algorithm, although
none of them has a dramatic impact on it. A more in-depth tuning phase
could help to further improve the performance of the algorithm, and to bet-
ter grasp the interactions between our ILP formulation and the heuristics
CPLEX employs internally. Since the approach is new, we are confident that
the performances of our algorithm can be improved significantly.

The final outcome of our research looks indeed promising, although not
very interesting as-is. There exist software tools like Concorde that can solve
easily instances with more than 1000 nodes with minimal computational
and time effort, so we cannot claim that our implementation should be used
over Concorde. However, the downside of such approaches is that they
are extremely specialized in the problem they solve; it is impossible, for
example, to adapt Concorde for other NP-hard problems, and it is very
hard to even adapt it for slight modifications of the TSP problem, as we
experienced during this work. Our algorithm does not suffer from this
limitation; it is instead a quite general approach, that could be very well
extended to other problems that do not have a good solver available.

In light of this consideration, the most interesting hint for future research
on this topic is to try the approach applied to other difficult optimization
problems, especially the ones that lack a great amount of research (unlike
the TSP). Doing so could improve the actual approaches to those problems,
hopefully providing a good heuristic to improve already existing solutions.
The other main foreseeable development to our work is in the direction
of specialization and improvement of the approach used to solve the mas-
ter subproblem; a dedicated solver would dramatically improve the execu-
tion time of our algorithm, as the example of Concorde proves without any
doubt.
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A S O F T W A R E
This chapter illustrates the software packages and applications that were

used in the development of this thesis. We briefly describe the goal for the
use of each tool, and the main instructions or commands used.

a.1 concorde
Concorde is a state-of-the-art TSP solver for the TSP problem and some

related problems. It was written using the C programming language, by
David Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook.

Initially, we were interested in using Concorde as a solver for the master
subproblem. This was not possible, for the reasons explained in Section 3.2;
however the Concorde package provide some useful tools that aided us in
the development and testing of our algorithm.

a.1.1 TSP Solver
The Concorde main application, the TSP solver, was useful to us for find-

ing rapidly and efficiently the optimal solution for our test instances. This
was helpful to check the correctness of our solutions, and to compare the
execution time of our algorithm to the one of a state-of-the-art software. The
syntax to use the Concorde solver is extremely simple; assume one wants to
solve an instance, contained in the file tspinstance.dat in TSPLIB format1,
he needs to use the following command:

./concorde tspinstance.dat

There are a number of useful options that can be used with the program,
that control the input data or the heuristics or settings Concorde uses while
solving the TSP; they can be easily retrieved by typing ./concorde without
any argument.

a.1.2 Edge generation
The other aspect in which Concorde helped us was the generation of the

test instances. In the Concorde package, an executable, called edgegen, is
provided; its main use is to generate point clouds and edge sets (optionally
starting from an existing point cloud). The availability of such a tool was
very important to implement the instance generation strategy we illustrated
in Section 4.1. We describe briefly how it is possible to execute those steps
using edgegen.

The tool is called in a similar fashion to the TSP solver in this way:

./edgegen [options] [inputfile.dat]

1 See Section A.1.3 of this Appendix for more detailed informations.
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The file inputfile.dat is optional (it is required or not depending on the
option flags supplied), and must be in TSPLIB format once again, if present.
The main options that were useful to us were:

• edgegen -k #nodes -p outfile.dat: this command randomly creates
a point cloud with the specified amount of nodes, and stores it in
outfile.dat;

• edgegen -G -o outfile.dat inputfile.dat: this command reads the
point cloud contained in inputfile.dat (in TSPLIB format), finds a
greedy tour between the points using Euclidean distances, and saves
the edges of the tour in outfile.dat;

• edgegen -e #edges -o outfile.dat inputfile.dat: this command
is similar to the previous one, with the only difference that it gen-
erates the desired number of random edges using the supplied point
cloud; it then stores the results as previously described.

a.1.3 TSPLIB format
As described in the previous sections, many tools in the Concorde pack-

age require the input file to be in TSPLIB format. That is a text format that
defines a precise syntax for representing a TSP instance. The complete spec-
ification can be found in [10]; we provide an example of a point cloud file
for reference.

NAME : concorde_5

COMMENT : 5 nodes, randomly generated by concorde

TYPE : TSP

DIMENSION : 5

EDGE_WEIGHT_TYPE : EUC_2D

NODE_COORD_SECTION

1 3.000000 4.000000

2 4.000000 0.000000

3 2.000000 1.000000

4 1.000000 4.000000

5 3.000000 0.000000

a.2 cplex
ILOG CPLEX is a commercial solver for Linear Programming, Integer

Linear Programming and Mixed Integer Linear Programming problems. It
is a main part of our implementation of the algorithm illustrated in Chapter
2, used to solve the master subproblem. CPLEX is provided in multiple
programming languages, and also includes an Interactive Solver that can
be called from the command line. We used the CPLEX Callable Library,
which is the implementation of the CPLEX solver in C, alongside with the
Interactive Solver as a way to ease the bug fixing process. We briefly list the
main commands and parameters we used in this work.

a.2.1 Interactive Solver
The Interactive Solver was mainly used to solve ILPs saved by our code

via the CPXwriteprob routine, to allow a double check in case of unexpected



a.2 cplex 33

results from the application we were developing. The tool has proven in-
valuable to find and solve troubles, especially some of them that were not
apparent at all (usually related to numerical problems).

We provide a short list of the main commands we used in conjunction
with the Interactive Solver.

• read <filename>: reads an ILP problem from the specified file.

• set [options]: allows to control various parameters that affect the
execution of CPLEX, for examples the ones that control the number of
nodes in the decisional tree or the amount of integer solution found
before exiting; more informations on the categories of parameters that
one can control are provided when the command is entered.

• mipopt: solve the current problem.

• display [options]: used to show the current solution of the ILP
(display solution variables) or to access to the current parameter
settings (display settings.

a.2.2 Callable Library
The Callable Library provides a C implementation of the CPLEX solver,

which is central for our goal, as already described multiple times. The main
routines we used to implement our algorithm are listed below.

• CPXopenCPLEX(): creates the CPLEX environment that is needed for
every other call to it.

• CPXsetintparam() / CPXsetdblparam(): allows to control the param-
eter settings that have been described previously in Chapters 3 and
4.

• CPXcreateprob(): creates the (I)LP problem that will be initialized and
solved.

• CPXcopylp(): requires multiple arrays that describe the problem and
loads them into it.

• CPXcopyctype(): similar to the previous one, it defines which variables
are integer and which one are not.

• CPXaddmipstarts(): allows to load one or more starting solutions to
hopefully ease CPLEX’s computations.

• CPXmipopt(): optimizes the current problem.

• CPXgetx(): access the values of the decision variables after having
solved the (I)LP.

• CPXgetobjval(): reads the objective function value corresponding to
the current solution.

• CPXgetnodecnt(): allows to know how many nodes of the decisional
tree were explored by the B&B algorithm CPLEX uses while solving
the problem.

• CPXfreeprob(): frees the memory used by a problem.

• CPXcloseCPLEX(): closes the CPLEX evnironment after all the compu-
tations have been completed.





B S O U R C E C O D E

b.1 main program
b.1.1 tandem.h

1 #ifndef EDGE
2 #define EDGE
3

4 /* edge */
5 typedef struct edge{
6 double cost;
7 int first_node;
8 int second_node;
9 } edge;

10

11 #endif
12

13 int parseinput(int argc, char **argv);
14 double get_cost(int *sol);
15 int solve_master();
16 int add_to_tabu_list(int *size, int **subtour);
17 int *new_sec(int *size, int **subtour);
18 static int setproblemdata (char **probname_p, int *numcols_p, int *numrows_p,
19 int *objsen_p, double **obj_p, double **rhs_p,
20 char **sense_p, int **matbeg_p, int **matcnt_p,
21 int **matind_p, double **matval_p,
22 double **lb_p, double **ub_p, char **ctype_p);
23 int has_subtour(int *working_sol);
24 int get_subtour(int *size, int **stour, int *working_sol);
25 void print_current_status();
26 void print_results();
27 int evaluate_hamming(int *first, int *second);
28 void free_and_null(char **ptr);
29 void print_log_row(int iter, double m_cost, double s_cost, double best, int upd,
30 double tar, double pctint, int hamm, int tabu_s, int cnodes, int maxnodes,
31 double time_ela);

b.1.2 tandem.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <time.h>
5

6 #include "cplex.h"
7

8 #include "tandem.h"
9 #include "kruskal.h"

10

11 #define DEBUG 0
12

13 #if DEBUG
14 #define PRINTVERBOSE(...) printf(__VA_ARGS__)
15 #else
16 #define PRINTVERBOSE(...) (void) 0
17 #endif
18

19 #define PRINTERROR(...) fprintf(stderr, __VA_ARGS__)
20

21 #define PRINTUSAGE() printf("Usage: tandem <edgefile> <tourfile> <max tabu size> \
22 <iter limit> <time limit> <use slave?> <min percentual improvement> <intsollim = \
23 1 ?> <use z RINS heuristic> <max node count binary> <max node count nonbinary>\n")
24

35
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25

26 /* "global" variables */
27

28 /* using slave? */
29 int use_slave;
30

31 /* slave at this iteration? */
32 int slave_curr_iter;
33

34 /* solution updated this iteration? */
35 int sol_update;
36

37 /* current target */
38 double curr_target;
39

40 double min_pct_impr;
41

42 /* graph representation */
43 int nnodes;
44 int nedges;
45

46 edge *edges;
47 int **nodes;
48 int *nodes_length;
49

50 /* old and current master and slave */
51 int *curr_master;
52 int *curr_slave;
53 int *old_master;
54 int *old_slave;
55

56 /* current solution */
57 int *working_sol;
58

59 /* tabu list */
60 int **tabu;
61 int num_nz;
62 int tabu_size;
63 int max_tabu_size;
64

65 int tabu_change;
66

67 /* best solution */
68 int *best_sol;
69

70 /* cplex env */
71 CPXENVptr env;
72 int cpxnodes;
73 int maxnodecount_binary;
74 int maxnodecount_nonbinary;
75 int maxnodecount_actual;
76 int intsollim;
77

78 int iteration;
79

80 /* sorted edge list */
81 int *sorted_index;
82

83 /* use z */
84 int use_z;
85

86 /* stopping conditions */
87 int max_iter;
88 double max_time;
89 time_t start_time;
90 /* end variables */
91

92 /* parses the command line arguents */
93 int parseinput(int argc, char **argv){
94

95 PRINTVERBOSE("Parsing...\n");
96

97 int status = 0;
98 int a, b;
99 int node1, node2;

100 double edgecost;
101 int *temp;
102 char *line = malloc(sizeof(char) * 100);
103

104 if (argc < 11){
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105 PRINTERROR("Error: Not enough arguments.\n");
106 PRINTUSAGE();
107 exit(1);
108 }
109

110 FILE *edgefile = fopen ( argv[1], "r" );
111 FILE *tourfile = fopen ( argv[2], "r" );
112

113 if (edgefile == NULL || tourfile == NULL){
114 PRINTERROR("Error: cannot open input files.\n");
115 PRINTUSAGE();
116 exit(1);
117 }
118

119 /* parse edgefile */
120

121 /* leggo nnodes, nedges dalla prima riga */
122 if (fgets(line,100,edgefile)==NULL){
123 PRINTERROR("Error: cannot parse nnodes and nedges from edge file\n");
124 exit(1);
125 }
126 nnodes = atoi(strtok (line, " "));
127 nedges = atoi(strtok (NULL, " "));
128

129 PRINTVERBOSE("%d nodes, %d edges\n", nnodes, nedges);
130

131 edges = malloc(sizeof(edge)*nedges);
132 nodes = malloc(sizeof(int*)*nnodes);
133

134 nodes_length = malloc(sizeof(int)*nnodes);
135

136 if (edges == NULL || nodes == NULL || nodes_length == NULL) {
137 PRINTERROR("Error: out of memory while allocating data structures");
138 exit(1);
139 }
140

141 for(a=0;a<nnodes;a++){
142 nodes[a] = NULL;
143 nodes_length[a] = 0;
144 }
145

146 for(a=0;a<nedges;a++){
147

148 if (fgets(line,100,edgefile)==NULL){
149 PRINTERROR("Error: not enough edges or edge file format incorrect\n");
150 exit(1);
151 }
152

153 node1 = atoi(strtok(line, " "));
154 node2 = atoi(strtok(NULL, " "));
155 edgecost = atof(strtok(NULL, " "));
156

157 if (node1>node2){
158 int temp = node1;
159 node1 = node2;
160 node2 = temp;
161 }
162

163 edges[a].first_node = node1;
164 edges[a].second_node = node2;
165 edges[a].cost = edgecost;
166

167 temp = realloc(nodes[node1], (nodes_length[node1]+1) * sizeof(int));
168 if (temp == NULL){
169 PRINTERROR("Error: failed to realloc memory in parseinput.\n");
170 goto CLEANUP;
171 }
172 nodes_length[node1]++;
173 nodes[node1] = temp;
174 nodes[node1][nodes_length[node1]-1] = a;
175

176 temp = realloc(nodes[node2], (nodes_length[node2]+1) * sizeof(int));
177 if (temp == NULL){
178 PRINTERROR("Error: failed to realloc memory in parseinput.\n");
179 goto CLEANUP;
180 }
181 nodes_length[node2]++;
182 nodes[node2] = temp;
183 nodes[node2][nodes_length[node2]-1] = a;
184
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185 }
186

187 curr_master = malloc(sizeof(int)*nedges);
188 curr_slave = malloc(sizeof(int)*nedges);
189 old_master = malloc(sizeof(int)*nedges);
190 old_slave = malloc(sizeof(int)*nedges);
191

192 for(a=0;a<nedges;a++){
193 old_master[a] = 0; old_slave[a] = 0;
194 }
195

196 best_sol = malloc(sizeof(int)*nedges);
197

198 working_sol = malloc(sizeof(int)*nedges);
199

200 /* parse tourfile */
201 int currentnode, newnode, firstnode;
202 int temp1, temp2;
203

204 if (fgets(line,100,tourfile)==NULL){
205 PRINTERROR("Error: not enough edges or tour file format incorrect\n");
206 goto CLEANUP;
207 }
208

209 newnode = atoi(line);
210 firstnode = newnode;
211

212 for(a=0;a<nnodes-1;a++){
213

214 if (fgets(line,100,tourfile)==NULL){
215 PRINTERROR("Error: not enough edges or tour file format incorrect\n");
216 exit(1);
217 }
218

219 currentnode = newnode;
220 newnode = atoi(line);
221

222 if(currentnode<newnode){
223 temp1=currentnode;
224 temp2=newnode;
225 }
226 else{
227 temp1=newnode;
228 temp2=currentnode;
229 }
230

231 b = 0;
232

233 while(b<nodes_length[currentnode] &&
234 (edges[nodes[currentnode][b]].first_node!=temp1 ||
235 edges[nodes[currentnode][b]].second_node != temp2)){
236

237 b++;
238 }
239

240 if (b==nodes_length[currentnode]-1 &&
241 (edges[nodes[currentnode][b]].first_node!=temp1 ||
242 edges[nodes[currentnode][b]].second_node != temp2)){
243

244 PRINTERROR("Error! Edge (%dn %d) not found\n", temp1, temp2);
245 goto CLEANUP;
246 }
247 else {
248 working_sol[nodes[currentnode][b]] = 1;
249 }
250

251 }
252

253 /* last edge of the tour */
254

255 if(firstnode<newnode){
256 temp1=firstnode;
257 temp2=newnode;
258 }
259 else{
260 temp1=newnode;
261 temp2=firstnode;
262 }
263

264 b = 0;
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265

266 while(b<nodes_length[firstnode] &&
267 (edges[nodes[firstnode][b]].first_node!=temp1 ||
268 edges[nodes[firstnode][b]].second_node != temp2)){
269

270 b++;
271 }
272

273 if (b==nodes_length[firstnode]-1 &&
274 (edges[nodes[firstnode][b]].first_node!=temp1 ||
275 edges[nodes[firstnode][b]].second_node != temp2)){
276

277 PRINTERROR("Error! Edge (%dn %d) not found\n", temp1, temp2);
278 }
279 else {
280 working_sol[currentnode] = 1;
281 }
282

283 /* init best sol */
284 for(a=0;a<nedges;a++){
285 best_sol[a] = working_sol[a];
286 }
287

288 /* target */
289 curr_target = get_cost(working_sol)-1;
290

291 /* tabu */
292 max_tabu_size = atoi(argv[3]);
293 tabu_size = 0;
294 num_nz = 0;
295 tabu = malloc(sizeof(int*)*max_tabu_size);
296 for(a=0;a<max_tabu_size;a++){
297 tabu[a]=NULL;
298 }
299

300 /* time and iteration limits */
301 max_iter = atoi(argv[4]);
302 max_time = atof(argv[5]);
303

304 /* are we using the slave? */
305 use_slave = atoi(argv[6]);
306

307 /* minimum percent improvement */
308 min_pct_impr = atof(argv[7])/100;
309

310 /* one solution or till otpimal one in master? */
311 intsollim = atoi(argv[8])==1 ? 1 : 0;
312

313 /* use z */
314 use_z = atoi(argv[9]);
315

316 /* max nodes */
317 maxnodecount_binary = atoi(argv[10]);
318 maxnodecount_nonbinary = atoi(argv[11]);
319 maxnodecount_actual =
320 (min_pct_impr)>0?maxnodecount_binary:maxnodecount_nonbinary;
321

322 PRINTVERBOSE("Cost of starting tour: %.2f\n", get_cost(working_sol));
323

324 fclose(edgefile); fclose(tourfile);
325 return 0;
326

327 CLEANUP:
328 PRINTERROR("Error: cleanup still not implemented");
329 exit(1);
330

331 }
332

333 /* calcola il costo di una soluzione */
334 double get_cost(int *sol){
335

336 int i;
337 double to_return = 0;
338 for(i=0;i<nedges;i++){
339 to_return += edges[i].cost * sol[i];
340 }
341 return to_return;
342 }
343

344 /* solve the master subproblem */
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345

346 int solve_master(){
347

348 /* cplex variables */
349 char *probname = NULL;
350 int numcols;
351 int numrows;
352 int objsen;
353 double *obj = NULL;
354 double *rhs = NULL;
355 char *sense = NULL;
356 int *matbeg = NULL;
357 int *matcnt = NULL;
358 int *matind = NULL;
359 double *matval = NULL;
360 double *lb = NULL;
361 double *ub = NULL;
362 char *ctype = NULL;
363

364 int solstat;
365 double *x = NULL;
366

367 CPXLPptr lp = NULL;
368

369 int status;
370 int i, j;
371 int cur_numrows, cur_numcols;
372

373 /* initializes cplex data structures */
374 status = setproblemdata (&probname, &numcols, &numrows, &objsen, &obj,
375 &rhs, &sense, &matbeg, &matcnt, &matind, &matval,
376 &lb, &ub, &ctype);
377

378 if (status){
379 PRINTERROR("Error: setproblemdata failed at iteration %d", iteration);
380 exit(1);
381 }
382

383 x = malloc(sizeof(double)*numcols);
384 if (x==NULL){
385 PRINTERROR("Failed to allocate memory for solution array\n");
386 exit(1);
387 }
388 for(i=0;i<nedges;i++){
389 x[i]=0;
390 }
391

392 /* Create the problem. */
393 lp = CPXcreateprob (env, &status, probname);
394

395 if ( lp == NULL ) {
396 PRINTERROR("Error: Failed to create LP.\n");
397 goto TERMINATE;
398 }
399

400 /* Now copy the problem data into the lp */
401 status = CPXcopylp (env, lp, numcols, numrows, objsen, obj, rhs,
402 sense, matbeg, matcnt, matind, matval,
403 lb, ub, NULL);
404

405 if ( status ) {
406 PRINTERROR("Failed to copy the problem data.\n");
407 goto TERMINATE;
408 }
409

410 /* Now copy the ctype array */
411 status = CPXcopyctype (env, lp, ctype);
412 if ( status ) {
413 PRINTERROR("Failed to copy ctype\n");
414 goto TERMINATE;
415 }
416

417 /* add the appropriate mip start */
418 if(use_z){
419 int mcnt = 1;
420 int nzcnt = nedges;
421 int *beg = malloc(sizeof(int)*mcnt);
422 int *effort = malloc(sizeof(int)*mcnt);
423 beg[0] = 0;
424 effort[0] = 4;
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425 int *varindices = malloc(sizeof(int)*nzcnt);
426 double *values = malloc(sizeof(double)*nzcnt);
427 for(i=0;i<nedges;i++){
428 varindices[i] = i;
429 values[i] = best_sol[i];
430 }
431 status = CPXaddmipstarts(env, lp, mcnt, nzcnt, beg, varindices, values, effort, NULL);
432 }
433

434 /* solve MIP */
435 status = CPXmipopt (env, lp);
436 if ( status ) {
437 PRINTERROR("Error: Failed to optimize MIP. Status: %d\n", status);
438 goto TERMINATE;
439 }
440 /* getting optimal assignment for decision variables */
441 status = CPXgetx(env, lp, x, 0, CPXgetnumcols(env, lp)-2);
442 int status2;
443 double value = -1;
444 status2 = CPXgetobjval(env, lp, &value);
445 if ( status || (cpxnodes = CPXgetnodecnt(env, lp)) >= maxnodecount_actual ||
446 value >= 50000 -2*nnodes -1) {
447 if(status!=0 && status != 1217 /*&& value < 50000 -2*nnodes -1*/){
448 PRINTERROR("Error: Failed to get decision variables.
449 Status: %d\n", status);
450 exit(1);
451 } else {
452 /* master is unfeasible; updating target and min_impr */
453

454 if((curr_target / (1-min_pct_impr)) - curr_target <=1){
455 print_results();
456 printf("Error: Master is \"heuristically unfeasible\".
457 Saving best tour in \"results.dat\"\n");
458 printf("Elapsed time: %4.0f\n", ((double)time(NULL)) - start_time);
459 exit(0);
460 }
461

462 slave_curr_iter = 0;
463

464 curr_target = curr_target / (1-min_pct_impr);
465 min_pct_impr /= 2;
466 curr_target = curr_target * (1-min_pct_impr);
467

468 if((curr_target / (1-min_pct_impr)) - curr_target <=1){
469 status = CPXsetintparam (env, CPX_PARAM_NODELIM,
470 maxnodecount_nonbinary);
471 maxnodecount_actual = maxnodecount_nonbinary;
472 }
473

474 for(i=0;i<nedges;i++){
475 old_master[i] = curr_master[i];
476 curr_master[i] = 0;
477 }
478 }
479 goto TERMINATE;
480 }
481

482 /* update working sol and master */
483 for(i=0;i<numcols;i++){
484 working_sol[i] = x[i]>0.5 ? 1 : 0;
485 old_master[i] = curr_master[i];
486 curr_master[i] = working_sol[i];
487 }
488

489 int *subtour;
490 int size = 0;
491

492 /* check if subtours are present */
493 if(get_subtour(&size, &subtour, working_sol)){
494 PRINTVERBOSE("Found subtour (%d): ", size);
495 for(i=0;i<size;i++) PRINTVERBOSE("%d ", subtour[i]);
496 PRINTVERBOSE("\n");
497 add_to_tabu_list(&size, &subtour);
498

499 free(subtour);
500 } else {
501 /* no subtour */
502 if (get_cost(curr_master) <= curr_target){
503

504 double new_target = (get_cost(curr_master) * (1-min_pct_impr));
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505 if (get_cost(curr_master) - new_target > 1){
506 curr_target = new_target;
507 } else {
508 curr_target = get_cost(curr_master) - 1;
509 if (maxnodecount_actual != maxnodecount_nonbinary){
510 status = CPXsetintparam (env, CPX_PARAM_NODELIM,
511 maxnodecount_nonbinary);
512 maxnodecount_actual = maxnodecount_nonbinary;
513 }
514 }
515 sol_update = 1;
516 slave_curr_iter = 0;
517

518 for(i=0;i<nedges;i++) best_sol[i] = curr_master[i];
519 }
520 }
521 /* debug check, should never happen */
522 if(!evaluate_hamming(curr_master, old_master)){
523 printf("DEBUG: Master and previous one equals. Exiting...\n");
524 CPXwriteprob(env, lp, "zerohamming.lp", NULL);
525 exit(1);
526 }
527

528 PRINTVERBOSE("Master cost: %.2f\n", get_cost(curr_master));
529

530 TERMINATE:
531

532 /* free things */
533

534 if ( lp != NULL ) {
535 status = CPXfreeprob (env, &lp);
536 if ( status ) {
537 PRINTERROR("Error: CPXfreeprob failed, error code %d.\n", status);
538 }
539 }
540 free_and_null ((char **) &probname);
541 free_and_null ((char **) &obj);
542 free_and_null ((char **) &rhs);
543 free_and_null ((char **) &sense);
544 free_and_null ((char **) &matbeg);
545 free_and_null ((char **) &matcnt);
546 free_and_null ((char **) &matind);
547 free_and_null ((char **) &matval);
548 free_and_null ((char **) &lb);
549 free_and_null ((char **) &ub);
550 free_and_null ((char **) &ctype);
551 free(x);
552

553 return (status);
554

555 }
556

557 /* adds constraint to tabu list */
558 int add_to_tabu_list(int *size, int **subtour){
559

560 int i, j, count;
561

562 if(tabu_size<max_tabu_size){
563 i = 0;
564 while (tabu[i]!=NULL){
565 i++;
566 }
567 tabu[i] = new_sec(size, subtour);
568 tabu_size++;
569 for(j=0;j<nedges;j++){
570 num_nz += tabu[i][j];
571 }
572 } else {
573 tabu_change = 1;
574 for(j=0;j<nedges;j++){
575 num_nz -= tabu[0][j];
576 }
577 free(tabu[0]);
578 for(i=1;i<tabu_size;i++){
579 tabu[i-1] = tabu[i];
580 }
581 tabu[tabu_size-1] = new_sec(size, subtour);
582 for(j=0;j<nedges;j++){
583 num_nz += tabu[tabu_size-1][j];
584 }
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585 }
586 }
587

588 /* create SEC corresponding to passed subtour */
589 int *new_sec(int *size, int **subtour){
590

591 int i, j;
592 int first, second;
593 int *to_return = malloc(sizeof(int)*nedges);
594 int *is_in_subtour=malloc(sizeof(int)*nnodes);
595

596 if (to_return == NULL || is_in_subtour == NULL){
597 PRINTERROR("Failed to allocate memory for solution array\n");
598 exit(1);
599 }
600

601 for(i=0;i<nnodes;i++){
602 is_in_subtour[i] = 0;
603 }
604

605 for(i=0;i<*size;i++){
606 is_in_subtour[(*subtour)[i]] = 1
607 }
608

609 for(i=0;i<nedges;i++){
610 if((is_in_subtour[edges[i].first_node] &&
611 !is_in_subtour[edges[i].second_node]) ||
612 (is_in_subtour[edges[i].second_node] &&
613 !is_in_subtour[edges[i].first_node])){
614 to_return[i] = 1;
615 } else to_return[i] = 0;
616 }
617 free(is_in_subtour);
618

619 return to_return;
620 }
621

622

623 /* initialize cplex arrays */
624 static int setproblemdata (char **probname_p, int *numcols_p, int *numrows_p,
625 int *objsen_p, double **obj_p, double **rhs_p,
626 char **sense_p, int **matbeg_p, int **matcnt_p,
627 int **matind_p, double **matval_p,
628 double **lb_p, double **ub_p, char **ctype_p){
629

630 int i, j;
631 cell *iter;
632

633 char *zprobname = NULL; /* Problem name <= 16 characters */
634 double *zobj = NULL;
635 double *zrhs = NULL;
636 char *zsense = NULL;
637 int *zmatbeg = NULL;
638 int *zmatcnt = NULL;
639 int *zmatind = NULL;
640 double *zmatval = NULL;
641 double *zlb = NULL;
642 double *zub = NULL;
643 char *zctype = NULL;
644 int status = 0;
645

646 int numcols = nedges + use_z;
647 int numrows = nnodes + 1 + tabu_size;
648

649 int numnz = 3*numcols + num_nz + use_z;
650

651 zprobname = (char *) malloc (16 * sizeof(char));
652 zobj = (double *) malloc (numcols * sizeof(double));
653 zrhs = (double *) malloc (numrows * sizeof(double));
654 zsense = (char *) malloc (numrows * sizeof(char));
655 zmatbeg = (int *) malloc (numcols * sizeof(int));
656 zmatcnt = (int *) malloc (numcols * sizeof(int));
657 zmatind = (int *) malloc (numnz * sizeof(int));
658 zmatval = (double *) malloc (numnz * sizeof(double));
659 zlb = (double *) malloc (numcols * sizeof(double));
660 zub = (double *) malloc (numcols * sizeof(double));
661 zctype = (char *) malloc (numcols * sizeof(char));
662

663 if ( zprobname == NULL || zobj == NULL ||
664 zrhs == NULL || zsense == NULL ||
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665 zmatbeg == NULL || zmatcnt == NULL ||
666 zmatind == NULL || zmatval == NULL ||
667 zlb == NULL || zub == NULL ||
668 zctype == NULL ) {
669 status = 1;
670 goto TERMINATE;
671 }
672

673 sprintf(zprobname, "Master_%d", iteration);
674

675 /* setting zobj */
676 for(i=0;i<numcols-use_z;i++){
677 if(working_sol[i]) zobj[i] = -1; else zobj[i] = 1;
678 }
679 /* z */
680 if (use_z) zobj[numcols-1] = 50000;
681

682 int count;
683 /* setting other things */
684 for(i=0;i<numcols-use_z;i++){
685 count = 0;
686 for(j=0;j<tabu_size;j++){
687 count+=tabu[j][i];
688 }
689 zmatcnt[i]=3 + count;
690 if(i==0){
691 zmatbeg[i]=0;
692 } else {
693 zmatbeg[i]=zmatbeg[i-1]+zmatcnt[i-1];
694 }
695

696 zmatind[zmatbeg[i]]=edges[i].first_node;
697 zmatind[zmatbeg[i]+1]=edges[i].second_node;
698 zmatind[zmatbeg[i]+2]=nnodes;
699

700 zmatval[zmatbeg[i]]=1;
701 zmatval[zmatbeg[i]+1]=1;
702 zmatval[zmatbeg[i]+2]=edges[i].cost;
703 /* tabu */
704 count = 0;
705 for(j=0;j<tabu_size;j++){
706 if(tabu[j][i] == 1){
707 zmatind[zmatbeg[i]+3+count]=nnodes+1+j;
708 zmatval[zmatbeg[i]+3+count]=1;
709 count++;
710 }
711 }
712

713 /* binary integer vars */
714 zlb[i]=0;
715 zub[i]=1;
716 zctype[i]=’I’;
717 }
718 /* z */
719 if(use_z){
720 zmatcnt[numcols-1] = 1;
721 zmatbeg[numcols-1] = zmatbeg[numcols-2] + zmatcnt[numcols-2];
722 zmatind[zmatbeg[numcols-1]] = nnodes;
723 zmatval[zmatbeg[numcols-1]] = -1;
724 zlb[numcols-1] = 0;
725 zub[numcols-1] = CPX_INFBOUND;
726 zctype[numcols-1] = ’I’;
727 }
728

729 /* rhs’s */
730 for(i=0;i<nnodes;i++){
731 zsense[i]=’E’;
732 zrhs[i]=2;
733 }
734 zsense[nnodes]=’L’;
735 zrhs[nnodes]=curr_target;
736

737 for(i=nnodes+1;i<numrows;i++){
738 zsense[i]=’G’;
739 zrhs[i]=2;
740 }
741

742 TERMINATE:
743 if ( status ) {
744 free_and_null ((char **) &zprobname);
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745 free_and_null ((char **) &zobj);
746 free_and_null ((char **) &zrhs);
747 free_and_null ((char **) &zsense);
748 free_and_null ((char **) &zmatbeg);
749 free_and_null ((char **) &zmatcnt);
750 free_and_null ((char **) &zmatind);
751 free_and_null ((char **) &zmatval);
752 free_and_null ((char **) &zlb);
753 free_and_null ((char **) &zub);
754 free_and_null ((char **) &zctype);
755 }
756 else {
757 *numcols_p = numcols;
758 *numrows_p = numrows;
759 *objsen_p = CPX_MIN; /* The problem is minimization */
760

761 *probname_p = zprobname;
762 *obj_p = zobj;
763 *rhs_p = zrhs;
764 *sense_p = zsense;
765 *matbeg_p = zmatbeg;
766 *matcnt_p = zmatcnt;
767 *matind_p = zmatind;
768 *matval_p = zmatval;
769 *lb_p = zlb;
770 *ub_p = zub;
771 *ctype_p = zctype;
772 }
773 return (status);
774

775 }
776

777 /* solves the slave subproblem */
778 int solve_slave(){
779

780 int i,j;
781

782 if(use_slave && slave_curr_iter){
783

784 int *sorted_after_m = malloc(sizeof(int)*(nedges-nodes_length[nnodes-1]));
785

786 int count = 0;
787 for(i=0;i<nedges;i++){
788 if(working_sol[sorted_index[i]] &&
789 edges[sorted_index[i]].second_node!=nnodes-1){
790 sorted_after_m[count] = sorted_index[i];
791 count++;
792 }
793 }
794 for(i=0;i<nedges;i++){
795 if(!(working_sol[sorted_index[i]]) &&
796 edges[sorted_index[i]].second_node!=nnodes-1){
797 sorted_after_m[count] = sorted_index[i];
798 count++;
799 }
800 }
801

802 int *tree = NULL;
803

804 kruskal(nedges, nnodes-1, edges, sorted_after_m, &tree);
805

806 int best, secbest;
807

808 if (edges[nodes[nnodes-1][0]].cost > edges[nodes[nnodes-1][1]].cost){
809 best = nodes[nnodes-1][1]; secbest = nodes[nnodes-1][0];
810 } else {
811 best = nodes[nnodes-1][0]; secbest = nodes[nnodes-1][1];
812 }
813

814 for(i=2;i<nodes_length[nnodes-1];i++){
815 if (edges[nodes[nnodes-1][i]].cost < best){
816 secbest = best;
817 best = nodes[nnodes-1][i];
818 } else if (edges[nodes[nnodes-1][i]].cost < best){
819 secbest = nodes[nnodes-1][i];
820 }
821 }
822

823 tree[best] = 1;
824 tree[secbest] = 1;
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825

826 for(i=0;i<nedges;i++){
827 working_sol[i] = tree[i];
828 old_slave[i] = curr_slave[i];
829 curr_slave[i] = tree[i];
830 }
831

832 free(sorted_after_m);
833 free(tree);
834

835 if((!has_subtour(curr_slave)) && get_cost(curr_slave) <= curr_target){
836

837 double new_target = (get_cost(curr_slave) * (1-min_pct_impr));
838 if (get_cost(curr_slave) - new_target > 1){
839 curr_target = new_target;
840 } else {
841 curr_target = get_cost(curr_slave) - 1;
842 if (maxnodecount_actual != maxnodecount_nonbinary){
843 int status = CPXsetintparam (env, CPX_PARAM_NODELIM,
844 maxnodecount_nonbinary);
845 maxnodecount_actual = maxnodecount_nonbinary;
846 }
847 }
848 sol_update = 1;
849

850 for(i=0;i<nedges;i++) best_sol[i] = curr_slave[i];
851 }
852

853 } else {
854 PRINTVERBOSE("DEBUG: Slave not executed at iteration %d\n", iteration);
855 for(i=0;i<nedges;i++){
856 curr_slave[i] = curr_master[i];
857 }
858 }
859 }
860

861 /* wrapper */
862 int has_subtour(int *working_sol){
863 int *sub = NULL;
864 int a = 0;
865

866 int to_return = get_subtour(&a, &sub, working_sol);
867

868 free(sub);
869 return to_return;
870 }
871

872 /* returns 1 if a subtour is found, 0 otherwise*/
873 int get_subtour(int *size, int **stour, int *working_sol){
874

875 int *subtour = malloc (sizeof(int)*nnodes);
876 int *shortest_subtour = malloc (sizeof(int)*nnodes);
877 int *visited = malloc (sizeof(int)*nnodes);
878

879 int prev, cur, next, cur_edge, i, j, k, start;
880

881 int len_shortest_subtour = nnodes;
882

883 for(i=0;i<nnodes;i++){
884 visited[i] = 0;
885 }
886

887 while(1){
888

889 for(i=0;i<nnodes;i++){
890 subtour[i] = -1;
891 }
892

893 for(j=0;j<nnodes;j++){
894 if(!visited[j]){
895 cur = j;
896 visited[cur] = 1;
897

898 for(k=0;k<nodes_length[cur];k++){
899 if(working_sol[nodes[cur][k]] &&
900 (!visited[edges[nodes[cur][k]].first_node] ||
901 !visited[edges[nodes[cur][k]].second_node])){
902

903 if(cur == edges[nodes[cur][k]].first_node){
904 next = edges[nodes[cur][k]].second_node;
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905 } else {
906 next = edges[nodes[cur][k]].first_node;
907 }
908 cur_edge = nodes[cur][k];
909 break;
910 }
911 }
912 break;
913 }
914 }
915 if (j == nnodes) break;
916

917 i = 0;
918 subtour[i++] = cur;
919

920 while(1){
921 prev = cur;
922 cur = next;
923

924 j = 0;
925 while(j<nnodes && subtour[j]!=-1 && subtour[j]!=cur){
926 j++;
927 }
928 if (j==nnodes-1 && subtour[j]!=cur){
929 free(subtour);
930 free(visited);
931 return 0;
932 }
933

934 if (subtour[j]==cur){
935

936 break;
937 }
938

939 subtour[i++] = cur;
940 visited[cur] = 1;
941

942 k = 0;
943 while(k<nodes_length[cur] && !(working_sol[nodes[cur][k]]
944 && edges[nodes[cur][k]].first_node != prev
945 && edges[nodes[cur][k]].second_node != prev )){
946

947 k++;
948 }
949 if (k==nodes_length[cur]) {
950 free(subtour);
951 free(visited);
952 return 2;
953 }
954

955

956 if (edges[nodes[cur][k]].first_node == cur){
957 next = edges[nodes[cur][k]].second_node;
958 } else{
959 next = edges[nodes[cur][k]].first_node;
960 }
961 }
962

963 if(i < len_shortest_subtour){
964 len_shortest_subtour = i;
965

966 for(j=0;j<nnodes;j++){
967 shortest_subtour[j] = subtour[j];
968 subtour[j] = -1;
969 }
970 }
971 }
972

973 i = 0;
974 while(shortest_subtour[i]!=-1){
975 i++;
976 }
977 int *temp = realloc(shortest_subtour, sizeof(int)*i);
978 if(temp == NULL){
979 PRINTERROR("Error: failed to realloc memory in subtour detection\n");
980 exit(1);
981 } else {
982 *stour = temp;
983 *size = i;
984 free(subtour);
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985 free(visited);
986 PRINTVERBOSE("Size of subtour: %d\n", i);
987 return 1;
988 }
989 }
990

991 /* debug functions, prints lots of infos about the status of the algorithm */
992 void print_current_status(){
993 int i, j;
994

995 for(i=0;i<nedges;i++){
996 PRINTVERBOSE("%d: %d, %d, %.2f, %d\n", i,
997 edges[i].first_node, edges[i].second_node,
998 edges[i].cost, working_sol[i]);
999 }

1000

1001 PRINTVERBOSE("----------------------------------------\n");
1002

1003 for(i=0;i<nnodes;i++){
1004 PRINTVERBOSE("Edges incident on %d (%d): ", i, nodes_length[i]);
1005 for(j=0;j<nodes_length[i];j++){
1006 PRINTVERBOSE("(%d %d)", edges[nodes[i][j]].first_node,
1007 edges[nodes[i][j]].second_node);
1008 }
1009 PRINTVERBOSE("\n");
1010 }
1011 }
1012

1013 /* prints final tour */
1014 void print_results(){
1015

1016 FILE *out = fopen ("results.dat","w");
1017

1018 int i, j, k, cur, prev, next;
1019

1020 cur = 0;
1021 for(i=0;i<nodes_length[0];i++){
1022 if(best_sol[nodes[0][i]]){
1023 next = nodes[0][i];
1024 }
1025 }
1026

1027 fprintf(out, "%d\n", cur);
1028

1029 for(i=0;i<nnodes-1;i++){
1030 prev = cur;
1031 cur = next;
1032

1033 fprintf(out, "%d\n", cur);
1034

1035 /* trovo il nuovo next */
1036 k = 0;
1037 while(k<nodes_length[cur] && !(best_sol[nodes[cur][k]]
1038 && edges[nodes[cur][k]].first_node != prev
1039 && edges[nodes[cur][k]].second_node != prev )){
1040

1041 k++;
1042 }
1043 /* aggiorno next */
1044

1045 if (edges[nodes[cur][k]].first_node == cur){
1046 next = edges[nodes[cur][k]].second_node;
1047 } else{
1048 next = edges[nodes[cur][k]].first_node;
1049 }
1050 }
1051 fclose(out);
1052 }
1053

1054 /* evaluates hamming distance between two solutions */
1055 int evaluate_hamming(int *first, int *second){
1056

1057 int i, to_return;
1058 to_return = 0;
1059 for(i=0;i<nedges;i++){
1060 if(first[i] != second[i]){
1061 to_return++;
1062 }
1063 }
1064 return to_return;
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1065

1066 }
1067

1068 int main(int argc, char **argv){
1069

1070 iteration = 0;
1071 tabu_change = 0;
1072 sol_update = 0;
1073 cpxnodes = 0;
1074 slave_curr_iter = 1;
1075

1076 int status;
1077 env = CPXopenCPLEX(&status);
1078 if(status){
1079 PRINTERROR("Error: failed to initialize CPLEX environment\n");
1080 exit(1);
1081 }
1082

1083 parseinput(argc, argv);
1084

1085

1086 if(use_z){
1087 status = CPXsetdblparam (env, CPX_PARAM_OBJDIF, 50000 - 2*nnodes -1);
1088 status = CPXsetintparam (env, CPX_PARAM_RINSHEUR, 50);
1089 intsollim = 0;
1090 } else if (intsollim){
1091 status = CPXsetintparam (env, CPX_PARAM_INTSOLLIM, 1);
1092 }
1093 status = CPXsetintparam (env, CPX_PARAM_NODELIM, maxnodecount_actual);
1094

1095 if ( use_slave ){
1096 kruskal_setup(nedges, nnodes, edges, &sorted_index);
1097 } else {
1098 sorted_index = NULL;
1099 }
1100

1101 if(DEBUG>0) print_current_status();
1102

1103 PRINTVERBOSE("Initial tour cost is: %.2f\n", get_cost(working_sol));
1104

1105 if (!DEBUG){
1106 printf("Initial graph: %d nodes, %d edges\n", nnodes, nedges);
1107 printf("Initial tour cost: %.2f\n", get_cost(working_sol));
1108 printf("Starting minimum percent improvement: %3.2f\n", min_pct_impr);
1109 printf("Iteration limit: %d, Time limit: %.0fs\n", max_iter, max_time);
1110 printf("Slave is %s; CPLEX_PARAM_INTSOLLIM is set to %s\n",
1111 use_slave?"ON":"OFF", intsollim?"1":"default");
1112 }
1113

1114 start_time = time(NULL);
1115

1116 while(iteration<max_iter && ((double)time(NULL)) - start_time<max_time){
1117 iteration++;
1118 tabu_change = 0;
1119 sol_update = 0;
1120 cpxnodes = 0;
1121 slave_curr_iter = 1;
1122

1123 if (!DEBUG && iteration%15==1){
1124 printf("Iter Master Slave Best Target PctImp Hamm");
1125 printf(" TabuSiz Nodes NodLim Elaps(s)\n");
1126 }
1127

1128

1129 PRINTVERBOSE("\nIteration %d started.\n", iteration);
1130

1131 PRINTVERBOSE("Calling solve_master...\n");
1132 solve_master();
1133 PRINTVERBOSE("solve_master done!\n");
1134

1135 if(DEBUG>1) print_current_status();
1136

1137 PRINTVERBOSE("Calling solve_slave...\n");
1138 solve_slave();
1139 PRINTVERBOSE("solve_slave done!\n");
1140

1141 if (DEBUG>1) print_current_status();
1142

1143 PRINTVERBOSE("Iteration %d done\n", iteration);
1144 PRINTVERBOSE("Cost of current solution: %.2f\n", get_cost(working_sol));
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1145

1146 if (!DEBUG) print_log_row(iteration,
1147 get_cost(curr_master), get_cost(curr_slave), get_cost(best_sol),
1148 sol_update, curr_target, min_pct_impr,
1149 evaluate_hamming(curr_master, curr_slave),
1150 tabu_size, cpxnodes, maxnodecount_actual,
1151 ((double)time(NULL)) - start_time);
1152 }
1153

1154 PRINTVERBOSE("\nStopping condition reached.\n");
1155 if(1){
1156 PRINTVERBOSE("Found a tour of cost less than the target\n");
1157 PRINTVERBOSE("Saving the tour in \"results.dat\"\n");
1158 print_results();
1159 }
1160 PRINTVERBOSE("Exiting...\n");
1161

1162 CPXcloseCPLEX(&env);
1163 }
1164

1165 void print_log_row(int iter, double m_cost, double s_cost, double best, int upd,
1166 double tar, double pctint, int hamm, int tabu_s, int cnodes, int maxnodes,
1167 double time_ela){
1168

1169 if(!m_cost){
1170 printf("%3d: %s %s %7.1f%s %7.1f %3.2f %s",
1171 iteration, "-", "-", best, upd?"*":" ",tar, pctint, " -");
1172 printf("%2d %4d %4d %4.0f\n", tabu_size, cnodes, maxnodes,
1173 time_ela);
1174 }
1175

1176 else if (m_cost == s_cost){
1177 printf("%3d: %7.1f %s %7.1f%s %7.1f %3.2f %s",
1178 iteration, m_cost, "-", best, upd?"*":" ",tar, pctint, " -");
1179 printf("%2d %4d %4d %4.0f\n", tabu_size, cnodes, maxnodes,
1180 time_ela);
1181 }
1182

1183 else{
1184 printf("%3d: %7.1f %7.1f %7.1f%s %7.1f %3.2f %5d",
1185 iteration, m_cost, s_cost, best, upd?"*":" ",tar, pctint, hamm);
1186 printf("%2d %4d %4d %4.0f\n", tabu_size, cnodes, maxnodes,
1187 time_ela);
1188 }
1189 }
1190

1191

1192 void free_and_null(char **ptr){
1193 if (*ptr!=NULL){
1194 free(*ptr);
1195 *ptr = NULL;
1196 }
1197 }

b.2 kruskal implementation
b.2.1 kruskal.h

1 #ifndef EDGE
2 #define EDGE
3

4 /* lato del grafo */
5 typedef struct edge{
6 double cost; //costo del lato
7 int first_node; //primo nodo
8 int second_node; //secondo nodo
9 } edge;

10

11 #endif
12

13 typedef struct data{
14 double cost;
15 int index;
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16 } data;
17

18 int quick_sort(data *arr, int elements);
19 int kruskal_setup(int nedges, int nnodes, edge *edges, int **sorted_index);
20 int kruskal(int nedges, int nnodes, edge *edges, int *sorted_index, int **tree);

b.2.2 kruskal.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kruskal.h"
4

5 #define MAX_LEVELS 1000
6

7 int quick_sort(data *arr, int elements) {
8

9 data piv;
10 int beg[MAX_LEVELS], end[MAX_LEVELS], i=0, L, R ;
11

12 beg[0]=0; end[0]=elements;
13 while (i>=0) {
14 L=beg[i]; R=end[i]-1;
15 if (L<R) {
16 piv=arr[L]; if (i==MAX_LEVELS-1) return 1;
17 while (L<R) {
18 while (arr[R].cost>=piv.cost && L<R) R--; if (L<R) arr[L++]=arr[R];
19 while (arr[L].cost<=piv.cost && L<R) L++; if (L<R) arr[R--]=arr[L];
20 }
21 arr[L]=piv; beg[i+1]=L+1; end[i+1]=end[i]; end[i++]=L;
22 }
23 else {
24 i--;
25 }
26 }
27 return 0;
28 }
29

30 /* sorts the list, basically just a mergesort */
31 int kruskal_setup(int nedges, int nnodes, edge *edges, int **sorted_index){
32

33 data *temp_list = malloc(sizeof(data)*nedges);
34

35 int i;
36 for(i=0;i<nedges;i++){
37 temp_list[i].cost = edges[i].cost;
38 temp_list[i].index = i;
39 }
40

41 int status = quick_sort(&temp_list[0], nedges);
42 if(status){
43 printf("Error: quicksort failed\n");
44 exit(1);
45 }
46

47 *sorted_index = malloc(sizeof(int)*nedges);
48 for(i=0;i<nedges;i++){
49 (*sorted_index)[i]=temp_list[i].index;
50 }
51 free(temp_list);
52 return 0;
53

54 }
55

56 int kruskal(int nedges, int nnodes, edge *edges, int *sorted_index, int **tree){
57

58 int i;
59

60 int *prev = malloc(sizeof(int)*nnodes);
61 *tree = malloc(sizeof(int)*nedges);
62

63 for(i=0;i<nnodes;i++){
64 prev[i]=-1;
65 }
66

67 for(i=0;i<nedges;i++){
68 (*tree)[i]=0;
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69 }
70

71 int head = 0;
72 int temp;
73 int node1, node2;
74 int selected = 0;
75

76 while (selected!=nnodes-1){
77

78 temp = sorted_index[head];
79 head++;
80

81 node1 = edges[temp].first_node;
82 node2 = edges[temp].second_node;
83

84 while(prev[node1]>-1){
85 node1 = prev[node1];
86 }
87

88 while(prev[node2]>-1){
89 node2 = prev[node2];
90 }
91

92 if(node1!=node2){
93 (*tree)[temp]=1;
94 prev[node2]=node1;
95 selected++;
96 }
97 }
98 free(prev);
99 }

b.3 instance generation
b.3.1 script.sh

1 #!/bin/bash
2

3 #$1=nnods, $2=nedges, $3=outfile
4

5 ./edgegen -k $1 -p ${3}_pointcloud_nontsp.dat
6

7 rm -f ${3}_pointcloud_tsp.dat ${3}_pointcloud_numbered.dat
8 awk ’{printf "%d %s\n", NR-1, $0}’ < ${3}_pointcloud_nontsp.dat
9 >> ${3}_pointcloud_numbered.dat

10 echo "NAME : concorde_$1" >> ${3}_pointcloud_tsp.dat
11 echo "COMMENT : $1 nodes, randomly generated by concorde" >> ${3}_pointcloud_tsp.dat
12 echo "TYPE : TSP" >> ${3}_pointcloud_tsp.dat
13 echo "DIMENSION : $1" >> ${3}_pointcloud_tsp.dat
14 echo "EDGE_WEIGHT_TYPE : EUC_2D" >> ${3}_pointcloud_tsp.dat
15 echo "NODE_COORD_SECTION" >> ${3}_pointcloud_tsp.dat
16 tail -n +2 ${3}_pointcloud_numbered.dat >> ${3}_pointcloud_tsp.dat
17

18 ./edgegen -G -o ${3}_tour_toconvert.dat ${3}_pointcloud_tsp.dat
19 ./converter ${3}_tour_toconvert.dat ${3}_tourfile.dat
20 ./edgegen -e $2 -o ${3}_randomedges_tomerge.dat ${3}_pointcloud_tsp.dat
21 ./merger ${3}_tour_toconvert.dat ${3}_randomedges_tomerge.dat $2 ${3}_edgefile.dat
22 rm ${3}_tour_toconvert.dat ${3}_randomedges_tomerge.dat ${3}_pointcloud_nontsp.dat
23 ${3}_pointcloud_numbered.dat
24 exit

b.3.2 converter.c

1 #include <stdio.h>
2 #include <stdlib.h>
3

4

5

6 int main(int *argc, char **argv){



b.3 instance generation 53

7

8 FILE *in = fopen(argv[1], "r");
9 int nnodes, nedges;

10

11 fscanf(in, "%d", &nnodes);
12 fscanf(in, "%d", &nedges);
13

14 int *edges = malloc(sizeof(int)*2*nedges);
15

16 int i, j, dummy;
17

18 for(i=0;i<nedges;i++){
19

20 fscanf(in, "%d", &edges[2*i]);
21 fscanf(in, "%d", &edges[2*i+1]);
22 fscanf(in, "%d", &dummy);
23 }
24

25 fclose(in);
26 FILE *out = fopen(argv[2], "w");
27

28 int cur, prev, next;
29

30 fprintf(out, "%d\n", edges[0]);
31 cur = edges[0];
32 next = edges [1];
33 //printf("%d %d\n", cur, next);
34

35 for(i=0;i<nedges-1;i++){
36

37 prev=cur;
38 cur=next;
39 fprintf(out, "%d\n", cur);
40

41 for(j=0;j<nedges;j++){
42

43 if(edges[2*j]==cur && edges[2*j+1]!=prev) break;
44 if(edges[2*j+1]==cur && edges[2*j]!=prev) break;
45 }
46

47 next = edges[2*j]==cur ? edges[2*j+1] : edges[2*j];
48 }
49 close(out);
50

51 }

b.3.3 merger.c

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 /* argv[1]="tour file", argv[2]=random file, argv[3]=out file*/
5 int main(int *argc, char **argv){
6

7 int max_edges = atoi(argv[3]);
8

9 FILE *in = fopen(argv[1], "r");
10 int nnodes, nedges;
11

12 fscanf(in, "%d", &nnodes);
13 fscanf(in, "%d", &nedges);
14

15 int *edges = malloc(sizeof(int)*2*nedges);
16 int *weights = malloc(sizeof(int)*nedges);
17

18 int i, j, dummy;
19

20 for(i=0;i<nedges;i++){
21

22 fscanf(in, "%d", &edges[2*i]);
23 fscanf(in, "%d", &edges[2*i+1]);
24 fscanf(in, "%d", &weights[i]);
25 }
26

27 fclose(in);
28
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29 FILE *in2 = fopen(argv[2], "r");
30 int nnodes2, nedges2, nondupedges;
31

32 fscanf(in2, "%d", &nnodes2);
33 fscanf(in2, "%d", &nedges2);
34

35 nondupedges=0;
36

37 int *edges2 = malloc(sizeof(int)*2*nedges2);
38 int *weights2 = malloc(sizeof(int)*nedges2);
39

40 int first, second, weight, duplicate;
41 for(i=0;i<nedges2;i++){
42 duplicate = 0;
43

44 fscanf(in, "%d", &first);
45 fscanf(in, "%d", &second);
46 fscanf(in, "%d", &weight);
47

48 /* elimino duplicati */
49 for(j=0;j<nedges;j++){
50 if(first==edges[2*j] && second==edges[2*j+1]) {duplicate = 1;
51 break;
52 }
53 }
54

55 if (duplicate == 1) { continue;}
56 else{
57 edges2[2*nondupedges]=first;
58 edges2[2*nondupedges+1]=second;
59 weights2[nondupedges]=weight;
60 nondupedges++;
61 }
62 if (nondupedges + nedges == max_edges) break;
63 }
64

65 fclose(in2);
66

67 FILE *out = fopen (argv[4], "w");
68

69 fprintf(out, "%d %d\n", nnodes, nedges + nondupedges);
70

71 for(i=0;i<nedges;i++) fprintf(out, "%d %d %d\n", edges[i*2],
72 edges[i*2+1], weights[i]);
73

74 for(i=0;i<nondupedges;i++) fprintf(out, "%d %d %d\n", edges2[i*2],
75 edges2[i*2+1], weights2[i]);
76 fclose(out);
77

78 }
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