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Abstract

Human motion trajectory prediction plays a crucial role in enabling robots to
navigate and interact safely and efficiently in crowded environments: proactive
decision-making, obstacle avoidance, and natural human-robot interaction ben-
efit greatly from the ability to adapt the robot’s motion to the future. However,
human motion trajectory prediction in social navigation poses significant chal-
lenges due to the complex nature of human behavior and the dynamic nature
of social interactions. Many approaches focus on understanding how humans
move in the world by learning how they act on the map from a bird-eye cam-
era placed on a tall structure. Therefore, adapting these methods based on the
onboard sensors of the robots is not straightforward: it is necessary that they
possess a map of the area in which they are working and that they update it with
the humans they detect using their sensors. Only after that, predictions can be
made. Given the dynamics of crowded environments with both humans and
obstacles moving often and at different speeds, the computational complexity
due to the introduction and the continuous update of these maps could affect
the robot’s performance and reactivity. Moreover, people’s behavior changes
dramatically in relation to the context in which they are moving. To face these
challenges, we propose a method for predicting human motion trajectories using
only the robot’s onboard sensors, namely a 2D lidar and an RGB-D camera, and
based on context and on deep learning techniques trained on a state-of-the-art
dataset, JackRabbot. The method employs a Long Short Term Memory model
for learning trajectories, while the network learns in parallel from the data ex-
tracted from the context of the environment, using unsupervised learning. The
method is then tested on popular social navigation datasets, ATC, ETH and UCY.
Results show that this approach is slightly better when compared to a similar
model based only on trajectory-learning. Finally, the model is tested in real life
on the TIAGo++ robot situated at the Autonomous Robotics Laboratory of the
University of Padova.





Abstract

La previsione delle traiettorie di movimento delle persone gioca un ruolo cru-
ciale nel consentire ai robot di navigare e interagire in modo sicuro ed efficiente in
ambienti affollati: il processo decisionale, l’elusione degli ostacoli e l’interazione
naturale uomo-robot traggono grandi vantaggi dalla capacità di adattare il movi-
mento del robot al futuro. Tuttavia, la previsione della traiettoria del movimento
umano nella navigazione sociale pone sfide significative a causa della natura
complessa del comportamento umano e della natura dinamica delle interazioni
sociali. Molti approcci si concentrano sulla comprensione di come gli esseri
umani si muovono nel mondo imparando come agiscono sulla mappa da una
telecamera posizionata su una struttura alta. Adattare quindi questi metodi ai
sensori di bordo dei robot non è semplice: è necessario che questi posseggano
una mappa dell’area in cui lavorano e la aggiornino con gli esseri umani che
rilevano tramite i loro sensori. Solo dopo si potranno fare delle previsioni.
Considerata la dinamica degli ambienti affollati, con esseri umani e ostacoli che
si muovono spesso e a velocità diverse, la complessità computazionale dovuta
all’introduzione e al continuo aggiornamento di queste mappe potrebbe in-
fluenzare le prestazioni e la reattività del robot. Inoltre, il comportamento delle
persone cambia radicalmente in relazione al contesto in cui si muovono. Per
affrontare queste sfide, proponiamo un metodo per prevedere le traiettorie del
movimento umano utilizzando solo i sensori di bordo del robot, vale a dire un
lidar 2D e una fotocamera RGB-D, e basato sul contesto e su tecniche di deep
learning addestrate su un dataset all’avanguardia, JackRabbot. Questo approc-
cio sfrutta un modello Long Short Term Memory per imparare dalle traiettorie
delle persone, mentre la rete impara in parallelo dalle informazioni estratte dal
contesto attraverso metodi di unsupervised learning. Questo approccio è poi
testato su importanti dataset usati nella social nvigation, ATC, ETH e UCY. I
risultati dimostrano che questo approccio è leggermente migliore di un modello
simile ma basato solo sulle traiettorie. Infine, il progetto è testato dal vivo sul
robot TIAGo++ presente nel laboratorio di Autonomous Robotics dell’Università
degli Studi di Padova.
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1
Introduction

1.1 Human-Aware Navigation

The problem of human presence in the environment may seem negligible:
one could suppose that a human, after all, can be treated as a dynamic obstacle
moving in the environment. However, in reality, that is not the case. Humans
add a whole level of complexity to the robot navigation task: when dealing with
humans it is necessary to take into account both physical safety and psycho-
logical safety. Physical safety consists in maintaining a minimum safe distance
between robots and humans at all times, while to respect psychological safety
the robot cannot afford to cause stress or annoyance to human beings, while
also behaving as naturally as possible. To better characterize these rules, the
following definitions are used in the literature [25]:

• Comfort: the absence of annoyance and stress for humans in interactions
with robots;

• Naturalness: the similarity between robots and humans in low level be-
havior patterns;

• Sociability: the adherence to explicit high-level cultural conventions.

In short, in order to avoid discomfort to humans it is not sufficient to im-
plement obstacle avoidance: the robot must also respect social norms and its
intentions must be easily recognizable, as shown in Figure 1.1. Consequently,
robotics has become an interdisciplinary field, involving mainly engineering but
also, to a certain degree, psychology and sociology. In particular, the field of

1



1.1. HUMAN-AWARE NAVIGATION

proxemics has proven useful for robotics. Proxemics [13] is the study of human
use of space and the effects that population density has on behaviour, communi-
cation, and social interaction. According to proxemics, humans respect a virtual
personal space around each other, and this model can be applied to robotics
to comply with the concept of psychological safety. Another aspect of humans
is their unpredictability: while generic dynamic obstacles behave similarly to
one another, humans are highly variable in terms of personalities, cultures and
behaviors. Different humans react differently to a stimulus, move differently
and behave differently in the environment. This adds a layer of complexity in
trying to generalize a robot behavior so that it is socially acceptable for every-
one. Finally, other minor unrelated problems that may occur when dealing with
humans regard the difficulty in detecting and tracking humans generally due
to sensor types or position. For example, if the sensor is installed on the base
of the robot, it may only be able to detect the legs of a person; if it is higher it
may see only the head. Similarly, if the sensor is for example a camera, illumina-
tion changes may cause difficulties in human detection. The research field that
embeds all the previously described aspects is known as Social Navigation.

Figure 1.1: An example of good behavior in social navigation. The planner
accounts for the possibility of encountering a person in the blind spot behind
the wall (a), and modifies the trajectory as soon as the robot detects the human
(b) [50].

1.1.1 Human-Robot Interaction

In some cases, robots also have to interact with people, for example by
handing them objects. In this scenario, the concepts of maintaining a minimum
distance from humans exposed previously need to be revised. The robot needs

2



CHAPTER 1. INTRODUCTION

to grasp the context in which it is operating and act accordingly. In general,
human-robot interactions (HRI) can be of three types:

• Physical: the robot and the person are in direct or indirect physical contact.
The focus is on guaranteeing the safety of the humans.

• Cognitive: robot and person are involved in joint work.

• Social/emotional: the robot influences how the human responds both
explicitly or implicitly.

In the cognitive type of interaction, the robot and the person are thinking and
reacting to the same world and task, and this type of interaction to accomplish
a goal was named joint cognitive system. These cognitive interactions can be
divided in:

• Taskable agent: the robot is treated as an independent agent with a certain
degree of autonomy and initiative.

• Remote presence: the robot is an extension of the human in an environ-
ment in which the human cannot be.

• Assistive agent: the robot is alongside the human to assist them.

HRI research includes a psychological aspect as well: for example, if the
robot is a highly realistic humanoid, some people may feel a sense of uneasiness
when interacting with it. This phenomenon is know as the "uncanny valley"
effect [37].

1.2 People Motion Prediction

As explained, simply treating people as generic obstacles to avoid during
navigation is not enough. Therefore, how do we deal with people in the envi-
ronment in which we want to deploy our robot?

Firstly, it is important to address the problems related to human behaviour.
Human behaviour is extremely unpredictable and highly dynamic: each person
has individual characteristics, partly defined by one’s culture, language, body
and the situation in which they are moving. People also have social interactions
with other people, which sometimes include moving in pairs, groups or stand-
ing still, waiting and so on. Every person movement derives from their past
experiences and future intentions.

However, to make a robot operate in a crowded space, we surely need to
address the unpredictability and dynamicity of human motion. Fortunately,

3
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there are ways to use a person’s movement to predict their future positions in
the world, so that we can ensure that our robot will behave as socially as possible.

In origin, this task would be accomplished using probabilistic models or
social attention mechanisms: these approaches tried to model uncertainty, the
former via probability and the latter via information retrieved from neighbour-
ing agents in the environment.

Recently, with the explosion in popularity of machine learning, new method-
ologies quickly became popular. For example, one could employ reinforcement
learning techniques to have the robot learn optimal decision-making policies
to avoid people and satisfy social navigation constraints during movement.
Another possibility involves using data-driven approaches, i.e. methods that
leverage machine learning on large datasets to accurately predict the trajectories
taken by people.

1.3 Applications

The social navigation with motion prediction field of study can be applied
to many different fields:

• Industry: industrial robots are already very popular in manufacturing, but
they typically are automated robots that quickly perform repetitive tasks
and are sealed off from humans in their environment to avoid incidents
and injuries. Autonomous robots could be employed alongside humans to
aid them in moving heavy objects or operating complex tools, for example
like in Figure 1.2;

• Services: service robots are designed to assist humans with various tasks,
such as cleaning, cooking, or providing care to the elderly or disabled.
These robots must navigate around humans and objects in a home or care
environment safely;

• Autonomous driving: autonomous driving vehicles have gained attention
in the last decade. Roads are usually populated by humans and therefore
it is necessary to consider them while navigating to travel safely;

• Healthcare: healthcare robots are designed to assist medical professionals
with tasks such as patient monitoring, medication delivery, and surgical
procedures. Human-aware navigation enables these robots to navigate
around patients and healthcare personnel safely. As an example, see
Figure 1.3;

• Agriculture: autonomous robots can be used in agricultural tasks. For
example, milking robots can assist humans when dealing with animals.

4



CHAPTER 1. INTRODUCTION

Another example of autonomous mobile robot used in agriculture is shown
in Figure 1.4;

• Space exploration: as NASA plans to set foot on the Moon again with
the Artemis program, and as Mars is the target of future crewed missions,
rovers capable of working alongside humans(for example, in Figure 1.5)
will be crucial for the success of these operations.

• Education: robots can be employed in classrooms or in museums. MIN-
ERVA [54] is an example of robot deployed in a museum.

These are only some of the possible uses of autonomous social robots. With
future hardware and software advancements, the list of possible applications of
this field can only grow.

Figure 1.2: An example of autonomous robotics applied to industry.

Figure 1.3: An example of autonomous robotics applied to healthcare.

5
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Figure 1.4: An example of autonomous robotics applied to agriculture.

Figure 1.5: An example of autonomous robotics applied to space exploration.

6
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1.4 Challenges

Despite substantial advancements in the field, social navigation retains many
challenges.

Predicting the behavior of other agents and planning a path can be ap-
proached both as independent or linked processes [37]. In decoupled prediction
and planning, the robot predicts the movement of the other agents but does not
take into account how they react to its action: in the context of social navigation,
this means treating humans as simple dynamic obstacles that do not respond
to the agent actions. This causes some problems when dealing with humans:
for example, the robot tends to enter a loop of unpredictability in which as the
person moves unexpectedly the robot acts unexpectedly as well, which in turn
produces another unexpected behavior from the human and so on. This os-
cillatory behavior is known as "reciprocal dance". Other examples include the
robot blocking the person or disturbing their movement. In time uncertainty
models for prediction became more and more complex, but treating humans
as non-reactive dynamic obstacles was still problematic: at some point the un-
certainty would explode and no viable path would be found ("freezing robot
problem"). In order to avoid these issues a new approach involving Coopera-
tive Collision Avoidance was proposed. This method included either explicit or
implicit approaches. Explicit approaches use information about the structure
of multi-agent collision avoidance to couple prediction and planning [37], for
example with topological or geometric representations to model the coupling
of multiple agent trajectories, or using game theory techniques. Implicit ap-
proaches use information about the principles underlying cooperative collision
avoidance but do not set explicit constraints on its structure [37], for example by
employing Reinforcement Learning models. In short, explicit approaches treat
collision avoidance in a structured way, setting a-priori rules to follow, while
implicit approaches rely on a learning model that learns the fundamentals of
cooperative collision avoidance, without setting fixed rules to follow.

Human-robot coupling is more than a limit: it is a core abstraction for so-
cial navigation architectures. Unfortunately, coupled models become quickly
computationally intractable, as each agent influences and is influenced by the
other agents’ movement. The trade-off between safety and efficiency in coupled
models has many global optima with the same value: this means that addi-
tional constraints are required for optimization and it is not guaranteed that the
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coupled algorithm is doing what we want it to do.
Existing models often make the assumption that all agents in the environment

take decisions with the same planning scheme. This is not true in general,
humans behave in many different ways and the robot should be able to account
for that.

The context in which the robot is situated has an effect on the planner. Differ-
ent shapes of the space, timings or semantic maps require different behaviours
from the robot and the planner, since crowded interactions are affected by those
changes.

In addition to future location hints, intentions offer context-level signals that
can aid pedestrians interpretation of robot motions [10]. Sometimes, pedestrians
would even miss the robot if it did not signal its motion or its intention. Ideally,
the intentions of the robot should be conveyed to pedestrians effectively to allow
safe social navigation.

The concept of social spaces comes from proxemics [13]. Hall described four
zones which denote the level of intimacy for interpersonal interactions:

• Intimate space: for embracing, touching or whispering, 0-0.5 meters;

• Personal space: for interactions among good friends or family, 0.5-1 meters;

• Social space: for interactions among acquaintances, 1-4 meters;

• Public space: used for public speaking, 4 or more meters.

Figure 1.6 represents social spaces. Robots must respect these spaces to sat-
isfy the psychological safety constraints imposed by social navigation. Recently,
research has been focusing on grouping of pedestrians: robots must also respect
spaces generated within groups of people.

8
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Figure 1.6: Hall social spaces.
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1.5 Aim of the thesis

With the rapid advancements in robotics, mobile robots are becoming more
and more integrated into daily life. As the environment in which these robots
operate is highly dynamic and there are many constraints to be accounted for,
regular planners are not enough anymore. Now planners need to generate
effective trajectories, which consider the dynamics of the world in which the
robot is moving and permit safe motions by taking into account human presence
in their environment as well. Thus, the goal of this thesis is to propose an
innovative method based on context for predicting the movement of people, so
that planners can account for their trajectory and the robot can behave socially
in a crowded environment.

The approach proposed in this thesis is part of the data-drive approaches:
this work focuses on a data-driven approach that exploits a recurrent deep
learning model to predict trajectories of people moving in the environment, and
allows the robot to use these trajectories during motion planning.

Our approach is based on context: some of the key elements that influence
people motion are the circumstances in which this motion is taking place. These
circumstances include the environment where the person is moving, the relation
with other people in the vicinity of the moving person, and the reason that drives
the person’s movement. We gather these important pieces of information via
unsupervised learning and use this data alongside a classical trajectory-only
recurrent learning model. This fusion of information from environment and
past motion is then used to predict the future movements of people and the
context of the environment. It is necessary that this prediction is performed as
fast as possible so that it is possible to operate in real-time on the robot.

1.6 Structure of the thesis

This thesis is organized as follows: Chapter 1 contains a brief introduction
on the field of human-aware navigation, on its challenges and applications, and
on the the aim of this work.

In Chapter 2, a number of state-of-the-art approaches for social navigation
and trajectory prediction is analyzed, with the objective of giving a general idea
on the current state of research.

10



CHAPTER 1. INTRODUCTION

In Chapter 3 the methods and the tools used for accomplishing the goal of
the thesis in terms of both hardware and software are illustrated, including the
ROS framework, the TIAGo robot, standard simulators such as RViz and popular
ones such as PedSim.

Chapter 4 contains an brief description of the datasets used for training and
testing, including the pre-processing of JackRabbot.

Chapter 5 is the core of this work: a formulation of the proposed context-
based approach in chapter is explained, along with an overview on the structure
of the learning models chosen for training and testing.

Chapter 6 contains results collected from testing on the ATC and ETH/UCY
datasets, as well as an explanation of the tests executed on the real TIAGo robot
at the Autonomous Robotics Laboratory of the University of Padova.

Chapter 7 concludes this thesis with some final observations and proposi-
tions for a possible future evolution of this work.

Code is available at https://github.com/Andrea-Savio/trajectory_prediction.git.
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2
State of the Art

The capability of robots to navigate and interact with people in social set-
tings has become increasingly crucial in the current rapidly developing field of
robotics. This chapter is reserved to the exploration of some of the state-of-the-
art approaches, including classical approaches for path planning and advanced
methods involving learning models for social navigation, including trajectory
prediction for social navigation.

2.1 Classical path planning

As a starting point, classical path planning algorithms can be tested and
compared to assess if they satisfy social navigation constraints and if they can
be applied to move a robot in crowded scenarios. These algorithms are namely
Dĳkstra, A*, Rapidly exploring Random Tree (RRT) 1 and Artificial Potential
Fields (APF) 2 [61]. Dĳkstra’s algorithm and A* are very famous graph search
algorithms. Dĳkstra will generate a path of minimum length at the cost of com-
putation time, since it computes the shortest path to every possible node of the
graph and therefore it has to search through many, potentially all, nodes while
A* uses heuristics to estimate the current distance from the goal and to guide the
expansion in the best direction, obtaining an almost-minimum path with lower
computation costs, and even improved versions were developed over the years
[66]. RRT is a sampling-based probabilistic search method, very computation-
ally efficient but lacking in terms of optimality and predictability. Finally, the
APT method is a very popular planner with great avoidance capabilities: each
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obstacle is assigned a high potential value while the goal has the lowest potential
on the map, and the robot will try to move to the lowest potential following the
gradient. Each of these methods has fundamentally the same issue: it does not
take into account human necessities. A*, Dĳkstra and RRT are very straightfor-
ward global planning techniques: without a local planner, obstacle avoidance is
treated as a reactive behavior based only on the sensor readings. As discussed
previously, this is not enough for social navigation. On the other hand, APT is
a local planner built to evade obstacles, but it does not consider human motion,
it just follows the gradient down to the minimum potential. This could get the
robot in the way of humans or fail/oscillate in certain scenarios. An example of
trajectories planned by these classical algorithms can be seen in Figure 2.1.

Figure 2.1: Example of trajectories planned by some classical path planning
algorithms[61].
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Algorithm 1 Rapidly-exploring Random Tree algorithm
Require: 𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝, Graph T
𝑇.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝑥𝑠𝑡𝑎𝑟𝑡)
while 𝑥𝑛𝑒𝑤 ≠ 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 do

𝑥𝑟𝑎𝑛𝑑 ← 𝑅𝑎𝑛𝑑𝑜𝑚.𝑆𝑡𝑎𝑡𝑒(𝑀𝑎𝑝);
𝑥𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡.𝑇𝑟𝑒𝑒𝑁𝑜𝑑𝑒(𝑥𝑟𝑎𝑛𝑑 , 𝑇);
𝑥𝑛𝑒𝑤 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡.𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑟𝑎𝑛𝑑);
if 𝐶ℎ𝑒𝑐𝑘𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑥𝑛𝑒𝑤 , 𝑀𝑎𝑝) then
𝑇.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝑥𝑛𝑒𝑤);
𝑇.𝐴𝑑𝑑𝐸𝑑𝑔𝑒(𝑥𝑛𝑒𝑤);

end if
end while
𝑝𝑎𝑡ℎ ← 𝐺𝑒𝑡𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑇, 𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑡𝑎𝑟𝑔𝑒𝑡);
return path;

Algorithm 2 Artificial Potential Fields algorithm
Require: 𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑀𝑎𝑝, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑜𝑜𝑟, 𝑅𝑜𝑏𝑜𝑡𝑉𝑒𝑙, 𝛿𝑜𝑏𝑠 , 𝛿𝑡𝑎𝑟

𝑂𝑏𝑠.𝑃𝑜𝑡 ← 𝐺𝑒𝑡𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑃𝑜𝑡(𝑀𝑎𝑝, 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝐶𝑜𝑜𝑟);
𝑇𝑎𝑟.𝑃𝑜𝑡 ← 𝐺𝑒𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑡(𝑀𝑎𝑝, 𝑥𝑡𝑎𝑟𝑔𝑒𝑡);
𝑥𝑝𝑜𝑠 ← 𝑥𝑠𝑡𝑎𝑟𝑡 ;
while 𝐺𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑝𝑜𝑠 , 𝑥𝑡𝑎𝑟𝑔𝑒𝑡) ≥ 𝛿𝑡𝑎𝑟 do

if 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑜𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒(𝑥𝑝𝑜𝑠 ≤ 𝛿𝑜𝑏𝑠 then
𝑥𝑔𝑟𝑎𝑑𝑠 ← 𝐺𝑒𝑡𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑇𝑎𝑟.𝑃𝑜𝑡 − 𝑂𝑏𝑠.𝑃𝑜𝑡);

else
𝑥𝑔𝑟𝑎𝑑𝑠 ← 𝐺𝑒𝑡𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝑇𝑎𝑟.𝑃𝑜𝑡);

end if
𝑥𝑝𝑜𝑠 ← 𝑥𝑝𝑜𝑠 + 𝑅𝑜𝑏𝑜𝑡𝑉𝑒𝑙 × 𝑥𝑔𝑟𝑎𝑑𝑠 ;
𝑝𝑎𝑡ℎ ← 𝑥𝑝𝑜𝑠 ;

end while
return path;
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2.2 Deep Reinforcement Learning

With the advancements in machine learning, new models have been tested
to accomplish the social navigation task. Deep Reinforcement Learning became
increasingly popular in social navigation [68]. This is due to the capability
of working without a map and not depending much on sensor accuracy. In
reinforcement learning, the agent tries to maximize the accumulated reward
while obtaining a reward value based on its interaction with the environment.
This agent could replace the localization, map building and local path planning
modules of the navigation framework. DRL methods can be divided in value-
based and policy-based approaches: value-based DRL obtains the agent’s policy
by updating the value function, while policy-based DRL optimizes the policy
along the gradient to maximize the reward value. Value-based methods include
Deep-Q Network (DQN) and Double DQN (DDQN), while policy-based meth-
ods include Deep Deterministic Policy Gradient (DDPG) and Asynchronous
Advantage Actor-Critic (A3C). DQN and DDQN, as the name suggests, employ
neural networks to learn to select the action of highest value (and also to evaluate
it in DDQN). DDPC optimizes the policy via its gradient, while in A3C an actor
selects an action using the policy gradient method and a critic evaluates the cho-
sen action. In general, DRL techniques have proven their effectiveness, but are
not perfect. Training deep learning models usually has very high costs in terms
of computational effort, and as the models become more and more complex (for
example by using RNNs, LSTMs or GRUs for memory ability) the costs increase
excessively. Their effectiveness is also influenced by the gap between the real
world and the virtual world in which the model was trained. Other approaches
focus on estimating body, face, hands and feet to determine the activity that the
person is engaging (standing, sitting, etc.) [41]. Figure 2.2 shows a possible
framework used by deep reinforcement learning approaches.

2.3 Proactive Social Motion Model

Social Force Models (SFM) are a useful way to drive a mobile robot in
high density conditions(see Figure 2.3) as they have reasonable computational
costs[55]. The motion of pedestrians can be described as subject to social forces.
These forces are a measure for the internal motivations of the individuals to per-

16



CHAPTER 2. STATE OF THE ART

Figure 2.2: DRL-based navigation framework[68].

form certain actions. Social cues and social signals can be incorporated into the
motion model, but SFM only deals with human features extracted from a single
individual rather than the social characteristics of human-object and human-
group interactions, causing a lack in robustness when working in situations
with large groups of people. The solution proposed in [55] avoids this problem
by extending the classical SFM with a human detection/tracking module and
a social interaction module that identifies human interactions with objects and
groups.

Figure 2.3: The motion of pedestrians is modeled using social forces.

17



2.4. ANTICIPATIVE MODELS

2.4 Anticipative Models

Another approach is to implement a way of predicting the future movement
of dynamic obstacles. These methods take the name of anticipative strategies
[11].

Anticipation is the ability to react taking into account not only for actual
situations, but also a prediction for a future time window.

These methods are Anticipative Turn (AT) [11], Anticipative Robot and Pedes-
trian’s Propagation (ARP) [11], Anticipative Pedestrian’s Propagation (APP) [11],
all represented in Figure 2.4. They propagate the robot and the human agents
during a certain number of time steps in the local map (specifically AT propa-
gates only the robot, ARP both the robot and the human agents and APP robot
and agents with constant velocity). These strategies resulted quite successful
both in simulated and in real environments, and in particular APP is able to
avoid agents moving at up to 18 km/h in some situations, or even at higher
velocities with a long-range sensor. The limit of 18 km/h is due to the fact
that at that speed a robot equipped with a normal lidar sensor has less than
a second to react, making it very difficult to avoid the incoming obstacle. In-
door experiments were performed where the robot encounters frontally and
perpendicularly humans.

Figure 2.4: Model scheme of anticipative strategies implemented in the DRL
robot navigation framework [11].

2.5 HATEB-2

HATEB-2 is a new framework for planning in social navigation [53]. It is
based on the Timed-Elastic-Band approach[45][16], an efficient way of generat-
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Figure 2.5: Narrow passage scenario in which the robot backs off to make way
for the person [53].

ing a time-optimal trajectory by merging states, control inputs and time inter-
vals. HATEB builds on TEB (see Algorithm 3) by also planning for both humans
and robot, thus enabling human prediction, and HATEB-2 improves HATEB by
adding decision making capabilities on top of planning. It works in 3 modalities
named Single-Band, Dual-Band and VelObs. In Single-Band mode, the elastic
band is applied only to the robot. This mode is the least computationally ex-
pensive of the 3 and is used when the robot is far from people. In Dual-Band
mode, elastic bands are applied to all human agents and robot. Trajectories are
generated simultaneously and the robot adapts itself to the predicted goals and
motion of the humans. When running in this mode, the robot could encounter
the entanglement problem: as HATEB assumes that all agents are continuously
moving, if the humans stand still the robot stops and waits for their action, ig-
noring other solutions. To avoid this problem, the VelObs mode was introduced.
VelObs works similarly to Dual-Band, except for the fact that the bands are added
on the humans and their trajectories are predicted only if they are moving. The
resulting prediction of the trajectories assumes that the moving people will keep
moving at constant speed for the duration of the prediction window. Switching
between these modes enables robots to find a solution for many complex social
navigation problems. An an example, in Figure 2.5 HATEB-2 propagates both
its and the person’s future positions and the robot understands it needs to move
backwards to let the human pass. In general, the results of the experiments have
proven that HATEB-2 performs better than HATEB [53].
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Figure 2.6: Transitions between modes in HATEB-2[53]. Dist is the current
distance between the closest human and the robot, DistMin is the minimum
value of dist to add a double band and DistThreshold is the minimum cutoff
dist to initiate transition between Dual Band and VelObs. H vel is the velocity
of human [53].

Algorithm 3 Timed-Elastic-Band procedure
Require: trajectory b, 𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥 𝑓 𝑖𝑛𝑎𝑙

Initialize or update trajectory;
for all Iterations 1 to 𝐼𝑡𝑒𝑏 do

Adjust length n, resp. d of the trajectory;
𝑏∗← 𝑆𝑜𝑙𝑣𝑒𝑁𝐿𝑃(𝑏);
Check feasibility;
return (sub)optimal TEB 𝑏∗ and action 𝑢∗1;

end for
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2.6 NeuroSyM

To further advance the field of human motion prediction, the authors of [39]
propose a new neuro-symbolic approach that uses a-priori information on the
interactions between observed agents in the environment. These interactions
between agents in a neighbourhood are weighted differently by using a spatial
representation technique known as Qualitative Trajectory Calculus (QTC)[15].
Spatial relations between pairs of interacting agents, like relative distance, veloc-
ity, and orientation, are represented by QTC symbols, which are then combined
to describe models of pairs of moving agents.

The approach is evaluated on two state-of-the-art architectures: the first is
the well-known Social Generative Adversarial Network (SGAN [12]), while the
second is the Dual-stage Attention Recursive Neural Network (DA-RNN [43]). In
the SGAN, NeuroSym influences the pooling mechanism of the model (Figure
2.7), where it represents human-human interactions by embedding first their
relative poses in all the observed states of each agent through a dense layer, then
weighing the embedded relative pose, and finally max-pooling the weighted
embedding across neighbours in the global scene [39]. NeuroSym sensibly
improves the performance of the original SGAN model. In the DA-RNN model,
NeuroSym injects a Conceptual Neighbourhood Diagram [56] at the interface
between the embedding and the softmax layers (Figure 2.8), which causes the
update of the encoder attention weights with an a-priori knowledge of the
reliability or stability of each input series. NeuroSym improves the performance
of the NA-RNN model as well.

Figure 2.7: The neuro-symbolic generative adversarial network pooling mecha-
nism proposed in [39].
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Figure 2.8: The neuro-symbolic approach for attention-based time-series pre-
diction models (DA-RNN) proposed in [39].

2.7 Other Approaches

Many ideas were proposed over the years. In [50] the authors propose
a model that, during planning, takes into account the possibility of humans
emerging at any time from blind spots in the environment. The possible locations
of these "invisible" humans are estimated by analyzing large separations between
consecutive laser values scanned. In [3], a genetic algorithm was developed
to address the planning phase of the social navigation problem. A genetic
algorithm is a method inspired from biology which searches the optimal solution
among chromosomes. It is composed of three stages: reproduction, selection
and mutation or crossover. During reproduction new chromosomes will be
generated; during selection the worst chromosomes will be pruned, and during
mutation/crossover a Gaussian noise will be applied to the chromosomes to
slightly modify them. This approach proved that the social navigation layers
of ROS can be discarded in favour of a simple optimization algorithm. In [5]
the authors implemented a social navigation system alongside classic shared
operation. The social behavior allows the robot to follow a selected person
while avoiding obstacles and keeping other people at appropriate distance. This
approach proposes three modalities which can be applied to the robot: manual
modality, shared modality and supervisory modality. In the end, the shared
modality appears to be the best in term of reliability and required effort. In
[44] the authors propose a model used for accompanying people in dynamic
environments via an Adaptive Social Planner (ASP). This ASP anticipates the
movement of people, including also other interaction forces between robot and
environment, and includes a path evaluation to choose the best path among
the generated possibilities. Other works focused on ways of challenging social
navigation systems and planners with human movement simulators. In [10] the
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authors propose an intelligent human agent controller, an interface to control
these agents, a GUI and metrics for evaluation. The goal is to avoid long,
expensive and tiresome real-life testing and substitute it with fast and even
parallel simulations. Finally, many comparisons between the performance of
different planners can be found at [22].

2.8 Predicting motion trajectories of people

With the advent of recurrent learning models, capable of learning from time-
series data and successfully predict future values, trajectory prediction became
a reality. Similarly to the way humans can infer the path of other people moving
around them, robots are now able to predict the position of humans in the
near future. By using complex algorithms that fuse historical trajectory data
and real-time sensor inputs, autonomous robots can forecast the path taken
by any person in its surroundings. This enables robots to preemptively deal
with human motion, avoid potential future collision and behave socially and
predictably, therefore satisfying the constraints imposed by social navigation. Of
course, human behaviour is often hardly predictable, as it depends on intention
and cognitive processes that can be difficult to recognize from the outside of
their mind. In the following table, a summary of a number of literature works
regarding trajectory prediction are reported.
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The following papers are divided into the following categories, that we
highlight with different colours :

• Autonomous driving;

• Human-Robot Interaction;

• Very specific context of use, for example firefighting assistance;

• Based on top-view images for training/testing;

• Based on front-facing camera;

• Not related to social navigation;

The analyzed papers are classified as specified above based on their scope
and their requirements. The reason for this classification is the necessity to find
a "gap" (i.e. what is missing in the current state-of-the-art approaches) to work
on. In the following tables, the gap found for each work is reported.

Table 2.1: Summary of papers read.

Paper Gap
Group-based Motion Pre-
diction for Navigation
in Crowded Environ-
ments[59]

Motion prediction capabilities are short-term
and do not scale with the number of agents,
tested on classical human trajectory "top view"
datasets

Long-term pedestrian tra-
jectory prediction[19]

Single human trajectory to predict from previ-
ous observations.

Sparse to Dense Scale Pre-
diction for Crowd Counting
in High Density Crowd[23]

Uses heads to only count humans, images
mainly from a top view.

Social and Scene-Aware
Trajectory Prediction in
Crowded Spaces[33]

Trained and tested with top view images, it
won’t work with a front facing camera.

Social LSTM: Human
Trajectory Prediction in
Crowded Spaces[2]

Trained and tested on top view images, it won’t
work with front facing camera. Does not take
into account groups.

Group LSTM: Group Trajec-
tory Prediction in Crowded
Scenarios[6]

Trained and tested on top view images, it won’t
work with front facing camera.
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Motion Planning Combines
Psychological Safety and
Motion Prediction for a
Sense Motive Robot[32]

Uses human faces and facial behavior to predict
trajectory, faces are hard to track in a crowded
environments and from the distance due to pos-
sible occlusions and camera limitations.

Pedestrian Motion Trajec-
tory Prediction in Intel-
ligent Driving from Far
Shot First-Person Perspec-
tive Video[7]

Autonomous driving scenario, higher veloci-
ties involved and ideally structured and less
crowded spaces (authors assume the road is
mostly inhabited by vehicles).

Context Attention: Human
Motion Prediction Using
Context Information and
Deep Learning Attention
Models[28]

Not based on crowds, different context. One-
on-one, interaction activity.

A Continuous Learning Ap-
proach for Probabilistic Hu-
man Motion Prediction[64]

Focus on HRI, ambient changes and human
kinematic structure (human joints position and
movement prediction). Single human in front
of the camera, no crowds.

A Deep Concept Graph Net-
work for Interaction-Aware
Trajectory Prediction[4]

Focus on autonomous driving, top view of tra-
jectories used in testing, no reference to human
crowds. Structured space (roads).

Autonomous Vehicle Park-
ing in Dynamic Environ-
ments: An Integrated Sys-
tem with Prediction and
Motion Planning[29]

Focus on autonomous driving, specifically on
parking while predicting motion of other vehi-
cles. Structured space (parking lot/road), few
humans.

Conditioned Human Trajec-
tory Prediction using Itera-
tive Attention Blocks[42]

Top view of trajectories, focus on conditioning
of the environment on humans (the relation be-
tween their movements and the structure of the
world, e.g. humans walk on the sidewalk and
not on grass/dirt).

Control-Aware Prediction
Objectives for Autonomous
Driving[38]

Focus on autonomous driving, predicting tra-
jectories of cars on roads, top view of the world.
Structured spaces.
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Crossmodal Transformer
Based Generative Frame-
work for Pedestrian Trajec-
tory Prediction[52]

Focus on autonomous driving, people only on
crossroads, no crowds. Structured spaces.

Distributed Timed Elastic
Band (DTEB) Planner: Tra-
jectory Sharing and Colli-
sion Prediction for Multi-
Robot Systems[9]

Focus on multi robot systems, communication
and collaboration between agents that mutually
share data.

HYPER: Learned Hybrid
Trajectory Prediction via
Factored Inference and
Adaptive Sampling[18]

Focus on traffic and autonomous driving. Argo-
verse dataset, which contains motion prediction
data based on top view in structured spaces.

KEMP: Keyframe-Based Hi-
erarchical End-to-End Deep
Model for Long-Term Tra-
jectory Prediction[34]

Focus on autonomous driving, Argoverse and
Waymu datasets used for training and testing,
top view of the road and structured spaces.

Leveraging Smooth Atten-
tion Prior for Multi-Agent
Trajectory Prediction[8]

Autonomous driving focused, environments
with both vehicles and pedestrians but not nec-
essarily crowds, structured spaces. Top view
trajectories.

Meta-path Analysis on
Spatio-Temporal Graphs
for Pedestrian Trajectory
Prediction[14]

Top view view of trajectories, training and test-
ing done on classical ETH and UCY datasets.

Motion Primitives-based
Navigation Planning using
Deep Collision Predic-
tion[40]

Uses on-board camera, but the task involves pre-
diction of collision costs on objects, not trajecto-
ries. No crowds.

MultiPath++: Efficient In-
formation Fusion and Tra-
jectory Aggregation for Be-
havior Prediction[57]

Not based on camera images, Argoverse and
Waymu datasets (top view of trajectories). Fo-
cus is more on the fusion of data from different
sensor than motion prediction.
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StopNet: Scalable Trajec-
tory and Occupancy Predic-
tion for Urban Autonomous
Driving[24]

From on board images/scans (raw data) to top
view, focus on autonomous driving and road
agents in structured spaces.

Towards Efficient 3D
Human Motion Predic-
tion using Deformable
Transformer-based Adver-
sarial Network[17]

Focus on HRI and specifically human poses and
kinematic model (human body joints position
and possible motion). HUMAN3.6M dataset,
AMASS benchmark.

Trajectory Prediction for
Autonomous Driving with
Topometric Map[63]

Focus on autonomous driving, topometric map
is needed, KITTI dataset with GPS data. The
map can be a limitation if the world is very dy-
namic.

Trajectory Prediction with
Linguistic Representa-
tions[26]

Not based on camera images, it needs text to
work: each situation (e.g. a car turning left) is
explained with a sentence. Top view trajecto-
ries. Authors had to label part of the Argoverse
dataset with text to train and test their model.

A Data-Efficient Approach
for Long-Term Human Mo-
tion Prediction Using Maps
of Dynamics[69]

Based on maps of dynamics, which are a way to
encode spatial information about the dynamics
at different locations. It uses the ATC dataset
(images from high security cameras in a shop-
ping centre). Maps can be a limitation.

A generic diffusion-based
approach for 3D human
pose prediction in the
wild[46]

Focus on prediction of human poses, not trajec-
tories. HUMAN3.6M dataset, single human in
front of the camera.

Can We Use Diffusion Prob-
abilistic Models for 3D Mo-
tion Prediction?[1]

Based on Human 3.6M and HumanEva-I
datasets, single human poses and motion, no
crowds. Authors mentioned that "Diffusion
model cannot perfectly replace existing state-
of-the-arts for both deterministic and stochastic
motion prediction tasks".
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Dynamic Control Barrier
Function-based Model Pre-
dictive Control to Safety-
Critical Obstacle-Avoidance
of Mobile Robot[20]

Based only on LiDAR, no crowds. It uses the
Kalman filter, which is effective but very basic.

Exploring Navigation Maps
for Learning-Based Motion
Prediction[47]

Focus on autonomous driving, use of navigation
maps, Argoverse dataset. Navigation maps are
a limitation.

Improving robot navigation
in crowded environments
using intrinsic rewards[36]

No trajectory prediction, use of intrinsic rewards
only for improving navigation.

Improving the Generaliz-
ability of Trajectory Predic-
tion Models with Frenét-
Based Domain Normaliza-
tion[65]

Focus on autonomous driving, Argoverse and
Waymu datasets. The authors try to improve ex-
isting models (e.g. LSTM) by changing from the
cartesian frame to the Frenét frame. Very small
improvements on performance with respect to
the same models without the Frenét-based do-
main normalization.

Moment-based Kalman Fil-
ter: Nonlinear Kalman Fil-
tering with Exact Moment
Propagation[48]

No reference to pedestrians/crowds, motion
propagation of objects.

MVFusion: Multi-View
3D Object Detection with
Semantic-aligned Radar
and Camera Fusion[62]

Focus on detection and sensor fusion, no pre-
diction of human trajectories, no crowds.

Pedestrian Crossing Action
Recognition and Trajectory
Prediction with 3D Human
Keypoints[30]

Focus on autonomous driving and pedestrian
trajectory prediction only when approaching
crossings, i.e. focus on the intention of the hu-
man to cross the road. It uses head pose and
movement to understand if the human wants to
cross.

28



CHAPTER 2. STATE OF THE ART

Situational Adaptive Mo-
tion Prediction for Firefight-
ing Squads in Indoor Search
and Rescue[35]

Very specific context, the robot has to predict the
motion and follow the firefighter in a burning
building.

Topological Trajectory
Prediction with Homotopy
Classes[58]

It divides the environment into classes and as-
signs each human to a class so that it can predict
the trajectory that the human has to follow to
reach the place of its class. Top view of the en-
vironment (ATC dataset).

TrafficBots: Towards World
Models for Autonomous
Driving Simulation and
Motion Prediction[67]

Focus on autonomous driving, top view predic-
tions (Waymu dataset), it simulates multi-agent
behavior in structured spaces with few humans.

Trajectory and Sway Predic-
tion Towards Fall Preven-
tion[60]

Very specific context, prediction of imbalance
(i.e. if a person risks to fall).

Context and Intention
aware 3D Human Body
Motion Prediction using
an Attention Deep Learn-
ing model in Handover
Tasks[27]

Handover task context, focus on HRI. Single hu-
man in front of the robot, no crowds.

2.9 Take-home message

Social navigation is not an easy task. There is no approach that is perfect
or clearly superior to every other ones. Every method has its strengths and
weaknesses, and thus developers have to choose the approach that works best
for their requirements. Generally, classical approaches, despite representing the
basis on which the field of social navigation was built, are outdated and out-
performed. These approaches, such as rule-based systems and traditional path
planning algorithms, formed the bedrock of social navigation research. While
they provided initial insights and solutions, they had limitations in handling
complex social dynamics and in adapting to dynamic environments. However,
it is important to recognize their historical significance as they led researchers

29



2.9. TAKE-HOME MESSAGE

to the advancements we witness today. The field of social navigation has under-
gone a revolution thanks to the development of machine learning, deep learning,
and reinforcement learning. These advanced methods have demonstrated capa-
bilities in understanding and responding to social cues, human intentions, and
complex social interactions. Advanced methods utilizing learning models pro-
vide better adaptability, robustness, and generalizability, and they can also learn
from experience, continuously improving their performance. Nowadays robots
can learn optimal navigation policies through reinforcement learning techniques
such as Q-learning or Deep-Q networks. Many new methods employ some sort
of learning paradigm in some way. Usually, authors then build new approaches
on top of these learning models with new algorithms to improve performance.
Looking ahead, social navigation is a dynamic and evolving field and future re-
search should work on integrating social context, cultural variations, and ethical
considerations into navigation algorithms. Other challenges include explain-
ability, transparency, and human-centric design to improve acceptance of social
robots.
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Methods

In this chapter, the tools and the frameworks used for the development of
this thesis will be briefly presented.

3.1 Robot Operating System (ROS)

Figure 3.1: Robot Operating System 1

Robots are complex systems that are difficult to build: motors, sensors, soft-
ware and batteries must work together seamlessly to complete a task. To improve
the portability of software among these systems, the Robot Operating System

1https://automationware.it/ros-eng/?lang=en
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was proposed. The Robot Operating System (ROS), shown in Figure 3.1, is an
open-source framework for software robot development. It provides services
such as hardware abstraction, low-level device control, package management,
and message-passing between processes. It also provides tools and libraries for
obtaining, building, writing, and running code across multiple systems. ROS
was developed with the goal of creating a flexible and modular framework that
could support a wide range of robotic systems, from small hobbyist projects
to large-scale industrial robots. The open-source nature of ROS has led to a
large and active community of developers and users, who contribute to the de-
velopment and improvement of the framework. It provides a standard set of
communication protocols and data structures that allow different components
of a robot system to communicate with each other seamlessly. ROS employs
a node-based structure: ROS processes work as nodes in a graph structure,
connected by edges called topics. Nodes communicate between each other via
messages sent through topics and request and provide services to other nodes.
The ROS Master is the main process: it registers and names each node and it
tracks publishers and subscribers to topics and services. The ROS master allows
the individual nodes to locate each other and sets up peer-to-peer communica-
tion between them.

3.1.1 Nodes

The use of nodes in the ROS framework provides several advantages:

• Crashes are isolated to individual nodes instead of the whole system, thus
guaranteeing more stability;

• Code complexity is reduced as each node has its own code, instead of
having a monolithic system;

• Implementation details are private to the node, which exposes itself to
other nodes via a minimal API.

A complex system may have many nodes, where each one controls a single
functionality of the system. It is better to have separated nodes for each functions
instead of a single node implementing the complete system.
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3.1.2 Topics

Topics are buses over which nodes exchange messages2. A node that is
interested to some data subscribes to a topic, while a node that produces some
data publishes to a topic. In general, a topic can have multiple publishers and
subscribers and the nodes involved do not know with which other nodes they are
communicating. Each topic is strongly typed and nodes can receive messages
only if their type matches the message type used to publish to the topic.

3.1.3 Services

The many-to-many structure of the publish-subscribe mechanism is not well
suited to situations where a request or an answer from a specific node is required
(for example, in distributed systems). To avoid this problem, the request-reply
mechanism is dealt with by using services, which are defined by a pair of
messages, one for requesting and one for replying. Services give the possibility
of interacting more strictly within nodes, enabling higher performance at the
cost of robustness to provider changes.

Actions

In some circumstances, services may take a long execution time, and the
user might want to cancel the request or receive periodic feedback about its
progress. The actionlib package offers tools for building servers that carry out
long-running, interruptible tasks.

3.2 Take It And Go (TIAGo) Robot

The TIAGo robot, shown in Figure 3.2 is a versatile humanoid robot devel-
oped by the Spanish robotics company PAL Robotics for indoor environments.
It is designed to be a research platform for developing and testing advanced
robotics applications, particularly in the fields of human-robot interaction and
service robotics. It combines mobility, perception, navigation and human-robot
interaction. It stands between 1.1 and 1.4 meters tall and weighs around 70

2http://wiki.ros.org/Topics
3http://wiki.ros.org/Robots/TIAGo
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Figure 3.2: TIAGo 3.

kilograms. It has one arm (two in the TIAGo++ version) with seven degrees
of freedom, and a two-fingered gripper for manipulating objects. It also has a
2D LiDAR sensor for navigation and obstacle avoidance, as well as a range of
other sensors for perception and environmental monitoring. The TIAGo robot
has been used in a range of research and development projects, including ap-
plications in healthcare, education, and industrial automation. It is particularly
well-suited for tasks that require dexterous manipulation, such as object sorting
and assembly.

The TIAGo base robot (Figure 3.3) is essentially the same robot as the TIAGo
humanoid robot, but without the upper torso and arms. The TIAGo Base robot
consists of a mobile base, which is equipped with a range of sensors and actua-
tors, and is designed to be highly customizable and programmable. It is built on
top of the same hardware and software platform as the TIAGo humanoid robot.

4http://wiki.ros.org/Robots/TIAGo-base

34

http://wiki.ros.org/Robots/TIAGo-base


CHAPTER 3. METHODS

Figure 3.3: TIAGo base robot 4.

3.3 Simulators

Gazebo Standard 3D rigid body simulator.
RViz Standard 3D visualization tool for ROS.

PedSim Tool for pedestrian simulation.
SocialGym Simulator for social scenarios.

iGibson Stanford robotics simulator based on Bullet.
CoppeliaSim Versatile simulator built for many applications.

MORSE Generic simulator for academic robots.

These simulators are popular choices among roboticists for visualization
and testing in simulations of robots. Every simulator has its strengths and its
weaknesses: some of them are light and reliable but limited, while others are
heavy and can simulate also multiple agents, or realistic people motion. In the
end, these simulators are indispensable tools for robotics research, development
and testing.

3.3.1 Gazebo

Gazebo (logo in Figure 3.4) is a popular 3D robot simulation tool that is
commonly used in the Robot Operating System (ROS) ecosystem. It allows users
to create and simulate complex robotic systems in a realistic 3D environment5.
It provides access to:

5https://gazebosim.org/libs/sim

35

https://gazebosim.org/libs/sim


3.3. SIMULATORS

Figure 3.4: Gazebo 6

• Dynamics simulation: many high-performance physics engines are avail-
able through Gazebo Physics;

• Advanced 3D graphics: rendering engines such as OGREv2 are available
for realistic rendering of environments,

• Sensor and noise models: generate sensor data from a wide range of
sensors, including cameras, laser scanners, GPS and more;

• Plugins: custom plugins for robot, sensor and environment control are
available;

• Simulation models: multiple robots are compatible with the simulation
and new environments can be constructed using physically accurate mod-
els.

Gazebo also provides a range of powerful tools for visualization and analysis,
including tools for 3D visualization, logging and visualization of simulation
data, and support for real-time simulation and control. The key benefit of using
Gazebo in ROS is that it allows users to test and develop their robotic systems
in a safe and controlled environment, without the risk of damaging physical
hardware. This can save time and resources, as well as making it easier to
test and refine robotic systems before deploying them in the real world. In
ROS, Gazebo is often used in conjunction with other tools, such as RViz, to
create complete robot simulation systems. Gazebo allows users to simulate the
physics of robots and their environments, including gravity, friction, collisions,
and more. Figure 3.5 shows the TIAGo robot simulated in Gazebo.

6https://classic.gazebosim.org
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Figure 3.5: TIAGo simulated in Gazebo.

3.3.2 RViz

RViz (logo at Figure 3.6) is a powerful 3D visualization tool that is commonly
used in the field of robotics. It is an open-source software package that allows
users to create interactive visualizations of robot models, sensor data, and other
relevant information7. RViz provides a wide range of interactive tools for ma-
nipulating these visualizations, such as the ability to move and rotate the camera
view, select and highlight specific components, and adjust the appearance of the
models and data being displayed. In addition to its core visualization features,
RViz can also be extended with plugins to add additional functionality. For
example, there are plugins available for controlling robot motion, visualizing
simulation data, and interfacing with external hardware. Users of RViz can
design visual representations of robots that include the joints, connections, and
other parts of the robots. Different 3D models, such as those made in CAD
software or constructed using more basic geometric shapes, can be used for this.
Data from sensors mounted on robots, such as cameras, LiDARs, or sonars, are
also accessible to users. Both unprocessed sensor data and processed data, such
as point clouds or occupancy grids, may be included in this. RViz is therefore
an incredibly useful tool for anyone working in the field of robotics, as it allows
users to easily create and interact with detailed 3D models and sensor data,
making it easier to design, test, and debug robotic systems.

7https://github.com/ros-visualization/rviz
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Figure 3.6: RViz.

3.3.3 PedSim

PedSim is an open-source software tool for simulating and analyzing pedes-
trian dynamics in indoor and outdoor environments based on SFM. It is built on
top of the ROS framework, which makes it easy to integrate with other robotics
and simulation tools. It is commonly used in the fields of robotics, computer vi-
sion, and transportation engineering to study and optimize pedestrian behavior
and movement in crowded public spaces8. It features:

• Individual walking using social force model for very large crowds in real
time;

• Group walking using the extended social force model;

• Social activities simulation;

• Sensors simulation (point clouds in robot frame for people and walls);

• XML based scene design;

• Extensive visualization using Rviz;

• Option to connect with gazebo for physics reasoning.

PedSim uses a combination of simulation and data analysis tools to model
and analyze pedestrian behavior. It simulates the movement of large crowds of
people in complex environments, taking into account factors such as walking
speed, direction, and social behavior. It can also simulate the effects of obstacles
and other environmental factors on pedestrian movement Figure 3.7 shows a
simulated environment containing simulated humans and a robot.

8https://github.com/srl-freiburg/pedsim_ros
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Figure 3.7: PedSim simulating a robot in a crowded environment.

3.3.4 SocialGym2

SocialGym2 is the updated version of the SocialGym simulation environ-
ment, which is designed for simulating and studying social behavior in human-
robot collaboration scenarios. It is an open-source platform built on top of ROS,
and it includes a range of pre-built environments and scenarios, as well as tools
for creating custom ones [51]. It also contains tools for simulating cooperative
and coordinated actions between humans and robots, and it provides support for
complex multi-agent scenarios involving multiple robots and humans. Figure
3.8 shows the functional pipeline of SocialGym2.

Improvements on SocialGym1

• Multi-agent training;

• Control over the environment and simulator;

• Helper classes to implement rewards and observations;

• Tensorboard implementation to visualize the training process.

3.3.5 iGibson

iGibson (Interactive Gibson9) is an open-source simulation platform for
building and testing intelligent robotic systems. It provides a realistic 3D
environment for simulating the behavior and interactions of robots and their

9https://svl.stanford.edu/igibson/
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Figure 3.8: Structure of SocialGym2 [51].

surroundings. iGibson is designed to be highly customizable and modular,
allowing researchers and developers to easily create and test complex robotic
systems in a simulated environment. It allows robots to manipulate objects in
the environment, open doors, and move through complex environments with
obstacles and other challenges. It provides a range of tools and features for sim-
ulating physical interactions, including realistic physics simulation, dynamic
lighting, and environmental effects like wind and rain. iGibson also provides
support for a range of advanced robotics and computer vision features, such
as semantic mapping, semantic segmentation, and object recognition. These
features enable robots to perceive and understand their environment, and make
intelligent decisions based on that information. Figure 3.9 shows an example of
a home simulation.

3.3.6 CoppeliaSim

CoppeliaSim10 (formerly known as V-REP, which stands for Virtual Robot
Experimentation Platform) is a versatile and powerful robot simulation soft-
ware. It is designed to simulate and visualize the behavior of robots and other
robotic systems in various environments. CoppeliaSim provides a comprehen-
sive framework for developing, testing, and evaluating robotic applications.

10https://www.coppeliarobotics.com/
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Figure 3.9: iGibson simulating a home-line environment.

CoppeliaSim offers a wide range of features, including:

• 3D Simulation Environment: It provides a 3D virtual world where you
can create and simulate robots, environments, and objects. The simulation
environment allows you to define and control the behavior of robots and
test their performance in realistic scenarios;

• Physics Engine: CoppeliaSim includes a built-in physics engine that ac-
curately simulates the dynamics and interactions of objects in the virtual
environment. This enables realistic simulations of robot movements, col-
lisions, and physical interactions;

• Robot Modeling and Control: It supports the creation and modeling of
various types of robots, ranging from simple manipulators to complex
humanoid robots. You can define robot kinematics, dynamics, and control
strategies to simulate their behavior accurately;

• Sensor Simulation: CoppeliaSim allows you to simulate various sensors
commonly used in robotics, such as cameras, lidars, proximity sensors, and
force/torque sensors. This enables testing and evaluation of perception
and sensing algorithms within the virtual environment;

• Programming Interfaces: It provides a wide range of programming inter-
faces (APIs) for different programming languages, including MATLAB,
Python, C/C++, and Lua. These interfaces enable developers to interact
with the simulation environment, control robots, and extract sensor data
for algorithm development and testing;

• Remote Control and Communication: CoppeliaSim supports remote con-
trol and communication with external devices and software. It allows you
to interface with real robots, control them from the simulation environ-
ment, or exchange data with other software systems.
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3.3.7 MORSE

The MORSE simulator11 is an open-source, flexible, and modular robotics
simulator designed for research and development in the field of robotics and
autonomous systems. MORSE stands for "Modular Open Robots Simulation
Engine". Morse is:

• Modular: it is built with modularity in mind, allowing researchers and
developers to easily extend its functionality by adding new robot models,
sensors, actuators, and environments;

• Scalable: it can simulate single robots or large-scale multi-robot scenarios,
making it suitable for testing algorithms related to swarm robotics, multi-
agent systems, and collaborative tasks;

• Community-driven: it is an open-source project, and it benefits from con-
tributions and support from a community of developers and researchers;

• ROS integrated: it allows researchers to test and develop ROS-based
robotic applications in a simulated environment.

3.4 The SPENCER project

This thesis work focuses on context-based people motion trajectory predic-
tion. Naturally, for this to work, a means of detecting and tracking people in
the environment is needed. SPENCER [31] is an EU-funded research project
in the area of robotics, covering in particular the fusion of perception, social
understanding, and decision-making for autonomous robots. In particular, the
spencer people tracking package contains a ROS-based multi-modal people de-
tection and tracking framework. It employs both laser and camera sensors to
detect people and it tracks them by fusing data from the different sensors via
a fusion pipeline. As it was developed for its own robot, with its sensors and
related ROS topics, it was necessary to adapt this package to the TIAGo robot.
This was done by properly changing the input topics from which the frame-
work takes the sensor data in the launch files. Moreover, since the TIAGo and
SPENCER sensors publish on topics at a different rate, small changes that re-
flected this difference in the code were needed. Tracked people are published on

11https://www.openrobots.org/morse/doc/stable/morse.html
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the /spencer/perception/tracked _persons topic with a custom message. An
example of SPENCER detections can be seen in Figure 3.10, while Figure 3.11
shows SPENCER detecting the author of this thesis.

Figure 3.10: People detection and tracking using SPENCER 12

Figure 3.11: Spencer tracking my movement, running on the TIAGo robot at the
Autonomous Robotics Laboratory.

3.5 Hardware

The vast majority of this work was developed on an Intel i5 4460, 16 GB
DDR3 RAM, GTX 1650 machine running Ubuntu 18.04.6 LTS and ROS Melodic.

12https://github.com/spencer-project/spencer_people_tracking
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4
Datasets

In this chapter, the datasets used for training and testing will be examined.

4.1 JackRabbot

In order to employ a learning model for trajectory and context prediction, it is
necessary to have data for training and testing. In particular, for this task, human
motion data is needed, e.g. position over time, motion velocities and angles.
Many datasets contain this kind of information from a top-view perspective,
which is not acceptable for this work, as data from the point of view of the robot
is needed. Thus, the choice falls on the JackRabbot dataset1. The JackRabbot
dataset is a collection of sensor readings, images and videos, odometry and
localization data, human bounding boxes annotations, action labels and body
pose annotations collected from the homonymous robot at Standford University.
Data is collected from the robot various sensors and is published at 7.5 Hz.

4.1.1 Data processing

The JackRabbot dataset is structured in many different folders, each con-
taining different valuable data: RGB images, 2D and 3D pointclouds, labels for
classification and, most importantly, 2D and 3D detections. 2D and 3D detec-
tions are collected in a series of large json files: each detection contains the

1https://jrdb.erc.monash.edu/
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coordinates of its bounding box, its rotation angle, the id of the file associated
with the detection, the label (currently pedestrian only) and the corresponding
confidence score. The 3D detections are particularly useful because this work
aims at predicting motion of humans from the perspective of the robot, which is
exactly how these detections were recorded. The dataset_parser _multi _file.py
contains the code employed to process the data so that it can be used with a
learning model. Specifically, for each file a three-dimensional tensor is built:
the first dimension is the batch size (i.e. the number of people detected), the
second dimension is the sequence length (i.e. number of consecutive detections
for each person) and the third dimension involves the features. Naturally, not
every person is tracked (and detected) for the same amount of time, but the se-
quence length dimension must be uniform: to address this issue the maximum
sequence length of the file is kept, and people with less detections have their
sequences padded with their last known detection. The features involve both
values for trajectory prediction and context prediction. For the former, the x and
y coordinates and the rotation value is used, while the latter will be discussed
in the next section.

4.1.2 Integrating JackRabbot with context

Thus, the JackRabbot dataset is a great source of data for the trajectory
prediction task treated in this work. However, as explained before, the dataset
(in particular the 3D labels directory) contains only the pose of the detection, its
ID, its labels and a confidence score: there is only a reference to the social group
with regards to the information needed for the context prediction task displayed
in Subsection 5.2.1. However, this issue is easily solvable. First of all, since this
approach is based on clustering, it is necessary to select an approach to compute
the clusters. The choice falls on the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise, Algorithm 4) clustering algorithm, which is the most
popular clustering algorithm in the literature. DBSCAN is used to cluster each
detected person using its starting position, as seen in Figure 4.1. In this way,
groups are created artificially and resemble closely the situation in which the
original data was first recorded by the Stanford University researchers, despite
some minor differences caused by the unknown time frame of each detection.

46



CHAPTER 4. DATASETS

Algorithm 4 DBSCAN algorithm
Initialize an empty set 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 to keep track of visited points
Initialize an empty list of clusters 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
for all unvisited points 𝑝 in 𝐷 do

if point 𝑝 is not visited then
Mark point 𝑝 as visited
Find the neighbors of point 𝑝 within distance 𝜀
if number of neighbors < 𝑀𝑖𝑛𝑃𝑡𝑠 then

Mark point 𝑝 as Noise
else

Create a new cluster 𝐶 and add point 𝑝 to 𝐶
Find the neighbors of point 𝑝 within distance 𝜀
for all neighbor 𝑞 of 𝑝 do

if neighbor 𝑞 is not visited then
Mark neighbor 𝑞 as visited
Find the neighbors of point 𝑞 within distance 𝜀
if number of neighbors >= 𝑀𝑖𝑛𝑃𝑡𝑠 then

Add neighbors of 𝑞 to the neighbors of 𝑝
end if

end if
if neighbor 𝑞 does not belong to any cluster then

Add neighbor 𝑞 to cluster 𝐶
end if

end for
Add cluster 𝐶 to the list of clusters

end if
end if

end for
return Clusters and Noise Points
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Figure 4.1: An example of clusters generated in simulation.

4.2 ATC Shopping Center dataset

The ATC Shopping Centre dataset 2 is a collection of data regarding human
motion, recorded, as the name suggests, in 2012 in the "ATC" shopping center
in Osaka, Japan. The dataset contains both raw sensor readings and processed
csv files of people detection data, captured at 30 Hz. It is a very large dataset,
consisting of a total of 92 days of recordings: for this reason, testing on the com-
plete dataset is too demanding both in terms of space and time. The literature
deals with this issue by considering only a representative subset of the original
dataset, consisting of 4 days [69]. The same is done for evaluating this work.
Figure 4.2 shows some example frames with the map of the shopping center.

4.3 ETH and UCY

ETH 3 and UCY 4 are two publicly available datasets consisting of manually
marked pedestrian identifiers and positions on recorded video, sampled at 2.5
Hz from a top view camera. Their name refers to the ETH Zurich University
and to the University of Cyprus. Both ETH and UCY are further divided into

2https://dil.atr.jp/crest2010_HRI/ATC_dataset/
3https://icu.ee.ethz.ch/research/datsets.html
4https://www.ucy.ac.cy/?lang=en
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subsets: ETH is composed of ETH-HOTEL and ETH-UNIV, while UCY contains
UCY-ZARA01, UCY-ZARA02 and UCY-UNIV. For the purpose of this work,
ETH-UNIV and UCY-ZARA01 will be used for testing. Figure 4.3 shows an
example captured frame in the UCY dataset.

Figure 4.2: ATC shopping center.
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Figure 4.3: An example of an image from the UCY dataset.
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5
Approach and model analysis

In this chapter, choices regarding the approach and the learning model pro-
posed in this work will be presented.

5.1 Trajectory prediction

The first goal of this work is to predict the trajectory of a moving person in
a specific time window, using a deep learning model, similarly to Figure 5.1.
Considering the environment from the point of view of the robot (i.e., from its
camera), trajectory is intended as a timed sequence of poses in 2D space. These
poses should be predicted and published as a message on a specific topic, so that
the motion planner can receive them and account for them during planning.

5.2 Reasoning about context

The idea of working with context understanding and prediction came while
watching a video of an autonomous robot navigating through the crowd in an
airport. The camera of the robot captured a great variety of people such as
men, women, children, some of them in groups (children with their parents,
people in queues or talking with other people in their surroundings) and some
of them walking alone (chaotically). These observations could prove useful
when dealing with social navigation: robots could optimize the path they are
following by adapting to the situation they detect in front of them. Ideally,
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Figure 5.1: People trajectory prediction: the history trajectory is recorded and
used to predict the future trajetory.

robots should distinguish between chaotic situations (e.g., people traversing
the crowd alone) and more structured scenarios (e.g., queues in front of the
security check/groups of people who know each other and are moving together
or standing still).

5.2.1 Capturing context information

Firstly, where does context information lie in the environment? The first
intuition comes from the fact that chaotic and ordered situations can be distin-
guished from the behaviour of the components of the situation. Ideally, in an
ordered situation persons behave similarly to one another (e.g. standing still
in a queue), while in chaotic situations behaviours vary greatly (e.g. different
motion velocities, directions). Initially, this idea of "distinction" between chaos
and order can be captured with clustering techniques: grouping people by sim-
ilarity is a basis for understanding the context in which they are moving. The
clustering algorithm chosen from this instance is the popular DBSCAN. As you
can see in Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5, this first approach
was tested in simulation by deploying the robot in a world populated only with
pedestrian models. After obtaining their positions via SPENCER, clustering is
performed. Another source of context information can be computed from clus-
ters: various indexes can be used to evaluate the quality of the clusters, taking
inspiration from the literature [69], [1], [47], [65], [30], [67]:

• Silhouette coefficient: is a measure of how similar an object is to its own
cluster (cohesion) compared to other clusters (separation). It is commonly
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used to determine if the number of the computed clusters is acceptable;
Silhouette Score = 1

𝑁
∑𝑁

𝑖=1
𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑖)}

• Davies-Bouldin index: the average similarity measure of each cluster
with its most similar cluster, where similarity is the ratio of within-cluster
distances to between-cluster distances. Thus, clusters which are farther
apart and less dispersed will result in a better score;
Davies-Bouldin Index = 1

𝑁
∑𝑁

𝑖=1 max𝑗≠𝑖

(
𝑆𝑖+𝑆𝑗

𝑑(𝐶𝑖 ,𝐶 𝑗)
)

• Calinski-Harabasz Index: is a measure of how similar an object is to
its own cluster (cohesion) compared to other clusters (separation). Here
cohesion is estimated based on the distances from the data points in a
cluster to its cluster centroid and separation is based on the distance of the
cluster centroids from the global centroid;
Calinski-Harabasz Index = Tr(𝐵)

Tr(𝑊) × 𝑁−𝑘
𝑘−1

• Dunn Index: It is calculated as the lowest intercluster distance (i.e. the
smallest distance between any two cluster centroids) divided by the highest
intracluster distance (i.e., the largest distance between any two points in
any cluster). The higher the index, the better the clustering.

Dunn Index =
min𝑖≠𝑗 min𝑥∈𝐶𝑖 ,𝑦∈𝐶𝑗 𝑑(𝑥,𝑦)

max𝑖 max𝑥,𝑦∈𝐶𝑖 𝑑(𝑥,𝑦)
These indexes reflect some qualities of the context: where these values are

higher, the clustering is better, i.e., the environment is more structured and the
situation is more ordered. This is particularly clear in Figure 5.4 and Figure 5.5.

Figure 5.2: An example of clusters generated in simulation.
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Figure 5.3: Another similar example of people clustering, this time with people
forming two queues: one in the middle of the space and the other on the back.

Figure 5.4: Another similar example of people clustering. Here the groups of
people are far apart and easily recognizable, and the indexes computed are high.
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Figure 5.5: Another similar example of people clustering. This time the algo-
rithm is unable to find a good clusters due to the low distance threshold set. The
computed indexes are lower than the previous case, as you can see.
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How can such data help in predicting the context in which people are mov-
ing? The idea is to input the number of clusters, indexes, angle and velocity
of each person to the learning model. The network will then output a value
(regression), which can be treated as a measure of how ordered/chaotic is the
environment: this is due to the fact that the indexes in Subsection 5.2.1 increase
with the quality of the clusters. In turn, if the quality of the clusters is high
(scores are high), the situation is well structured, and thus, more organized.
Thresholding will then be used to classify the context of the environment into
"chaotic", "mixed" and "structured" are the names of the labels chosen, each one
corresponding to a state of the environment. The thresholds chosen reflect the
behaviour of the clustering indexes: under -0.5 the context is chaotic, between
-0.5 and 0.5 it is mixed and over 0.5 it is structured. These thresholds are inspired
from the literature [21], and adjusted to fit our task by working similarly to the
clustering index.

After the clusters have been generated, it is possible to compute the indexes
discussed in Subsection 5.2.1. On a side note, the velocities of each person
are based on the definition of velocity (𝑣 = 𝛿𝑥/𝑡) and are straightforward to
compute, even without performing clustering. For simplicity, the assumption of
constant speed throughout the motion is made. The silhouette coefficient, Davis-
Bouldin index and Calinski-Harabasz index are computed using the standard
scikit-learn function, while concerning the Dunn index, the implementation of
the Algorithm 5 was used.
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Algorithm 5 Dunn Index algorithm
Require: 𝑆𝑒𝑡𝑜 𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠𝑋, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝐶
Ensure: Dunn Index value

𝐷min← +∞
𝐷max← −∞
for all clusters 𝑖 , 𝑗 where 𝑖 ≠ 𝑗 do

for all points 𝑥 in cluster 𝐶𝑖 do
for all points 𝑦 in cluster 𝐶 𝑗 do

𝑑← EuclideanDistance(𝑥, 𝑦)
if 𝑑 < 𝐷min then

𝐷min← 𝑑
end if

end for
end for
for all points 𝑥, 𝑦 in cluster 𝐶𝑖 do

𝑑← EuclideanDistance(𝑥, 𝑦)
if 𝑑 > 𝐷max then

𝐷max← 𝑑
end if

end for
end for
return 𝐷min

𝐷max
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5.3 Modeling the memory based on past observations

The trajectory prediction task consists of computation on data indexed in
time order: trajectories are in fact a sequence of points captured at consecu-
tive intervals in time (discrete-time data). This particular structure of the data
requires an adequate model capable of capturing this temporal relation. The
class of recurrent neural networks addresses this necessity. Recurrent neural
networks are characterized by recurrent connections: at each stage the network
receives both the input from the current time-step and the hidden state from the
previous time-step. This hidden state contains values that represent information
related to the inputs of the previous time-steps. In this way, the hidden state acts
as a "memory" object that is capable of keeping track of past inputs. Similarly to
classical neural networks, during training recurrent neural networks also back-
propagate the gradient to adjust the weights. However, the back-propagation
through recurrent connections can cause the gradient to "vanish" (i.e., it tends
to 0, if the original gradient is small) or "explode" (i.e., it tends to infinity, if
the original gradient is large). The vanishing gradient problem is well-known
and explored in the field of deep learning. This issue is (partly) solved in state-
of-the-art recurrent neural networks by deploying Long Short Term Memory
models (see Figure 5.6 and Subsection 5.3.1).

5.3.1 Long Short Term Memory

The main characteristic of the Long Short Term Memory model is its struc-
ture: a LSTM unit is composed of a memory cell, an input gate, an output gate
and a forget gate. The memory cell stores information over time, capturing even
long temporal relations, and it can be read or written on during training. The
gates are used to control the flow of data through the network:

• The input gate activates when information from the current time-step
needs to be saved in the memory cell;

• The output gate activates when the current data stored in the memory cell
should be used as output;

• The forget gate activates when the data stored in the memory cell is no
longer useful and is thus discarded.

Instead of classical back-propagation, LSTMs employ back-propagation through
time (BPTT), which allows the model to compute the gradient across multiple
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time steps. LSTMs are very powerful and have been adopted in various fields,
such as:

• Natural language processing;

• Speech recognition;

• Time-series forecasting (as in this work);

• Robotics;

• Music composition.

Figure 5.6 shows a representation of a LSTM unit.

Figure 5.6: LSTM unit. You can see the input and the previous hidden state
forming the new hidden state, and the previous cell state contributing to the
new cell state. Each sigmoid represents a gate: the first is the input gate, the
second is the forget gate and the third and final is the output gate.

5.4 Our solution

This section contains the description of the new model we propose to tackle
the task of trajectory prediction in crowded environments. First, in Subsection
5.4.1 we describe our proposed context-based model. The proposed context-
based model works with LSTM layers for the trajectory part, but incorporates
also context information captured from the environment to improve the quality
of the predicted trajectories.
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5.4.1 The proposed context-based model

The context-based model is our new proposed solution to the problem of
trajectory prediction. It uses both the recorded motion trajectory of humans
and the information related to the context, captured as explained in Subsection
5.2.1, to make a prediction. These collections of data are concatenated and fed
to the rest of the network: in this way, the model learns to couple the situation
of the environment with the motion of people, improving its understanding of
the world and of people motion. It is also necessary to define a time-window,
i.e., how far in time we want to predict the motion of a person. Considering the
7.5 Hz sampling rate of the JackRabbot dataset, which will be used for training,
ideally each second of trajectory corresponds to 7.5 input or output poses. So,
for instance, if we want a prediction window of 5 seconds, the model needs to
take in input 35 poses and outputs 35 poses as well.

The architecture of the trajectory part of the model relies on a 3-layered
LSTM. The context data is fed to a fully connected layer; the outputs of the
trajectory side and the context side of the network are then concatenated and
fed to other fully connected layers. In short, the architecture is as follows (see
Figure 5.7):

• 3 LSTM layers with dropout taking the trajectories of tracked humans;

• A fully connected layer taking in input the variation in position, velocity,
angle, number of clusters, Silhouette, Davies-Bouldin, Calinski-Harabasz
and Dunn scores;

• A concatenation layer, which concatenates the outputs of the final LSTM
layer of the trajectory-related side of the network with the output of the
fully connected layer of the context side of the network;

• 3 fully connected layers process the concatenated information;

• The network is finally divided: a fully connected layer outputs the pre-
dicted trajectory, while another parallel fully connected layer outputs the
predicted context.
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Figure 5.7: Structure of the proposed context-based model.
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As already stated, this work proposes trajectory prediction based on context-
learning. However, in order to evaluate this approach, it is necessary to compare
it to standard state-of-the-art trajectory prediction models, in particular to those
based only on trajectories. For this reason, both a context-free model and a
context-based model were built. The next subsection describes the context-free
model. This model’s purpose is to serve as an initial evaluation of our solution:
the new context-based model we propose, which is described in Subsection 5.4.1.

5.4.2 The proposed context-free model

The context-free model needs only the recent motion trajectory of humans
to work, i.e., a temporal sequence of their poses up to the current time. As
explained before, this is the perfect use-case of LSTM models. Finally, the model
architecture is based on state-of-the-art trajectory prediction architectures and
resembles the trajectory part of our proposed context-based model (see Figure
5.8):

• The 3 LSTM layers are the core of the model, as expected. The number of
layers was initially larger to match the literature works, but it was tuned
down in order to further diminish the vanishing gradient problem;

• A dropout layer is added after the LSTM layers in order to reduce overfit-
ting. The dropout probability is set to 0.2;

• A series of fully connected layers closes the model, with dropout set to 0.2
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Figure 5.8: Structure of the proposed context-free model.
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5.5 Training

Figure 5.9: Training loss of the context-based model, trained on JackRabbot for
100 epochs.

The two models were trained as similarly as possible in terms of hyperpa-
rameters, in order to obtain a fair comparison. In particular:

• The chosen loss function is the Root-Mean-Square Error (RMSE). The rea-
son of this choice lies in the effect of the root on the loss value: RMSE
particularly penalizes large error values, which is preferred for this task.
In fact, large errors in the predicted trajectory have a serious effect (e.g.,
planning the motion of the robot without accounting for a person which
is moving close to it, but was predicted to be far from the robot). On
the contrary, minor errors should not affect the planning of the robot too
much. The loss of the proposed context-based model over 100 epochs is
plotted in Figure 5.9;

• The chosen optimizer is Adam, with its learning rate set to 0.001. Adam is a
popular optimization algorithm, preferred to standard stochastic gradient
descent due to its efficiency and its adaptability to problems that deal with
large data or parameters;
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• Scaling the data has proven useful to prevent the LSTM layers to get stuck
in local minima and perform poorly. The popular StandardScaler from the
scikit-learn library was used here: it standardizes the features by removing
the mean and scaling to unit variance;

• Both models were trained incrementally to 100 epochs, with a 5 seconds
time-window for prediction. Checkpoints and other models are present
in the models directory of the git repository;

• Concerning the network specific hyperparameters (number of layers, layer
size, etc...), the values were chosen empirically by looking for acceptable
complexity without sacrificing accuracy too much. The reason for this
choice is our goal of possibly running the model directly on-board the
robot, which is not very powerful, and as close to real-time as possible.
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6
Evaluation

The results of the evaluation phase of this work are examined in this chapter.
First, we present the evaluation metrics chosen to evaluate the performance of
our proposed context-based model. Then, we present the results of the tests
on the ATC dataset of the context-based and of the context-free models, and
the results of the tests on the ATC, ETH and UCY datasets of the context-based
model, comparing it to state-of-the-art methods.

6.1 Evaluation Metrics

To evaluate the performance of the proposed context-based model and of the
simple context-free model, the following metrics have been considered:

• Average Displacement Error (ADE): it refers to the mean square error
over all predicted points of every trajectory and the ground truth points.

ADE =
1
𝑁

𝑁∑
𝑡=1
∥ 𝑝̂𝑡 − 𝑝𝑡 ∥ (6.1)

• Final Displacement Error (FDE): is the distance between the final pre-
dicted position and the final ground truth position.

FDE = ∥ 𝑝̂𝑁 − 𝑝𝑁 ∥ (6.2)

• Miss Rate (MR): Number of predicted trajectories within a certain distance
from the ground truth trajectories over the total number of trajectories.

Miss Rate (MR) =
Number of Predictions Within Range

Total Number of Predictions (6.3)
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• MaxDist: Maximum distance between a predicted trajectory and the
ground truth trajectory.

• Intersection over Union (IoU): area of the intersection of the trajectories
over the area of the union of the trajectories. Since this measure deals with
areas, 2D bounding boxes are built on top of each point of each trajectory
in order perform the computation.

IoU =
Area of Intersection

Area of Union (6.4)

6.2 Testing and Analysis

The testing phase is structured as follows:

• The selected files of the ATC or ETH/UCY datasets are split into smaller
pieces, processed (trajectories extracted and context data added) and the
resulting tensors are saved in .pt format for later use;

• The trajectories extracted from the tensors are fed to the learning model
and the resulting predicted trajectories are saved in a large csv file;

• The csv file containing the predicted trajectories for the whole dataset day
file is read and the evaluation metrics are computed.

The trajectory-based model and the context-based model are compared by
testing and computing the metrics on the ATC dataset, over 3 different prediction
time windows: 5, 7.5 and 10 seconds. Both models were trained on a 5-seconds
time window.

Table 6.1: Comparison of the two models using a 5 seconds prediction window.

Model Context-free Context-based
ADE(m) 4.456 4.074
FDE(m) 6.323 6.002
MR 0.651 0.683
MaxDist(m) 13.04 13.14
IoU 0.443 0.489

The context-based model is compared to state-of-the-art approaches on the
ATC and ETH/UCY datasets.
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Table 6.2: Comparison of the two models using a 7.5 seconds prediction window.

Model Context-free Context-based
ADE(m) 10.45 11.03
FDE(m) 13.01 12.92
MR 0.443 0.422
MaxDist(m) 31.07 26.03
IoU 0.321 0.309

Table 6.3: Comparison of the two models using a 10 seconds prediction window.

Model Context-free Context-based
ADE(m) 16.89 16.77
FDE(m) 22.34 23.04
MR 0.278 0.269
MaxDist(m) 47.32 45.89
IoU 0.175 0.182

Table 6.5: Comparison on the ETH-UNIV for 5 seconds prediction window, with
models VLSTN, SRNN and MESRNN from [14], and SATNN and Trajectron++
from [42]. If a metric was not computed in the original work, a "-" is placed on
the corresponding entry of the table.

Model Context-
based

VLSTN SRNN MESRNN SATTN Trajectron++

ADE(m) 0.521 0.031 0.015 0.013 0.33 0.41
FDE(m) 0.528 0.072 0.033 0.026 3.92 1.07
MR 0.977 - - - - -
MaxDist(m) 5.111 - - - - -
IoU 0.787 - - - - -

Table 6.6: Comparison on the UCY-ZARA01 for 5 seconds prediction window,
with models VLSTN, SRNN and MESRNN from [14], and SATTN and Trajec-
tron++ from [42]. If a metric was not computed in the original work, a "-" is
placed on the corresponding entry of the table.

Model Context-
based

VLSTN SRNN MESRNN SATTN Trajectron++

ADE(m) 0.507 0.059 0.022 0.007 0.20 0.30
FDE(m) 0.518 0.157 0.056 0.016 0.52 0.77
MR 0.978 - - - - -
MaxDist(m) 5.110 - - - - -
IoU 0.788 - - - - -
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Table 6.4: Comparison on the ATC dataset for a 10 seconds prediction win-
dow. If a metric was not computed in the original work, a "-" is placed on the
corresponding entry of the table.

Model Context-based CLiFF-LHMP[69]
ADE(m) 16.77 8.826
FDE(m) 23.04 17.441
MR 0.269 -
MaxDist(m) 47.32 -
IoU 0.175 -

Table 6.7: Comparison on the UCY-ZARA01 for 5 seconds prediction window,
with other models LSTM and S-LSTM from [42]. If a metric was not computed
in the original work, a "-" is placed on the corresponding entry of the table.

Model Context-based LSTM S-LSTM
ADE(m) 0.507 0.410 0.470
FDE(m) 0.518 0.880 1.00
MR 0.788 - -
MaxDist(m) 5.110 - -
IoU 0.978 - -
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Regarding the comparison between the context-based approach proposed in
this work and the simpler context-free model (see Tables 6.1, 6.2 and 6.3), when
predicting over the same time window used during training, the context-based
model performs a bit better on almost every metric. In particular:

• ADE: the context-based model obtains a 9.6% increase in performance;

• FDE: the context-based model obtains a 5.1% increase in performance;

• MR: the context-based model obtains a 4.6% increase in performance;

• MaxDist: the context-based model obtains a 0.7% decrease in performance.
This is the only metric that decreases;

• IoU: the context-based model obtains a 11.3% increase in performance;

In short, the context-based model performs up to 11% better (based on results
of Table 6.1), which proves it is capable of generalizing better in average and
predict trajectories closer to the ground truth. The only metric which is (very
slightly) worse is the MaxDist: since the difference is almost nonexistent, it is
not a serious issue, but interesting observations could be made. This is probably
due to the effect of the context data on a particular instance of the predicted
trajectory.

When increasing the time window for the predictions, in general, the metrics
get worse quite a lot: this result is in part expected, as the time window used
during training is 5 seconds and the models have learnt to generalize on that
time frame, but in the end the MaxDist metric increases too dramatically.

In particular, comparing the two models on 7.5 and 10 seconds time windows:

• The variation in performance in almost every metric is extremely low,
sometimes in favour of the context-based model and sometimes not;

• The MaxDist metric of the context-based model is lower in every case;

Again, the performance gets worse when increasing the time window. On
a positive note, despite being more complex, the performance of the proposed
context-based model are similar to the context-free model: the context data does
influence the model in a negative way when predicting on different time win-
dows. On the negative side, the context data does not necessarily help the model
to deal with longer time windows, with the exception of the improvements on
the MaxDist metric: on average, the context model performs similarly to the
context-free one, but at least the maximum distance achieved from the former
is lower then the one achieved from the latter.
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Regarding the comparison between the context-based model and the state of the
art models (see Tables 6.4, 6.5, 6.6, 6.7):

• In the comparison on the ATC dataset, the context-based model performs
a bit worse than the state-of-the-art model (CLiFF-LHMP) with respect to
ADE and FDE;

• It is important to note that in the original work, the CLiFF-LHMP model
is intended for long term trajectory prediction (from 10 seconds up to 60
seconds);

• The advantage of the CLiFF-LHMP approach lies in the use of maps of
dynamics: exploiting learned motion patterns, CliFF-LHMP is able to
generate a map with explicit knowledge about obstacle, allowing it to
predict realistic trajectories that follow the layout of the environment;

• In the comparison on ETH-UNIV and UCY-ZARA01 datasets, the context-
based model performs similarly to SATTN and Trajectron++, even with a
small improvement on the FDE metric;

• The performance of VLSTN, SRNN and MESRNN are outstanding, with
MESRNN almost reaching a centimeter accuracy on average on trajectories
predicted;

• The advantage of the MESRNN method lies in the use of meta-paths
obtained from moving neighbours to improve trajectory prediction.

• The state-of-the-art models used here are in general very complex and run
deeper than our context-based model. As our model has to eventually run
on the hardware of a TIAGo robot with very limited computing capabili-
ties, it was necessary to trade off the accuracy for minor complexity. It is
acceptable to predict the motion with a small error as long as it is done
fast enough for the robot to use this prediction during planning;

• In general, performance is comparable with works presented in [42]. These
methods are also the most similar to our model, considering they are based
on LSTM as well;

• As already stated, the models of [14] are very promising. The meta-path
approach could be fused with our context model for a possible future
work.

Regarding the comparison between the context-based approach and the
context-free approach, some important observations can be made:

• Firstly, despite having the trajectory-learning part of the network in com-
mon, the context-based model is naturally more complex, as it takes in
more inputs, and therefore the first layers of the network are larger, even
though after the concatenation the dimensions of the following fully con-
nected layers are the same in both models. This may have played a part
in the increase in performance of the context-based model: in addition to
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the important context information retrieved and used by the network, the
capability of the model to capture more information with more weights
has a role on its effectiveness;

• Secondly, as explained in Section 4.1.1 of this work, not every person
registered in the dataset has the same number of detections: this means
that it was necessary to perform 0-padding to standardize the dimension
of the tensors to be given in input to the network. The people with few
detections were removed from the training dataset since the 0-padding
would influence the performance of the models due to the high number
of zeros. However, some 0-padded sequences still remain, and they may
have partly affected the networks. However, it is expected that this is a
very common issue, which means that state-of-the-art models have had to
make similar assumptions when dealing with padding;

• Finally, the standardization of the scaler on input data may have an effect on
performance: as explained in Chapter 5, scaling was performed on the data
to improve training and reduce overfitting. The scaler was obviously fitted
on the training data, in particular on trajectory coordinates. However,
the context-based model takes in input the context information (namely,
the indexes reported in Subsection 5.2.1) as well. Most of these indexes
are in a range (commonly from -1 to 1), and express the situation of the
whole environment. Therefore, they don’t need scaling and are fed to the
network as they are.

Figures 6.1, 6.2, 6.3 show some examples of predicted trajectories (in red)
compared with the ground truth (in blue), over a 5 second prediction window.
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Figure 6.1: An example of an acceptable predicted trajectory compared to the
ground truth.

Figure 6.2: An example of a good predicted trajectory compared to the ground
truth.
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Figure 6.3: An example of a bad predicted trajectory compared to the ground
truth.
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6.3 Testing on the TIAGo robot

The final part of the evaluation phase consists in testing this system on a real
robot moving in the real world. As discussed in chapter 3, the chosen robot
is a TIAGo (in particular, a TIAGo++) situated in the Autonomous Robotics
Laboratory of the University of Padova. For our purpose, we used some existing
packages as well: the SPENCER people tracking package [31] for detecting,
tracking and obtaining positions of people in the environment, and the CoHAN
planner [49], which is a state-of-the-art planner based on the Human-Aware
Timed Elastic Band [53].

The experiments were performed as follows (see Figure 6.4):

• A number of white cardboards are placed on the floor, so that the chair
and table legs are hidden and the laser does not detect possible human
legs in those positions;

• The robot is placed in the middle of the robotics laboratory entrance hall-
way, at an even distance from the side walls. The SPENCER people tracker
package is launched;

• The CoHAN planner is started, and a goal placed around the first right
corner and towards the end of the room is given to the robot;

• The predictor node is started: it starts collecting positions of people and
feeding them to the learning model for prediction;

• Another node publishes both the tracked persons and the predictions on
the tracked_humans topic used by CoHAN for planning.

• TIAGo then starts moving to reach its goal, while a person moves towards
it at the same time;

The predictor node is the main node of this work: it uses the context-based
model we propose and collects the positions of the people detected in the envi-
ronment. Once it has enough data for the desired time window for prediction,
it feeds this data to the model. The output predicted trajectories are then pro-
cessed into a message of type TrackedHumans that is passed to the CoHAN
planner. The planner will then use this message to plan a path.

The goal of these experiments is to prove that, during navigation, TIAGo
adapts its path to the people it tracks and their possible future positions and
behaves respecting social navigation constraints. Despite eventually encounter-
ing some issues (e.g. the robot delocalizing in some cases and turning on itself,
responding slowly to the person in front of it or behaving oscillatorily), the robot
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Figure 6.4: This figure shows the testing environment we used: the robot is
navigating towards the author and avoiding him as soon it detects him. Notice
the white cardboards hiding the chairs and the table legs.

properly handled the social space during navigation with human presence in
the environment. Figure 6.5 shows how the CoHAN local planned trajectory
(red line) changed with respect to the global plan (green line) when the robot
detected a person moving in its way: the planner modifies its planned path to
give space to the person and avoid them during motion.

Figure 6.5: This figure shows the robot (depicted as the structure forming from
its frames) moving towards the detected person (in yellow), and changing the
planned local path (in red) to avoid him and respect social norms.
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7
Conclusion

The goal of this thesis work was to design and test a new trajectory pre-
diction method that exploits the information embedded into the context of the
environment, in particular into the positions, orientations and motion of people
with respect to each other. Trajectory prediction is a very complex task. Human
behaviour is very diverse among different people: it is highly dynamic, it can
change drastically and rapidly, and it is influenced not only by the current state
but also by past and future motion and intentions. Moreover, humans rarely
move alone, but are in constant interactions with each other, when avoiding,
communicating or grouping with other people. Beyond such challenges, to
make the robot socially navigate and interact with people, the estimation of the
human motion has to be done in real-time. To achieve this, a clustering approach
was applied alongside classical trajectory learning. The results suggested that
this approach proved to be up to 11% better than a context-free model (see
Chapter 6, in particular Table 6.1), which is a good starting point for a possible
future evolution of this concept to improve its efficacy. However, some complex
state-of-the-art approaches obtain outstanding performance, almost precise to
the centimeter. The deployment on the TIAGo++ robot was done at the Au-
tonomous Robotics Laboratory of the University of Padova: the robot was given
a goal and had to socially navigate while avoiding a person walking in its direc-
tion. This preliminary real-world test proved that the robot is able to conform
to social rules in real-time and it is able to correctly adapt the planned path
to avoid people, despite some challenges related to localization difficulties and
oscillatory behaviours.
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7.1 Future works

Future work will be focused on improving the performance by adding data
from other datasets and assessing other networks. One possible change to make,
is to train the model on more or different datasets, and see how it performs. For
example, in this work the ATC dataset has been used for testing purposes only,
but its large quantity of data could be exploited better in training.
The next step could be integrating this context-based approach with the very
powerful meta-path enhanced methods [14] that perform so well on ETH and
UCY. Another possible idea consists of integrating information from other peo-
ple in the environment (e.g. their distances with respect to a chosen human)
to improve the prediction accuracy of the person we are analyzing. Finally, a
possibility is to use deeper and more complex models. However, in order to be
deployable on the robot, it is necessary to carefully evaluate how much more it
can handle.

In conclusion, the future of trajectory prediction for social navigation holds
great promise. Addressing the complexities and ethical considerations while
embracing emerging technologies will enable us to create autonomous systems
that coexist seamlessly with humans in an increasingly dynamic and diverse
world.
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