UNIVERSITÀ DEGLI STUDI DI PADOVA

Facoltà di Scienze Statistiche

LAUREA MAGISTRALE IN SCIENZE STATISTICHE

I fondi immobiliari italiani: NAV discount e valutazioni degli esperti indipendenti

Italian real estate funds: NAV discount and independent expert evaluations

Relatore: Prof. Massimiliano Caporin

Correlatore: Dott. Alberto Lanzavecchia

Laureando: Valerio Lippoli

Alla mia famiglia, con affetto

Indice

Intr	oduzione	3
Сар	itolo 1 I fondi immobiliari in Italia	7
1.1	Tipologie e regolamentazione	7
1.2	Il mercato	11
1.3	I fondi retail	13
1.4	Lo sconto sul NAV	15
Сар	itolo 2 I dati	17
2.1	Il database	17
2.2	Gli altri dati	21
2.3	Le variabili	22
2.4	Statistiche descrittive	27
2.5	Test di stazionarietà	31
-	itolo 3 Il modello	
3.1	Letteratura	33
3.2	Domande di ricerca e risultati attesi	34
3.3	Metodologia	35
3.4	I modelli	36
Con	clusioni	51
Svil	uppi futuri e limiti di metodo	54
Rihl	iografia	55

Appendice A- Tabelle e grafici	59
Appendice B – Output e listato	67
Ringraziamenti	91

Introduzione

Il settore della finanza immobiliare domestica, nell'ultimo decennio, ha sperimentato un notevole sviluppo, ottenuto anche grazie all'offerta di prodotti capaci di soddisfare le esigenze degli investitori sia retail, sia istituzionali. In particolar modo, i fondi immobiliari quotati rappresentano uno degli strumenti più recenti e innovativi del processo di finanziarizzazione del settore immobiliare. Questi ultimi, sono caratterizzati da quotazioni significativamente inferiori rispetto al valore patrimoniale netto (Net Asset Value - NAV). La problematica che ne consegue è di particolare importanza in quanto impedisce alle Società di Gestione (SGR) la possibilità di raccolta di nuove risorse finanziarie durante le riaperture delle sottoscrizioni e di conseguenza impedisce i possibili rimborsi anticipati.

Il presente lavoro esamina in un contesto economico-finanziario la problematica connessa alla quotazione a sconto rispetto al NAV dei 23 fondi immobiliari italiani collocati sul mercato borsistico. In particolare, obiettivo dello studio è analizzare se, tra le possibili cause del fenomeno, si possa inserire anche l'operato degli esperti indipendenti delegati, dalle società di gestione del fondo, per la valutazione del portafoglio immobiliare. In aggiunta, si vuole indagare l'effetto dell'informazione derivante dal disinvestimento di un bene immobile, da parte del fondo, e dalla successiva plusvalenza o minusvalenza generata.

Dopo aver trattato la regolamentazione, la struttura e il mercato dei fondi immobiliari presenti in Italia, si è passati alla parte analitica che ha visto, in primis, la descrizione della raccolta dei dati dai 357 rendiconti semestrali pubblicati dalle SGR dei fondi, da quando sono stati istituiti fino al primo semestre del 2011, e la successiva creazione di un database. Il database catalogato per fondo, può essere diviso in base al contenuto informativo in due parti: nella prima parte sono presenti le caratteristiche dei cespiti disinvestiti dal fondo, per i quali si riporta l'ubicazione, la superficie, la data d'acquisto, l'ultima valutazione eseguita dagli esperti indipendenti, la data di vendita, il costo di

realizzo, i proventi generati dai canoni di locazione, gli oneri sostenuti per il mantenimento e il risultato dell'investimento; nella seconda parte sono classificati, ad ogni data di riferimento del rendiconto, l'esperto indipendente delegato dalla SGR per la valutazione degli immobili, il valore del portafoglio immobiliare stimato dagli stessi e il NAV del fondo. In aggiunta, si è provveduto a recuperare le serie storiche del prezzo di borsa delle quote dei 23 fondi in analisi dalla data di costituzione al 30/09/2011 e di alcuni indicatori macroeconomici per tenere in considerazione eventuali effetti dovuti al ciclo economico.

Successivamente, dai dati sopra elencati, sono state costruite le variabili d'interesse. In dettaglio, al fine di non perdere l'informazione derivante dalla cessione dei cespiti e per avere una rappresentazione del fenomeno con cadenza maggiore nel tempo, le variabili sono state definite con frequenza mensile. Lo sconto sul NAV essendo funzione dei prezzi di borsa, facilmente reperibili con frequenza mensile, e del valore del NAV, pubblicato esclusivamente con cadenza semestrale, ha richiesto un'assunzione per essere calcolato mensilmente. In particolare, si è scelto di lasciare il valore del NAV costante all'interno del semestre; l'ipotesi non è troppo restrittiva: il valore del NAV dipende fortemente dal valore degli immobili e data la natura si può ritenere che il loro valore non cambi significativamente da un mese all'altro, e di conseguenza neanche quello del NAV. Ad ogni modo, può essere interpretato come lo sconto rispetto all'ultimo NAV pubblicato. Per tutte le variabili si è proceduto a fornire le statistiche descrittive.

In seguito, dopo un breve richiamo a lavori presenti in letteratura che hanno avuto come oggetto lo sconto, si è passati all'analisi econometria. La verifica empirica è stata condotta utilizzando come variabile dipendente lo sconto sul NAV.

I risultati principali rivelano che gli esperti indipendenti, tranne poche eccezioni, contribuiscono a far crescere il differenziale tra NAV e prezzo di borsa. Evidentemente, il mercato non reputa attendibile l'operato degli esperti; questo potrebbe essere dovuto alla metodologia utilizzata, considerata discutibile e poco trasparente, ovvero ai dubbi sulla totale "indipendenza" degli stessi. Ma, al contrario di quanto ci si aspetterebbe è emerso che nel 73% dei cespiti alienati, il

bene viene venduto ad un prezzo superiore rispetto all'ultima valutazione effettuata dagli esperti. Pertanto, ammesso che le valutazioni dei beni non siano ritoccate al ribasso nel periodo strettamente precedente alla vendita, gli esperti tendono a sottostimare il valore.

L'analisi, inoltre, conferma che il disinvestimento di un bene immobile implica una riduzione dello sconto. Le cause sono da ricercarsi sia nella riduzione del rischio derivante dalla monetizzazione di un investimento di natura illiquida, sia perché nella variabile cessione è contenuta l'informazione di avvenuta plusvalenza, in quanto come sottolineato in precedenza, nella maggior parte dei casi il cespite viene venduto ad un valore superiore rispetto all'ultima valutazione. Inaspettatamente, la plusvalenza in termini assoluti o relativi non ha mostrato rilevanza.

In aggiunta, il ciclo economico e il periodo temporale mostrano effetti sulla differenza tra NAV e prezzo di borsa. Altre variabili, come il grado di indebitamento e la dimensione del fondo non hanno mostrato chiari effetti significativi.

Il lavoro offre interessanti spunti di ricerca futuri, tra i quali indagare l'effetto sullo sconto sul NAV dei disinvestimenti degli immobili controllando per le caratteristiche del bene, ovvero analizzare l'effetto degli esperti indipendenti esaminando più approfonditamente il loro operato e i possibili conflitti di interesse con le SGR dei fondi.

Il lavoro è così strutturato: nel capitolo 1 vengono illustrati i principali tratti regolamentari, la struttura e il mercato dei fondi immobiliari italiani; nel capitolo 2 sono descritti i dati e il database costruito; nel capitolo 3 vengono presentati il quadro teorico, i quesiti di ricerca, la metodologia utilizzata e il commento ai risultati ottenuti. Nella sua parte finale, il presente lavoro avanza le conclusioni ai risultati ottenuti rispetto ai quesiti di ricerca posti e suggerisce gli sviluppi naturali dello stesso.

Capitolo 1 I fondi immobiliari in Italia

1.1 Tipologie e regolamentazione

Un fondo comune d'investimento è un patrimonio privo di personalità giuridica, suddiviso in quote di partecipazione di valore unitario, di pertinenza di una pluralità di investitori, i quali partecipano mediante la sottoscrizione delle stesse quote. L'attività di investimento e gestione del fondo comune viene delegata ad una Società di Gestione del Risparmio (SGR) che assume verso i sottoscrittori le responsabilità del mandatario. In virtù della loro organizzazione, i fondi comuni consentono al singolo risparmiatore di beneficiare di una gestione professionale.

Secondo la normativa italiana, i fondi immobiliari¹ sono fondi comuni d'investimento specializzati prevalentemente 0 in modo nell'investimento immobiliare: il valore dei beni immobili, dei diritti reali immobiliari e delle partecipazioni in società immobiliari² (società che effettuano attività di costruzione, valorizzazione, acquisto, alienazione e gestione degli immobili) non può essere inferiore ai due terzi del valore complessivo del fondo. Questo limite, i due terzi, può essere ridotto al 51% nel caso in cui il 20% del valore complessivo del fondo è investito in strumenti finanziari rappresentativi di operazioni di cartolarizzazione aventi ad oggetto beni immobili, diritti reali immobiliari o crediti garantiti da ipoteca immobiliare. Le suddette soglie, i due terzi o il 51%, devono essere raggiunte entro i 24 mesi successivi all'avvio dell'operatività del fondo e rispettati per tutta la durata del fondo. La parte

¹ introdotti nel panorama finanziario italiano con la legge 86/1994, la quale ha subito successive modifiche fino ad essere quasi totalmente abrogata a seguito dell'approvazione del d.lgs. n.58/1998 (TUF) e dei relativi provvedimenti di attuazione predisposti dalla Banca d'Italia, dal Ministero dell'Economia e delle Finanze e dalla CONSOB.

² Nella gestione del fondo chiuso non è consentito svolgere attività diretta di costruzione di beni immobili.

restante del patrimonio può essere investita in strumenti finanziari quotati e non quotati in un mercato regolamentato, in depositi bancari e in altri beni per i quali esiste un mercato e che quindi abbiano un valore determinabile con certezza. Data la loro struttura, i fondi immobiliari consentono di trasformare investimenti immobiliari, che per loro natura richiedono tempi più lunghi e capitale minimo di partenza decisamente maggiore degli investimenti di tipo mobiliare, in quote finanziarie che consentono di generare liquidità senza che l'investitore debba acquistare direttamente un bene immobile.

I fondi immobiliari sono istituiti in forma chiusa: riconoscono il diritto al rimborso delle quote solo a scadenze predeterminate. Prima del D.M. 47/2003, ciò indicava la fine della vita del fondo ovvero a fronte del disinvestimento da parte della SGR degli immobili. La nuova normativa ha mitigato la tradizionale struttura "chiusa" del fondo, istituendo di fatto fondi chiusi flessibili (chiamati anche fondi semichiusi) consentendo, a scadenze determinate, emissioni successive di quote e rimborsi anticipati. In dettaglio, il patrimonio del fondo può essere raccolto in più emissioni successive di quote; in coincidenza con le nuove emissioni³ è possibile effettuare rimborsi anticipati dei sottoscrittori che lo richiedono, nei limiti delle nuove risorse finanziarie raccolte e tenendo conto che si può ricorrere (esclusivamente per questo fine) all'indebitamento fino al 10% del valore del fondo. Quindi, la modalità "semichiusa" conferisce una maggiore flessibilità al fondo e liquidità delle quote⁴. La durata⁵ di un fondo comune d'investimento deve essere coerente con la natura degli investimenti, non può in ogni caso essere superiore al termine di durata della SGR che lo ha istituito e, nel caso dei fondi chiusi, non può superara i 30 anni fissati dalla normativa. La Banca d'Italia può concedere un periodo per il completamento dello smobilizzo degli immobili (periodo di grazia).

I fondi si possono differenziare in base alla modalità di distribuzione dei dividendi: fondi a distribuzione dei proventi, fondi ad accumulazione dei proventi

³ Si può procedere e nuove emissioni solo dopo il richiamo di tutti gli impegni relativi a emissioni precedenti.

⁴ Vedremo, in seguito, come tale possibilità è impedita, nella pratica, per i fondi quotati dal fenomeno dello "sconto".

⁵ D.M. 228/1999

e fondi ad accumulazione dei proventi per i primi anni e a distribuzione dei proventi negli anni successivi.

Per quanto riguarda il ricorso ai finanziamenti, i fondi immobiliari italiani possono assumere prestiti fino ad un massimo del 60% del valore degli immobili, dei diritti reali immobiliari e delle partecipazioni in società immobiliari e fino al 20% degli altri beni. Queste risorse possono essere usate anche per valorizzare i beni del fondo: variare la destinazione d'uso e/o frazionare l'immobile. Inoltre, come è stato detto, è concesso assumere prestiti per effettuare rimborsi anticipati, sempre nel rispetto dei limiti sopra indicati e per un ammontare non superiore al 10% del valore del fondo. In definitiva, un corretto uso della leva finanziaria si deve fondare esclusivamente sul rendimento dell'investimento principale di tali fondi, i beni immobiliari, potendo usufruire di un grado di leverage massimo del 60%⁶. Notiamo, che ai fondi immobiliari è concesso ricorrere al finanziamento in modalità maggiore rispetto agli altri fondi di risparmio gestito. Le ragioni sono da ricercarsi nella natura degli investimenti, i quali permettono di offrire una garanzia al creditore con l'ipoteca e, data la possibilità di ottenere flussi di cassa periodici dai canoni di locazione, di ripagare il debito.

Attualmente⁷ sono consentite tutte le tipologie di prestito ad eccezione della raccolta del risparmio mediante emissione di titoli di debito. Il regolamento del fondo può prevedere eventuali limitazioni.

I fondi sono classificati in base ai soggetti ai quali si rivolgono: *fondi retail*, rivolti alla generalità degli investitori, senza alcuna specifica sulla loro natura e sulle loro caratteristiche giuridiche; *fondi riservati*, rivolti a investitori qualificati come banche, assicurazioni, fondi pensione, persone fisiche o giuridiche ed enti in possesso di specifica competenza ed esperienza in operazioni finanziarie. Nel caso dei fondi riservati, si presume che gli investitori abbiano una competenza economica e quindi non sono richiesti né il prospetto informativo né la quotazione in borsa: è sufficiente l'approvazione del regolamento da parte della

⁶ "Secondo un'interpretazione corrente, le percentuali massime di indebitamente vanno applicate al valore di acquisto o di conferimento degli immobili." (Cacciamani, 2008, *Real Estate*)

Banca d'Italia. Le quote di partecipazione possono essere scambiate solo tra investitori qualificati.

Dal 2005 sono stati istituiti anche i *fondi speculativi immobiliari*: gestiti da SGR speculative, con non più di 200 partecipanti e quote di valore iniziale non inferiore a 500.000 euro. Per questa tipologia di fondi si fa eccezione per quanto riguarda il livello massimo di indebitamento: viene consentito di superare la soglia del 60% del valore degli immobili, dei diritti immobiliari e delle partecipazioni.

L'investimento in un fondo immobiliare si realizza: tramite la sottoscrizione delle relative quote (*fondi a raccolta o fondi ordinari*), generalmente ai potenziali investitori viene anche illustrato un piano d'investimento; mediante conferimento di beni immobili, diritti reali immobiliari o di partecipazione in società immobiliari⁸ (*fondi ad apporto*). Nell'ultimo caso, la SGR può liberamente decidere di costituire un fondo completamente o parzialmente ad apporto (oltre all'apporto di immobili anche versamenti in denaro). Distinguiamo ulteriormente i fondi ad apporto in: *fondi ad apporto privato*, che possono essere anche misti purché la partecipazione pubblica⁹ non sia inferiore al 51% e *fondi ad apporto pubblico*, che possono essere anche misti purché la partecipazione pubblica sia superiore al 51%.

La Banca d'Italia pone dei limiti di contenimento e frazionamento del rischio: i fondi non possono investire più di un terzo delle loro attività in un unico bene immobile e non più del 10% (direttamente o tramite società controllate) in società immobiliari che prevedono nel loro oggetto sociale la possibilità di svolgere attività di costruzione. I fondi riservati e speculativi possono derogare questi limiti.

Per i fondi ad apporto pubblico e per quei fondi che prevedono un ammontare minimo della sottoscrizione inferiore a 25.000 euro è obbligatoria la richiesta di

⁸ Il valore viene stabilito da un esperto indipendente e da un intermediario finanziario, al fine di ridurre possibili accordi tra la SGR e i soggetti apportanti.

⁹ Beni e diritti apportati esclusivamente dallo Stato, da enti previdenziali pubblici, da regioni, da enti locali e loro consorzi e da società interamente possedute anche indirettamente dagli stessi soggetti.

quotazione in un mercato regolamentato (MTF¹⁰). La richiesta di ammissione delle quote alla negoziazione deve essere effettuata dalla SGR entro 24 mesi dalla chiusura dell'offerta, periodo che consente al fondo l'attualizzazione del piano d'investimento, per evitare che lo stesso si presenti alla quotazione con eccessiva liquidità. La quotazione permette all'investitore di liquidare la propria quota senza aspettare le scadenze, a condizione che ci sia un compratore.

La normativa vigente¹¹ richiede alle SGR di redigere un rendiconto annuale sulla gestione del fondo entro 60 giorni dalla fine di ogni esercizio e una relazione semestrale, sempre sulla gestione del fondo, entro 30 giorni dalla fine del semestre. Prevede, tra l'altro, che la valutazione dei beni immobili, dei diritti reali immobiliari e delle partecipazioni in società immobiliari non quotate sia delegata, da parte della SGR, ad esperti indipendenti che possono essere sia persone fisiche, sia giuridiche. Gli esperti intervengono in sede di:

- Valutazione del fondo periodica con relativa relazione di stima entro 30 giorni;
- Cessione di beni;
- Conferimento di beni, sia in fase di costituzione sia successivamente;

Nel caso in cui la SGR non si avvalga di una società, la valutazione deve essere effettuata da un collegio di almeno tre esperti. L'incarico di valutazione non può essere superiore a tre anni ed è rinnovabile una sola volta.

1.2 Il mercato

L'industria dei fondi immobiliari italiani, nonostante l'attuale complessità della congiuntura, continua a mostrare stabilità, mantenendo un trend positivo. L'indice immobiliare italiano IPD¹² riferito a giugno 2011 rivela, a livello aggregato, rendimenti dell'1,2% e 2,6% a livello semestrale e annuale, rispettivamente. Sottolineiamo che l'indicatore del semestre in considerazione è in flessione rispetto allo stesso calcolato per dicembre 2010 (1,4%), ma comunque spicca per robustezza rispetto alle principali alternative di

_

¹⁰ Acronimo di Mercato Telematico dei Fondi

¹¹ D M 228/1999

¹² Acronimo di Investment Property Databank, società leader nelle analisi di performance degli asset immobiliari.

investimento, come azioni generaliste che hanno attestato un rendimento del -8% nel medesimo periodo temporale.

Il settore continua a mostrare, in un periodo marcato dall'incertezza, segni di crescita. Alla data del 30/6/2011: il patrimonio dei 163 fondi censiti da Assogestioni/IPD è 24.334,4¹³ milioni di euro registrando un incremento del 4,5% rispetto a dicembre 2010, del 9,8% ad un anno e 21,3% a tre anni; il volume delle attività è incrementato del 5,7% su base annua. In leggero aumento anche il valore delle attività, pari a 40.420 milioni di euro segnando un incremento dello 0,9%, 5,7% e 21,6% rispettivamente a sei mesi, un anno e tre anni.

L'utilizzo della leva finanziaria è molto diffuso: il 78,4% dei fondi ha effettuato operazioni di finanziamento per incrementare le attività investite. Il grado di utilizzo della leva (rapporto tra indebitamento e massimo indebitamento consentito) è 72,1%.

L'offerta di fondi immobiliari, è composta per l'86% da fondi riservati e per il restante 14% da fondi retail. Distinguendo in base ai soggetti sottoscrittori e alla costituzione del patrimonio immobiliare abbiamo:

- 17 fondi retail costituiti in modo ordinario (con un patrimonio di 3.723,7
 milioni di euro);
- 6 fondi retail costituiti mediante apporto (con un patrimonio di 1.782,8 milioni di euro);
- 17 fondi riservati costituiti in modo ordinario (con un patrimonio di 1.890,0 milioni di euro);
- 123 fondi riservati costituiti mediante apporto (con un patrimonio di 16.937,6 milioni di euro).

I fondi speculativi immobiliari rappresentano il 25,8% dell'offerta complessiva con un patrimonio di oltre 1.696 milioni di euro e attività per 5.225 milioni di euro. Con un indebitamento di circa 3,2 miliardi di euro che costituisce il 20,9% dell'indebitamento complessivo.

Le società di gestione coinvolte nell'istituzione e nella gestione dei fondi sono 24, 20 delle quali hanno per oggetto esclusivo i fondi chiusi, mentre le restanti 4

¹³ Fonte: Assogestioni (2011), "Rapporto semestrale dei fondi italiani".

anche fondi aperti. Per quanto riguarda la suddivisione tra fondi retail e riservati, 2 hanno istituito solo fondi retail, 10 solo fondi riservati e le restanti 12 entrambe le tipologie.

La composizione delle attività risulta così distribuita:

- immobili e diritti reali immobiliari: 88,4% (+1,0% rispetto a giugno 2010);
- partecipazioni di controllo in società immobiliari: 1,8% (-0,5%);
- valori mobiliari e liquidità: 6,7% (-0,9%);
- altro: 3,1% (+0,4%).

L'investimento diretto o tramite partecipazioni in società immobiliari, in immobili raggiunge i 37.125 milioni di euro, in crescita del 2,5%, 6,5% e 25,8% a sei mesi, un anno e tre anni rispettivamente.

La ripartizione per destinazione d'uso è in linea con gli anni precedenti e vede prevalere gli immobili adibiti ad "Uffici" (52,8%); seguono gli immobili nel settore "Commerciale" (17,9%), nella categoria "Altro" (10,3%), "Residenziale" (6,1%), "Turistico/Ricreativo" (4,9%), "Industriale" (4,8%), "Logistica" (2,2%) e "RSA" (1,1%).

L'ultima suddivisione che riportiamo è quella per area geografica:

- Nord Ovest 47,3% (+1,0% rispetto a dicembre 2010)
- Centro 32,0% (-0,3%)
- Nord Est 9,7% (-0,9%)
- Sud e Isole 9,1% (+0,3%)
- Estero 1,9% (+0,1%)

1.3 I fondi retail

Questo lavoro si focalizza esclusivamente sui fondi retail. È quindi opportuno offrire un maggior dettaglio informativo per questa categoria di fondi chiusi immobiliari.

La quota di mercato dei fondi retail continua a diminuire a scapito dei fondi riservati, che nel primo semestre 2011 sono aumentati di tre unità. I fondi retail sono 23, contro i 140 riservati, con un patrimonio di 5.506 milioni di euro e un

attivo di 8.249 milioni di euro, che corrispondono rispettivamente al 22,6% e il 20,4% del totale.

La gran parte dei fondi retail (17 su 23) è costituita in modo ordinario. Questo incide su un'altra caratteristica: i fondi retail hanno una percentuale di investimento diretto in immobili inferiore ai fondi riservati (83,2% contro 89,8%) e una conseguente maggiore esposizione in partecipazioni di controllo in società immobiliari (4,4% contro 1,2%).

I fondi retail che prevedono la possibilità di aprire sottoscrizioni mediante emissioni successive di quote sono solo 4, mentre per i fondi riservati tale possibilità è prevista per la maggior parte dei fondi.

Per quanto riguarda la categoria degli immobili, sottolineiamo che 14 fondi su 23 investono più del 50% in immobili con destinazione d'uso "Uffici"; seguono la categoria "Residenziale" (22,4%), "Turistico/Ricreativo" (7,5%), "Logistica" (5,0%) e "Residenziale" (1,2%).

La suddivisione per aree geografiche presenta valori che non si discostano significativamente da quelli del settore di cui al paragrafo precedente.

Le movimentazioni del portafoglio immobiliare, da giugno 2010 a giugno 2011, sono le seguenti: acquisti e conferimenti di immobili per 37 milioni di euro; disinvestimenti per circa 121 milioni di euro. La totalità dei disinvestimenti è da attribuirsi a fondi che non hanno richiamato gli impegni nel corso dei dodici mesi in esame.

L'ultimo aspetto che osserviamo è l'indebitamento. L'indebitamento complessivo, di questa categoria di fondi, resta sullo stesso livello di quello registrato 12 mesi prima, circa 2.800 milioni di euro. Il grado di utilizzo della leva si attesta attorno al 64% della quota ammissibile.

1.4 Lo sconto sul NAV

I fondi immobiliari domestici quotati in borsa sono caratterizzati da una problematica nota nel settore come "sconto sul NAV". Il prezzo della quota scambiato sui mercati secondari è di norma inferiore al valore del NAV, riportato dai rendiconti della SGR del fondo stesso. Come già visto nel capitolo 1.1, i fondi possono prevedere da regolamento la riapertura delle sottoscrizioni e di conseguenza il rimborso anticipato, con l'obbligo di valorizzare le quote al NAV. La presenza dello sconto, di fatto, impedisce questa possibilità poiché: l'ipotetico investitore preferisce comprare le quote sul mercato ad un prezzo più basso (ammesso che ci sia un venditore) rendendo infruttuosa la raccolta di nuovi fondi da parte delle SGR. Conseguentemente, non essendo avvenuta la nuova raccolta di fondi, il sottoscrittore che ha richiesto il rimborso anticipato non viene accontentato e potrà decidere se vendere le proprie quote ad un prezzo più basso sul mercato o aspettare la scadenza del fondo.

L'obiettivo del nostro lavoro è indagare sulle possibili cause che generano lo sconto, in particolar modo siamo interessati a valutare se tra di esse ci sono le valutazioni degli esperti indipendenti.

Capitolo 2 I dati

2.1 II database

La prima parte del presente lavoro è stata dedicata alla creazione di una database, il quale è stato in gran parte usato, insieme ad altre serie storiche di cui parleremo in seguito, per le nostre analisi empiriche.

Il database è stato costruito utilizzando i rendiconti dei 23 fondi retail e i certificati di perizia rilasciati dagli esperti indipendenti, pubblicati dalle SGR semestralmente dalla data di costituzione del fondo al 30/06/2011. In totale sono stati analizzati 357 rendiconti, i quali sono stati reperiti dai siti web delle rispettive SGR. Dai suddetti documenti sono state estrapolate, per ogni fondo, informazioni riguardanti i cespiti disinvestiti: la via in cui è sito l'immobile, la superficie, la data e il valore d'acquisto, l'ultima valutazione fatta dagli esperti indipendenti, la data e il valore di realizzo, i proventi generati dall'immobile dai canoni di locazione, gli oneri sostenuti per il mantenimento dello stesso (inclusi i costi di ristrutturazione) e il risultato di gestione¹⁴. In totale i beni disinvestiti sono risultati essere 277. Oltre ai dati relativi ai cespiti alienati, si è provveduto a catalogare i dati riguardanti l'istituto di perizia, il valore del portafoglio immobiliare da loro stimato e il NAV del fondo. Il NAV (Net Asset Value) è il valore semestrale complessivo del fondo al netto delle passività, valorizzando il patrimonio immobiliare in portafoglio secondo le stime degli esperti indipendenti.

¹⁴ Il risultato di gestione è ottenuto sottraendo al valore di vendita dell'immobile il costo d'acquisto e aggiungendo la differenza tra i proventi generati e gli oneri sostenuti per il mantenimento.

Tabella 1. I fondi retail

Fondo	Ticker	SGR	Data di costituzione	Data di quotazione	Scadenza	# Rendiconti
Amundi RE Europa	QFCRE	Amundi Re Italia	11/10/2001	17/11/2003	31/12/2016	16
Amundi RE Italia	QFCRI	Amundi Re Italia	31/03/2001	03/06/2002	31/12/2016	16
BNL Portfolio Immobiliare	QFBPI	BNP Paribas REIM It	15/05/2000	03/01/2002	31/12/2010	21
Estense - Grande Distribuzione	QFEGD	BNP Paribas REIM It	10/06/2003	04/08/2004	31/12/2013	17
Europa Immobiliare 1	QFE11	Vegagest Immobiliare	01/12/2004	04/12/2006	31/12/2014	14
Fondo Alpha	QFAL	IDeA FIMIT	01/03/2001	04/07/2002	$27/06/2015^{15}$	18
Fondo Atlantic 1	QFATL	First Atlantic RE	31/05/2006	02/06/2006	31/12/2013	12
Fondo Atlantic 2 Benerice	QFATL2	First Atlantic RE	14/07/2005	19/07/2005	31/12/2003	7
Fondo Beta	QFBET	IDeA FIMIT	01/01/2004	24/10/2005	18/02/2011	13
Fondo Delta	QFDI	IDeA FIMIT	22/12/2006	12/03/2009	31/12/2004	10
Immobiliare Dinamico	QFID	BNP Paribas REIM It	20/04/2005	04/05/2011	31/12/2020	11
Immobilium 2001	QFIMM	Beni Stabili Gestioni	14/06/2002	29/10/2003	31/12/2017	20
Invest Real Security	QFIRS	Beni Stabili Gestioni	29/09/2003	24/01/2005	31/12/2013	16
Investietico	QFINV	AEDES BPM RE	01/03/2002	01/11/2004	31/12/2012	20
Obelisco	QFOBE	Investire Immobiliare	29/12/2005	14/06/2006	31/12/2015	12
Olinda – Fondo Shops	QFOLI	Pirelli RE	06/12/2004	09/12/2004	31/12/2014	14
Piramide Globale	QFPIR	RREEF Fondimmobiliare	06/07/2000	26/11/2002	30/06/2011	17
Polis	QFPOL	Polis Fondi Immobiliari.	17/06/2000	19/04/2001	31/12/2012	20
Risparmio Immobiliare Uno Energia	QFRIE	PensPlan Invest	26/12/2006	30/07/2009	31/12/2018	10
Securfondo	QFSEC	Beni Stabili Gestioni	09/12/1999	05/02/2001	31/12/2014	24
Tecla – Fondo uffici	QFTEC	Pirelli RE	01/03/2004	04/03/2004	31/12/2014	15
Unicredito immobiliare Uno	QFUNO	Torre	09/12/1999	04/06/2001	31/12/2014	17
Valore Immobiliare Globale	QFVIG	RREEF Fondimmobiliare	15/02/1999	29/11/1999	$31/12/2014^{16}$	15

¹⁵ Prorogabile di 15 anni. ¹⁶ Prorogabile di 5 anni.

La tabella 1 mostra i 23 fondi analizzati con alcune caratteristiche. In particolare, sono riportati: il nome del fondo, il ticker o Sigla di Negoziazione che rappresenta il codice utilizzato per la negoziazione in borsa, la società di gestione, la data di istituzione del fondo, la data di quotazione, la data di scadenza¹⁷ e il numero di rendiconti esaminati per ogni fondo. Da queste prime informazioni, si sottolinea che il settore dei fondi immobiliari retail italiani è abbastanza giovane, il primo fondo è stato istituito a febbraio del 1999. In aggiunta, prima del 2004 erano collocati sul mercato solo 9 fondi sui 23 quotati ad oggi.

Si riporta un estratto del database, con riferimento solo al fondo Atlantic 1, in tabella 2.

-

 $^{^{17}}$ Ricordiamo che ai fondi è concesso un periodo di grazia per finalizzare il disinvestimento dei beni.

Tabella 2. Estratto database per il fondo Atlantic 1.

		Acquisto	isto		Vendita	ita						
Rendiconto	Quantità mq	Data	Valore	Ultima valutazione	Data	Ricavo di vendita	Proventi generati	Oneri sostenuti	Risultato investim.	Istituto	Valore immobili	NAV
30/06/2011										REAG	673.750.000	320.782.020
31/12/2010	2.280	01/01/2006 3.753.593	3.753.593	4.080.000	20/12/2010	4.736.000	1.965.858	1.549.839	1.398.426	REAG	670.390.000	333.460.235
	1.565	01/01/2006	3.161.850	3.470.000	29/11/2010	3.710.000	1.142.366	1.009.039	681.477			
	2.934	01/01/2006 6.341.365	6.341.365	000.008.9	30/09/2010	7.850.000	2.386.668	1.702.369	2.192.934			
	1.627	01/01/2006 2.561.275	2.561.275	2.840.000	09/12/2010	2.950.000	944.647	793.015	540.357			
	1.976	01/01/2006 2.102.012	2.102.012	2.370.000	04/11/2010	2.600.000	815.666	762.536	551.118			
	2.136	01/01/2006 1.245.310	1.245.310	1.330.000	16/12/2010	1.400.000	503.367	363.774	294.283			
	3.267	01/01/2006 4.230.520	4.230.520	4.460.000	16/12/2010	6.200.000	1.680.606	1.190.281	2.459.805			
	3.278	01/01/2006 2.711.419	2.711.419	3.000.000	20/07/2010	3.100.000	873.316	765.045	496.852			
	2.378	01/01/2006 3.197.178	3.197.178	3.540.000	16/12/2010	4.200.000	1.364.419	1.007.512	1.359.729			
30/06/2010	4.469	01/01/2006 3.435.642	3.435.642	3.790.000	07/04/2010	4.260.000	1.086.639	596.069	1.314.928	REAG	696.270.000	329.044.626
	1.538	01/01/2006	883.198	990.000	07/04/2010	1.040.000	259.018	193.294	222.526			
31/12/2009	3.390	01/01/2006	5.237.367	5.920.000	17/12/2009	7.400.000	1.581.588	865.596	2.878.625	REAG	609.240.000	342.792.586
30/06/2009										REAG	731.580.000	359.877.425
31/12/2008	3.278	01/01/2006	1.413.117	1.610.000	06/08/2008	1.800.000	359.112	206.014	539.981	REAG	758.700.000	390.828.505
30/06/2008										REAG	785.810.000 417.847.780	417.847.780
31/12/2007										REAG	777.680.000	409.817.660
30/06/2007										REAG	748.510.000	381.368.133
31/12/2006										REAG	724.510.000	358.468.428
30/06/2006										REAG	719.280.000 345.532.951	345.532.951

La tabella mostra solo per un fondo, i dati raccolti dai rendiconti. In dettaglio, per la data corrispondente ad ogni rendiconto, vengono riportate le informazioni relative ai cespiti alienati nel semestre (ovviamente se nessun bene è stato disinvestito le caselle corrispondenti sono state lasciate vuote), per comodità grafica si è preferito non inserire l'indirizzo del cespite disinvestito, presente comunque nel database. Nella colonna denominata "Istituto", vengono inseriti gli esperti indipendenti che in quel determinato semestre avevano il mandato di valutazione degli immobili; "Ultima valutazione" e "Valore immobili" indicano, rispettivamente, il valore dell'ultima stima del cespite alienato in considerazione e il valore del portafoglio immobiliare alla data di riferimento, entrambi stimati dall'esperto. Il risultato d'investimento (colonna 10), rappresenta il risultato di gestione dell'immobile ceduto: è ottenuto come ricavo di vendita (colonna 7) sommato agli introiti provenienti dai contratti di locazione (colonna 8) a cui si toglie il costo d'acquisto (colonna 4) e gli oneri sostenuti per il mantenimento e gestione dello stesso (colonna 11). L'ultima colonna riporta il valore del NAV come da stato patrimoniale. Si fa presente, che ad eccezione delle date di acquisto e vendita e della superficie (che è espressa in mq), tutte le altre variabili sono in valuta Euro. Si tiene a precisare che questo lavoro di raccolta dati è stato effettuato per tutti e 23 i fondi.

2.2 Gli altri dati

Al fine di creare le variabili di interesse, oltre al database che è stato illustrato nel paragrafo precedente, sono stati utilizzati ulteriori dati. Da un lato si sono ricercati ulteriori dati relativi ai fondi: si è usato Datastream¹⁸ per le quotazioni mensili di borsa e i rapporti semestrali sui fondi immobiliari Italiani di Assogestioni per ottenere informazioni riguardo al grado di indebitamento e alla dimensione dei fondi trattati. Dall'altra parte abbiamo cercato di catturare l'andamento economico tramite l'indice dei prezzi e l'indice di produzione industriale. Le serie storiche mensili sono state estratte dalla banca dati dell'

¹⁸ Datastream è una banca dati distribuita dalla Thomson Financial.

OECD¹⁹ e precisamente si è usato l'indice FOI senza tabacchi e l'indice di produzione dell'industria totale destagionalizzato, entrambi riferiti all'Italia. In aggiunta, dal Rapporto Annuale dell'ISTAT, è stata ricavata la dinamica dell'indicatore composito coincidente dell'economia italiana con l'intento di avere una rappresentazione delle fasi dell'economia stessa.

Il periodo di osservazione non è costante per tutti i fondi in quanto, gli stessi, sono stati istituiti e quotati in date differenti; fissiamo solo il termine del periodo di osservazione al 30/09/2011.

2.3 Le variabili

Di seguito verranno presentate le variabili che sono state utilizzate nelle analisi empiriche.

Sconto.

Lo sconto sul NAV è definito come la differenza del valore del NAV pubblicato sul rendiconto e il prezzo di quotazione in borsa, rapportata al valore del NAV. Notando che il valore del NAV è pubblicato semestralmente, può sembrare legittimo considerare anche i prezzi di borsa e di conseguenza lo sconto sul NAV con la stessa frequenza; poiché i fondi immobiliari sono un prodotto abbastanza recente e la più vecchia osservazione del NAV, della quale si dispone, risale al 31/10/2001 (ovviamente questa data non è uguale per tutti i fondi), ci troveremmo ad avere un campione poco numeroso. Una possibile soluzione a questo problema è quella di ottenere una serie storica con frequenza mensile per lo sconto. Dato che i prezzi di borsa si possono facilmente reperire anche con frequenza mensile, il problema si sposta sul NAV. Si potrebbe scegliere di utilizzare il metodo dell'interpolazione, ma ciò comporterebbe fare assunzioni sulla funzione interpolante. Un'altra strada, quella seguita nel presente studio, consiste nel calcolare lo sconto rispetto all'ultimo NAV pubblicato sul rendiconto. Quindi da giugno a novembre il NAV avrà il valore come da rendiconto di giugno, da dicembre a maggio come da rendiconto di dicembre. L'assunzione non è

¹⁹ Acronimo di Organisation for Economic Co-operation and Development, un'organizzazione internazionali di studi economici, la banca dati utilizzata è consultabile sul sito www.oecd.org.

molto restrittiva: il NAV dipende fortemente dal valore del portafoglio immobiliare e vista la natura illiquida dei beni in questione, è plausibile ritenere che il valore dello stesso non si discosti di molto da un mese all'altro.

$$Sconto_{it} = \frac{NAV_{is} - P_{it}}{NAV_{is}} \times 100 \tag{1}$$

con *P* che rappresenta il prezzo di quotazione del fondo;

con NAV che rappresenta il valore del NAV del fondo riportato sul rendiconto;

con $i = 1, 2, \dots, 23$ che rappresenta il fondo;

con t=1,2,... che rappresenta le mensilità dal primo mese in cui è stato possibile calcolare lo sconto al 30/09/2011;

con $s = 1, 2, \dots$ che rappresenta il semestre²⁰ nel quale si trova t.

Cessione.

La variabile cessione è una variabile dummy che assume valore 1 se nel mese di riferimento, il fondo i-esimo ha disinvestito almeno un cespite.

$$Cessione_{it} = \begin{cases} 1 & se \ si \ sono \ disinvestiti \ cespiti \\ 0 & altrimenti \end{cases}$$
 (2)

Esperti indipendenti.

La presente variabile, a differenza delle altre, è di tipo qualitativo e rappresenta l'istituto di perizia o il collegio di esperti 21 che in t aveva la delega per il servizio di valutazione e stima del valore dei beni immobili dell'i-esimo fondo. Per inserire questa variabile nelle nostre analisi si è proceduto creando una variabile dummy per ogni istituto, che ha valore 1 se l'istituto di perizia aveva, in quel mese, la delega per quel determinato fondo.

²⁰ Per quanto detto prima, per semestre si intende giugno-novembre e dicembre-maggio. Ad esempio se vogliamo calcolare lo sconto di febbraio 2006 di un determinato fondo, si userà il prezzo di borsa di febbraio 2006 e il NAV di dicembre 2005.

²¹ Ricordiamo che la SGR più delegare o una società o un collegio di almeno tre esperti, come stabilito dal D.M. 228/1999.

Plusvalenza.

La plusvalenza è intesa come la differenza tra il valore di vendita e l'ultima valutazione effettuata dagli esperti indipendenti. Per come è stata definita la variabile cessione, la plusvalenza è considerata per i cespiti disinvestiti dall'i-esimo fondo nel mese t e non per cespite alienato. La variabile ottenuta in questo modo è espressa in termini assoluti (Euro), quindi poco interpretabile; per aumentarne il contenuto informativo la si standardizza dividendo per il valore stimato dagli esperti indipendenti nell'ultima valutazione, ottenendo la plusvalenza relativa con frequenza mensile.

$$Pluscont_{it} = (Valore \ di \ vendita_{it} - Ultima \ valutazione_{it})$$
 (3)

$$Plusrel_{it} = \frac{(Valore\ di\ vendita_{it} - Ultima\ valutazione_{it})}{Ultima\ valutazione_{it}} \times 100 \tag{4}$$

Grado di indebitamento

La variabile rappresenta il grado di indebitamento dell'i-esimo fondo al tempo t rispetto al livello massimo consentito: 0% il fondo non si è indebitato per niente, 100% il fondo si è indebitato nella misura massima consentita dalla legge²² o dal regolamento del fondo, se più restrittivo. I dati sono stati tratti dai rapporti semestrali di Assogestioni e per quelli mancanti sono stati calcolati manualmente. Data la cadenza semestrale dei rapporti di Assogestioni, al fine di rendere mensili i dati, si è operato allo stesso modo visto per il NAV: si è assunto che all'interno del semestre il grado di indebitamento resti costante. L'ipotesi potrebbe apparire restrittiva ma non lo è, in quanto: il grado di indebitamento dipende dalla valutazione del portafoglio immobiliare che viene eseguita semestralmente dagli esperti indipendenti e per la stessa considerazione fatta per il NAV, si può assumere che non si discosti molto da un mese all'altro. Anche se, dall'altra parte, si possono accendere nuovi finanziamenti o chiuderne altri e questo farebbe cambiare il grado di indebitamento e con la l'ipotesi fatta, la

²² Si rimanda al capitolo 1.1 per i limiti di indebitamento a cui sono sottoposti i fondi retail.

variabile risentirebbe di queste operazioni solo nel mese del rapporto semestrale successivo. Ma lo stesso problema si avrebbe se si considerasse una qualunque funzione interpolante.

Dimensione

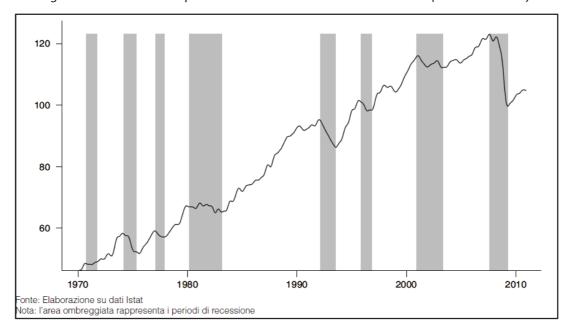
La variabile dimensione è stata costruita per tenere conto del peso che ha ogni fondo all'interno del settore. Basandoci sui dati disponibili dai rendiconti dei fondi e dai rapporti di Assogestioni, la variabile è stata realizzata rapportando il totale dell'attivo dell'i-esimo fondo al totale dell'attivo dei 23 fondi nello stesso periodo. Anche in questo caso si assume che i valori restino costanti fino alla successiva data del rendiconto.

Inflazione e tasso di produzione industriale.

Il tasso d'inflazione e il tasso di produzione industriale sono stati calcolati rispettivamente dall'indice dei prezzi e dall'indice di produzione definiti nel capitolo 2.2. Entrambi i tassi hanno frequenza mensile.

$$INF_t = \frac{FOI_t - FOI_{t-1}}{FOI_{it-1}} \times 100 \tag{5}$$

$$TPI_t = \frac{IPI_t - IPI_{t-1}}{IPI_{t-1}} \times 100 \tag{6}$$


Recessione.

La variabili recessione è una variabile dummy che assume valore 1 se nel mese in considerazione l'economia italiana si trovava in un periodo di recessione. La figura 1²³, rappresenta l'andamento dell'indicatore composito coincidente. La disponibilità di un indicatore composito consente di descrivere in modo sintetico ed efficace l'evoluzione di un determinato fenomeno che in questo caso coincide con il ciclo economico.

²³ Fonte: ISTAT (2011)

$$Recessione_{t} = \begin{cases} 1 & \text{se t \`e in un periodo di recessione} \\ 0 & \text{altrimenti} \end{cases}$$
 (7)

Figura 1. Indicatore composito coincidente dell'economia italiana (base 1995=100)

2.4 Statistiche descrittive

Tabella 3. Statistiche descrittive

Variable	Obs	Mean	Std. Dev.	Min	Max
sconto	1850	30.6513	14.63973	-61.04214	66.18314
cessione	1850	.0918919	.2889514	0	1
pluscont	1850	180421.9	2178806	-4350000	6.01e+07
pluscont cessione=1	170	1963415	6958217	-4350000	6.01e+07
plusrel	1850	1.529189	26.45352	-40	1105
plusrel cessione=1	170	16.64118	86.04241	-40	1105
lev ²⁴	1819	40.1596	32.03312	0	112.1
size ²⁵	1814	5.870011	6.829037	.31	62.13
INF	1850	.1656408	.1819586	406091	.518135
TPI	1850	1226207	1.918423	-4.90405	4.25532
recessione	1850	.1340541	.3408025	0	1

Come riportato nella tabella 3, le osservazioni per lo sconto sono 1850 con una media del 30,7% e lo standard error relativo del 14,6%; la mediana è 30,4%. In altre parole, il prezzo di borsa è in media più basso del valore del NAV, più precisamente è in media il 69,3% del valore del NAV. Questi dati confermano che in Italia i fondi immobiliari tendono a trattare a sconto sul NAV. Per una rappresentazione dello sconto si veda la figura 2, nella quale riportato l'indice BNP Paribas REIM DTN che misura a livello dell'intero settore l'andamento dello scostamento tra NAV e prezzo di borsa. Il problema generato da questo fenomeno riguarda l'impossibilità di raccogliere nuovi fondi da parte della SGR nelle finestre di riapertura, in quanto per l'investitore è più conveniente acquistare le quote ad un prezzo più basso sul mercato. In tabella 4 riportiamo lo sconto medio per fondo. Si rimanda all'appendice A per i grafici dello sconto suddivisi per fondo (figura A.1-A.2) e all'appendice B per gli output delle statistiche descrittive dello stesso.

²⁴ Lev rappresenta la variabile grado di indebitamento.

²⁵ Size rappresenta la variabile dimensione.

Tabella 4. Sconto medio per fondo.

Fondo	Oss.	Sconto	Fondo	Oss.	Sconto
QFCRE	94	44,8%	QFIRS	81	38,2%
QFCRI	94	39,9%	QFINV	83	34,9%
QFBPI	117	29,4%	QFOBE	64	42,0%
QFEGD	86	19,3%	QFOLI	82	21,4%
QFEI1	58	46,0%	QFPIR	100	25,3%
QFAL	111	29,7%	QFPOL	120	32,8%
QFATL	64	36,1%	QFRIE	26	0,4%
QFATL2	48	28,6%	QFSEC	120	23,6%
QFBET	72	8,0%	QFTEC	88	25,9%
QFDI	31	57,9%	QFUNO	94	37,1%
QFID	5	50,6%	QFVIG	118	26,8%
QFIMM	96	28,8%			

Figura 2²⁶. Indice BNP Paribas REIM DTN

Il totale dei cespiti disinvestiti dai 23 fondi retail da quando sono stati istituiti fino al primo semestre del 2011 è 277. La tabella 5 mostra i cespiti alienati per anno e per fondo. La variabile cessione assume il valore 1 in 170 osservazioni: la differenza è dovuta al fatto che, per costruzione, la variabile coglie se nel mese in

²⁶ Fonte: elaborazione su dati *Paribas REIM* effettuate dal sito www.propertyfinance.it.

-

considerazione l'i-esimo fondo ha effettuato disinvestimenti e di conseguenza si perde informazione riguardo al numero esatto di alienazioni.

Tabella 5. Cespiti disinvestiti

Fondo\anno	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	TOT.
QFCRE								1			1
QFCRI					1		1	1			3
QFBPI			1	1		2		3	1		8
QFEGD					2						2
QFEI1					2		1				3
QFAL	3	1	2	3	3	1			2	1	16
QFATL							1	1	11		13
QFATL2							2	6	5	4	17
QFBET				3	7	8	14	1	1	1	35
QFDI										1	1
QFID									3		3
QFIMM						2			1		3
QFIRS						6				1	7
QFINV				1	1	1				1	4
QFOBE						1		1			2
QFOLI				11	17	16	11	7	2	1	65
QFPIR				1		4	3		1		9
QFPOL		1	2	1		4	3	2	4		17
QFRIE											0
QFSEC			1	2		1	1	2	1		8
QFTEC			3	2	7	4	10	5	8	2	41
QFUNO				3	3	3		1	1	2	13
QFVIG				1	1		1	1	2		6
ТОТ.	3	2	9	29	44	53	48	32	43	14	277

Gli esperti indipendenti delegati per la valutazione dei beni immobiliari dei fondi sono 10:

- K2REAL S.r.l.
- CB Richard Ellis (CBRE)
- Real Estate Advisory Group (REAG) S.p.a.
- Scenari Immobiliari
- Yard Valtech S.r.l
- Cushman & Wakefield
- Patrigest S.p.a.

- DTZ Italia S.p.a.
- Stima S.r.l
- Reddy's Group S.p.a.

Si ricordra che la SGR può delegare l'incarico, oltre che ad una società, anche ad un collegio di almeno tre esperti. In figura 2 vengono illustrate le quote di mercato di ogni società di perizia o del collegio degli esperti indipendenti, nel corso degli anni. Si rende noto che questa variabile ha alcuni valore mancanti nei primi anni di costituzione di alcuni fondi, in quanto non ci è stato possibile recuperare informazioni a riguardo.

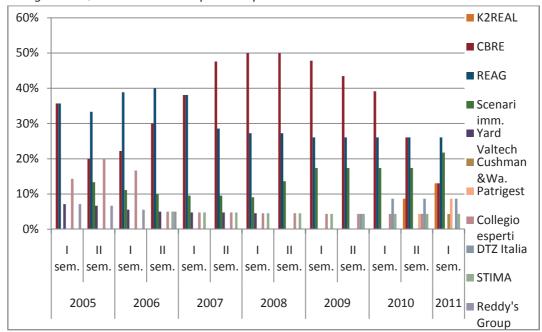


Figura 2. Quote di mercato esperti indipendenti

Dal grafico si evidenzia che fino al primo semestre del 2010 REAG S.p.a e CBRE avevano il mandato dalla maggior parte dei fondi, arrivando a coprire insieme anche il 75% del mercato. Negli ultimi due semestri le differenze con le altre società sembrano attenuarsi anche se REAG S.p.a. continua ad avere la delega dal 26% dei fondi. Si rimanda alla tabella A.1 in appendice per le quote, in dettaglio, di ciascun istituto di perizia.

I cespiti disinvestiti che hanno portato ad una plusvalenza rispetto all'ultima valutazione effettuata dagli esperti indipendenti sono 203 e quindi il 73% del totale dei cespiti alienati. La plusvalenza media è 1.219.281€ per cespite alienato.

Se prendiamo in considerazione la variabile costruita, che ricordiamo considera le alienazioni in un mese per l'i-esimo fondo, otteniamo che il prezzo di vendita, aggregato per mese, è in media 1.963.415€ in più rispetto all'ultima valutazione degli esperti indipendenti, che corrisponde ad una plusvalenza relativa del 16,6%, condizionato ad avere avuto almeno una cessione in quel mese. Quindi sembrerebbe che gli esperti indipendenti tendano a sottostimare il valore degli immobili. Per le statistiche descrittive di questa variabile si rimanda all'appendice B.

Il grado di indebitamento medio è 40,2% del massimo livello consentito. Per le statistiche descrittive divise per fondo si rimanda all'appendice B.

Il tasso di inflazione e il tasso di produzione industriale mensile sono in media 0.17% e -0.12%, rispettivamente.

2.5 Test di stazionarietà

Come si può notare dai grafici relativi allo sconto (figura A.2), la variabile non sembra essere stazionaria. Eseguiamo il test di stazionarietà di Dickey-Fuller aumentato²⁷ (ADF) per fondo. I p-value del test sono riportati nella tabella A.2. Per tutti i fondi, ad eccezione per QFID di cui tralasciamo il risultato avendo solo 5 osservazioni, il test non rifiuta l'ipotesi nulla di presenza di radice unitaria e ci suggerisce di considerare le serie dello sconto come non stazionarie. Le altre variabili possono essere considerate stazionarie ad eccezione della variabile che tiene conto del grado di indebitamento del fondo, per la quale il test non rifiuta l'ipotesi di radice unitaria.

31

²⁷ Test effettuato con il software R.

Capitolo 3 Il modello

Lo sconto sul NAV è un fenomeno molto importante in quanto rende quasi del tutto vano la riapertura delle sottoscrizioni che consentirebbe alle SGR di raccogliere nuovi fondi. Infatti, la regolamentazione impone che le quote per i nuovi collocamenti siano obbligatoriamente valorizzate al NAV; è facile intuire che, se il prezzo della quota sul mercato è inferiore, i potenziali investitori preferiranno acquistare in borsa rendendo impossibile la raccolta di nuovi mezzi finanziari.

3.1 Letteratura

Il fenomeno dello *sconto sul NAV* è ampiamente studiato in letteratura, tuttavia nessuno studio ha portato a conclusioni valide in tutti i mercati e per tutti i periodi temporali.

Negli studi empirici, sono state trovate diverse variabili che hanno un effetto significativo (positivo o negativo) sullo sconto. Di seguito si riportano alcuni contributi relativi ai fondi immobiliari italiani.

Un primo lavoro (Merola, 2004), nel quale non vengono effettuate analisi empiriche, porta alla conclusione che la quotazione a sconto dovrebbe essere legata a caratteristiche proprie dei fondi immobiliari: lo scarso flottante e la bassa capitalizzazione, l'assenza di strumenti diretti di controllo da parte dei sottoscrittori, la poca trasparenza del sottostante mercato immobiliare e la bassa partecipazione degli investitori istituzionali.

Cacciamani (2006) suggerisce che lo sconto sul NAV risente dell'effetto di alcune caratteristiche: la concentrazione degli investimenti per tipologia e area geografica, la possibilità di periodi di grazia molto lunghi e le stime e valutazioni degli esperti indipendenti spesso considerate discutibili e poco trasparenti.

Nell'articolo di Morri e Benedetto (2009), è emerso che l'influenza del grado di indebitamento è distorto da un effetto contabile mentre le altre variabili sono altamente significative. In particolar modo: una maggiore percentuale dell'attivo investita in beni immobili e una maggiore partecipazione da parte di investitori istituzionali riducono lo sconto. Anche la tipologia del fondo e la vita residua hanno un impatto: i fondi ad apporto sono soggetti a sconti inferiori e lo stesso vale per i fondi prossimi alla data di scadenza. L'ultima caratteristica risultata significativa riguarda le spese di gestione, in modo del tutto inatteso i fondi con commissioni maggiori mostrano uno sconto minore.

Nel lavoro di Biasin, Giacomini e Quaranta (2010) si è ottenuto che lo sconto sul NAV cresce all'aumentare della durata residua e della dimensione del fondo, mentre diminuisce all'aumentare della liquidità, del grado di indebitamento e se il fondo prevede l'assemblea dei partecipanti. Sottolineiamo che lo sconto è stato calcolato con frequenza giornaliera interpolando il valore del NAV di 4 semestri per ogni fondo.

3.2 Domande di ricerca e risultati attesi

Il presente lavoro indaga l'effetto di alcune variabili sul differenziale tra valore del NAV e prezzo di quotazione. Precisamente i quesiti che ci poniamo sono:

- I. Lo sconto sul NAV è dovuto ad un valore del NAV troppo elevato causato da una sovrastima del portafoglio immobiliare degli esperti indipendenti?
- II. La cessione di un immobile ha effetto sullo sconto sul NAV?
- III. La plusvalenza generata dal disinvestimento di un immobile ha effetto sullo sconto sul NAV?

Innanzitutto ci si aspetta che la scelta dell'istituto da delegare alla valutazione del portafoglio immobiliare del fondo non abbia nessun effetto sullo sconto, questo proprio per il loro operato indipendente. Infatti, una possibile correlazione con lo sconto sarebbe dovuta ai dubbi che ha il mercato sulle valutazioni effettuate. In concreto ci aspettiamo che regredendo le variabili dummy indicatrici degli esperti indipendenti sullo sconto, le stesse siano tutte non significative.

È plausibile attendersi che la variabile cessione abbia un effetto significativo e negativo sullo sconto, in quanto l'alienazione di un immobile azzera il rischio dovuto all'investimento stesso.

La plusvalenza relativa dovrebbe avere un impatto positivo, in quanto si crea un valore non atteso e il mercato dovrebbe rispondere positivamente a questa informazione.

3.3 Metodologia

Prima di presentare il modello, ricordiamo che le serie storiche dello sconto sul NAV, per fondo, sono non-stazionarie e questo potrebbe essere causa di risultati del tutto errati dovuti alle regressioni spurie. Solitamente, per risolvere questo tipo di problema si può lavorare con la differenza prima della variabile che presenta la radice unitaria. Effettivamente, la differenza prima della variabile sconto è stazionaria. Tuttavia, si evidenzia che per come è costruita la variabile sconto, la variabile differenziata non rappresenta per tutti i t l'effettiva differenza dello sconto tra 2 mesi.

$$Sconto_{it} - Sconto_{it-1} = \frac{NAV_{is} - P_{it}}{NAV_{is}} - \frac{NAV_{is} - P_{it-1}}{NAV_{is}} =$$

$$= \begin{cases} \frac{P_{it-1} - P_{it}}{NAV_{is}}, & se \ t \ e \ t - 1 \ appartengono \ allo \ stesso \ semestre; \\ \frac{NAV_{is} - P_{it}}{NAV_{is}} - \frac{NAV_{is} - P_{it-1}}{NAV_{is}}, & se \ t \ e \ t - 1 \ appartengono \\ & a \ due \ semestri \ successivi; \end{cases}$$

$$(8)$$

Infatti data l'assunzione di NAV costante dalla data di rendiconto fino a quello successivo, all'interno dello stesso semestre la differenza dello sconto non è altro che la differenza dei prezzi rapportati al NAV di quel determinato semestre (formula 8). Mentre si otterrebbe la differenza dello sconto solo nei mesi successivi alle date di riferimento dei rendiconti: gennaio e luglio (formula 9). Per ovviare questo problema, si potrebbe utilizzare lo sconto con frequenza semestrale e quindi la variabile differenziata sarebbe indice dell'effettiva

differenza dello sconto tra un semestre e l'altro, ma così facendo perderemmo tutta l'informazione riguardo ai cespiti disinvestiti.

Nel lavoro di Phillips and Moon (1999,2000) e successivamente ripreso da Baltagi (2005), è stato verificato che, a differenza di quanto avviene con le regressioni spurie di serie storiche dove lo stimatore OLS di β tende in distribuzione a una variabile non degenere che è funzionale di moti browniani e quindi non consistente per β , nel caso di regressioni panel non-stazionari lo stimatore dei minimi quadrati pooled è consistente ($per\ T \to \infty, N \to \infty$) e tende in distribuzione ad una normale. L'idea di fondo è che, nei panel, la componente cross-section aggiunge informazioni che portano ad un segnale complessivo più forte rispetto al caso delle semplici serie storiche. Quindi per evitare il problema delle regressioni spurie possiamo utilizzare lo stimatore pooled.

Lo stimatore Polled-OLS è definito usando il metodo dei minimi quadrati alla regressione:

$$y_{it} = \alpha + \beta_1 x_{1,it} + \beta_2 x_{2,it} + \dots + \beta_n x_{n,it} + u_{it}$$
 (10)

sotto ipotesi di omoschedasticità: $E(u_{is}u_{it}')=0$ per ogni $s\neq t$ e $E(u_{it}u_{jt}')=0$ per ogni $i\neq j$; e di incorrelazione tra l'errore e i regressori.

3.4 I modelli

L'intento dello studio è quello di analizzare l'impatto che le variabili di interesse costruite hanno sullo sconto sul NAV. Principalmente si vuole testare l'effetto che ha un determinato istituto di perizia, o collegio di esperti, sullo sconto e se lo stesso risente di un disinvestimento di un bene facente parte del portafoglio immobiliare.

Empiricamente, si procede regredendo sulla variabile sconto (formula 1) le dummy indicatrici degli esperti indipendenti, la variabile cessione (formula 2), una variabile che colga il periodo temporale (introducendo la variabile trend o alternativamente una dummy indicatrice dell'anno a cui appartiene

l'osservazione) e in più sono stati aggiunti gli altri controlli come le variabili macroeconomiche e le variabili relative al grado di indebitamento e alla dimensione del fondo. In aggiunta sono state inserite altre dummy che denotano la distanza in termini di mesi dall'ultimo rendiconto di riferimento. Queste variabili sono denominate con "dopo" e i mesi di differenza²⁸. Con queste variabili si vuole cogliere, ammesso che ci sia, l'effetto dovuto alla pubblicazione del rendiconto, che avviene entro i 2 mesi successivi dalla data di riferimento dello stesso.

Il nostro panel di dati è non bilanciato²⁹, questo è dovuto alla differente data di quotazione dei fondi e alla mancanza di qualche informazione. Per rendere bilanciato il panel, si sarebbero dovute perdere molte altre informazioni, quindi si è preferito lavorare con un panel non bilanciato.

L'analisi grafica e il test di White 30 sui residui delle regressioni effettuate ci hanno suggerito di non accettare l'ipotesi di omoschedasticità, quindi abbiamo il bisogno di usare stimatori robusti per avere stime consistenti. Una prima alternativa è quella di permettere eteroschedasticità nel tempo. La matrice di varianza e covarianza di u_{it} è diagonale e ogni singola varianza viene stimata come:

$$\hat{\sigma}_{u,tt}^2 = \frac{1}{N-k} \sum_{i=1}^{N} \hat{u}_{it}^2, \qquad t = 1,..,T$$
 (11)

dove \hat{u} sono i residui della regressione e k il numero di regressori.

In tabella 6 riportiamo le stime OLS pooled con standard error robusti. Notiamo che la costante è stata eliminata per ovviare al problema della collinearità e anche quando vengono introdotte le dummy per anno togliamo quella relativa all'anno 2001. Per lo stesso motivo, quando si introducono le variabili *dopo*, non viene inserita la variabile con differenza di mese zero, ovvero che assume valore 1 per le osservazioni di giugno o dicembre.

-

²⁸ Ad esempio dopounM indica la variabile che assume 1 se l'osservazione è riferita a gennaio o a luglio, ossia al mese successivo al mese di riferimento del rendiconto (che ricordiamo essere giugno e dicembre).

²⁹ Si rimanda all'appendice B per la distribuzione delle osservazioni.

³⁰ Risultato e p-value in appendice B.

Tabella 6. I modelli con standard error robusti

VARIABLES	Model (1)	Model (2)	Model (3)	Model (4)	Model (5)	Model (6)	Model (7)
CBRE	33.86***	34.84**	31.83***	27.41***	59.62***	59.08***	29.95***
	(0.664)	(0.656)	(1.021)	(3.090)	(7.345)	(7.345)	(1.353)
Collegio_esp	18.71***	19.47***	17.77***	13.26***	44.50***	43.84***	16.93***
	(1.187)	(1.157)	(1.231)	(2.760)	(7.061)	(7.067)	(1.606)
Cushman_W	57.91***	57.91***	54.84**	47.56***	79.11***	78.98***	54.42***
	(0.303)	(0.303)	(0.699)	(3.197)	(7.260)	(7.271)	(1.446)
DTZ_Italia	51.57***	51.92***	49.59***	41.62***	73.09***	72.55	49.32***
	(1.490)	(1.497)	(1.747)	(3.445)	(7.328)	(7.331)	(1.982)
K2REAL	39.00***	39.28	34.08***	28.92***	59.43***	58.98***	33.56***
	(1.716)	(1.651)	(2.003)	(3.568)	(7.175)	(7.173)	(2.226)
Patrigest	18.95	20.39***	15.94***	9.94**	42.33***	42.03***	15.93***
	(1.647)	(1.860)	(1.989)	(3.645)	(7.636)	(7.616)	(2.235)
REAG	32.28***	32.57***	30.21***	26.55	58.74***	58.19***	29.27***
	(0.511)	(0.518)	(0.751)	(3.057)	(7.332)	(7.331)	(1.214)
Reddy	25.55	26.17***	23.91***	21.13***	52.72***	52.14***	23.95***
	(0.571)	(0.655)	(0.812)	(3.125)	(7.365)	(7.366)	(1.131)
STIMA	0.36	0.36	-0.38	**86.6-	19.65	19.03**	-2.08
	(0.723)	(0.724)	(0.713)	(3.152)	(6.871)	(998.9)	(1.629)
Scenari	34.11***	34.73***	30.12***	26.45***	58.98***	58.45***	29.52***
	(0.784)	(0.786)	(1.181)	(3.127)	(7.463)	(7.461)	(1.458)
YardValtech	23.01***	23.76***	21.50***	19.28***	52.11***	51.51***	20.92***
	(1.231)	(1.230)	(1.380)	(3.163)	(7.510)	(7.512)	(1.590)
cessione		-6.71***	-6.71***	-6.18***	-5.61***	-5.94***	-6.65***
		(1.299)	(1.275)	(1.147)	(1.142)	(1.268)	(1.281)

	3) ** 1) ** 10.70** ** 10.70** (1.297) -0.06 (0.044) (0.012) 10.73* (0.012)	(T./44)
	(
4.33 (3.694) -18.24** (5.845) -21.05** (6.641) -27.02*** (6.966) -24.93*** (7.147) -35.91*** (7.386) -26.66*** (7.430)	21.15 (7.35; (7.35; (7.33; (1.38; (0.11; (0.01, (0.01,	(T./96)
3.69 (3.652) -18.50** (5.789) -21.21** (6.580) -27.16*** (6.908) -25.12*** (7.081) -36.03*** (7.346) -26.80** (7.356)	(7.27.3) -21.30** (7.284) -20.98** (7.252) 8.50*** (1.379) -0.51*** (0.112) 0.03* (0.014)	(T./43)
0.35 (3.170) 4.69 (3.276) 7.14* (3.119) 2.71 (3.084) 5.51 (3.045) -4.60 (3.163) 5.01 (3.083)	(3.031) 10.18** (3.152) 10.35** (3.183) 8.61*** (1.251)	
d_anno2 d_anno4 d_anno6 d_anno6 d_anno7 d_anno9	d_anno10 d_anno11 recessione size lev	

TPI					-0.23	-0.24	0.18
					(0.176)	(0.176)	(0.189)
dopounM						-0.95	-1.40
						(1.082)	(1.142)
dopodueM						-0.41	-0.75
						(1.016)	(1.083)
dopotreM						0.41	-0.40
						(1.030)	(1.095)
dopoquattroM						1.12	0.33
						(0.998)	(1.055)
dopocinqueM						1.80	0.95
						(1.022)	(1.089)
plusrel						0.04	
						(0.042)	
trend			0.05				0.05***
			(0.011)				(0.011)
Observations	1,654	1,654	1,654	1,654	1,643	1,643	1,643
R-squared	98.0	98.0	0.86	0.89	0.89	0.89	0.87
Adj. R-squared	98.0	0.86	0.86	0.89	0.89	0.89	0.87
		408	Poblict standard arrors in narentheses	s in parenthases			

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05

Tutti i modelli proposti hanno un R² compreso tra l'86 e l'89%. Il numero di osservazioni è ridotto rispetto alle 1850 iniziali perché non si hanno le informazioni per i primi anni di vita di alcuni fondi riguardo gli esperti indipendenti che hanno delegato. In aggiunta, introducendo le variabili *size* e *lev* si perdono ulteriori 11 osservazioni.

Gli istituti di perizia sembrerebbero avere un effetto molto marcato sullo sconto. In più prendendo qualunque modello, si rifiuta l'uguaglianza tra tutti gli esperti indipendenti. La società STIMA sembra essere la meno influente: i risultati mostrano che la variabile diviene significativa con l'introduzione delle variabili anno, con valore negativo nel modello 4 e valore positivo ma basso se paragonato agli altri istituti nei modelli 5 e 6. Anche Patrigest e il Collegio degli esperti sembrano differenziarsi dagli altri istituti avendo stime molto più basse. potrebbe essere interpretato come un segnale dell'effettiva "indipendenza" di questi esperti. In particolar modo, esaminando la società STIMA S.r.l. è emerso che la stessa è partecipata dall'ente indipendente Tüv Italia, filiale di Tüv Sud a.g. multinazionale tedesco leader in Europa nel settore delle certificazioni ed ispezioni. Di contro, tutti gli altri istituti hanno un effetto significativo e altamente positivo sullo sconto, anche andando ad aggiungere controlli nella regressione. Questi risultati sembrerebbero andare contro la caratteristica dell'"indipendenza" delle stesse società di valutazione; in altre parole, l'avere un impatto così marcato e positivo sullo sconto potrebbe essere dovuto al fatto che il mercato non vede in buona fede il loro operato e di conseguenza preferisce essere più prudente scambiando le quote a prezzi più bassi del valore del NAV. Le cause possono ricercarsi nella poca trasparenza e discutibilità delle valutazioni, in accordo con Cacciamani (2006); nella differente metodologia di valutazione utilizzata dagli istituti e nei possibili conflitti d'interesse tra le società di perizia e le SGR. Quindi, avere una maggiore trasparenza potrebbe essere molto utile per ridurre lo sconto. Su questa strada si è mossa Assogestioni, che ha proposto alcune linee guida con il fine di rafforzare

le normative vigenti³¹, sia per avere una maggiore chiarezza sui metodi di stima utilizzati (come ad esempio l'esplicitazione e motivazione dei tassi di attualizzazione) con l'obiettivo di garantire l'omogeneità delle procedure adottate per rendere confrontabili le valutazioni, sia per rafforzare l'indipendenza e professionalità degli esperti indipendenti. Tuttavia, le suddette linee guida sono adottate da parte delle SGR su base volontaria.

La variabile cessione è altamente significativa con segno negativo in tutti i modelli proposti: se è avvenuto un disinvestimento di un bene immobile ci si aspetta che lo sconto in quel mese sia più basso. Questo risultato, del tutto atteso, ci sembra coerente anche da un punto di vista economico in quanto si rende liquido un investimento immobile e conseguentemente viene meno il rischio dell'investimento dovuto alla natura illiquida del bene. Di contro, la variabile plusvalenza relativa o assoluta non è mai significativa. Invece, si è osservato che creando una variabile dummy che indica se è avvenuta plusvalenza³² o meno, la dummy stessa inserita al posto della variabile cessione è significativa e assume più o meno lo stesso valore assunto dalla variabile cessione; mentre inserendole entrambe nella stessa regressione, la prima perde la sua significatività. Possiamo concludere che la variabile cessione include il contenuto informativo dell'avvenuta plusvalenza e ciò è supportato dalle statistiche descrittive che, come già visto nel capitolo 2.4, rivelano che una cessione implica, nel 73% dei casi in esame, una plusvalenza. In conclusione, la diminuzione dello sconto sembrerebbe essere dovuta, oltre che all'eliminazione del rischio, ad una rivalutazione in alto del valore del fondo ad opera del mercato. La rivalutazione è causata dalla plusvalenza effettiva generata da quel determinato cespite alienato, ma anche dalla presa d'atto che i beni in portafoglio sono di fatto sottostimati. Tuttavia, il mercato non sembra risentire della quantificazione della plusvalenza stessa.

I controlli introdotti per valutare l'effetto dell'informazione ottenuta dalla pubblicazione del rendiconto sono risultati tutti non significativi, quindi il

_

³¹ Legge 25 gennaio 1994, n. 86, Provvedimento della Banca D'Italia del 20 settembre 1999

³² Si ricorda che la plusvalenza è intesa rispetto all'ultima valutazione effettuata dagli esperti indipendenti.

mercato non viene "sorpreso" dai dati pubblicati dal rendiconto. Il risultato è in accordo con l'ipotesi di efficienza semi-forte del mercato (Fama, 1970), in quanto nel momento in cui le informazioni vengono rese pubbliche, il prezzo le ha già incorporate.

Il ciclo economico ha un effetto sullo sconto. Precisamente, se ci si trova in una fase recessiva lo sconto tende ad essere più alto dell'8,6%³³, questo potrebbe essere dovuto al ribasso dei prezzi delle quote sul mercato secondario che incorporano le informazioni negative del ciclo economico.

Il tasso d'inflazione e il tasso di produzione industriale sono delle proxy della variabile recessione, infatti perdono la significatività quando viene introdotta la variabile recessione che, essendo calcolata tenendo conto dell'indice composito coincidente dell'economia, ingloba il contenuto informativo dei due tassi.

Introducendo le variabili per tenere in considerazione la dimensione e il grado di indebitamento del fondo, le stime di tutti gli esperti indipendenti aumentano e le dummy relative all'anno diventano tutte significativamente negative ad eccezione del 2002 che è non significativa, a differenza di quanto avveniva nel modello 4 che erano significative con segno positivo solo quelle relative agli ultimi 3 anni. L'effetto delle due caratteristiche del fondo è significativo, in dettaglio: la dimensione ha un impatto negativo sullo sconto, anche se con una stima molto bassa (lo sconto diminuisce dello 0,5% all'aumentare dell'1% della dimensione); mentre il grado di indebitamento influisce positivamente, anche in questo caso con un coefficiente molto basso. Questi risultati sono in totale disaccordo con Biasin, Giacomini e Quaranta (2010) che avevano ottenuto una stima positiva per la dimensione e negativa per l'indebitamento. Si ritiene, comunque, che i risultati suddetti possano essere sostenuti dalla teoria economica: il decrescere dello sconto all'aumentare della dimensione sembrerebbe confermare l'effetto dell'economie di scala e, in aggiunta, un fondo con un valore dell'attivo più grande potrebbe essere segno di stabilità per il mercato rispetto a un fondo con un attivo più basso. Il crescere dello sconto

_

³³ Prendendo la stima del modello 4.

all'aumentare del grado di indebitamento rispecchia l'aumento del rischio generato da un'esposizione maggiore ai finanziamenti rispetto all'attivo.

La variabile trend, quando inserita è risultata significativa e positiva. Tuttavia, come detto sopra, cogliendo il trend con le variabili dummy per anno, senza le variabili *lev* e *size* lo sconto sembra aumentare negli ultimi tre anni rispetto all'anno di base fissato al 2001, mentre dopo l'introduzione dei due controlli ogni anno ha un impatto significativamente negativo sullo sconto, rispetto all'anno 2001. Quest'ultimo risultato potrebbe trovare spiegazione nella maggiore informazione e conoscenza del prodotto negli anni successivi rispetto allo scetticismo iniziale che caratterizza un nuovo articolo, ovvero nell'aumento del numero dei fondi offerti dal settore.

Una seconda alternativa per risolvere il problema dell'eteroschedasticità è permettere che ci sia correlazione seriale nello stesso fondo, ovvero che ci siano osservazioni indipendenti tra i fondi ma dipendenti all'interno del fondo, il che sembra teoricamente possibile e supportato dai test di autocorrelazione. La matrice di varianza e covarianza questa volta è piena e la stima di ogni elemento è la seguente:

$$\hat{\sigma}_{u,ts}^2 = \frac{1}{N-k} \sum_{i=1}^{N} \hat{u}_{it} \, \hat{u}_{is}, \qquad t, s = 1, ..., T$$
 (12)

La tabella 7, che riporta le stime ottenute ammettendo correlazione seriale all'interno dello stesso fondo, mostra che per la variabile cessione e recessione i risultati non cambiano rispetto a quanto visto sopra. Considerando i modelli che includono più controlli e hanno l'R² maggiore (4,5 e 6), gli esperti STIMA e Patrigest non hanno un effetto significativo sullo sconto e quindi confermano "l'indipendenza" per quanto è stato detto prima. Le variabili che colgono l'effetto temporale perdono la significatività, di contro il tasso di produzione industriale diviene significativo con un impatto, anche se non importante, negativo sullo sconto. La dimensione e il grado di indebitamento divengono non significative.

Tabella 7. I modelli con standard error cluster

VARIABLES	Model (1)	Model (2)	Model (3)	Model (4)	Model (5)	Model (6)	Model (7)
CBRE	33.86***	34.84**	31.83***	27.41***	59.62**	*80.65	29.95
	(2.979)	(2.770)	(3.848)	(7.018)	(20.959)	(21.086)	(3.326)
Collegio_esp	18.71**	19.47**	17.77*	13.26***	44.50*	43.84*	16.93*
	(6.413)	(6.050)	(6.476)	(1.223)	(20.452)	(20.592)	(7.587)
Cushman_W	57.91	57.91	54.84***	47.56***	79.11**	78.98**	54.42***
	(0.000)	(0.000)	(2.309)	(8.69.8)	(20.895)	(21.091)	(3.307)
DTZ_Italia	51.57***	51.92***	49.59***	41.62***	73.09**	72.55**	49.32***
	(5.475)	(5.440)	(7.104)	(8.978)	(21.241)	(21.410)	(6.881)
K2REAL	39.00***	39.28***	34.08***	28.92**	59.43*	58.98*	33.56***
	(4.486)	(4.356)	(6.223)	(8.024)	(21.703)	(21.832)	(5.582)
Patrigest	18.95	20.39***	15.94***	9.94	42.33	42.03	15.93**
	(2.653)	(3.149)	(4.077)	(5.283)	(21.446)	(21.606)	(4.584)
REAG	32.28***	32.57***	30.21***	26.55***	58.74*	58.19*	29.27***
	(2.878)	(2.920)	(3.422)	(6.828)	(21.803)	(21.913)	(3.955)
Reddy	25.55***	26.17***	23.91***	21.13**	52.72*	52.14*	23.95***
	(0.000)	(0.192)	(1.658)	(6.148)	(20.591)	(20.713)	(2.560)
STIMA	0.36***	0.36***	-0.38	-9.98	19.65	19.03	-2.08
	(0.000)	(0.000)	(0.552)	(6.821)	(18.924)	(19.025)	(4.404)
Scenari	34.11***	34.73***	30.12***	26.45***	58.98*	58.45*	29.52***
	(2.978)	(2.996)	(4.608)	(6.836)	(21.350)	(21.496)	(4.736)
YardValtech	23.01***	23.76***	21.50***	19.28**	52.11*	51.51*	20.92***
	(0.000)	(0.231)	(1.652)	(6.165)	(21.265)	(21.382)	(2.537)
cessione		-6.71**	-6.71**	-6.18**	-5.61**	-5.94**	-6.65**
		(2.075)	(2.012)	(1.939)	(1.677)	(1.834)	(2.211)
d_anno2				0.35	3.69	4.33	

	(7.049)	(5.102)	(5.101)		
d_anno3	4.69	-18.50	-18.24		
	(7.821)	(16.314)	(16.567)		
d_anno4	7.14	-21.21	-21.05		
	(860.9)	(18.138)	(18.427)		
d_anno5	2.71	-27.16	-27.02		
	(6.289)	(19.055)	(19.432)		
d_anno6	5.51	-25.12	-24.93		
	(6.194)	(20.006)	(20.380)		
d_anno7	-4.60	-36.03	-35.91		
	(7.105)	(21.381)	(21.704)		
d_anno8	5.01	-26.80	-26.66		
	(6.708)	(21.428)	(21.849)		
d_anno9	10.72	-20.98	-20.79		
	(6.805)	(21.143)	(21.589)		
d_anno10	10.18	-21.30	-21.15		
	(7.084)	(21.241)	(21.739)		
d_anno11	10.35	-20.98	-20.70		
	(8.698)	(21.777)	(22.246)		
recessione	8.61***	8.50***	8.46***	10.70***	
	(1.223)	(1.355)	(1.349)	(1.971)	
size		-0.51	-0.51	-0.06	
		(0.343)	(0.349)	(0.160)	
lev		0.03	0.03	0.03	
		(0.057)	(0.058)	(0.045)	
INF		-0.52	-0.01	-3.43*	
		(1.275)	(1.362)	(1.290)	
TPI		-0.23*	-0.24*	0.18	

					(0.095)	(0.092)	(0.094)
Munodop						-0.95	-1.40
						(0.719)	(0.690)
dopodueM						-0.41	-0.75
						(0.774)	(0.756)
dopotreM						0.41	-0.40
						(0.806)	(0.829)
dopoquattroM						1.12	0.33
						(0.833)	(0.828)
dopocinqueM						1.80	0.95
						(0.936)	(0.896)
plusrel						0.04	
						(0.041)	
trend			0.05				0.05
			(0.041)				(0.044)
Observations	1,654	1,654	1,654	1,654	1,643	1,643	1,643
R-squared	98.0	98.0	98.0	0.89	0.89	0.89	0.87
Adj. R-squared	98.0	0.86	98.0	0.89	0.89	0.89	0.87
				the second second			

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05

Per togliere ogni dubbio riguardante la non correttezza delle stime dovuta alla non stazionarietà della variabile sconto, abbiamo condotto le stesse analisi sulla variabile differenziata dello stesso, che di conseguenza diviene stazionaria. Usando la differenza, l'effetto del trend e delle variabili annuali viene meno. Il test di White eseguito sui residui delle regressioni rifiuta a qualunque livello l'ipotesi di omoschedasticità, quindi riportiamo le stime dei modelli eseguite con standard error robusti ammettendo correlazione seriale all'interno dello stesso fondo.

Tabella 8. Regressioni sulla variabile sconto differenziata.

VARIABLES	Model (1)	Model (2)	Model (3)
CBRE	0.27*	0.44**	0.04
	(0.128)	(0.125)	(0.266)
Collegio_esp	0.07	0.21	-0.02
	(0.144)	(0.180)	(0.140)
Cushman_W	0.29	0.29	0.11
	(0.000)	(0.000)	(0.240)
DTZ_Italia	0.01	0.08	-0.27
	(0.121)	(0.129)	(0.213)
K2REAL	0.24	0.29	-0.22
	(0.143)	(0.186)	(0.327)
Patrigest	0.54	0.80	0.50
	(0.334)	(0.445)	(0.498)
REAG	0.00	0.05	-0.26
	(0.103)	(0.099)	(0.208)
Reddy	-0.07***	0.05	-0.13
	(0.000)	(0.034)	(0.100)
STIMA	-2.23***	-2.23***	-2.65***
	(0.000)	(0.000)	(0.312)
Scenari	0.22**	0.33**	-0.07
	(0.075)	(0.087)	(0.138)
YardValtech	0.19***	0.32***	0.17
	(0.000)	(0.041)	(0.142)
cessione		-1.20**	-1.15**
		(0.365)	(0.368)
recessione			2.03***
			(0.471)
size			-0.05***
			(0.010)
lev			0.00
			(0.003)
INF			2.16**
			(0.671)
TPI			0.07
			(0.122)
Observations	1 652	1 652	1 642
	1,653	1,653	1,642
R-squared	0.00	0.01	0.02
Adj. R-squared	0.00	0.00	0.01

Robust standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05

Sebbene gli R² sono molto bassi, ricordiamo che queste regressioni servono solo a tralasciare i dubbi dell'eventuale non correttezza dei risultati ottenuti in precedenza, dovuta a una possibile regressione spuria e che, ad ogni modo, l'obiettivo prefisso era testare l'eventuale impatto delle variabili d'interesse sui livelli dello sconto, mentre come visto nel capito 3.3 differenziando la variabile sconto si ottiene una quantità diversa, che comunque può essere considerata come una proxy della differenza dello sconto. Ad ogni modo, i risultati confermano quanto detto in precedenza. L'istituto STIMA è l'unico che ha un impatto negativo sulla differenza dello sconto, confermando che il mercato ha una buona considerazione di esso, a differenza dagli altri istituti. La variabile cessione e recessione hanno gli stessi segni di cui sopra. In questo caso anche la variabile dimensione ha lo stesso segno negativo trovato nei modelli in tabella 6. Ovviamente le stime hanno valori più bassi, poiché la variabile dipendente non è più lo sconto ma la differenza dello stesso tra il mese in questione e quello passato.

Conclusioni

Il settore dei fondi immobiliari italiani collocati nel mercato secondario sono caratterizzati da quotazioni nettamente inferiori rispetto ai valori del NAV. La problematica che ne deriva è di importante rilievo in quanto impedisce alle società di gestione di raccogliere ulteriori risorse durante le riaperture delle sottoscrizioni e conseguentemente impedisce i possibili rimborsi anticipati.

L'obiettivo del presente lavoro era volto a dare un contributo alla letteratura analizzando il problema dello sconto sul NAV che riguarda i fondi immobiliari italiani quotati. In particolar modo, si è voluto sondare se gli esperti indipendenti che ricevono il mandato per il servizio di valutazione del portafoglio immobiliare dai fondi possono essere una delle causa del fenomeno. In aggiunta, si voleva valutare l'effetto, sempre sul differenziale tra NAV e quotazione, dell'informazione relativa all'avvenuta alienazione di un immobile e della rispettiva plusvalenza o minusvalenza ottenuta.

La parte operativa è iniziata con l'estrapolazione dei dati dai rendiconti semestrali pubblicati dalle SGR dei 23 fondi e la conseguente costruzione di un database. Il database, suddiviso per fondo, presenta per ogni data del rendiconto, i cespiti disinvestiti nel semestre e le loro caratteristiche (l'ubicazione, la superficie, la data d'acquisto, l'ultima valutazione eseguita dagli esperti indipendenti, la data di vendita, il costo di realizzo, i proventi generati dai canoni di locazione, gli oneri sostenuti per il mantenimento e il risultato dell'investimento), l'esperto indipendente che aveva il mandato in quel semestre, il valore stimato dagli stessi del portafoglio immobiliare e il valore del NAV. Oltre al database, sono stati raccolti altri dati relativi alla dimensione e al grado di indebitamento del fondo. Infine sono state recuperate le serie storiche mensili del prezzo di borsa delle quote dei fondi e altre serie storiche rappresentative del ciclo economico italiano. Dai suddetti dati sono state costruite le variabili d'interesse ed eseguite le regressioni usando come variabile dipendente lo sconto sul NAV.

Il primo risultato importante perviene dalle statistiche descrittive, dalle quali si evidenzia che nella maggior parte dei casi, gli immobili vengono disinvestiti ad un valore di realizzo superiore all'ultima valutazione degli esperti indipendenti, creando plusvalenza. Questo indicherebbe che le valutazioni eseguite dagli istituti delegati sono sistematicamente più basse del valore effettivo di vendita, al contrario di quanto ci si potrebbe aspettare. È, comunque, plausibile che ritocchino le stime in basso per prudenza.

I risultati dell'analisi econometrica rivelano che gli esperti indipendenti, tranne poche eccezioni, contribuiscono ad aumentare, non tutti allo stesso modo, il divario tra net asset value e prezzo di quotazione. Il mercato potrebbe considerare discutibile e poco trasparente la metodologia di valutazione utilizzata e avere qualche dubbio sulla totale imparzialità che invece dovrebbe caratterizzare gli esperti.

Di contro, l'alienazione di un cespite implica uno diminuzione dello sconto. I motivi possono essere ricercati nella monetizzazione di un investimento di natura illiquida e il conseguente azzeramento del rischio, ma anche nel contenuto informativo implicito alla cessione: la plusvalenza. Il mercato che avendo dei dubbi riguardo all'operato eseguito dagli esperti, preferisce restare prudente; nel momento che il bene viene venduto e si manifesta la plusvalenza si rende conto dell'effettiva sottostima del portafoglio immobiliare e rivaluta in alto il prezzo della quota. Invece, inaspettatamente, il valore relativo o assoluto della plusvalenza stessa non ha fatto registrare effetti significativi.

Il grado di indebitamento e la dimensione del fondo non sono risultate significative in tutti i modelli, quindi resta qualche dubbio sul loro effetto. Ad ogni modo, quando sono state trovate significative il loro impatto, seppur di debole intensità, risulta essere rispettivamente positivo e negativo. Il primo risultato a conferma del maggiore rischio a cui si è sottoposti avendo una maggiore esposizione al finanziamento; il secondo a supporto che il mercato considera positivamente l'effetto delle economie di scala.

Una fase recessiva del ciclo economico aumenta il dislivello tra NAV e prezzo di borsa. Il prezzo di borsa risente maggiormente e in modo immediato

dell'effetto negativo derivante dalla difficile congiuntura economica rispetto al NAV.

In aggiunta, non è stato rinvenuto alcun effetto dovuto all'informazione derivante dalla pubblicazione da parte della SGR del rendiconto semestrale, a conferma dell'efficienza semi-forte del mercato.

In conclusione, il mercato sembra avere dei dubbi sull' operato degli esperti indipendenti, ma al contrario di come ci si aspetterebbe, i cespiti alienati producono quasi sempre una plusvalenza rispetto all'ultima valutazione eseguita dagli stessi. Se ciò non è dovuto ad un abbassamento della valutazione ad hoc nel periodo precedente la vendita del cespite per ottenere una "finta plusvalenza", sembra ragionevole pensare che il portafoglio dei beni immobili sia sottostimato e con esso anche il valore del NAV; perciò lo sconto effettivo che sta applicando il mercato è, di fatto, superiore a quello che si osserva. Quanto detto invalida l'ipotesi che lo sconto sia dovuto alle stime gonfiate degli immobili, da parte degli esperti indipendenti.

Sviluppi futuri

Gli sviluppi del presente lavoro possono seguire due filoni di ricerca.

Il primo è volto ad indagare l'effetto dell'alienazione dei beni controllando per tipologia d'asset (immobili, partecipazioni in società ecc.), per destinazione d'uso (residenziale, commerciale, industriale ecc.) e per posizione geografica.

Il secondo, a nostro avviso più importante, riguarda l'analizzare l'effetto degli esperti indipendenti controllando, innanzitutto, se si notano anomalie nelle valutazioni nel periodo strettamente precedente la vendita di un cespite. Altri controlli possono riguardare la diversa metodologia di valutazione utilizzata, i possibili conflitti d'interesse con le SGR, ovvero studiare se l'attuazione delle Linee Guida proposte da Assogestioni riducono la diffidenza del mercato.

Limiti di metodo

Il problema riscontrato riguarda la frequenza semestrale della pubblicazione dei dati relativi al NAV. Questo assieme alla giovane età dei prodotti che presenta il settore dei fondi immobiliari quotati, non permette di avere molti dati su cui lavorare. In aggiunta, lavorare con frequenza semestrale avrebbe comportato la perdita dell'informazione derivante dalla cessione cespiti. Per ottenere più dati e quindi passare ad una frequenza mensile dello sconto è stato necessario fare l'assunzione (a nostro avviso non troppo restrittiva) che il valore del NAV restasse costante all'interno del semestre.

Bibliografia

- AEDES BPM Real Estate SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.
- Amundi Re Italia SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.
- Assogestioni, Fondi immobiliari, Rapporto semestrale, semestri vari.
- Assogestioni, Il rapporto tra le SGR e gli "esperti indipendenti" nelle attività di valutazione dei beni immobili, diritti reali immobiliari e partecipazioni in società immobiliari – Principi e linee guida.
- Baltagi H., 2005, Econometric Analysis of Panel Data, third edition.
- Beni Stabili Gestioni SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.
- Biasin M., Giacomini E. e Quaranta A.G., 2010, Quotazione a sconto, governance e regolamentazione dei fondi immobiliari italiani, *Bancaria Editrice*.
- BNP Paribas REIM Italia SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.
- Borsa Italiana, 2007, Regolamento dei Mercati Organizzati e Gestiti da Borsa Italiana S.p.a.
- Cacciamani C., 2006, I fondi immobiliari retail quotati: andamenti e prospettive, in Giannotti C. (a cura di) La gestione del fondo immobiliare, Egea.
- Cacciamani C., 2006, Real Estate, economia diritto e finanza immobiliare, Egea.
- Downs D. H., Guner Z. N.,2011, Commercial Real Estate, Information
 Production and Market Activity, Journal of Real Estate Finance and
 Economics.
- Fama, Eugene F., 1970, Efficient Capital Markets: A Review of the Theory and Empirical Work, *Journal of Finance*, 25(2), 383-417

- Ferrari A., 2008, Il puzzle dei fondi immobiliari quotati italiani: evidenze della prime OPA sul segmento MTF di Borsa Italiana, *Impresa Progetto*, n. 1-2008.
- FIMIT SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.
- Fondi Immobiliari Italiani SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.
- ISTAT, 2011, Rapporto Annuale.
- Merola F., 2004, I fondi immobiliari, *Il Sole 24 Ore*.
- Morri G., Benedetto P., 2009, <u>Leverage and NAV discount: evidence from</u>
 Italian real estate investment funds.
- Muzzicato S., Sabbatini R., Zollino F., 2008, Prices of residential property in Italy: constructing a new indicator, Questioni di Economia e Finanza -Banca d'Italia.
- Phillips, P.C.B. and H. Moon, 1999, Linear regression limit theory for nonstationary panel data, *Econometrica* 67, 1057–1111.
- Phillips, P.C.B. and H. Moon, 2000, Nonstationary panel data analysis: An overview of some recent developments, *Econometric Reviews* 19, 263–286.
- Pirelli RE SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.
- RREEF Fondimmobiliari SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.
- Sa-Aadu J., Shilling J., Tiwari A., 2010, On the Portfolio Properties of Real Estate in Good Times and Bad Times, *Real Estate Economics*, v38 3.pp 529-565.
- Scenari Immobiliari, I fondi immobiliari in Italia e all'estero, *Scenari Immobiliari Pubblicazioni*, semestri vari.
- Shiller R.J., 2008, Finanza shock, Egea.
- Torre SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.

- Vegagest Immobiliare SGR, Rendiconti, Rapporti semestrali e Certificati di Perizia, semestri vari.
- Wong S.K., Yiu C.Y., Chau K.W., 2011, Liquidity and Information Asymmetry in the Real Estate Market, *Journal of Real Estate Finance and Economics*.

Appendice A- Tabelle e grafici

In figura A.1 vengono presentati i grafici del valore del NAV e del prezzo di quotazione divisi per fondo. Sull'asse delle ordinate è espresso il valore in euro della quota e sull'asse delle ascisse il tempo dalla data di quotazione al 30/09/2011. Notiamo che eccetto qualche eccezione il valore del NAV è sempre superiore al prezzo di borsa. Per esigenze grafiche la figura è stata tagliata in più parti.

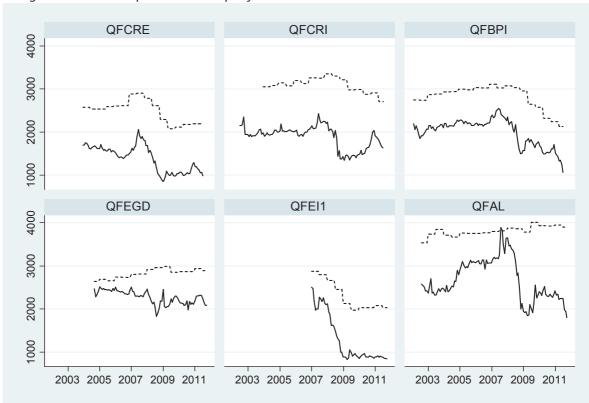
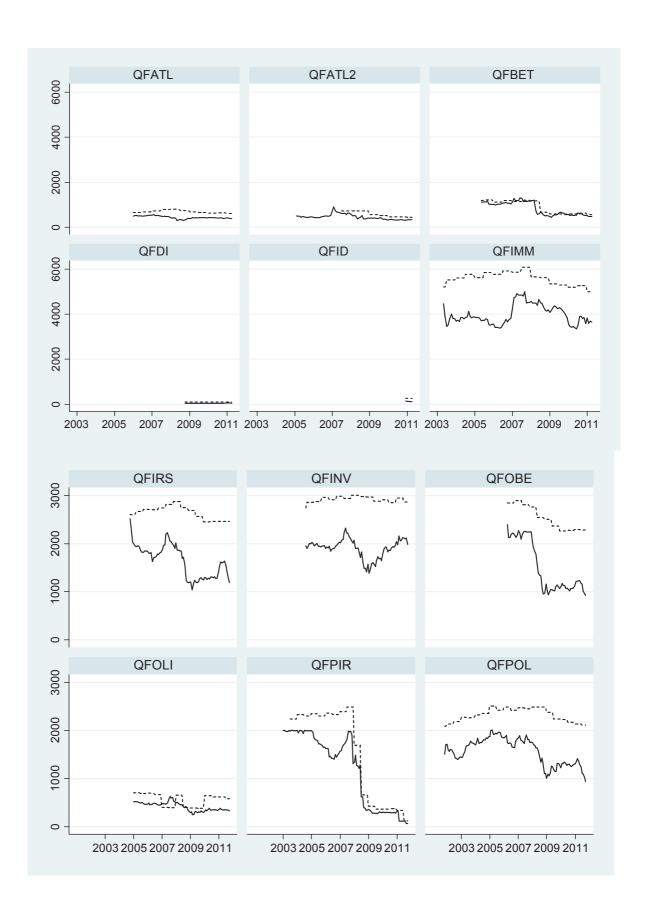
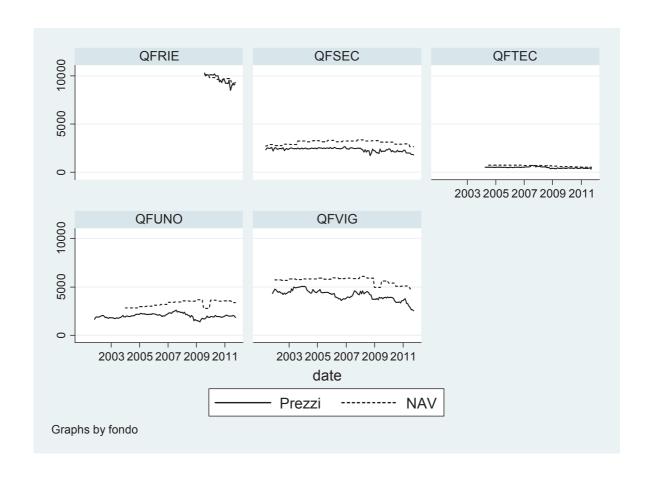
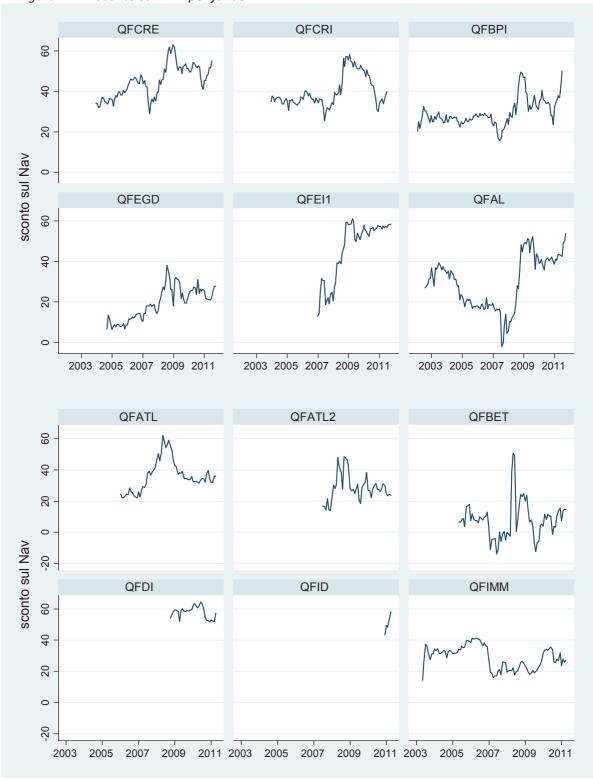




Figura A.1³⁴. NAV e prezzi di borsa per fondo.

59


³⁴ Si nota che la scala dell'asse delle ordinate non è la stessa per tutti i fondi.

In figura A.2 sono riportati i grafici dello sconto sul NAV relativo ad ogni fondo. Le ordinate rappresentano lo sconto in percentuale.

Figura A.2³⁵. Sconto sul NAV per fondo.

_

 $^{^{\}rm 35}$ Si nota che la scala dell'asse delle ordinate non è la stessa per tutti i fondi.

In tabella A.1 vengono presentate le quote di mercato degli esperti independenti negli anni a partire dal primo semestre 2002.

Tabella A.1. Quote di mercato esperti indipendenti

	20	002	20	03	20	004	20	05	20	06
				П						
	I sem.	II sem.	I sem.	sem.	I sem.	II sem.	I sem.	II sem.	I sem.	II sem.
K2REAL S.r.l.	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
CBRE	0,0%	0,0%	0,0%	14,3%	22,2%	35,7%	35,7%	20,0%	22,2%	30,0%
REAG S.p.a.	33,3%	50,0%	60,0%	42,9%	33,3%	35,7%	35,7%	33,3%	38,9%	40,0%
Scenari immobiliari	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	13,3%	11,1%	10,0%
Yard Valtech S.r.l.	0,0%	25,0%	20,0%	14,3%	11,1%	7, 1%	7,1%	6,7%	5,6%	5,0%
Cushman & Wakefield	33,3%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Patrigest S.p.a.	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Collegio esperti Ind	33,3%	0,0%	0,0%	14,3%	22,2%	14,3%	14,3%	20,0%	16,7%	5,0%
DTZ Italia S.p.a.	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
STIMA S.r.l	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	5,0%
Reddy's Group S.p.a.	0,0%	25,0%	20,0%	14,3%	11,1%	7, 1%	7, 1%	6,7%	5,6%	5,0%
# fondi osservati	3	4	5	7	9	14	14	15	18	20
	20	007	20	80	20	009	20	10	20	11
				=						
	I sem.	II sem.	I sem.	sem.	I sem.	II sem.	I sem.	II sem.	I sem.	II sem.
K2REAL S.r.l.	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	8,7%	13,0%	0,0%
CBRE	38,1%	47,6%	50,0%	50,0%	47,8%	43,5%	39,1%	26,1%	13,0%	30,0%
REAG S.p.a.	38,1%	28,6%	27,3%	27,3%	26,1%	26,1%	26,1%	26,1%	26,1%	40,0%
Scenari immobiliari	9,5%	9,5%	9,1%	13,6%	17,4%	17,4%	17,4%	17,4%	21,7%	10,0%
Yard Valtech S.r.l.	4,8%	4,8%	4,5%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	5,0%
Cushman & Wakefield	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	4,3%	0,0%
Patrigest S.p.a.	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	4,3%	8,7%	0,0%
Collegio esperti Ind	4,8%	4,8%	4,5%	4,5%	4,3%	4,3%	4,3%	4,3%	0,0%	5,0%
DTZ Italia S.p.a.	0,0%	0,0%	0,0%	0,0%	0,0%	4,3%	8,7%	8,7%	8,7%	0,0%
STIMA S.r.l	4,8%	4,8%	4,5%	4,5%	4,3%	4,3%	4,3%	4,3%	4,3%	5,0%
Reddy's Group S.p.a.	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	5,0%
# fondi osservati	21	21	22	22	23	23	23	23	23	20

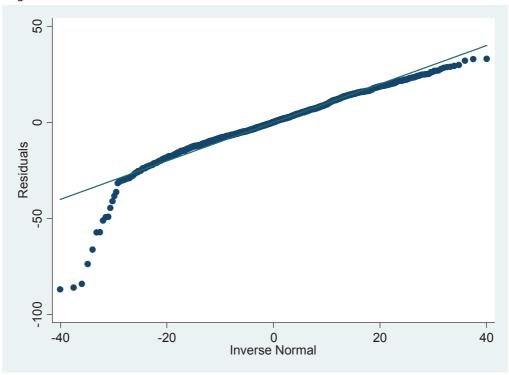

In tabella A.2 si riportano i p-value del test di radice unitaria eseguito sulla variabile sconto per ogni fondo. L'ipotesi nulla è la non-stazionarietà della variabile.

Tabella A.2. Test ADF sulla variabile sconto

Fondo	p.value	Fondo	p.value
QFCRE	0.11	QFIRS	0.34
QFCRI	0.63	QFINV	0.72
QFBPI	0.22	QFOBE	0.76
QFEGD	0.43	QFOLI	0.43
QFEI1	0.84	QFPIR	0.52
QFAL	0.74	QFPOL	0.48
QFATL	0.79	QFRIE	0.70
QFATL2	0.51	QFSEC	0.36
QFBET	0.33	QFTEC	0.65
QFDI	0.67	QFUNO	0.08
QFID	0.00	QFVIG	0.40
QFIMM	0.50		

In figura A.3 il quantile normal plot eseguito sui residui della regressione sulla variabile sconto del modello 5 presentato in tabella 7.

Figura A.3. Q-norm residui modello 5.

Appendice B – Output e listato

- Statistiche di base della variabile sconto.

		sconto		
1%	Percentiles -5.93884	Smallest -61.04214		
5%	7.538315	-54.06197		
10%	13.97767	-51.24555	Obs	1850
25%	22.71394	-47.68684	Sum of Wgt.	1850
50%	30.44267		Mean	30.6513
		Largest	Std. Dev.	14.63973
75%	39.0718	65.35255		
90%	50.70621	65.69158	Variance	214.3218
95%	55.65342	66.18314	Skewness	5420224
99%	61.06219	66.18314	Kurtosis	5.547366

- Statistiche di base della variabile sconto per fondo.

-> fondo = 1

		sconto		
	Percentiles	Smallest		
1%	28.92597	28.92597		
5%	33.73055	32.04825		
10%	34.41086	32.38439	Obs	94
25%	37.17206	32.62532	Sum of Wgt.	94
50%	45.27985		Mean	44.76709
		Largest	Std. Dev.	8.061338
75%	51.39495	60.81797		
90%	54.16667	61.71956	Variance	64.98517
95%	60.48901	61.82199	Skewness	.218489
99%	63.02272	63.02272	Kurtosis	2.247112

^{-&}gt; fondo = 2

		sconto		
	Percentiles	Smallest		
1%	25.539	25.539		
5%	30.80756	29.86328		
10%	33.06451	29.97873	Obs	94
25%	34.57606	30.42227	Sum of Wgt.	94
50%	36.70021		Mean	39.86203
		Largest	Std. Dev.	7.810793
75%	43.70708	56.32658		
90%	52.78337	57.1571	Variance	61.00849
95%	55.44909	57.2297	Skewness	.9036045
99%	58.2168	58.2168	Kurtosis	2.656501

 \rightarrow fondo = 3

sconto				
1% 5% 10% 25%	Percentiles 16.66038 20.60814 23.49004 25.10243	Smallest 15.64582 16.66038 16.78343 19.9205	Obs Sum of Wgt.	117 117
50% 75% 90% 95% 99%	27.89419 32.86194 37.99243 46.71655 49.38604	Largest 47.29044 48.90429 49.38604 50.12764	Mean Std. Dev. Variance Skewness Kurtosis	29.42715 6.685032 44.68965 1.096795 4.452695
-> fo	ndo = 4			
		sconto		
1% 5% 10% 25%	Percentiles 6.534418 7.860469 8.537966 12.1241	Smallest 6.534418 6.642622 6.731308 7.835132	Obs Sum of Wgt.	86 86
50% 75% 90% 95% 99%	19.42861 25.68528 30.617 31.16617 38.11029	Largest 31.55662 32.14311 35.39621 38.11029	Mean Std. Dev. Variance Skewness Kurtosis	19.27749 7.931971 62.91616 .1045678 2.022287
		sconto		
1% 5% 10% 25%	Percentiles 12.91393 18.654 20.58076 31.56719	Smallest 12.91393 14.287 18.654 19.15818	Obs Sum of Wgt.	58 58
50% 75% 90% 95% 99%	53.84581 57.34469 58.50393 59.34883 61.06219	Largest 59.26888 59.34883 59.43196 61.06219	Mean Std. Dev. Variance Skewness Kurtosis	46.04246 14.70092 216.117 9126805 2.305379

-> fondo = 6

		sconto			
1% 5% 10% 25%	Percentiles245113 10.16706 14.88973 18.03933	Smallest -2.019544 245113 4.490807 5.886844	Obs Sum of Wgt.	111 111	
50% 75% 90% 95% 99%	31.36786 40.33957 47.11754 49.87469 52.20135	Largest 50.75337 51.23194 52.20135 53.77613	Mean Std. Dev. Variance Skewness Kurtosis	29.6874 13.02148 169.5588 1432056 2.095557	
-> fc	ndo = 7				
		sconto			
1% 5% 10% 25%	Percentiles 22.01935 22.60619 23.46696 29.09021	Smallest 22.01935 22.11908 22.27002 22.60619	Obs Sum of Wgt.	64 64	
50% 75% 90% 95% 99%	34.4427 39.70048 52.48494 55.91343 62.17349	Largest 55.91343 58.06221 59.10931 62.17349	Mean Std. Dev. Variance Skewness Kurtosis	36.14767 10.05612 101.1256 .7450502 3.005319	
-> fc	ndo = 8				
		sconto			
1% 5% 10% 25%	Percentiles 13.63932 14.60021 16.91961 23.8713	Smallest 13.63932 14.42752 14.60021 16.63584	Obs Sum of Wgt.	46 46	
50% 75% 90% 95% 99%	27.72797 30.71638 43.50749 47.76026 48.47047	Largest 46.36647 47.76026 48.06402 48.47047	Mean Std. Dev. Variance Skewness Kurtosis	28.61634 8.739794 76.384 .6803756 3.220375	

-> fondo = 9

		sconto 		
10	Percentiles	Smallest		
1% 5%	-13.79269 -11.18447	-13.79269 -12.40547		
つる L0%	-11.18447	-12.40547	Obs	72
25%	.1809098	-11.18447	Sum of Wgt.	72
- 0 0	T T44422		M	0.006561
50%	7.744433	Largest	Mean Std. Dev.	8.026561 11.93674
75%	13.14068	24.89096	sta. Dev.	11.930/4
90%	20.2072	38.55431	Variance	142.4858
95%	24.89096	49.26867	Skewness	1.18139
99%	50.78115	50.78115	Kurtosis	5.920852
-> io	ndo = 10	sconto		
- 0	Percentiles	Smallest		
1%	51.6183	51.6183		
5% 10%	51.83561	51.83561	Obs	2.1
L0% 25%	52.32 54.15603	52.14759 52.32	Sum of Wgt.	31 31
256	54.15605	52.32	Sum OI wgt.	31
50%	58.78312		Mean	57.89789
7 F 0	60 45524	Largest	Std. Dev.	3.800371
75%	60.47534	62.26178	T7	14 44000
90%	62.26178	63.11856	Variance Skewness	14.44282
95% 99%	63.45768 64.46067	63.45768 64.46067	Kurtosis	2677823 1.992514
-> fo	ndo = 11			
		sconto		
	Percentiles	Smallest		
1%	43.31055	43.31055		
5%	43.31055	48.37902		
L0%	43.31055	49.37371	Obs	5
25%	48.37902	53.60995	Sum of Wgt.	5
50%	49.37371		Mean	50.56618
		Largest	Std. Dev.	5.606809
	53.60995	48.37902		
75%	4	49.37371	Variance	31.43631
90%	58.15768			
	58.15768 58.15768 58.15768	53.60995 58.15768	Skewness Kurtosis	.1135086 1.961648

-> fondo = 12

		sconto		
1% 5% 10% 25%	Percentiles 14.15905 17.74876 19.08256 22.12696	Smallest 14.15905 16.16425 17.18872 17.18872	Obs Sum of Wgt.	96 96
50% 75% 90% 95% 99%	29.80251 34.15066 38.4626 40.61555 41.40773	Largest 40.65836 41.06278 41.06278 41.40773	Mean Std. Dev. Variance Skewness Kurtosis	28.78447 7.269186 52.84107 0711943 1.866515
-> fc	ondo = 13			
		sconto		
1% 5% 10% 25%	Percentiles 3.02001 21.93276 26.86586 31.61805	Smallest 3.02001 10.50955 20.86682 21.82837	Obs Sum of Wgt.	81 81
50% 75% 90% 95% 99%	35.27189 47.9262 53.78621 55.47574 61.33847	Largest 55.92098 56.39851 56.58885 61.33847	Mean Std. Dev. Variance Skewness Kurtosis	38.19321 11.3629 129.1155 1890438 2.966904
				·
-> fc	ondo = 14			
		sconto		
1% 5% 10% 25%	Percentiles 21.05344 26.0896 26.91484 30.61596	Smallest 21.05344 24.36851 24.61876 24.61876	Obs Sum of Wgt.	83 83
50% 75% 90% 95% 99%	33.22227 37.11987 46.25388 50.02264 53.27197	Largest 50.02264 50.70079 52.34266 53.27197	Mean Std. Dev. Variance Skewness Kurtosis	34.92153 6.898566 47.59021 .8447384 3.306289

-> fondo = 15

		sconto		
1% 5% 10% 25%	Percentiles 15.68801 19.62101 20.33233 25.08528	Smallest 15.68801 18.59229 18.91373 19.62101	Obs Sum of Wgt.	64 64
50% 75% 90% 95% 99%	47.96989 53.53707 59.07648 60.09163 62.61829	Largest 60.09163 61.04943 62.48613 62.61829	Mean Std. Dev. Variance Skewness Kurtosis	42.02209 15.14575 229.3938 3972931 1.538537
-> fc	ondo = 16			
		sconto		
1% 5% 10% 25%	Percentiles -61.04214 -33.45953 -18.11575 18.72358	Smallest -61.04214 -54.06197 -51.24555 -47.68684	Obs Sum of Wgt.	82 82
50% 75% 90% 95% 99%	29.27989 39.26963 43.9906 45.90723 49.81858	Largest 46.11287 47.28893 49.50977 49.81858	Mean Std. Dev. Variance Skewness Kurtosis	21.37027 25.75343 663.2391 -1.56969 4.776921
-> fc	ondo = 17			
		sconto		
1% 5% 10% 25%	Percentiles 2.934557 7.467388 10.75119 15.5027	Smallest 2.306458 3.562656 5.939921 6.493048	Obs Sum of Wgt.	100
50% 75% 90% 95% 99%	23.26359 32.16475 41.15851 48.80824 66.18314	Largest 65.35255 65.69158 66.18314 66.18314	Mean Std. Dev. Variance Skewness Kurtosis	25.26498 13.47265 181.5123 1.102787 4.379159

-> fondo = 18

		sconto		
1% 5% 10% 25%	Percentiles 18.82204 20.20548 21.98193 24.67565	Smallest 18.17399 18.82204 19.19426 19.23557	Obs Sum of Wgt.	120 120
50% 75% 90% 95% 99%	29.97804 40.78504 47.40745 53.78934 55.82418	Largest 55.43182 55.82378 55.82418 57.63467	Mean Std. Dev. Variance Skewness Kurtosis	32.79012 10.14035 102.8267 .6773632 2.463248
-> fc	ondo = 19			
		sconto		
	Percentiles -3.81683 -3.723788 -3.609196 -2.484081	Smallest -3.81683 -3.723788 -3.609196 -2.928891	Obs Sum of Wgt.	26 26
50% 75% 90% 95% 99%	.2266714 2.097181 4.776627 5.188849 12.71191	Largest 4.776627 4.776627 5.188849 12.71191	Mean Std. Dev. Variance Skewness Kurtosis	.3573061 3.749123 14.05592 1.427205 5.4984
	ondo = 20			
		sconto		
1% 5% 10% 25%	Percentiles 8.46146 12.29892 13.1762 21.06502	Smallest 7.422196 8.46146 9.963548 10.22869	Obs Sum of Wgt.	120 120
50% 75% 90% 95% 99%	23.70787 26.89115 32.06094 36.14102 40.2354	Largest 38.20771 38.25846 40.2354 46.08623	Mean Std. Dev. Variance Skewness Kurtosis	23.62226 6.997497 48.96497 .1415966 3.431986

-> fondo = 21

		sconto			
1% 5% 10% 25%	Percentiles 1.93147 10.05412 15.99032 20.68174	Smallest 1.93147 2.646791 2.650994 5.035351	Obs Sum of Wgt.	88 88	
50% 75% 90% 95% 99%	27.90013 31.36618 34.00113 35.5909 40.33849	Largest 36.77926 39.81979 40.14508 40.33849	Mean Std. Dev. Variance Skewness Kurtosis	25.91216 8.134537 66.1707 9823203 3.965884	
 -> fo	 ndo = 22				
		sconto			
1% 5% 10% 25%	Percentiles 22.63551 25.13414 26.82597 29.38007	Smallest 22.63551 23.37668 23.58616 23.70389	Obs Sum of Wgt.	94 94	
50% 75% 90% 95% 99%	34.38753 44.10519 47.06368 57.36555 61.82605	Largest 58.63754 59.13424 60.36334 61.82605	Mean Std. Dev. Variance Skewness Kurtosis	37.09575 9.466725 89.61889 .6760917 2.744993	
 	 ndo = 23				
-> 10	1140 – 23	sconto			
1% 5% 10%	Percentiles 12.51558 13.82132 16.34523	Smallest 11.90624 12.51558 13.12928	Obs	118	
25% 50%	22.87587 25.84259	13.42089	Sum of Wgt. Mean	118 26.76284	
75% 90% 95% 99%	31.89242 35.72561 38.65187 45.40417	Largest 40.5613 45.00991 45.40417 47.86317	Std. Dev. Variance Skewness Kurtosis	7.252825 52.60347 .2551072 3.096032	

- Statistiche di base per la variabile Plus

		plus		
1%	Percentiles -30 -9	Smallest -40 -30	01	150
10% 25%	-3.5 0	-22 -16	Obs Sum of Wgt.	170 170
50%	5.5	Largest	Mean Std. Dev.	16.64118 86.04241
75% 90% 95% 99%	15 27.5 50 129	68 88 129 1105	Variance Skewness Kurtosis	7403.297 12.0246 152.4004

- Statistiche di base per la variabile LEV.

	LEV		
Percentiles	Smallest		
0	0		
0	0		
0	0	Obs	1850
9.7	0	Sum of Wgt.	1850
39	T	Mean	40.69097
50	_	Sta. Dev.	32.16693
85.5	112.1	Variance	1034.711
88.8	112.1	Skewness	.2484723
101.6	112.1	Kurtosis	1.719537
	0 0 0 9.7 39 72.3 85.5 88.8	Percentiles Smallest 0 0 0 0 0 0 9.7 0 39 Largest 72.3 112.1 85.5 112.1 88.8 112.1	Percentiles Smallest 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.7 0 Sum of Wgt. 39 Mean Largest Std. Dev. 72.3 112.1 85.5 112.1 Variance 88.8 112.1 Skewness

- Statistiche di base per la variabile LEV per fondo.

-> fondo = 1

		LEV		
	Percentiles	Smallest		
1%	0	0		
5%	0	0		
10%	0	0	Obs	94
25%	0	0	Sum of Wgt.	94
50%	50		Mean	53.76596
		Largest	Std. Dev.	45.81931
75%	97.8	112.1		
90%	111.8	112.1	Variance	2099.41
95%	112.1	112.1	Skewness	.0181894
99%	112.1	112.1	Kurtosis	1.276114

-> fondo = 2

		LEV		
1% 5% .0%	24.1 24.1 24.6	Smallest 24.1 24.1 24.1	Obs	100
25%	37.3	24.1	Sum of Wgt.	100
50 %	41.4	Largest	Mean Std. Dev.	43.4558 12.05463
75응 90응	56.9 59.55	61.1 61.1	Variance	145.314
15%	59.6 61.1	61.1 61.1	Skewness	
 > fo	ondo = 3			
		LEV		
	Percentiles	Smallest		
1%	47.12	47.12		
5%	47.12	47.12	0.1	
0%	48.46	47.12	Obs	106
5%	53.8	47.12	Sum of Wgt.	106
0%	72.5		Mean	67.68566
		Largest	Std. Dev.	12.47009
5%	75.1	88.8	'	
0%	87.2	88.8	Variance	155.5033
)5왕)9왕	88.8 88.8	88.8 88.8	Skewness Kurtosis	1995987 1.973273
	ondo = 4			
 > fo	ondo = 4	LEV		
· · ·> fo	ondo = 4	LEV		
> fo	ondo = 4	LEV Smallest 0		
 > fo	ondo = 4 Percentiles 0 0	LEV Smallest 0 0		
 > fc 1% 5% 0%	Percentiles 0 0 0	LEV Smallest 0 0 0	Obs	86
> fo	ondo = 4 Percentiles 0 0	LEV Smallest 0 0		
 	Percentiles 0 0 0	LEV Smallest 0 0 0 0	Obs Sum of Wgt. Mean	86 86 39.81628
 > fo 1% 5% 0% 5%	Percentiles 0 0 0 25.7 44.2	LEV Smallest 0 0 0 0	Obs Sum of Wgt.	86 86
> fo	Percentiles 0 0 25.7 44.2 69.1	LEV Smallest 0 0 0 0 Largest 69.9	Obs Sum of Wgt. Mean Std. Dev.	86 86 39.81628 25.14363
1% 5% 0% 25% 0%	Percentiles 0 0 25.7 44.2 69.1 69.4	LEV Smallest 0 0 0 0 targest 69.9 69.9	Obs Sum of Wgt. Mean Std. Dev. Variance	86 86 39.81628 25.14363 632.2023
1% 5% 0%	Percentiles 0 0 25.7 44.2 69.1	LEV Smallest 0 0 0 0 Largest 69.9	Obs Sum of Wgt. Mean Std. Dev. Variance	86 86 39.81628 25.14363

-> fondo = 5

		LEV		
1% 5% 10% 25%	Percentiles 45.7 45.7 45.7 66.1	Smallest 45.7 45.7 45.7 45.7	Obs Sum of Wgt.	58 58
50% 75% 90% 95% 99%	68.7 73.6 75.5 75.7 75.7	Largest 75.7 75.7 75.7 75.7	Mean Std. Dev. Variance Skewness Kurtosis	67.9 8.372385 70.09683 -1.789465 5.461081
	 ndo = 6			
		LEV		
1% 5% 10% 25% 50% 75% 90% 95% 99%	Percentiles 16.57 16.57 20.1 23.6 27.17 36.3 41.9 42.2 42.2	Smallest 16.57 16.57 16.57 16.57 Largest 42.2 42.2 42.2	Obs Sum of Wgt. Mean Std. Dev. Variance Skewness Kurtosis	106 106 29.4117 7.581881 57.48492 .2048204 1.929568
-> for	ndo = 7			
		LEV		
1% 5% 10% 25%	Percentiles 80 80 80.3 82	Smallest 80 80 80 80	Obs Sum of Wgt.	64 64
50% 75% 90% 95% 99%	86 88.5 89 90.3 90.3	Largest 90.3 90.3 90.3 90.3	Mean Std. Dev. Variance Skewness Kurtosis	85.39375 3.461713 11.98345 2949319 1.721161

-> fondo = 8

		Smallest		
1%	80.6	80.6		
5%	80.6	80.6	Obs	7.0
-08 258	81	80.6		70 70
56	81	80.6	Sum of Wgt.	70
50%	85.5		Mean	84.36286
		Largest	Std. Dev.	2.603687
75%	86.3	87.5	** '	6 550105
908	87	87.5		6.779185
)5%)9%	87.5 87.5	87.5 87.5	Skewness Kurtosis	4173915 1.454433
96	67.5	07.5	Ruitosis	1.454455
> fond	do = 9			
		LEV		
	Percentiles			
1%	0	0		
5%	0	0	01	
L0%	0	0	Obs	72
25%	21.3	0	Sum of Wgt.	72
50%	40.45		Mean	34.16389
		Largest	Std. Dev.	19.66213
75%	43.65	70.3		
90%	50.2	70.3	Variance	386.5995
95%	70.3	70.3	Skewness	3511987
99%	70.3	70.3	Kurtosis	2.61972
·> fond	do = 10			
		LEV		
	Percentiles	Smallest		
1%	54.9	54.9		
5%	54.9	54.9		
L0%	54.9	54.9	Obs	31
25%	55.5	54.9	Sum of Wgt.	31
50%	67.9		Mean	64.98387
		Largest	Std. Dev.	6.924598
	70.5	73		
75%	73	73	Variance	47.95006
75% 90%		П Э	Skewness	4898875
	73	73	Kurtosis	1.726112

-> fondo = 11

Percentiles 47.9 47.9 47.9 48.5 48.5	Smallest 47.9 48.5 48.5 48.5	Obs Sum of Wgt.	5 5
			5
48.5 48.5 48.5 48.5	Largest 48.5 48.5 48.5 48.5	Mean Std. Dev. Variance Skewness Kurtosis	48.38 .2683275 .0719996 -1.5 3.25
do = 12			
	LEV		
Percentiles 0 0 0 0 13.5 15.15 15.7 20.2 20.2	Smallest 0 0 0 0 0 Largest 20.2 20.2 20.2 20.2	Obs Sum of Wgt. Mean Std. Dev. Variance Skewness	96 96 9.98125 7.26777 52.82049 5398997 1.571355
	LEV		
Percentiles 0 0 27.3 39 47.7 57 59.2 59.2	Smallest 0 0 0 0 0 Largest 59.2 59.2 59.2 59.2	Obs Sum of Wgt. Mean Std. Dev. Variance Skewness Kurtosis	81 81 33.60741 19.27254 371.4307 7565561 2.437533
	do = 12 Percentiles 0 0 0 13.5 15.15 15.7 20.2 20.2 do = 13 Percentiles 0 0 27.3 39 47.7 57 59.2	Dercentiles Smallest 0 0 0 0 0 0 0 0 0 13.5 Largest 15.15 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.3 EEV Percentiles Smallest 0 0 0 0 0 27.3 0 39 Largest 47.7 59.2 59.2 59.2	LEV

-> fondo = 14

	Percentiles	Smallest		
1%	0	0		
5%	0	0		
10%	0	0	Obs	83
25%	1.7	0	Sum of Wgt.	83
50%	8		Mean	22.73976
		Largest	Std. Dev.	21.08132
75왕 90왕	46.7 47.2	50.8 50.8	Variance	444.4219
90° 95%	47.2	50.8	Skewness	.2008422
99%	50.8	50.8	Kurtosis	1.197132
-> fo	ondo = 15	т 1777		
		LEV		
10	Percentiles	Smallest		
1% 5%	56.8 56.8	56.8 56.8		
วง 10%	58.1	56.8	Obs	64
25%	59.2	56.8	Sum of Wgt.	64
200	39.2	30.0	Sum OI wgc.	04
50%	60		Mean	59.91875
7 - 0	60.0	Largest	Std. Dev.	1.610568
75%	60.8	63	Vaniango	2 50202
90% 95%	61.4 63	63 63	Variance Skewness	2.59393 0765627
99%	63	63		2.903438
	ondo = 16			
-> 10	1140 – 10	LEV		
	Percentiles	Smallest		
1%	83.1	83.1		
5%	83.1	83.1		
10%	84.1	83.1	Obs	82
25%	84.7	83.1	Sum of Wgt.	82
200	05.3		Mean	86.41951
	85.3		Std. Dev.	
	85.3	Largest	sta. Dev.	3.002979
50%	86.5	94.2	sta. Dev.	3.002979
50% 75% 90%			Variance Skewness	9.017881 1.427126

-> fondo = 17

		LEV			
	Percentiles	Smallest			
1%	0	0			
5%	0	0			
10%	0	0	Obs	100	
25%	0	0	Sum of Wgt.	100	
50%	0	Largest	Mean Std. Dev.	4.8 5.024184	
75%	10	10.2			
90%	10.2	10.2	Variance	25.24242	
95%	10.2	10.2	Skewness	.083574	
99%	10.2	10.2	Kurtosis	1.011418	
	 ondo = 18				
-> T(O1100 = 18				
		LEV			
	Percentiles	Smallest			
1%	0	0			
5%	0	0			
10%	0	0	Obs	120	
25%	0	0	Sum of Wgt.	120	
50%	0		Mean	7.865	
		Largest	Std. Dev.	10.36424	
75%	15	35.1	***	105 4154	
90%	22.8	35.1	Variance	107.4174	
95% 99%	30 35.1	35.1 35.1	Skewness Kurtosis	1.076194 3.180748	
			RUI COSIS	3.100740	
-> fo	ondo = 19				
		LEV			
	Percentiles	Smallest			
1%	96.6	96.6			
5%	96.6	96.6			
10%	96.6	96.6	Obs	26	
25%	97	96.6	Sum of Wgt.	26	
50%	98.4		Mean	98.16154	
		Largest	Std. Dev.	1.007603	
75%	98.5	99.4		1 01 = 0 6 0	
90%	99.4	99.4	Variance	1.015263	
95%	99.4 99.4	99.4 99.4	Skewness Kurtosis	3903003	
99%	99.4	33.4	VALCOSIS	1.82734	

81

-> fondo = 20

		LEV		
1% 5% 10% 25%	Percentiles 2.8 3.5 3.8 4.6	Smallest 2.8 2.8 2.8 2.8 2.8	Obs Sum of Wgt.	100
50% 75% 90% 95% 99%	7.8 9.3 10 11 11	Largest 11 11 11 11	Mean Std. Dev. Variance Skewness Kurtosis	
	ondo = 21			
		LEV		
1% 5% 10% 25%	Percentiles 74.9 75.2 75.2 76.8		Obs Sum of Wgt.	88 88
50% 75% 90% 95% 99%	79.1 80.7 82.4 82.9 82.9	Largest 82.9 82.9 82.9 82.9	Mean Std. Dev. Variance Skewness Kurtosis	79.025 2.434062 5.924656 1787651 1.930833
	ondo = 22			
-> LC	DNGO = 22	LEV		
1% 5% 10% 25%	Percentiles	Smallest 1 1 1 1 1	Obs Sum of Wgt. Mean Std. Dev.	100 100 7.392 8.985529
75% 90% 95% 99%	8.7 21.35 32.5 32.5	32.5 32.5 32.5 32.5 32.5	Variance Skewness Kurtosis	80.73973 2.048504 6.14897

82

-> fo	ondo = 23			
		LEV		
1%	Percentiles 0	Smallest 0		
5%	0	0		
10% 25%	0 18.3	0	Obs Sum of Wgt.	118 118
200	10.5	O	bam or wgc.	110
50%	23.8	Largost	Mean Std. Dev.	27.55254 16.14743
75%	42.2	Largest 50.2	Sta. Dev.	10.14743
90%	48.9	50.2		260.7396
95% 99%	50.2 50.2	50.2 50.2	Skewness Kurtosis	2967518 1.970228
_	Struttura del data	a panel.		
		ole: fondo (un		
	time volume volu	arıable: date,	, 31/10/2001 to	30/9/2011, but
	"Tell Japa	delta: 1 day	?	
	fondo: 1,	2,, 23		
	n = 23 $date: 31/$	10/2001, 30/11,	/2001,, 30/9	/2011
	T = 120			
		ta(date) = 1 da n(date) = 3622		
			ely identifies ea	ach observation)
	Distribution o	f T i: min	5% 25%	50%
	75% 95%	max 5	26 64	86
	100 120	120	26 64	86
	Frea De	rcent Cum.	Pattern*	
			+	
	>			
	3	13.04 13.04 11111121	 1111121112111112	1111121111211112
	11111211111211			
	> 11121111211 2	8.70 21.74	I	
			 	1121111211112
	11111211111211	112111112111121	L1	
	> 11121111211 2	8.70 30.43		
			1111121112111112	1111121111211112
	11111211111211 > 11121111211	11211111211112	L⊥	
		4.35 34.78		
	>1211			
		4.35 39.13	 	
		1112111121	11	
	> 11121111211 1	4.35 43.48		
	> 11121111211	.1211111211112	11	
	·			

```
4.35 47.83
   1
               ..1112111112111121111121111211
> 11121111211
       4.35 52.17
   1
              111112111112111121111121111211
> 11121111211
   1
       4.35 56.52
               111112111112111121111121111211
> 11121111211
   10
     43.48 100.00 (other patterns)
______
   23 100.00
> XXXXXXXXXXX
*Each column represents 36 periods.
```

- Test di White per il modello 5, tabella 6 variabile dipendente sconto.

```
White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity

chi2(181) = 422.88
Prob > chi2 = 0.0000
```

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	422.88 86.57 5.37	181 26 1	0.0000 0.0000 0.0205
Total	514.82	208	0.0000

Test uguaglianza esperti indipendenti

$$\begin{cases}
H0: CBRE = REAG = \cdots = YardValtech \\
H1: almeno uno diverso
\end{cases}$$

```
(1)
     CBRE - REAG = 0
(2)
     CBRE - Collegio esp = 0
(3)
     CBRE - Cushman\overline{W} = 0
     CBRE - DTZ_Italia = 0
CBRE - K2REAL = 0
(4)
(5)
( 6) CBRE - Patrigest = 0
     CBRE - Reddy = 0
(7)
     CBRE - STIMA = 0
CBRE - Scenari = 0
(8)
(9)
     CBRE - YardValtech = 0
(10)
      F(10, 1616) = 293.86

Prob > F = 0.0000
```

- Test di White per il modello 3, tabella 8 variabile dipendente d_sconto.

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(26) = 57.92Prob > chi2 = 0.0003

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	57.92 9.84 8.56	26 12 1	0.0003 0.6299 0.0034
Total	76.32	39	0.0003

Listato utilizzato in Stata 11.0

```
gen date =date(file,"DMY")
format date %tddd/nn/ccYY
gen sconto=(nav-prezzi)/nav
sum sconto, det
by fondo: sum sconto, det
sum plus if cessione==1, det
sum lev, det
by fondo: sum lev, det
bysort fondo (date): gen trend= n
tsset fondo date
xtline prezzi nav
xtline sconto
gen d sconto=sconto[ n]-sconto[ n-1]
tab soc, gen(dummy)
gen m=month(date)
gen contem=(m==12 | m==6)
gen dopounM = (m==1 | m==7)
gen dopodueM = (m==2 | m==8)
gen dopotreM = (m==3 \mid m==9)
gen dopoquattroM = (m==4 | m==10)
gen dopocinqueM = (m==5 | m==11)
tab anno, gen(d anno)
gen P=(pluscont>0)
       Regressioni in tabella 6
reg sconto CBRE Collegio esp Cushman W DTZ Italia K2REAL Patrigest REAG Reddy
STIMA Scenari YardValtech, nocons ro
outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05)
addstat(Adj. R-squared, e(r2_a)) word replace
reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy
STIMA Scenari YardValtech cessione, nocons ro
outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05)
addstat(Adj. R-squared, e(r2_a)) word append
reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy
STIMA Scenari YardValtech cessione trend, nocons ro
outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05)
addstat(Adj. R-squared, e(r2 a)) word append
reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy
STIMA Scenari YardValtech cessione d_anno2 d_anno3 d_anno4 d_anno5 d_anno6
d anno7 d anno8 d anno9 d anno10 d anno11 recessione, nocons ro
outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05)
addstat(Adj. R-squared, e(r2_a)) word append
reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy
STIMA Scenari YardValtech cessione d anno2 d anno3 d anno4 d anno5 d anno6
d anno7 d anno8 d anno9 d anno10 d anno11 recessione size lev INF TPI, nocons ro
outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05)
addstat(Adj. R-squared, e(r2_a)) word append
reg sconto CBRE Collegio esp Cushman W DTZ Italia K2REAL Patrigest REAG Reddy
STIMA Scenari YardValtech cessione d anno2 d anno3 d anno4 d anno5 d anno6
```

d_anno7 d_anno8 d_anno9 d_anno10 d_anno11 recessione size lev INF TPI dopo* plusr, nocons ro

outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word append

reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech cessione trend recessione size lev INF TPI dopo*, nocons ro outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word append

Regressioni in tabella 7

reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech, nocons cluster(fondo)

outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word replace

reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech cessione, nocons cluster(fondo)

outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word append

reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech cessione trend, nocons cluster(fondo)

outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2 a)) word append

reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech cessione d_anno2 d_anno3 d_anno4 d_anno5 d_anno6 d_anno7 d_anno8 d_anno9 d_anno10 d_anno11 recessione, nocons cluster(fondo) outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word append

reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech cessione d_anno2 d_anno3 d_anno4 d_anno5 d_anno6 d_anno7 d_anno8 d_anno9 d_anno10 d_anno11 recessione size lev INF TPI, nocons cluster(fondo)

outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word append

reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech cessione d_anno2 d_anno3 d_anno4 d_anno5 d_anno6 d_anno7 d_anno8 d_anno9 d_anno10 d_anno11 recessione size lev INF TPI dopo* plusr, nocons cluster(fondo)

outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word append

reg sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech cessione trend recessione size lev INF TPI dopo*, nocons cluster(fondo)

outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word append

Regressioni in tabella 8

reg d_sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech, nocons cluster(fondo)

outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word replace

reg d_sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech cessione, nocons cluster(fondo) outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2 a)) word append reg d_sconto CBRE Collegio_esp Cushman_W DTZ_Italia K2REAL Patrigest REAG Reddy STIMA Scenari YardValtech cessione recessione size lev INF TPI, nocons cluster(fondo) outreg2 using reg2, ctitle(Model) bdec(2) tdec(2) rdec(2) adec(2) alpha(.001, .01, .05) addstat(Adj. R-squared, e(r2_a)) word append

- Per il test di White si è usato il comado: Imtest, white
 - I test di stazionarietà sono stati condotti in R

```
x=read.table("sconto.txt",header=T)
x1=x[1:94,1]
x2=x[113:206,2]
x3=x[207:323,3]
x4=x[324:409,4]
x5=x[410:467,5]
x6=x[468:578,6]
x7=x[579:642,7]
x8=x[672:717,8]
x9=x[718:789,9]
x10=x[790:820,10]
x11=x[821:825,11]
x12=x[826:921,12]
x13=x[922:1002,13]
x14=x[1003:1085,14]
x15=x[1086:1149,15]
x16=x[1150:1231,16]
x17=x[1238:1337,17]
x18=x[1338:1457,18]
x19=x[1458:1483,19]
x20=x[1484:1603,20]
x21=x[1607:1694,21]
x22=x[1721:1814,22]
x23=x[1817:1934,23]
library(tseries)
xx=matrix(ncol=23)
tab=matrix(ncol=1,nrow=23,0)
adf.test(x1)$p.value->tab[1]
adf.test(x2)$p.value->tab[2]
adf.test(x3)$p.value->tab[3]
adf.test(x4)$p.value->tab[4]
adf.test(x5)$p.value->tab[5]
adf.test(x6)$p.value->tab[6]
adf.test(x7)$p.value->tab[7]
adf.test(x8)$p.value->tab[8]
adf.test(x9)$p.value->tab[9]
```

adf.test(x10)\$p.value->tab[10] adf.test(x11)\$p.value->tab[11]

```
adf.test(x12)$p.value->tab[12]
adf.test(x13)$p.value->tab[13]
adf.test(x13)$p.value->tab[13]
adf.test(x14)$p.value->tab[14]
adf.test(x15)$p.value->tab[15]
adf.test(x16)$p.value->tab[16]
adf.test(x17)$p.value->tab[17]
adf.test(x18)$p.value->tab[18]
adf.test(x19)$p.value->tab[19]
adf.test(x20)$p.value->tab[20]
adf.test(x21)$p.value->tab[21]
adf.test(x22)$p.value->tab[22]
adf.test(x23)$p.value->tab[23]
colnames(tab)<-c("p.value")
fondo=c("QFCRE","QFCRI","QFBPI","QFEGD","QFEI1","QFAL","QFATL","QFATL2","QFBET
","QFDI","QFID","QFIMM","QFIRS","QFINV","QFOBE","QFOLI","QFPIR","QFPOL","QFRIE",
"QFSEC","QFTEC","QFUNO","QFVIG")
rownames(tab)<-fondo
```

Ringraziamenti

Innanzitutto ringrazio sentitamente il Professor Caporin e il Dottor Lanzavecchia per l'interesse, la fiducia e la disponibilità mostrati costantemente durante tutto lo svolgimento della tesi, sempre pronti a chiarire i miei dubbi e a darmi consigli utilissimi.

Un grazie a tutta la mia famiglia per il sostegno e il grande aiuto che mi ha dato, che mi da e che sicuramente mi darà anche in futuro.

Un ringraziamento particolare a tutti i miei amici: a quelli di sempre, a quelli che sanno come prenderti, a quelli che ti fanno passare una bella serata anche se tutto gira male.

Per ultimi ma non di importanza e potevano benissimo rientrare nella categoria precedente, un grazie a tutti gli "statistici" per questi 5 bellissimi anni passati insieme tra lezioni, biblioteca, mensa, feste, poker, spritz, nerd jokes, risiko e la lista potrebbe continuare all'infinito.