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Abstract

In this thesis an alternative method to stabilize the phase of a squeezed vacuum field

in the framework of the Virgo gravitational wave detector is designed and realized.

A brief introduction about the nature of gravitational waves and their detection is

presented in chapter 1, with particular attention to the actual sensitivity limitations

on the interferometers employed. Chapter 2 focuses on the quantum nature of the

electromagnetic field. A nonclassical state of the light, the squeezed state, is described,

as well as how it is is produced and how can be observed. This kind of radiation field

is employed to increase the sensitivity of the detectors beacause with its injection into

the interferometer the quantum noise that affects the measure is partially reduced. In

order to avoid any technical noise contamination, a second copropagating and frequency

shifted field is used to provide the error signal for the alignment and to allow the phase

locking between the interferometer main laser and the squeezed light, as discussed in

chapter 3, where the technique called coherent control loop is explained. Finally, in

chapter 4, the optical bench and the control electronics realized at LNL to test the

stability of the control loop are presented; the system will be implemented in Virgo in

the next months. The difference between the method discussed here and that usually

employed is that the error signal is not used to correct the path of the squeezed vacuum

field, but it is instead used to close a cascade loop on a PLL. Thus all the actuators are

electronic and no optical actuators are used, the stray light issue is minimized. The

control loop is stronger at low frequencies in order to correct the seismic noise that

dominates in this region.

1





Chapter 1

Introduction

1.1 Gravitational Waves

When one wants to talk about gravitation, it is cardinal to begin with the Einstein

equations, which define the relation between space-time geometry and energetic con-

tent:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1.1)

where Rµν is the Ricci tensor, R = gµνR
µν is the Ricci scalar, gµν is the curved

space-time metric, G is the universal gravitational constant, c is the speed of light in

a vacuum and Tµν is the energy-momentum tensor. A perturbative approach can se

used [Mag07, §1.1,§1.2] by linearizing the metric around the Minkowski flat space-time

metric ηµν as follows:

gµν = ηµν + hµν , |hµν | � 1. (1.2)

By substituting (1.2) in (1.1) and solving in a vacuum (Tµν = 0), after some algebra

we obtain

�h̄µν = 0. (1.3)

� = ∂µ∂
µ = ∇2 − ∂2

t /c
2 is the flat space d’Alembertian, so (1.3) is the wave equation

for h̄µν , the tensor defined as:

h̄µν ≡ hµν −
1

2
ηµνh

σ
σ. (1.4)

To write (1.3) in such a simple form, we have choosen the Lorentz gauge

∂ν h̄µν = 0. (1.5)

3
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Solutions of (1.3) are gravitational waves (GW) which propagate at the speed of light

c. Choosing the transverse-traceless gauge, they can be written as:

hµν(z, t) =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 cos
(

2πf
(
t− z

c

))
(1.6)

where we are considering planar waves propagating through the z-direction. Note that

having chosen a traceless gauge (hσσ = 0) there is no more difference between hµν and

h̄µν . The number of independent components of the metric is two, corresponding to

different polarizations of the transverse wave h+ and h×. The effects on matter are

illustrated in Fig. 1.1, where the waves enter perpendicular to the plane.

Figure 1.1: Effects of GW passing through an ITF with different polarizations. T
is the period of the waves.

1.2 Gravitational Wave Detectors

Earth-based detectors make use of the Michelson interferometer (ITF) (Fig. 1.2), which

purpose is to transform an optical phase modulation signal into an amplitude mod-

ulation which can be measured by a single photodiode (PD). Continuous wave light

from a laser is divided into two beams with a beamsplitter (BS), the beams then travel

along the two perpendicular arms of the ITF and are reflected back to the BS where

they interfere and are directed to the PD, which converts the intensity into an electric

signal. Any change in the optical path difference between the arms results in a change

in the interference signal: a GW of frequency f passing through the ITF will produce

an electric signal at the same frequency. The output power, proportional to the square
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Figure 1.2: Basic setup of a Michelson ITF

of the radiation field, is given by:

Pout = Pin cos2[k(L1 − L2)] (1.7)

where beams propagating in a vacuum are considered; k is the wavenumber, and L1

and L2 are the arm lengths. It is important that the two end mirrors are mounted

onto free masses in order to detect only gravitational effects, thus they are suspended

and placed in a multiple stage pendulum with resonance frequency lower than detector

sensitivity bandwidth.

Assume that a monochromatic GW with frequency f and polarization h+ has to be

detected, like that illustrated at the bottom of Fig. 1.1; for simplicity, from here on, we

will consider an ITF with equal length of the arms L. The metric perturbation (1.6)

is simply:

hµν(t) =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

h(t) (1.8)

where

h(t) = h+ cos
(

2πf
(
t− z

c

))
(1.9)

is the strain of the GW. When passing through the detector, the GW stretches out

an arm by a certain amount δL(t) and squeezes the other arm by the same amount

periodically. The strain is related to elongation δL(t) by:

h(t) ≡ 2
δL(t)

L
. (1.10)
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Considering only gravitational effects, the output power becomes

Pout(t) = Pin cos2[k((L+ δL(t))− (L− δL(t)))] (1.11)

= Pin cos2[kLh(t)], (1.12)

with a Michelson ITF we are hence able to obtain h(t) from a measure of Pout(t).

The performance of a detector is given by the frequency-dependent noise that limits its

sensitivity; for stochastic noise, the linear spectral density is used, which is the square

root of the power spectral density1 of h(t) noise:
√
Shh(f)[1/

√
Hz].

1.3 Noise Budget

Many sources of noise affect the sensibility of a gravitational ITF [AD05]; Fig. 1.3

shows the sensitivity curve with the solely contribution of ambient noise. With several

Figure 1.3: Non-quantum noise limiting sources to AdV sensitivity.

efforts to isolate the system, the noise arising from the quantum nature of light is the

limiting noise source over most of the audio GW detection band. This noise consists

in the unavoidable fluctuations in conjugate variables such as the quadratures of the

radiation field (see §2.1.1), and is the quadrature sum of two contributions, as explained

below.

1the power spectral density of a weak-sense stationary process x(t) is defined as SXX(ω) ≡
〈X(ω)X∗(ω)〉, where X(ω) is the Fourier transform of x(t)
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1.3.1 Shot Noise

This type of noise arises from the fluctuations of the Poissonian counting statistics

of a coherent state of light (see §2.2.1). When the radiation coming from the ITF is

revealed by the PD, fluctuations in the number of photons could be interpreted as a

fringe shift, resulting in a false signal for the detector.

The shot noise contribution to the linear spectral density is given by [Sau94, §5.1]:

S
1/2
hh

∣∣∣
s.n.

=
1

L

√
}cλ
2πP

. (1.13)

where L is the arm length of the ITF, λ is the wavelength of the laser and P its power.

From (1.13) it is clear that an increase in the laser power leads to a reduction of the

shot noise; another important aspect is that it doesn’t depend on wave frequency to

be detected: it is white noise.

1.3.2 Radiation Pressure Noise

When a photon of energy }ω bounces on a surface, it transfers a momentum of 2}ω/c
to that surface . Fluctuations in photon number lead to fluctuations in the pressure

acting on the mirrors of the ITF and generate a stochastic force that shakes them.

The shot noise contribution to the linear spectral density of the GW strain amplitude

is given by [Sau94, §5.2]:

S
1/2
hh (f)

∣∣∣
r.p.

=
2

m(2πf)2L

√
2π}P
cλ

(1.14)

where m is the mass of the mirror and f the frequency at which it oscillates. From

its dependence on f , it is clear that this contribution to the total noise is dominant at

low frequencies.

1.3.3 Standard Quantum Limit

The total quantum noise is given by the sum in quadrature of the contributions dis-

cussed above:

S
1/2
hh (f)

∣∣∣
q.n.

=
√
Shh|s.n. + Shh(f)|r.p.. (1.15)

For a fixed frequency we can minimize the above equation with respect to the power

and, at optimal power, we find:

S
1/2
hh (f)

∣∣∣
s.q.l.

=
1

πfL

√
}
m

(1.16)
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Figure 1.4: Linear spectral density of the strain noise for different values of the laser
power. The parameters are assumed to be m = 40kg, λ = 1064nm, L = 3km.

for an optimal value of the power given by:

Popt = πcλmf2. (1.17)

In Fig. 1.4 linear spectral densities for two values of the laser power are plotted. The

standard quantum limit represents a lower limit for the spectral density of the quantum

noise, it is not a spectral density but it is rather the locus of the lowest possible points

of the family of spectra. For this reason, (1.16) is sometimes called a “pseudo-spectral

density”.

By substituting realistic parameters in Popt, such as λ = 1064nm, f = 100Hz2 and

m = 40kg, we find an extremely large value for the power. Even if we were to consider

folded ITFs, i.e. with a Fabry-Pérot cavity along each arm (see Fig. 1.5), for which

the optimum power takes the form [Sau94, §6.8]

Popt =
πcλmf2

2N 2
(1.18)

where N is the number of bounces at each mirror, we would find Popt ' 5kW for

N = 200. This is too high a power for today’s continuous wave lasers, thus we can

see that the dominant contribution to the quantum noise is given by the shot noise.

The introduction of optical cavities along the arms of the ITF enhances the sensitivity

to a phase shift by a factor 2F/π [Mag07, §9.2], where F is the finesse of the cavity

and is proportional to N . The reason of this improvement is that photons bounce

many times between the two mirrors and hence they experience a longer storage time:

the effective optical path can be increased by a factor of O(102) with the appropriate

choice of mirror reflectivity. The finesse, however, cannot be augmented arbitrarily

2Detection band of Earth-based GW detectors is from about 10 Hz to 10 kHz
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Figure 1.5: Michelson ITF with Fabry-Pérot cavities along the arms

because over certain values the sensitivity at high frequency get worse. This behaviour

arises from the fact that in a folded ITF the shot noise depends on the frequency f as

1√
1 + (f/fp)2

(1.19)

where fp ' c/(4πF) is the so-called pole frequency. The injection of a frequency

independent squeezed vacuum through the dark port of the ITF (see §2.3) allows the

reduction of one of the two contributions to the quantum noise, depending on the

squeezing angle. Below 100Hz, the quantum noise level and non-quantum noise level

are of the same order of magnitude; thus it makes sense to reduce the shot noise,

which is dominant at high frequencies, at the price of a higher pressure noise at low

frequencies, the contribution of which being covered by ambient noise.





Chapter 2

Quantum Theory of Light

This chapter briefly presents the mathematical tools needed to describe the radiation

field in the context of the second quantization of light. We assume that the reader is

familiar with the concepts of quantum harmonic oscillator and Fock states. A simple

introduction to the argument can be found in [Sal14, pp. 21–32].

2.1 Quantized Electromagnetic Field

Elaborating upon Maxwell’s equations in a vacuum and without sources, the coupled

quantized electric and magnetic fields can be described respectively with:

Ê =
∑
k,s

i

√
}ωk

2ε0V

(
âk,se

−i(ωkt−k·r) − â†k,se
i(ωkt−k·r)

)
εk,s (2.1)

B̂ =
∑
k,s

i

√
}

2ε0ωkV

(
âk,se

−i(ωkt−k·r) − â†k,se
i(ωkt−k·r)

)
k × εk,s (2.2)

where } is the reduced Planck constant, ωk is the mode angular frequency, k is the

wavevector such that ωk = c|k| with c being the speed of light in a vacuum, s = 1, 2

is the polarization, ε0 is the vacuum permittivity, V is the volume in which the plane

waves are normalized, εk,1 and εk,2 are two mutually orthogonal real unit vectors of

polarization which are also orthogonal to k, and âk,s and â†k,s are respectively the

boson annihilation and creation operators.

For simplicity, below we will only deal with the electric field operator1 and we will con-

sider it in a single mode and with a fixed linear polarization. With these assumptions

1from classical electromagnetism theory, we know that electric and magnetic fields are perpendicular
to each other and to the wavevector, and that their amplitudes are related by B = E/c

11
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(2.1) can be rewritten as

Ê =

√
}ωk

2ε0V

(
âe−i(ωkt−k·r−

π
2 ) + â†ei(ωkt−k·r−

π
2 )
)
ε. (2.3)

2.1.1 Quadrature Operators

Creation and annihilation operators are not associated with observable quantities be-

cause they are not Hermitian; in order to handle observable quantities, we introduce

amplitude and phase quadrature operators:

X̂ =
1

2
(â+ â†) (2.4)

Ŷ =
1

2i
(â− â†) (2.5)

in terms of which the electric field operator (2.3) may be rewritten as

Ê = 2

√
}ωk

2ε0V

(
X̂ cos

(
ωkt− k · r −

π

2

)
+ Ŷ sin

(
ωkt− k · r −

π

2

))
ε. (2.6)

Any pair of quadrature operators could be obtained by applying the rotation matrix

of angle χ on the (X̂, Ŷ ) vector:

X̂χ = X̂ cosχ+ Ŷ sinχ =
1

2
(âe−iχ + â†eiχ) (2.7)

Ŷχ = X̂χ+π
2

= X̂(− sinχ) + Ŷ cosχ =
1

2i
(âe−iχ − â†eiχ). (2.8)

From the commutation relation of â ad â†:

[â, â†] = 1, (2.9)

it could be easily verified that the quadrature operators do not commute:

[X̂χ, Ŷχ] =
i

2
. (2.10)

Thus, they obey the Heisenberg uncertainty principle [Hei27]:

〈∆X̂2
χ〉〈∆Ŷ

2
χ〉 ≥

1

16
. (2.11)
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2.2 Quantum States of Light

Fock states are not ideal to describe real fields, since the mean value of the electric

field operator described in (2.3):

〈Ê〉n ≡ 〈n|Ê|n〉 = 0 (2.12)

is zero regardless of the number of photons, as a consequence of the completely unde-

fined phase of these states [Fox06, p. 139].

2.2.1 Coherent States

Figure 2.1: Phasor diagram of a coherent state. The time evolution of the electric
field in such a state could be visualized considering the projections of the phasor and

its uncertainty circle on a complex plane with axes Ê and
˙̂
E rotating with angular

frequency ω relative to the (X, Y ) plane

A set of states better suited to describe a real field, like that generated by a laser

device, is given by the eigenstates of the annihilation operator [Gla63]

â |α〉 = α |α〉 (2.13)

where α = |α|eiθ is a complex number; Roy Glauber named such states coherent states.

With this choice of states, the expectation value of the electric field is

〈Ê〉α ≡ 〈α|Ê|α〉 = 2|α|
√

}ωk
2ε0V

sin(ωkt− k · r − θ)ε (2.14)
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which resembles the classical description of a coherent monocromatic electromagnetic

wave. From (2.14) we see that the absolute value of the eigenvalue of (2.13) is propor-

tional to the amplitude of the electric field, while its phase enters in the sine of (2.14).

Furthermore, we observe that if we invert (2.4) and (2.5) and we take the mean value

of the operators involved with the system in the state |α〉, we obtain:

〈â〉α = 〈X̂〉α + i〈Ŷ 〉α; (2.15)

the Hermitian quadrature operators can thus be interpreted as the real and imaginary

part of the annihilation operator. With these considerations, we can represent the

state |α〉 as a phasor of length |α| at angle θ in the (X,Y ) plane [Fox06, §7.5]; see

Fig. 2.1. The red circle represents the quantum fluctuatuions which have a gaussian

distribution around the mean value [BR04, §4.3.2] and are uniformly distributed in

every field quadrature:

〈∆X̂2
χ〉α =

1

4
∀χ. (2.16)

The above statement has an important implication: a coherent state is a state of

minimum uncertainty, like the ground state of a harmonic oscillator, in fact for every

couple of conjugate variable holds the identity:

〈∆X̂2
χ〉〈∆Ŷ

2
χ〉 =

1

16
. (2.17)

Let us now calculate calculate the mean value of the number operator:

N̄ = 〈α|N̂ |α〉 = |α|2 (2.18)

and its variance:

〈∆N̂2〉 = 〈N̂2〉 − 〈N̂〉2 = N̄2. (2.19)

The probability of measuring n photons in a coherent state |α〉 is

P (n) = | 〈n|α〉 | = e−|α|
2 |α|2n

n!
= e−N̄

N̄n

n!
(2.20)

which is the Poisson distribution. A coherent state can be obtained by applying the

displacement operator

D̂(α) = eαâ
†−α∗â (2.21)

to the vacuum state of the Fock space:

|α〉 = D̂(α) |0〉 . (2.22)
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The displacement operator is unitary:

D̂†(α)D̂(α) = 1 (2.23)

and acts on â and â† as:

D̂†(α)âD̂(α) = â+ α (2.24)

D̂†(α)â†D̂(α) = â† + α∗. (2.25)

2.2.2 Squeezed Vacuum

Figure 2.2: Phasor diagram of a squeezed vacuum state

A quantum state of light which–as opposed to a coherent state–has no classical coun-

terpart is the squeezed vacuum, obtained by applying the squeezing operator [Sto70]

Ŝ(ζ) = e
1
2

(ζ∗â2−ζ(â†)2) (2.26)

to the vacuum state

|ζ〉 = Ŝ(ζ) |0〉 . (2.27)

The complex number ζ can be written as

ζ = reiφ (2.28)

where r and φ are respectively called squeezing factor and squeezing angle. Similarly to

what done in the previous section, we can depict a squeezed vacuum in a phase space
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as illustrated in Fig. 2.2. The expectation value of the generic quadrature operator is

〈X̂χ〉ζ = 0 (2.29)

and the relative variance is given by:

〈∆X̂2
χ〉ζ =

1

4

(
cosh2 r + sinh2 r − 2 sinh r cosh r cos(φ− 2χ)

)
(2.30)

Fig. (2.3) shows the variance of the quadrature operator with rispect to the variance

of the coherent vacuum as a function of the quadrature angle for different values of the

squeezing factor, the function has a periocity of π. The minimum and maximum value

-10

-5

0

5

10

0 1 2 3 4 5 6

V=14

V=7

V=1

Figure 2.3: Quadrature noise of a squeezed vacuum with squeezing angle φ = 0 as
a function of the quadrature angle χ for various values of squeezing factor r.

of (2.30) are reached for the two orthogonal quadrature rotated at half the squeezing

angle, called respectively squeezed and anti-squeezed quadrature:

〈∆X̂2
φ/2〉ζ =

e−2r

4
(2.31)

〈∆Ŷ 2
φ/2〉ζ =

e2r

4
. (2.32)

From the last equations we can understand the meaning of the name given to states

like |ζ〉: the quantum noise of a field quadrature is “squeezed” to respect the noise

of the vacuum state, while the noise of the perpendicular quadrature is greater than

that of the vacuum. The squeezing level V is often given in decibel scale using the
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transformation [Kha11, (2.118)]

V [dB] = −10 log10

〈∆X̂2
φ/2〉

〈∆X̂2
vac〉

 = −10 log10(e−2r) (2.33)

where 〈∆X̂2
φ/2〉 is the variance lower noise quadrature and 〈∆X̂2

vac〉 is the variance of

any quadrature of the coherent vacuum state.

The squeezed vacuum is still a minimum uncertainty state:

〈∆X̂2
φ/2〉ζ〈∆Ŷ

2
φ/2〉ζ =

1

16
(2.34)

The squeezing operator is unitary and acts on â and â† as [Lou00, p. 202]:

Ŝ†(ζ)âŜ(ζ) = â cosh r − â†eiφ sinh r (2.35)

Ŝ†(ζ)â†Ŝ(ζ) = â† cosh r − âe−iφ sinh r. (2.36)

Despite its name, the squeezed vacuum has non-trivial photon statistics and could be

described as a superposition of Fock (even) number states [GK04, pp. 160–161]:

|ζ〉 =
1√

cosh r

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimφ(tanh r)m |2m〉 . (2.37)

As a result, the mean value of number of photons in a squeezed vacuum is

〈ζ|N̂ |ζ〉 = sinh2 r (2.38)

in contrast to the ground state |0〉 which has a mean value of zero photons.

2.3 Improvement of ITF Sensibility

In the present section we see how the injection of squeezed vacuum in the dark port2

of the ITF can reduce the quantum noise, in doing this we will follow the reasoning

of Caves [Cav81], who first demonstrated that the quantum noise in GW detectors is

dominated by the vacuum fluctuations that enter the unused port of the ITF. The basic

setup to introduce the squeezed vacuum in the ITF is depicted in Fig. 2.4: the squeezed

field enters the ITF after it has been reflected by a polarized beam splitter (PBS), then

a Faraday rotator changes the polarization direction of 45◦. When the field comes back

2the dark port is the face of the BS from which the ITF laser beam exits.
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Figure 2.4: Scheme of the ITF with the squeezed vacuum injected in the unused
port

from the ITF arms the rotator changes again the polarization direction so that the field

outgoing from it has a polarization orthogonal to that of the original squeezed vacuum

and is thus transmitted by the PBS toward the PD. The final polarization of the

squeezed vacuum must be equal to that of the main laser circulating in the ITF in

order to have a coupling of the two fields.

2.3.1 Beam Splitter

Figure 2.5: Quantum mechanical depiction of a BS

To describe the BS in a quantum mechanical way, we replace the classical complex

field amplitudes with the correspondent annihilation operators as depicted in Fig. 2.5,

where â1 and â2 are referred to the input fields and b̂1 and b̂2 to the output fields. It is

worth noting that while in the classical description of the device it could be possible to

consider only one input field, when we introduce the quantum operators we are forced
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to consider both the input quantized fields, substituting the unused port field with the

vacuum state if necessary. As explained in [GK04, p. 138], this constraint arises from

the boson commutation relations that the mode operators must satisfy:

[âi, â
†
j ] = δij (2.39)

[b̂i, b̂
†
j ] = δij (2.40)

[âi, âj ] = [â†i , â
†
j ] = [b̂i, b̂j ] = [b̂†i , b̂

†
j ] = 0. (2.41)

We can use a complex matrix MBS to represent the transformation of the BS acting

on the annihilation operators of the input fields at a chosen angular frequency:(
b̂1

b̂2

)
= MBS

(
â1

â2

)
=

(
t r

r′ t′

)(
â1

â2

)
(2.42)

where r and r′ are the reflective coefficients and t and t′ are the transmission coefficients.

By imposing the photon number (and hence the energy) conservation in a lossless BS:

b̂†1b̂1 + b̂†2b̂2 = â†1â1 + â†2â2, (2.43)

the commutation relations in (2.39), (2.40) and (2.41), and a phase difference of π/2

between refleced and transmitted fields [Deg80, Zei81], we can rewrite the matrix as:

MBS =
1√
2
ei∆

(
ieiµ eiµ

1 i

)
(2.44)

where the factor 1/
√

2 arises from the choice of considering a 50:50 BS. ∆ is the overall

phase shift and µ is the realtive phase shift. We point out that the matrix associated to

a lossless BS is always unitary because of the conservation of energy (also in the classical

description) and that the choice of ∆ and µ depends on the physical characteristics of

the device.

2.3.2 Radiation Pressure Noise

To evaluate the fluctuations in pressure we introduce the operator:

P̂ ≡ 2
}ω
c

(b̂†2b̂2 − b̂
†
1b̂1) (2.45)

which specifies the difference between the momenta transferred to the end mirrors of

the ITF. For simplicity we assume the mass of the BS much greater than those of the

end mirrors, so that we can neglect the effect of the radiation pressure on the BS. The
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names of the field operators that we use in the present discussion are referred to that

in Fig. 2.4. We can express the last operator in terms of operators for the input modes

using the BS matrix (2.44):

P̂ = 2i
}ω
c

(â†1â2 + â†2â1). (2.46)

We assume the incoming modes 1 and 2 in a coherent state and in a squeezed vacuum

state respectively:

|Ψ〉 = Ŝ2(ζ)D̂1(α) |0〉 (2.47)

we choose the phase for the mode 1 so that the amplitude α is a real number. From

the properties of displacement and squeezing operators it follows that

〈P̂〉Ψ = 0 (2.48)

〈∆P̂
2〉Ψ =

(
2
}ω
c

)2 [
α2(cosh2 r + sinh2 r + 2 cosh r sinh r cosφ) + sinh2 r

]
(2.49)

If the quadrature of the sqeezed state with reduced noise is in phase with respect to

the coherent excitation of mode 1, namely if φ/2 = 0, (2.49) can be further simplified:

〈∆P̂
2〉Ψ =

(
2
}ω
c

)2 [
α2e2r + sinh2 r

]
(2.50)

In a measurement of duration τ3 the fluctuation of the operator P̂ perturbs z by an

amount

∆z|r.p. =
τ

2m

√
〈∆P̂

2〉Ψ =
}ωτ
mc

√
α2e2r + sinh2 r (2.51)

2.3.3 Shot Noise

The photon counting error is due to the fluctuations in the number operator of the

mode detected by the PD (that referred to as ĉ2 in Fig. 2.4). Once again, we have to

express the output mode in terms of input modes. In doing so, we represent the effect

of the propagation along the arms of the ITF through a matrix:

Marms = eiΦ

(
eiϕ 0

0 e−iϕ

)
(2.52)

3the information about z = z1 − z2, the difference between the ITF arm lengths, is not the instan-
taneous value; rather it is a sort of average of z over the storage time τs = 2NL/c the light spends in
each arm. N is the number of bounces of the photons in a folded ITF. The best sensitivity is achieved
when the measurement time τ , the time over which one averages the output to get a value for z, is
near to τs.
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where

ϕ = 2
ωz

c
(2.53)

is the phase difference between the light from the two arms, with z = z1 − z2, and

Φ = 2
ωZ

c
+ π (2.54)

is the mean phase, with Z = z1 +z2. The relation between input and output operators

is given by4

(
ĉ1

ĉ2

)
= MT

BSMarmsMBS

(
â1

â2

)
= eiΘ

(
− sin(ϕ+ µ) cos(ϕ+ µ)

cos(ϕ+ µ) sin(ϕ+ µ)

)(
â1

â2

)
(2.55)

where

Θ = 2
ωZ

c
+ µ− π

2
(2.56)

By using (2.55) we can now obtain the mean value of the number operator of the

output mode:

〈N̂ 〉Ψ ≡ 〈ĉ†2ĉ2〉Ψ = α2 cos2(ϕ+ µ) + sinh2 r sin2(ϕ+ µ) (2.57)

and its variance:

〈∆N̂
2〉Ψ =

sin2(2(ϕ+ µ))

4
(α2e−2r + sinh2 r) (2.58)

To evaluate how a perturbation on the photon counting affects the measure of z we

need to linearize (2.57):

δN =
2ω

c
sin(2(ϕ+ µ))(sinh2 r − α2)δz ' −2ω

c
sin(2(ϕ+ µ))α2δz; (2.59)

by inverting (2.59) and substituting δN with the fluctuation obtained in (2.58), we

find

∆z|s.n. =
c

4ω

√
1

α2e2r
+

sinh2 r

α4
(2.60)

4MT
BS is the transpose matrix of MBS
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2.3.4 Optimum Power

The total quantum noise on the measure of z is the quadrature sum of the two contri-

butions (2.51) and (2.60):

∆z|tot =
√

∆z|2r.p. + ∆z|2s.n. =

√(
}ωτ
mc

αer
)2

+

(
c

4ω

1

αer

)2

(2.61)

where we have assumed that

α2 � sinh r. (2.62)

If we minimize the total error with respect to α2 we find a minimum error

∆z|min =

√
}τ
2m

(2.63)

for an optimum value of α2:

α2
opt. = α2

0e
−2r =

1

4

mc2

}ω
1

ωτ
e−2r. (2.64)

The last equation leads to an optimum power:

Popt. = P0e
−2r =

}ωα2
0

τ
e−2r (2.65)

thus, if a squeezed vacuum is injected into the dark port of an ITF, the power needed

to reach the optimum sensibility is reduced respect to the case in which a coherent

vacuum enters the ITF. Viceversa, with the same power of the laser it is possible to

reduce one of the two contributions to the quantum noise by fixing the phase of the

squeezed vacuum to the laser and choosing the appropriate squeezing angle. If φ/2 = 0

the vacuum is squeezed in amplitude quadrature and the radiation pressure noise is

reduced, if φ/2 = π/2 the vacuum is squeezed in phase and the shot noise is reduced.

2.4 Squeezed Light Generation

There are several way to generate squeezed light (see for instance [BR04, Ch.9]).

Presently, the most robust method is based on the degenerate parametric amplifi-

cation inside a nonlinear optical device [WKHW86]: the medium is pumped by a field

(pump) at frequency 2ω/(2π), previously generated with a Second Harmonic Genera-

tion (SHG) process [Boy03, §2.6], and a number of photons of that field is converted

into pairs of photons (signal) with frequency ω/(2π) and a squeezed distibution in

quadrature noise. In real experiments, the nonlinear crystal is placed inside a cavity to
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enhance the efficiency of the parametric amplification, the signal to be amplified being

very weak. The device is then called an Optical Parametric Oscillator (OPO).

In the next section we give a semiclassical description of how the parametric amplifi-

cation acts on the signal field, following the reasoning of [Fox06, appx. B].

2.4.1 Nonlinear Optics

The propagation of electromagnetic waves through a dielectric medium is governed by

the electric displacement:

D = ε0E + P ; (2.66)

in a nonlinear medium the polarization P depends on higher order of the electric field:

P = ε0(χ(1)E + χ(2)EE + · · · ) = ε0χ
(1)E + PNL (2.67)

where the i-th-order electric susceptibility χ(i) is a (i + 1)-th-rank tensor. In the last

term of (2.67) we split the polarization into its linear and nonlinear term.

Assuming a non-magnetic medium without free charges and currents, from Maxwell’s

equations we can derive the wave equation:(
∇2 − n2

c2

∂2

∂t2

)
E =

1

ε0c2

∂2PNL

∂t2
(2.68)

where n =
√

1 + χ
(1)
eff is the refractive index of the medium.

Let us now introduce a series of assumptions in order to simplify the above equation.

First, we consider a fixed polarization of all the fields involved so as to substitute

vectors with scalar quantities. In doing so we drop the tensor nature of the electric

susceptibility and, for a fixed geometry of the crystal, we replace χ(i) with its effective

value χ
(i)
eff , which is a scalar number. Second, we are interested only in second-order

nonlinear processes, so that

PNL = ε0χ
(2)
effE

2. (2.69)

Third, we define the direction of propagation as the z-axis. Finally, we restrict our

analysis to the case where the electric field oscillates at angular frequency ω and 2ω:

E = Eω(z)e−i(ωt−kωz) + E2ω(z)e−i(2ωt−k2ωz) + c.c. (2.70)

where Eω(z) and E2ω(z) are complex amplitudes, and kω = ωnω/c and k2ω = 2ωn2ω/c

are the wavenumbers. We point out that the refractive index depends on the frequency

of the wave.
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By substituting (2.70) into the simplified form of (2.68):

(
∂2

∂z2 −
n2

c2

∂2

∂t2

)
E =

χ
(2)
eff

c2

∂2E2

∂t2
(2.71)

and solving for the component at angular frequency ω, we obtain:

(
∂2

∂z2 −
n2
ω

c2

∂2

∂t2

)(
Eω(z)e−i(ωt−kωz)

)
=
χ

(2)
eff

c2

∂2

∂t2

(
2E2ω(z)e−i(2ωt−k2ωz)E∗ω(z)ei(ωt−kωz)

)
.

(2.72)

After some manipulation and assuming the slowly varying envelope approximation:

kω

∣∣∣∣dEωdz
∣∣∣∣� ∣∣∣∣d2Eω

dz2

∣∣∣∣ (2.73)

we finally obtain:

dEω(z)

dz
= i

ωχ
(2)
eff

cnω
E2ω(z)E∗ω(z)ei∆kz (2.74)

with ∆k = k2ω − 2kω. We cosider now a perfect phase matching condition (∆k = 0)

that can be reached by using periodically-poled crystals [Boy03, §2.9] and we rewrite

(2.74) as:
dEω(z)

dz
= igE2ω(z)E∗ω(z) (2.75)

with the real constant g given by:

g =
ωχ

(2)
eff

cnω
. (2.76)

If the depletion of the pump field is negligible, we can rewrite its amplitude as:

E2ω = E0e
iη (2.77)

with E0 a real number and η the phase. For a more general discussion we consider an

arbitrary rotated signal field:

Eω(z)→ Eω(z)e−iχ (2.78)

so that (2.75) becomes:
dEω(z)

dz
e−iχ = iγE∗ω(z)ei(η+χ) (2.79)

where γ = gE0. On adding and subtracting (2.79) and its complex conjugate we find:

d

dz

(
Eω(z)e−iχ + E∗ω(z)eiχ

)
= iγ

(
E∗ω(z)ei(η+χ) − Eω(z)e−i(η+χ)

)
(2.80)
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d

dz

(
Eω(z)e−iχ − E∗ω(z)eiχ

)
= iγ

(
E∗ω(z)ei(η+χ) + Eω(z)e−i(η+χ)

)
. (2.81)

In passing to a quantum description of the optical parametric amplification, we use

the canonical quantization of the field and substitute Eω and E∗ω with the operators â

and â† respectively. In the special case where η = π/2, (2.80) and (2.81) simplify to:

d

dz

(
â(z)e−iχ + â†(z)eiχ

)
= −γ

(
â†(z)eiχ + â(z)e−iχ

)
(2.82)

d

dz

(
â(z)e−iχ − â†(z)eiχ

)
= γ

(
−â†(z)eiχ + â(z)e−iχ

)
(2.83)

where we recognize the rotated quadrature operators (2.7) and (2.8). Thus:

d

dz
X̂χ(z) = −γX̂χ(z) (2.84)

d

dz
Ŷχ(z) = γŶχ(z) (2.85)

which solutions are exponential functions:

X̂χ(z) = X̂χ(0)e−γz (2.86)

Ŷχ(z) = Ŷχ(0)eγz. (2.87)

If the signal field to be amplified is the vacuum state, then only the fluctuations

of the quadrature operators enter the above equations, since 〈X̂χ〉ζ = 〈Ŷχ〉ζ = 0.

The result is that, passing through the nonlinear medium, fluctuations in the rotated

amplitude quadrature operator X̂χ(z) are reduced while fluctuations in the rotated

phase quadrature operator Ŷχ(z) are increased: we have just described an amplitude

squeezing. If we had chosen η = −π/2, we would have achieved a phase squeezing.

2.5 Squeezed Light Detection

To properly characterize a squeezed state we need to obtain informations about the

quantum noise in different field quadratures, this is done through the use of the Bal-

anced Homodyne Detector [YC83], a device composed by two photodiodes (PDs) and

a 50:50 BS.

Before describe how the homodyne works, we introduce a trick to better handle the

mathematical calculation. In quantum optics it is often useful to linearize the field

operators by decomposing them in two parts: a complex number that represents the

steady amplitude (i.e. the mean value of the operator) and an operator that represents
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the quantum fluctuation. For instance we can rewrite the annihilation operator as

â = α+ δâ (2.88)

with

〈δâ〉 = 0. (2.89)

If we now calculate the linearized photon number from (2.88), we find:

N̂ = â†â = |α|2 + α∗δâ+ αδâ† + δâ†δâ ' |α|2 + α(δâ+ δâ†) (2.90)

where in the last term we have considered α as a real number and we have neglected

higher order fluctuations5. By considering (2.4) and (2.18) we can give to the last

equation the simple form:

N̂ = N̄ + 2αδX̂ (2.91)

which leads to an important result: the fluctuation in photon number depends only

on the fluctuation in amplitude quadrature operator. If we then use only one PD to

detect a particular state of light, we can detect only fluctuation in one quadrature.

That is why we need two PDs to fully characterize a squeezed state.

Figure 2.6: Scheme of the balanced homodyne detector

The basic setup for a balanced homodyne detector is illustrated in Fig. 2.6. The beams

that enter the BS are the squeezed state6, associated with the linearized operator (2.88),

and the so-called Local Oscillator (LO) which has the same frequency of the other field

5this assumption is realistic for bright coherent state, where 〈â〉 �
√
〈∆â2〉. For weak field, higher

order fluctuations are to be considered and for the special case of a vacuum state the constant term
in (2.88) is zero and the linearized operator becomes â = δâ

6not necessarily the squeezed vacuum, a squeezed bright state |α, ζ〉 can be obtained by applying
the displacement operator to the squeezed vacuum: |α, ζ〉 = D̂(α)Ŝ(ζ) |0〉
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and is described by

b̂ = eiΦ(β + δb̂) (2.92)

where Φ is the phase difference between the two input fields. We choose the phases of

the incoming beams so that α and β are real numbers and, applying the BS matrix

(2.44), we can express the transformation acting on the operators as:

ĉ =
ei(∆+µ)

√
2

(iâ+ b̂) (2.93)

d̂ =
ei∆√

2
(â+ ib̂). (2.94)

The operators related to the photo-currents are given by:

îc ∝ ĉ†ĉ =
1

2
(â†â− iâ†b̂+ iâb̂† + b̂†b̂) (2.95)

îd ∝ d̂†d̂ =
1

2
(â†â+ iâ†b̂− iâb̂† + b̂†b̂) (2.96)

and, substituting the operators with the linearized form, the difference photo-current

is

î− = îc − îd ∝ i(â†b̂+ âb̂†) (2.97)

= i[2αβ cos Φ + 2αδX̂b
−Φ + 2βδX̂a

Φ +O(δ2)] (2.98)

where O(δ2) contains all higher-order fluctuation terms and, from (2.7):

δX̂a
Φ =

1

2
(δâe−iΦ + δâ†eiΦ) (2.99)

δX̂b
−Φ =

1

2
(δb̂eiΦ + δb̂†e−iΦ). (2.100)

In the interesting case where the squeezed state is a vacuum state:

α = 〈â〉ζ = 0, (2.101)

we can rewrite (2.97) as:

î− ∝ 2βδX̂a
Φ (2.102)

Thus, the fluctuations of the squeezed state in the quadrature X̂a
Φ are amplified by the

amplitude of the LO, while the LO noise is suppressed. Equation (2.102) allows us to

measure the fluctuation of any quadrature of the squeezed field by changing the phase

difference between the two input fields, for instance by change the optical path of one

beam.
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Coherent Control Loop

The quantum noise suppression described in the previous chapter is efficient only if

the phase of the squeezed field is kept fixed with respect to the phase of the main field

circulating in the ITF. Fluctuations of the squeezed ellipse, as well as optical losses,

decrease the effective squeezing level (see §3.2.1). These fluctuations happen because

mechanical noises change the optical path of the radiation field in a random fashion. A

signal which encodes the phase difference between the two fields must be obtained to

correct the squeezing angle, but the squeezed vacuum itself is too weak to obtain such

an error signal. Valbruch et al. [VCH+06] proposed to introduce a second field, called

Quadrature Control Field (QCF), which carries information on the squeezing angle and

can be used instead of the squeezed vacuum to do the work. The QCF is injected into

the OPO cavity, senses the nonlinearity of the medium and the information carried by

it outside the cavity is used to generate two error signals. The first error signal is used

to control the relative phase between the QCF and the OPO pump field; the second

one is used to control the relative phase between the QCF and LO of the homodyne

detector. The homodyne is used in a preliminary procedure before the injection of the

squeezed vacuum in the ITF in order to measure the squeezing level produced in the

OPO. The control network that meets these goals was called Coherent Control Loop.

3.1 Quadrature Control Field

When the QCF, at frequency (ω + Ω)/(2π), enters the OPO cavity, it interacts with

the pump field at frequency 2ω/(2π) and converts a number of photons of the pump

in pairs of photons at frequency (ω+ Ω)/(2π) (signal) and (ω−Ω)/(2π) (idler) via the

parametric amplification [Boy03, §2.5].

Before the nonlinear interaction, the expectation values of the annihilation operators

29
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for the signal and the idler fields are respectively:

〈â+〉QCF ≡ 〈â(ω + Ω)〉QCF = αΩ (3.1)

〈â−〉QCF ≡ 〈â(ω − Ω)〉QCF = 0 (3.2)

where αΩ is chosen to be real, for simplicity.

Following the formalism of [CS85] we introduce the two-mode quadrature operators1:

â1(Ω) =

(
ω + Ω

2Ω

)1/2

â+ +

(
ω − Ω

2Ω

)1/2

â†− '
1√
2

(
â+ + â†−

)
(3.3)

â2(Ω) = −i
(
ω + Ω

2Ω

)1/2

â+ + i

(
ω − Ω

2Ω

)1/2

â†− '
1√
2

(
−iâ+ + iâ†−

)
(3.4)

and the two-mode squeezing operator:

Ŝ(r, φ) = exp
[
r
(
â+â−e

−iφ − â†+â
†
−e

iφ
)]

(3.5)

with squeezing factor r and squeezing angle φ. From the Baker-Hausdorff lemma

[Mer70, (8.105)] the following useful relations can be derived:

Ŝ(r, φ)â±Ŝ
†(r, φ) = â± cosh r + â†∓e

iφ sinh r (3.6)

Ŝ(r, φ)â†±Ŝ
†(r, φ) = â†± cosh r + â∓e

−iφ sinh r. (3.7)

After the parametric amplification, the quadrature operators become:(
b̂1(Ω)

b̂2(Ω)

)
= Ŝ(r, φ)

(
â1(Ω)

â2(Ω)

)
Ŝ†(r, φ) (3.8)

=

(
cosh r + sinh r cosφ sinh r sinφ

sinh r sinφ cosh r − sinh r cosφ

)(
â1(Ω)

â2(Ω)

)
(3.9)

and their expectation values take the form:

〈b̂1(Ω)〉QCF =
αΩ√

2
[(cosh r + sinh r cosφ)− i sinh r sinφ] (3.10)

〈b̂2(Ω)〉QCF =
αΩ√

2
[sinh r sinφ− i(cosh r − sinh r cosφ)]. (3.11)

1To justify the following simplified expressions we remember that in realistic experiments ω/(2π)
is of the order of 100THz while Ω/(2π) is usually of the order of 10MHz
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To derive the corresponding electrical field we must move on to the time domain with

a Fourier transformation:

b̂m(t) = b̂m(Ω)e−iΩt + b̂†m(Ω)eiΩt, m = 1, 2. (3.12)

By replacing the above results into the expression

Ê(t) ∝ b̂+(t) + b̂−(t) (3.13)

with

b̂±(t) =
1

2

(
b̂1(t)± ib̂2(t)

)
e∓iωt, (3.14)

we obtain the outgoing QCF:

〈Ê(t)〉QCF ∝
1 + g√

2g
αΩ cos((ω + Ω)t)− 1− g√

2g
αΩ cos((ω − Ω)t− φ) (3.15)

where g = exp(2r).

Equation (3.15) is the desired result: the QCF oscillates at two frequencies, equally

separated by the carrier frequency ω/(2π), and it embodies information about the

squeezing angle φ. In the following two sections we will see how to obtain the error

signals from this field. The advantage of this method is that no bright field of the

squeezed beam is required, so no technical noiseis is added to the squeezed vacuum

beam.

3.1.1 Phase Control of the Pump Field

Figure 3.1: Schematic control loop for the locking of the pump angle



Chapter 3. Coherent Control Loop 32

To obtain the error signal for the loop that locks the pump field phase to that of the

QCF, we detect the QCF with a single PD placed outside the OPO. The photocurrent

of the PD is proportional to the square of the incident field:

IQCF ∝ 〈Ê(t)〉2QCF (3.16)

and it is composed by components with different frequencies. Demodulating this signal

at frequency 2Ω/(2π), namely mixing it with a signal at frequency 2Ω/(2π) and low-

pass filtering it, provides the error signal

Spumperr ∝
(g2 − 1)α2

Ω sinφ

4g
(3.17)

which depends on the squeezing angle, i.e. the phase difference between the squeezed

vacuum and the pump. This signal is fed to a piezoelectric (PZT) actuator which hosts

a mirror (see Fig. 3.1) in order to change the optical path of the pump field and hence

to lock its phase (and that of the squeezed vacuum) with respect to the phase of the

QCF.

3.1.2 Phase Control of the LO

+

Figure 3.2: Schematic control loop for the locking of the LO angle

A certain amount of the QCF is transmitted through the OPO and enters the homo-

dyne detector together with the squeezed vacuum. Let describe the LO entering the

BS of the homodyne with the complex notation:

ELO(t) ∝ αLOe−i(ωt+ϕ). (3.18)
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with αLO a real number. The fields at the two PDs of the homodyne are found using

the BS matrix (2.44); we can then calculate the difference current:

i−(t) ∝ |EPD1(t)|2 − |EPD2(t)|2 (3.19)

∝ αLOαΩ√
2g

[(1 + g) sin(Ωt− ϕ) + (1− g) sin(Ωt+ ϕ+ φ) + (2ω terms)] . (3.20)

The 2ω terms are too fast for the PD and are averaged out, resulting in a DC offset.

Finally, the signal is demodulated by mixing it with the signal αd cos(Ωt+ χ) and

low-pass filtered. The result is the error signal:

SLOerr ∝
αdαLOαΩ

2
√

2g
[−(1 + g) sin(ϕ+ χ) + (1− g) sin(ϕ+ φ− χ)] . (3.21)

By choosing the demodulation signal phase so that χ = −ϕ, the last expression assumes

the simple form:

SLOerr ∝
αdαLOαΩ(1− g)

2
√

2g
sin(2ϕ+ φ), (3.22)

After the squeezing angle phi is stabilized using the completely independent pump

path control loop, the homodyne error signal depends merely on ϕ and thereby can

be directly employed to stabilize the homodyne detection angle acting on a phase

shifter (like a PZT-mounted mirror) placed in the optical path of the LO (see Fig3.2).

Once the phase difference between the LO and the squeezed vacuum is stabilized, it

is possible to measure the variance of any quadrature of the squeezed field (see §2.5).

From this measure one obtains the squeezing level produced in the OPO.

3.2 Phase Control in Advanced Virgo

So far the technique to lock the QCF to other fields circulating on the squeezer bench

was described, what remains to do is to extract the information on the phase difference

between the squeezed vacuum and the ITF carrier in the detection bench. The error

signal for the phase control is derived using the detected light transmitted through one

the output mode-cleaners where the squeezing coherent control sidebands beat with

the spatially filtered carrier light. The beat note is then demodulated at Ω in the same

way explained in 3.1.2. This signal is fed to a phase shifter which corrects the phase of

the master laser upstream as explained in the next chapter. This control system, which

will be implemented on Virgo squeezer bench, differs from the usual method where the

error signal corrects the optical path of the squeezed vacuum with a PZT-mounted

mirror. The principal benefit of this method is that the squeezed vacuum does not

sense scattering on the moving mirror and so stray light issues are reduced.
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3.2.1 Squeezing Degradation and Targets

When a squeezed state experiences optical losses, it remains squeezed but the squeeze

factor is reduced because optical losses correspond to mixing the state with the coherent

vacuum state. Let ε be the relative power loss, 〈∆X̂2
χ〉ζ the variance of the generic

quadrature operator of the squeezed state (see 2.30) and 〈∆X̂2
vac〉 the quadrature

variance of the coherent vacuum state; than the resulting quadrature variance reads

[Che07, §2.9.4]

〈∆X̂2
χ〉′ζ = (1− ε)〈∆X̂2

χ〉ζ + ε〈∆X̂2
vac〉 (3.23)

Note that the quantity ε in the above calculation includes many contributions, like

propagation losses due to non perfect optics, quantum efficiency of the photodiodes,

mode mismatch and clipping of the beams.

Also fluctuations of the squeezing ellipse angle deteriorate the final squeezing level

by mixing the squeezed and anti-squeezed quadratures, in the approximation of small

angle fluctuations this degradation can be described by [ZGC+03]:

〈∆X̂2
φ/2〉′ζ = 〈∆X̂2

φ/2〉ζ cos2 θRMS + 〈∆Ŷ 2
φ/2〉ζ sin2 θRMS (3.24)

where 〈∆X̂2
φ/2〉ζ is the variance of the squeezed quadrature, 〈∆Ŷ 2

φ/2〉ζ the variance of

the anti-squeezed quadrature and θRMS is the RMS value of phase fluctuations. Fig. 3.3

shows the combined effect of optical losses and ellipse fluctuations on the squeezing

level.
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Figure 3.3: Contour plot of the final squeezing level as a function of squeezing angle
fluctuations and optical losses, the initial squeezing level is 12dB
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The target for the Advanced Virgo (AdV) squeezed light source is to produce 12dB of

frequency independent squeezing from the OPO across the 10Hz to 10kHz detection

band. Considering that the expected overall losses are 22%, a target of a maximum

of 20mrad rms of squeezing ellipse phase noise at the readout PD is set if 6dB of

squeezing enhancement at the ITF are required. The dotted circle in Fig. 3.3 represent

the actual target.

3.2.2 Optical Setup

Figure 3.4 illustrates the simplified optical setup of Virgo experiment, including the ITF

(not in scale!), the squeezer bench and the detection bench. A pick-off from the ITF

laser beam is send to the squeezer bench via a 50m optical fiber, after being frequency-

shifted by ΩAOM/(2π) = 80MHz with an acousto-optic modulator (AOM); in this way

the loop operates at a frequency well above the Flicker noise dominated region. Than

PLL1, operating at 80MHz, is used to lock the main laser of the squeezer bench to

that of the ITF laser, restoring the original frequency. The main laser beam is used to

generate the pump field at the SHG cavity; the pump field, in turn, is injected into the

OPO cavity where the squeezed vacuum is generated via the parametric amplification

(see §2.4). PLL2 is used to lock the control laser (which generates the QCF) to the

main laser with a frequency shift of ΩCC/(2π) = 7MHz; this value is close to half of

the free spectral range of the signal recycling cavity [Mee88] because the control beam

sidebands must be totally reflected when they are injected into the dark port of the

ITF with the squeezed light.
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Figure 3.4: Schematic of the Coherent Control system for AdV. Red line: ITF and
main laser beam, Green line: second harmonic beam, Purple: QCF, Cyan: squeezed

light. Courtesy of the Advanced Virgo Squeezing Working Group
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Experimental Setup

In this chapter we are going to describe how we implemented the optical bench for the

study of our nested loop system. The first section explains what an OPLL is and how

can be realized. The second section focuses on the optical bench. In the last section

the experimental results are presented.

4.1 Optical Phase Locked Loop

In §3.1 we have stated that the QCF must be frequency-shifted against the fundamental

frequency ω/(2π). To experimentally prepare such a field, we use another laser (slave),

which is frequency locked to the main laser (master) with a fixed difference of frequency

between them. In this section we are going to introduce the opto-electronic configura-

tion that enables us to reach this goal, called optical phase locked loop (OPLL).

The first step of this technique consists in overlapping a pick-off of the two laser beams

via a 50:50 BS (see Fig. 4.1), then the outgoing field (the sum of the input fields)

is fed to a PD which produces a current proportional to the power of the incoming

light, i.e. quadratic in the input field. This photocurrent would be composed by two

components which oscillates at the sum and at the difference of the frequency of the

two lasers, but the fast component is averaged out by the PD; therefore the outcoming

signal is a sinusoidal signal oscillating at the difference in frequency between the two

lasers with a DC offset which is removed with a capacitor in series with the PD output.

To maximize the beat note amplitude the two beams must have the same beam waist

dimension and position, their wavevectors must be parallel and the polarizations must

be the same. This signal is fed to one of the inputs of a device called phase frequency

detector (PFD), the other input, the reference signal, is a sinusoidal signal oscillating

at frequency Ω/(2π). The output signal is proportional to the phase difference between

37
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the beat note and the reference oscillator. Using a low pass filter the loop can be closed

by feeding the slave laser’s fast input with this error signal. The fast input controls

a PZT that can change the length of the laser cavity and hence the frequency of the

outgoing radiation field.

Figure 4.1: Basic setup for an OPLL

The control system shown above is an adjustment to the more general PLL, a nega-

tive feedback control system widely employed to generate a signal with a fixed phase

difference with respect to an input periodic signal. The simplest PLL diagram is

depicted in Fig. 4.2 with the essential blocks: a phase detector, a loop filter and a

voltage-controlled oscillator (VCO). The input is a reference harmonic signal with

Figure 4.2: Block diagram of a PLL

phase φref (t) = ωref · t+ φ0,ref which enters the phase detector along with the signal

outgoing from the VCO, with phase φV CO(t) = ωV CO(t) · t+φ0,V CO(t). The phase de-

tector output, i.e. the error signal of the loop, is proportional to the difference between

the two phases:

Ipd(t) = Kpd (φref (t)− φV CO(t)) (4.1)

where Kpd is a constant with unit of measurement given in A/rad. After going through

the loop filter, which is essentially a low-pass filter and a current-to-voltage converter,

the signal vpd(t) is fed to the VCO. This last block produces a periodic signal with

instantaneous frequency proportional to the input voltage:

ωV CO(t) = ω0 +KV CO · vpd(t) (4.2)
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where KV CO is a constant expressed in Hz/V and ω0/(2π) is the central frequency of

the VCO; because the frequency is the time derivative of the phase, the last equation

can be written as:
dφV CO(t)

dt
= KV CO · vpd(t). (4.3)

It is worth noting that in the OPLL the VCO consists of the set of the two lasers, the

BS and the PD: the output of the loop is the beat note and not the frequency of the

slave laser.

4.1.1 Phase Frequency Detector
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Figure 4.3: schematic of a PFD

Among different phase detectors (mixer phase detector, XOR phase detector...), the

PFD is used to implement a digital PLL (hereinafter the LOW state and the HIGH

state of digital signals will be called 0 and 1 respectively). It consists of two D-type

flip-flops as shown in Fig. 4.3. The outputs of the flip-flops control two current sources,

called charge pump (CP), which can increase or decrease the charge collected on the

plates of a capacitor in series with the PFD1.

A D-type flip-flop is a circuit that can be used as a delay line to store digital input

information. It has four input channels: data D, clock CLK, set S and reset R. When

S and R are set to 0, the output channel Q follows the data with some delay because

it can change its value at the selected edge of the clock signal, as shown in Fig. 4.4.

When R is set to 1 and S is 0, the output is forced to 0 independently from D and

CLK inputs.

The inputs of the PFD (the reference signal and the beat note from the PD in the case

of an OPLL) are fed to the CLK channels of the two flip-flops, the S channel of both

of them is set to 0 and the D channel is set to 1. The output channels Q1 and Q2

enable the UP and DOWN source respectively when in state 1. If they are turned to

1the capacitor(s) belonging to the loop filter
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CLK

D

Q

R

Figure 4.4: behavior of a D-type flip-flop triggered on the rising edge of the clock
and with S=0

1 simultaneously, a feedback network composed by an AND gate and a programmable

delay line ensures the reset of both flip-flops after a small delay of time.

Let us consider now two important cases of how a PFD works. First, we assume that

REF

VCO

Q2

Q1

Figure 4.5: behavior of a PFD when ωref > ωV CO

the signal vref (t) has a frequency higher than that of vV CO(t), as shown in Fig. 4.5. In

this case the UP current source is enabled most of the time: Q1 takes on value 1 after

the first rising edge of the reference signal and returns to 0 as soon as the PFD detects

a rising edge of the VCO signal; being the rising edges of vV CO(t) less frequent than

those of vref (t), the charge pump erogates positive current most of the time so that the

voltage collected in the loop filter capacitor forces the VCO to increase the frequency

of its output. The second configuration happens when the input signals have equal

frequencies but a difference in phase, as shown in Fig. 4.6; the output of the CP is a

series of postive current pulses that ensures the phase alignment of the VCO with the

reference signal. If we had the opposite condition, i.e. ωref < ωV CO for the first case

REF

VCO

Q2

Q1

Figure 4.6: behavior of a PFD when ωref = ωV CO and φ0,ref > φ0,V CO

and φ0,ref < φ0,V CO for the second case, we would find negative values for the current

from the CP.
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4.1.2 Transfer Functions

To obtain the closed-loop transfer function (CLTF), we have to specify the frequency

response of any block of the loop [Gar05, §2.1]. In order to use the Laplace transform

we must consider a linear model of the system by assuming the two lasers closed to the

lock condition. This implies that the central frequency of the VCO can be set equal

to that of the reference signal. The effect of the PFD is independent of the frequency

of the input signal, thus its transfer function is:

Hpd(s) = Kpd =
ICP
2π

(4.4)

where ICP is the current generated by the CP while activated. The loop filter is

Figure 4.7: Loop filter layout

a second order low-pass filter with a current signal in input and a voltage signal in

output, as shown in Fig. 4.7. The transfer function is given by F (s) = vpd(s)/Ipd(s),

therefore it is the equivalent impedence in the frequency domain:

F (s) = (ZC1 +R) ‖ ZC2 =
1 + sRC1

s2RC1C2 + s(C1 + C2)
(4.5)

where ZC = 1/sC. The loop filter used in this work was chosen in order to have a loop

bandwidth of 50kHz and a phase margin of ∼ 45◦; the software ADIsimPLL [Ana]

developed by Analog Devices suggested the values presented in Table 4.1 for the loop

components. Finally, by taking the Laplace transform of 4.3, we obtain:

sφV CO(s) = KV CO · vpd(s) (4.6)

hence, the phase transfer function of the last block is:

HV CO(s) =
KV CO

s
(4.7)

which is an integration in the time domain. For an OPLL KV CO is the PZT tuning

coefficient of the laser, in the present work KV CO = 2MHz/V (see §4.2).

We can represent a generic negative feedback network (see Fig. 4.8) with its forward
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C1 = 22nF
C2 = 100nF
R = 75Ω

Table 4.1: values of the loop filter components

transfer function A(s) and its feedback transfer function B(s); the CLTF is defined as:

H(s) =
A(s)

1 +A(s)B(s)
, (4.8)

where A(s)B(s) is open-loop transfer function (OLTF). The PLL OLTF is the product

Figure 4.8: comparison between the PLL and a generic feedback loop

of the three-block transfer functions:

HOL(s) = KpdF (s)
KV CO

s
(4.9)

while the feedback transfer function is the identity transformation (sometimes the

feedback line can host a frequency divider, which divides the frequency of its input

signal by a factor N so that its transfer function can be expressed as Hdiv = 1/N).

Finally, the CLTF function for the PLL is given by:

H(s) =
φV CO(s)

φref (s)
=

KV COKpdF (s)

s+KV COKpdF (s)
. (4.10)

In figure 4.9 are shown the Bode plots of the OLTF and CLTF of the PLL with the loop

filter components of table 4.1 and with the charge pump current set to its maximum

value ICP = 2.55mA (see next section).

4.1.3 PLL Board

The slave laser (Mephisto of Coherent [Coh]) has a PZT tuning coefficient of 2MHz/V

and the correction signal from the PFD has values from 0V to 5V . On the other hand,

the frequency drift of lasers in the room where this thesis was developed reached max-

imum values of 180MHz/h due to temperature variation between night and day. It

is clear that the action of the PZT alone is not sufficient to ensure long term stability
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Figure 4.9: Bode plots of the PLL transfer functions

of the PLL, thus another servo loop has been implemented to control the tempera-

ture of the laser’s crystal, the thermal tuning coefficient of the Mephisto being about

−3GHz/V . The control system on the PZT of the laser is faster than that acting

on the Peltier cell to control the temperature (50kHz of bandwidth against ∼ 1Hz),

that is why the former is called FAST loop and the latter SLOW loop. A board has

Figure 4.10: Block dagram of the PLL board

been developed to implement both loops and to manage the communication with an

external PC through the serial protocol. In Appx. A are shown the circuit diagrams of

the board. A block diagram is shown in Fig. 4.10; the core of the board is an 8-bit mi-

crocontroller (µC) unit (ATmega328 of Atmel). The PFD used is ADF4002 of Analog

Devices [Ana15], which has the following main features:

• detects signals with power from−10dBm to 0dBm and frequency between 5MHz

and 400MHz;

• the CP current can be set in 8 steps: ICP = ICP,max · j/8, with j = 1, . . . , 8.

ICP,max = 25.5/Rset[A] (see datasheet), the resistor mounted on the board (R7

in Fig. A.1) was Rset = 10kΩ so that ICP,max = 2.55mA;

• has a 24-bit input shift register for the SPI communication which controls four

latches: an N counter, an R counter, an initialization latch and a function latch;
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• the 13-bit N counter and the 14-bit R counter control two frequency dividers

which enable to lock the VCO at a frequency fV CO related to the reference

frequency fref by fV CO = fref ·N/R;

• the initialization and the function latches set the polarity of the PFD, set the CP

current and control the multiplexer output (MUXOUT in Fig. A.1), which allows

the user to access various internal points on the chip. It could set as a digital

lock detect, i.e. the multiplexer output is set high when the phase error on three

consecutive phase detector cycles is less than 15ns and is set low otherwise (see

datasheet).

The loop filter is located in series with the PFD and an analog switch (ADG419 of

Analog Devices) controlled by the µC enables or disables the FAST loop. Downstream,

an elliptic filter (LTC1562-2 of Linear Technology) can be used to reduce the laser’s

PZT resonance (around 161kHz) and finally a summing stage can add an offset voltage

between 0V and 4.5V to the correction signal. This offset is generated by a dual 16-bit

DAC (AD5663 of Analog Devices), controlled by the µC. In order to implement the
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Figure 4.11: 2 days acquisition of the variation in the temperature of the crystal
operated by the SLOW loop

SLOW loop, one of the internal 10-bit ADCs of the µC is used to sample the output

of the loop filter with a sampling rate of 10Hz. This signal is used to compute a

PID (Proportional–Integral–Derivative) servo loop which controls an external DAC,

the same used in the FAST loop, whose output is sent to the Peltier cell of the laser;

in Fig. 4.11 the evolution of the temperature of the Peltier cell is illustrated. Doing to

temperature variations between night and day the SLOW loop corrects the frequency

of the laser with oscillations of 750MHz. The PID output spans between ±8.3V ,

therefore each bit corresponds to a change of about 800kHz in the laser frequency.

The aim of the PID is to mantain the FAST correction signal near its central value
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(2.5V ) so that to ensure the stability of the PLL for long periods, in the order of

months. An external PC is used to set the loop parameters and to monitor the state
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Figure 4.12: Notch filter circuit (left) and beat note (right) measured with a spec-
trum analyzer (8594E of Keysight Technologies) with span 400kHZ, RBW 1kHz,

average over 100 measurements. The CP of the PLL was set to ICP,max · 3/8

of the µC, the communication occurs via exchange of ASCII characters using the SPI

protocol. The firmware running on the µC contains a table of commands, for instance

if the µC reads the string ’RE?’ it returns the values stored in the latches of the PFD.

A software written in Python 2.7 based on the Qt graphic libraries simplifies the serial

communication between the PC and the µC.

At present, the elliptic filter is bypassed and an external RLC notch filter was designed

and realized to cut the laser PZT resonance. The circuit is shown in Fig. 4.12 on the

left, with the values of the components used. On the right the spectrum of the beat

note is visualized with and without the filter. The peaks at 161kHz disappear when

the notch filter is inserted between the FAST output of the PLL board and the the

PZT tuning input of the laser, furthermore a reduction of the noise pedestal can be

observed.

4.1.4 Phase Noise

An important parameter to be considered to evaluate the performance of a PLL in

reproducing the input signal is the residual phase noise between the two lasers, Sφφ(ω),

defined [SB88] as one half of the double-sideband spectral density of phase fluctuations.

Phase noise is usually expressed in dBc/Hz, where dBc are decibels relative to the

carrier, because in the approximation of small phase deviations, it is equivalent to the

ratio of the sideband power in a unitary bandwidth to the carrier power, see Fig. 4.13.

Using the complex notation, an ideal oscillator with complex amplitude A and angular
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Figure 4.13: Power spectrum of a real oscillator. Discrete spourious signals are
often present and they contribute to the degradation of the carrier signal

frequency ω0 can be represented by:

v(t) = Aeiω0t. (4.11)

A real oscillator is affected by random phase fluctuations, φN (t), which are supposed

to have a null mean value and a standard deviation much less than unity. Furthermore

φN (t) is considered a weak-sense stationary process, i.e. 〈φ2(t + τ)〉 = 〈φ2(t)〉 for all

τ ∈ IR. Thus, 4.11 becomes:

v(t) = Aei(ω0t+φN (t)); (4.12)

whose autocorrelation function is

Rvv(τ) ≡ 〈v(t+ τ)v∗(t)〉 (4.13)

' |A|2eiω0τ

〈(
1 + iφ(t+ τ)− φ2(t+ τ)

2

)(
1− iφ(t)− φ2(t)

2

)〉
(4.14)

' |A|2eiω0τ (1− σ2
φ +Rφφ(τ)), (4.15)

where the small angle approximation has been used. σ2
φ = 〈φ2(t)〉 is the variance

of phase fluctutions and Rφφ(τ) their autocorrelation function. The power spectral

density, defined as

Svv(ω) = 〈V (ω)V ∗(ω)〉 (4.16)

where V (ω) is the Fourier transform of v(t), is equal to the Fourier transform of the

autocorrelation function as a result of the Wiener-Khintchine thorem [Yat14]. Thus
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the last expression becomes:

Svv(ω) = |A|2[(1− σ2
φ)δ(ω − ω0) + Sφφ(ω − ω0)] (4.17)

from this equation it is clear that the effect of phase fluctuations is to spread a fraction

σ2
φ of the signal power to a pedestal centered on the carrier spectral line. A general

theorem for stochastic process [NK03, (1.140)] shows that the area under the power

spectral density curve is the mean-square error of the signal:

1

2π

∫ ∞
−∞

Sφφ(ω − ω0) dω = σ2
φ. (4.18)

From (4.17), σ2 � 1 implies that almost all the power |A|2 of the carrier is concentrated

on the peak, then by definition Sφφ(ω) is measured in dBc/Hz. On the other hand σ2
φ

can be measured in dBrad2 (dB relative to 1rad2), so by taking the integral of (4.17)

over the frequencies it’s easy to understand that dBc and dBrad2 are equivalent units

of measurement for small phase fluctuations.

The measurement of the phase noise was performed as follows: the beat note vbn(t) =

A1 sin(ωbnt+ φ1) from the PD under test was demodulated with a mixer reference

signal at the same frequency, vref (t) = A2 sin(ωbnt+ φ2). The demodulated output,

after low-pass filtering, was

vdem(t) = Kmixvbn(t)vref (t) =
KmixA1A2

2
cos(φ2 − φ1) (4.19)

where Kmix is the mixer gain. The cut-off frequency of the low pass filter was chosen to

be much less than 2ωbn/(2π), but bigger than the frequency span of the measurement.

The phases of input signals can be rewritten as

φi(t) = ϕi + φN,i(t), i = 1, 2 (4.20)

where ϕi are the constant phase offsets and φN,i(t) are the phase fluctuations. By

choosing the phase of the reference signal so that ϕ1 − ϕ2 = π/2 and neglecting its

phase fluctuations2, i. e. assuming φN,2 � φN,1, 4.19 becomes

vdem(t) = KdemφN,1(t), (4.21)

in the approximation of small phase fluctuations, where Kdem = KmixA1A2/2. The

power spectral density of the demodulated signal, Svv(ω), was measured with a FFT

Network Analyzer, the SR770 of Stanford Research Systems [Sta]. Finally, the phase

2The RF generator used as reference in this work is a DDS (Direct Digital Synthesizer) AD9910 of
Analog Devices. The residual phase error of the DDS is . 19µrad RMS [Var18], much less than the
residual phase error of the PLL (see Fig. 4.22)
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noise was obtained using

Sφφ(ω) =

(
1

Kdem

)2

Svv(ω). (4.22)

In pratcise a previous calibration is needed to convert the measured spectrum from

V 2/Hz to rad2/Hz. This is done by adding a small frequency offset ωoff/(2π) (much

less than the cut-off frequency of the low-pass filter) to the frequency of the mixer

reference signal. The demodulated signal thus becomes

vdem(t) = Kdem cos(ωoff t+ φ2 − φ1) (4.23)

and the factor Kdem can be easily measured with an oscilloscope.

To develop a model of the phase noise at the output of a PLL the overall sources of

noise must be considered, their effects at the output are added quadratically. There

Figure 4.14: contributions to the total phase noise of a PLL

are four sources of noise which affect the PLL performance [CO99]: the phase noise

of the reference input SREF , the noise due to the feedback divider3, the noise due to

the charge pump SCP and the noise of the VCO, i.e. of the two lasers, SV CO (see

Fig.4.14). The total phase noise power at the output of the loop is

S2
TOT = X2 + Y 2 + Z2 (4.24)

where to compute the various contributions the transfer function of the PLL (4.10) is

used as follows: 
X2(s) = H2(s)S2

REF (s)

Y 2(s) =
(

1
Kpd

)2
H2(s)S2

CP (s)

Z2(s) =
(

s
KV COKpdF (s)

)2
H2(s)S2

V CO(s)

(4.25)

The contributions of SREF and SCP are low-pass filtered, in fact inside the loop band-

width |H(s)| ' 1 while at high frequencies |H(s)| → 0 (see Fig. 4.9). Vice versa SV CO

is high-pass filtered by its transfer function. The effect is that the noise of the VCO

dominates at high frequencies, while the other two contributions are higher at low

frequencies. The effects of the three contributions superimposed to a measure of the

3in this experiment the reference divider was not used, so this contribution will be neglected
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phase noise are shown in Fig. 4.15, the input phase noises are referred to the datasheet

of the devices used: the REF was the AD9910 of Analog Devices, the VCO was the

Mephisto of Coherent and the CP was the charg pump of ADF4002 of Analog Devices.
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Figure 4.15: Predicted and measured phase noise of the PLL @10MHz

4.2 Optical Bench

Figure 4.16: Schematic of the Optical bench
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BS2

BS1

MASTER

SLAVEPD1

PD3

Figure 4.17: Picture of the bench realized at LNL, the principal components are
highlighted

Fig. 4.16 shows how the optical setup to test the stability of the control system was

realized. The two laser beams are superposed using a BS in two different points of

the optical path: the beat note from their interference in BS1 was used to close the

OPLL (see §4.1), whereas the beat note from BS2 is sensitive to the additional phase

noise caused by the beam propagation after the locking on PD1 and was demodulated

to obtain the error signal for the second loop. PD1 and PD3 were used to detect

these signals respectively. The lasers used in the experiment were a 50mW Lightwave

as master and a Mephisto of Coherent as slave. The following table summarizes the

Mephisto main properties:
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Wavelength 1064nm

Power 0.5W

Crystal monolithic Nd:YAG

Thermal Tuning Coefficient −3GHz/K

Thermal Tuning Range 30GHz

Thermal Response Bandwidth ∼ 1Hz

Temperature Laser Crystal 1K/V

PZT Tuning Coefficient ∼ 2MHz/V

PZT Tuning Range ±65MHz

PZT Response Bandwith 100kHz

To add an arbitrary phase noise between the two beams a piezo-mounted mirror was

placed on the path of the master laser so that the optical path could be modulated

at different frequencies, in order to measure the bandwidth at which the feedback

network is able to correct the noise. A picture of the optical bench realized in the clean

room of LNL shows the principal components, see Fig. 4.17, the bench is surrounded

by protective screens realized in anodized aluminium and can be covered to reduce

enviromental noises.

4.2.1 Characterization of the Piezoelectric Actuator

A characterization of the PZT on which the mirror is mounted is important to properly

design the control system; particularly, its dilation coefficient KPZT (in units of nm/V )

and its frequency response have to be measured.

The mount for the mirror is a commercial model which hosts an adapter for the PZT,

a P-016.00H of PI [Phy], with tabulated dilation coefficient KPZT = 5nm/V and

resonant frequency 144kHz. The mirror is directly glued onto the PZT using Stycast

2850 FT (see. Fig4.18). The measurement of the dilation coefficient was done as

follows. First, the slave laser was locked to the master with an OPLL at 10MHz, then

a triangular function at frequency f̂ = 100Hz and amplitude V̂pp = 4.85V was applied

to the PZT after being amplified by factor ×100. The signal from PD3, demodulated at

10MHz, was proportional to the sine of the phase difference between the laser beams,

i.e. to sin[2π
λ

√
2KPZTαt], where λ = 1064nm was the wavelength of the lasers and

α = 2f̂ · 100V̂pp was the slope of the rising ramp of the triangular signal. The factor
√

2 comes out from the geometry of the system, see Fig. 4.19. Both the triangular

function and the demodulated signal were observed through an oscilloscope (LeCroy

LT342, see Fig. 4.20). The response of a PZT ring actuator is not linear, therefore we

have characterized it in the region in which it is supposed linear (small input voltage).

Thus the window of measurement was reduced to the central part of the rising ramp
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Figure 4.18: Picture of the mount of the mirror piloted with the PZT ring actuator.
The black box on the right hosts the SHV connector for the HV cable

Figure 4.19: Geometry of the optical path of the laser beam when it is reflected by
the moving mirror

of the triangular signal. Finally, the period T of the sine was computed averaging 1000

measurements and it is equal to T = (1.580 ± 0.005)ms. Thus from the relationship
2π
λ

√
2KPZTαT = 2π one obtains

KPZT =
λ√
2αT

= (4.91± 0.02)
nm

V
. (4.26)

The measurement of the transfer function of the PZT was performed with a network

analyzer (SR770 of Stanford Research Systems): this instrument includes a DDS source

which can generate a chirp composed by 400 discrete sine waves of equal amplitudes

and with equally spaced frequencies in order to cover the entire selected span of the

spectrum. The source is synchronized with the input of the instrument so that the

SR770 can measure amplitude and phase transfer curves for a device under test, after

a preliminary calibration of the chirp phases and amplitudes. The autocalibration

is necessary beacause the SR770 has only one input channel. The network under

test consists in the chain: HV amplifier ×100 - PZT - PD3 - mixer (Minicircuit ZP-

10514+) - low-pass filter with cut-off frequency 210kHz. A series of 9 measurements

was performed in order to have roughly the same number of points per decade of

frequency, choosing every time a span which was half the value of the last one, from
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Figure 4.20: Response of the PZT to a triangular input. In green the triangular
function before amplification, in red the demodulated signal
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Figure 4.21: Bode plot of the PZT transfer function. In order to know the
exact value of the optical path change, the magnitude must be multiplied for

2π
λ

√
2KPZTVapp(f), where Vapp(f) is the voltage applied at frequency f

100kHz to 390Hz; the final Bode plot was obtained by superimposing the various

sets of data, as shown in Fig. 4.21. The transfer function is almost flat up to '
10kHz, beyond that value the response begin to fall beacause of the RC low-pass filter

composed by the output impedence of the piezo driver and the PZT capacitance. A

resonance is present at 519Hz, but its origin is presently unknown. Probably it is a

mechanic resonance.



Chapter 4. Experimental Setup 54

10 0 10 1 10 2 10 3 10 4 10 5

Frequency [Hz]

-120

-110

-100

-90

-80

-70

-60

R
e
s
id

u
a
l 
p
h
a
s
e
 n

o
is

e
 [
d
B

c
/H

z
]

,PD1
=4.4733mrad

,PD3
=5.9916mrad

PD1

PD3

Figure 4.22: PLL phase noise measured in two different points of the bench (PD1
and PD3, see Fig. 4.16). The 2Hz to 100kHz values of RMS σφ are also shown. The

PLL was locked at 10MHz

4.3 Phase Control Loop

A measure of the phase noise (see Fig. 4.22) was performed by taking the signal of

the beat note with two PDs placed at different distances from the lasers, the OPLL

being locked with the signal from PD1. From the values of the integrals below the

curves, i.e. rms value of the phase fluctuations (computed between 2 Hz and 100 kHz),

it is clear that near the point of locking the fluctuations are smaller than those at long

distance, due to enviromental noises which affect the phase at low frequencies. The

goal of this thesis is to reduce these fluctuations at low frequencies in order to obtain

a stabilization of the phase difference between the two laser beams at a point far away

from the sources. The conceptual model of the phase control loop is shown in Fig. 4.23,

the names of the BSs and of the PDs are the same of Fig. 4.16. The OPLL ensures the

two laser beams to have the same phase in the point where PD1 is placed, but when

they are overlapped in PD3 a certain amount of phase difference has been accumulated

due to the different optical paths (static contribution) and to mechanical and acoustic

noise (dynamical contribution). This difference is indicated as φN in the figure and

can be measured by demodulating the signal from PD3 at the offset frequency of the

OPLL, in the same way we obtained (4.21). Note that in the optical bench realized for

this thesis φN can be piloted with a signal applied to the PZT-mounted mirror placed

in the path of the master laser beam4. The control loop can be closed by acting on

the phase of the OPLL reference signal in order to compensate the disturbance φN .

4actually, φN should be the sum of the noise introduced with the PZT and of the enviromental
noise, but if the signal applied to the PZT is strong enough the last term can be neglected
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Figure 4.23: Sketch of the control loop. The green square includes the components
of the OPLL, the blue square includes the demodulation components employed to
read the phase difference between the two laser beams and the red square include the

stadium for the FM

The demodulated signal from PD3 is used to actuate on the phase/frequency of a

radio frequency (RF) generator (33521A of Keysight Technologies[Key]) by means of

its modulation input. This RF generator is phase locked on the DDS generator system

used both as PLL reference and for the error signal demodulation. The RF generator

output can be modulate either in phase (PM) or in frequency (FM). The modulation

in frequency was chosen for two reasons:

• the maximum phase deviation for the PM is 2π radians, while the FM has no

limitations for the phase deviation of the output signal;

• the correction signal with PM has a white spectrum, while with FM it is stronger

at low frequencies. In fact, the angular frequency deviation is the time derivative

of the instant phase deviation ∆ω(t) = d∆φ(t)
dt and passing to the frequency

domain one obtains ∆φ(s) = ∆ω(s)
s . This is a desired behaviour because the

seismic noise, which is the dominant contribution to the residual phase noise

between the ITF laser and the QCF in Virgo, dominates at very low frequencies:

the power linear density of the micro-seismic noise is proportional to f−2 [Mag07,

9.4.4].

The error transfer function ERR(s) = φRES/φN is now studied, where φRES is the

residual phase difference between the two fields at PD3 when the control loop is active.

The goal of the control system is to keep φRES as low as possible. The block diagram

of the loop is shown in Fig. 4.24, for each block the transfer function in the frequency

domain is shown. The colours of the blocks are refferred to those employed in Fig. 4.23.

G(s) represents the demodulation of the beat note from PD3, i.e. it is the combination
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Figure 4.24: block diagram of the phase control loop, the disturbance rejection is
the ratio between φRES and φN . In the picture is present the summing point used
for the measure of the OLTF, in the operating configuration of the loop this element

was removed

of the mixer response (ZP −10514+ of Minicircuit) and of the filter, which is a passive

first order low-pass filter with cut-off frequency of 210kHz5. Thus:

G(s) =
Kdem

1 + s
2π210kHz

(4.27)

where Kdem is the conversion factor of the demodulation (cf. (4.21)). KFM/s is the

transfer function of the FM, where KFM is the frequency deviation per volt applied

to the modulation input of the RF generator, for the measurements presented in this

work an optimal value of kFM = 20kHz/V was chosen. H(s) is the CLTF of the

OPLL, as described in §4.1.2.

The OLTF was measured to characterize the system, the spectrum analyzer SR770

of Stanford Research System was used. The chirp function (described at the end of

the previous section) was employed as follows: the signal produced by the SR770

was injected in the summing point depicted in Fig. 4.24 and the transfer curves were

measured at points A and B. To obtain the magnitude of the OLTF the magnitude

curve measured in A was divided by the magnitude curve measured in B, while the

phase of the OLTF was found by subtracting the phase curve measured in B from

the phase curve measured in A. The resulting curves are shown in Fig. 4.25 (blue

lines). The phase is affected by a rotation which is not predicted by the model, but is

compatible with a time delay of 18µs in the loop line. Since the loop is composed by

analog elements with the exeption of the RF generator, the research of the delay was

focused on this element. In order to study the response velocity of the RF generator to

a change in the applied modulating voltage, a square-wave signal at 100Hz was directly

applied to the modulation input. The maximum value of the square wave was set to

2V (corresponding to a frequency variation of 40kHz) and its minimum value was set

to 0V (no frequency modulation). The output signal of the RF generator, operating at

a carrier frequency of 10MHz, was then demodulated at 10MHz and low-pass filtered

with a cut-off frequency of 210kHz, in order to keep only the frequency variations

5The contribution of PD3 to the frequency response can be neglected in the frequency region of
interest, being the measured banwidth of the PD (FCI-InGaAs-500 of OSI Optoelectronics) and its
circuit of about 45MHz
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Figure 4.25: Bode plots of the measured OLTF (blue lines). The yellow line repre-
sents the predicted phase of the transfer function, the red lines represent the model

with the delay element

induced by the FM. The square wave and the demodulated signal were observed at

the oscilloscope (LeCroy LT342) and by zooming around the rising edge of the square

wave the time delay of the step response was measured, see Fig. 4.26. The measured
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Figure 4.26: Left: square wave (green line) used as modulation signal to study the
delay of the frequency modulation (red line). Right: zoom ×400 of the time axis to

visualize the step response

delay is (16± 1)µs, compatible with the predicted value. The complete OLTF is than

TOL(s) =
KFM

s
e−sτH(s)G(s) (4.28)

where τ is the delay due to the digital FM. In figure 4.25 the curves with and without

the delay element are superimposed to the experimental data. It is worth noting that

the amplitude of the OLTF is not affected by the delay, while the closed loop is strongly

influenced by the phase rotation. The unity gain bandwidth is 8.3kHz and the phase
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margin is 33◦. From TOL the error transfer function can be calculated by using

ERR(s) =
1

1 + TOL(s)
, (4.29)

whose amplitude is shown in Fig. 4.27; the (unwanted) peak at 11.8kHz is a con-
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Figure 4.27: amplitude plot of the error transfer function

sequence of the delay element in the loop. The model provides a noise rejection at

frequencies lower than 6.1kHz, with a slope of 20dB/dec, as expected from the DC

pole:

TOL(s)
s→0−−−→ 1

s
⇒ ERR(s)

s→0−−−→ s. (4.30)

Given the residual phase noise SφNφN (s) entering the loop in the propagation of the

two laser beams, the phase noise at PD3 when the control loop is active is given by

SφRESφRES (s) = |ERR(s)|2SφNφN (s). (4.31)

This relation was tested by injecting white noise in the PZT on which the mirror is

mounted, and than measuring the attenuated phase noise at PD3 with the control

loop turned off, obtaining SφNφN (s), and with the control loop turned on, obtaining

SφRESφRES (s) (see Fig. 4.28). The white noise, produced by a function generator

(DS345 of Stanford Research System) in a bandwidth of 10MHz and with VRMS =

1V , was amplified ×100 before being fed to the PZT. The low-pass response of the

combination piezo driver + PZT (see §4.2.1) cut the noise frequencies above ∼ 10kHz.

Below ∼ 100Hz the reduced noise increases, this is due to the presence of other noise

sources in the loop, expecially electrical noises, which are not suppressed and adds their

contriutions to the final noise, covering the expected noise rejection. The injected white

noise had a level of 1V distributed over a 10MHz band. In order to study the efficiency
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Figure 4.28: Phase noise measurement of the injected white noise (blue line) and
of the reduced noise (red line)

of the filtering system at low frequency it is necessary to increase the amplitude of the

displacement injected by the PZT. Unfortunately, however, this can not be achieved by

simply increasing the white noise level of the function generator because the RMS value

injected in such a way is higher than the level accepted by the HV piezo driver. The

white noise used, however, is distributed over a band which is excessive if one wants

to study the low frequency behavior. The white noise was than low-pass filtered, thus

reducing the RMS voltage. This ensured that under these conditions the total RMS

value injected into the piezo driver was considerably lower and therefore the absolute

value could be increased without exceeding the HV range. In particular, using a cut-
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Figure 4.29: Phase noise measurement of the injected white noise (blue line) and of
the reduced noise (red line). The yellow line represents the predicted noise rejection

and was obtained by using (4.31)
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off frequency of 1kHz, the injection value could be amplified by a factor ×40. The

injected noise curve and the reduced noise curve are shown in Fig. 4.29. Again, a

consistent difference between the measured and the predicted reduced noise is present,

at frequencies below 20Hz, to explore lower frequencies a higher excitation is required.

In the region between 20Hz and 1kHz the measured curve is well superposed to the

expected results, confirming that the model developed in this section is consistent.

Note that the injected noise curve SφNφN was derived by measuring the power spectral

density of the injected white noise and by multiplied it by the tranfer function of the

PZT: SφNφN is not simply the phase noise measured in PD3 when the loop is turned off

because the amplitude of the fluctuations induced by the vibrating mirror are too large

to consider the linear approximation sin(φN ) = φN , in fact the RMS phase fluctuation

injected by the mirror was 580mrad.
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Conclusions

In this work a first prototype for the squeezing ellipse angle control has been designed

and realized. In a real interferometer this type of control loop is required to lock the

phase of the squeezed light to that of the ITF carrier. In this regard, the main sources

of disturbance acting on the system are the following (see Fig. 5.1):

squeezer

AcousticAcousticAcousticAcoustic
NoiseNoiseNoiseNoise

Suspended
(in vacuum) 
detection
benches

SeismicSeismicSeismicSeismic
vibrationvibrationvibrationvibration

Interferometer

PLLPLLPLLPLL----Optical OpticalOptical Optical fiberfiberfiberfiber
microponicmicroponicmicroponicmicroponic

Figure 5.1: Principal phase noise sources between the squeezed light and the ITF
light

• the squeezing bench is anchored to the ground and than vibrates with an ampli-

tude ∆xseism equal to the displacement caused by the seismic noise. This induces

61
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a phase noise between the squeezed light and the carrier equal to ∆φseism =
2π
λ ∆xseism, where λ = 1064nm is the wavelength of the laser;

• To close the OPLL between the Virgo laser and the main laser of the squeezer

bench, an optical fiber is used in which a pick-off of the virgo main laser is

injected. The fiber (50m long) is located in the central building between the

injection Lab and the detection Lab, where can pick-up ambiental thermo and

acoustical noise which is transferred to the main laser of the squeezer bench;

• Although the squeezer is installed in an acoustic enclosure that absorbs frequen-

cies up to few hundreds Hz, it is still subject to environmental noise.
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Figure 5.2: Phase noise Sφseismφseism obtained from the PSD of the seismic dis-
placement S∆xseism∆xseism measured in the proximity of the Virgo interferometer
(blue line) and the expected reduction operated by the phase control loop (red line).
The blue plot was derived by means of Sφseismφseism

= (2π/λ)2S∆xseism∆xseism
. The

parameters set in order to simulate the phase control loop are the same used in §4.3

As an example let consider the seismic noise measured where the Virgo ITF is placed

(see Fig.5.2), the micro-seismic peak [Bat13] can be seen in the plot at 360mHz. The

RMS phase fluctuation is 8.76rad between 20mHz and 50Hz; With the loop developed

in this thesis, this value can (in principle) be reduced to 0.5mrad in the same band of

frequencies. Thus the phase control loop is able to reduce this contribution below our

requirement (20mrad RMS, see 3.2.1). However this is only a lower limit, because the

other contributions (thermo and acoustic noise from the optical fiber and enviromental

noise on the squeezing bench from the non perfect acoustic enclosure), as well as the

sensing noise, has not been included in this calculation, thus an higher residual phase

noise is expected. The actual phase noise will be estimated when the squeezer will be
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installed in the Virgo detector. In this case it would be required to adapt the loop

transfer function to the real noise.

Finally the delay time must be minimized, if a larger bandwidth is required for the

loop. In fact the delay is responsible for the increased noise at frequencies above 6kHz,

as shown in Fig. 5.3, so residual acoustic noise could be amplified affected the stability

of the loop.
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Figure 5.3: rejection ratio of the noise with the delay element (blue line) and without
delay (brown line)





Appendix A

Appendix: OPLL board

The circuit diagram of the OPLL board is displayed in Fig. A.1, Fig. A.2, Fig. A.3

and Fig. A.4. In particular Fig. A.1 shows the beat note and the local oscillator input

stages and the phase frequency detector. The components C1, C10 and R6 are the

loop filter components and have to be adapted to each OPLL control loop. Fig. A.2

shows the fifth order Bessel filter that attenuates 20dB in the bandwidth between 100

and 200kHz with the aim to suppress the laser’s piezoelectric mechanical resonance.

Moreover in this second sheet is placed the digital switch that allows to turn on/off the

FAST loop. The third sheet in Fig. A.3 shows the ADC, the DAC and the operational

amplifiers that prepare the FAST and the SLOW output signals. Finally the fourth

sheet in Fig. A.4 contains all the voltage regulators and the microcontroller unit. This

board was designed by Marco Prevedelli.
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