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Symbols

If otherwise does not specified the used symbols are:

α phase fraction in multiphase simulations or angle of attack in aerofoil simulations
BC boundary conditions
Cd drag coefficient
Cl lift coefficient

Cmu turbulence model constant by default equal to 0.09
η Kolmogorov scale
ε turbulent dissipation
e energy
E strain tesnor
Φ Flux term
φ� an instantaneous arbitrary quantity φ
g denotes the gas phase (continuous phase)

IC initial conditions
l denotes the liquid (discrete phase) or can denote a characteristic length scale
µ dynamic viscosity
ν kinematic viscosity
p pressure
P production term in kinetic energy equation
k fluctuation specific kinetic energy
K average specific kinetic energy (Reynolds averaged)
ρ density

Re Reynolds number
R stress tensor
σ Prandtl number or the turbulence dispersion model’s constant
τη characteristic time of Kolmogorov scale
U velocity
−→−→
I identity matrix

1
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<> ensemble average operator in a single phase flow
<> volume average operator in two phase flow
δij Kronecker delta

capital letter Reynolds averaged quantity used in single phase flow
lower case letter Turbulence fluctuation quantity used in single phase flow

φ̃ intrinsic phasic average (or χ weighted average) of an arbitrary quantity φ
φ̀ arbitrary deviation quantity φ used in two phase flow
φ̄ time average of an arbitrary quantity φ used in two phase flow



Introduction

The design in aerospace field undergoes changes if it is compared with the
last century. In origin the field of aerospace engineering did not disposes of
computational tools existing today. In past systems were built to attempts,
preforming a lot of experiments. Since the fluid mechanics can seldom be
linearized it was difficult to perform exact calculus, except very simple sys-
tems. One of the tool that is capable to deal with non linearity is asymp-
totic theory. Asymptotic expansion theory was widely used in boundary -
layer theory, sonic boom theory, multiple scale technique, Kolmogorov law
E ∝ k−

5
3
−µ . . . and it was developed after the First Word War.

To understand the physics that stays at the roots of fluid mechanics it
is necessary to build up experiments and to observe the behaviour of the
quantities that describe the physics of the problem. Even if the technological
progress brought new tools not always these tools are suitable for research
purpose. Experiments are usually limited by the device that is used for the
observation of the physics. For example it is very difficult to view what
happens inside the primary break up of liquids because the flow is extremely
dense. And so other methods are required.

Computational fluid dynamics (CFD) is a branch of virtual experiments
and it consist in simulation a physical behaviour of a fluid and it’s interaction
with other fluids or solids. CFD is a recent tool with powerful capability and
under certain assumption can be considered a tool to investigate the reality
As any tool its strength depends on the user competence in employing it.
CFD changed its meaning over the years. Now engineers usually refer to the
CFD as to a three-dimensional simulation but in origin it was more a mono-
dimensional theory. As its name hints at, computational fluid dynamics
uses the power of a computer to solve the equations that describe the fluid
dynamics. From a theoretical point of view, the Navier Stokes equations are
able to describe the real behaviour of fluids under external forces. And so
if these equations are solved exactly the solution reveals the real behaviour
of the system. To solve exactly the NS equations it is necessary to settle
the problem at microscopical scale. In a such way it is possible to obtain an

3
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exact solution to problem which concern general fluid dynamics of relatively
small systems such as the motion of objects into fluids, interaction of fluids
of different nature ... but also problems of a large scale as collapse of a
nebula which leads to the formation of stars and planets. Solving a problem
at a microscopical scale1 requires an enormous quantity of computational
power and memory. For this reason the exact solution can be obtained only
for very small system; it depends on the computer in use but generally the
solved domain have a total volume of order of cm3. The simulations that
give the exact solution are called Direct Numerical Simulations.

From an engineering point of view it is unacceptable to solve fluid dy-
namics problems with DNS (or LES), because it requires too much computa-
tional power and time. Since a fast solution is required the exact equations
are drastically simplified and models are used to solve the problems. This
equations are called Reynolds Averaged Navier Stokes equation. The main
simplification in RANS solver is linked to the turbulence but this is not the
only model used within. It is important to understand if the used models
are able simulate the physical reality or not. Taking in consideration the
simplicity of the model it is important to understand if it is accurate or not,
it is important to understand the limitations of the models. The purpose of
this thesis is to consider two CFD software applied to two different problems:
aerofoil drag problem and liquid jet break up; to understand and to point out
the limitations and the strength of the two solvers analysing the accuracy by
comparing the results with experimental data.

1Kolmogorov scale



Chapter 1

Theory

In this chapter NS equations are presented and averaging operator is applied
to obtain RANS equations. Two different cases are analysed. The first
part of this chapter deals with Newtonian fluids in hypothesis of only one
phase, for example air. The second part deals with Newtonian fluids but
considers the case in which two phases are involved, for example gas and
liquid. Because this study is focused on engineering applications only RANS
equations are considered. Before proceeding it is useful to define a phase. The
Fluent Users Services Centre provides the following definition: "A phase is a
class of matter with a definable boundary and a particular dynamic response
to the surrounding flow /potential field. Phases are generally identified by
solid, liquid or gaseous states of matter but can also refer to other forms e.g.
particles of different size.

1.1 Single phase averaged equations

The Navier Stokes equations are: continuity, momentum and energy equa-
tion. Since one of the main hypothesis is constant density only averaged
continuity and momentum equations are deduced.

The equation of mass continuity is expressed as:

∂ρ�

∂t
+
−→
∇ · (ρ�

−→
u�) = 0 (1.1)

The equation of continuity describes the transport of mass. The first term is
linked to the variation in time of mass while the second term is a flux term.
The continuity equation can have also a source term; for example in a system
with gas phase and liquid phase a source term is linked to the evaporation.

5



6 CHAPTER 1. THEORY

The second equation is momentum equation:

∂ρ�−→u �

∂t
+
−→
∇ · (ρ�−→u �−→u �) = ρ�

−→
f � +

−→
∇ ·
−→−→τ � (1.2)

The first term on the left side is the variation of momentum in time, the
second term on the left side is a flux term of momentum; the first term on
the right side is linked to volume forces1 while the second term on the right
side is linked to the surface forces.

The last equation is the equation of energy. It is possible to distinguish
between internal energy2 e� and the macroscopic energy u�u�

2
. The total

energy is e� + u�u�

2
and the energy transport equation is:

∂ρ�(e� + 0.5 · u�u�)
∂t

+
−→
∇ · ρ�(e� + 0.5 · u�u�)−→u � = ρ�Q� −

−→
∇ · −→q �+

+ ρ�−→u � ·
−→
f � +

−→
∇ · (−→u � ·

−→−→τ �)
(1.3)

As previous the first term of the left side is the variation of energy in time,
the second term is the flux term of energy; the first term on the right side
is the volume heat, the second term is the surface heat and the last two
terms are respectively the work done by volume and surface forces. All the
terms inside equations 1.1, 1.2 and 1.3 are instantaneous quantities. The
reason why it is necessary to transform instantaneous quantities in average
quantities is explained in the next sub-section. To make the equation more
elegant the tensor notation will be preferred to vector notation.

1.1.1 Ensemble-averaging

In computational fluid dynamics the instantaneous quantities, especially in
flows with a high Reynolds number, need a huge computational memory to
be stored. It is possible to reduce the required memory if only averaging
quantities are stored. An average operation is like a low pass filter; a high
frequency portion of the field is removed reducing the computational effort.
From an engineering point of view it is an acceptable simplification. Almost
always it is sufficient to describe the behaviour of a system statistically and
not instantaneously. In one phase flow, speaking about statistical description
is the same thing as speaking about average description. From the experi-
mental analysis on fluids behaviour it is possible to conclude what follows:

1for example gravity
2for example atomic o chemical reactions
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• real flows with high Reynolds number instantly are not symmetric,
even if they are characterized in time by a symmetrical geometry and
symmetrical boundary conditions

• the flows are characterized by a mean behaviour that preserves it’s
characteristics even if Reynlods number increases, and instantaneous
fluctuation behaviour that is a function of Reynolds number.

• if the geometry is fixed but the initial conditions or boundary conditions
change by a very small quantity the instantaneous behaviour of the flow
is completely different3

• if the geometry is symmetrical and the boundary conditions are fixed
the average behaviour of the flow does not change increasing the Reynolds
number

Here ensemble average is defined as:

B = lim
N→∞

1

N

N∑
j=1

bN (1.4)

where N is the number of experiments performed to measure the quantity
bN . All the observed experiments are interpreted as an approximation of the
ideal one. In this thesis the ensemble average operator will be indicated with
<>. Notice that the ensemble average is not a spacial or temporal average
but it is an average based on the number of experiments and the ensemble
average is linked to the statistical behaviour of the measured quantity. It
is not subject to spatial or temporal restriction. If the boundary condition
don’t change with time it is possible to prove that ensemble average is equal
to time average.

The ensemble average operator <> has the following property:

• Linearity : < U + aV >=< U > +a < V > where a is a constant

• Derivatives and average commute < ∂U
∂x
>= ∂<U>

∂x

• Double average << U >>=< U >

• Product average < U < V >>=< U >< V >

• Attention: < u2 >6=< u >2

3the theory of chaos can explain turbulence



8 CHAPTER 1. THEORY

1.1.2 RANS equations for incompressible Newtonian sin-
gle phase flow

It is possible to write any quantity4 of the flow as a contribution of a mean
and fluctuation amount. To obtain the ensemble averaged equations from
Navier-Stokes equation the exact quantity must be replace by the sum of
fluctuation and average contribution. For simplicity an incompressible flow
ρ = constant is considered

u�(x, t) = U(x, t) + u(x, t) (1.5)

where U(x, t) is the average quantity while u(x, t) is the fluctuation quantity.

1.1.3 Continuity transport equation

In hypothesis of constant density, substituting 1.5 within continuity equation
(1.1) achieves:

<
∂ρ

∂t
> + <

∂ρ(Uj + uj)

∂xj
> =

∂ρ

∂t
+
∂ρ < Uj >

∂xj
+
∂ρ < uj >

∂xj

=
∂ρ

∂t
+
∂ρUj
∂xj

=
∂Uj
∂xj

= 0

(1.6)

The equation 1.6 is the averaged continuity equation and within there is not
fluctuation quantities. If ρ = constant from continuity equation

∂u�j
∂xj

= 0

substituting the instantaneous velocity with average and floating velocity
u�j = Uj + uj

∂(Uj + uj)

∂xj
=
∂Uj
∂xj

+
∂uj
∂xj

= 0

considering the result of equation 1.6 yields:

∂uj
∂xj

= 0 (1.7)

The equation 1.7 is an important result that will be used to determine the
transport equation of macroscopic turbulence energy.

4such as pressure, velocity, density . . .



1.1. SINGLE PHASE AVERAGED EQUATIONS 9

1.1.4 Momentum transport equation

If a Newtonian fluid is considered it is possible to express the surface forces
by: −→−→

τ � = −p� ·
−→−→
I + 2µ

−→−→
E� + λ(

−→
∇ ·
−→
u�)
−→−→
I (1.8)

where −→−→
E =

1

2

(
∂uj
∂xk

+
∂uk
∂xj

)
If the flow is incompressible, from the continuity equation emerges that:

−→
∇ · −→u =

∂uj
∂xj

= 0

and so:
τ �jk = −p�δjk + 2µE�jk

The ensemble averaged momentum equation is:

<
∂ρ(Uk + uk)

∂t
> + <

∂ρ(Uk + uk)(Uj + uj)

∂xj
>=

− <
∂(P + p)

∂xk
> + < ρ(Fk + fk) > + <

∂(Ejk + ejk)

∂xj
>=

which brings to:

∂ρUk
∂t

+
∂ρUkUj
∂xj

= − ∂P
∂xk

+ ρFk + 2µ
∂Ejk
∂xj

− ∂ρ < ujuk >

∂xj
(1.9)

Examining 1.9 it is possible to observe the analogy with the exact Navier-
Stokes equation; the difference between the two equations is a new term called
Reynolds stress < ujuk >. This term is composed by fluctuation velocity.
Till now the average quantities were introduced but averaged NS equation
are still written in exact expression. Indeed the equation 1.9 depends on in-
stantaneous velocity. An average operation usually can not free the transport
equation from the instantaneous values but it can isolate the instantaneous
contribute. Once the instantaneous term is isolated it is possible to model it.
The Reynolds stress term that appears in 1.9 keeps the information about
instantaneous velocity.

1.1.5 Kinetic energy

To model Reynolds stress it is important to understand its nature. Reynolds
stress is a product of two velocities and so it is linked to the kinetic energy.



10 CHAPTER 1. THEORY

Now the equations of turbulence kinetic energy and average kinetic energy
will be deduced. For clearness the turbulence kinetic energy is the energy
related to the turbulence velocity while average kinetic energy is the energy
of the mean flow.

Mean kinetic energy

The equation 1.9 can be rewritten as:

∂Uk
∂t

+
∂UkUj
∂xj

= −1

ρ

∂P

∂xk
+ ρFk + 2ν

∂Ejk
∂xj

− ∂ < ujuk >

∂xj
(1.10)

it is possible to define the fluctuation specific kinetic energy as:

< ujuj >= 2k

and the specific averaged kinetic energy as:

UjUj = 2K

Multiplying the left and right part of the equation 1.10 by Uk and developing
the simplifications brings to:

∂Uk
∂t

Uk+
∂UkUj
∂xj

Uk = −1

ρ

∂P

∂xk
Uk+ρFkUk+2ν

∂Ejk
∂xj

Uk−
∂ < ujuk >

∂xj
Uk (1.11)

Developing the equation 1.11 and considering the derivative properties, equa-
tion 1.6 and neglecting the volume forces yields:

∂K

∂t
+ Uj

∂K

∂xj
=− ∂

∂xj

(
Uj
P

ρ

)
+ 2ν

(
∂EjkUk
∂xj

− EjkEjk
)

+

− ∂Uk < ujuk >

∂xj
+
∂Uk
∂xj

< ujuk >

In this equation it is possible to distinguish one term on the left side and
three terms on the right side:

i. ∂K
∂t

+ Uj
∂K
∂xj

= DK
Dt

ii. ΦK = − ∂
∂xj

(
Uj

P
ρ
− 2νEjkUk − Uk < ujuk >

)
is a term of flux com-

posed by the contribution of pressure, viscosity and fluctuation velocity

iii. ΣK = 2νEjkEjk is a term of viscous dissipation; from the dimensional
analysis it infers that increasing the Reynolds number the viscous dis-
sipation vanish
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iv. PK =< ujuk >
∂Uk
∂xj

is a production term, it is possible to show that its
rate is negative hence it extract the energy from the average fluid field

The equation 1.11 can be rewritten as:
D(K)

Dt
=
−→
∇ ·
−→
ΦK + PK − Σ (1.12)

Transport equation for turbulence kinetic energy

It is possible to obtain a similar equation for turbulence kinetic energy. Con-
sidering equation 1.2, substituting within equation 1.8 and the decomposition
of instantaneous quantity in mean and fluctuation contribution, from the re-
sulted equation subtract equation 1.10, expanding the terms taking in mind
the equation 1.7, multiplying the obtained equation by turbulent velocity uj
and applying the average equation it is possible to write the next expression:

∂k

∂t
+ Uk

∂k

∂xk
=< −1

ρ

∂ < (puj) >

∂xj
+ 2ν

∂ < ujejk >

∂xk
− 2ν < ejkejk > +

− < ujuk >
∂Uj
∂xk
− <

1

2

∂ukujuj
∂xk

>

As for mean kinetic energy it is possible to isolate three terms on the right
side and one term on the left side and one term on the right side:

i. the term on the left side is
Dk

Dt
=
∂k

∂t
+ Uk

∂k

∂xk

ii. the first term on the right side is a flux term and is composed by a
pressure, viscous and turbulence transport contribution

Φk =< −1

ρ

∂ < (puj) >

∂xj
+ 2ν

∂ < ujejk >

∂xk
− <

1

2

∂ukujuj
∂xk

>

iii. the second term on the right side is a deformation flux term

εk = −2ν < ejkejk >

iv. the third and last term on the right side is a production term

Pk = − < ujuk >
∂Uj
∂xk

v. putting together all the parts mentioned in the last 4 passages the
transport equation for the turbulent kinetic energy becomes

Dk

Dt
=
−→
∇ ·
−→
Φk + Pk + εk (1.13)
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Analysis of mean and turbulence kinetic energy

Let consider the two equations (1.13 and 1.12) previously derived. Both
equations were written in a such way to have only one term on the left side
and three terms on the right side.

A The terms Dk
Dt

and DK
Dt

are temporal and spacial variations of the kinetic
energy. The variation of energy is influenced by the terms on the right
side of equations 1.12 and 1.13

B The first term that produces a variation of energy is a flux term Φ.
This term is composed by three contributions: pressure, viscosity and
fluctuation velocity. Let compare for an instance ΦK and Φk:

ΦK = −1

ρ

∂(PUj)

∂xj
+ 2ν

∂EjkUk
∂xj

+
∂Uk < ujuk >

∂xj

Φk = −1

ρ

∂ < (puj) >

∂xj
+ 2ν

∂ < ujejk >

∂xk
− 1

2

∂ < ukujuj >

∂xk

the first two terms in Φk are correlated to average pressure and velocity.
Since average pressure and velocity are unknown and calculated with
equations 1.6 and 1.9 no model is needed. The last term of ΦK is the
Reynolds stress and as it was mentioned before, this term has to be
modelled. The Φk is very similar to ΦK as form but all his components
are linked to floating quantities. In the field of RANS simulations these
quantities are not unknowns of the problem and so have to be modelled.

C The second two terms are Pk and PK

PK =< ujuk >
∂Uj
∂xk

Pk = − < ujuk >
∂Uj
∂xk

As it can be noticed PK = −Pk. The purpose of this term is to transfer
the energy from the mean field to the turbulence field; PK = −Pk is
the result of the internal friction inside in the mean flow. In particular,
if the inertia of the particles is dominating than it is provable that
(< ujuk >) < 0; the term PK becomes negative and subtract the energy
from the mean flow and since Pk becomes positive the subtracted energy
is transferred to the fluctuating field. This term is especially important
at high Reynolds number. Indeed if Re → ∞ the mean field can not
dissipate the energy by means of viscosity but the floating field can do
it, the reason why it is possible is explained in the next point.
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D The last term of are dissipation terms ΣK and εk

εk = −2ν < ejkejk >

Σk = −2νEjkEjk

In the dimensionless form 2ν is replaced by 1
Re

and so if Re → ∞ for
sure Σk → 0 because Ejk =

∂Uj
∂xk

+ ∂Uk
∂xj

and the spatial variation of the

average velocity is to small to elide Re→∞; meanwhile ejk =
∂uj
∂xk

+ ∂uk
∂xj

,
the high spatial turbulence velocity gradient can elide the effect of high
Reynolds number and so 1

Re
< ejkejk > is not null, as consequence εk

dissipate energy. If Re number is small (laminar case), ΣK is not null
and so the average field can dissipate energy. It is important to notice
that εk is composed by the contribution of turbulence velocity −→u and
so it must be modelled.

So considering a small volume (one cell of the mesh in RANS simulations)
the energy can enter or exit throw the ΦK term. Any cell of the domain has
to dissipate some energy, if the domain il fully turbulent the average velocity
can not dissipate in heat the macroscopic energy. The kinetic energy is
transported from mean field to turbulent field where it is transformed in
heat and so dissipates.

1.1.6 K-41 Theory

The mechanism of energy dissipation was proposed by Kolmogorov in 1941.
The hypothesis of the theory are: universal, isotropic and homogeneous sta-
tistically distribution for small scales in high Reynolds number incompressible
turbulence. The theory predicts a cascade mechanism that transport the en-
ergy from mean field (large scale) to the turbulence field (small scale) where
the energy turns into heat.

Before proceeding it is necessary to point out that from an experimen-
tal point of view the behaviour of turbulence scale is not a function of the
geometry. Indeed let consider a river, if an observant looks to a portion of
area that is comparable with the river’s width he will notice that the flow of
water is influenced by the river’s boards (geometrical boundary conditions).
Let consider now the same river and imagine an observant that is inside the
river and look to a very small portion of area; in this case the observant will
notice that the flow is independent by the boarder of the the river. If this
remark is true also for turbulence scale it infers the existence of an universal
law of micro scales that can be applied to any case. Kolmogorov made an
attempt to deduce this universal law.

The K-41 theory is based on two assumptions:
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1 Two points a(−→x ) and b(−→x + −→r ) are characterized respectively by ve-
locity −→u (−→x , t) and −→u (−→x +−→r , t) if the the vector −→r is small compared
with macro-scales of the turbulence then the n-variate distribution of
velocity difference −→u (−→x + −→r , t) − −→u (−→x , t) is an universal isotropic
function solely of the difference vector −→r , kinematic viscosity ν and
mean rate of energy dissipation ε.

2 When−→r is large compared with the dissipation length scale the velocity
difference is independent of ν.

Considering the second hypothesis< −→u (−→x+−→r , t)−−→u (−→x , t) >n= f(−→r , ν, ε).
Applying the dimensional analysis it is possible to state that the n-variate
distribution of velocity differences in inertial range becomes:

ur =< −→u (−→x +−→r , t)−−→u (−→x , t) >n= Bn(εr)
1
3
n (1.14)

where Bn is an universal constant. The equation 1.14 is independent from ν.
Assuming Bn = 1 and n = 1 it is possible to express the Reynolds number
of inertia rage as:

Rer =
urr

ν
=
ε
1
3 r

1
3 r

ν
=
ε
1
3 r

4
3

ν

so Rer varies with r
4
3 . The εr of the inertial scales can be expressed as:

εr =
ur

2

τr
where τr =

r

ur
is the characteristic time of scale r

hence

εr =
ur

2

τr
=
ur

3

r
=

(εr)
3
3

r
= ε

The macroscopic field is characterized by ε ≈ U3

l
, epsilon passes from the

macroscopic field to microscopic field through the inertial range where it was
previously showed that εr = ε and so no dissipation occurs at inertial range.

Now let consider the dissipation range. With dimensional analysis it is
possible to extract the wave length η of the dissipation range:

η =

(
ν3

ε

) 1
4

The length scale η of the dissipation range is called also Kolmogorov scale.
In a similar way it is possible to extract the characteristic velocity uη and
characteristic time τη of the dissipation range:

uη = (εν)
1
4
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Figure 1.1: A schematic diagram of the energy cascade at high Reynolds
number

and
τη =

(ν
ε

) 1
2

Considering the previous equation for uη it is possible to show that the char-
acteristic Reynolds number of the dissipation range is of unity order, indeed:

Reη =
uηη

ν
=
ν

1
4 ε

1
4ν

3
4 ε−

1
4

ν
=
ν

ν
= 1

Reη = 1 means in hypothesis of K − 41 theory energy is dispersed ant the η
scale. The ε that arrives at the dissipation scale is

εη = ν
uη

2

η2
= ν

εν
2
4

ν
3
2 ε−

1
2

= ε = εr

The previous equation explains why the K − 41 theory is called cascade
theory; the energy on time length scale is conserved through all the inertial
ranges; so a cascade of energy is theorized from macro to micro scale where
the energy is dissipated. The figure 1.1 is a schematic diagram of this mecha-
nism. Qualitatively it implies the fission of whirls into smaller whirls till their
dimension reaches the dimension η. This picture of cascade was described
by Richardson in 1922:

Big whorls have little whorls, which feed on their velocity
And little whorls have lesser whorls, and so on to viscosity.

However this picture is in contrast with the experimental qualitative structure
of high Reynolds number flows.

The K-41 theory is a kinetic theory and it is used to model the Reynolds
Stress. The Reynolds stress is modelled later. It is important to understand
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how the K-41 theory is linked to the Reynolds Stress. The specific turbulence
kinetic energy is defined as k = 1

2
< u2 > and it is possible to link the energy

spectrum to turbulence kinetic energy as follows:

k =
1

2
< u2 >=

∫ ∞
0

E(N)dN (1.15)

The quantity E(N) is the scalar energy distribution function per mass unit
for a certain wave number N . Kolmogorov used dimension analysis to link
this quantity to the energy dissipation ε and wave number N . In the assump-
tion that the spectrum in the dissipation range falls off rapidly enough with
increasing the wave number, E(N) is expressed as:

E(N) = Cε
2
3N−

5
3 (1.16)

with C a constant. Equation 1.16 is called −5
3
law. Substituting equation

1.16 in equation 1.15 and integrating it from the wave number Nl = 2π
l

and further supposing that the portion of the turbulent kinetic energy is
proportional to the turbulent kinetic energy k yields:

l =
Cuk

2
3

ε
(1.17)

where Cu is a constant. The characteristic length l is used to model the
Reynolds stress. The −5

3
law was found also in flow with small Reynolds

number where there is not a clear distinction between inertial and dissipation
range as well as in boundary layers where the hypothesis of isotropy is not
confirmed. So in 1962 Kolmogorov changed the first hypothesis of K − 41
theory and added a third hypothesis creating the K−62 theory. Nevertheless
some problems of K−41 theory, it can’t be logically disqualified, at the level
of crude dimensional analysis it is a candidate such as 1962 theory.

1.1.7 The computational cost of DNS simulations

In the previous section it was deduced the dimension of Kolomogorov scale
η. Direct Numeric Simulation solves the Navier Stokes equations on the scale
η. It means that if the length of the domain is L0 in x,y and z direction, for
a DNS simulations the domain must be divided in L0

η
elements in x,y and z

directions. Considering that ε ∝ U0
3

L0
, the total number of elements in one

direction is:

N1 =
L0

η
=
L0ε

1
4

ν
3
4

∝ U0

3
4L0

L0

1
4ν

3
4

= Re
3
4
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Because all DNS simulations are three-dimensional the total number of ele-
ments in the domain is:

Nspace = N1
3 ∝ Re

9
4

Most of engineering applications are turbulent, so Reynolds number is of
order 106 it means that the domain must be divided in ∝ 3 · 1012 volumes.
The temporal time step of DNS simulation can be expressed as:

Nt =
T0

τη
=
T0ε

1
2

ν
1
2

where T0 =
L0

U0

thus

Ntemp =
T0

τη
∝ L0U0

3
2

U0ν
1
2L0

1
2 = Re

1
2

It is possible to define computational cost as

C.C = Nspace ·Ntemp ∝ Re
11
4

Such a high computational cost, considering relatively large systems, can not
be supported by actual computers. And so DNS simulations impose a nu-
merical restriction to the analysis. This is the reason why RANS simulations
are used in engineering field. The computational cost of RANS is widely
smaller. For example in general, in automotive simulations the domain is
divided in circa 3 · 106 parts and it is usually used a steady flow model.

Besides numerical restrictions there is also a physical restriction. In DNS
multiphase flow simulations the interface between phases is idealized to a
surface over which the fluids properties change abruptly. This operation
brings to intermittent structures with sharp discontinuities that in general
are problematic. In cases of topological changes, as breakup, this idealization
encounter several problems and the model becomes singular.

For the numerical and physical aspects previously mentioned the DNS
simulations are restricted to a limited number of problems and are usually
used for a basic understanding of physics. The Direct Numerical Simulations,
for now, are disqualified as a possible solution for engineering problems.

1.1.8 Reynolds stress model

Once mean and fluctuating kinetic energy were introduced, the relation be-
tween the macro and micro scale was pointed out, the problem of closures
of RANS equations is remained. The transport equation of momentum 1.9
has a term proportional to the fluctuating velocity called Reynolds stress
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2ρ < uiuj >. The Reynolds stress is a tensor and so has 9 components that
must be modelled.

Prandtl and Kolmogorov suggested to introduce a quantity named eddy
viscosity and to parametrise it as the product of a characteristic length and
a characteristic velocity.

νt = Cml · v where l was defined in equation 1.17 and Cm is a constant

Since k
1
2 is proportional to the characteristic velocity v, inserting this as-

sumption in Kolmogorov-Prandtl relation and considering the equation 1.17:

νt = l · v
= lk

1
2

=
k

1
2CmCuk

3
2

ε

= Cd
k2

ε

(1.18)

so the turbulent viscosity correlates k and ε. If the particle’s inertia is consid-
ered relevant the term < −→u−→u > reduces the velocity gradient and therefore
it could be modelled as a viscous term; this is the Boussinesq’s hypothesis
and it states that:

< ujuk >=
2

3
kδjk − 2νtEjk (1.19)

The last step is to give an equation for k and ε.

1.1.9 k ε or ω equations

Equation 1.13 is the exact equation for turbulent kinetic energy. In hypothe-
sis of eddy viscosity theory the production term (P ) and the dissipation term
ε are written in close form. The flux term is still unknown. The hypothesis
of gradient diffusion define a flux5 of k down the gradient of k and so:

−→
∇ ·
−→
Φk = −νt

σt

−→
∇k

where σk is the turbulent Prandtl number for kinetic energy. The final trans-
port equation for k is:

Dk

Dt
=
−→
∇ · (ν +

νt
σk

−→
∇k) + Ck1P − Ck2ε (1.20)

5due to velocity and pressure fluctuations
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The exact equation for ε is much complex than that of k. As showed in
section 1.1.6 ε is the energy flow rate in the cascade determined by large-
scale motion. For this reason the standard model equation for ε can be
expressed empirically as

Dε

Dt
=
−→
∇ · (ν +

νt
σε

−→
∇ε) + Cε1P

ε

k
− Cε2ε

ε

k
(1.21)

where P is the rate of production

Pjk = 2νtEjkEjk

while σk and σε are respectively the Prandtl number that connects the dif-
fusivity of k and ε to the eddy viscosity. In a such way the RANS equations
are closed, indeed substituting the model for Reynolds Stress in equation 1.9
leads to:

D
−→
U

Dt
=
−→
∇ · [−(

P

ρ

−→−→
I +

2k

3
)
−→−→
I + 2(µ+ µt)

−→−→
E ]

if the mean pressure is defined as Pm = P
ρ

+ 2
3
k it is possible to rewrite the

previous equation in the following shape:

D
−→
U

Dt
=
−→
∇ · [−Pm +

−→−→
I + 2(ν + νt)

−→−→
E ] (1.22)

Till now 5 constants where introduced and experimentally it was observe
that for a wide number of application the suitable values are:

Cµ = 0.09

σk = 1.0

σε = 1.3

Cε1 = 1.44

Cε2 = 1.92

The previous model is k − ε model and it is based on two equation, one for
k and another one for ε.

A similar approach is used in k − ω model. In this model ω quantity is
used instead of ε, ω is defined as:

ω =
ε

k

The equation for ω is:
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Dω

Dt
=
−→
∇ · (ν +

νt
σω

−→
∇ω) + Cω1P

ω

k
− Cω2ω

2 (1.23)

where
νt = Cmu

k

ω

Virtually the k−ε and k−ω models are identical (unless for the constants) but
from numerical point of view it was seen that the two models have different
behaviour. The main shortcomings of the two models are:

k − ε is characterized by the lack of sensitivity to adverse pressure gradients
and overpredicts the shear-stress levels. It was supposed that this is
due to the ovepredictions of the length scale in the near wall region.
Also the model undergoes problems related to numerical stiffness of
the equations when integrated through the viscous sublayer. A third
trouble is related to the non zero value of ε at a no-slip surface.

k − ω the main inconvenient of this model is the strong dependency on the
free stream values ω that are specified outside the shear-layer.

Menter proposed a solution to overcome the shortcomings of the two model.
His solution consists in using k − ε and k − ω equations together but in
different regions of the flow. This solution proved to be robust and not
consuming excessive amount of computational time. In order to achieve his
purpose Menter rewrote the k − ε model in terms of k − ω model. The
k equation of the transformed k − ε model remains unchanged while the ε
equation becomes:

Dω

Dt
=
−→
∇ · (ν +

νt
σω

−→
∇ω) + Cω1P

ω

k
− Cω2ω

2 + 2
ωt
σk

−→
∇ω ·

−→
∇k

so an extra cross diffusion term appears. The original k − ω model is mul-
tiplied by a function F1 and the transformed model by a function 1 − F1.
The aim of the function F1 is to activate the origin model near the solid
surface (F1 = 1) and the modified model away from the walls (F1 = 0). The
equations of the new model become:

Dk

Dt
=
−→
∇ · (ν +

νt
σk

−→
∇k) + Ck1P − Ck2ωk

Dω

Dt
=
−→
∇ · (ν +

νt
σω

−→
∇ω) + Cω1P

ω

k
− Cω2ω

2+

+ 2
ωt
σk

−→
∇ω ·

−→
∇k(1− F1)

(1.24)
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Once the equations of the model is adjusted the constants must be chosen.
The process proposed is to match the constants of the original models. If A1

is any constant of the origin k − ω model and A2 is any constant of k − ε
model and A the corresponding constant of the new model then:

A = A1F1 + (1− F1)A2

In order to close the model it is necessary to define the function F1. The
value of F1 should go to zero near the boundary layer edge to guarantee
the free-stream independence. It is superfluous in this work to derive the
function F1 however it is conceivable to write F1 in terms of the turbulent
length scale ( equation 1.17) and the distance from the nearest surface, also
F1 6= 0 must be guaranteed in the near surface region.

Reconsidering the equation 1.19 if Rij =< uiuj > −2
3
kδij then:

Rij = 2νtEij

It is important to notice that Boussinesq’s hypothesis imposes a linear rela-
tion between stress and strain tensor and it is analogous to the linear consti-
tutive equation for Newtonian flows (see equation 1.8 and its simplifications).

The proportionality of the two tensors can be tested if the tensors
−→−→
R and−→−→

E are known and as was shown in "About Boussinesq’s turbulent viscos-
ity hypothesis: historical remarks and a direct evaluation of its validity" by
Fran¸cois G Schmitt this parallelism is not verified in many applications, nev-
ertheless Boussinesq’s hypothesis is the heart of many turbulent models as
k − ε who provides very satisfactory results. The inaccuracies of the models
comes from transport equations and the linear constitutive equation based
on kinetic energy theory.

1.1.10 Other models for Reynolds Stress

Previously the two equation model was presented, it is called two equation
because it is based on the two transport equations: one for turbulent kinetic
energy and one for turbulent dissipation. There are other possibilities to
model the Reynolds stress. The first possibility is to link νt to mean velocity
and to a length scale characteristic of the mean flow: νt = Czero∆Ub. In
the case of the jet flow ∆U can be the difference between the jet central-line
velocity and the velocity of the external flow and length scale b can be the
width of the jet. Czero is a constant and varies from flow to flow, a typical
value drops in the range of [0.05, 0.1]. The turbulent viscosity is constant
across the shear layer. In the wall region of the turbulent boundary layer νt
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must vary and different equations can be proposed. This model is called zero
equation model because there is no need to write a transport equation for an
added turbulent quantity.

The one equation model uses the Boussinesq’s hypothesis as a constitutive
equation and the turbulent viscosity is defined as νt = Coneql. The length l
is prescribed by means of some shrewdness, a model equation for the turbu-
lence velocity scale q is introduced after some manipulations of Navier-Stokes
equations, the dissipation is modelled in terms of q and l.

Another alternative is to model every component of the Reynolds Stress
tensor, or to introduce model with more than two equations; usually these
models are complex and used in particular problems such as swirled flows
because in such cases there are two direction with a viscosity gradient. It
is interesting to note that the most aerospace combustion chambers work
with axial or transverse injection. One of the reason can be the difficulty of
swirled flow simulation. This is an example how the design can be influenced
by the capability in simulating the system’s physics.
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1.2 Two phase averaged equations
Two phase flow is the simplest case of multiphase flow. Multiphase flow is
defined as simultaneous flow of materials with different states or phases. In
this case it is interested to the gas-liquid type of multiphase flow, particularly
to the gas-droplet flows. Yet a universal multiphase model has not been in-
vented. It is necessary to know a priori certain characteristics of the flow to
chose which model to use. In this section the averaged equations for multi-
phase flow are deduced considering Euler model6. There are some difference
between the RANS equations previously deduced and the averaged equation
that are obtained in this section. In order to discriminate one phase from
another a new quantity, in charge of fluid fraction, has to be defined. Two
types of averages will be applied to the Navier Stokes equations. The first
average operator applied to NS is the volume average; the second applied op-
erator is the time average, its aim is to elide the temporal fluctuations caused
by turbulence. The result of double averaging process is a set of governing
equations that manifests smooth transition in temporal and spatial domain.
How it was noticed in the previous section, an average operation applied on
the momentum equation introduces new terms that must be modelled.

The two phase flow is analysed in the hypothesis of:

1 incompressible two-phase flow

2 steady-state condition.

3 no mass transfer between the two phases

4 Newtonian fluid

The letter "l" indicates the dispersed phase and "g" indicates the contin-
uous phase; the letter "a" indicates an arbitrary phase. To avoid confusion
with tensor notation the belonging of an arbitrary quantity φ to the phase a
is indicated as φa. In what follow χa is a distribution that marks the phase a;
the phase a is present in an arbitrary small portion of the domain if χa = 1,
otherwise χa = 0. Usually χa is named phase indicator function. An arbi-
trary quantity φ is called conditioned quantity if it is multiplied by phase
indicator function. The bounding condition in a two phase flow is:

χg + χl = 1 (1.25)

This condition means that only one phase indicator needs to be considered
in order to describe the phases within a two-phase system.

6another technique is VOF model
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The quantity χa is related to the interface surface between the two phases.
Hence to describe the temporal behaviour of χa it is sufficient to observe the
interface surface which is moving with velocity û, so also χ moves with û.
The interface transport equation is:

∂χa

∂t
+
−→
û · ∇χa = 0 (1.26)

1.2.1 Volume average

If χa is the phase indicator function and φ is a flow variable belonging to
phase a, the average of the quantity φ over a volume is defined as:

< χaφ >≡< φa >=
1

V

∫
V

χaφdV.

V is the averaging volume defined by an averaging scale l∆ that is bigger than
the length scale of microscopic fluctuations and smaller than the macroscopic
characteristic length scale. Considering a volume V a that contains the phase
a it is possible to define the volume phase fraction as:

αa =
V a

V
where V =

∑
V a is the total averaging volume

The intrinsic phase volume average is defined as:

φ̃a ≡< φa >a≡ 1

V a

∫
V a
φadV =

1

V a

∫
V

χaφdV =
V

V aV

∫
V

χaφdV =
< χaφ >

αa

(1.27)
Note that the average defined in equation 1.27 is an integral over the volume
V a that contains the phase a and also volume average make explicit the con-
tribution of volume fraction; αa is only a volume fraction if volume average
is employed. The volume average has the same properties as Reynolds av-
erage and so linearity, derivatives and average commute, double average and
product average. From the definition of volume fraction:

αa ≡< χa >=
V

V a

It is important to note that

< χaφ >6=< χa >< φ > and so < χaφ >6= αa < φ >

To obtain the volume averaged NS equations it is necessary to multiply the
exact NS equations by χa in order to distinguish between the two phases; also
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a random instantaneous quantity φ� (velocity for example) is decomposed in
mean (φ̃) and fluctuation (φ̀) quantity, it is multiplied by χa and volume
averaged. Keeping in mind the definition of volume average (equation 1.27:

< χaφ >= αaφ̃

as for ensemble average quantities the average of fluctuation part is zero
<χaφ̀ >= 0.

1.2.2 Time average

The time average operation is indicated with a bar: φ and it is defined as

φ ≡ 1

T

∫
T

φdT.

The time averaging period T needs to be larger than the characteristic time
scale of microscopic fluctuations and smaller than the characteristic time
scale of the flow. The volume averaged quantity is decomposed in time mean
( ˜̃φ) and time fluctuation quantity ( `̃φ). Applying time average operator to
the volume average decomposition yields:

αφ̃ = α ˜̃φ

and so

˜̃φ =
αφ̃

α
(1.28)

It is important to point out that:

α `̃φ = 0 but `̃φ 6= 0 (1.29)

Indeed considering the equation 1.28 it emerges that:

`̃φ =
˘̃φα

α
(1.30)

where
˘̃
φα
α

is a quantity related to time fluctuations and so has to be modelled.
This aspect is reopened when drag force is modelled, because of equation 1.30
the drag force has an extra term.
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1.2.3 Volume averaged equations

The first average equations are obtained multiplying the equations 1.1 and
1.2 by χa and applying the operator of volume average <>. Starting with
the equation 1.2:〈

χa
∂ρu�j
∂t

〉
+

〈
χa
∂ρu�ju

�
k

∂xk

〉
=
〈
χaρf �j

〉
+

〈
χa
∂τ �jk
∂xk

〉
because ρ is a constant it is possible to pick it out from the average operation
moreover considering the derivative properties and the equation 1.26 it is
possible to conclude that:

ρ
∂

∂t

〈
χau�j

〉
+ρ

〈
∂χau�ju

�
k

∂xk

〉
=

〈
∂χaτ �jk
∂xk

〉
+ρ < χaf �j > +

〈
(ρu�j(u

�
k − û�k)− τ �jk)

∂χa

∂xk

〉
The term ρu�j(u

�
k−û�k)

∂χa

∂xk
represents the instantaneous mass transfer between

the two phases and since the phase mass transfer is not consider this term is
null. Considering the equation 1.27, the volume average momentum equation
can be rewritten in terms of phase volume fraction as:

ρ
∂

∂t
αa(ũj)

a + ρ
∂ < (χau�ju

�
k)
a >a

∂xk
=
∂αa(τ̃jk)

a

∂xk
+ ραa(f̃j)

a −
〈
τ �jk

∂χa

∂xk

〉
As was done for one phase flow, the instantaneous velocity u�j is decomposed
in two quantities: volume average quantity ũj and deviation quantity ùj

u�j = ũj + ùj

so substituting this term inside < (χau�ju
�
k)
a >a yields:

< (χau�ju
�
k)
a > =< χa(ũj + ùj)

a(ũk + ùk)
a >

= (ũjũk)
a+ < (χaùjùk)

a >

< (χaùjùk)
a > is very similar to the Reynolds stress. It is appropriate to

express this term in correlation with αa. So let define the pseudo turbulent
Reynolds stress as:

Rpt
jk = −ρa < (χaùjùk)

a >a

considering equation 1.27 it results that ρa < (χaùjùk)
a >= αaRpt

jk it is
called pseudo turbulent because other factors than turbulent can generate
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ùj. Substituting the last decomposition in the volume averaged momentum
equation yields:

ρa
∂

∂t
αa(ũj)

a + ρa
∂αa(ũjũk)

a

∂xk
=
∂αa(τ̃jk +Rpt

jk)
a

∂xk
+ ρaαa(f̃j)

a −
〈
τ �jk

∂χa

∂xk

〉
(1.31)

Proceeding in the same manner it is possible to obtain the volume average
continuity equation; multiplying the equation 1.1 by χa and applying the
volume average from: 〈

χa
∂ρ�

∂t

〉
+

〈
χa
∂ρ�u�j
∂xj

〉
= 0

yields:

ρa
∂αa

∂t
+ ρa

∂αa(ũj)
a

∂xj
= 0 (1.32)

With a single average approach it is not possible to derive an expression of
Reynolds stress in which the volume fraction α is included inside the averaged
operation. Single averaging does not produces terms involving gradients of
α. Such terms may be modelled a posteriori to describe the forces observed
in particular flow conditions but it is considered more satisfactory to derived
these terms through a second average.

1.2.4 Time averaged equations

The equation 1.32 and 1.31 must be averaged for a second time applying
the time averaging operator indicated by an over-bar. For simplicity will
be omitted the index a, but it is important to remember that the following
equations are written for only one phase.

ρ
∂

∂t
α(ũj) + ρ

∂α(ũjũk)

∂xk
=
∂α(τ̃jk +Rpt

jk)

∂xk
+ ρα(f̃j)−

〈
τ �jk

∂χ

∂xk

〉
Momentum

ρ
∂α

∂t
+ ρ

∂α(ũj)

∂xj
= 0 Continuity

Considering the decomposition of averaged velocity in α-average velocity plus
fluctuation velocity

ũj = ˜̃uj + `̃uj

and substituting it in the second term of the left side of momentum equation
yields:

α(ũj)(ũk) = α(˜̃uj + `̃uj)(˜̃uk + `̃uk)

= (˜̃uj ˜̃uk) + (`̃uj `̃uk)
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At last, substituting the equation 1.28 in momentum and continuity equa-
tions it is obtained:

ρ
∂

∂t
α(˜̃uj) + ρ

∂α(˜̃uj ˜̃uk)

∂xk
=
∂α(˜̃τjk + ˜̃Rpt

jk +Rt
jk)

∂xk
+ ρα( ˜̃fj)−

〈
τ �jk

∂χ

∂xk

〉
(1.33)

ρ
∂α

∂t
+ ρ

∂α(˜̃uj)

∂xj
= 0 (1.34)

where (Rt
jk) = −ρα(`̃uj `̃uk)

α
is the α-weighted turbulent stress tensor.

1.2.5 Pressure and Viscous contribution

Let consider the stress term τ in the equation 1.33

∂α(˜̃τjk)

∂xk
−
〈
τ �jk

∂χ

∂xk

〉
and remember that τ is expressed by constitutive equation as a sum between
a pressure and viscous contribution in the hypothesis of Newtonian fluids
such that τjk = −pδjk + Rjk where p is the pressure term and R is the
viscous term. The next expression is achieved substituting the constitutive
relation in the stress term

∂α(˜̃τjk)

∂xk
−
〈
τjk

∂χ

∂xk

〉
= −∂α(˜̃p)

∂xj
+

〈
p�δjk

∂χ

∂xk

〉
+
∂α( ˜̃Rjk)

∂xk
−
〈
R�jk

∂χ

∂xk

〉
As was mentioned by Oliveira in his Phd thesis, the physical meaning of
φ ∂χ
∂xj

is to ’pick’ out the value of φ at the a-side of the interface (acting as

a delta function) so
〈
φ ∂χ
∂xj

〉
= − 1

V

∫
Si
φnjdA where nj is the j component

of the normal vector. Applying this observation to the pressure part of the
stress term it is possible to express the interface contribution (integral over
interface surface Si):

−α ∂
˜̃p

∂xj
− 1

V

∫
Si

(p� − ˜̃p)njdA

The pressure part of the stress term can be further transformed assuming ˜̃p
equals the pressure of the continuous phase and decomposing the pressure
on interface in mean and fluctuation quantity.
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The viscous part of the stress tensor is more complicated to handle. Some-
times it is possible to neglect the viscosity. The difficulty to express the vis-
cous terms rises from the choice to write or not the volume fraction inside
the divergence terms. The stress term is expressed as:

− α ∂
˜̃p

∂xj
+ (∆p)

∂α

∂xj
+ F

p

j pressure contribution

α
( ˜̃Rjk)

∂xk
− < (R̀jk) >

∂α

∂xk
+ F

R

j viscous contribution

(1.35)

Only the terms −α ∂ ˜̃p
∂xj

and α
( ˜̃Rjk)

∂xk
are kept and inserted in the momentum

equation 1.33, the other terms contribute to create drag, virtual mass and
lift forces that are modelled. It is important to mention that FR

j and F
p

j

appears in continuous phase with opposite sign with which them appears in
the dispersed phase and usually these two forces are modelled as a unique
drag term F

D

j . The equation 1.36 is attained by replacing the stress term
with it’s viscous and pressure part inside the momentum equation 1.33

ρ
∂

∂t
α(˜̃uj) + ρ

∂α(˜̃uj ˜̃uk)

∂xk
=− α ∂

˜̃p

∂xj
+ α

∂( ˜̃Rjk)

∂xk
+
∂α( ˜̃Rpt

jk +Rt
jk)

∂xk
+

+ ρα( ˜̃fj) + F
D

j

(1.36)

1.2.6 k − ε equation
All the hypothesis that were made to model the turbulence for one continuous
phase are still valid, so also for two phase flow the Kolmogorov’s theory and
Boussinesq’s hypothesis are suitable. The big difference from one phase flow
is that in two phase flow the dispersed an continuous phase interact one with
each other. The turbulence of each phase is depicted by two equations, one
for turbulence kinetic energy and one for dissipation. The equations, as it is
expectable, are very similar to equations 1.21 and 1.20

ρa
(
∂αaka

∂t
+
∂(α˜̃uj)

aka

∂xj

)
=
∂αa (µt)a

σk

∂ka

∂xj

∂xj
+ αa(G− ρaεa)

ρa
(
∂αaεa

∂t
+
∂(α˜̃uj)

aεa

∂xj

)
=
∂αa (µt)a

σε
∂εa

∂xj

∂xj
+ αa

εa

ka
(C1G− C2ρ

aεa)

(1.37)

where

Gjk = µt
(
∂ ˜̃uj
∂xk

(
∂ ˜̃uj
∂xk

+
∂ ˜̃uk
∂xj

))a
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In the transport equations for k and ε, the parenthesis with index a ()a

indicates that the quantity belongs to the phase a. If these equations are
applied to both phases, for example liquid a = l and gas a = g and if those
equations are summed than7:

(
∂ρmk

∂t
+
∂(ρ˜̃uj)

mk

∂xj

)
=
∂ µ

t,m

σk

∂k
∂xj

∂xj
+ (Gm − C2ρ

mε) (1.38)

(
∂ρmε

∂t
+
∂(ρ˜̃uj)

mε

∂xj

)
=
∂ µ

t,m

σε
∂ε
∂xj

∂xj
+
ε

k
(C1G

m − C2ρ
mε) (1.39)

with mixture characteristics:

ρm = αgρg + αlρl

µt,m = αgµt,g + αlµt,l = Cµρ
mk

2

ε

νt = Cµ
k2

ε

(˜̃uj)
m =

αg(ρ˜̃uj)
g + αl(ρ˜̃uj)

l

ρm

Gm = ρgGg + αlGl

(1.40)

The turbulent stress is modelled with the Boussinesq’s hypothesis as was
done in the one phase case (equation 1.19) Equations 1.39 and 1.38 are an
extension of the single phase k− ε turbulence model to a mixture of the two
phases.

1.2.7 Drag force and turbulence dispersion

In the equation 1.36 FD is the drag force obtained by time averaging the
interface drag force. It is important to mention that FD was defined as a
sum of a pressure contribute F p and a viscous contribute FR; the pressure
force generates not only the drag but also contributes to the virtual mass
and inviscid lift forces that are not considered here. Traditionally the drag
force is modelled proportional to the instantaneous relative velocity which is
the difference between the particles phase velocity and the continuous phase

7ρa = constant
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velocity. Considering one of the three components of drag vector:

FD
j = FDαl(ũlj − ũ

g
j )

= FDαl((˜̃ulj + `̃ulj)− (˜̃ugj + `̃ugj )) where was used ũj = `̃uj + ˜̃uj

= FDαl(˜̃ulj − ˜̃ugj )− FDαl `̃ugj because αl `̃ulj = 0 see equation 1.29

= FDαl(˜̃ulj − ˜̃ugj )− FD(1− αgj )`̃ugj bounding condition αl + αg = 1

= FDαl(˜̃ulj − ˜̃ugj )− FD `̃ugj because αl `̃ul = 0

= FDαl(˜̃ulj − ˜̃ugj )− FD `̃ugj see equation 1.28

From equation 1.30:

`̃uj =
˘̃ujα

α

where the term ˘̃uα can be assumed proportional to the gradient diffusion of
the volume fraction:

˘̃ujα = −µg ∂α
g

∂xj
therefore `̃uj = −µ

g

αg
∂αg

∂xj

Once it is substituted inside the drag force and considering FD = Alρl it is
obtained that:

Alρlαl(˜̃ulj − ˜̃ugj ) + Alρl
µg

αg
∂αg

∂xj
(1.41)

where Al depends on the physics of the case. The equation 1.41 contains two
terms for drag: the first term Alρlαl(˜̃ulj− ˜̃ugj ) is a mean drag contribution, the
second term Alρl µ

g

αg
∂αg

∂xj
is called turbulent drag or turbulent dispersion and is

proportional to the fraction gradient which arises from turbulent fluctuation
of the velocity. The turbulent dispersion can be modelled with different
expressions as is presented in the chapter concerning the implementation of
averaged Navier Stokes equations.
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Chapter 2

Numerical approach

The chapter starts with a description of the Lagrangian model and presents
the motivations why an Eulerian approach was used in the breakup simula-
tions. Than it is given an outline about how the partial equations are imple-
mented in CFD codes. And finally some information about wall functions,
multiphase turbulence modelling and turbulence dispersion is provided.

2.1 Lagrangian approach

There are two possibilities to describe a phase flow. Euler approach con-
centrates the attention on what happens at a fix point in a space as time
progresses. This approach is interesting in applications where the shape of
body of fluid is not of interest and the attention is put on the rate at which
change is taking place. Opposed to Euler description is the Lagrangian ap-
proach; every particle is followed as long as it moves in space and the change
of physical properties is remarked. From the combinations of Euler and
Lagrangian point of views come up: Lagrangian-Lagrangian model, Euler-
Lagrangian model and Euler-Euler model. Usually the Eulerian description
is related to the continuous phase and the Lagrangian description is related
to the discrete phase.

In the Lagrangian model every individual droplets are considered. In one
specie case each droplet is marked with a index and is characterized by a
centre of gravity x, by a mass m and enthalpy h. One of the problem of
the Lagrangian model is the amount of computational memory required for
tracking every single droplet. To reduce the computational cost so called
small scale models have to be implemented. These models make a huge gain
in computational cost and a widely used also in DNS simulations. In a point

33
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droplet approximation theory one of the main famous model is D2 − law:
∂D2

∂t
= −8

ρg
ρl
Dln(Bm + 1)

where Bm is a function of mass fraction. This model describes the behaviour
of the droplet diameter amenable to evaporation in a steady environment.
Evaporation produces:

ṁk =
∂mk

∂t
≤ 0

while heat diffusion and latent heat effects produces

∂hk

∂t
= ḣk.

The centre of gravity of every droplet evolves with droplet velocity Uk and
so:

∂2xkj
∂t2

=
∂Uk

j

∂t
=

1

mk

∫ k

Γ

fkj dX − g
∂z

∂xj

where Γ is the interface and fkj is the droplet gas-momentum coupling (com-
posed by a pressure and viscous contribution, see equation 1.35 of Euler
approach). In RANS simulations only mean field quantities are solved and
so the previous droplet evolution equations have to be written in terms of
mean averaged quantities. In RANS simulations the main purpose is to un-
derstand the mean effect of droplets on the gas phase. Therefore the particles
provides a statistical description of the dispersed phase and does not depict
the picture of instantaneous state. Because of the statistical approach, CFD
software uses a computational droplet1 that carries a statistical weight of a
set of particles with the same physical characteristics.

Since the two phase flow simulations analysed in this work deals with high
phase fraction zones and in these zones the coupling between droplets and
continuous phase can introduce numerical instability, since the number of the
droplets in a parcel may have a considerable effect on some obtained statis-
tics, since the statistical characteristics of individual droplet is not of interest,
since the two-fluid model2 by definition incorporates two-way coupling the
Euler-Euler model is adopted in this study. Finally a Lagrangian description
requires a 3D domain and can not be implemented with axial symmetry; if
a fast solution is required Euler description is the best choice. It is impor-
tant to emphasize that since the most inter-facial terms are non-linear the
convergence of Euler model may be slow therefore it is recommended to use
always a 2D geometry if it is possible.

1also called parcel
2Euler Euler model
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2.2 Finite Volume discretisation
From the analysis of any equation previously derived it is possible to notice
some important aspects. Let consider for example equation 1.10 :

∂Uk
∂t

+
∂UkUj
∂xj

=
1

ρ

∂P

∂xk
+ ρFk + 2ν

∂Ejk
∂xj

− ∂ < ujuk >

∂xj

The equation is composed by spatial ∂
∂xj

and temporal ∂
∂t

operators, therefore
two domains must be postulated: a spatial domain and a temporal domain.
Each domain has to be separated in a finite number of elements.

A discretisation of spacial domain is called mesh. A mesh for CFD sim-
ulation is a geometry divided in a finite number of control volumes. Every
cell (or control volume) is bounded by faces through which it send the infor-
mation to adjacent elements. Every face is characterized by an area vector
−→s normal to the face. Its magnitude is equal to the area As of the face. The
face versor −→n is defined by

−→
S
As
. The flow variables are stored at the centre

p of volume Vp whose position vector −→xp satisfies
∫
Vp

(−→x − −→xp)dV = 0. This
arrangement is called collocated3. The vector between two adjacent volumes
Vp1 and Vp2 is −→xp1−−→xp2 =

−→
d . A mesh is called orthogonal when

−→
d is normal

to the relative face for each face in the domain.
The discretisation of temporal domain involves to broke the time interval t

in a finite number of time steps. The partition of the both domains in smaller
elements can be uniform or not, it depends on the physical behaviour. Each
equation has to be solved in each spatial and time element so an integration
over volume and time is required. Usually the integration over a control
volume is turned into an integration over the volume’s boundary using Gauss
theorem.

2.2.1 Volume integrations

Time derivative

The first term inside the 1.10 is a time derivative operator. In hypothesis of
static mesh, assuming linear variation of Uk within a time step, the integral
over a control volume Vp is:∫

Vp

∂Uk
∂t

dVp ≈
Un
k − U o

k

∆t
∆Vp

3Earlier, because difficulties with pressure velocity coupling, the velocities where stored
at the cell vertices or faces. This choice is called staggered arrangement and is problematic
in discontinuous boundary conditions
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where Un
k denotes the new value at the time step the calculation is computed

while U0
k denotes the value from previous time step.

Convection term

The second term inside the 1.10 is a convection term. To compute this term
Gauss theorem is used, the volume integral is transformed into a surface
integral∫

Vp

∂UkUj
∂xj

dVp =

∫
S

UkUjdSk ≈
∑
f

(Uk)f (Uj)fSk =
∑
f

F (Uj)f

where Sk is the k element in the surface vector, F = Sk(Uk)f is the specific
flux through the face f , (Uj)f is the interpolation of the quantity Uj on the
face f

Gradient

The third term inside the equation 1.10 is the gradient term. Different meth-
ods exist to implement this operator. Considering the Gauss theorem:∫

Vp

∂P

∂xk
dVp =

∫
S

dSkPf ≈
∑
f

SkPf

where Pf is the interpolation of the pressure on the face f

Diffusion term

The diffusion term is treated as convection term, the term is converted in a
surface integral∫

Vp

∂Ejk
∂xj

dVp =

∫
Vp

1

2

∂

∂xj

(
∂Uj
∂xk

)
+

1

2

∂

∂xj

(
∂Uk
∂xj

)
dVp

=

∫
S

1

2

(
∂Uj
∂xk

)
dSj +

1

2

(
∂Uk
∂xj

)
dSj

≈
∑
f

1

2
Sj

(
∂Uj
∂xk

)
f

+
1

2
Sj

(
∂Uk
∂xj

)
f

where
(
∂Uk
∂xj

)
f
is the gradient at the face f . The product Sj

(
∂Uk
∂xj

)
f
can be

expressed as: (
Sj
∂Uk
∂xj

)
f

=
1

d

[(
∂Uk
∂xj

)
P

−
(
∂Uk
∂xj

)
N

]
Asnj
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where d is the magnitude of the vector
−→
d between the centre of the cell of

interest N and the adjacent cell P, nj =
Sj
As
. If
−→
d is parallel to

−→
S the scheme is

second order accurate. When this condition is not satisfied a non-orthogonal
correction is added:(

∂Uk
∂xj

)
f

Sj = B1
1

d

[(
∂Uk
∂xj

)
P

−
(
∂Uk
∂xj

)
N

]
Asnj + kj

(
∂Uk
∂xj

)
f

where the constantB1 and the vector kj are determined by the non-orthogonality
treatment.

2.2.2 Temporal discretisation

Once the integral over volume is solved, remains to consider the time integral.
There are several alternatives to express temporal integral. However there
are two possibilities to evaluate an arbitrary quantity φp: to evaluate it in
terms of new values or in terms of old values.

Explicit finite difference scheme: the value at time n depends explicitly
on the value at previous time 0, hence old value φ0 is considered: φp = φ0

p

and φf = φ0
f . When non orthogonal mesh is considered, the diffusion term

becomes:
(
∂φo

∂xj

)
f
Sj = B1

1
d

[(
∂φ0

∂xj

)
P
−
(
∂φ0

∂xj

)
N

]
Asnj + kj

(
∂φ0
∂xj

)
f
. It is first

order accurate and it is unstable if the Courant number is greater than 1. If
the velocity characteristic velocity is Û , the Courant number on the face is
defined as:

Co =
ÛjSj
djSj

δt

In openFoam, the solver twoPhaseEulerFoam chooses the characteristic ve-
locity equal to the relative velocity between gas and liquid phases, however
the software computes three different Co: considering the velocity of the two
phases and the relative velocity between phases.

Implicit finite difference scheme: the spatial derivatives are evaluated at
the new time step: φp = φnp and φf = φnf . For non orthogonal mesh the diffu-

sion term becomes:
(
∂φn

∂xj

)
f
Sj = B1

1
d

[(
∂φ0

∂xj

)
P
−
(
∂φn

∂xj

)
N

]
Asnj + kj

(
∂φ0
∂xj

)
f
.

Because the non-orthogonal correction is treated explicitly this scheme guar-
antees the boundedness of the solution. The implicit scheme is uncondition-
ally stable and this is a very significant to reduce the time of the simulation.
For example the solver twoPhaseEulerFoam is build as an explicit, this means
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that it is bounded by a low Currant number. However a semi-implicit scheme
was implemented. The both schemes (explicit and implicit) are first order
accurate in time.

2.2.3 System of linear Algebraic Equations

Reconsidering the momentum equation, neglecting the Reynolds stress and
volume forces, counting the volume and time integral, adopting an implicit
scheme the momentum equation becomes:

(Un
k − U o

k )N
∆t

∆Vp +
∑
f

(Un
k )f (U

n
j )fSk =−

∑
f

Sk
P n
f

ρ
+

1

d

[(
∂Un

k

∂xj

)
P

−
(
∂Un

k

∂xj

)
N

]
Asnj+

+
1

d

[(
∂Un

j

∂xk

)
P

−
(
∂Un

j

∂xk

)
N

]
Asnj

where the quantities on the discrete volume face are a function of the volume
of centre P or N according to the interpolation scheme. The equation can be
rewritten in a generic form:

aNU
n
N +

∑
P

aPφ
n
P = RN (2.1)

The equation 2.1 is written considering the volume with centre N. The ve-
locity UN at time step n depends on the velocities of neighbour cells denoted
with index P and on the explicit quantities (velocity at the previous time
step) placed in source term RN . Each cell of the domain requires an alge-
braic equation as equation 2.1, hence a system a generic system of algebraic
equations can be developed;

[A][U ] = [R]

The diagonal of the matrix [A] is composed by aN elements while aP are
off diagonal elements. [U ] is the vector of unknown velocities and [R] is the
source vector. The matrix [A] can be expressed as a sum of diagonal (matrix
[D]) and off-diagonal (matrix [N ]) contribute:

[A] = [D] + [N ]

Usually the matrix [A] is solved using an iterative method because iterative
methods are more economical and since the discretisation error is usually
much larger than the accuracy of computer arithmetic the extreme tolerance
of iterative method is not required. The convergence of the solver depends on
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the dispersion of eigenvalues and can be improved with preconditioner. To
guarantee the convergence, iterative solver requires a diagonal dominant ma-
trix. It means that the magnitude of the diagonal elements is larger or equal
than the sum of magnitudes of the off-diagonal elements: |aN | ≥

∑
P |aP |.

The time derivative terms creates only diagonal and source coefficient hence
this term increases the diagonal dominance. Indeed one technique to reach
the convergence is to use transient solver instead of steady state solver. An-
other technique is to use under-relaxation factors, in this case the diagonal
dominance is created through additional artificial terms. The equation 2.1
becomes:

aNU
n
N +

1− λ
λ

aNU
n
N +

∑
P

aPφ
n
P = RN +

1− λ
λ

aNU
0
N

2.3 Turbulence treatment in multiphase simu-
lations

The turbulence in multiphase simulations is solved using standard k−ε or k−
ω models. There are some possibilities how to implement the models inside
the software. The main difference between the implementations consists in
writing one or two equations of k and ε (or ω). Once it was chosen how
many equations have to be used, the turbulence parameters are defined as
described in section 2.4. Fluent is provided by a third option for viscous
treatment: Reynolds Stress, composed by 5 equations. However this model
has not been considered in this thesis.

2.3.1 Mixture treatment

Turbulence mixture treatment is implemented writing only one equation for
k and another one for ε. The equations are 1.38 and 1.39. The mixture
properties are calculated using the 1.40 These equations are not referred
to a particular phase but to the mixture. So the value of turbulence are
imposed in mixture menu. In the menu of primary and secondary phase it is
possible to chose the magnitude of the velocity, thermal conditions or other
options according to the boundary condition. It is suggested to apply this
model when phases separate in nearly stratified multiphase flow and when
the density ratio between phases is close to one. In the break up simulations
the ration between the densities is of order of 10. Since the cases does not
refer to atmospheric pressure this model was not discarded.
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2.3.2 Dispersed treatment

In this case the set of k and ε (or ω) equations are written for the primary
phase. The equations are similar to equations 1.37 where the index a has to
be substituted by g , gas continuous index phase. However equations 1.37
are not complete, indeed it misses the contribution of interphase turbulent
momentum transfer. The menu of primary and secondary phase gives the
possibility to chose other flow characteristics such as temperature, volume
fraction . . . according to the boundary conditions. It is suggested to use this
model in a flow characterised by a dilute concentration of secondary phase.

2.3.3 Per phase

Per phase model is the most complex model because it is composed by two
sets of turbulence equations. Each phase is characterised by it’s own value of
k and ε (or ω); the equations are similar to 1.37 but extra terms are added.
The extra account the difference between the turbulent kinetic energy, the
difference between the mean velocities and the volume fraction gradient of
two phases.

2.4 Turbulence Boundary Conditions

The precision of the results are a function of the mesh and used models.
Turbulence k − ε is the model that introduces the strongest approximation
and so that influences in the major part the results. The boundary conditions
for the turbulent kinetic energy and turbulence dissipation must be chosen
realistic as much as possible. The wrong boundary conditions can bring to
divergence or in the worst case to unrealistic results. Aerofoil and breakup
simulations are characterized by inlet boundary, the values of k and ε on
the inlet are of primary importance. It is possible to define such quantities
through a user define function or a constant value can be imposed. The
values can’t be decided arbitrary but must be representative of the physics4.

The turbulence in inlet can be defined in different modes, defining:

• turbulence intensity and turbulence length scale

• turbulence viscosity ratio and turbulence intensity

• k and ε
4it is possible to extrapolate the values for k and ε from experiments or empirical data
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Turbulence intensity defined at the inlet is a function of the upstream
conditions while the turbulence intensity defined on walls is 0 because of no
slip conditions. Turbulence intensity is defined in terms of average velocity
rate, a value smaller of 1% is considered a low value and characterized of
flows that are slightly disturbed; 10% is a high intensity value. Turbulence
intensity can be defined as:

I =
urms
uavg

with urms root mean square of fluctuation velocity and uavg average velocity.
Tubulence length scale l is linked to the largest whirls inside the flow

that hold the energy of turbulene flow. In the case of liquid jet breakup the
turbulence length scale can be defined as a percentage of nozzle diameter.

Turbulence viscosity ratio µt
µ
is a function of turbulence Reynold num-

ber:

Ret =
k2

εη

in general the turbulence viscosity ratio must be smaller than 10:

1 <
µt
µ
< 10

If this condition is not verified, Fluent and OpenFoam bounds the ratio5.
The following expressions can be used to calculate the k, ε and ω on the

inlet6.

k =
3

2
u2
avgI

2 (2.2)

ε = C
3
4
µ
k

3
2

l
(2.3)

ω =
1

C0.25
mu

k0.5

l
(2.4)

If the absence of further specification the Reynolds stress components on
the inlet of the boundary are defined approximately as < uiuj >= 0 and
< uiui = 2

3
k >

5Fluent message informs that turbulence boundary ratio is bounded while OpenFoam
bound k or ε

6this expression are valid for Fluent as for OpenFoam
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Figure 2.1: Composite regions of the turbulent boundary layer

2.5 Boundary layer and the importance of y+

value
Considering external aerodynamics with the purpose to calculate force coef-
ficient as Cl and Cd it is important to solve adequately the computational
zone close to the wall of interested body. It means that the selected turbu-
lence model, the created mesh and the way in which the boundary layer is
solved are suitable for the results the user are looking for. The turbulent
boundary layer is composed by three main regions as indicated in figure 2.1.
If y(1) is the distance of the first node above the wall, Ut is the wall parallel
component of the velocity than the y+ and U+ are defined as:

y+ =
y(1)Uτρ

µ
and U+ =

U

Uτ
where Uτ =

(
µ

ρ

∂Ut
∂n

)0.5

(2.5)

The first region is characterized by y+ < 5 and within it the flow exhibits
laminar characteristics. As already pointed out in section 1.1.9 the k−omega
model works fine in the near wall region and so it can be exploited to solve
the laminar sub-layer. More exactly the best model to use for this purpose
is k − ω SST as this model solve accurately also the far wall region. As
general recommendation the average y+ value must be of unity order if the
k − ω SST model is used without wall function but this is not the only
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requirement. The second demand is to have at least 10 nodes of the mesh
inside the boundary layer.

In the law of the wall region the inertia forces dominate the viscous forces.
It is possible to use a semi-empirical expressions, this expression does not
solve the boundary layer but bridge the viscosity region and the fully turbu-
lent region. The main benefits of such technique consists in the reduction the
mesh size and simulation time however the final results can be less realistic
as those obtained solving the boundary layer. The y+ in the near wall region
must be bigger than 15 and smaller 300. A small value of y+ generally is
translated in unbounded errors. Using k − ε model with the standard wall
function implies that the first node near the wall lies inside the log-law region
of the boundary layer. However it is possible to use a so called scalable wall
function, it imposes a virtually a displacement of the mesh to a y+ ∼ 11.225
avoiding bounding problems.

The user must find a trade off between accuracy, speed and stability; once
the requirement are fixed it is possible to choose if to use a wall function or
to solve the boundary layer. The CFD users community usually recommend
to solve the laminar sub-layer if the interest is to calculate the drag force,
boundary layer velocity, thermal profile or in situations with high changing
in pressure gradient7. It is important to mention that from a convergence
point of view k − ε with wall function and k − ω SST are at the same level.

2.6 Interfacial models for turbulent dispersion

In Euler model, as in VOF model, the pressure and volume fraction are com-
puted solving phase and total continuity but the result is the probability
where phase may exist. Euler ,unlike VOF model, does not solve exactly the
interface. The interface is described through unknowns terms within NS av-
eraged equations. These terms are direct consequence of boundary conditions
at the interface which are solved exactly in VOF model. The main differences
with the VOF mass conservation is that Eulerian mass conservation varies
smoothly8 and each phase has its own velocity field. From simulations it was
deduced that the term that mostly influence the liquid spray breakup is the
turbulence dispersion model, introduced with the equation 1.41. Turbulent
dispersion accounts for the interface turbulent momentum transfer. Thanks
to its mechanism the particles can be caught up in continuous phase turbu-
lent eddies and carried from region of high concentration to region of low

7where the separation is expected; however if the separation is due to sharp changing
of the geometry the k − ε model may be sufficient

8in VOF it has a jump
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concentration.
Turbulent dispersion arises from averaging the interface drag model; con-

sidering a dispersed phase l and a continuous phase g if K l,g(
~̃
U l − ~̃U g) is the

instantaneous drag, K l,g( ~U l− ~U g) is the mean momentum exchange between
phases and ~T td,g = − ~F td,lKlg ~Udr is the turbulent dispersion force then:

K l,g(
~̃
U l − ~̃

U g) = K l,g( ~U l − ~U g)−Kl, g ~Udr

where K l,g is a interphase exchange coefficient. Usually in CFD codes the
turbulent dispersion force is multiplied by a limiting factor that is not con-
sidered in this case. The drift velocity Udr accounts the dispersion of the
secondary phase due to transport by fluid.

Five types of models were analysed in this thesis:

• Burns: the equation that describes the force is

~F td,g = −~F td,l = −C̄gl k
tg

σαg

(
1

ᾱg
− 1

ᾱl

)
∇̄αg

where Cg,l can be defined as:

Cg.l =
3

4
Cdα

lρg

dl
| ~U l − ~U g|

In previous equations l and g indicate the two phases, U is the velocity,
d is the Sauter diameter, ρ is the density, Cd is a constant, σαt is
the turbulent Prandtl number for volume fraction dispersion9, α is the
volume fraction, kt,g is the kinetic eddy viscosity of phase g

• Lopez de Bertodano model is described by the equation

~T td,g = −~T td,l = CTDρgkg∇αl

where kg is turbulent kinetic energy in continuous phase ρg is the con-
tinuous phase density and∇αl is the gradient of dispersed volume phase
fraction.

• Simonin model: Simonin and Viollet proposed to calculate the tur-
bulent dispersion force as:

~T td,g = −~T td,l = CTDK lgD
t,lg

σlg

(
∇αl

αl
− ∇α

g

αg

)
where Dpq is the fluid-particulate dispersion tensor and σpq is the dis-
persion Prandtl number whose default value is 0.75.

9expected to be of order unity
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• Diffusion in VOF model does not consider ~T td as an interface force
but model it as a turbulent diffusion term in the governing equation of
the volume fraction. Considering equation 1.34 that is written for zero
source term and for no mass transfer from one phase to another, the
zero on the right part must be substituted by the turbulent dispersion
term ∇(γg∇αl) where γ is the diffusion coefficient.

• Constant model is very similar as formulation to Lopez de Bertodano
model. The expression that account turbulent dispersion is:

~T td,g = −~T td,l = CTDαlρgkg∇αl

In Fluent are implemented the following models: Burns, Lopez de Bertodano,
Diffusion in Vof and Simonin model while in OpenFoam are implemented
Burns, Lopez de Bertodano and Constant model.
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Chapter 3

Aerofoil simulations

This chapter is pertinent to the first part of simulations concerning aerofoil
drag and lift calculation. It is divided in three main parts. The first part deals
with the Fluent simulations and the second part deal with the OpenFoam
simulations. Each of these two part are subdivided in subsection related
to the geometry, mesh and CFD simulations. The third part gathers the
conclusion. To validate the results was used a NACA0012 aerofoil section
because it is the AGARD standard used in the testing of numerical solution;
experimental data provided by Charles L. Ladson (1988) was considered. All
the points of the profile were obtained using a modified equation provided
by NASA which gives a unit chord. Experimental data are characterized by
a Reynolds number that is varied from 2 ·106 to 6 ·106 and the Mach number
that is varied from 0.05 to 0.36. For the purpose of this thesis was considered
a low number of Mach and so the ρ = constant hypothesis. It guarantees
the independence from Mach number, so the independence from velocity.
The experimental data regards a free transition and a forced transition from
laminar to turbulence. A fixed transition of the boundary layer was obtained
with carborundum strips1 applied to upper and lower surfaces at the 0.05c
station; the strips were about 0.01c in width. All experimental data includes
corrections for the standard low-speed wind tunnel boundary effects.

In simulations the following parameters are imposed alike in Fluent and
OpenFoam: boundary conditions are inlet, outlet and the aerofoil is a wall
with no slip condition, the k is calculated imposing a turbulence intensity
value I = 0.05% and the turbulence length scale is of unity order; the velocity
value and density are fixed to unity value.

1Test and Procedures

47
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3.1 Fluent Simulations
In this section it is presented how to create the geometry and the mesh for
aerofoil using Ansys tools. It is supposed that the reader is familiar with
Ansys interface and no screenshots are provided.

Fluent does not have a pre-processor so an external software must be
adopted: Design Modeler. Usually externals CAD presents a too complex
and full of details geometry to simulate. One of the requirement of CFD
user is to recreate a simple geometry, poor of details but enough rigorous to
capture the physics. For this reason ANSYS developed Design Modeler, very
user friendly CAD. Ansys Meshing was chosen for the purpose to create the
mesh.

3.1.1 Aerofoil geometry created with design modeler

Design modeler is provided by two windows: sketch window and model win-
dow. Inside sketch window the sketches are created; so only lines and points
can be generated within it. The sketches is transported automatically inside
the model window where 2D and 3D bodies can be created and managed.

The first step is to create the aerofoil’s shape. On the first sketch the
points of the profile must be generated.

Sketching → Draw → Construction Point

Once a point is created it is necessary to assign the distance from axis.

Sketching → Dimension → General → "select point" → "assign dimension"

The number of points to create depends on the required accuracy. In zones
with emphasized curvature the density of points must be higher than in
more linear zones. The profile’s trailing edge was cut to avoid problems with
skewness (see figure 3.1). If the profile geometry is maintained with a sharp
tail, the automatic mesh software creates in that zone elements with a non
acceptable value of skewness2. Once the points are created it is necessary to
joint them with a curve using a spline.

Sketching → Draw → Spline → "select the points"

The spline must be transformed in a 2D surface inside modelling window.

Modeling → Concept → Surface from Sketches → "select the sketch"

2it can be avoid using a different software, for example ICEM where elements with
high skewness can be deleted. The sharp angles are a real challenge for Ansys Meshing
and must be avoid.
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Once the operation is done the internal space delimited by the aerofoil profile
is coloured in grey, this means that a surface is created. At this step a new
item is compared inside the body menu, it is the surface previously created.
Once the aerofoil shape is created, it is necessary to immerse it in the air. The
air is represented by another surface. To create a new surface it is necessary
to freeze the first surface, otherwise the modification to the model will be
appended to the already existing surface.

Modeling → Tools → Freeze

Now it is possible to create a second sketch in the sketch menu.

Sketching → New Sketch

Within the new sketch it is possible to create the constructive points of the
domain, join all the points with a spline (or line) and create a new surface.
The shape of the domain is showed in figure 3.1. At this step there are 2
bodies in the body menu. Since it is not necessary to mesh the surface inside
the aerofoil, this surface can be deleted using a boolean operation.

Modeling → Create → Boolean → Operation → Subtract

Once the second body was selected as target body and the first created body
was selected as tool body it is sufficient to apply the modification. After this
operation the aerofoil surface disappeared and the result is a surface with
a hole whose shape is identical to the aerofoil profile. The geometry of the
case is done. Ansys Meshing software can use virtual defined surfaces to
bound the mesh’s cell dimension. These virtual objects are called bodies of
influence. Two bodies of influence were created;in figure 3.1 can be noticed
two zones with different cell density, created employing the virtual bodies.
The steps to create these virtual objects are equal to the sequence followed
to create the geometry hence: the existing geometry must be frozen; new
sketch must be generated; inside the sketch the geometry of the boundary of
influence must be defined; the surface have to be generated from the sketch
and in the end the applied modifications must be frozen.

3.1.2 Meshing

The next step consists in importing the geometry inside Ansys Meshing and
mesh it. Non structural mesh was created. The following itemization pro-
vides a detailed information about the settings applied to the mesh.
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• solver: CFD Fluent3

• maximum acceptable size: 7.1 [m]

• minimum acceptable size: 1e− 06 [m]

• inflation: smooth transition, transition ratio 7e− 02, Maximum layers
25, Growth rate 1.2

• dimension of elements on the surface of the aerofoil: 5e− 04 [m]

• dimension of elements inside the first body of influence: 5e− 02 [m]

• dimension of elements inside the second body of influence: 0.1 [m]

• dimension of elements in the far field zone: 0.5 [m]

• growth rate: 1.2

• mesh technique based on proximity and curvature

• type of elements: quadrilateral

Ansys meshing is very user friendly. To generate a sizing, an inflation or to
define a boundary of influence it is enough to select with the right click of
the mouse the item "mesh" and a new window will appear with previously
mentioned operations. In 2D cases the body of influence operation are not
presented by default; to apply a body of influence to a 2D case it is necessary
to select the surface not with "surface tool" but with "body tool" and apply
a size condition on it.

Mesh → Insert → Sizing → Type → Body of Influence

now it is possible to apply the desired condition selecting target and tool
body. "Body of influence" is useful to control the size of the mesh relatively
far from the profile. "Inflation" is a operation that manage the cells very
closed to the wall. It extrudes a fixed number of cells in normal direction
when the viscous boundary layer has to be solved.

Mesh → Insert → Inflation

Once the necessary dimensional bounds are applied and the mesh is generated
it is necessary to name the boundaries of the domain. If the name of the

3Ansys Meshing create automatically the mesh placing the nodes according to the used
solver
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boundary is equal to one name in fluent data-base boundary condition than
fluent assigns automatically the relative boundary condition; if a surface (or
line)is called pressure − outlet − 1 fluent will assign to it a pressure outlet
boundary condition. The figure 3.1 shows the main details that characterized
all the created meshes. The mesh in figure 3.1 is characterized by 169691
nodes, 167548 elements and a value of maximum skewness equal to 0.9.
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(a) fluid domain (b) two bodies of influence

(c) aerofoil profile (d) trailing edge

(e) part of extruded zone distantly (f) part of extruded zone nearly

Figure 3.1: General aspects of the aerofoil mesh used in fluent
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3.1.3 CFD results obtained with Fluent

In this section the results obtained with fluent are presented. The section
is divided in 2 parts. The first part deals with the mesh sensitivity analy-
sis considering a null angle of attack. The second part presents the result
obtained with non zero angles of attack

Mesh sensitivity

A first mesh with poor quality was created and the Cd and Cl were analysed.
The mesh was changed increasing the number of cells in the far zone and
changing the y+ value acting on the dimension and on the number of the
extruded elements from the aerofoil surface. A null angle of attack was
considered α = 0. The iterative process to create the mesh is reported:

• mesh1 is the case with the highest value of y+. Only 2 layers where
extruded in the normal direction from the wall surface. Since the y+

value is too high the software automatically switch to k− ε turbulence
model with wall function providing a value of Cd = 0.0087

• mesh2 : was used the parameters of the first mesh but the number of
extruded layers was brought from 2 to 10. The transition ratio was set
from 0.272 to 0.17. A k-w SST model was used. The Cd = 0.83 was
obtained in this configuration.

• mesh3 : in this case all the parameters were decreased to create a finer
mesh, the result was a Cd = 0.008.

• mesh4 : further reduction of values were performed, nevertheless the
drag coefficient remained the same.

• mesh5 : in this case were reduced the dimension of elements near the
profile, the Cd coefficient decreased to 0.0077

• mesh6 : because of small reduction of drag obtained with the fifth mesh,
were preferred to extrude more elements from the wall surface, the
number of elements were brought from 15 to 25. This choice brought
to a Cd = 0.0078 very similar as the result obtained with mesh number
five. This mean that additional nodes inside the viscous sublayer does
not change the results

• mesh7 : Was decided to reduce the value of y+ by a further reduction
of transition ratio, was obtained a Cd = 0.0072.
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- Dmax Db1 Db2 D0012 Nl Ntr Ngr Skew Nodes
mesh1 0.7 0.15 0.1 0.001 2 0.272 1.2 0.6933 38366
mesh2 0.7 0.15 0.1 0.001 10 0.17 1.2 0.7970 54175
mesh3 0.6 0.13 0.07 0.0007 13 0.15 1.2 0.7214 84794
mesh4 0.5 0.1 0.05 0.0005 15 0.13 1.2 0.8122 127423
mesh5 0.5 0.07 0.03 0.0003 15 0.1 1.2 0.7257 214104
mesh6 0.5 0.1 0.05 0.0002 25 0.1 1.2 0.9094 384832
mesh 7 0.5 0.1 0.05 0.0005 25 0.07 1.2 0.7645 170030
mesh8 0.5 0.1 0.05 0.0005 30 0.05 1.2 0.81118 190749

Table 3.1: Mesh characteristics related to the mesh sensitivity analysis in
fluent

• mesh8 : was considered the same setups of mesh seven but the number
of layeres was increased to 30 and transition ratio decreased to 0.05.
The resulting Cd is 0.007. At this step it is possible to conclude the
the result of Cd does not depend on any more from the number of the
elements in the viscous sub layer, from the value of y+ and from the
size of the element far from the aerofoil

The table 3.1 summarizes the mesh alteration described in the previous item-
ization. In the table 3.1 Dmax is the maximum dimension of cells in the
domain, it characterizes the far zone from the mesh; Db1 is the dimension
of cells in the outer zone identified by the biggest body of influence; Db2 is
the dimension in the inner zone identified by the smallest body of influence;
D0012 is the distance between nodes on the aerofoil surface. The mesh within
viscous boundary layer is characterized by Nl the number of layers extruded
in normal direction from the surface of the wall with a Ntr transition ratio
between the layers and growth rate equal to Ngr. All the dimensions reported
in table 3.1 are in meters. The table 3.2 presents the results in terms of Cd
and Cl obtained in configuration α = 0. From tables 3.2 and the table 3.3 it
is plain that the results obtained with the model k − ω SST is very close to
experimental data in free transition. Mesh number seven and mesh number
eight provide the best results. Mesh number seven was chosen for simula-
tions with a non zero angle of attack since it has less elements comparing
it with mesh number eight and so less computational effort is required for
simulations.
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mesh Cd Fluent Cd free transition Cd 80-W Grit y+ max
mesh1 0.0087 0.0065 0.00826 40
mesh2 0.0083 0.0065 0.00826 6
mesh3 0.0080 0.0065 0.00826 2
mesh4 0.0080 0.0065 0.00826 0.9
mesh5 0.0077 0.0065 0.00826 0.4
mesh6 0.0078 0.0065 0.00826 0.045
mesh7 0.0072 0.0065 0.00826 0.08
mesh8 0.007 0.0065 0.00826 0.02

Table 3.2: Fluent CFD results in configuration α = 0 compared with exper-
imental data in free transition and force transition (80-W Grit)

Mach Re α Cd Cl type of transition
0.15 6 ∗ 106 0.05 0.0065 - free transition
0.15 6 ∗ 106 0.00 0.00895 - fixed transition 60-W Grid
0.15 5.95 ∗ 106 -0.05 0.00809 - fixed transition 80-W Grid
0.15 6 ∗ 106 0.01 0.00804 - fixed transition 120-W Grid
0.15 5.95 ∗ 106 0.04 0.00811 - fixed transition 180-W Grid

Table 3.3: Experimental data in configuration α = 0 for NACA0012

3.1.4 Results in the configuration: non zero attack an-
gle

The table 3.4 presents the results of the simulations considering a non zero
angle of attack. The first observation is that the lift coefficient is very sim-
ilar in simulations and fix transition experiments despite drag coefficient is
not; indeed the simulations consider a turbulent fully developed flow and
this is one of the reason why Cd is higher. The second observation is that
nevertheless the mesh number eight gave good results in agreement with free
transition experimental data for α = 0, for a non zero angle of attack the

angle simulation free transition fixed transition 80-W Grit
Cd Cl Cd Cl Cd Cl

α = 6.20 0.00908 0.6918 0.00680 0.6630 0.00913 0.6895
α = 10.18 0.01315 1.1118 0.01050 1.0880 0.01420 1.1231
α = 13.10 0.0184 1.39 0.0130 1.3680 0.02360 1.39

Table 3.4: Fluent CFD results in different α configurations compared with
experimental data in free transition and force transition (80-W Grit)
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results are closer to fix transition. Comparing the Cd value in experimental
fix transition results and simulations an error of 0.5% for a α = 6.20, an error
of 7% is obtained for α = 10.18 and an error of 22% is obtained in the case
of α = 13.10. For a null angle of attack comparing the Rans simulation and
experimental 80-W Grit Cd value the error is 13%. The model k − ωSST
with the chosen boundary conditions gives a relative small error for small
angle of attack. For α = 13.10 the error doubled its value. The y+ value, in
all the simulations whose results are presented in this section, is proved to
be smaller than 1. It is important to mark that the mesh was created to fit
free transition data instead it provided results close to fix transition data for
a non null angle of attack.
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3.2 OpenFoam Simulations

In this section is presented how to create a mesh inside OpenFoam without
using an external pre-processor. The results obtained are compared with
experimental data.

3.2.1 Geometry and Mesh for OpenFoam

OpenFoam provides different possibilities to mesh a geometry. A mesh can
be created with an external software and imported, otherwise a fluid domain
can be defined and meshed inside OpenFoam. Two commands can be used
for meshing in OpenFoam: blockMesh and snappyHexMesh usually used for
complex geometry imported from a CAD. To discretize the aerofoil fluid
domain was used only the blockMesh command and was created a structural
mesh. Due to a relative big quantity of information within the input file,
it was created with a script in Matlab. The mesh input file must contain
all the vertices of the fluid domain, the definition of all the surfaces and
boundaries, the definition of all the blocks, grading information, maximum
number of elements in any block and other information about the mesh.
For all zones described bellow the spatial distribution of nodes was chosen
to have a maximum increase ratio of 2 between to neighbour cells. All the
input items were defined in Matlab and to print it within .txt file was used
the matlab command fprintf. The output blockMeshDict file is used as input
file to create the mesh inside OpenFoam. An encode problem was find while
reading with OpenFoam the matlab generated file. Inside fprintf string, the
command used by a matlab user to type a "space" between symbols is /b.
Since OpenFoam does not recognize the "space" inserted by matlab it is
necessary to replace it manually by a "space" inserted with the keyboard.

Bounds imposed in matlab script to create the mesh

The upper and lower surface of the profile is divided in three parts, each
one can be discretized with an N number of elements characterized by a
previously decided dimension:

• On the first part it was allocated nodes apart dx1 to describe with a
good approximation the curvature of the profile.

• On the second part, if as in our case there is not a conspicuous curva-
ture, it is possible to allocate a small number of cells gaining resource
during simulations; the distance between nodes is dx2



58 CHAPTER 3. AEROFOIL SIMULATIONS

Figure 3.2: Details of the mesh employed in the aerofoil OpenFoam simula-
tions

• The third and last zone on the profile is the most linear, it was allocated
the last number of nodes with a dx3 distance one from each other. The
dimension of the last element in the tail of the profile is calculated to
reach a unity chord.

The Naca profile ends with a sharp tail; no cut was done as for the mesh
simulated in fluent4. The aerofoil coordinates are saved in a matrix, the first
and second column is respectively the x and y coordinates of upper portion of
the profile while the third and fourth column are the x and y coordinates of
lower portion of the profile. This organization of the matrix allows to use also
a non symmetric profile. As mentioned in section 2.5 the turbulence model is
generally linked to the mesh; indeed the dimension of the first element near
the wall has to be controlled and to satisfy the required y+ value. For this
reason was created a first zone of influence on the mesh. This zone is named
O and is characterized by 2 · (N − 1) blocks allocated in the direction of the
curvilinear coordinate. One of these blocks is marked in black on figure 3.2
Each block has n cells (in figure 3.2 n = 2) in the normal direction of the
profile and one cell in the direction that connects two neighbour nodes on
the profile. The thickness of this n cells is calculated in order to reach a
desired y+ value considering a magnitude of velocity with unity order. It is
recommended to control the y+ value after the simulation to be sure about

4With AnsysMeshing a cusp tail is the origin of elements with a high value of skewness.
In this case the position of nodes are decided to avoid high skew cells
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Figure 3.3: Details of the mesh employed in the aerofoil OpenFoam simula-
tions

it’s value. The distance between the nodes inside each block is controlled
through grading command and because two neighbour blocks share half of
their boundary points inside this zone the grading is equal for all blocks.

Once the distance of inlet and outlet from the aerofoil profile was chosen
it is possible to create the boundaries of the air domain. The frontal part
of the mesh (zone A on figure 3.3) is created by a p number of horizontal
blocks. The number p is linked to the value of skewness in this zone; indeed
it is chosen automatically to have a maximum angle of 45 degree between
the cells in Zone O and cells in zone A (figure 3.2). Each of p blocks shares
a face with one block in zone O while the opposite face is an inlet of the
domain. The grading scheme of each block has at least 100 hundred nodes
in x direction and 1 element in y direction.
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The zone B of the mesh is the one which connects the zone O and the
outlet. This zone is created with 2 ·n horizontal blocks. The grading scheme
of the blocks is the same as the grading scheme in zone O. Because of the
small thickness value of the n cells in zone O particular attention have to
be paid to zone B. Indeed the thickness of the each cell is equal with the
dimension calculated to achieve the desired y+ value. If the blocks in zone
B have a small number of cells in x direction it is possible to have cells with
high aspect ratio inside this zone. OpenFoam gives a possibility to check the
high aspect ratio value with checkMesh command. If the aspect ratio is more
than 1000 a warning will be displayed in the terminal. The ability to solve
zones with high aspect ration depends on the CFD code implementation but
it is recommended to avoid high aspect ratio elements.

The zones C and D connect the zone O with upper and lower surface
of the domain which are, respectively, outlet and inlet. Each of this zone is
composed by vertical blocks, every block share a face with one block of the
zone O and the opposite face is a boundary for the air domain. This blocks
has at least 75 elements in y direction and 1 element in the x direction.
These are the regions with high cell density because of the shared face with
the zone O. The spacial grading in y direction is equal for all blocks because
two neighbour blocks share half of their nodes.

The zone E and H have the same number of cells in x direction as the
zone number A while the zones F and G have an equal number of cells to
zone B in the horizontal direction. The zones E and F has equal number of
nodes to zone C in y direction while zones G and H have the same number
of cells as the zone D in the vertical direction.

All the bonds previously described are imposed inside the matlab script.
The script is useful because permits to change the geometry of the aerofoil
and the mesh in some seconds. A similar script can be made by Octave, an
open source matlab clone. The combination of Octave and OpenFoam can
be interesting because in cases with relatively simple geometry it avoids the
usage of an external CAD software.

3.2.2 Mesh transfer from OpenFoam to Fluent

To make a comparison between two softwares it is appropriate to use the
same mesh. The peculiarity of the OpenFoam is that even a 2D case needs a
three dimensional mesh. Indeed the 2D case that lies on xy plane has 1 cell
in z direction. On the contrary Fluent uses a 2D mesh for two-dimensional
simulations. Since there is not a command to translate the 3D OpenFoam
format mesh in a 2D Fluent mesh in this section is explained how to transform
a 3D mesh in a 2D mesh using ICEM software. The 3D aerofoil mesh was
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created inside OpenFoam with the Matlab algorithm previously described.
The first step is to translate the mesh from OpenFoam format to fluent

format [.msh], it is easily done by opening the terminal within the main
folder5 and typing the string foamMeshToFluent. A new folder will appear
containing the 3D mesh in .msh format.

Now the mesh must be imported in Fluent, so a new three dimensional
case must be opened in Fluent. Now the 3D OpenFoam mesh must be
imported inside Fluent.

File → Read → Mesh → name.msh

The case must be saved in fluent format .cas

File → Write → Case → Ok

Finally the fluent format .cas can be imported in ICEM.

File → Import Mesh → From Fluent → name.cas

Once the mesh is imported in ICEM it must be modified removing half of
the nodes, the nodes to remove are showed in figure 3.4 (b).

Edit Mesh → Delete Nodes → "select all the nodes on one face" → Apply

Previous operation deleted one face and transformed the 3D mesh into a
2D mesh (figure 3.4). Within "section parts" window disappeared all the
boundary conditions with exception of two. The first item in the "section
parts" window contains the internal information of the mesh, the second item
contains all the boundaries of the mesh. Now the mesh is two-dimensional
and can be saved in .msh format.

Output → Select Solver → Output Solver → Ansys Fluent → Apply

Output → Save → Open → 2D → Done

At this step the mesh can be imported in fluent as a two dimensional case.
Once the mesh is imported only two surfaces exist: interior and boundary.
It is possible to split the boundary surface in inlet, outlet and wall. To do
so it is necessary to follow the sequence:

Mesh → Separate → Faces

a new window appears; select "angle option", set angle degree equal to 90
and select only boundary as "zone". This operation will split the boundary
in 5 zones that can be renamed inside the boundary conditions menu. The
result of all this operations is showed in figure 3.5.

5where are located folder 0, constant, system . . .
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(a) (b)

Figure 3.4: Transform a 3D mesh to a 2D mesh

(a) (b)

Figure 3.5: Fluent mesh and boundary conditions
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3.2.3 Setting the case in OpenFoam

All the information about the simulations is stored inside at least three fold-
ers: folder 0, folder constant and folder system. Each folder contains some
files with the simulation’s detail. These folders are necessary because Open-
Foam is not provided with an interface and so the user communicates with
the software through files in the previous mentioned folders. The folders with
relative files are described below:

• folder 0: the files inside this folder contains the information about
boundary conditions and the initial conditions. Each flow property has
it’s own file that contains the physical dimension, BC, IC and physical
dimension.

– file k : is the file that contains the information about the turbulent
kinetic energy, the formula 2.2 can be used to evaluate the values
at inlet. It has been recommended never to define k = 0 but to
give a very small value if k is null.

– file nut : contains the information about turbulent eddy viscosity.
If k − ω SST model is used than this file is not necessary. The
presence of nut file in 0 folder ensure that the value of eddy vis-
cosity will be saved each time that the case is saved. On all the
boundaries nut must be set to "type calculated".

– file omega: refers to the specific turbulent dissipation rate. It’s
value can be calculated using the formula 2.4. On the wall surfaces
where a wall function is applied it a Menter’s empirical expressions
can be used to evaluate ω, for example omegaWall = 60ν

0.075y2

– file p: is te file containing the pressure information. Particular
attention have to be paid to the dimension in this file indeed the
pressure within is defined6 as p

ρ

– file U : is the velocity file. Contains the magnitude and the di-
rection of the velocity vector; within a non slip condition can be
imposed on wall surface.

– file yPlus : is a file of post-process family, it contains the value of
y+. This file appears after a y+ check on the terminal and is not
necessary to begin the simulation

• folder constant: inside this folder are collocated two files and one
folder

6the solver does not require the density value
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– file transportProperties : in this file a Newtonian transport model
is specified and the value for kinematic viscosity (nu) is assigned

– file turbulenceProperties : inside this file the RAS k−ω SST model
is chosen and so turbulence is activated

– folder polyMesh: this folder is generated automatically once the
command blockMesh is run on the terminal. There are 5 files
inside this folder with the geometry and mesh information

• folder system: inside this folder four files are collocated

– file blockMeshDict contains the information about the geometry
and the mesh7.

– file controlDict set the solver’s type8, the initial and final time of
the simulation, the time interval between two time steps and other
information9, it follows an example of the options:

∗ application simpleFoam
∗ startFrom startTime
∗ startTime 0
∗ stopAt endTime
∗ endTime 2000
∗ deltaT 1
∗ writeControl timeStep
∗ writeInterval 50
∗ purgeWrite 0
∗ writeFormat ascii
∗ writePrecision 7
∗ writeCompression off
∗ timeFormat general
∗ timePrecision 6
∗ runTimeModifiable true
∗ functions include ’forceCoeffs’

• file forceCoeffs : this file is needed to calculate Cd and Cl. The options
set are:

7this file was generated by matlabas explained in the previous section
8the solve is chosen accordingly to the physics
9the function used to calculate the Cd and Cl must be called inside this file (see the

last item in the controlDict file)
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– lifDir −sin(α) cos(α) 0

– dragDir cos(α) sin(α) 0

– magUInf 1

– lRef 1

– Aref 1

It is very important to put identical setup for the calculation of Cd and
Cl in Fluent and OpenFoam, particular attention have to be paid to
reference values as length and area.

• fvSchemes contains the following information

– ddtScheme default steadyState

– gradScheme default Gauss linear

– gradScheme grad(U) cellLimited Gauss linear 1

– divScheme default none

– divScheme div(phi U)bounded Gauss linearUpwindV grad(U)

– divScheme div(phi K) bounded Gauss upwind

– divScheme div(phi omega) bounded Gauss upwind

– divScheme div((nuEff*dev2(T(grad(U))))) Gauss linear

– laplacianSchemes default Gauss linear corrected

– interpolationSchemes default linear

– snGradSchemes default corrected

– wallDist method meshWave

• fvSolution contains the following solvers information

– p

∗ solver GAMG
∗ tolerance 1e− 7

∗ relTol 0.01
∗ smoother GaussSeidel

– phi

∗ $p

– U
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∗ solver smoothSolver
∗ tolerance 1e− 8

∗ relTol 0.1
∗ smoother GaussSeidel
∗ nSweeps 1

– k

∗ solver smoothSolver
∗ tolerance 1e− 8

∗ relTol 0.1
∗ smoother GaussSeidel
∗ nSweeps 1

– omega

∗ solver smoothSolver
∗ tolerance 1e− 8

∗ relTol 0.1
∗ smoother GaussSeidel
∗ nSweeps 1

– SIMPLE

∗ nNonOrthogonalCorrectors 0
∗ consisten YES

– potentialFlow

∗ nNonOrthogonalCorrectors 10

– relaxationFactors equations

∗ U 0.9
∗ k 0.7
∗ omega 0.7

– cache

∗ grad(U)

• postProcessing: in this folder is saved the file forceCoeffs with the
data relative to drag and lift coefficients
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OpenFoam free transition 80-W Grit
Cd Cl Cd Cl Cd Cl

α = 4.18 0.00817 0.458 0.00760 0.4520 0.00832 0.4527
α = 6.20 0.01117 0.667 0.00680 0.6630 0.00913 0.6895
α = 8.22 0.01489 0.887 0.00800 0.8800 0.01060 0.9065
α = 10.18 0.02593 1.060 0.01050 1.0880 0.01420 1.1231

Table 3.5: openFoam and experimental data

3.2.4 Simulations results

All the cases run in OpenFoam have the same setup, the only parameter
which varies is the angle of attack. The first attempt was to use k − ω SST
model without wall functions. A similar mesh sensitivity analysis as for fluent
(see section 3.1.3) was done. One of the biggest problem was to create a mesh
with y+ value close to one. A such mesh involve a big number of cells, indeed
to have a good quality mesh it is recommended to maintain the area ratio
between two neighbour cells near a value of 0.510, by the way in fluent this
bond was not kept11. Different simulations were done with different meshes
trying to solve the viscous boundary layer. All the simulations failed because
of divergence problem. The OpenFoam model k-w SST without wall function
for ω is very sensitive to boundary conditions, initial conditions and mesh12.
To reach the convergence the mesh was changed, the y+ value was increased
and a wall function was used. The turbulence parameters are defined in the
opening of this chapter; in particular on the wall of the aerofoil profile omega
was set equal to the value calculated for the inlet.

The table 3.5 presents the results obtained with OpenFoam and the ex-
perimental data. Also in this case the CFD results are closer to fix transition
experimental data. Considering the drag coefficient the error at α = 4.18 is
2%; the error increases increasing the angle indeed at α = 6.20 it becomes
22.34%, at α = 8.22 it arrives at 40% and finally at α = 10.18 the error
reaches the value of 80%. As in fluent the behaviour is similar, the error in
evaluating the Cd increasing with the angle. This increment is much more
emphasized in OpenFoam, the reason is that the used model does not solve
the viscous boundary layer but uses a wall function.

10area ratio = smallerarea
biggerarea

11it was concluded that even a smaller ratio between the cells in a close region near the
profile bring to acceptable results

12this problem was find also by other users as reported on CFDonline community
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OpenFoam free transition
Cd Cl Cd Cl

α = 4.18 0.00604 0.4647 0.0076 0.4520
α = 6.20 0.00778 0.6683 0.0068 0.663
α = 8.22 0.00889 0.9082 0.008 0.88
α = 10.18 0.01294 1.1061 0.01050 1.0880

Table 3.6: Sensitiveness of OpenFoam results regarding boundary conditions

3.2.5 The importance of boundary conditions

If the aim is to evaluate the forces acting on the aerofoil it is of primary
importance to impose the right turbulent boundary conditions. The choice
of the turbulence intensity and turbulence length scale can be crucial to
obtain a desired result. The simulations in this section does not consider the
values of turbulence intensity and length scale defined in the opening of this
chapter. A turbulence intensity was decreased to a value of 2% while the ω
value on the wall was calculated with the Menter’s empirical equation. The
results are reported in the table 3.6 The results are closer to free transition
data13 In this case the drag coefficient error remains much more steady in the
studied range: for α = 4.18 it’s value is 22%, for α = 6.20 the error decreases
a little to the value of 14%, for α = 8.22 the error becomes 11% and finally
for α = 10.18 the error increases to 23%.

13in literature there is different Menter’s empirical expressions according to the wall
roughness



3.3. CLOSURE 69

3.3 Closure

3.3.1 Comparison between two simulations with identi-
cal conditions executed with OpenFoam and Flu-
ent

The OpenFoam mesh was translated in the Fluent .msh format to perform
a comparison between the two software. Same boundary conditions were
applied (figure 3.5) and same order numerical scheme was used. The following
itemize provides the information about the settings

• precision: double precision14

• solver: pressure based steady solver

• divergence scheme: second order

• gradient scheme: gauss cell centred

• scheme for k and ε: first order

• coupling pressure velocity: yes15

• velocity: a unity velocity magnitude with an angle of 4.18 respect to
the x axis.

• turbulence: 2% turbulence intensity and unity turbulence length scale

• boundaries: the same boundaries as in OpenFoam simulations

It is interesting to note that fluent solver with coupled equations for pres-
sure and velocity converged in 230 iterations while the OpenFoam software
converged in quasi 9000 iterations. So Fluent is much faster in convergence
with these numerical schemes. Changing OpenFoam numerical schemes it
was possible to make converge the case in quasi 700 iterations. The values
of drag coefficient are reported in the table 3.7

14in fluent the user can arbitrary choose a single precision o double precision solver;
in OpenFoam the double precision is set by default, to switch to single precision it is
necessary to recompile the solver.

15too couple pressure and velocity in simple foam it is necessary to set consistent yes in
system file under SIMPLE entry
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OpenFoam Fluent
Cd Cd

α = 6.20 0.0112 0.0107

Table 3.7: Lift and drag coefficients obtained with OpenFoam and Fluent
considering identical geometry, boundary conditions and similar numerical
schemes

3.3.2 Conclusion

Both software gave acceptable results for lift coefficient; the main difference
lies in the evaluation of drag coefficient. Drag force is due to the pressure
and shear force acting on the profile and so it is more complex to predict
drag force rather than lift force. Two different models was used to predict
drag: solving the viscous boundary layer with Fluent or using OpenFoam
with wall function.

Fluent used for the simulations a non structural mesh with a y+ < 1 and
k−ω SST model without wall functions. It must be marked that if the first
nodes do not lie in viscous sub-layer (for example y+ = 40) fluent k−ω SST
automatically impose a wall function conditions. It is important to check in
post-process the y+ in order to understand if the obtained result is due to a
wall function technique or not. When k − ω SST model is used fluent does
not notify to the user if a wall function was applied or not.

In OpenFoam it was not possible to solve the boundary layer because
of problems with convergence. For this reason a mesh with y+ > 15 and
k − ω SST model with wall function was used, this permitted to have a
mesh with a less number of cells against fluent case. The drag coefficient was
evaluated for angles smaller than 10. The error respect the free transition
data in evaluating Cd lies in a range of 10% - 20%. It was showed how
sensitive is OpenFoam to the boundary conditions and how important is to
set the write BC in order to obtain realistic results. As figure 3.6 shows,
changing the boundary conditions at the aerofoil’s wall can improve, in a
significant manner the results Both softwares show similar behaviour for high
angle of attack: the Cd error increases too much for angles higher than 10
degree in OpenFoam and 13 degree in Fluent. The main difference regarding
boundary conditions comparing OpenFoam and Fluent is that OpenFoam
require a boundary condition of k and ω not only at inlet and outlet but also
near the wall; Fluent does not require a value of k and ω near the wall but only
information about the slip condition and roughness (even if a wall function is
used). Using a k−ω SST model in OpenFoam the user must switch manually
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Figure 3.6: Drag and Lift coefficient obtained with CFD and compared with
experimental results

from solving the boundary layer or applying a wall-function16, Fluent does
this operation automatically.

16a mesh which solves viscous boundary layer can not be used with wall-function and
vice versa
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Chapter 4

Breakup simulations

In this chapter the results concerning the near nozzle liquid jet breakup are
presented. The aim is to study the liquid penetration length and the aper-
ture of the liquid cone. Here, the liquid penetration length is defined as
the axial position where the liquid volume fraction is bellow α = 0.05. The
simulations was performed with Fluent and OpenFoam. In all the simula-
tions the computational domain is a cylinder with axial liquid injection. An
axis symmetric model was used because of the symmetry in geometry and
boundary conditions. Equal initial and boundary conditions were imposed
in OpenFoam and Fluent. The simulation starts at time t = 0 seconds when
the injection of liquid is switched on hence as initial condition the air phase
fraction was set to 1 while fuel phase fraction was set to 0 everywhere inside
the domain. At initial instant the domain is filled with still gas. The liquid
phase enter inside the computational domain through a velocity inlet. A
uniform value for ε and k was imposed on inlet while wall functions were im-
posed on walls. The density of the air is an input parameter and so even the
pressure (the temperature field is uniform and constant). The pressure inside
the computational domain was calculated using ideal gas state expression.
The temperature of the two phases is ambient.

In both CFD a multiphase euler solver was used. Since no evaporation
occurs the energy equation can be switched off. In fluent it is easy to switch
off the energy equation and impose constant density for the gas phase; in
OpenFoam this is not possible, to switch off the energy equation modifica-
tions to the code must be carried. To avoid modifications of the OpenFoam
solver the relative temperature residual is set to 2, in this manner the Open-
Foam does not solve the energy equation. The DNS data were provided by R.
Lebas et al (2009) and the experimental data were provided by A. I. Ramirez
(2009)

73
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4.0.1 VOF Model

The first attempt was to simulate the break up using Volume Of Fluid (VOF)
technique. Since similar qualitative results were obtained with Fluent and
OpenFoam only Fluent results are presented in this section.

VOF model is used to simulate two or more immiscible fluids; the flow
is described by only one momentum equation. It is applied to simulate jet
breakup1, motion of large bubble in liquid, dam break, tracking of liquid gas
interface. VOF formulation as Euler-Euler formulation are used to compute
a time-dependent solution, but a steady solver is available too. The main
hypothesis of this model is that the two fluids are not inter-penetrating. VOF
description requires a phase indicator function hence the equation 1.25 is still
valid. The model solves secondary phase and total continuity equations; the
result is pressure and volume fraction. Knowing the volume fraction it is
possible to identify the position of the interface. It also solve one set of
momentum equations using mixture properties. All variables or properties
are shared by the two phases, since the phase volume fraction in any cell is
known the variables are representative of one of the phases (αa = 1 within
cell) or the variables are representative of a mixture of the phases. It is
interesting to notice that since the relative velocity between phases is not
computed it is not possible to calculate the drag acting on phases and the
equation 1.41 can not be solved.

Several simulations where executed. The characteristics of domain ge-
ometry are described by table 4.1, the boundary conditions are summarized
in table 4.3 and table 4.4. Turbulence k − ε and k − ω models were used,
implicit and explicit time schemes were adopted but the qualitative results
remain always the same. The results are represented in figure 4.1. From the
qualitative imagine it is clear that jet breakup does not occurs. The rea-
sons is that VOF model (in OpenFoam it is called interFoam solver)does not
supply inter-phases momentum transfer. A sharp interface between gas and
liquid is preserved. RANS VOF model is not adjusted to simulate liquid jet
breakup. It is a direct method of predicting interface shape between immis-
cible phases, for example stratified flow regimes can be modelled by direct
tracking of interface with Volume of Fluid model. It is also important to
emphasize that VOF model solves exact multiphase equation and boundary
conditions at interface.

1see tutorial 18 on inkjet printer
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Figure 4.1: Qualitative results of breakup modelled with volume of fluid
technique (red zone is αl = 1, blue zone is αg = 1)

4.0.2 Geometry, boundary conditions and mesh depen-
dency

The geometry is a cylindrical chamber whose length and radius was chosen
to avoid the situation in which the liquid phase hit the walls. To create the
geometry and mesh for Fluent and OpenFoam the pre-processor ICEM was
used. There are big differences between ICEM and Ansys Meshing2. Ansys
Meshing does not guarantee the total control on the mesh parameters but it
is useful when it is necessary to create a mesh in short time; it is more user
friendly and is perfect for a new user. ICEM guarantees a total control on
mesh’s elements; for example it is possible to choose the number of nodes on
each surface.

In ICEM before proceeding with the geometry it is necessary to define
the units an the geometrical tolerance.

Settings → Model/Units

Meter was chosen as length unit and the minimum tolerance is set to 1e−07.
Every geometrical part smaller than the imposed tolerance is neglected. The
used geometry is very simple. The first step to create the geometry is to
define the points.

Geometry → Create Points → Explicit Coordinates

The inserted coordinates are itemized in the table 4.1 (or the table 4.2) The
2used to mesh the airfoil profil
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point number x [µm] y [µm]
1st 0 0
2nd 0 50
3rd 0 1000
4th 5000 0
5th 5000 50
6th 5000 1000

Table 4.1: Points coordinate of the domain used to simulate and compare
RANS breakup results with the DNS data

point number x [µm] y [µm]
1st 0 0
2nd 0 85
3rd 0 2000
4th 15000 0
5th 15000 85
6th 15000 2000

Table 4.2: Points coordinate of the domain used to simulate and compare
RANS breakup results with the experimental data

geometry is concluded when the points are joined together in the shape of
two rectangular blocks.

Geometry → Create Curve → From Points

Once the geometry is done it is necessary to link each line to its boundary
name; for example line that joints point 1 and 2 is named fuel inlet.

Parts → Create Part → "Select the curve" → Apply → Rename part

The next step is to use blocking technique to create the mesh. A block
referred to the geometry is created.

Blocking → Create Block → Type → 2D planar → Apply

The block must be split in two parts because the geometry is composed by
two rectangles.

Blocking → Split Block → Select Edges → "select the inlet fuel" → Apply

Because the mesh is created on the blocks and not on the geometry the user
must associate points to vertexes and edges to curves. Vertexes and curves
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Figure 4.2: Mesh and the boundary conditions for breakup simulations

are part of the geometry while points and edges are parts of the blocks
previously created.

Blocking → Associate → Associate Vertex → "select vertex" → "select point"

A similar operation must be followed for edges, it is sufficient to select in
menu "Associate Edge to Curve" instead of "Associate vertex". To associate
a vertex to a point it is sufficient to select with the left button of the mouse
firstly the point and after the edge to whom it is associated. To associate
an edge to a curves the operation is slightly different: the user must select
the edge with left button of the mouse, accept the selection with the middle
button of the mouse and than select the curve to which the edge is associated.
Once the two blocks are associated to the two geometrical rectangles finally
the user can proceeds with mesh generation. The number of nodes is imposed
on each edge of the blocks

Blocking → Pre-Mesh Params → Edge Params → Edge → "select edge"

When the edge is selected it is possible to impose the number of nodes and
the mesh law. In this case was used a linear mesh law. The size of elements
increases from the symmetry axis to the top. The mesh, boundary conditions
and the number of nodes (in red) of each surface are presented in the figure
4.2.

Geometry and mesh for OpenFoam simulations

Since the OpenFoam requires 3D mesh to perform the simulations there are to
possibilities. The first possibility is to use the same mesh reated for fluent and
to translate it in OpenFoam format using the command FluentMeshToFoam
in the terminal. The second option is to create a mesh with blockMeshDict ;
in this case the y coordinates of the points in table 4.2 and table 4.1 have to
be multiplied by cos(5◦) and sin(5◦) in order to obtain an y and z.
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(a)

(b)

Figure 4.3: Possible problems with pressure outlet boundary conditions for
break up simulations

Boundary Conditions for Breakup simulations

The boundary conditions of all the simulations have been chosen in the be-
ginning and maintained constant for all the cases. The boundary conditions
are reported in the figure 4.2. An alternative can seem to change the bound-
ary wall condition with pressure outlet condition. This alternative is not
recommended for break up simulation; indeed, the simulation with pressure
outlet conditions, does not converge in terms of continuity and hence also
in terms of volume fraction. The problems with the convergence is caused
by wrong boundary conditions, Fluent call it "reversed flow". The figure
4.3 presents the velocity field of continuous gas phase on boundaries. The
boundary 1 (upper surface) can not be defined as an outlet or inlet in unam-
biguous mode because in some regions the phase enters while in other exits
from the computational domain. If the boundary 1 (figure 4.3) is changed
in wall and boundary 2 remains pressure outlet reversed flow appears on the
boundary when the dispersed phase approaches the outlet. Moving the out-
let in the distance can avoid this situation but it will increase the number of
cells and computational effort. For these reasons wall boundary conditions
were chosen the most appropriate with the shrewdness to place the walls far
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(a) second mesh (b) third mesh

Figure 4.4: Refined mesh for breakup simulations

enough to avoid the contact with liquid phase. Since the computational do-
main is big enough the pressure of gas phase does not increase considerably,
the local maximum increment in absolute pressure is of 0.1% order.

Case sensitivity to the number of nodes

As a first attempt was created a mesh characterised by 60 nodes in axial
direction and 20 nodes in the radial direction; 5 nodes were allocated on the
inlet. This first mesh is characterized by 1586 cells. The mesh was refined in
zones where was expected to find the liquid fraction. Other two meshes were
created whose near inlet zone is showed in figure 4.4. The second mesh has
2265 elements while the third mesh has 4881 elements. The axial behaviour
of the liquid fraction is showed in figure 4.5 From the plot of the volume
fraction it is evident that the result change slightly from the second to the
third mesh so for this reason the second mesh will be used in Fluent and
OpenFoam simulations (to compare the results with DNS data). Because
in the OpenFoam an explicit solver is used a constrain on the time step is
imposed, for this reason the minimal cell size within mesh is very important
since it is linked to the execution time. In all the simulations the mesh is
coarse near the walls and with good resolution in the in the zone near the
symmetry axis.

4.1 Breakup OpenFoam
To solve multiphase problems OpenFoam provides solvers suitable for differ-
ent physical problems. The solver twoPhaseEulerFoam was considered to be
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Figure 4.5: Axial behaviour of the liquid volume fraction considering different
meshes

the best choice for this purpose. The solver includes:

• compressibility effects;

• heat-transfer;

• generalised two-phase turbulence modelling, including specialised dispersed-
phase generation terms

• generalised run-time model selection

• new models, mainly for flows containing gas bubble.

Since the OpenFoam solver is explicit it is important to maintain Courant
number beneath a unity value. In all the simulations in OpenFoam the
Courant number was less than 0.5. As explained in aerofoil chapter three
folders contain all the information about the case and the solver. Since liq-
uid jet breakup involves two different fluid phases (liquid and the gas) it is
necessary to define the characteristics of both phases and also the character-
istics of the mixture.

• folder 0 this folder include the information at time t = 0 seconds hence
the initial condition and boundary conditions. In this case 17 files were
stored within folder:

– file alpha.air, alpha.fuel : concern the air and fuel phase fraction.
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– epsilon.air, epsilon.fuel, epsilonm: concern ε parameter respec-
tively for gas, liquid and mixture.

– k.air, k.fuel, km concern the turbulent kinetic energy.

– nut.air, nut.fuel concern the turbulence viscosity

– p concern the pressure; the pressure is calculated considering the
ideal gas expression

– p_rgh concern the contribution of the term ρ · g · h zero in our
case because the gravity contribution was not considered g = 0

– T.air, T.fuel concern the temperature of the two phases

– U.air, U.fuel concern the velocity of gaseous and liquid phase

• folder constant contains the information about phase properties hence
how the phase interacts one with each other, thermophysical and tur-
bulence properties for each phase and the gravity file. Six files were
stored in this folder:

– the file g contains the information about the gravity field

– phaseProperties file contains the information about the way of
interacting between phases. Drag model, virtual mass model heat
transfer model, lift model, wall lubrication model and turbulent
dispersion model were specified.

– thermophysicalProperties.air, thermophysicalProperties.fuel holds
the information about thermal model and mixture constants

– turbulenceProperties.air, turbulenceProperties.fuel holds the infor-
mation about the turbulence model

• folder system contains inside the usual files blockMesh, controlDict,
fvSchemes, fvSolution. The nature of this files has been already dis-
cussed within previous chapter.

In OpenFoam it is always important to check the dimensions of the
parameters because different solvers are implemented differently. An
example is the pressure input file in folder 0. Indeed the solver simple-
Foam requires in input the ratio between pressure and density P

ρ
while

the twoPhaseEulerFoam requires in input pressure P .
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Property Fuel
Density [ kg

m3 ] 696
Viscosity [ kg

ms
] 0.0012

Surface Tension [N
m

] 0.06

Table 4.3: Fuel properties used in DNS simulations

Velocity [m
s

] 100
Injector diameter [µm] 100
Turbulent length scale [µm] 10
Turbulent intensity 0.05
Gas density kg

m3 50

Table 4.4: Characteristics of liquid injection in DNS simulation

4.1.1 Comparison of RANS data with DNS data

The DNS fuel properties are listed in the table 4.3 The characteristics of the
liquid injection are presented in the table 4.4. These data were used to set
up the geometry and boundary conditions in RANS simulations.

Particle Diameter

OpenFoam imposes the user to define the particle diameter for all the phases
even in a case of only two phases with one that acts as continuous. Different
sizes where used for the simulations. Firstly turbulent dispersion model was
switched off and the flow was simulated with several combinations of the two
particle diameters. The converged combinations are presented in table 4.5
where Dair and Dfuel is respectively air and fuel particle’s diameters. It was
noticed that the diameter of gas must be at least 10 times the diameter of
the liquid particle to avoid the divergence. An exception is the case 2 in

combination Dfuel [µm] Dair [µm]
case 1 1 · 10−7 1 · 10−6

case 2 1 · 10−6 3 · 10−6

case 3 1 · 10−6 1 · 10−6

case 4 2 · 10−6 2 · 10−5

case 5 3 · 10−6 4 · 10−5

case 6 4 · 10−6 6 · 10−5

Table 4.5: Particle diameter for air and fuel phase
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case dispersion model model constant Dfuel [µm] Dair [µm] note
1 Lopez de Bertodano Ctd = 0.1 1 · 10−6 3 · 10−6 N
2 Lopez de Bertodano Ctd = 0.2 1 · 10−6 3 · 10−6 N
3 Lopez de Bertodano Ctd = 0.4 1 · 10−6 3 · 10−6 N
4 Lopez de Bertodano Ctd = 0.5 1 · 10−6 3 · 10−6 D
5 Lopez de Bertodano Ctd = 0.6 1 · 10−6 3 · 10−6 N
6 Lopez de Bertodano Ctd = 0.5 2 · 10−6 2 · 10−5 Y
7 Lopez de Bertodano Ctd = 0.6 2 · 10−6 2 · 10−5 Y
8 Lopez de Bertodano Ctd = 0.7 2 · 10−6 2 · 10−5 Y
9 Lopez de Bertodano Ctd = 0.8 2 · 10−6 2 · 10−5 Y
10 Lopez de Bertodano Ctd = 0.9 2 · 10−6 2 · 10−5 D
11 Lopez de Bertodano Ctd = 0.4 3 · 10−6 4 · 10−5 Y
12 Lopez de Bertodano Ctd = 0.5 3 · 10−6 4 · 10−5 Y
13 Lopez de Bertodano Ctd = 0.6 3 · 10−6 4 · 10−5 Y
14 Lopez de Bertodano Ctd = 0.7 3 · 10−6 4 · 10−5 Y
15 Lopez de Bertodano Ctd = 0.8 3 · 10−6 4 · 10−5 Y
16 Lopez de Bertodano Ctd = 0.9 3 · 10−6 4 · 10−5 Y
17 Lopez de Bertodano Ctd = 1 3 · 10−6 4 · 10−5 Y
18 Lopez de Bertodano Ctd = 1.1 3 · 10−6 4 · 10−5 D
19 Lopez de Bertodano Ctd = 0.7 4 · 10−6 6 · 10−5 Y
20 Lopez de Bertodano Ctd = 0.8 4 · 10−6 6 · 10−5 Y
21 Lopez de Bertodano Ctd = 0.9 4 · 10−6 6 · 10−5 Y
22 Lopez de Bertodano Ctd = 1 4 · 10−6 6 · 10−5 Y
23 Lopez de Bertodano Ctd = 1.1 4 · 10−6 6 · 10−5 Y
24 Lopez de Bertodano Ctd = 1.2 4 · 10−6 6 · 10−5 D

Table 4.6: Lopez de Bertodano dispersion model settings

the table 4.5; in this case the air particle diameter is only 3 times bigger
than the liquid particle diameter. This behaviour was confirmed also when
the dispersion model was switched on. Was tried also a bigger diameter for
fuel particles as for example 5 · 106 but divergence was detected with the
following air particle diameters: 7 · 10−5, 9 · 10−5, 10−4, 2 · 10−4, 3 · 10−4,
4 ·10−4. It was decided to execute the simulation switching on the dispersion
model and using the combinations of diameters listed in the table 4.5. The
tables, 4.6, 4.7 and 4.8 summarize the turbulence dispersion settings used for
simulations. The meaning of the notes in the previously mentioned tables
are:

• Y: no divergence was detected and was noticed the primary break up
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case dispersion model model constant Dfuel [µm] Dair [µm] note
1 constant Ctd = 0.5 1 · 10−6 3 · 10−6 N
2 constant Ctd = 0.7 1 · 10−6 3 · 10−6 N
3 constant Ctd = 1 1 · 10−6 3 · 10−6 N
4 constant Ctd = 5 1 · 10−6 3 · 10−6 Y
5 constant Ctd = 7 1 · 10−6 3 · 10−6 Y
6 constant Ctd = 10 1 · 10−6 3 · 10−6 Y
7 constant Ctd = 15 1 · 10−6 3 · 10−6 Y
8 constant Ctd = 2 2 · 10−6 2 · 10−5 Y
9 constant Ctd = 2.4 2 · 10−6 2 · 10−5 Y
10 constant Ctd = 3 2 · 10−6 2 · 10−5 Y
11 constant Ctd = 7 2 · 10−6 2 · 10−5 Y
12 constant Ctd = 10 2 · 10−6 2 · 10−5 Y
13 constant Ctd = 1 3 · 10−6 4 · 10−5 Y
14 constant Ctd = 1.5 3 · 10−6 4 · 10−5 Y
15 constant Ctd = 2 3 · 10−6 4 · 10−5 Y
16 constant Ctd = 2.4 3 · 10−6 4 · 10−5 Y
17 constant Ctd = 3 3 · 10−6 4 · 10−5 Y
18 constant Ctd = 1 4 · 10−6 6 · 10−5 Y
19 constant Ctd = 1.5 4 · 10−6 6 · 10−5 Y
20 constant Ctd = 2 4 · 10−6 6 · 10−5 Y
21 constant Ctd = 2.4 4 · 10−6 6 · 10−5 Y
22 constant Ctd = 3 4 · 10−6 6 · 10−5 Y

Table 4.7: constant dispersion model setting
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case dispersion model model constant Dfuel [µm] Dair [µm] note
1 Burns σ = 1 1 · 10−6 3 · 10−6 D
1 Burns σ = 1.5 1 · 10−6 3 · 10−6 D
1 Burns σ = 2 1 · 10−6 3 · 10−6 D
1 Burns σ = 2.5 1 · 10−6 3 · 10−6 D
1 Burns σ = 3 1 · 10−6 3 · 10−6 D
2 Burns σ = 2 1 · 10−6 1 · 10−5 Y
3 Burns σ = 2.5 1 · 10−6 1 · 10−5 Y
4 Burns σ = 2.7 1 · 10−6 1 · 10−5 Y
5 Burns σ = 2.8 1 · 10−6 1 · 10−5 Y
6 Burns σ = 2.9 1 · 10−6 1 · 10−5 Y
7 Burns σ = 3 1 · 10−6 1 · 10−5 Y
8 Burns σ = 1.5 2 · 10−6 2 · 10−5 Y
9 Burns σ = 2 2 · 10−6 2 · 10−5 Y
10 Burns σ = 2.5 2 · 10−6 2 · 10−5 Y
11 Burns σ = 2.7 2 · 10−6 2 · 10−5 Y
12 Burns σ = 1.5 3 · 10−6 4 · 10−5 Y
13 Burns σ = 2 3 · 10−6 4 · 10−5 Y
14 Burns σ = 2.5 3 · 10−6 4 · 10−5 Y
15 Burns σ = 2.7 3 · 10−6 4 · 10−5 Y

Table 4.8: Burns dispersion model setting
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• N: no divergence was detected but no break up was observed

• D: divergence was detected

In phaseProperties dictionary the user can specify the blending model for
the two phases. If the blending model is switched off the drag is done using
the dispersed phase. If the blending model is switched on the drag is inde-
pendently calculated with each phase as "dispersed phase", the overall drag
contribution applied to the momentum equations is volume fraction weighted
average of the two values. The blending scheme is useful approximation for
flows with regions in which either phase is primary phase as in cases stud-
ied in this work. In all the simulations the blending model was activated.
To evaluate the error in liquid volume fraction the DNS, experimental and
RANS data concerning volume fraction were interpolated by a polynomial
functions. Let consider f(s) the polynomial that interpolate DNS data and
g(s) the polynomial that interpolate RANS data. To compare g(s) and f(s)
over the interval [a,b] it is possible to consider the inner product of the two
functions:

< f(s), g(s) >=

∫ b

a

f(s)g(s)ds

from which the error between the two curves is:

||f(s)− g(s)|| =

√∫ b

a

(f(s)− g(s))2ds (4.1)

where f(s) and g(s) give the value of fuel volume fraction for any s position.
The tables 4.9, 4.10 and 4.11 give the approximate error related to phase
fraction for different dispersion models:

• the first column gives the error in axial direction considering a 20 mm
distance from the inlet

• the second column gives the error in radial direction at 0.5 mm from
the injector

• the third column gives the error in radial direction at 10 mm from the
injector

• the fourth column gives the error in radial direction at 20 mm from the
injector

• the fifth column is the error sum of previous errors
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case axial x = 5 ·D x = 10 ·D x = 20 ·D sum
6 17.32 1.09 4.83 8.29 31.54
7 14.13 1.12 4.20 6.49 25.95
8 13.79 0.57 2.46 5.03 21.85
9 10.23 0.50 1.98 4.35 17.07
11 13.03 1.36 4.97 5.09 24.45
12 10.37 1.49 3.99 4.63 20.50
13 5.41 0.90 1.21 4.17 11.70
14 4.88 3.74 1.99 3.40 14.02
15 3.44 0.63 2.68 3.05 9.80
16 2.67 0.69 1.73 2.57 7.67
17 3.29 2.82 2.06 2.64 10.81
19 3.77 2.42 2.45 2.91 11.55
20 4.43 0.91 2.75 2.70 10.79
21 7.47 0.88 3.58 3.20 15.13
22 7.95 0.97 3.04 3.34 15.31
23 9.71 3.74 3.76 3.57 20.77

Table 4.9: Error with Lopez de Bertodano model

From these tables the case 16 of Lopez de Bertodano model gives the
smallest error compared with DNS data. Taking any model apart the best
results are:

• Lopez de Bertodano model case 19 with an axial error equal to 2.67 and
a total error equal to 7.70

• Constant model case 8 with an axial error equal to 2.62 and a total
error equal to 10.79

• Burns model case 3 with an axial error equal to 3.83 and a total error
equal to 9.36

The figure 4.6 presents the plot of fuel volume fraction in the position where
RANS simulations were compared with DNS simulations. As it can be no-
ticed from the plot 4.6 the Burns model presents a more regular behaviour
than the other two models. The figure 4.7 presents qualitative RANS and
DNS results at t = 0.01ms. The temporal behaviour shows that Burns model
presents less oscillations on liquid surface in time compared with other two
models; also in the simulations with Burns model the liquid shape is very
uniform. In the simulations where the dispersions is modelled with Lopez de
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case axial x = 5 ·D x = 10 ·D x = 20 ·D sum
4 3.23 2.36 3.55 5.48 14.63
5 7.78 2.60 3.96 4.64 18.98
6 10.61 2.14 5.24 4.39 22.39
7 12.47 3.09 5.22 3.47 24.25
8 2.62 0.92 2.78 4.46 10.79
9 6.54 1.60 3.84 4.58 16.58
10 5.83 0.85 3.53 4.87 15.08
11 20.10 8.60 4.51 4.23 37.44
12 23.35 8.83 7.40 4.25 43.84
13 7.027 1.14 4.27 6.14 18.58
14 2.50 1.96 3.59 3.69 11.74
15 8.09 2.07 4.54 4.26 18.96
16 33.93 1.71 3.70 4.51 43.87
17 14.44 3.45 5.92 4.51 28.32
18 4.28 1.20 3.75 4.70 13.94
19 4.70 1.02 3.53 4.17 13.42
20 8.57 1.20 4.32 3.26 17.35
21 11.44 2.57 4.64 3.96 22.60
22 14.55 4.60 5.55 3.87 28.59

Table 4.10: Error with Constant model

case axial x = 5 ·D x = 10 ·D x = 20 ·D sum
2 4.31 1.74 2.06 2.18 10.29
3 3.82 1.35 2.16 2.02 9.36
4 4.22 1.27 2.27 2.07 9.82
5 4.47 1.24 2.34 2.11 10.16
6 4.75 1.21 2.40 2.17 10.54
7 5.04 1.20 2.47 2.24 10.93
8 12.79 4.17 4.45 2.37 23.78
9 9.26 2.91 3.61 2.24 18.02
10 6.56 2.16 4.59 2.34 15.65
11 5.82 1.97 3.07 2.45 13.31
12 12.32 4.08 4.32 2.43 23.15
13 9.22 2.92 3.76 2.52 18.42
14 6.88 2.27 3.50 2.82 15.46
15 6.20 2.11 3.48 2.98 14.77

Table 4.11: Error with Burns model
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Figure 4.6: plot of volume fraction and comparison with DNS data



90 CHAPTER 4. BREAKUP SIMULATIONS

(a) DNS

(b) Burns model

(c) Constant model

(d) Lopez de Bertodano model

(e) Rans simulations colour map

Figure 4.7: Qualitative behaviour of the volume fraction obtained with RANS
simulations and compared with DNS simulation at time t = 0.1 ms
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Property Viscor Cerium blend
Density ρf [ kg

m3 ] 865.4
Viscosity [ kg

ms
] 0.0029

Surface Tension [N
m

] 0.026
Vapor pressure [Pa] 1057

Table 4.12: Fuel properties at 317 K

Bertodano model there is a separation of a conspicuous quantity of liquid in
the first instants of the simulation. This quantity preserves a high value of
liquid fraction till t = 0.1 ms. The zone between the injector and this liquid
quantity is characterized by small fluctuations on the inter-facial surface. The
Constant turbulent dispersion model has a behaviour intermediary between
Lopez de Bertodano model and Burns model. Indeed this model presents
fluctuations on the surface of the dispersed liquid cone but no high fraction
zone that precedes the spray is observed. Taking in consideration the liquid
penetration, Burns model has a bigger penetration length than other two
models while the Lopez de Bertodano model the smallest one. However data
concerning liquid penetration are not provided with DNS simulation. Lopez
de Bertodano model presents the smallest error in terms of liquid fraction
distribution.

4.1.2 Experimental data Vs Rans Simulations

Once the dispersion models were set and results with tolerable errors were
obtained the next step consists in understanding if the dispersion model’s set-
ting is independent or not from the boundary conditions. New data are nec-
essary for this purpose. In this case experimental data were used to compare
the Rans results. The experimental data are collected in the paper Quantita-
tive X-ray measurements of high pressure fuel sprays from production heavy
duty diesel injector by A.I.Ramìrez, S.Som, Suresh K. Aggarwal and others.
To check the behaviour of the models the settings of the best configurations
in tables 4.9, 4.10 and 4.11 were kept while the boundary conditions were
changed to overlap the experimental configuration. New simulations with
the new BC were carried out and comparisons with experimental data were
performed. The experimental fuel properties are presented in the table 4.12
while the characteristics of liquid injection are presented in 4.13. Comparing
the tables 4.12 and 4.13 with 4.4 and 4.3 the liquid properties and injection
diameter are similar. However the velocity of DNS data is 100m

s
while the

experimental velocity varies from 0 to 240m
s
. Experimentally the X-ray ra-

diography technique has been used to investigate the behaviour of fuel sprays
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Velocity [m
s

] varies from 30 to 250
Injector diameter Df [µm] 169
Gas density ρg kg

m3 34.13

Table 4.13: Characteristics of liquid injection in DNS simulation

in the near injector region. The experimental 21 MPa oil rail pressure case
was chosen to validate the RANS data. The paper presents data concerning
the mass flow rate which was used to impose the boundary conditions. The
results obtained with Rans respect the liquid penetration and liquid volume
fraction behaviour are compared with provided experimental data.

Boundary conditions

The boundary conditions are fundamentals for the simulations, changing BC
changes is equivalent to change the physical situation. All the simulations
treated in this subsection has the following computational domain: a cylin-
drical box with axial length equivalent to 15 mm and the height from the
symmetry axis equal to 4 mm. The same type of boundary conditions was
maintained as in previous case: axis, inlet and wall. The big difference con-
sists in the conditions applied at the inlet. The inlet conditions of the RANS
simulations are reportable to experimental data in figure 4.8 The figure 4.8
provides the flow rate in some exact instances but also a linear interpolation
of this data. From the figure 4.8 and the table 4.12 and 4.13 in hypothesis
of ρf = constant it is possible to extract the velocity using:

U(t) =
ṁ(t)

ρfπ
D2
f

4

The figure 4.9 is the plot of velocity profile of the case characterized by an
oil pressure of 21 MPa. The curve in blue is the polynomial function that
fits the experimental data. The line in red is the equivalent of the red line in
figure 4.8.

Simulations

The aim of the simulation is to verify the capability to predict the radial
and axial liquid phase fraction. The experimental data of the liquid phase
behaviour are provided in µg

mm2 and non in volume phase fraction as in the
case of DNS simulations. The experimental measurements of liquid fraction
obtained with X-ray radiography are defined as the density of the spray (in
mass per unit volume) integrated over the path length of the beam giving
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Figure 4.8: Rate of injection from experiments

Figure 4.9: Velocity profile at the injector of experimental case
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Figure 4.10: liquid penetration for 5% turbulence intensity

data in mass per unit area. Since the fuel and gas density are constant it is
expected that the behaviour of the volume phase fraction is similar to the
behaviour of the projected density quantity.

First of all new simulations were carried out with the new boundary
conditions. The boundary condition at the inlet was imposed as velocity
inlet where the value of velocity is reported in the figure 4.9. Holding fixed
the inlet condition different turbulence properties were imposed:

• first case the turbulence parameters were kept equal to the DNS data
so turbulence velocity equal to 5% of the averaged velocity and turbu-
lence length scale equal to 10% of the diameter.

• second case: the figure 4.9 marks the fluctuations of the fuel velocity
at the outlet of the injector. It is possible to link these fluctuations
to the turbulence velocity urms indeed the fluctuation velocity can be
defined as urms = |U2 − U1| where U2 is the real experimental velocity
(green dots) while U1 is the velocity extracted from the red line. Since
the instantaneous behaviour of the velocity at any instant is unknown
it is possible to assume as first approximation that urms is equal to 50%
of U1

The simulation time is t = 0.15 ms.

First case: turbulent intensity urms = 5%U1 The results concerning
the liquid penetration are showed in figure 4.10. The liquid penetration
was valued as the axial position, for any time step, where the liquid volume
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fraction α = 0.05. As it can be noticed Lopez de Bertodano model presents
the best results while Burns model has the biggest error.

If the qualitative liquid phase distribution is examined it is noticed that
the cone aperture of the liquid phase in RANS simulations is lower than the
experimental.

Turbulent intensity 50% The figure 4.11 shows the qualitative liquid
phase distribution a time t = 0.15 ms obtained in experiments and with
RANS simulations. A clear difference between experimental data and Lopez
de Bertodano (and Constant coefficient model) is noticed. In Rans simula-
tions an accumulation of liquid with high volume fraction proceed first; this is
not noticed in experiments. This is the reason why the two dispersion models
are considered not suitable in break up RANS simulations with a high value
of turbulence intensity. On the other hand the Buns model presents a liquid
distribution very similar to the experimental behaviour. This is the reason
why only Burns model is considered in the next section about the influence
of boundary and initial conditions on RANS simulations . The figure 4.12
compares the RANS liquid penetration at turbulence intensity equal to 50%
with the experimental data. The plot marks a small error compared with
experimental data till t = 0.07 ms but from this instant the error begin to
increase. As a result, a bigger error is obtained in liquid penetration if the
turbulence intensity is increased by an order of 10. The liquid penetration of
the case with I = 50% is less than 6 mm. If the distribution of liquid fraction
obtained with experiments and simulations is compared, a smaller error is
noticed in simulations with I = 50% than in simulations with I = 5%. So
an enhancement of turbulence intensity causes a bigger cone opening. This
behaviour is showed in figure 4.13 where is plotted the liquid distribution
in radial direction at the position x = 4.5 mm. From figure 4.11, 4.13 and
4.10 emerges that the high value of turbulence intensity increases the cone
aperture but decreases the liquid penetration. Finally it is important to re-
call that the turbulence intensity at the inlet in the previous simulations is
constant.
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(a) Experimental data

(b) Constant coefficient I = 5%

(c) Burns I = 5%

(d) Lopez I = 5%

(e) Lopez I = 50%

(f) Constant coefficient I = 50%

(g) Burns I = 50%

(h) Rans simulations colour map

Figure 4.11: Rans simulations with different inlet turbulence intensity com-
pared with experimental data at time t = 0.15 ms
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Figure 4.12: liquid penetration for 50% turbulence intensity

Figure 4.13: Liquid fraction calculated with RANS Burns model at different
values of turbulence intensity defined on inlet.
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4.1.3 The importance of boundary conditions

In the previous section was showed that, in hypothesis of constant turbulence
parameters3, raising turbulence intensity causes a smaller liquid penetration
length but a bigger liquid cone aperture. The real velocity profile in figure
4.9 has a periodic behaviour. It is possible to interpolate the real velocity
behaviour with a polynomial function and a linear function. If U3(t) is the
velocity obtained with the polynomial function and U1(t) is the velocity ob-
tained with linear interpolation of real velocity than u(t)rms = |U3(t)−U1(t)|.
Estimating urms in a such way, it is possible to impose turbulence boundary
conditions as follows:

• the turbulence intensity value I(t) = u(t)rms
U1(t)

. I(t) was bounded by a
minimum value of I = 0.05 and a maximum value of I = 0.5 to avoid
problems with convergence

• the turbulence length scale value L(t) is calculated from a linear func-
tion created on the assumption that L = 0.1 · D if I(t) = 0.05 and
L = D if I(t) = 0.5

Only Burns model was used for these simulations. The figures 4.15 and 4.14
exhibits the radial phase volume fraction behaviour and the liquid penetra-
tion length. The word transient is referred to the varying value of intensity.
It is possible to mark that the liquid penetration behaviour seems to in-

terpolate the experimental data. The simulation also manifests a good cone
aperture. The main difference between the simulation with transient and
I = 50% is that the turbulence intensity has not a high value in the first in-
stants of the injection. Because of relatively small turbulence intensity value
(circa 20%) at t = 0 s the liquid penetration is acceptable. Indeed other sim-
ulations were performed. It was noticed that starting with a smaller value
of turbulence intensity and than increasing I in the next instants bring to
better results rather starting with a high value of turbulence intensity.

3turbulence intensity and turbulence length scale
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Figure 4.14: Liquid penetration obtained with Burns model and compared
with experimental data.

4.2 Fluent results compared with DNS data

4.2.1 How to set the fluent case

It can be useful to define the steps to follow on the Fluent interface to set
the simulations. Once fluent is launched in general options it is possible to
impose the solver characteristics

General → Solver

Inside this menu was chosen a pressure-based type solver with the absolute
velocity formulation. The time scheme is transient and the case is 2D axis-
symmetric. The second step is to chose the multiphase model.

Models → Multiphase

Eulerian model was chosen and the number of phases was imposed to 2. It
is also possible to chose the numerical scheme. By default the numerical
scheme is explicit; it was changed to implicit since with implicit scheme it is
possible to reduce the solver time. All eulerian parameters4 were switched
off. The energy equation was switch off:

Models → Energy → off

4Dense Discrete Phase model, Boiling model, Multi-Fluid VOF model
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(a) x = 0.283 mm

(b) x = 2.483 mm

(c) x = 7.083 mm

Figure 4.15: Liquid fraction obtained with OpenFoam solver and compared to
experimental data at different axial position and 0.15 ms after the injection.
Transient is referred to the transient value of turbulence intensity
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In our case was chosen not to use the energy equation because it is not
necessary in cases with constant ρ. Evaporation was not considered and so
the two phases have the same temperature and constant density. The second
reason why the energy equation was deactivated is that it complicate the set
of equations and increase the required computational effort. Hence if it is
possible to simplify the set of equation and obtain physical results it must be
done. Without energy equation it is not possible to use ideal gas formulation
and so not only the pressure but also the gas density must be imposed. The
third model is viscous model.

Model → Viscous

Standard k − ε formulation was chosen with standard near-wall treatment.
One of the three, already described in section 2.3, turbulence multiphase
model can be chosen. The model constants were maintained as default and
no user defined function was used for primary or secondary phase. All the
other models: radiation, heat exchanger, species, discrete phase and acoustics
were switched off. It must be observed that if dense discrete phase model
was chosen as eulerian parameter in multiphase model it would be necessary
to activate discrete phase model. Once the models were chosen the next
section is the material properties. Three materials must be defined: gas,
liquid and solid. By default only two of these materials exists: gas air and
solid aluminium. To create the third material:

Material → Create/Edit → Fluent Database → diesel-liquid

Once all the materials are created it is possible to edit their properties:

Materials → air (or diesel-liquid) → edit

The material properties are reported in tables 4.12 and 4.4. The aluminium
properties were maintained as default. The next step is to define the primary
and secondary phase.

Phases → primary-phase → edit → phase material → air → ok

The primary phase is always the continuous while the secondary phase is
always the dispersed phase. In a similar way it is possible to chose the
diesel liquid as secondary phase. When the secondary phase is chosen, in
the same menu, it is possible to define the characteristic diameter of the
dispersed phase. This diameter will be used to calculate the drag forces
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acting on secondary phase5. The granular and inter-facial area concentration
are switched off. The next step is to choose the boundary conditions

Boundary Conditions → "chose zone" → edit → "chose correct condition"

It is important to set the operating conditions inside the boundary menu.
Selecting operating condition a new window appear where the operating
pressure can be chosen. The pressure was calculated with real gas state
equation. It is important to chose as reference pressure location a point
where for sure αg = 1. Considering the actual geometry such coordinates
are [1e− 05 0.0005 0] expressed in meters. The gravity force is switched off.
For break up simulations the reference values are not so important as for
aerofoil simulations. At this step the solution set-up is concluded. Selecting
"solution methods" entry it is possible to chose the spatial discretization and
transient formulation. The under relaxations factors stay inside "solution
control" menu. All relaxation factor were preserved as default. In

Monitors → Residuals → edit

is possible to choose when stop the iteration within one time step. Two
convergence criteria are possible: absolute and relative. It can be chosen a
high number of iteration inside one time step and some absolute convergence
criteria to stop the simulation. The value of convergence criteria depends on
the physics that is simulated. A value of 1e− 03 is acceptable for continuity
while for other equations it depends on the problem. The absolute criteria
used for continuity and volume fraction is 1e−05. It was observed that almost
always the continuity residual had the highest value if compared with the
other residual quantities. The solution initialization set-up is very important.
In aerofoil simulations any case was initialized with hybrid initialization but
this method is not suitable for breakup simulations. Indeed with hybrid
initialization all the domain is filled with liquid at time t = 0. The case must
be initialized with standard initialization.

Solution Initialization → compute from → "select the liquid inlet"

and

Solution Initialization → Initial values → phase 2 Volume Fraction → 0

The previous operation is very important indeed it imposes αg = 1 at time t =
0 in any cell of the domain. It is important to check all the values inside the

5fluent does not requires to define a characteristic diameter for primary phase.
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initial values window and to ascertain that its are physically reasonable. After
the check was done to initialize the case it is sufficient to select "Initialize" in
solution initialization menu. Selecting "run calculation" menu it is possible
to chose the temporal and iterative parameters of the simulation. Since no
limit is imposed by Courant number, the time step size was imposed equal
to 2.5e− 06. However it is recommended to calculate the time step size with
a Courant number non above 200. If the simulation does not converge a
possible solution can be to lower the time step size. The maximum iterations
per time step can be chosen relatively high and depend by the problem.
Usually the solution converge slowly in the first instants of the simulation.

The Fluent software presents three k−ε turbulent models for simulations:
dispersed, mixture and per phase. All these models were tested. The tables
4.14, 4.15 and 4.16 present the configurations of these models of the most
representative results. The error reported is calculated with the equation 4.1.

4.2.2 Dispersed turbulence treatment

The table 4.14 resumes the used parameters in simulations with dispersed
turbulence treatment. Three main choices affects the simulation’s results:
dispersion model, model constant and the secondary phase characteristic
diameter. In the table 4.14 the cases from 1 to 4 have the same dispersion
model, same particle diameter but the model constant changes. The best
results are obtained with the first case. If the particle diameter is increased to
D = 2·10−6 as in case 6, than the maximum possible constant is C = 0.2, with
constant higher values the case diverges. The same behaviour was noticed
with D = 3 · 10−6. If the particle diameter is decreased to D = 5 · 10−7 and
the constant is maintained C = 0.2 the results remains practically unaltered.
The difference between the error of case 1 and case 7 is too small to conclude
which case is better. Indeed the error calculated with equation 4.1 is based on
the polynomial interpolation of the RANS and DNS data therefore the error
itself depends on the grade of the polynomial interpolation. Moreover, the
data used to create the interpolation was extracted from graphics using the
open source software Engauge-digitizer, for this reason there is an intrinsic
user error. It was disclosed from simulations that the maximum diameter
to avoid the divergence is D = 4 · 10−6 whereas the minimum acceptable
diameter is D = 2 · 10−7. Physical results were obtained only with diameters
smaller or equal to 10−6. In general, decreasing the constant value of Burns
model, the breakup of liquid jet approaches to the inlet while no strong
influence, in terms of breakup length, from diameter value was found.

Only two results of Lopez de Bertodano model are presented in the ta-
ble 4.14. The model constant must be increased to improve the simulation’s
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case dispersion model model constant Dfuel [µm] error
1 Burns C = 0.2 1 · 10−6 2.37
2 Burns C = 0.3 1 · 10−6 4.93
3 Burns C = 0.4 1 · 10−6 8.40
4 Burns C = 0.5 1 · 10−6 11.06
5 Burns C = 0.2 2 · 10−6 5.64
6 Burns C = 0.2 3 · 10−6 10.77
7 Burns C = 0.2 5 · 10−7 2.25
8 Lopez de Bertodano C = 1.5 1 · 10−6 6.17
9 Lopez de Bertodano C = 1 1 · 10−6 10.34
10 Simonin C = 0.55 1 · 10−6 5.94
11 Simonin C = 0.65 1 · 10−6 4.91
12 Simonin C = 0.75 1 · 10−6 4.93
13 Simonin C = 0.85 1 · 10−6 5.61
14 Simonin C = 1 1 · 10−6 7.02
15 Simonin C = 2 1 · 10−6 14.24
16 Simonin C = 0.55 2 · 10−6 13.14
17 Simonin C = 0.55 3 · 10−6 17.34
18 Simonin C = 0.65 5 · 10−7 7.66

Table 4.14: Fluent turbulence treatment: dispersed model

result but increasing the constant the simulations diverges in the first time
steps. If the droplet diameter is decreased and the constant is increased the
simulation does not diverge in the very beginning but in the following time
steps without reaching the last simulation’s time step. The general behaviour
of this model is: decreasing the diameter the breakup length increases; in-
creasing the model constant the break up length decreases.

Simonin model gives better results but not so good as Burns model. Case
11, in the table 4.14, presents the best results. Simonin model is not influ-
enced by the energy equation. Maintaining the same value of particle di-
ameter it is possible to decrease the jet breakup length by increasing model
constant. Preserving the value of the model constant and increasing the
droplet diameter the breakup length increases.

The VOF model is not reported in the table respective to dispersed turbu-
lent treatment because for some combinations of diameter and constant val-
ues the model diverged, for other combinations the residuals oscillate round
non acceptable values.
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4.2.3 Mixture turbulence treatment

The next k− ε multiphase turbulence treatment is mixture, the data relating
RANS simulations are provided in table 4.15.

Considering Burns model the best result is obtained in case number 2. It
is interesting to notice that if the diameter is increased by 2.5 times (as in case
6) the error scarcely changes. However if the diameter is decreased by a ratio
of two (as in case 7) the error increases it’s value by a fourth. This means
that unlike in dispersed turbulence treatment, when the model converges, it
is more sensitive to the diameter variation. Comparing the case 7 and 1 it
is possible to notice that the errors are practical identical between the two
cases (the same can be observed between case 6 and 3); it is possible to state
that increasing or decreasing the diameter by a factor of two is quasi the
same as decreasing or increasing the constant by a 0.1 quantity. Accordingly
the variation of particle diameter produces less difference in results as the
variation of model constant. The behaviour of the Burns model is to increase
the breakup length scale if the model constant is decreased; to increase the
breakup length scale if the particle diameter is decreased.

The next model is VOF turbulence dispersion. The best result was ob-
tained in case number 10. It is the best result not only obtained between the
cases studied with VOF model but is the best result obtained considering
mixture treatment of turbulence. Comparing the case 10 to the case 12 in
which the diameter was doubled it is possible to note a small increasing of
the error due to an increase in liquid breakup length. The VOF turbulence
dispersion model gives good results only considering the mixture turbulence
treatment.

Considering Lopez de Bertodano model the best result is obtained with
case 14. It is interesting to notice that the constant is much bigger than
the constant of the best result with dispersed turbulence treatment (see ta-
ble 4.14 case 8). Increasing the constant model it is possible to decrease
the length scale of the liquid breakup. Decreasing the diameter the breakup
length decreases while decreasing the model constant the breakup lenth in-
creases. Also it was marked that considering a diameter D = 1e − 06, the
case converges with a constants 16, 22 but diverges with constant 20.

Finally Simonin model gives the best results in the case 19. Increasing
the model constant the liquid breakup length decreases. Comparing cases 21
and 22 it was noticed that a double diameter produces small increment in
breakup length.
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case dispersion model model constant Dfuel [µm] error
1 Burns C = 0.8 1 · 10−6 4.92
2 Burns C = 0.7 1 · 10−6 3.79
3 Burns C = 0.6 1 · 10−6 3.95
4 Burns C = 0.5 1 · 10−6 5.71
5 Burns C = 0.2 1 · 10−6 16.23
6 Burns C = 0.7 2.5 · 10−6 3.97
7 Burns C = 0.7 5 · 10−7 4.98
8 Diffusion in Vof C = 2 1 · 10−6 11.93
9 Diffusion in Vof C = 2.5 1 · 10−6 5.41
10 Diffusion in Vof C = 3 1 · 10−6 2.98
11 Diffusion in Vof C = 3.5 1 · 10−6 6.22
12 Diffusion in Vof C = 3 2 · 10−6 4.03
13 Lopez de Bertodano C = 8 1 · 10−6 9.27
14 Lopez de Bertodano C = 11 1 · 10−6 7.12
15 Lopez de Bertodano C = 16 1 · 10−6 7.81
16 Lopez de Bertodano C = 22 1 · 10−6 12.20
17 Lopez de Bertodano C = 16 2 · 10−6 21.60
18 Simonin C = 0.45 1 · 10−6 7.08
19 Simonin C = 0.65 1 · 10−6 3.66
20 Simonin C = 0.85 1 · 10−6 5.63
21 Simonin C = 0.65 2 · 10−6 4.29

Table 4.15: Fluent turbulence treatment: mixture model
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case dispersion model model constant Dfuel [µm] error
1 Burns C = 1 1 · 10−6 7.04
2 Burns C = 0.8 1 · 10−6 4.01
3 Burns C = 0.6 1 · 10−6 4.60
4 Burns C = 0.4 1 · 10−6 9.99
5 Diffusion in Vof C = 2 2 · 10−6 17.95
6 Diffusion in Vof C = 4 2 · 10−6 19.24
7 Simonin C = 0.65 1 · 10−6 4.06

Table 4.16: Fluent turbulence treatment: per phase model

4.2.4 Per Phase turbulence treatment

The last case is computationally the most complex because as has already
been mentioned involves two set of k − ε equations. Only two models give
physical results: Burns and Simonin. Lopez de Bertodano model does not
converge. VOF model converges but gives physical wrong results as is ex-
pressed by the cases 5 and 6 in table 4.16

The first four cases in the table 4.16 are related to Burns model. The case
2 presents the smallest error. One important thing has to be pointed out:
usually the models needed more than 100 iteration in the initial time steps
to converge but converged very quickly in the last part of the simulation.
Burns model with per phase turbulence description converges very quickly
from the beginning to the end of the simulation. The similar behaviour
to the previously Burns cases was noticed: small dependence from droplet
diameter in terms of liquid breakup length. Increasing the droplet diameter
the length scale increases. Increasing the model constant the liquid length
scale decreases.

The Simonin model presents a behaviour very similar to the mixture cases.
The behaviour of the case 7 in table 4.16 is very similar to the behaviour of
case 19 in table 4.15. The consequence of the variation of model constant
and particle’s diameter qualitatively is identical to the cases already stud-
ied in mixture and dispersed turbulence multiphase treatment. The figure
4.16 shows axial behaviour of the volume fraction and radial behaviour at
following axial positions x = 5 · D = 0.0005µm, x = 10 · D = 0.001µm,
x = 20 · D = 0.002µm. Considering the position x = 20 · D = 0.002µm it
is possible to have an idea about the cone aperture of the liquid spray. All
the models, except diffusion in VOF model, slightly over-predict the cone an-
gle. In dispersed turbulence treatment, Lopez de Bertodano model predicts
a non uniform axial behaviour of the volume fraction. If figures 4.7 and ??
are compared it is possible to conclude that Fluent software does not creates
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(a) Mixture turbulence treatment

(b) Discrete turbulence treatment

(c) Per phase turbulence treatment

Figure 4.16: Breakup RANS data from fluent simulations at time t = 0.1 ms
compared with DNS data for different turbulence treatment
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fluctuating zones as OpenFoam, and so qualitatively fluent shows a better
physical behaviour. The fluctuating behaviour was not verified in any of the
Fluent simulation.

4.3 RANS Fluent results compared with exper-
imental data

The models with the best results were considered to simulate the experimen-
tal case. The simulation’s results are compared with experimental data to
understand how boundary conditions and material properties condition the
models. When convergence is not reached some changes to the model must be
performed. It is possible to change the numerical schemes, slightly alter the
turbulence parameters or the model constants6. The boundary conditions
were changed accordingly to the experimental set-up while the turbulence
dispersion model constants where chosen equal to the models discussed in
previous section. None of models converged with dispersed turbulence treat-
ment. When the divergence of some quantity7 was verified, changing the
numerical schemes it was always possible to avoid the divergence but not
always was possible to make converge the simulation. In general exist one
or more time steps within simulation when the residual remain high. The
main problems were related to the continuity residuals that had the trend to
oscillate around a value of order 1e− 2 that is too high to be accepted.

4.3.1 Burn turbulence dispersion model

Using mixture turbulence treatment model only two dispersion models con-
verged: Burns model and Simonin model.

Mixture turbulent treatment

The model constant (C = 0.7) and liquid diameter D = 1e − 06 were fixed
to the same values of case 2 in the table 4.15. The boundary conditions were
changed accordingly to the experimental set-up. The values of k and ε were
calculated with a matlab function as explained in section 4.1.3. In what

6It is referred to model such turbulence dispersion and does not refer to turbulence
model. It is not recommended to change turbulence constants; a modification of one
constant in the turbulence model involves a variation of all other constants since its are
interdependent. The turbulence constants are based on multiple experimental data and
are chosen to make the model stiff.

7generally k was the must problematic quantity
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follows different numerical schemes were adopted but it was inferred that
changing numerical scheme can be a good attempt to avoid the divergence
but not the oscillations of residual terms. In the first simulation it was not
possible to reach the convergence, at time t = 2e − 05 the continuity began
to oscillate around a value of order 1e − 02. The turbulence length scale
was slightly changed but without acceptable results. Modifications of k and
ε values only shifted the instant when continuity begin to oscillates around
unacceptable values. The last attempt was to use the droplet diameter equal
to 2e−06, constant turbulence intensity and constant turbulence length scale;
the values were calculated as average of the values calculated as explained
in section 4.1.3. With this choices of turbulence intensity (I = 20%)and
turbulence length scale (l = 65µm) the continuity was stabilized. Since
the value of liquid penetration was less than 7mm the turbulence intensity
and turbulence length scale were reduced respectively to 5% and 16.9µm
and set time independent. The figure 4.17 shows the improvement in liquid
penetration.

Per phase turbulent treatment

Comparing the per phase residuals with mixture residuals the conclusion
is that per phase model (with same boundary conditions and numerical
schemes) is more stable in convergence. However also in per phase model
it was necessary to increase the droplet particle diameter to 2e−06 for conti-
nuity stability. The boundary turbulence values are calculated as explained
in section 4.1.3. The simulations converged but the liquid penetration is un-
derestimated (less than 7mm) ??. Also in this case the boundary turbulence
parameters were decreased to I = 5% and l = 16.9µm to obtain a better
result for liquid penetration length as showed in figure 4.17

4.3.2 Simonin turbulence dispersion model

Simonin model converges only with a Mixture and Per phase multiphase
turbulence treatment.

Mixture turbulence treatment

The model turbulence constant (C = 0.65) and particle diameter (D =
1e − 06) is reported in case 19 of table 4.15. The boundary conditions and
geometry changed according to the experimental case. The first attempt
was to introduce as turbulence boundary conditions the values calculated as
explained in section 4.1.3 but the same behaviour, as for Burn model, was
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observed: continuity does not converge. The continuity began to oscillate
at t = 2.25e − 05 and varying the numerical schemes was not possible to
eliminate the continuity abnormal trend. The case does not converge neither
using the averaged turbulence value for turbulent intensity (I = 20%) and
length scale (l = 65µm). Increasing the droplet diameter, the convergence
behaviour did not change. It was verified that the model converge with lower
values of turbulence (I = 5% and l = 16.9µm) and D = 2e − 06µm. The
figure 4.17 (b) shows the qualitative behaviour of liquid volume fraction and
liquid penetration length.

Per phase turbulence treatment

Considering per phase turbulence treatment with the Simonin constant model
(C = 0.65) and particle diameter D = 1e− 06 does not converged when was
applied the turbulence boundary condition calculated as explained in section
4.1.3. The case converged with diameter D = 2e − 06. However the liquid
penetration length is not satisfactory because less than 7mm.

4.4 Conclusion

Fluent and OpenFoam gave acceptable results considering the liquid pen-
etration and cone aperture. However there are some important differences
between the settings of the two softwares. The first big difference is that
in OpenFoam does not exist an implicit scheme to solve multiphase cases.
For this reason the OpenFoam simulations are limited by the Courant num-
ber and so demand more time to finish. Fluent is supplied by an implicit
solver hence the Courant number does not limit the simulation. The second
big difference is that Fluent has more turbulence treatment for multiphase
cases while OpenFoam has just the per phase turbulence model. However
from simulations was concluded that per phase model has less problem with
convergence and give acceptable results. Fluent does not have the blending
model to calculate the drag force, for this reason the drag contribution in
the momentum equation is calculated considering the dispersed phase char-
acteristic diameter. OpenFoam is provided with blended model ad so it
automatically weights the drag forces based on phase fraction.

Several models to simulate the turbulence dispersion are presented within
OpenFoam and Fluent. However only Burns model proved to be stable in
Fluent and OpenFoam. Constant model, Lopez de Bertodano model and
Diffusion in VOF model failed to simulate the breakup. Simonin model,
presented only in Fluent, also gave acceptable results. It is interesting to
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(a) experimental behaviour of liquid fraction

(b) turbulence mixture I = 5%, turbulence dispersion: Simonin model

(c) turbulence per phase I = 5%, turbulence dispersion: Burns model

(d) turbulence mixture I = 5%, turbulence dispersion: Burns model

(e) the map refers fluent RANS simulations

Figure 4.17: Qualitative behaviour of the liquid fraction compared with ex-
perimental data
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(a) axial position x = 0.283µm

(b) axial position x = 2.483µm

(c) axial position x = 7.083µm

Figure 4.18: Radial distribution of volume fraction obtained with Burns
model and compared with experimental data
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(a) axial position x = 0.283µm

(b) axial position x = 2.483µm

(c) axial position x = 7.083µm

Figure 4.19: Radial distribution of volume fraction obtained with Simonin
model and compared with experimental data
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notice that the Simonin and Burns constants used in Fluent simulations are
very similar. The liquid characteristic diameter that gave best results is
D = 2e− 06; it was noticed that when the case does not converge varying a
little the particle diameter can bring to convergence.

Transient boundary conditions was applied at the inlet. To approach the
experimental results using OpenFoam the turbulent intensity defined at the
inlet was increased to values of order of 20% for simulate the experimental
case, and maintained I = 5% to simulate the DNS case. Using Fluent a
constant turbulence intensity (I = 5%) and constant turbulent length scale8

(l=10%D) gave good results compared with DNS and experimental data.
This different behaviour can be due to the different temporal scheme.

8D is the diameter
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Conclusion

OpenFoam and Fluent was used to simulate and validate two aerospace prob-
lems: liquid jet breakup near the nozzle and drag force coefficient for a clas-
sical aerofoil’s profile.

OpenFoam is an open source CFD. It does not have an interface and
all the commands must be provided using .txt files. The absence of the
interface can be a negative but also a positive note. The lack of interface
impose the user to understand better how the software works; what numerical
schemes it uses, what models are switched on. In this condition the CFD
software does not obscure anything from the user who have the maximum
control on what is happening. The lack of the interface is unfavourable when
the case must be created from zero, when every file must be generated and
tuned for the physical case that must be simulated. This operation can
request a lot of time. Another positive aspect of OpenFoam is that it has
practically all the numerical schemes used in commercial solvers and a lot
of models for different physical problems. If the user has some knowledge
about programming he can modify the solver, add new models or change
the existing one. OpenFoam has a very user friendly post processor called
paraFoam. Finally if the geometry is simple it is possible to define the
mesh using blockMesh without the requirement of using an external pre-
processor. The most important OpenFoam’s shortcoming is the lack of an
official documentation. The absence of the user and theory guide imposes
the to examine the code and to understand it’s implementation.

Fluent has an interface that accompanies the user in setting the case.
The presence of the interface can be useful because save a lot of time but
sometimes it can hide some options or some used models. Sometimes Fluent
can converge to some plausible result even if some parameter was defined
erroneously. Fluent seems to be much more fast and solid in convergence,
but this depend on the user skill to set the case, to chose the boundary and
initial conditions. Finally there is a lot of information about setting the
classical problems in Fluent. There is an official user guide and a theory
guide that drives the user inside the software’s menu and settings.

117
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Analysing the drag aerofoil results, with the configuration used and de-
scribed in the third chapter it was not possible to solve with OpenFoam the
viscous boundary layer using the created mesh. OpenFoam is very sensitive
to transition ratio between cells of the grid and so it is difficult to make a
mesh with y+ less than one to solve the laminar zone in boundary layer. The
use of wall function gave results on evaluating Cd with an error in a range of
[10% , 20%]. Fluent managed to solve the viscous sub-layer providing results
with an error less than 10%.

Considering the second part of the simulations the purpose was to simu-
late the breakup in the near nozzle zone. It was established that using RANS
model and Volume of Fluid technique it is not possible to simulate the jet
breakup and to study the radial behaviour of the liquid volume fraction. An
Eulerian-Eulerian description was chosen. Euler-Euler equations are equal
to VOF equations but averaged a second time. The interphase between the
two fluids is not solved exactly (as in VOF) but is averaged, so extra terms
appear. The extra term in Euler-Euler description must be modeled. Tur-
bulent dispersion is the must important model that conditions the breakup.
Different turbulent dispersion models were studied. Comparing OpenFoam
and Fluent RANS results with experimental data it was concluded that the
Burns turbulent dispersion model produces best results. It was also observed
that the turbulent dispersion model’s constant, the characteristic diameter of
the disperse phase and the turbulence boundary conditions at the inlet affect
mostly the results. It was established that the model’s constant does not
depend from the inlet jet velocity conditions and from the materials proper-
ties. However in OpenFoam (not in Fluent) it was necessary to change the
turbulent conditions at the inlet to achieve good results in liquid jet cone
aperture. It was also observed that the best results are obtained with "per
phase" multiphase turbulence model. Both software gave realistic results
compared with experimental and DNS data. Further investigation is require
to understand how the models behave in evaporation and combustion.
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