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Introduction and context

This Master Degree Thesis, conducted under the supervision of Professor M. R. Pakzad from
University of Toulon, will focus specifically on variational studies in the context of what has been
done in [4]. We will expand on that by studying specifically the existence of functions satisfying
Monge-Ampère constraints det∇2u = f in the degenerate case, in which f is constantly 0 inside
of a disk and greater than a strictly positive constant c outside of it.

We will use the main results of M. R. Pakzad, M. Lewicka and L. Mahadevan in [1] and [2], on the
geometrical characterization of Monge-Ampère solutions, and T. Iwaniec and V. Šverák studies
on integrable dilatation. As we tackle the problem of the existence of functions satisfying specific
degenerate cases of Monge-Ampère constraints, we will also show how this can be connected to
elasticity minimizers.

In chapter 1 we will see the context for this work, which collocates itself among the analytical
studies on models for "incompatible elasticity problems" by Marta Lewicka, L. Mahadevan,
Pablo Ochoa, Mohammad Reza Pakzad, among many others, on three-dimensional plate models
generated from nonlinear elasticity (we cite in particular [4] and the pioneering work of Friesecke,
James and Müller in [8]). The aim is conducting a study on the deformations in a thin (basically
2-dimensional) plate caused by residual strains in absence of an exterior force. Such a scenario
may arise from inhomogeneous growth, plastic deformation, swelling or shrinkage driven by
solvent absorption and can be used in the modeling of plastic films, polymer gels and the study
of the shape of growing leaves to name a few.

In the second chapter we will state the conjecture we would like to prove and explain its rela-
tionship with the model illustrated in the previous section. We want to prove that there are
no solutions to the Monge-Ampère problem with some specific degenerate constraints and will
consider some ideas on how to expand to more general cases. Then, in the third chapter, we will
see some useful past results on convexity, developability and integrable dilatation which will be
necessary to prove our statement.

In chapter 4 and 5 we we will look at examples and prove some intermediate results. While they
do not necessarily apply in a general case, these should clarify the structural issues one finds when
claiming that the set of solutions to degenerate Monge-Ampère constraints is non-empty.

In chapter 6 we will provide some ideas which might fit the proof to the more general statement,
which will hopefully be more complete in the near future.

1. The general context

Even though the problem considered in this paper is purely analytical, it makes sense to first
clarify the setting of our study.

Let us illustrate the model in question first: we are considering 3d plates Ωh = Ω× (−h/2, h/2)
of varying thickness 0 < h << 1 (with Ω ∈ R2 open bounded) and we study the elastic energy
IhW (uh) related to the deformation uh : Ωh → R3 which affects the plates after they have been
prestrained.

For such a purpose, we first consider the activation process for each point given by such prestrain,
which represents the spontaneous effects of instantaneous growth or deformation on the plate.
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We represent such a process with a smooth invertible tensor Ah : Ωh → R3×3, which associates
each point with their own instantaneous growth Ah(x). We can write each deformation ∇uh
as the composition of the activation process and a consequent "rearrangement" of the material
in a new shape in response to Ah. We describe this last process through an elastic tensor
F (x) = ∇uh(x)(Ah(x))−1 ([7] defines the model behind this tensor).

Now we can finally define the elastic energy functional related to the deformation, which only
depends on F and has the form:

IhW (uh) =
1

h

∫
Ωh
W (F )dx =

1

h

∫
Ωh
W (∇uh(Ah)−1)dx (1)

for any given uh ∈ W 1,2(Ωh,R3). If we assume the elastic density function W to be regular
enough (as we see in [4], normalization, frame independence properties and second order non-
degeneracy of W must hold).

We further assume W regular enough by postulating the existence of a quadratic function Q3

such that |W (Id + F )−Q3(F )| ≤ ω(|F |)|F |2 and we restrict ourselves to the study of a specific
class of growth tensors Ah depending only on some smooth "stretching" tensor Sg and "bending"
tensor Bg acting on Ω:

Ah(x′, x3) = Id3 + hγSg(x
′) + hγ/2x3Bg(x

′),

for some scaling exponent 0 < γ < 2. An activation tensor of this form allows us to deduce the
induced metric on the plate:

Gh(x′, x3) = (∇uh)T∇uh = (Ah)T (Ah) = Id3 + 2hγsym Sg(x
′) + 2hγ/2x3sym Bg(x

′),

where terms with higher order (jointly in the variables x3 and hγ/2) have been excluded. We
then get an energy functional of the form

Eh(uh) =
1

h

∫
Ωh
W ((∇uh)(Gh)−1/2)dx ∀uh ∈W 1,2(Ωh,R3).

Then, by Γ-convergence of 1
hγ+2E

h we can find a limiting functional

If (v) =
1

12

∫
Ω

Q2(∇2v + (sym B)2×2)

which bounds (1) from below as h→ 0. Such a functional is well defined over

Af = {v ∈W 2,2(Ω); det∇2v = f},

which is the space of W 2,2 functions satisfying Monge-Ampère conditions with geometrical con-
straint f = −curlT curl S2×2 uniquely depending on the prestrain Ah. In particular, if Af 6= ∅,
any sequence uh ∈ W 1,2 that minimizes IhW as h goes to 0 converges to a minimizer v of the
limiting funtional If (v).

From the given definition, studying the emptiness of Af corresponds to the study of the existence
of a function satisfying specific Monge-Ampère conditions. We will further look into this from
the next section onwards. It is however also interesting to see that the above mentioned Γ-
convergence only applies when we have a proper scaling of inf Eh ∼ hγ+2. For that to apply,
as seen in [11] and [12], we need the two following conditions to be simultaneously satisfied: (a)
Af is nonempty, (b) curl(sym B)2×2 6≡ 0 or curlT curl S2×2 + det(sym B)2×2 6≡ 0. As such,
the emptiness of Af is also fundamental to study to determine whether our limit model is well
defined or not.
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In [4] are also provided some results for existence and uniqueness of minimizers on the limiting
problem in Ω = B(0, 1). With specific assumptions deriving from the isotropic elastic energy
model in [8] we get a limiting functional of the form:

I(v) =

∫
B(0,1)

|∇2v|2dx′ subject to constraint: Af = {v ∈W 2,2(B(0, 1)), det∇2v = f}. (2)

Given a function f regular enough, we want to study this minimization problem. We then call
If (v) the restriction of the functional I(v) to the set Af .

It will be helpful in the following arguments to also consider the relaxed problem:

I(v) =

∫
B(0,1)

|∇2v|2dx′ subject to constraint: A∗f = {v ∈W 2,2(B(0, 1)), det∇2v ≥ f}. (3)

As above, we will call I∗f (v) the restriction of the functional I(v) to the set A∗f
By studying minimizers for the relaxed case we can infer, under certain additional conditions,
some properties of the minimizers of (2). In particular we can prove the existence of minimizers
for both problems in the classical way by taking a minimizing sequence and using the lower
semicontinuity of the functional I(v) as long as Af and A∗f are non-empty.

We can also prove (as done in [4], section 5, using a result from [9]) that for f ≥ c > 0 we have
uniqueness (up to an affine map) for the relaxed problem (3). On the other hand, uniqueness for
the main problem is far more delicate.

The main result on uniqueness presented in [4] considers only radially symmetric functions. It
is also important to require non-increasingness of our constraint funtion f :

Theorem 1.1 (Uniqueness, [4]). Assume that f ∈ L2(B(0, 1)) is radially symmetric i.e.: f =

f(r) and
∫ 1

0
rf2(r)dr < ∞. Assume further that f ≥ c > 0, and that f is a.e. non-increasing,

i.e. for a.e. r ∈ [0, 1] and a.e. x ∈ [0, r] we have f(r) ≤ f(x).

Then the problem (2) has a unique (up to an affine map) minimizer, which is radially symmetric
and given by:

vf (r) =

∫ r

0

(∫ s

0

2tf(t)dt

)1/2

ds (4)

It is important to notice that such a problem does not admit a uniqueness result in general. In
particular for f ≡ −1 it can be checked that there exists a family of minimizers vθ(x1, x2) =

(cosθ)
x2
1−x

2
2

2 +(sinθ(x1x2)). Indeed this holds for any f ≤ c0 < 0 with ∆(log|f |) = 0 in Ω.

In this scenario, if the function space Af is non-empty, the existence of the minimizers can be
obtained by standard methods. However, once we lose the strict positivity condition on f on
a part of the domain, even the existence of functions satisfying the constraint becomes non-
trivial.

2. Description of the problem

The result we would like to prove is the following:
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Conjecture 2.1. Let Ω = B(0, R) ⊂ R2 be a 2-dimensional disk and f ∈ L1(Ω) be such that
f ≥ c > 0 on B(0, R) \ B(0, r) for some 0 < r < R and f ≡ 0 on B(0, r). Let us also assume
f ≤ C a.e. for some C ≥ c > 0. Then Af = ∅.

It is interesting to see that the theory in [4] allows us to state that there cannot be any radially
symmetric solution to such constraints, otherwise they would be of the same form as vf (r) defined
in the previous chapter, which however does not belong to W 2,2 in this scenario.

The reason for which we believe this conjecture to hold is that, by analyzing the behavior of
det∇2u on the outer annulus, but close to the boundary, because of our regularity assumptions
there must exist at least a point of ∂B(0, 1) for which det∇2u(x) → 0 when x approaches that
point from the outer annulus, contradicting the condition of strict positivity.

In general, the problem of verifying emptiness for Af is fairly important in our general setting.
As mentioned before, the existence of a function satisfying the Monge-Ampère constraint would
ensure the existence of a minimizer to If , also the nonemptiness of Af is strictly necessary as a
condition for the convergence of our model.

Furthermore, even if the previous consideration does not seem necessarily relevant in our model
(since from theorem 1.5 of [4] we get f ≥ c > 0 as long as the assumptions from our model
are satisfied), studying situations with degenerate constraints can help us better understand the
behavior of minimizers to the standard problem as f varies and approaches 0.

Let us look at an example, which for simplicity we will define on Ω = B(0, 1). Consider the
family of constraints:

fε = εχ(0,1/2] + χ(1/2,1]

depending on the parameter ε > 0. They are radially symmetrical, but not non-increasing, so the
theory we have discussed in the previous section will not work here. In fact we get vfε ∈W 2,2(Ω)
and I(vε)→∞ as ε→ 0 while vψ = 1

2r
2, given by ψ ≡ 1, satisfies I(vψ) = 2π and is admissible

for the relaxed problem I∗fε for all ε ≤ 1. So, for ε small enough, vfε cannot be a minimizer
of the relaxed problem (3) and thus the previously mentioned method does not give us any
result.

On the other hand, let us consider a family of minimizers uε for Ifε with 0 < ε ≤ 1; we can
deduce (by lower-semicontinuity of the energy functional) that if I(uε) → M < +∞ for ε → 0
(eventually up to a subsequence), then there would exist a subsequence uεj converging to a
function u0 ∈ W 2,2 such that I(u0) < +∞. Hence Af0 6= ∅ and a minimizer to the degenerate
problem would exist (here we call f0 = χ(1/2,1]). A question which remains open (and will not
be discussed in this report) is whether from such a minimizer, under certain assumptions, it
would be possible to reconstruct a minimizing sequence for the non-degenerate problem with
small values of ε.

The previous assertion implies that, if Af0 = ∅, there cannot be a subsequence of minimizers
such that I(uε)→M < +∞, or, in other words, that any sequence of minimizers uε for Ifε has
to be such that I(uε)→ +∞ as ε→ 0.

In the following pages, for simplicity, we will assume f = χB(0,2)\B(0,1), however the ideas used
in the following pages can be modified for different domains and constraints to fit the hypothesis
of our conjecture, and it should be possible to adapt it to even more general cases as long as the
domain over which f is 0 is convex, bounded and regular enough.
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3. Known results

From here onwards let us assume by contradiction that there exists a function u ∈ Af , with
f = χB(0,2)\B(0,1) and prove that it cannot be in W 2,2.

We will now provide the already obtained results which we will be using in the next few sections.
To prove that u ∈ Af cannot exist we need to prove that the solutions for det∇2u = 0 on the
inner disk are not "compatible" with the classic Monge-Ampère solutions over the annulus (or
in other words their sum is not W 2,2).

Let us first study the solutions to the degenerate problem on the disk. In [1] M. R. Pakzad
gives several results concerning the developability of flat surfaces in R3 with W 2,2 regularity,
providing us with a geometric characterization of the solutions to the Monge-Ampère conditions
over convex domains. The following result corresponds to Proposition 1.1 in [1].

Theorem 3.1 ([1]). Let Ω be a bounded regular convex domain in R2 with Lipschitz boundary
and let v ∈ W 1,2(Ω,R2) be a map with almost everywhere symmetric singular (i.e., of zero
determinant) gradient. Then for every point x ∈ Ω, there exists either a neighborhood U of x,
or a segment passing through it and joining ∂Ω at its both ends, on which v is constant.

By taking v = ∇u, we get geometrical conditions for the gradient of u on the inner disk; in
particular u has to be linear along a family of segments with decreasing length as their distance
from the center of the disk increases. In particular they converge to a degenerate segment of
zero length, a limit point z0 ∈ ∂B(0, 1). We are interested in the behavior of u close to z0. As
such we can without any loss of generality, place z0 = (1, 0) via a rotation of the plane. We will
also make the extra assumption of being in the case in which the segments close to z0 parallel
to each other and orthogonal to the horizontal axis (of the form x1 = k for some k close to 1)
to simplify our first computations. The general case in which the segments are not parallel and
this assumption does not hold, will not be treated in this report; however we will briefly discuss
in the last section some ideas to modify our strategies for that case.

On the other hand, to study Monge-Ampère solutions over the annulus we will need to apply
some results from the work of T. Iwaniec and V. Šverák. We will first begin by introducing some
definitions.

Definition 3.2. Let v ∈W 1,2(Ω,R2) and let det∇v ≥ 0 a.e. in Ω. We say that v has integrable
dilatation iff, for a.e. x ∈ Ω:

|∇v|2(x) ≤ K(x) det∇v(x)

with some function K ∈ L1(Ω).

In particular if v ∈ W 1,2(Ω,R2) and det∇v(x) ≥ c > 0, then v has integrable dilatation since
K(x) = 1

c |∇v|
2(x) ∈ L1(Ω) and satisfies the above assumptions. An interesting result connects

this definition with the following:

Definition 3.3. We say that a mapping v ∈ C0(Ω,R2) is connectedly locally one-to-one iff it is
locally one-to-one outside of a closed set S ⊂ Ω of measure zero, for which Ω \ S is connected.
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Theorem 3.4 ([3]). Let v ∈W 1,2(Ω,R2) have integrable dilatation. Then there exists a homeo-
morphism h ∈W 1,2(Ω′,Ω) and a holomorphic function ϕ ∈W 1,2(Ω′,R2 = C) such that:

v = ϕ ◦ h−1.

In particular, v is either constant or connectedly locally one-to-one, and in the latter case the
singular set is S = h((∇ϕ)−1{0}).

The proof of this theorem can be found in [3]. In particular in our case we have that ∇u has
integrable dilatation on the annulus and, as such, it is holomorphic up to a homeomorphism.
This is why in the next chapter we will begin by assuming ∇u to be holomorphic to better
understand the issues which do not allow such a function to exist. In the latter chapters we will
then extend the proof to a more general case.

We will conclude this section with an important consequence of the above theorem, by using the
following result of Šverák from [5].

Theorem 3.5 ([5]). If u ∈W 2,2(Ω) satisfies:

det∇2u(x) > 0

for a.e. x ∈ Ω, then u ∈ C1(Ω). If additionally v = ∇u is connectedly locally one-to-one, then
modulo a global sign change, u is locally convex in Ω. In particular, when Ω is convex then u is
either convex or concave in the whole Ω.

This result, combined with Theorem 3.4 has allowed M. Lewicka, L. Mahadevan and M. Reza
Pakzad in [2] (theorem 2.3 in the article) to prove that any solution to the non-degenerate Monge-
Ampère problem is locally convex. We remind that a function is locally convex if, for any point x
in the domain, there exists a convex neighborhood Vx for which the function is (strictly) convex
on Vx.

Theorem 3.6 (Convexity, [2]). Let u ∈W 2,2(Ω) be such that det∇2u = f in Ω, where f : Ω→
R, f(x) ≥ c0 > 0 for a.e. x ∈ Ω. Then u ∈ C1(Ω) and, modulo a global sign change, u is locally
convex in Ω.

and in particular, if Ω is convex, then u is globally strictly convex by Šverák’s theorem.

In view of the previous results, any solution to det∇2u = f , for f as in 2.1, has to both be
developable on the inner disk B(0, 1) and locally convex on the annulus B(0, 2) \ B(0, 1). We
will consider functions that satisfy these constraints in the following pages and we will see with
some examples that the idea behind the conjecture is based on the inconsistencies they cause
near the border ∂B(0, 1).

4. A basic case with holomorphic functions

In the previous section we saw that ∇u is holomorphic up to a homeomorphism on the annulus
B(0, 2) \B(0, 1) and that it is constant along segments touching the boundary of the unit disk.
For now, instead of studying ∇u, we will consider a function g : C → C ∼= R2, holomorphic on
B(0, 2) \B(0, 1) ⊂ R2 = C, with similar properties. We ask for g ∈ W 1,2(U) and det∇g = 0 on
the unit disk.
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As such, we are asking g to be constant on segments in the unit disk just like ∇u, but to simplify,
we will assume the segments to be parallel to each other and choose our coordinate system in
such a way that they are orthogonal to the horizontal axis. We will call the extremes of the
segments on the upper circle zε, where zε is the extreme of the segment of points with real part
1− ε. The other extremes would then necessarily be zε = 1

zε
.

We can compute that the length of the segment [zε, zε] is 2ε − ε2. As such, when ε → 0, the
lengths of the segments converge to zero and zε → z0 = 1.

Now, if we know that g is holomorphic on the open annulus B(0, 2) \ B(0, 1), we can express it
in Laurent series over the annulus, with center 0, and get:

g(z) =
+∞∑

k=−∞

akz
k (5)

for any z ∈ B(0, 2)\B(0, 1). Now we would like to extend the holomorphic function g|
B(0,2)\B(0,1)

inside the unit disk. We will start by proving that its series expansion can be extended to the
boundary.

Lemma 4.1. Let g(z) =
∑
akz

k be holomorphic over U = B(0, 2) \ B(0, 1) and assume g ∈
W 1,2(B(0, 2)). Let ϕ := g|U , then the trace of ϕ on the inner circle is in

W
1
2 ,2(∂B(0, 1)) :=

{
ψ ∈ L2(∂B(0, 1)) : ψ(eiθ) =

∑
k

bke
iθk =⇒

∑
k

|bk|2|k| < +∞

}

and can be written via Fourier series as

ϕ(reiθ)|∂B(0,1) = S(θ) =
∑
k

ake
iθk, for a.e. θ ∈ [−π, π].

Proof. For any 1 < r < 2 we can write the Laurent series coefficients for g = ϕ as:

an =
1

2πi

∮
∂Br(0)

ϕ(y)

yn+1
dy

(which does not depend on the choice of r) and

ϕ(z) =
∑
n

anz
n, ϕ′(z) =

∑
n

nanz
n−1

On the other hand for any z ∈ ∂Br(0) we have z = reiθ for some θ ∈ [−π, π) and we can write
ϕ (which is continuous on the circle) using the Fourier series as:

ϕ(reiθ) = ϕr(θ) =
∑
k

∫ π

−π

ϕr(t)e
i(θ−t)k

2π
dt

and on the other hand using the same notation the Laurent series becomes:

ϕ(z) =
∑
n

anz
n =

∑
n

rneiθn

2πi

∮
∂Br(0)

ϕ(y)

yn+1
dy

=
∑
n

rneiθn

2πi

∫ π

−π

ϕr(t)

rn+1eit(n+1)
ireitdt

=
∑
n

∫ π

−π

ϕr(t)e
i(θ−t)n

2π
dt.
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Hence the Laurent series terms are orthogonal (and the coefficients coincide up to a factor rk
with those of the Fourier series over any circle of radius 1 < r < 2) so the following expressions,
derived from the usual Parseval identity, hold:∫ π

−π
|ϕr(θ)|2dθ =

∑
k

r2k|ak|2,

∫ π

−π
|∂θϕr(θ)|2dθ =

∫ π

−π

∣∣∣∣∣∑
k

ik

∫ π

−π

ϕr(t)e
i(θ−t)k

2π
dt

∣∣∣∣∣
2

dθ =
∑
k

k2r2k|ak|2.

Now since we have ϕ ∈W 1,2(U) ⊂ L2(U) we know that:∑
k

|ak|2
22k+1 − 1

2k + 1
=
∑
k

(
|ak|2

∫ 2

1

r2kdr

)
≤
∫ 2

1

∫ π

−π
|ϕr(θ)|2rdθdr =

∫
U

|ϕ(z)|2dz < +∞.

so the first sum is absolutely convergent and it holds:∑
k≥0

|ak|2 ≤
∑
k∈Z
|ak|2

22k+1 − 1

2k + 1
< +∞ (6)

since 22k+1−1
2k+1 ≥ 1 for all k ≥ 0.

Similarly:

+∞ >

∫
U

|ϕ′(z)|2dz =

=

∫ 2

1

∫ π

−π

∣∣∣∣eiθ∂rϕ+ i
eiθ

r
∂θf

∣∣∣∣2rdθdr
=

∫ 2

1

∫ π

−π

1

r2
|∂θϕr(θ)|2rdθdr

=
∑
k

k2|ak|2
∫ 2

1

r2k−1dr

=
∑
k

k
22k − 1

2
|ak|2.

hence: ∑
k<0

|ak|2 ≤
8

3

∑
k∈Z

k
22k − 1

2
|ak|2 < +∞ (7)

since k 22k−1
2 ≥ 3

8 for all k < 0.

So by combining (6) and (7) we get that∑
k

|ak|2 < +∞ (8)

By (8) we know that S(θ) :=
∑
n ane

iθn ∈ L2([π, π]) through Parseval’s identity and hence it is
well defined almost everywhere.

We would like to now prove that S is the trace of ϕ on the unit circle, or in other words that
S(arg(·)) = ϕ|∂B(0,1). To see that, we can show that, for r → 1, we have the convergence
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ϕr(θ) = ϕ(reiθ) =
∑
k ake

iθkrk →
∑
k ake

iθk = S(θ) in L2; in fact we can see that for each
r = 1 + ε, with ε < 1, we get:

‖ϕr − S‖L2([−π,π]) =
+∞∑

k=−∞

|ak|2
∣∣rk − 1

∣∣2 ≤ −1∑
k=−∞

|ak|2
∣∣∣∣1− 1

1 + ε

∣∣∣∣2 +
+∞∑
k=0

|ak|2
∣∣(1 + ε)k − 1

∣∣2.
The first sum can be rewritten as:

−1∑
k=−∞

|ak|2
∣∣∣∣1− 1

1 + ε

∣∣∣∣2 = ε2
−1∑

k=−∞

|ak|2
1

(1 + ε)2
≤ ε2

4
‖S‖L2 → 0

for ε→ 0 by using (8).

The second series can be instead rewritten (by expanding and using some straightforward in-
equalities) as:

+∞∑
k=0

|ak|2
∣∣(1 + ε)k − 1

∣∣2 ≤ +∞∑
k=0

|ak|2((1 + ε)2k − 1) ≤
+∞∑
k=0

|ak|2k(22k − 1) < +∞

by using (7) for all 0 < ε < 1, hence by dominated convergence in L2 we have that, since∣∣(1 + ε)k − 1
∣∣2 → 0 for ε→ 0, then:

+∞∑
k=0

|ak|2
∣∣(1 + ε)k − 1

∣∣2 −−−→
ε→0

0

Hence ϕr → S in L2 for r → 1 and as such it converges a.e. for some sequence rn → 1.

On the other hand, let us fix a radial segment Iz̃ from 0 such that z̃ ∈ Iz̃ for some point
z̃ ∈ ∂B(0, 1). On such a segment the function r → g(rz̃) is in W 1,2([0, 2]) by Fubini for almost
every choice of z̃, otherwise by Fubini the W 1,2 norm of g would not be finite.

In particular, since we are now restricted to a 1-dimensional domain, we have that W 1,2([0, 2])
embeds into C0((0, 2)) and r → g(rz̃) has a continuous representation for a.e. z̃ on (0, 2) and as
such it is bounded in a neighborhood of 1. So for r → 1+ we have that ϕ|∂B(0,1) = ϕ1 := lim

r→1
ϕr

and our trace is well defined by continuity in almost every point of B(0, 1). So necessarily for
rn → 1 we get ϕrn → ϕ1 a.e. on B(0, 1) and ϕrn → S a.e. on B(0, 1), and as such S = ϕ1 a.e..

Now we would like to show that
∥∥∥ϕ 1

2
1 (θ)

∥∥∥
L2([π,π])

=
∑
k |k||ak|2 < +∞.

To do so we see that (7) already proves that
∑
k<0 |k||ak|2 < +∞ since

k
22k − 1

2
= |k|

∣∣∣∣22k − 1

2

∣∣∣∣ ≥ 3

8
|k|

for all k < 0. On the other hand we can see that 22k+1−1
2k+1 ≥ k eventually for k ≥ 0, hence:∑

k≥0

|k||ak|2 ≤ C +
∑
k∈Z
|ak|2

22k+1 − 1

2k + 1
< +∞

where C is a constant to balance out the (finite number of) terms for which the inequality
22k+1−1

2k+1 ≥ k does not hold (in reality we can actually see that it holds for all k ≥ 0 and no
additional constant C is needed). So we have proven the above mentioned identity.

�
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The previous result implies that the series
∑
akz

k can be expanded on the boundary (technically
H1-a.e., but this will not be relevant).

Since we assumed g to be constant on vertical segments in B(0, 1), then by continuity we get
g(z) = g(z) for all z ∈ ∂B(0, 1). Hence for all such z we have

∑
akz

k = g(z) = g(z) =
∑
akz

k,
or in other words for all θ ∈ [−π, π]:

+∞∑
k=−∞

ake
iθk =

+∞∑
k=−∞

ake
−iθk =

+∞∑
k=−∞

a−ke
iθk,

hence they are the same Fourier series and

ak = a−k for all k ∈ Z. (9)

So we can write:

g(z) =
+∞∑
k=0

ak
(
zk + z−k

)
(10)

and, in particular, we can see that

g(z) = g

(
1

z

)
for all z ∈ U. (11)

We already know that the Laurent series (10) is absolutely convergent for all z ∈ U , so, by (11)
we get that it is absolutely convergent also for all z ∈ Ũ := B(0, 1) \B(0, 1

2 ).

Let us now define

g̃(z) :=
+∞∑
k=0

ak
(
zk + z−k

)
for all z ∈ B(0, 2) \B(0, 1

2 ). It is absolutely convergent and hence holomorphic on U and Ũ and
as such it must be absolutely convergent on the ∂B(0, 1) too. In fact, because of (9) we have
that:

+∞∑
k=0

|ak| ≤
+∞∑
k=0

|ak|
∣∣zk∣∣ < +∞

for z ∈ U , and the series is absolutely convergent on the unit circle and g̃ is holomorphic (and
in particular continuous) over its whole domain. Furthermore g is continuous over ∂B(0, 1) and
equal to g̃ almost everywhere on the unit circle, hence it must be that g|∂B(0,1) = g̃|∂B(0,1).

Lemma 4.2. Let g̃ be as above. Then necessarily

lim
z→1

det∇g̃(z) = 0.

Proof. Let us assume by contradiction |det∇g̃(1)| > 0. Then there exists a neighborhood U of 1
over which g̃ is invertible by the Local Inversion Theorem. But then let z ∈ ∂B(0, 1)∩U , z 6= 1.

We have that |z−1| = |Re(z)−1|2 +Im(z)2 = |z−1|, so z ∈ U . Since z = 1
z we have g̃(z) = g̃(z)

and as such g̃ is not one-one. So |det∇g̃(1)| = 0 and the statement follows by continuity.

�

Then we can now conclude: in fact we know that for all z ∈ U

det∇g̃ = det∇2u ≥ c > 0,
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which by the previous lemma leads to a contradiction. Hence there cannot be such a function
u and we have proven our case. Of course, this only holds in these very specific assumptions,
nonetheless it helps to understand that we have to focus our attention on the behavior of the
function and its gradient around z0.

5. Non-holomorphic case

Let us now consider a situation in which the segments over which ∇u is constant are parallel to
each other (at least close to z0, same construction as in the last section), but the function u is
not necessarily holomorphic on the external annulus (h 6= id). As usual, we would like to change
our coordinate system so that such segments are orthogonal to the horizontal axis in R2 and
z0 = (1, 0).

To understand what changes in this scenario we will first consider a different situation in which
our domain is Ω̃ =]0, 2[ × ]−L,L[ and with constraint 0 < c ≤ f̃ ≤ C on ]1, 2[ × ]−L,L[ and
f̃ ≡ 0 everywhere else. Ideally, close enough to z0, ∂B(0, 1) becomes similar to its tangent in z0

which is a vertical line, and should resemble the case we are considering right now. We will now
study the behavior of u on the rectangle R = [1, 1 + ε]× [−L,L] for some ε > 0 small.

Let ũ ∈W 1,2(Ω) satisfy

det∇2ũ = f̃ .

In particular let us observe that now ∇ũ is continuous and constant along all segments with
extremes (a,−L) and (a, L) for a ∈]1 − ε, 1[. In particular it is constant a.e. on the segment
σ = [(1,−L), (1, L)] by continuity (we know by Fubini that it is W 1,2 on a.e. horizontal segment
x1 = b, and as such continuous on a.e. horizontal segment. Let us call A1 ⊂ σ the set of
H1-measure 0 of the intersections of σ with the segments where this does not hold, on the other
points we get the desired result by continuity). Let us now assume to simplify our calculations
that ∇ũ = 0 over σ (it will only change the center of the ball containing the image of ∇ũ we will
be considering in the next paragraphs, but the proof will stay unchanged).

On the one hand by Theorem 3.5 and 3.6 we have that u is strictly convex and C1 over R, hence
∇ũ is globally one-one on R and, as such, invertible over its image. So we have, by using the
area and coarea formula together with the lower bound on f̃ :

|∇ũ(R)| =
∫
R2

χ∇ũ(R)(y)dy =

∫
R2

(∫
(∇ũ)−1(y)

dH0

)
dy =

∫
R

∣∣det∇2ũ(x)
∣∣dx ≥ c|R| = 2cLε.

(12)

We will now look an upper bound on |∇ũ(R)|: for any point x = (x1, x2) ∈ R let σx2 = (1, x2)
be its orthogonal projection on σ. Now let Λε` ⊂ R be the horizontal segment constituted by all
points x = (x1, x2) ∈ R such that x2 = ` and |x− σ`| < ε. We have that R =

⋃
σ`∈σ

Λε` . Now we

know that, by Fubini:

‖∇ũ‖W 1,2(R) =

∫ L

−L
‖∇ũ‖2W 1,2(Λε`)

d` < +∞,
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and ‖∇ũ‖2W 1,2(Λε`)
< +∞ for all ` such that σ` ∈ σ \ A1, ∇ũ is W 1,2(Λε`). Furthermore, by

absolute continuity of the norm over the strip R:

a(ε) :=

∫ L

−L
‖∇ũ‖2W 1,2(Λε`)

d`
ε→0−−−→ 0. (13)

We will now use the canonical embedding of W 1,2 into C0,1/2 in dimension 1, where C0,1/2 is the
classic 1

2 -Hölder space. In particular, for all ` such that σ` ∈ σ\A1, we have that ∇ũ ∈ C0,1/2(Λε`)
and consequently we get:

sup
x,y∈Λε`

|∇ũ(x)−∇ũ(y)|
|x− y|

1
2

≤ k‖∇ũ‖W 1,2(Λε`)
, (14)

for all ` such that σ` ∈ σ \A1.

Then we have, by using (14) and the fact that ∇ũ(σx2
) = 0 for all (x1, x2) ∈ R:

m` := sup
x∈Λε`

|∇ũ(x)| = sup
0<|x−σ`|<ε

x2=`

|∇ũ(x)−∇ũ(σ`)| ≤ kε
1
2 ‖∇ũ‖W 1,2(Λε`)

. (15)

By Chebyshev’s inequality, using the definition of a(ε) in (13), for all δ > 0:∣∣∣{` : ‖∇ũ‖W 1,2(Λε`)
> δ
}∣∣∣ ≤ a(ε)

δ2

Now let us define the following sets:

R1 = [1, 1 + ε]×A1,

R2 = [1, 1 + ε]×
(

[−L,L] ∩
{
` : ‖∇ũ‖W 1,2(Λε`)

> δ
})

,

R3 = R \ (R1 ∪R2) = [1, 1 + ε]×
(

[−L,L] ∩
{
` : ‖∇ũ‖W 1,2(Λε`)

≤ δ
})

.

We have R = R1 ∪R2 ∪R3 and |∇ũ(R)| = |∇ũ(R1)|+ |∇ũ(R2)|+ |∇ũ(R3)|.

By the area and coarea formula, as done for the lower bound in the first part of the proof, we
have that:

|∇ũ(R1)| =
∫
R1

∣∣det∇2ũ(x)
∣∣dx = 0, (16)

since |R1| = 0; also:

|∇ũ(R2)| =
∫
R2

∣∣det∇2ũ(x)
∣∣dx ≤ C|R2| ≤ C

a(ε)

δ2
ε, (17)

by using the bound f̃ ≤ C a.e..

Lastly, by (15), for all x = (x1, x2) ∈ R3 we have the bound:

|∇ũ(x)| ≤ mx2 ≤ ‖∇ũ‖W 1,2(Λε`)
ε

1
2 ≤ δε 1

2 .

As such ∇ũ(R3) ⊆ B(0, δε
1
2 ) and

|∇ũ(R3)| ≤
∣∣∣B(0, δε

1
2 )
∣∣∣ = πδ2ε (18)

So we get, by (16), (17) and (18):

|∇ũ(R)| ≤ πδ2ε+ C
a(ε)

δ2
ε. (19)
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By combining (12) and (19), we have, for ε→ 0:

2cLε ≤ |∇ũ(R)| ≤ πδ2ε+ C
a(ε)

δ2
ε.

We can now fix δ small enough so that 2cL− πδ2 > 0 (we observe that our choice of δ does not
depend on ε) and get:

0 < (2cL− πδ2)ε ≤ C a(ε)

δ2
ε.

and since ε > 0:
0 < 2cL− πδ2 ≤ C a(ε)

δ2
.

which gives us a contradiction since a(ε)→ 0 for ε→ 0. �

So we understand that the idea is to study how the gradient behaves around z0 and in particular
to combine our assumptions of invertibility on the annulus and the behavior of the gradient on
the border in order to get incompatible bounds. We will not be able to adapt the full proof to
the circular case in this instance, but we will discuss the framework and main ideas behind it.

We have to first notice that in this new scenario our results on convexity do not globally hold on
the annulus, and we only have local convexity since U = B(0, 2)\B(0, 1) is not a convex domain.
As such our proof changes quite a bit. We will make one further assumption for this example
and ask that for all x = (x1, x2) ∈ B(0, 1) it holds that ∇u(x1, x2) = (x1, 0). This respects the
assumptions of developability given by Theorem 3.1, since the gradient ∇u is constant along
vertical segments, but also gives us some more regularity to work with.

Just as in the previous case, we will call z0 = (0, 1). Now let σ ⊂ B(0, 1) be the arc of circle
of length 2θ and with z0 as its middle point. Let us take ε > 0 and consider Sσ ⊂ B(0, 1 +
ε), defined as the circular sector of B(0, 1 + ε) of central angle 2θ containing σ and let R =(
B(0, 1 + ε) \B(0, 1)

)
∩ Sσ will be the set we will be working with in this case.

By following the previous construction we first call each point in σ as σt with t ∈ [−θ, θ] in such
a way that σ−θ and σθ are the extremes of σ and for each t ∈ [−θ, θ] the arc contained in σ and
delimited by σ−θ and σt has length t + θ (and necessarily we get σ0 = z0). Now we call Λεt the
segments obtained by taking the radius of B(0, 2) passing through σt and intersecting it with
R.

To prove our lower bound we will use Brouwer’s degree theory. We recall that a regular value of
a function v on Ω is a point y ∈ Ω such that for any x ∈ v−1(y), x is a regular point, that is a
point such that the differential of v computed at x, Dvx, is surjective.

Definition 5.1. Let Ω ⊂ Rn be a bounded region, let v : Ω → Rn be a smooth function and
y /∈ v(∂Ω) a regular value of v. Then we can define the Brouwer degree of v at y as:

deg(v,Ω, y) :=
∑

x∈v−1(y)

sgn detDv(x)

By Sard’s theorem we can define the Brower’s degree of ∇u at almost every point in R. In
particular we can use it to prove the following:

Theorem 5.2. Let R ⊂ R2, u : R → R be defined as above. Then there exists m such that
|deg(∇u,R, y)| ≤ m for a.e. y ∈ ∇u(R) and we have:∫

R

∣∣det∇2u(x)
∣∣dx ≤ m|∇u(R)|
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Proof. The proof of the second part descends directly once again from the area and coarea
formula. In fact we have:∫

R

∣∣det∇2u(x)
∣∣dx =

∫
R2

(∫
(∇u)−1(y)

dH0

)
dy =

∫
R2

|deg(∇u,R, y)|dy ≤ m|∇u(R)|

where in the last inequality we have used that deg(∇u,R, y) = 0 for all y /∈ ∇u(R) (see [6]).

Let us now prove that there is an m as in the hypothesis. We can use the same argument as
in the holomorphic case to reflect our function ∇u on the inner disk. To do that we define a
function g in a neighborhood V of z0 such that g(x) = ∇u(x) for all x ∈ U ∩ V and for any
x = (x1, x2) ∈ B(0, 1) ∩ V it is defined in the following way:

g(x1, x2) = ∇u
(

x1

(x2
1 + x2

2)
,
−x2

(x2
1 + x2

2)

)
.

We see that the traces of the two definitions of g coincide (a.e.) on ∂B(0, 1). In fact we remind
that by Fubini ∇u is continuous on almost every Λεt and as such it converges radially almost
everywhere to its trace as |x| → 1. On the other hand we notice that the transformation
considered to define g on B(0, 1) preserves segments, in and particular it sends a radial segment
into a radial segment. As such g is also continuous on almost every radial segment (radial w.r.
to the origin 0) in B(0, 1) ∩ V , and radially converges on a.e. of these segments to its trace on
∂B(0, 1) as |x| → 1. Then we can check that, for a.e. (x1, x2) ∈ ∂B(0, 1), and r < 1 such that
rx ∈ V :

g(rx) = ∇u
(

rx1

r2(x2
1 + x2

2)
,
−rx2

r2(x2
1 + x2

2)

)
= ∇u

(x1

r
,−x2

r

)
r→1−

−−−−→ ∇u|∂B(0,1)(x1,−x2),

And for r > 0:

g(rx) = ∇u(rx)
r→1+

−−−−→ ∇u|∂B(0,1)(x1, x2) = ∇u|∂B(0,1)(x1,−x2)

by the boundary conditions on ∇u given by the hypothesis of developability (which, in our case,
translates in ∇u being constant on all vertical segments inside of B(0, 1) close to z0). So the
traces coincide and our newly defined function g is in W 1,2(V ).

We notice that det∇g(x) = f(x) for all x ∈ U ∩ V and

det∇g(x1, x2) =
(x2

1 − x2
2)2

(x2
1 + x2

2)4
f

(
x1

(x2
1 + x2

2)
,
−x2

(x2
1 + x2

2)

)
≥ c̃ > 0

as long as V is small enough around to have a bound on the coefficient. In particular that holds
for a ball of radius small enough to not intersect the lines x1 = ±x2.

Then by Theorem 3.4 we get that g is holomorphic up to a change of variables on V . We have
assumed g(z0) = 0 (otherwise we would just take g(z) − g(z0) instead). If we have that z0 is a
root of order m, then we get that there exist ρ, δ > 0 such that g(z) − w has exactly m roots
in B(z0, ρ) for all w ∈ B(0, δ). In particular by continuity around z0, by further restricting the
radius of V , we may assume that g(V ) ⊆ B(0, δ), and as such g(z)− w has at most m zeroes in
V for all w ∈ g(V ).

If we choose θ and ε small enough so that R ⊂ V we get:

|deg(∇u,R, y)| ≤ |deg(g, V, y)| ≤

∣∣∣∣∣∣
∑

x∈g−1(y)

sgn detDg(x)

∣∣∣∣∣∣ ≤ m.
�
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So, from Theorem 5.2, we get that:

|∇u(R)| ≥ 1

m

∫
R

det∇2u(x)dx ≥ c

m
|R| = c

m
πθε(2 + ε) ≥ 2

c

m
πθε. (20)

The other bound is trickier. We will not be able to provide a true bound in this project, however
we will try to explain the idea behind it: as before for H1-a.e. t ∈ [−θ, θ] (specifically for all
t ∈ [−θ, θ] \A1, with H1(A1) = 0) we have by Fubini and Morrey that:

mt := sup
x∈Λεt

|∇u(x)−∇u(σt)| ≤ ‖∇u‖W 1,2(Λεt )
ε

1
2 (21)

For our assumptions on ∇u on B(0, 1) we have that ∇u(σt) = (cos t, 0).

For t ∈ [−θ, θ] (and θ small) we have that 1− θ2

2 ≤ cos t ≤ 1, so:

∇u(σt) = (cos t, 0) ⊂
{

(ξ, 0) : 1− θ2

2
≤ ξ ≤ 1

}
=: S.

Just as before we can also prove that:

a(ε) :=

∫ L

−L
‖∇ũ‖2W 1,2(Λεt )

dt
ε→0−−−→ 0

Now the idea would be to choose δ > 0 small (to fix later) and get that:∣∣∣{t : ‖∇u‖W 1,2(Λεt )
> δ
}∣∣∣ ≤ a(ε)

δ2

for some δ > 0 and we define R1, R2 and R3 similarly to before. However the issue is that, while
the same bounds hold for R1 and R2, when trying to provide a bound for |∇u(R3)| we need to
be a bit more accurate and use stricter inequalities.

In fact, since ∇u(σt) ∈ S, we now see that on R3 we have that ∇u(R3) ⊆ Sδε1/2 , where Sδε1/2
is the set of points x ∈ R2 such that d(x, S) ≤ δε

1
2 . If we were to roughly compute the area

of this region, which is basically constituted by the union of two halves of a disk of radius
δε

1
2 and a rectangle of sides 2δε

1
2 and |S| = θ2

2 , we would not get a direct bound. Some
further considerations on the properties of u might be necessary to proceed further towards our
goal.

The idea behind the computations would be to show that in the end each Λεt is sent by ∇u to
some curve, whose length integrated on t should roughly correspond to the area of the rectangle
considered above. These ideas will however only be verified in a future project.

6. Conclusions

We have proven for some specific cases that there is indeed no solution to the degenerate Monge-
Ampère constraints we have provided and shown the ideas behind an extension of the result to
a more general case.
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The idea would be now to further expand the result. The examples above should clarify well
enough the procedure one must adopt in general, except this time we will have that the segments
on which ∇u is constant on the unit disk are not parallel.

We should be able to prove that the lower bound (20) on |∇u(R)| is true with similar means as
in the last case, as long as the region R is adjusted to the new geometrical configuration given by
the developability assumptions. The bigger difference would be in the upper bound, since we no
longer have the assumptions on the boundary values of ∇u on some arc σ containing z0.

As long as the segments are parallel for a general ∇u, we could proceed by taking the segments in
B(0, 1) that are parallel to the horizontal axis with extreme points on the unit circle. As before
by Fubini on a.e. of those segments we get that ∇u is W 1,2 and as such C0,1/2. The idea is that
the values on those segments correspond to the values of ∇u on σ, and through the bounds given
by the C0,1/2 norm we can find some bounds on the region occupied by ∇u(σ) and proceed in a
similar way as in the previous section.

This still takes into account that the segments on which ∇u is constant are parallel, while a
problem may arise when they are not. However, to solve this, we could define a curve γ starting
from z0 and intersecting each segment Λ in a point x such that γ(s) = x and γ′(s) ⊥ Λ. If we
can prove γ to be regular enough then a possibility would be to proceed as mentioned above
to find a bound on the values of ∇u on some arc σ and consequently find similar bounds on
|∇u(R)|.

The above idea will be developed in future works. As of now I will conclude this project by
thanking my supervisor, Professor Mohammad Reza Pakzad, for helping me throughout all this
work, and my family and colleagues from Padova and Paris for their support.
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