Solving Solvable Quartic, Quintic and Sextic Equations

Candidate: Massimo Fumiani
Registration Number: 1219315
Supervisor: Prof. Riccardo Colpi
Academic Year 2021/2022
23rd September 2022
"One who, treating such new subjects, taking a chance on such a strange road, pretty often difficulties presented themselves that I was unable to overcome. Even in these two memoirs, and especially in the second which is the more recent, the formula "I do not know" will often be found. The class of readers of whom I have spoken at the beginning will not fail to find something laughable there. Unhappily one cannot doubt that the most precious book of the greatest scientist will be that in which he tells us everything that he does not know; one cannot doubt that an author never betrays his readers so much as when he hides a difficulty."

- Évariste Galois (1811-1832) in the preface of Deux mémoires d'Analyse pure, October 8, 1831.
"Si deve prevedere che, trattandosi di soggetti talmente nuovi, azzardati in una veste così insolita che molto spesso si sono presentate delle difficoltà che non sono stato in grado di sormontare. Inoltre, in queste due memorie, e specialmente nella seconda, che è la più recente, troveremo spesso la formula "Non so". La classe dei lettori che ho menzionato all'inizio non mancherà di ridere di questo. Ciò accade perché, sfortunatamente, non pensiamo che il libro più prezioso del più sapiente sarebbe quello in cui egli dicesse tutto ciò che non sa; non comprendiamo che un autore non nuoce mai così tanto al suo lettore come quando dissimula una difficoltà." — Évariste Galois (1811-1832) nella prefazione di Deux mémoires d'Analyse pure, October 8, 1831.

Acknowledgements

I would like to express my gratitude to my supervisor, Riccardo Colpi, who guided me throughout this project, for his encouragement and wise feedback.

This endeavor would not have been possible without my girlfriend and my friends. Their belief in me has kept my spirits and motivation high during this journey.

To conclude, I cannot forget to thank my family for all the unconditional support in this very intense academic year.

Abstract

This thesis contains the result of K. Conrad, D. S. Dummit and T. R. Hagedorn about solving solvable polynomials of degree 4,5 and 6 using Galois theory. First of all we will describe a procedure for figuring out the Galois groups of separable irreducible quartics (we are not going to derive the classical quartic formula by Ferrari). Then we will give general formulas for finding the roots of all irreducible quintic (sextic respectively) polynomials $f(x) \in \mathbb{Q}[x]$ with $\operatorname{Gal}(f)=G_{f}$, where G_{f} is a transitive, solvable subgroup of S_{5} (S_{6} resp.).

Contents

1 Introduction 3
1.1 Introduction 3
1.2 Theoretical background 3
2 Quartics 5
2.1 Transitive subgroups of S_{4} 5
2.2 Cubic resolvent 6
2.3 "Classical" method 8
2.4 "New" method 8
3 Quintics 13
3.1 Transitive subgroups of S_{5} 13
3.2 Criterion for the solvability 14
3.3 Lagrange resolvent 15
3.4 Ordering the resolvents 19
4 Sextics 25
4.1 Introduction and notation 25
4.2 Transitive subgroups of S_{6} 25
4.3 Galois resolvents 27
4.4 Solving the sextic: $G_{f} \subseteq G_{48}, G_{f} \nsubseteq G_{72}$ 31
4.5 Solving the sextic: $G_{f} \subseteq G_{72}, G_{f} \nsubseteq G_{48}$ 36
4.6 Solving the sextic: $G_{f} \subseteq G_{12}$ 36
A Notation for sextics 37

Chapter 1

Introduction

1.1 Introduction

Given an irreducible polynomial $f(x) \in \mathbb{Q}[x]$, does there exist a formula for finding its roots using only the basic arithmetic operations and the taking of n-th roots? The answer to this classical question has been one of the main open problem in mathematics until the introduction and development of Galois theory in the beginning of 19th century. When such a formula exists, we say that the equation $f(x)=0$ is solvable by radicals. If the same formula can be used for all polynomials $f(x)$ with degree n, we say that the general equation of degree n is solvable by radicals.

The quadratic formula, the Cardano's formula and the Ferrari's method show that the general equations of degree 2,3 and 4 are solvable by radicals. Abel and Ruffini showed that the general equation of degree $n \geq 5$ is not solvable by radical. Even stronger, Galois theory established that for each $n \geq 5$, there are irreducible polynomials $f(x) \in \mathbb{Q}[x]$ of degree n which are not solvable by radicals. In fact, for $n \geq 5$, most irreducible polynomials $f(x)$ of degree n are insolvable by radicals.

We can ask whether such formulas exist when we restrict our attention to the class of polynomials which are solvable by radicals. We recall a fundamental theorem:

Theorem 1.1.1 (Galois, 1832). Let F be a field of characteristic zero, and let $f(x) \in F[x]$. The equation $f(x)=0$ is solvable by radicals if and only if the Galois group Gal (f) of $f(x)$ is solvable.
(see [7]) that let us switch our attention from the equation $f(x)=0$ to the solvable subgroups of $S_{n}(n=\operatorname{deg}(f))$. We also know that when $f(x)$ is irreducible, $\operatorname{Gal}(f)$ is a transitive subgroup of S_{n}. We can now focus on this class of subgroups of S_{n}.

In this thesis, after a brief recall of some fundamental results and definitions, we are going to describe in Chapter 2 two methods (a 'classical' one and an 'alternative' one by Kappe and Warren (see as reference [6]) for figuring out the Galois groups of separable irreducible quartics. Then in Chapter 3 an explicit resolvent sextic is constructed which has a rational root if and only if the irreducible quintic $f(x)=x^{5}+p x^{3}+q x^{2}+r x+s \in \mathbb{Q}[x]$ is solvable by radicals. When $f(x)$ is solvable by radicals, formulas for the roots are given in terms of p, q, r, s which produce the roots in a cyclic order. Finally, in Chapter 4 we show that there is a common formula for finding the roots of all irreducible sextic polynomials $f(x) \in \mathbb{Q}[x]$ with $\operatorname{Gal}(f)=G$ (transitive, solvable subgroup of S_{6}).

1.2 Theoretical background

In this Section we want to give some fundamental definitions and Theorems as a useful background for the results shown and proved in the following Chapters.

Theorem 1.2.1 ([6]). Let $f(x) \in K[x]$ be a separable polynomial of degree n.

1. If $f(x)$ is irreducible in $K[x]$ then its Galois group over K has order divisible by n.
2. The polynomial $f(x)$ is irreducible in $K[x]$ if and only if its Galois group over K is a transitive subgroup of S_{n}.

Definition 1 (Discriminant, [6],[7]). If $f(x) \in K[x]$ factors in a splitting field as

$$
f(x)=c\left(x-r_{1}\right) \ldots\left(x-r_{n}\right)
$$

the discriminant of $f(x)$ is defined to be

$$
\operatorname{disc}(f)=\prod_{i<j}\left(r_{j}-r_{i}\right)^{2}
$$

Theorem 1.2.2 ([6]). Let $f(x) \in K[x]$ be a separable polynomial of degree n. If K does not have characteristic 2, the Galois group of $f(x)$ over K is a subgroup of A_{n} if and only if $\operatorname{disc}(f)$ is a square in K.

Theorem 1.2.2 is why we will assume our fields do not have characteristic 2.
We now introduce the fundamental Theorem of Galois theory:
Theorem 1.2.3 (Fundamental Theorem of Galois theory, [7]). Let K be a field and Ω / K be a Galois extension of K with Galois group $G=\operatorname{Gal}(\Omega / K)$. Than the subextensions of Ω / K are in one-to-one correspondence with the subgroups of G, i.e. the map $H \mapsto \Omega_{H}:=\{\alpha \in \Omega \mid \sigma(\alpha)=$ $\alpha, \forall \sigma \in H\}$ is a bijection from the set of subgroups of G to the set of subextensions of Ω / K,

$$
\{\text { subgroups } H \leq G\} \stackrel{1: 1}{\longleftrightarrow}\{\text { subextensions } K \leq L \leq \Omega\}
$$

with inverse $L \mapsto G_{L}=\operatorname{Gal}(\Omega / L)=\left\{\sigma \in G|\sigma|_{L}=i d_{L}\right\}$. Moreover,
(a) the correspondence is inclusion-reversing:

$$
H_{1} \leq H_{2} \Leftrightarrow \Omega_{H_{1}} \geq \Omega_{H_{2}} \text { and } L_{1} \leq L_{2} \Leftrightarrow G_{L_{1}} \geq G_{L_{2}}
$$

(b) indexes equal degrees:

$$
\forall H_{1} \leq H_{2},\left(H_{1}: H_{2}\right)=\left[\Omega_{H_{2}}: \Omega_{H_{1}}\right] \text { and } \forall L_{1} \leq L_{2},\left(L_{2}: L_{1}\right)=\left[G_{L_{1}}: G_{L_{2}}\right] ;
$$

(c) $\forall \sigma \in G$, let $H^{\sigma}:=\sigma H \sigma^{-1}$. Then

$$
\Omega_{H^{\sigma}}=\sigma\left(\Omega_{H}\right) \text { and }\left(G_{L}\right)^{\sigma}=G_{\sigma(L)}
$$

(d) H is normal in $G \Leftrightarrow \Omega_{H} / K$ is normal (hence Galois) over K, in which case

$$
\operatorname{Gal}\left(\Omega_{H} / K\right)=G / H
$$

Another fundamental Theorem of Galois theory is Theorem 1.1.1 in the previous Section. Finally a Theorem about the splitting field of separable cubics:

Theorem 1.2.4 ([6]). Let K not have characteristic 2 and $f(x) \in K[x]$ be a separable cubic with discriminant Δ. If r is one root of $f(x)$ then a splitting field of $f(x)$ over K is $K(r, \sqrt{\Delta})$. In particular, if $f(x)$ is a reducible cubic then its splitting field over K is $K(\sqrt{\Delta})$.

Chapter 2

Quartics

2.1 Transitive subgroups of S_{4}

Figure 2.1: Subgroup diagram of S_{4}

To compute the Galois group G_{f} of a separable irreducible quartic $f(x) \in K[x]$, we first list all subgroups of S_{4} in Figure 2.1. Among them, the candidates to be the Galois group are the transitive subgroups of S_{4} such that $4=\operatorname{deg}(f)| | G_{f} \mid$, by Theorem 1.2.1. These are (up to isomorphism):

G_{f}	S_{4}	A_{4}	D_{4}	C_{4}	$V \simeq C_{2} \times C_{2}$
$\left\|G_{f}\right\|$	24	12	8	4	4

Table 2.1: Transitive subgroups of S_{4}

With the information given by Table 2.1 and Figure 2.1, we can now make some useful observations:

- D_{4} : Inside S_{4} there are 3 transitive subgroups isomorphic to D_{4}, all conjugate to each other (from Sylow theorems, they are 2-Sylow subgroups):

$$
\langle(1234),(13)\rangle,\langle(1324),(12)\rangle,\langle(1243),(14)\rangle .
$$

- C_{4} : There are 3 transitive subgroups of S_{4} isomorphic to C_{4}. These are the the only cyclic subgroups of order 4 in S_{4} and they are conjugate to each other:

$$
\langle(1234)\rangle,\langle(1324)\rangle,\langle(1243)\rangle .
$$

- V : We write V for Klein's four-group $C_{2} \times C_{2}$. There is only one transitive subgroup of S_{4} isomorphic to V, that is:

$$
\{(1),(12)(34),(13)(24),(14)(23)\}
$$

V is the intersection of the 3 2-Sylow subgroups quote in the first point. There are other subgroups of S_{4} that are isomorphic to V, but they are not transitive.

- The only transitive subgroups of S_{4} inside A_{4} are A_{4} and V.
- The only transitive subgroups of S_{4} with size divisible by 3 are S_{4} and A_{4}.
- The only transitive subgroups of S_{4} containing a transposition (a cycle of length 2) are S_{4} and D_{4}.

2.2 Cubic resolvent

Let $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d \in K[x]$ be monic, separable, irreducible, so $\operatorname{disc}(f) \neq 0$. Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the roots of $f(x)$, so

$$
f(x)=x^{4}+a x^{3}+b x^{2}+c x+d=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right) \in \Omega_{f}
$$

where Ω_{f} is the splitting field of $f(x)$ over K.
It is known that the Galois group of a separable irreducible cubic polynomial $h(x) \in K[x]$ is determined by whether or not its discriminant $d=\operatorname{disc}(h)$ is a square in K, which can be thought of in terms of the associated quadratic polynomial $x^{2}-d$ having a root in K. From this idea, we will see that the Galois group of a quartic polynomial depends on the behavior of an associated cubic polynomial.

We want to create a cubic polynomial with roots in Ω_{f} by finding an expression in the roots of $f(x)$ which only has 3 possible images under the Galois group. One such expression is: $x_{1} x_{2}+x_{3} x_{4}$. In fact, if we define

$$
\alpha=r_{1} r_{2}+r_{3} r_{4}, \quad \beta=r_{1} r_{3}+r_{2} r_{4}, \quad \gamma=r_{1} r_{4}+r_{2} r_{3}
$$

we can see that the group $S_{4}=\operatorname{Sym}\left(\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}\right)$ permutes $\{\alpha, \beta, \gamma\}$ transitively: $\alpha^{S_{4}}=\beta^{S_{4}}=$ $\gamma^{S_{4}}=\{\alpha, \beta, \gamma\}$. The stabilizer of each of α, β, γ is a subgroup of S_{4} of index $3=|\{\alpha, \beta, \gamma\}|$, hence has order 8 . So they must be the 32 -Sylow subgroups. It follows that $\{\alpha, \beta, \gamma\}$ is fixed by their intersection, that is V from the previous observations. Therefore, if we consider the intermediate extension $K \leq K(\alpha, \beta, \gamma) \leq \Omega_{f}$, the subgroup $G_{f} \cap V$ of G_{f} fix $K(\alpha, \beta, \gamma)$.

In particular we have the following lemma:

Lemma 2.2.1 ([7]). The fixed field of $G_{f} \cap V$ is $K(\alpha, \beta, \gamma)$. Hence $K(\alpha, \beta, \gamma)$ is Galois over K with Galois group $G_{f} / G_{f} \cap V$.

Proof. The above discussion shows that the subgroup of G_{f} of elements fixing $K(\alpha, \beta, \gamma)$ is $G_{f} \cap V$, and so $\Omega_{f}^{G_{f} \cap V}=K(\alpha, \beta, \gamma)$ by the fundamental theorem of Galois theory. The remaining statements follow from the fundamental theorem using that V is normal.

Definition 2 (Cubic resolvent, [7]). Let $f(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right) \in \Omega_{f}$,

$$
g(x)=(x-\alpha)(x-\beta)(x-\gamma) \in K(\alpha, \beta, \gamma)
$$

is called cubic resolvent of f (α, β, γ defined as above).

We see that $\Omega_{g}=K(\alpha, \beta, \gamma)$ is the splitting field of $g(x)$ over K. Every permutation σ of the r_{i} (a fortiori $\forall \sigma \in G_{f}$) permutates α, β, γ, and so fixes $g(x): g^{\sigma}=g$. We just prove that $g \in K[x]$ and $G_{g}=G_{f} / G_{f} \cap V$. More explicitly, we can express the coefficients of the cubic resolvent $g(x)$ in terms of the coefficients of the starting quartic $f(x)$:

Lemma 2.2.2 ([6]). Let $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$, then

$$
g(x)=x^{3}-b x^{2}+(a c-4 d) x-\left(a^{2} d+c^{2}-4 b d\right)
$$

Moreover, $\operatorname{disc}(f)=\operatorname{disc}(g)$ and $g(x)$ is separable since $f(x)$ is separable.

Proof. (Sketch of proof) Expand $f(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)\left(x-r_{4}\right)$ to express a, b, c, d in terms of $r_{1}, r_{2}, r_{3}, r_{4}$. Expand $g(x)=(x-\alpha)(x-\beta)(x-\gamma)$ to express the coefficients of g in terms of $r_{1}, r_{2}, r_{3}, r_{4}$, and substitute to express them in terms of a, b, c, d. To prove that the quartic and its cubic resolvent have the same discriminant, we just write the difference between the roots of $g(x)$. For example: $\alpha-\beta=\left(r_{1} r_{2}+r_{3} r_{4}\right)-\left(r_{1} r_{3}+r_{2} r_{4}\right)=\left(r_{1}-r_{4}\right)\left(r_{2}-r_{3}\right)$. Forming the other two differences, multiplying, and squaring, we obtain $\operatorname{disc}(g)=\operatorname{disc}(f)$.

Remark: There is a second polynomial that can be found in the literature under the name of cubic resolvent for $f(X)$. In terms of the coefficients of $f(x)$, the cubic is: $x^{3}-2 b x^{2}+\left(b^{2}+a c-\right.$ $4 d) x+\left(a^{2} d+c^{2}-a b c\right)$, whose roots are $\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right),\left(r_{1}+r_{3}\right)\left(r_{2}+r_{4}\right)$, and $\left(r_{1}+r_{4}\right)\left(r_{2}+r_{3}\right)$. This amounts to exchanging additions and multiplications in the formation of the resolvent's roots.

Now let f be an irreducible quartic. Then G_{f} is one of the group in Table 2.1. These are the following possibilities for G_{f} :

$G_{f} \simeq$	$\left\|G_{f}\right\|$	$\left\|G_{f} \cap V\right\|$	$\left\|G_{g}\right\|$	$G_{g} \simeq G_{f} / G_{f} \cap V$
S_{4}	24	4	6	S_{3}
A_{4}	12	4	3	A_{3}
V	4	4	1	$\{1\}$
D_{4}	8	4	2	C_{2}
C_{4}	4	2	2	C_{2}

$$
\begin{gathered}
\Omega_{f} \\
\left.G_{f} \cap V\right|_{K} \\
\Omega_{g}=K(\alpha, \beta, \gamma) \\
G_{f} /\left.G_{f} \cap V \simeq G_{g}\right|_{K}
\end{gathered}
$$

We now have 2 ways to decide between D_{4} and C_{4} as Galois group: the "classical" procedure and the Theorem proved by Kappe and Warren ([6]).

From the fundamental Theorem of Galois theory, we remind the following equalities:

- $\left|G_{f} \cap V\right|=\left(G_{f} \cap V: 1\right)=\left[\Omega_{f}: \Omega_{g}\right]$;
- $\left|G_{g}\right|=\left(G_{f}: G_{f} \cap V\right)=\left[\Omega_{g}: K\right]$.

2.3 "Classical" method

We can compute $\left|G_{g}\right|$ from the resolvent cubic g, because $G_{g}=\operatorname{Gal}\left(\Omega_{g} / K\right)$ and Ω_{g} is the splitting field of g. Once we know $\left|G_{g}\right|$ we can deduce G_{f} except in the case that is 2 .

If $\left[\Omega_{g}: K\right]=2$, then $G_{f} \cap V=V$ or C_{2}. We know that a separable polynomial $f(x) \in K[x]$ is irreducible if and only if G_{f} permutes the roots of f transitively. Only V acts transitively on the roots of f, and so $G=D_{4}$ or C_{4} according as f is irreducible or not in $\Omega_{g}[x]$.

We can rewrite this "classical" procedure in the following Theorem:
Theorem 2.3.1 ([6]). Let $f(x) \in K[x]$ be an irreducible quartic, where K does not have characteristic 2, and set $\Delta=\operatorname{disc}(f)$. Suppose Δ is not a square in K and $g(x)$ is reducible in $K[x]$, so G_{f} is D_{4} or C_{4}.

- If $f(x)$ is irreducible over $K(\sqrt{\Delta})$ then $G_{f}=D_{4}$.
- If $f(x)$ is reducible over $K(\sqrt{\Delta})$ then $G_{f}=C_{4}$.

Proof. We will make reference to the field diagrams in the proof of Theorem 2.4.4. When $G_{f}=$ D_{4}, the field diagram in this case shows the splitting field of $f(x)$ over K is $K\left(r_{1}, \sqrt{\Delta}\right)$. Since $\left[K\left(r_{1}, \sqrt{\Delta}\right): K\right]=8,\left[K\left(r_{1}, \sqrt{\Delta}\right): K(\sqrt{\Delta})\right]=4$, so $f(x)$ must be irreducible over $K(\sqrt{\Delta})$. When $G_{f}=C_{4}$, the splitting field of $f(x)$ over $K(\sqrt{\Delta})$ has degree 2 , so $f(x)$ is reducible over $K(\sqrt{\Delta})$.

Because the different Galois groups imply different behaviour of $f(x)$ over $K(\sqrt{\Delta})$, these properties of $f(x)$ over $K(\sqrt{\Delta})$ tell us the Galois group.

The two versions of this classical method are equivalent. In fact we can prove that $\Omega_{g}=$ $K(\alpha, \beta, \gamma)$ is equal to $K(\sqrt{\Delta})$, which implies that the behaviour of $f(x)$ over $\Omega_{g}[x]$ is the same as the behaviour of $f(x)$ over $K(\sqrt{\Delta})[x]$.

From Lemma 2.2.2 we know that $\operatorname{disc}(f)=\operatorname{disc}(g)$ and according to this information we can write: $\sqrt{\Delta}=(\alpha-\beta)(\alpha-\gamma)(\beta-\gamma)$ and in particular $\sqrt{\Delta} \in K(\alpha, \beta, \gamma)$. So $K(\sqrt{\Delta}) \subseteq K(\alpha, \beta, \gamma)$. If $G_{f}=D_{4}$ or $G_{f}=C_{4}$, we have in both cases $G_{f} \nsubseteq A_{4}$, so $\Delta \neq \square$ in K and $[K(\sqrt{\Delta}): K]=2$. We also know from the previous diagram that $\left|G_{g}\right|=[K(\alpha, \beta, \gamma): K]=2$, which means $\Omega_{g}=$ $K(\alpha, \beta, \gamma)=K(\sqrt{\Delta})$.

2.4 "New" method

With the notation above:
Theorem 2.4.1 ([6]). Let $f(x) \in K[x]$ be a quartic, G_{f} can be described in terms of whether or not $\operatorname{disc}(f)$ is a square in K and whether or not $g(x)$ factors in $K[x]$, according to the following table:

$\operatorname{disc}(f)$ in K	$g(x)$ in $K[x]$	G_{f}
$\neq \square$	irreducible	S_{4}
$=\square$	irreducible	A_{4}
$\neq \square$	reducible	D_{4} or C_{4}
$=\square$	reducible	V

Table 2.2

Proof. We check each row of the table in order.

- $\operatorname{disc}(f)$ is not a square and $g(x)$ is irreducible over K : Since $\operatorname{disc}(f) \neq \square, G_{f} \nsubseteq A_{4}$. Since $\overline{g(x)}$ is irreducible over K and its roots are in the splitting field of $f(x)$ over K, adjoining a root of $g(x)$ to K gives us a cubic extension of K inside the splitting field of $f(x)$, so $\left|G_{f}\right|$ is divisible by 3 . It's also divisible by 4 , so $G_{f}=S_{4}$ or A_{4}, which implies $G_{4}=S_{4}$.
- $\operatorname{disc}(f)$ is a square and $g(x)$ is irreducible over K : We have $G_{f} \subseteq A_{4}$ and $\left|G_{f}\right|$ divisible by 3 and 4 , so $G_{f}=A_{4}$.
- $\operatorname{disc}(f)$ is not a square and $g(x)$ is reducible over K : Since $\operatorname{disc}(f) \neq \square, G_{f} \nsubseteq A_{4}$, so G_{f} is \bar{S}_{4}, D_{4} or C_{4}. We will show $G_{f} \neq S_{4}$.
What distinguishes S_{4} from the other two choices for G_{f} is that S_{4} contains 3-cycles. If $G_{f}=S_{4}$ then $(123) \in G_{f}$. Applying the hypothetical automorphism in the Galois group to the roots of $g(x)$ carries them through the single orbit:

$$
r_{1} r_{2}+r_{3} r_{4} \mapsto r_{2} r_{3}+r_{1} r_{4} \mapsto r_{3} r_{1}+r_{2} r_{4} \mapsto r_{1} r_{2}+r_{3} r_{4}
$$

These numbers are distinct since $g(x)$ is separable. At least one root of $g(x)$ lies in K, so the G_{f}-orbit of that root is just itself, not three numbers. We have a contradiction.

- $\operatorname{disc}(f)$ is a square and $g(x)$ is reducible over K : The group G_{f} lies in A_{4}, so $G_{f}=V$ or $\bar{G}_{f}=A_{4}$. We want to eliminate the second choice. As in the previous case, we can distinguish V from A_{4} using 3-cycles: there are 3 -cycles in A_{4} but not in V. If there were a 3-cycle on the roots of $f(x)$ in G_{f} then applying it to a root of $g(x)$ shows all the roots of $g(x)$ are in single G_{f}-orbit, which is a contradiction since $g(x)$ is (separable and) reducible over K. Thus G_{f} contains no 3 -cycles.

To make it more clear, Table 2.3 gives some examples of Galois group computations over \mathbb{Q} using Theorem 2.4.1:

$f(x)$	$\operatorname{disc}(f)$	$g(x)$	G_{f}
$x^{4}-x-1$	-283	$x^{3}+4 x-1$	S_{4}
$x^{4}+2 x+2$	$101 \cdot 4^{2}$	$x^{3}-8 x-4$	S_{4}
$x^{4}+8 x+12$	576^{2}	$x^{3}-48 x-64$	A_{4}
$x^{4}+3 x+3$	$21 \cdot 15^{2}$	$(x+3)\left(x^{2}-3 x-3\right)$	D_{4} or C_{4}
$x^{4}+5 x+5$	$5 \cdot 55^{2}$	$(x-5)\left(x^{2}+5 x+5\right)$	D_{4} or C_{4}
$x^{4}+36 x+63$	4320^{2}	$(x-18)(x+6)(x+12)$	V

Table 2.3: Some examples
By Theorem 2.4.1, $g(x)$ is reducible over K only when G_{f} is D_{4}, C_{4} or V. Looking at the examples in Table 2.3 of such Galois groups, we can make the following observation: $g(x)$ has one root in \mathbb{Q} when G_{f} is D_{4} or C_{4} and all three roots are in \mathbb{Q} when G_{f} is V. It is no coincidence:

Corollary 2.4.2 ([6]). With the notation above, $G_{f}=V$ if and only if $g(x)$ splits completely over K and $G_{f}=D_{4}$ or C_{4} if and only if $g(x)$ has a unique root in K.

Proof. The condition for G_{f} to be V is: $\operatorname{disc}(f)=\square$ and $g(x)$ is reducible over K. Since $\operatorname{disc}(g)=$ $\operatorname{disc}(f), G_{f}=V$ if and only if $\operatorname{disc}(g)$ is a square in K and $g(x)$ is reducible over K. By Theorem 1.2.4, a splitting field of $g(x)$ over K is $K(r, \sqrt{\operatorname{disc}(g)})$, where r is any root of $g(x)$. Therefore $G_{f}=V$ if and only if $g(x)$ splits completely over K.

The condition for G_{f} to be D_{4} or C_{4} is: $\operatorname{disc}(f) \neq \square$ and $g(x)$ is reducible over K. These conditions, by Theorem 1.2.4 for the cubic $g(x)$, are equivalent to $g(x)$ having a root in K but not splitting completely over K, which is the same as saying $g(x)$ has a unique root in K.

As we said, Theorem 2.4.1 does not decide between Galois groups D_{4} and C_{4}. The following theorem provides a partial way to do this over \mathbb{Q}, by checking the sign of the discriminant.

Theorem 2.4.3 ([6]). Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quartic. If $G_{f}=C_{4}$ then $\operatorname{disc}(f)>0$. Therefore if G_{f} is D_{4} or C_{4} and $\operatorname{disc}(f)<0, G_{f}=D_{4}$.

Proof. If $G_{f}=C_{4}$, the splitting field of $f(x)$ over \mathbb{Q} has degree 4. Any root of $f(x)$ already generates an extension of \mathbb{Q} with degree 4 , so the field generated over K by one root of $f(x)$ contains all the other roots. Therefore if $f(x)$ has one real root it has 4 rela roots: the number of real roots of $f(x)$ is either 0 or 4 .

If $f(x)$ has 0 real roots then they fall into complex conjugate pairs, say z and \bar{z} and w and \bar{w}. Then $\operatorname{disc}(f)$ is the square of

$$
\begin{equation*}
(z-\bar{z})(z-w)(z-\bar{w})(\bar{z}-w)(\bar{z}-\bar{w})(w-\bar{w})=|z-w|^{2}|z-\bar{w}|^{2}(z-\bar{z})(w-\bar{w}) \tag{2.1}
\end{equation*}
$$

The differences $z-\bar{z}$ and $w-\bar{w}$ are purely imaginary (and non-zero, since z and w are not real), so their product is real and non-zero. Thus when we square (2.4), we find $\operatorname{disc}(f)>0$.

If $f(x)$ has 4 real roots then the product of the differences of its roots is real and non-zero, so $\operatorname{disc}(f)>0$.

Let's give an example: the polynomial $x^{4}+4 x^{2}-2$, which is irreducible by the Eisenstein criterion, has discriminant -18432 and cubic resolvent $x^{3}-4 x^{2}+8 x-32=(x-4)\left(x^{2}-8\right)$. Theorem 2.4.1 says its Galois group is D_{4} or C_{4}. Since the discriminant is negative, Theorem 2.4.3 says the Galois group must be D_{4}.

Theorem 2.4.3 provides only a partial way to decide between D_{4} and C_{4}. It does not distinguish the two possibilities when $\operatorname{disc}(f)>0$, since some polynomials with Galois group D_{4} have positive discriminant. For example, we can't decide yet in Table 2.3 if $x^{4}+5 x+5$ has Galois group D_{4} or C_{4} over \mathbb{Q}.

We can finally prove the following
Theorem 2.4.4 (Kappe, Warren, 1989, [6]). Let K be a field not of characteristic 2, $f(x)=$ $x^{4}+a x^{3}+b x^{2}+c x+d \in K[x]$, and $\Delta=\operatorname{disc}(f)$. Suppose $\Delta \neq \square$ in K and $g(x)$ is reducible in $K[x]$ with unique root $r^{\prime} \in K$. Then $G_{f}=C_{4}$ if the polynomials $x^{2}+a x+\left(b-r^{\prime}\right)$ and $x^{2}-r^{\prime} x+d$ split over $K(\sqrt{\Delta})$, while $G_{f}=D_{4}$ otherwise.

Proof. Index the roots $r_{1}, r_{2}, r_{3}, r_{4}$ of $f(x)$ so that $r^{\prime}=\alpha=r_{1} r_{2}+r_{3} r_{4}$. Both D_{4} and C_{4}, as subgroups of S_{4}, contain a 4 -cycle. (The elements of order 4 in S_{4} are 4 -cycles). In Table 2.4 we describe the effect of each 4 -cycle in S_{4} on r^{\prime} if the 4 -cycle were in the Galois group. The (distinct) roots of $g(x)$ are in the second row, each appearing twice.

σ	(1234)	(1432)	(1243)	(1342)	(1324)	(1423)
$\sigma\left(r_{1} r_{2}+r_{3} r_{4}\right)$	$r_{2} r_{3}+r_{4} r_{1}$	$r_{4} r_{1}+r_{2} r_{3}$	$r_{2} r_{4}+r_{1} r_{3}$	$r_{3} r_{1}+r_{4} r_{2}$	$r_{3} r_{4}+r_{2} r_{1}$	$r_{4} r_{3}+r_{1} r_{2}$

Table 2.4: Effect of a 4-cycle on r^{\prime}
Since $r_{1} r_{2}+r_{3} r_{4}$ is fixed by G_{f}, the only possible 4 -cycles in G_{f} are (1324) and (1432). Both are in G_{f} since at least one is and they are inverses. Let $\sigma=(1324)$.

If $G_{f}=C_{4}$ then $G_{f}=\langle\sigma\rangle$. If $G_{f}=D_{4}$ then the observations in section 2.1 tell us $G_{f}=$ $\langle(1324),(12)\rangle=\{(1),(1324),(12)(34),(1423),(12),(34),(13)(24),(14)(23)\}$ and the elements of G_{f} fixing r_{1} are (1) and (34). Set $\tau=(34)$. Products of σ and τ as disjoints cycles are in Table 2.5.

1	σ	σ^{2}	σ^{3}	τ	$\sigma \tau$	$\sigma^{2} \tau$	$\sigma^{3} \tau$
(1)	(1324)	$(12)(34)$	(1423)	(34)	$(13)(24)$	(12)	$(14)(23)$

Table 2.5: Products of σ and τ
Hence, if $G_{f}=D_{4}$ then $G_{f}=\langle(1324),(12)\rangle=\langle\sigma, \tau\rangle$. The subgroups of $\langle\sigma\rangle$ and $\langle\sigma, \tau\rangle$ look very different.

Corresponding to the above subgroup lattices we have the following subfield lattices of the splitting field, where L in both cases denotes the unique quadratic extension of K inside $K\left(r_{1}\right)$: if $G_{f}=C_{4}$ then L corresponds to $\left\langle\sigma^{2}\right\rangle$, while if $G_{f}=D_{4}$ then L corresponds to $\left\langle\sigma^{2}, \tau\right\rangle$. Since $\Delta \neq \square$ in K, $[K(\sqrt{\Delta}): K]=2$.

If $G_{f}=C_{4}$, then $L=K(\sqrt{\Delta})$ since there is only one quadratic extension of K in the splitting field.

If $G_{f}=D_{4}$, in the subgroup and subfield lattice diagrams above, we know $K\left(r_{1}\right)$ corresponds to $\langle\tau\rangle, K\left(r_{3}\right)$ corresponds to $\left\langle\sigma^{2} \tau\right\rangle$ and $K(\sqrt{\Delta})$ corresponds to $\left\langle\sigma^{2}, \sigma \tau\right\rangle$. Let's explain why: the degree $\left[K\left(r_{1}\right): K\right]=4$, so its corresponding subgroup in $D_{4}=\langle\sigma, \tau\rangle$ has order $8 / 4=2$ and $\tau=$ (34) fixes r_{1} and has order 2. Similarly, $\left[K\left(r_{3}\right): K\right]=4$ and $\sigma^{2} \tau=(12)$ fixes r_{3}. The subgroup corresponding to $K(\sqrt{\Delta})$ is the even permutations in the Galois group, and that is $\{(1),(12)(34),(13)(24),(14)(23)\}=\left\langle\sigma^{2}, \sigma \tau\right\rangle$.

Although the two cases of G_{f} are different, we are going to develop some common ideas for both of them concerning the quadratic extensions $K\left(r_{1}\right) / L$ and L / K before we distinguish the two cases from each other. If $G_{f}=C_{4}, \operatorname{Gal}\left(K\left(r_{1}\right) / L\right)=\left\{1, \sigma^{2}\right\}$. If $G_{f}=D_{4}, \operatorname{Gal}\left(K\left(r_{1}\right) / L\right)=$ $\left\langle\sigma^{2}, \tau\right\rangle /\langle\tau\rangle=\left\{1, \sigma^{2}\right\}$. So in both cases, the L-conjugate of r_{1} is $\sigma^{2}\left(r_{1}\right)=r_{2}$ and the minimal polynomial of r_{1} over L must be

$$
\left(x-r_{1}\right)\left(x-r_{2}\right)=x^{2}-\left(r_{1}+r_{2}\right) x+r_{1} r_{2} \in L[x]
$$

Therefore $r_{1}+r_{2}$ and $r_{1} r_{2}$ are in L. Since $\left[K\left(r_{1}\right): K\right]=4$, this polynomial is not in $K[x]$:

$$
\begin{equation*}
r_{1}+r_{2} \notin K \text { or } r_{1} r_{2} \notin K . \tag{2.2}
\end{equation*}
$$

If $G_{f}=C_{4}$ then $\operatorname{Gal}(L / K)=\langle\sigma\rangle /\left\langle\sigma^{2}\right\rangle=\{1, \bar{\sigma}\}$, and if $G_{f}=D_{4}$ then $\operatorname{Gal}(L / K)=\langle\sigma, \tau\rangle /\left\langle\sigma^{2}, \tau\right\rangle=$ $\{1, \bar{\sigma}\}$. The coset of σ in $\operatorname{Gal}(L / K)$ represents the nontrivial coset both times, so $L^{\sigma}=K$. That is, an element of L fixed by σ is in K. Since $\sigma\left(r_{1}+r_{2}\right)=r_{3}+r_{4}$ and $\sigma\left(r_{1} r_{2}\right)=r_{3} r_{4}$, the polynomials

$$
\begin{equation*}
\left(x-\left(r_{1}+r_{2}\right)\right)\left(x-\left(r_{3}+r_{4}\right)\right)=x^{2}-\left(r_{1}+r_{2}+r_{3}+r_{4}\right) x+\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x-r_{1} r_{2}\right)\left(x-r_{3} r_{4}\right)=x^{2}-\left(r_{1} r_{2}+r_{3} r_{4}\right) x+r_{1} r_{2} r_{3} r_{4} \tag{2.4}
\end{equation*}
$$

have coefficients in $L^{\sigma}=K$. The linear coefficient in (2.3) is a and the constant term is

$$
\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right)=r_{1} r_{3}+r_{1} r_{4}+r_{2} r_{3}+r_{2} r_{4}=b-\left(r_{1} r_{2}+r_{3} r_{4}\right)=b-r^{\prime}
$$

so (2.3) equals $x^{2}+a x+\left(b-r^{\prime}\right)$. The quadratic polynomial (2.4) is $x^{2}-r^{\prime} x+d$. When $r_{1}+r_{2} \notin K$, (2.3) is irreducible in $K[x]$, so its discriminant is a non-square in K, and if $r_{1}+r_{2} \in K$ then (2.3) has a double root and its discriminant is 0 . Similarly, (2.4) has a discriminant that is a non-square in K or is 0 . Therefore the splitting field of (2.3) or (2.4) over K is either L or K and (2.2) tells us at least one of (2.3) and (2.4) has a non-square discriminant in K (so has splitting field L).

Since $r_{1}+r_{2}$ and $r_{1} r_{2}$ are in L and $[L: K]=2$, each one generates L over K if it is not in K. This happens for at least one of the two numbers, by (2.2).

First suppose $G_{f}=C_{4}$. Then $L=K(\sqrt{\Delta})$, so $x^{2}+a x+\left(b-r^{\prime}\right)$ and $x^{2}-r^{\prime} x+d$ both split completely over $K(\sqrt{\Delta})$, since their roots are in L.

Next suppose $G_{f}=D_{4}$. Then $L \neq K(\sqrt{\Delta})$. By (2.2) at least one of (2.3) or (2.4) is irreducible over K, so its roots generate L over K and therefore are not in $K(\sqrt{\Delta})$. Thus the polynomial in (2.3) or (2.4) will be irreducible over $K(\sqrt{\Delta})$ if it's irreducible over K.

Since the conclusions about the two quadratic polynomials over $K(\sqrt{\Delta})$ are different depending on whether G_{f} is C_{4} or D_{4}, these conclusions tell us the Galois group.

Corollary 2.4.5 ([6]). When K does not have characteristic 2 and

$$
f(x)=x^{4}+a x^{3}+b x^{2}+c x+d
$$

is an irreducible quaric in $K[x]$, define

$$
\Delta=\operatorname{disc}(f) \text { and } g(x)=x^{3}-b x^{2}+(a c-4 d) x-\left(a^{2} d+c^{2}-4 b d\right)
$$

The Galois group of $f(x)$ over K is described by Table 2.6.

Δ in K	$g(x)$ in $K[x]$	$\left(a^{2}-4\left(b-r^{\prime}\right)\right) \Delta$ and $\left(r^{\prime 2}-4 d\right) \Delta$	G_{f}
$\neq \square$	irreducible		S_{4}
$=\square$	irreducible		A_{4}
$\neq \square$	root $r^{\prime} \in K$	at least one $\neq \square$ in K	D_{4}
$\neq \square$	root $r^{\prime} \in K$	both $=\square$ in K	C_{4}
$=\square$	reducible		V

Table 2.6: Galois groups distinction
Proof. The polynomials $x^{2}+a x+\left(b-r^{\prime}\right)$ and $x^{2}-r^{\prime}+d$ split completely over $K(\sqrt{\Delta})$ if and only if their discriminants $a^{2}-4\left(b-r^{\prime}\right)$ and $r^{\prime 2}-4 d$ are squares in $K(\sqrt{\Delta})$. We saw in the proof of Theorem 2.4.4 that these discriminants are either 0 or nonsquares in K. A nonsquare in K is a square in $K(\sqrt{\Delta})$ if and only if its product with Δ is a square, and this is vacuously true for 0 also.

In Table 2.7 we now give some examples of Galois group computations over \mathbb{Q} using Corollary 2.4.5. In particular we list some quartic trinomials $x^{4}+c x+d$, all irreducible by Eisenstein criterion. If you pick a quartic in $\mathbb{Q}[x]$ at random it probably will be irreducible and have Galois group S_{4}, or perhaps A_{4} if by chance the discriminant is a square, so we only list examples in Table 2.7 where the Galois group is smaller, which means the cubic resolvent is reducible. Since we choose a particular case where $a=b=0, a^{2}-4\left(b-r^{\prime}\right)$ become $4 r^{\prime}$, so we need to decide when the rational numbers $4 r^{\prime} \Delta$ and $\left(r^{\prime 2}-4 d\right) \Delta$ are both squares in \mathbb{Q} :

$x^{4}+c x+d$	Δ	$x^{3}-4 d x-c^{2}$	$4 r^{\prime} \Delta$ and $\left(r^{\prime 2}-4 d\right) \Delta$	G_{f}
$x^{4}+3 x+3$	$21 \cdot 15^{2}$	$(x+3)\left(x^{2}-3 x-3\right)$	$-56700,-14175$	D_{4}
$x^{4}+5 x+5$	$5 \cdot 55^{2}$	$(x-5)\left(x^{2}+5 x+5\right)$	$550^{2}, 275^{2}$	C_{4}
$x^{4}+8 x+14$	$2 \cdot 544^{2}$	$(x-8)\left(x^{2}+8 x+8\right)$	$4608^{2}, 2176^{2}$	C_{4}
$x^{4}+3 x+3$	$13 \cdot 1053^{2}$	$(x-13)\left(x^{2}+13 x+13\right)$	$27378^{2}, 13689^{2}$	C_{4}

Table 2.7: Some examples of Galois group computations
Remark: A fundamental assumption before applying Corollary 2.4.5 is that the quartic must be irreducible. For example, $f(x)=x^{4}+4$ has discriminant $\Delta=\operatorname{disc}(f)=128^{2}$ and cubic resolvent $g(x)=x^{3}-16 x=x(x+4)(x-4)$. Such data (square discriminant, reducible resolvent) suggest the Galois group of $f(x)$ over \mathbb{Q} is V, but $f(x)$ is reducible: it factors as $\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)$. Both factors have discriminant 4 , so the splitting field of $f(x)$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{-4})=\mathbb{Q}(i)$ and the Galois group of $f(x)$ over \mathbb{Q} is cyclic of order 2 .

Chapter 3

Quintics

3.1 Transitive subgroups of S_{5}

First of all, we want to identify the suitable subgroups of S_{5} for being Galois group of an irreducible quintic $f(x) \in \mathbb{Q}[x]$. The candidates are the transitive subgroups of S_{5}, such that $5=\operatorname{deg}(f)| | G_{f} \mid$, by Theorem 1.2.1. Up to isomorphism, these are:

G_{f}	S_{5}	A_{5}	F_{20}	D_{5}	C_{5}
$\left\|G_{f}\right\|$	120	60	20	10	5

Table 3.1: Transitive subgroups of S_{5}

We now want to study whether or not the equation $f(x)=0$ is solvable by radicals. By Theorem 1.1.1, we have to choose the solvable groups from the ones in Table 3.1. Since S_{5} and A_{5} are not solvable, an irreducible quintic $f(x) \in \mathbb{Q}[x]$ is solvable by radicals if and only if the Galois group is contained in the Frobenius group F_{20}, i.e., if and only if the Galois group is isomorphic to F_{20}, to the dihedral group D_{10} of order 10, or the cyclic group C_{5}.

There are different notation in literature for some of this groups:

- $F_{20}=F_{5}=C_{5} \rtimes C_{4}=\langle(12345),(2354)\rangle=\langle(12345),(1243)\rangle ;$
- $D_{10}=D_{5}=C_{5} \rtimes C_{2}=\langle(12345),(25)(34)\rangle$.
where the last equality gives just an example of possible generators of the group. More generally, for any prime p, a solvable subgroup of the symmetric group S_{p} whose order is divisible by p is contained in the normalizer of a Sylow p-subgroup of S_{p}. (In our case a Sylow p-subgroups is isomorphic to
 a copy of C_{5} and its normalizer to a copy of F_{20}).

The purpose here is to give a criterion for the solvability of such a general quintic in terms of the existence of a rational root of an explicit associated resolvent sextic polynomial. When this is the case, we are going to give formulas for the roots analogous to Cardano's formulas for the general cubic and quartic polynomials and to determine the precise Galois group. In particular, the roots are produced in an order which is a cyclic permutation of the roots, which can be useful in other computations.

We work over the rationals \mathbb{Q}, but the results are valid over any field K of characteristic different from 2 and 5 .

3.2 Criterion for the solvability

Let $f(x)=x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e \in \mathbb{Q}[x]$ be a general quintic polynomial with roots $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$. Then

$$
f(x)=x^{5}-s_{1} x^{4}+s_{2} x^{3}-s_{3} x^{2}+s_{4} x-s_{5}
$$

where the s_{i} are the elementary symmetric function in the roots r_{i}. This can be easily shown expanding $f(x)=\prod_{i=1}^{5}\left(x-r_{i}\right)$ and remembering the definition of the elementary symmetric function $s_{i}=\sum_{1 \leq j_{1}<\cdots<j_{i} \leq 5} r_{j_{1}} \ldots r_{j_{i}}$. In our case: $s_{1}=r_{1}+r_{2}+r_{3}+r_{4}+r_{5}, s_{2}=r_{1} r_{2}+r_{1} r_{3}+$ $r_{1} r_{4}+r_{1} r_{5}+r_{2} r_{3}+r_{2} r_{4}+r_{2} r_{5}+r_{3} r_{4}+r_{3} r_{5}+r_{4} r_{5}, \ldots, s_{5}=r_{1} r_{2} r_{3} r_{4} r_{5}$.

Let $F_{20}<S_{5}$ be the Frobenius group of order 20 with generators (12345) and (2354). Then the stabilizer of the element

$$
\begin{aligned}
\theta=\theta_{1}= & r_{1}^{2} r_{2} r_{5}+r_{1}^{2} r_{3} r_{4}+r_{2}^{2} r_{1} r_{3}+r_{2}^{2} r_{4} r_{5}+r_{3}^{2} r_{1} r_{5} \\
& +r_{3}^{2} r_{2} r_{4}+r_{4}^{2} r_{1} r_{2}+r_{4}^{2} r_{3} r_{5}+r_{5}^{2} r_{1} r_{4}+r_{5}^{2} r_{2} r_{3}
\end{aligned}
$$

is precisely F_{20}. It follows that θ_{1} satisfies a polynomial equation of degree 6 over $\mathbb{Q}\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)$ with conjugates $\theta^{S_{5}}=\left\{\theta, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}\right\}$, where:

$$
\begin{aligned}
\theta_{2}= & (123) \theta_{1} \\
= & r_{1}^{2} r_{2} r_{5}+r_{1}^{2} r_{3} r_{4}+r_{2}^{2} r_{1} r_{4}+r_{2}^{2} r_{3} r_{5}+r_{3}^{2} r_{1} r_{2} \\
& +r_{3}^{2} r_{4} r_{5}+r_{4}^{2} r_{1} r_{5}+r_{4}^{2} r_{2} r_{3}+r_{5}^{2} r_{1} r_{3}+r_{5}^{2} r_{2} r_{4} ; \\
\theta_{3}= & (132) \theta_{1} \\
= & r_{1}^{2} r_{2} r_{3}+r_{1}^{2} r_{4} r_{5}+r_{2}^{2} r_{1} r_{4}+r_{2}^{2} r_{3} r_{5}+r_{3}^{2} r_{1} r_{5} \\
& +r_{3}^{2} r_{2} r_{4}+r_{4}^{2} r_{1} r_{3}+r_{4}^{2} r_{2} r_{5}+r_{5}^{2} r_{1} r_{2}+r_{5}^{2} r_{3} r_{4} ; \\
\theta_{4}= & (12) \theta_{1} \\
= & r_{1}^{2} r_{2} r_{3}+r_{1}^{2} r_{4} r_{5}+r_{2}^{2} r_{1} r_{5}+r_{2}^{2} r_{3} r_{4}+r_{3}^{2} r_{1} r_{4} \\
& +r_{3}^{2} r_{2} r_{5}+r_{4}^{2} r_{1} r_{2}+r_{4}^{2} r_{3} r_{5}+r_{5}^{2} r_{1} r_{3}+r_{5}^{2} r_{2} r_{4} ; \\
\theta_{5}= & (23) \theta_{1} \\
= & r_{1}^{2} r_{2} r_{4}+r_{1}^{2} r_{3} r_{5}+r_{2}^{2} r_{1} r_{5}+r_{2}^{2} r_{3} r_{4}+r_{3}^{2} r_{1} r_{2} \\
& +r_{3}^{2} r_{4} r_{5}+r_{4}^{2} r_{1} r_{3}+r_{4}^{2} r_{2} r_{5}+r_{5}^{2} r_{1} r_{4}+r_{5}^{2} r_{2} r_{3} ; \\
\theta_{6}= & (13) \theta_{1} \\
= & r_{1}^{2} r_{2} r_{4}+r_{1}^{2} r_{3} r_{5}+r_{2}^{2} r_{1} r_{3}+r_{2}^{2} r_{4} r_{5}+r_{3}^{2} r_{1} r_{4} \\
& +r_{3}^{2} r_{2} r_{5}+r_{4}^{2} r_{1} r_{5}+r_{4}^{2} r_{2} r_{3}+r_{5}^{2} r_{1} r_{2}+r_{5}^{2} r_{3} r_{4} .
\end{aligned}
$$

We are now ready to define the resolvent sextic (we will call it f_{20}) as the sextic polynomial with θ_{i} as a root. By computing the elementary symmetric functions of the θ_{i}, which are symmetric polynomials in $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$, it is a relatively straightforward matter to express these elements in terms of $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$ to determine the resolvent sextic f_{20}. By making a translation, we may assume $s_{1}=0$, i.e., that our quintic is

$$
f(x)=x^{5}+p x^{3}+q x^{2}+r x+s
$$

in which case f_{20} is

$$
\begin{align*}
f_{20}(x)= & x^{6} \\
+ & +8 r x^{5}+\left(2 p q^{2}-6 p^{2} r+40 r^{2}-50 q s\right) x^{4} \\
+ & \left(-2 q^{4}+21 p q^{2} r-40 p^{2} r^{2}+160 r^{3}-15 p^{2} q s-400 q r s+125 p s^{2}\right) x^{3} \\
+ & \left(p^{2} q^{4}-6 p^{3} q^{2} r-8 q^{4} r+9 p^{4} r^{2}+76 p q^{2} r^{2}-136 p^{2} r^{3}+400 r^{4}\right. \\
& \left.\quad-50 p q^{3} s+90 p^{2} q r s-1400 q r^{2} s+625 q^{2} s^{2}+500 p r s^{2}\right) x^{2} \\
+ & \left(-2 p q^{6}+19 p^{2} q^{4} r-51 p^{3} q^{2} r^{2}+3 q^{4} r^{2}+32 p^{4} r^{3}+76 p q^{2} r^{3}\right. \\
& -256 p^{2} r^{4}+512 r^{5}-31 p^{3} q^{3} s-58 q^{5} s+117 p^{4} q r s+105 p q^{3} r s \\
& +260 p^{2} q r^{2} s-2400 q r^{3} s-108 p^{5} s^{2}-325 p^{2} q^{2} s^{2}+525 p^{3} e s^{2} \tag{3.1}\\
& \left.+2750 q^{2} r s^{2}-500 p r^{2} s^{2}+625 p q s^{3}-3125 s^{4}\right) x \\
+ & \left(q^{8}-13 p q^{6} r+p^{5} q^{2} r^{2}+65 p^{2} q^{4} r^{2}-4 p^{6} r^{3}-128 p^{3} q^{2} r^{3}+17 q^{4} r^{3}\right. \\
& +48 p^{4} r^{4}-16 p q^{2} r^{4}-192 p^{2} r^{5}+256 r^{6}-4 p^{5} q^{3} s-12 p^{2} q^{5} s \\
& +18 p^{6} q r s+12 p^{3} q^{3} r s-124 q^{5} r s+196 p^{4} q r^{2} s+590 p q^{3} r^{2} s \\
& -160 p^{2} q r^{3} s-1600 q r^{4} s-27 p^{7} s^{2}-150 p^{4} q^{2} s^{2}-125 p q^{4} s^{2} \\
& -99 p^{5} r s^{2}-725 p^{2} q^{2} r s^{2}+1200 p^{3} r^{2} s^{2}+3250 q^{2} r^{2} s^{2} \\
& \left.-2000 p r^{3} s^{2}-1250 p q r s^{3}+3125 p^{2} s^{4}-9375 r s^{4}\right) .
\end{align*}
$$

For the particular case when $f(x)=x^{5}+a x+b$, this polynomial is simply

$$
\begin{aligned}
f_{20}(x)= & x^{6}+8 a x^{5}+40 a^{2} x^{4}+160 a^{3} x^{3}+400 a^{4} x^{2} \\
& +\left(512 a^{5}-3125 b^{4}\right) x+\left(256 a^{6}-9375 a b^{4}\right) .
\end{aligned}
$$

We are now ready to give the criterion for the solvability of a general quintic polynomial.
Theorem 3.2.1 ([3]). The irreducible quintic $f(x)=x^{5}+p x^{3}+q x^{2}+r x+s \in \mathbb{Q}[x]$ is solvable by radicals if and only if the polynomial $f_{20}(x)$ in (3.1) has a rational root. If this is the case, the sextic $f_{20}(x)$ factors into the product of a linear polynomial and an irreducible quintic.

Proof. The polynomial $f(x)$ is solvable if and only if the Galois group of $f(x)$, considered as a permutation group on the roots, is contained in the normalizer of some Sylow 5 -subgroup in S_{5}. The normalizers of the six Sylow 5 -subgroups in S_{5} are precisely the conjugates of F_{20} above, hence are the stabilizers of the elements $\theta_{1}, \ldots, \theta_{6}$. It follows that $f(x)$ is solvable by radicals if and only if one of the θ_{1} is rational. By renumbering the roots as r_{1}, \ldots, r_{5}, we may assume $\theta=\theta_{1}$ is rational, so that the Galois group of $f(x)$ is contained in the specific group F_{20} above, $F_{20}=\langle(12345),(1243)\rangle$. Since $f(x)$ is irreducible, the order of its Galois group is divisible by 5 . It follows that the 5 -cycle (12345) survives any specialization (this element generates the unique subgroup of order 5 in this F_{20}). Because this element is transitive on $\theta_{2}, \ldots, \theta_{6}$ (in fact cycling them as $\theta_{2}, \theta_{6}, \theta_{3}, \theta_{4}, \theta_{5}$), the remaining roots θ_{i} are roots of an irreducible quintic over $\mathbb{Q}(\theta)=\mathbb{Q}$.

We now consider the question of solving for the roots of $f(x)$ when $f(x)$ is solvable, i.e., solving for the roots r_{1}, \ldots, r_{5} in terms of radicals over the field $\mathbb{Q}\left(s_{1}, \ldots, s_{5}, \theta\right)$. We suppose the rational root of f_{20} is the root θ above. This determines an ordering of the roots r_{i} up to a permutation in F_{20}.

3.3 Lagrange resolvent

Let's introduce the Lagrange resolvent.
Definition 3 (Cyclic extension, [4]). The extension K / F is said to be cyclic it is Galois with a cyclic Galois group.

Lemma 3.3.1 ([4]). Let F be a field with characteristic not dividing n which contains the $n^{\text {th }}$ roots of unity. Then the extension $F(\sqrt[n]{a})$ for $a \in F$ is cyclic over F of order dividing n.

Let now K be any cyclic extension of degree n over a field F of characteristic not dividing n which contains the $n^{\text {th }}$ roots of unity. Let σ be a generator for the cyclic group $\operatorname{Gal}(K / F)$.

Definition 4 (Lagrange resolvent, [4]). For $\alpha \in K$ and any $n^{\text {th }}$ root of unity ζ, define the Lagrange resolvent $(\alpha, \zeta) \in K$ by

$$
(\alpha, \zeta)=\alpha+\zeta \sigma(\alpha)+\zeta^{2} \sigma^{2}(\alpha)+\cdots+\zeta^{n-1} \sigma^{n-1}(\alpha)
$$

If we apply the automorphism σ to (α, ζ) we obtain

$$
\sigma(\alpha, \zeta)=\sigma \alpha+\zeta \sigma^{2}(\alpha)+\zeta^{2} \sigma^{3}(\alpha)+\cdots+\zeta^{n-1} \sigma^{n}(\alpha)
$$

since ζ is an element of the base field F so is fixed by σ. We have $\zeta^{n}=1$ in $\mu_{n} \cong \mathbb{Z} / n \mathbb{Z}$ (as group of the $n^{\text {th }}$ roots of unity over \mathbb{Q}, under multiplication on the right, addition on the left) and $\sigma^{n}=1$ in $\operatorname{Gal}(K / F)$ so this can be written

$$
\begin{align*}
\sigma(\alpha, \zeta) & =\sigma \alpha+\zeta \sigma^{2}(\alpha)+\zeta^{2} \sigma^{3}(\alpha)+\cdots+\zeta^{n-1}(\alpha) \\
& =\zeta^{-1}\left(\alpha+\zeta \sigma \alpha+\zeta^{2} \sigma^{2}(\alpha)+\cdots+\zeta^{n-1} \sigma^{n-1}(\alpha)\right) \\
& =\zeta^{-1}(\alpha, \zeta) \tag{3.2}
\end{align*}
$$

It follows that

$$
\sigma(\alpha, \zeta)^{n}=\left(\zeta^{-1}\right)^{n}(\alpha, \zeta)^{n}=(\alpha, \zeta)^{n}
$$

so that $(\alpha, \zeta)^{n}$ is fixed by $\operatorname{Gal}(K / F)$, hence is an element of F for any $\alpha \in K$.
Let ζ be a $n^{\text {th }}$ root of unity. By the linear independence of the automorphisms $1, \sigma, \ldots, \sigma^{n-1}$, there is an element $\alpha \in K$ with $(\alpha, \zeta) \neq 0$. Iterating (3.2) we have

$$
\sigma^{i}(\alpha, \zeta)=\zeta^{-i}(\alpha, \zeta), \quad i=0,1, \ldots
$$

and it follows that σ^{i} does not fix (α, ζ) for any $i<n$. Hence this element cannot lie in any proper subfield of K, so $K=F((\alpha, \zeta))$. Since we proved $(\alpha, \zeta)^{n}=a \in F$ above, we have $F(\sqrt[n]{a})=F((\alpha, \zeta))=K$. This proves the following converse of Lemma (3.3.2)
Lemma 3.3.2 ([4]). Any cyclic extension of degree n over a field F of characteristic not dividing n which contains the $n^{t h}$ roots of unity is of the form $F(\sqrt[n]{a})$ for some $a \in F$.

In our case, let ζ be a fixed primitive 5 th root of unity and define the function fields $k=$ $\mathbb{Q}\left(s_{1}, \ldots, s_{5}\right), K=k(\theta)$ and $F=\mathbb{Q}\left(r_{1}, \ldots, r_{5}\right)$, so that $F(\zeta) / K$ is a Galois extension with $F_{20} \times$ $(\mathbb{Z} / n \mathbb{Z})^{\times}$as Galois group. Define the automorphism σ, τ and ω of F to be $\sigma=(12345)$ (trivial on constants), $\tau=(2354)$ (trivial on constants) and $\omega: \zeta \mapsto \zeta^{3}$ (trivial on r_{1}, \ldots, r_{5}).

Let $\Delta=\operatorname{disc}(f)$ be the discriminant of the quintic $f(x)$ and $\sqrt{\Delta}=\prod_{i<j}\left(r_{i}-r_{j}\right)$ the fixed square root of Δ. Note that for a solvable quintic, the discriminant Δ is always positive: if the Galois group is dihedral or cyclic, then the Galois group is contained in A_{5}, so that Δ is actually a square; if the Galois group is the Frobenius group, then $\sqrt{\Delta}$ generates a quadratic extension which is a subfield of a cyclic quartic extension, so again $\Delta>0$ (in fact, Δ is then the sum of two squares).

Define the usual Lagrange resolvents of the root r_{1} :

$$
\begin{aligned}
\left(r_{1}, 1\right) & =r_{1}+1 \cdot \sigma\left(r_{1}\right)+1^{2} \cdot \sigma^{2}\left(r_{1}\right)+1^{3} \cdot \sigma^{3}\left(r_{1}\right)+1^{4} \cdot \sigma^{4}\left(r_{1}\right) \\
& =r_{1}+r_{2}+r_{3}+r_{4}+r_{5}=s_{1}=0 \\
z_{1} & =\left(r_{1}, \zeta\right)=r_{1}+r_{2} \zeta+r_{3} \zeta^{2}+r_{4} \zeta^{3}+r_{5} \zeta^{4} \\
z_{2} & =\left(r_{1}, \zeta^{2}\right)=r_{1}+r_{2} \zeta^{2}+r_{3} \zeta^{4}+r_{4} \zeta^{+} r_{5} \zeta^{3} \\
z_{3} & =\left(r_{1}, \zeta^{3}\right)=r_{1}+r_{2} \zeta^{3}+r_{3} \zeta+r_{4} \zeta^{4}+r_{5} \zeta^{2} \\
z_{4} & =\left(r_{1}, \zeta^{4}\right)=r_{1}+r_{2} \zeta^{4}+r_{3} \zeta^{3}+r_{4} \zeta^{2}+r_{5} \zeta
\end{aligned}
$$

so that

$$
\begin{align*}
& r_{1}=\left(z_{1}+z_{2}+z_{3}+z_{4}\right) / 5 \\
& r_{2}=\left(\zeta^{4} z_{1}+\zeta^{3} z_{2}+\zeta^{2} z_{3}+\zeta z_{4}\right) / 5 \\
& r_{3}=\left(\zeta^{3} z_{1}+\zeta z_{2}+\zeta^{4} z_{3}+\zeta^{2} z_{4}\right) / 5 \tag{3.3}\\
& r_{4}=\left(\zeta^{2} z_{1}+\zeta^{4} z_{2}+\zeta z_{3}+\zeta^{3} z_{4}\right) / 5 \\
& r_{5}=\left(\zeta z_{1}+\zeta^{2} z_{2}+\zeta^{3} z_{3}+\zeta^{4} z_{4}\right) / 5 .
\end{align*}
$$

Write

$$
\left(r_{1}, t\right)=r_{1}+r_{2} t+r_{3} t^{2}+r_{4} t^{3}+r_{5} t^{4}
$$

with an indeterminate t (so $t=\zeta$ gives the Lagrange resolvent z_{1}). Expanding $\left(r_{1}, t\right)^{5}$ gives

$$
\begin{equation*}
Z_{1}=z_{1}^{5}=\left(r_{1}, \zeta\right)^{5}=l_{0}+l_{1} \zeta+l_{2} \zeta^{2}+l_{3} \zeta^{3}+l_{4} \zeta^{4} \tag{3.4}
\end{equation*}
$$

where l_{0} by definition is the sum of the terms in $\left(r_{1}, t\right)^{5}$ involving powers t^{i} of t with i divisible by $5, l_{1}$ is the sum of the terms with $i \equiv 1 \bmod 5$, and so forth. Explicitly,

$$
\begin{align*}
& l_{0}=30 r_{2} r_{4} r_{5}^{2}+20 r_{1} r_{4} r_{5}^{3}+20 r_{1}^{3} r_{2} r_{5}+20 r_{2} r_{3} r_{5}^{3}+r_{2}^{5}+r_{5}^{5} \\
& +r_{1}^{5}+r_{3}^{5}+r_{4}^{5}+20 r_{1}^{3} r_{3} r_{4}+30 r_{1}^{2} r_{2}^{2} r_{4}+30 r_{1}^{2} r_{2} r_{3}^{2}+20 r_{1} r_{2}^{3} r_{3} \\
& +30 r_{1}^{2} r_{3} r_{5}^{2}+30 r_{1}^{2} r_{4}^{2} r_{5}+30 r_{2}^{2} r_{3}^{2} r_{5}+30 r_{2}^{2} r_{3} r_{4}^{2} \\
& +20 r_{2}^{3} r_{4} r_{5}+20 r_{2} r_{3}^{3} r_{4}+20 r_{1} r_{2} r_{4}^{3}+30 r_{1} r_{2}^{2} r_{5}^{2}+30 r_{1} r_{3}^{2} r_{4}^{2} \\
& +20 r_{1} r_{3}^{3} r_{5}+120 r_{1} r_{2} r_{3} r_{4} r_{5}+30 r_{3}^{2} r_{4} r_{5}^{2}+20 r_{3} r_{4}^{3} r_{5} \text {, } \\
& l_{1}=20 r_{1} r_{3} r_{4}^{3}+30 r_{1}^{2} r_{4} r_{5}^{2}+5 r_{1}^{4} r_{2}+10 r_{1}^{3} r_{4}^{2}+10 r_{1}^{2} r_{3}^{3} \\
& +5 r_{2}^{4} r_{3}+10 r_{2}^{2} r_{4}^{3}+5 r_{3}^{4} r_{4}+10 r_{2}^{3} r_{5}^{2}+10 r_{3}^{2} r_{5}^{3}+5 r_{4}^{4} r_{5} \\
& +5 r_{1} r_{5}^{4}+20 r_{1}^{3} r_{3} r_{5}+30 r_{1}^{2} r_{2}^{2} r_{5}+30 r_{1} r_{2}^{2} r_{3}^{2}+20 r_{1} r_{2}^{3} r_{4} \\
& +30 r_{2} r_{3}^{2} r_{4}^{2}+20 r_{2} r_{3}^{3} r_{5}+20 r_{2} r_{4} r_{5}^{3}+30 r_{3} r_{4}^{2} r_{5}^{2}+60 r_{1}^{2} r_{2} r_{3} r_{4} \\
& +60 r_{2}^{2} r_{3} r_{4} r_{5}+60 r_{1} r_{2} r_{4}^{2} r_{5}+60 r_{1} r_{2} r_{3} r_{5}^{2}+60 r_{1} r_{3}^{2} r_{4} r_{5} \text {, } \\
& l_{2}=20 r_{1}^{3} r_{4} r_{5}+10 r_{1}^{3} r_{2}^{2}+5 r_{1}^{4} r_{3}+10 r_{2}^{3} r_{3}^{2}+5 r_{2}^{4} r_{4}+10 r_{1}^{2} r_{5}^{3} \\
& +10 r_{3}^{3} r_{4}^{2}+5 r_{1} r_{4}^{4}+5 r_{3}^{4} r_{5}+5 r_{2} r_{5}^{4}+10 r_{4}^{3} r_{5}^{2}+30 r_{1}^{2} r_{2} r_{4}^{2} \\
& +30 r_{1}^{2} r_{3}^{2} r_{4}+20 r_{1} r_{2} r_{3}^{3}+20 r_{1} r_{2}^{3} r_{5}+30 r_{2}^{2} r_{3} r_{5}^{2} \tag{3.5}\\
& +20 r_{2} r_{3} r_{4}^{3}+30 r_{2}^{2} r_{4}^{2} r_{5}+30 r_{2} r_{3}^{2} r_{5}^{2}+60 r_{1}^{2} r_{2} r_{3} r_{5}+60 r_{1} r_{2}^{2} r_{3} r_{4} \\
& +60 r_{1} r_{2} r_{4} r_{5}^{2}+60 r_{2} r_{3}^{2} r_{4} r_{5}+60 r_{1} r_{3} r_{4}^{2} r_{5}+20 r_{3} r_{4} r_{5}^{3} \text {, } \\
& l_{3}=20 r_{2}^{3} r_{3} r_{4}+20 r_{3}^{3} r_{4} r_{5}+5 r_{1}^{4} r_{4}+10 r_{1}^{2} r_{2}^{3}+10 r_{1}^{3} r_{5}^{2}+10 r_{2}^{2} r_{3}^{3} \\
& +5 r_{2}^{4} r_{5}+5 r_{1} r_{3}^{4}+5 r_{2} r_{4}^{4}+10 r_{3}^{2} r_{4}^{3}+5 r_{3} r_{5}^{4}+10 r_{4}^{2} r_{5}^{3} \\
& +20 r_{1}^{3} r_{2} r_{3}+30 r_{1}^{2} r_{3} r_{4}^{2}+30 r_{1}^{2} r_{3}^{2} r_{5}+30 r_{1} r_{2}^{2} r_{4}^{2}+30 r_{2} r_{3}^{2} r_{5}^{2} \\
& +30 r_{2}^{2} r_{4} r_{5}^{2}+20 r_{1} r_{2} r_{5}^{3}+20 r_{1} r_{4}^{3} r_{5}+60 r_{1}^{2} r_{2} r_{4} r_{5} \\
& +60 r_{1} r_{2} r_{3}^{2} r_{4}+60 r_{1} r_{2}^{2} r_{3} r_{5}+60 r_{2} r_{3} r_{4}^{2} r_{5}+60 r_{1} r_{3} r_{4} r_{5}^{2} \text {, } \\
& l_{4}=30 r_{1}^{2} r_{2} r_{5}^{2}+5 r_{1}^{4} r_{5}+10 r_{1}^{3} r_{3}^{2}+5 r_{1} r_{2}^{4}+5 r_{2} r_{3}^{4}+10 r_{1}^{2} r_{4}^{3} \\
& +10 r_{2}^{3} r_{4}^{2}+10 r_{2}^{2} r_{5}^{3}+5 r_{3} r_{4}^{4}+10 r_{3}^{3} r_{5}^{2}+5 r_{4} r_{5}^{4}+20 r_{1}^{3} r_{2} r_{4} \\
& +30 r_{1}^{2} r_{2}^{2} r_{3}+30 r_{2}^{2} r_{3}^{2} r_{4}+20 r_{2}^{3} r_{3} r_{5}+20 r_{1} r_{3}^{3} r_{4}+20 r_{2} r_{4}^{3} r_{5} \\
& +30 r_{3}^{2} r_{4}^{2} r_{5}+20 r_{1} r_{3} r_{5}^{3}+30 r_{1} r_{4}^{2} r_{5}^{2}+60 r_{1}^{2} r_{3} r_{4} r_{5} \\
& +60 r_{1} r_{2}^{2} r_{4} r_{5}+60 r_{1} r_{2} r_{3} r_{4}^{2}+60 r_{1} r_{2} r_{3}^{2} r_{5}+60 r_{2} r_{3} r_{4} r_{5}^{2} .
\end{align*}
$$

(Note also that setting $t=1$ shows that

$$
l_{0}+l_{1}+l_{2}+l_{3}+l_{4}=\left(r_{1}+r_{2}+r_{3}+r_{4}+r_{5}\right)^{5}
$$

In particular, if $s_{1}=0$, we have $l_{0}=-l_{1}-l_{2}-l_{3}-l_{4}$.)
Similarly we have

$$
\begin{aligned}
& Z_{2}=z_{2}^{5}=l_{0}+l_{3} \zeta+l_{1} \zeta^{2}+l_{4} \zeta^{3}+l_{2} \zeta^{4} \\
& Z_{3}=z_{3}^{5}=l_{0}+l_{2} \zeta+l_{4} \zeta^{2}+l_{1} \zeta^{3}+l_{3} \zeta^{4} \\
& Z_{4}=z_{4}^{5}=l_{0}+l_{4} \zeta+l_{3} \zeta^{2}+l_{2} \zeta^{3}+l_{1} \zeta^{4} .
\end{aligned}
$$

The Galois action over K on these elements is the following: The elements $l_{0}, l_{1}, l_{2}, l_{3}, l_{4}$ are contained in the field F and are fixed by σ;

$$
\tau l_{0}=l_{0}, \quad \tau l_{1}=l_{2}, \quad \tau l_{2}=l_{4}, \quad \tau l_{3}=l_{1}, \quad \tau l_{4}=l_{3}
$$

and the action on the Lagrange resolvents is given by

$$
\begin{array}{ll}
\sigma z_{1}=\zeta^{4} z_{1}, & \tau z_{1}=\omega z_{1}=z_{3} \\
\sigma z_{2}=\zeta^{3} z_{2}, & \tau z_{2}=\omega z_{2}=z_{1} \tag{3.6}\\
\sigma z_{3}=\zeta^{2} z_{3}, & \tau z_{3}=\omega z_{3}=z_{4} \\
\sigma z_{4}=\zeta^{1} z_{4}, & \tau z_{4}=\omega z_{4}=z_{2}
\end{array}
$$

It follows that $l_{0} \in K$ and that $l_{1}, l_{2}, l_{3}, l_{4}$ are the roots of a quartic polynomial over K, and the field $L=K\left(l_{1}\right)=K\left(l_{1}, l_{2}, l_{3}, l_{4}\right)$ is a cyclic extension of K of degree 4 (with Galois group generated by the restriction of $\tau=(2354)$. The unique quadratic subfield of L over K is the field $K(\sqrt{\Delta})$. The field diagram is the following:

Since the Galois group of L / K is cyclic of degree 4 , it follows that $l_{1}, l_{2}, l_{3}, l_{4}$ are the roots of a quartic over K which factors over $K(\sqrt{\Delta})$ into the product of two conjugate quadratics:

$$
\begin{equation*}
\left[x^{2}+\left(T_{1}+T_{2} \sqrt{\Delta}\right) x+\left(T_{3}+T_{4} \sqrt{\Delta}\right)\right]\left[x^{2}+\left(T_{1}+T_{2} \sqrt{\Delta}\right) x+\left(T_{3}-T_{4} \sqrt{\Delta}\right)\right] \tag{3.7}
\end{equation*}
$$

with $T_{1}, T_{2}, T_{3}, T_{4} \in K$. The roots of one of these two quadratic factors are $\left\{l_{1}, l_{4}\left(=\tau^{2} l_{1}\right)\right\}$, and the roots of the other are the conjugates $\left\{l_{2}\left(=\tau l_{1}\right), l_{3}\left(=\tau^{3} l_{1}\right)\right\}$ for the specific l_{i} defined in equations (3.5). We may fix the order of the factors and determine the coefficients T_{i} explicitly by assuming that the roots of the first factor in (3.7) are $\left\{l_{1}, l_{4}\right\}$. Then

$$
\begin{array}{cl}
l_{1}+l_{4}=-T_{1}-T_{2} \sqrt{\Delta}, & l_{2}+l_{3}=-T_{1}+T_{2} \sqrt{\Delta} \\
l_{1} l_{4}=T_{3}+T_{4} \sqrt{\Delta}, & l_{2} l_{3}=T_{3}-T_{4} \sqrt{\Delta}
\end{array}
$$

which defines the T_{i} as explicit rational functions in r_{1}, \ldots, r_{5}. Writing these elements as linear combinations of $1, \theta, \theta^{2}, \ldots, \theta^{5}$ with symmetric functions as coefficients would be relatively more straightforward if $\mathbb{Z}\left[s_{1}, \ldots, s_{5}\right][\theta]$ were integrally closed in K, but unfortunately this is not the case. We proceed as follows. In a relation of the form

$$
P=\alpha_{0}+\alpha_{1} \theta+\alpha_{2} \theta^{2}+\alpha_{3} \theta^{3}+\alpha_{4} \theta^{4}+\alpha_{5} \theta^{5}
$$

where the α_{i} are rational symmetric functions, if we apply the automorphisms (123) and (12) (which generate a complement to F_{20} in S_{5} and so give the automorphisms of $K=k(\theta)$), we obtain the system of equations

$$
\begin{aligned}
P & =\alpha_{0}+\alpha_{1} \theta_{1}+\alpha_{2} \theta_{1}^{2}+\alpha_{3} \theta_{1}^{3}+\alpha_{4} \theta_{1}^{4}+\alpha_{5} \theta_{1}^{5}, \\
(123) P & =\alpha_{0}+\alpha_{1} \theta_{2}+\alpha_{2} \theta_{2}^{2}+\alpha_{3} \theta_{2}^{3}+\alpha_{4} \theta_{2}^{4}+\alpha_{5} \theta_{2}^{5}, \\
(132) P & =\alpha_{0}+\alpha_{1} \theta_{3}+\alpha_{2} \theta_{3}^{2}+\alpha_{3} \theta_{3}^{3}+\alpha_{4} \theta_{3}^{4}+\alpha_{5} \theta_{3}^{5}, \\
(12) P & =\alpha_{0}+\alpha_{1} \theta_{4}+\alpha_{2} \theta_{4}^{2}+\alpha_{3} \theta_{4}^{3}+\alpha_{4} \theta_{4}^{4}+\alpha_{5} \theta_{4}^{5} \\
(23) P & =\alpha_{0}+\alpha_{1} \theta_{5}+\alpha_{2} \theta_{5}^{2}+\alpha_{3} \theta_{5}^{3}+\alpha_{4} \theta_{5}^{4}+\alpha_{5} \theta_{5}^{5}, \\
(13) P & =\alpha_{0}+\alpha_{1} \theta_{6}+\alpha_{2} \theta_{6}^{2}+\alpha_{3} \theta_{6}^{3}+\alpha_{4} \theta_{6}^{4}+\alpha_{5} \theta_{6}^{5},
\end{aligned}
$$

from which we may solve for the α_{i} using Cramer's rule. The denominator appearing in Cramer's rule is the Vandermonde determinant $-\prod_{i<j}\left(\theta_{i}-\theta_{j}\right)$, and it is not difficult to see that this is $(\sqrt{\Delta})^{3} F$, where F is a symmetric polynomial. In particular, if P is a polynomial, this gives a bound for the denominator necessary for the rational symmetric functions α_{i} (since then the numerator in Cramer's rule is a polynomial).

3.4 Ordering the resolvents

Once we have defined all this variables, our goal is to find $l_{1}, l_{2}, l_{3}, l_{4}$ as roots of (3.7) and from the irreducibility of this polynomial to determine G_{f}. Then we want to determine the roots r_{i} of $f(x)$ using (3.3) and to do so we have to find a way to determine z_{i}. This is just a brief idea of what we have to do and what we will find in the final Theorem 3.4.2.

If we write

$$
\begin{equation*}
l_{0}=\left(a_{0}+a_{1} \theta+a_{2} \theta^{2}+a_{3} \theta^{3}+a_{4} \theta^{4}+a_{5} \theta^{5}\right) / F \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
& T_{1}=\left(b_{10}+b_{11} \theta+b_{12} \theta^{2}+b_{13} \theta^{3}+b_{14} \theta^{4}+b_{15} \theta^{5}\right) /(2 F), \tag{3.9}\\
& T_{2}=\left(b_{20}+b_{21} \theta+b_{22} \theta^{2}+b_{23} \theta^{3}+b_{24} \theta^{4}+b_{25} \theta^{5}\right) /(2 \Delta F), \tag{3.10}\\
& T_{3}=\left(b_{30}+b_{31} \theta+b_{32} \theta^{2}+b_{33} \theta^{3}+b_{34} \theta^{4}+b_{35} \theta^{5}\right) /(2 F), \tag{3.11}\\
& T_{4}=\left(b_{40}+b_{41} \theta+b_{42} \theta^{2}+b_{43} \theta^{3}+b_{44} \theta^{4}+b_{45} \theta^{5}\right) /(2 \Delta F), \tag{3.12}
\end{align*}
$$

the values can be found explicitly for the general polynomial $f(x)=x^{5}+p x^{3}+q x^{2}+r x+s$ in terms of p, q, r, s. We will give them only for the particular case when $f(x)=x^{5}+a x+b$. These values are

$$
\begin{gather*}
T_{1}=\frac{\left(215 a^{5}-15625 b^{4}+768 a^{4} \theta+416 a^{3} \theta^{2}+112 a^{2} \theta^{3}+24 a \theta^{4}+4 \theta^{5}\right)}{\left(50 b^{3}\right)}, \tag{3.13}\\
T_{2}=\frac{\left(3840 a^{5}-78125 b^{4}+4480 a^{4} \theta+2480 a^{3} \theta^{2}+760 a^{2} \theta^{3}+140 a \theta^{4}+30 \theta^{5}\right)}{\left(512 a^{5} b+6250 b^{5}\right)}, \tag{3.14}\\
T_{3}=\frac{\left(-18880 a^{5}+781250 b^{4}-34240 a^{4} \theta-21260 a^{3} \theta^{2}-5980 a^{2} \theta^{3}-1255 a \theta^{4}-240 \theta^{5}\right)}{\left(2 b^{2}\right)}, \tag{3.15}\\
T_{4}=\frac{\left(68800 a^{5}+25000 a^{4} \theta+11500 a^{3} \theta^{2}+3250 a^{2} \theta^{3}+375 a \theta^{4}+100 \theta^{5}\right)}{\left(512 a^{5}+6250 b^{4}\right)} . \tag{3.16}
\end{gather*}
$$

If we compute these expressions in terms of our given rational θ, and choose a specific δ as our square root of $\Delta=\operatorname{disc}(f)$, then the roots of the quadratics in (3.7) give us $\left\{l_{1}, l_{4}\right\}$ and $\left\{l_{2}, l_{3}\right\}$, up to a permutation of the two pairs. This is not sufficient to solve for the resolvents $Z_{1}, Z_{2}, Z_{3}, Z_{4}$, however, since for example if our choice of the roots in fact corresponds to $\left\{l_{1}, l_{3}, l_{2}, l_{4}\right\}$, then we do not simply obtain a permutation of the Z_{i} (this permutation is not obtained by an element of F_{20}). This difficulty is overcome by introducing an ordering condition. For this, observe that $\left(l_{1}-l_{4}\right)\left(l_{2}-l_{3}\right)=\eta \delta$ for some element $\eta \in K$. Computing this element as before, we write

$$
\begin{equation*}
\eta=\left(o_{0}+o_{1} \theta+o_{2} \theta^{2}+o_{3} \theta^{3}+o_{4} \theta^{4}+o_{5} \theta^{5}\right) /(\Delta F), \tag{3.17}
\end{equation*}
$$

where again the values o_{1}, \ldots, o_{5} can be found for general $f(x)$. As above, we will give them for the special case of $f(x)=x^{5}+a x+b$. We have
$\eta=\frac{\left(-1036800 a^{5}+48828125 b^{4}-2280000 a^{4} \theta-1291500 a^{3} \theta^{2}-399500 a^{2} \theta^{3}-76625 a \theta^{4}-16100 \theta^{5}\right)}{\left(256 a^{5}+3125 b^{4}\right)}$
For any specific quintic $f(x)$, choose a square root δ^{\prime} of the discriminant Δ, then define the roots of the first quadratic in (3.7) to be l_{1}^{\prime} and l_{4}^{\prime}, and the roots of the second quadratic to be l_{2}^{\prime} and l_{3}^{\prime}, ordered so that $\left(l_{1}^{\prime}-l_{4}^{\prime}\right)\left(l_{2}^{\prime}-l_{3}^{\prime}\right)=\eta \delta^{\prime}$. If our choice of square root δ^{\prime} is the same as that corresponding to δ determined by the ordering of the roots above, then our choice of $l_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}, l_{4}^{\prime}$ is either $l_{1}, l_{2}, l_{3}, l_{4}$ or $l_{4}, l_{3}, l_{2}, l_{1}$. If our choice of square root δ^{\prime} corresponds to $-\delta$, then our choice of $l_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}, l_{4}^{\prime}$ is either $l_{2}, l_{4}, l_{1}, l_{3}$ or $l_{3}, l_{1}, l_{4}, l_{2}$. The corresponding resolvents computed in (3.4) are
then simply permuted (namely, $\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right),\left(Z_{4}, Z_{3}, Z_{2}, Z_{1}\right)$, $\left(Z_{3}, Z_{1}, Z_{4}, Z_{2}\right)$, $\left(Z_{2}, Z_{4}, Z_{1}, Z_{3}\right)$, respectively), which will simply permute the order of the roots r_{i} in (3.3), as we shall see.

It remains to consider the choice of the fifth roots of the Z_{i} to obtain the resolvents z_{i}. We now show that, given $Z_{1}=z_{1}^{5}$, each of the five possible choices for z_{1} uniquely defines the choices for z_{2}, z_{3}, z_{4}, hence uniquely defines the five roots of the quintic.

Consider the expressions $z_{1} z_{4}$ and $z_{2} z_{3}$, which by the explicit Galois actions above are fixed by $\sigma, \tau \omega^{-1}$ and τ^{2}, hence are elements of the corresponding fixed field $K(\delta \sqrt{5})$.

As mentioned above, the discriminant Δ for any solvable quintic is a positive rational number. It follows that under any specialization, the elements $z_{1} z_{4}$ and $z_{2} z_{3}$ are elements of the field $\mathbb{Q}(\sqrt{5 \Delta})$. Since the z_{i} are uniquely defined up to multiplication by a fifth root of unity, this uniquely determines z_{4} given z_{1}, and z_{3} given z_{2}. It remains to see how z_{2} is determined by z_{1}. Consider now the elements $z_{1} z_{2}^{2}, z_{3} z_{1}^{2}, z_{4} z_{3}^{2}, z_{2} z_{4}^{2}$, which are invariant under σ and cyclically permuted by both τ and ω. It follows that these are the roots of a cyclic quartic over K, and that in particular

$$
\begin{equation*}
z_{1} z_{2}^{2}+z_{4} z_{3}^{2}=u+v \delta \sqrt{5}, \quad z_{3} z_{1}^{2}+z_{2} z_{4}^{2}=u-v \delta \sqrt{5} \tag{3.18}
\end{equation*}
$$

for some $u, c \in K$, where $\sqrt{5}$ is defined by the choice of $\zeta: \zeta+\zeta^{-1}=(-1+\sqrt{5}) / 2$.
Lemma 3.4.1 ([3]). Given z_{1}, there is a unique choice of z_{2}, z_{3}, z_{4} such that $z_{1} z_{4}, z_{2} z_{3} \in K(\delta \sqrt{5})$ and such that the two equations in (3.18) are satisfied.

Proof. We have already seen that z_{1} uniquely determines z_{4} and that z_{2} uniquely determines z_{3} by the conditions $z_{1} z_{4}, z_{2} z_{3} \in K(\delta \sqrt{5})$. It remains to show that z_{1} uniquely defines z_{2} subject to the equations in (3.18).

If z_{2} were replaced be εz_{2} for some nontrivial fifth root of unity ε, then z_{3} would be replaced by $\bar{\varepsilon} z_{3}$ (where $\varepsilon \bar{\varepsilon}=1$), since their product must lie in $K(\delta \sqrt{5})$. If this new choice for z_{2} and z_{3} (together with the fixed z_{1} and z_{4}) also satisfied the equations in (3.18), we would have

$$
\begin{aligned}
& z_{1} z_{2}^{2}+z_{4} z_{3}^{2}=u+v \delta \sqrt{5}, \quad \text { and } \quad z_{1}\left(\varepsilon z_{2}\right)^{2}+z_{4}\left(\bar{\varepsilon} z_{3}\right)^{2}=u+v \delta \sqrt{5} \\
& z_{3} z_{1}^{2}+z_{2} z_{4}^{2}=u-v \delta \sqrt{5}, \quad \text { and } \quad\left(\bar{\varepsilon} z_{3}\right) z_{1}^{2}+\left(\varepsilon z_{2}\right) z_{4}^{2}=u-v \delta \sqrt{5}
\end{aligned}
$$

Equating the expressions for $u+v \delta \sqrt{5}$ gives

$$
\frac{z_{1} z_{2}^{2}}{z_{4} z_{3}^{2}}=-\frac{1-\bar{\varepsilon}^{2}}{1-\varepsilon^{2}}=\frac{1}{\varepsilon^{2}}
$$

and equating the expressions for $u-v \delta \sqrt{5}$ gives

$$
\frac{z_{1}^{2} z_{3}}{z_{4}^{2} z_{2}}=-\frac{1-\varepsilon}{1-\bar{\varepsilon}}=\varepsilon
$$

These two equations give $\left(z_{1} / z_{4}\right)^{5}=1$, which implies that z_{1} / z_{4} is a fifth root of unity. This is a contradiction, since this element generates a quintic extension of $L(\zeta)$ which survives any specialization (the order of the Galois group of the irreducible $f(x)$ is divisible by 5), and completes the proof.

The elements u and v are computed as before:

$$
\begin{aligned}
& u=-25 q / 2 \\
& v=\left(c_{0}+c_{1} \theta+c_{2} \theta^{2}+c_{3} \theta^{3}+c_{4} \theta^{4}+c_{5} \theta^{5}\right) /(2 \Delta F)
\end{aligned}
$$

where the coefficient c_{i} for the general $f(x)$ can be found. We will give them for the special case of $f(x)=x^{5}+a x+b$:

$$
\begin{aligned}
u= & 0 \\
v= & \left(-2048 a^{7}+25000 a^{2} b^{4}-3072 a^{6} \theta-6250 a b^{4} \theta-1664 a^{5} \theta^{2}-\right. \\
& \left.-3125 b^{4} \theta^{2}-448 a^{4} \theta^{3}-96 a^{3} \theta^{4}-16 a^{2} \theta^{5}\right) /\left(32000 a^{5} b^{3}+390625 b^{7}\right),
\end{aligned}
$$

We are now ready for the final theorem:

Theorem 3.4.2 ([3]). Suppose the irreducible polynomial $f(x)=x^{5}+p x^{3}+q x^{2}+r x+s \in \mathbb{Q}[x]$ is solvable by radicals, and let θ be the unique rational root of the associated resolvent sextic f_{20} as in Theorem 3.2.1. Fix any square root δ of the discriminant Δ of $f(x)$ and fix any primitive fifth root of unity ζ. Define l_{0} as in equation (3.8), and define l_{1}, l_{4} and l_{2}, l_{3} to be the roots of the quadratic factors in (3.7), subject to the condition $\left(l_{1}-l_{4}\right)\left(l_{2}-l_{3}\right)=\eta \delta$ in (3.17). Then the Galois group of $f(x)$ is:
(a) the Frobenius group of order 20 if and only if the discriminant Δ of $f(x)$ is not a square, which occurs if and only if the quadratic factors in (3.7) are irreducible over $\mathbb{Q}(\sqrt{\Delta})$,
(b) the dihedral group of order 10 if and only if Δ is a square and the rational quadratics in (3.7) are irreducible over \mathbb{Q},
(c) the cyclic group of order 5 if and only if Δ is a square and the rational quadratics in (3.7) are reducible over \mathbb{Q}.

Let z_{1} be any fifth root of Z_{1} in (3.4), and let z_{2}, z_{3}, z_{4} be the corresponding fifth roots of Z_{2}, Z_{3}, Z_{4} as in the lemma above. Then the formulas (3.3) give the roots of $f(x)$ in terms of the radicals and $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ are permuted cyclically by some 5-cycle in the Galois group

Proof. The conditions in (a) to (c) are simply restatements of the structure of the field $L=K\left(l_{1}\right)=$ $K\left(l_{1}, l_{2}, l_{3}, l_{4}\right)$ under specialization. We have already seen that the choice of δ and the roots l_{i}, of the quadratics determines the Z_{i} up to an ordering: $\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)$ or $\left(Z_{4}, Z_{3}, Z_{2}, Z_{1}\right)$ if the choice of δ is the same as that in the computations above, and $\left(Z_{3}, Z_{1}, Z_{4}, Z_{2}\right)$ or $\left(Z_{2}, Z_{4}, Z_{1}, Z_{3}\right)$ if the choice of δ is the negative of that used in the computations above. It is easy to check that the corresponding resolvents z_{i} are then simply $\left(z_{1}, z_{2}, z_{3}, z_{4}\right),\left(z_{4}, z_{3}, z_{2}, z_{1}\right),\left(z_{3}, z_{1}, z_{4}, z_{2}\right)$, and $\left(z_{2}, z_{4}, z_{1}, z_{3}\right)$, respectively (this is the action of the automorphism $\tau=(2354)$ above). The formulas (3.3) then give the roots r_{i} in the orders $\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right),\left(r_{1}, r_{5}, r_{4}, r_{3}, r_{2}\right),\left(r_{1}, r_{3}, r_{5}, r_{2}, r_{4}\right)$, and $\left(r_{1}, r_{4}, r_{2}, r_{5}, r_{3}\right)$, respectively. In terms of the 5 -cycle $\sigma=(12345)$ above, these correspond to cyclic permutations by $\sigma, \sigma^{-1}, \sigma^{2}$ and σ^{3}, respectively. Finally, any choice of primitive fifth root of unity ζ produces precisely the same permutations of the roots r_{i}, so the roots of $f(x)$ are produced in a cyclic ordering independent of all choices.

We now give some examples of Galois group and roots computations

1. Let $f(x)=x^{5}+15 x+12$, whose discriminant is $\Delta=2^{10} 3^{4} 5^{5}$. The corresponding resolvent sextic $f_{20}(x)$ is the polynomial

$$
x^{6}+120 x^{5}+9000 x^{4}+540000 x^{3}+20250000 x^{2}+324000000 x
$$

which clearly has $\theta=0$ as a root. It follows that the Galois group of $f(x)$ is the Frobenius group F_{20} and that $f(x)$ is solvable by radicals. With $\delta=7200 \sqrt{5}$, where $\zeta+\zeta^{-1}=$ $(-1+\sqrt{5}) / 2$, the roots $l_{1}, l_{2}, l_{3}, l_{4}$ of the quadratics in (3.7) (subject to the ordering condition in (3.17)) are

$$
\begin{aligned}
& l_{1}=-375-750 \sqrt{5}+75 i \sqrt{625+29 \sqrt{5}}, \\
& l_{4}=-375-750 \sqrt{5}-75 i \sqrt{625+29 \sqrt{5}} \\
& l_{1}=-375+750 \sqrt{5}-75 i \sqrt{625-29 \sqrt{5}} \\
& l_{1}=-375+750 \sqrt{5}+75 i \sqrt{625-29 \sqrt{5}}
\end{aligned}
$$

Then

$$
\begin{aligned}
& Z_{1}=-1875-75 \sqrt{1635+385 \sqrt{5}}+75 \sqrt{1635-385 \sqrt{5}} \\
& Z_{4}=-1875+75 \sqrt{1635+385 \sqrt{5}}-75 \sqrt{1635-385 \sqrt{5}} \\
& Z_{2}=5625-75 \sqrt{1490+240 \sqrt{5}}-75 \sqrt{1490-240 \sqrt{5}} \\
& Z_{3}=5625+75 \sqrt{1490+240 \sqrt{5}}+75 \sqrt{1490-240 \sqrt{5}}
\end{aligned}
$$

Viewing these as real numbers, and letting z_{1} be the real fifth root of Z_{1}, we conclude that the corresponding z_{2}, z_{3} and z_{4} are the real fifth roots of Z_{2}, Z_{3} and Z_{4}, respectively, and then (3.3) gives the roots of $f(x)$. For example, the sum of the real fifth roots of $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ above gives five times the (unique) real root of $f(x)$.
2. Let $f(x)=x^{5}-5 x+12$, whose discriminant is $\Delta=2^{12} 5^{6}$. The corresponding resolvent sextic $f_{20}(x)$ is the polynomial

$$
x^{6}-40 x^{5}+1000 x^{4}+20000 x^{3}+250000 x^{2}-66400000 x+976000000
$$

which has $\theta=40$ as a root, so that $f(x)$ has a solvable Galois group. Since in this case the quadratic factors in (3.7) are $x^{2}+1250 x+6015625$ and $x^{2}-3750 x+4921875$, which are irreducible over \mathbb{Q}, it follows that the Galois group of $f(x)$ is the dihedral group of order 10 . If $\delta=8000$, the roots $l_{1}, l_{2}, l_{3}, l_{4}$ of the quadratics in (3.7) (subject to the ordering condition in (3.17)) are

$$
\begin{aligned}
& l_{1}=-625+750 \sqrt{-10}, \\
& l_{4}=-625-750 \sqrt{-10}, \\
& l_{2}=1875+375 \sqrt{-10}, \\
& l_{2}=1875-375 \sqrt{-10} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& Z_{1}=-3125-1250 \sqrt{5}-\frac{750}{2} \sqrt{100+20 \sqrt{5}}-\frac{375}{2} \sqrt{100-20 \sqrt{5}}, \\
& Z_{4}=-3125-1250 \sqrt{5}+\frac{750}{2} \sqrt{100+20 \sqrt{5}}+\frac{375}{2} \sqrt{100-20 \sqrt{5}}, \\
& Z_{2}=-3125+1250 \sqrt{5}+\frac{750}{2} \sqrt{100+20 \sqrt{5}}-\frac{375}{2} \sqrt{100-20 \sqrt{5}}, \\
& Z_{3}=-3125+1250 \sqrt{5}-\frac{750}{2} \sqrt{100+20 \sqrt{5}}+\frac{375}{2} \sqrt{100-20 \sqrt{5}} .
\end{aligned}
$$

Again viewing these as real numbers, and letting z_{1} be the real fifth root of Z_{1}, we conclude that the corresponding z_{2}, z_{3} and z_{4} are the real fifth rots of Z_{2}, Z_{3} and Z_{4}, respectively, and then (3.3) gives the roots of $f(x)$. For example, the sum of the real fifth roots of $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ above again gives five times the (unique) real root in this example.
3. Let $f(x)=x^{5}-110 x^{3}-55 x^{2}+2310 x+979$, whose discriminant is $\Delta=5^{20} 11^{4}$. The corresponding resolvent sextic $f_{20}(x)$ is the polynomial

$$
\begin{aligned}
& x^{6}+18480 x^{5}+47764750 x^{4}-580262760000 x^{3}-1796651418959375 x^{2} \\
&+2980357148316659375 x-36026068564469671875
\end{aligned}
$$

which has $\theta=-9955$ as a root, so that $f(x)$ ha a solvable Galois group. Since in this case the quadratic factors in (3.7) are $(x-797500)(x+61875)$ and $(x-281875)(x+405625)$, it follows that the Galois group of $f(x)$ is the cyclic group of order 5 . If $\delta=5{ }^{10} 11^{2}$, the roots $l_{1}, l_{2}, l_{3}, l_{4}$ of the quadratics in (3.7) (subject to the ordering condition in (3.17)) are

$$
\begin{aligned}
l_{1} & =797500 \\
l_{2} & =-61875 \\
l_{3} & =281875 \\
l_{4} & =-405625 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& Z_{1}=5^{5} 11\left(41 \zeta+26 \zeta^{2}+6 \zeta^{3}+16 \zeta^{4}\right) \\
& Z_{2}=5^{5} 11\left(6 \zeta+41 \zeta^{2}+16 \zeta^{3}+26 \zeta^{4}\right) \\
& Z_{3}=5^{5} 11\left(26 \zeta+16 \zeta^{2}+41 \zeta^{3}+6 \zeta^{4}\right) \\
& Z_{4}=5^{5} 11\left(16 \zeta+6 \zeta^{2}+26 \zeta^{3}+41 \zeta^{4}\right)
\end{aligned}
$$

Here,

$$
u+v \delta=\frac{1375+6875 \sqrt{5}}{2}, \quad u-v \delta=\frac{1375-6875 \sqrt{5}}{2}
$$

so with z_{1} any fifth root of Z_{1}, z_{4} is the fifth root of Z_{4} such that $z_{1} z_{4}$ is real, and z_{2}, z_{3} are the fifth roots of Z_{2}, Z_{3} whose product is real and which satisfy $z_{3} z_{1}^{2}+z_{2} z_{4}^{2}=(1375-6875 \sqrt{5}) / 2$.

Chapter 4

Sextics

4.1 Introduction and notation

Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 6 and $\operatorname{Gal}(f)=G_{f}$ its Galois group. If we number the roots r_{i} of $f(x)$, then we can embed G_{f} as a transitive subgroup of S_{6} through its action upon the r_{i}. Since changing the numbering of the roots conjugates the embedding of G_{f} in S_{6}, G_{f} is not a well-defined function of f.

Let $\overline{\operatorname{Gal}}(f)=\bar{G}_{f}$ be the S_{6}-conjugacy class of G_{f} and let Σ_{6} be the S_{6}-conjugacy classes of transitive subgroups of S_{6}. Then for each irreducible polynomial f, \bar{G}_{f} gives a well-defined element of Σ_{6}. Given $G \in \Sigma_{6}$, we let Γ_{G} be the set of all irreducible polynomials $f(x) \in \mathbb{Q}[x]$ with degree 6 such that $\bar{G}_{f}=G$.

Given $G \in \Sigma_{n}$, we say that the general equation of type (n, G) is explicitly solvable by radicals if (we will recall this definition in Theorem 4.4.5 of Section 4.4):
(i) There are formulas $z_{1}\left(t_{i}\right), z_{2}\left(t_{i}\right), \ldots, z_{n}\left(t_{i}\right)$ using only the basic arithmetic operations and radicals in variables $t_{1}, t_{2}, \ldots, t_{m}$;
(ii) A number field $K,[K: \mathbb{Q}]<\infty$, and bounded algorithm which associates to each $f \in \Gamma_{G}$, numbers $\hat{t}_{1}(f), \hat{t}_{2}(f), \ldots, \hat{t}_{n}(f) \in K$ such that $z_{1}\left(\hat{t}_{i}(f)\right), \ldots, z_{n}\left(\hat{t}_{i}(f)\right)$ are the roots of f.

4.2 Transitive subgroups of S_{6}

We know that given $f(x)$ an irreducible sextic polynomial, its Galois group $\operatorname{Gal}(f)$ is a transitive subgroup of S_{6}. The candidates are the subgroup of S_{6} such that $6=\operatorname{deg}(f)| | G_{f} \mid$. Up to isomorphism, these are:

G_{f}	S_{6}	A_{6}	H_{120}	G_{72}	Γ_{60}	G_{48}	Γ_{36}	G_{36}
$\left\|G_{f}\right\|$	720	360	120	72	60	48	36	36
G_{f}	Γ_{24}	G_{24}	H_{24}	G_{18}	Γ_{12}	G_{12}	C_{6}	H_{6}
$\left\|G_{f}\right\|$	24	24	24	18	12	12	6	6

Table 4.1: Transitive subgroups of S_{6}
We can say "up to isomorphism" because Cayley and Cole (see [1],[2]) proved that each transitive subgroup of S_{6} is conjugate in S_{6} to one of sixteen non-isomorphic groups in Table (4.1). With the only exception of S_{6} and A_{6}, in the notation above the subscript will denote the number of elements in the group. The groups H_{m} ! are isomorphic to S_{m} and the use of the notation Γ_{m} indicates that $\Gamma_{m}=G_{2 m} \cap A_{6}$, with the exception that $\Gamma_{60}=H_{120} \cap A_{6}$. One can also show that $\Gamma_{12} \cong A_{4}$ and $\Gamma_{60} \cong A_{5}$.

The four maximal transitive subgroups of S_{6} are S_{6}, H_{120}, G_{72} and G_{48}. We now explicitly describe their generators and subgroups.

- H_{120} is generated by the elements (1452), (16524) and (143562) and is isomorphic to S_{5}. $\Gamma_{60}=H_{120} \cap A_{6}$ is a subgroup of H_{120} of index 2 and is isomorphic to A_{5}.
- We now consider G_{72} and its subgroups Γ_{36}, G_{36} and G_{18}. Let $X=\{1,3,5\}, Y=\{2,4,6\}$ and let Sym_{Z} denote the symmetric group of a set Z. We regard Sym_{X} and Sym_{Y} as subgroups of S_{6}. Since $\sigma=(12)(34)(56) \in S_{6}$ acts on $\operatorname{Sym}_{X} \times \operatorname{Sym}_{Y} \subset S_{6}$ by conjugation, we can define the semi-direct product

$$
G_{72}=\left(\operatorname{Sym}_{X} \times \operatorname{Sym}_{Y}\right) \rtimes\langle\sigma\rangle \subset S_{6} .
$$

It is the stabilizer in S_{6} of the set $S=\{X, Y\}$ and is generated by (13), (15) and σ.
Now $\Gamma_{36}=G_{72} \cap A_{6}$ is the subgroup of A_{6} stabilizing S.
The subgroup G_{36} is defined by $G_{36}=\left[A_{6} \cap\left(\operatorname{Sym}_{X} \times \operatorname{Sym}_{Y}\right)\right] \rtimes\langle\sigma\rangle$. It is generated by (13)(24), (135) and σ.

Finally, let G_{18} be the subgroup defined by $G_{18}=\left(A_{X} \times A_{Y}\right) \rtimes\langle\sigma\rangle$, where A_{Z} is the alternating subgroup of Sym_{Z}, for a set Z. The group G_{18} is generated by (135) and σ.

- We now describe G_{48} and its transitive subgroups. Let $X=\{1,2\}, Y=\{3,4\}, Z=\{5,6\}$ and $T=\{X, Y, Z\}$. We define G_{48} to be the stabilizer of T in S_{6}. It is generated by the elements (12), (13)(24) and (135)(246). The subgroup $H=\operatorname{Sym}_{X} \times \operatorname{Sym}_{Y} \times \operatorname{Sym}_{Z} \cong$ $(\mathbb{Z} / 3 \mathbb{Z})^{3}$ is generated by the cycles (12), (34) and (56). It is a normal subgroup of G_{48} of order 8 and $G_{48} / H \cong \operatorname{Sym}_{T}$. We have $G_{48} \cong \operatorname{Sym}_{T} \ltimes H$.
To define the subgroups of G_{48} we introduce two characters on G_{48}. Let $\alpha: G_{48} \rightarrow\{ \pm 1\}$ be the restriction from S_{6} to G_{48} of the sign homomorphism $S_{6} \rightarrow\{ \pm 1\}$. We let α_{1} : $G_{48} \rightarrow\{ \pm 1\}$ be the composition of $G_{48} \rightarrow G_{48} / H \cong \operatorname{Sym}_{T}$ and the sign homomorphism $\mathrm{Sym}_{T} \rightarrow\{ \pm 1\}$.

We now define the three subgroups Γ_{24}, G_{24} and H_{24} to be the kernels in G_{48} of the respective homomorphism α, α_{1} and $\alpha \alpha_{1}$.
We define $\Gamma_{12}=\Gamma_{24} \cap G_{24}\left(=\Gamma_{24} \cap H_{24}=G_{24} \cap H_{24}\right)$. In terms of generators, these groups are easily described. For example, G_{24} is generated by (12) and (135)(246), and Γ_{12} is generated by $(135)(246)$ and $(12)(34)$. We have $G_{24} \cong H_{24} \cong S_{4}$, but G_{24} and H_{24} are not conjugate groups in S_{4}.

- Finally, we describe G_{12} and its two transitive subgroups C_{6} and H_{6} of order 6. We have $G_{12}=G_{72} \cap G_{48}$. It is generated by the cycles (135)(246), (13)(24) and (12)(34)(56).

We denote by C_{6} the cyclic subgroup generated by (145236) and by H_{6} the group generated by $(135)(246)$ and (12)(36)(45). We have $H_{6} \cong S_{3}$.

The set Σ_{6} has 16 elements and the representative of each conjugacy class are given in Table (4.1). Twelve of these groups are solvable (all 16 except for $S_{6}, A_{6}, H_{120} \cong S_{5}$ and $\Gamma_{60} \cong A_{5}$), and there are two maximal solvable groups, G_{72} and G_{48}. When G_{f} is solvable, we have

$$
G_{f} \subseteq G_{72} \quad \text { or } \quad G_{f} \subseteq G_{48}
$$

We will give some subgroup relations between the transitive subgroups of S_{6} in the following figure:

Figure 4.1

4.3 Galois resolvents

First of all, let's give some notation. Let x_{1}, \ldots, x_{6} be indeterminates over $\mathbb{Q}, R=\mathbb{Q}\left[x_{1}, \ldots, x_{6}\right]$ and $K=\mathbb{Q}\left(x_{1}, \ldots, x_{6}\right)$ the quotient field of R. We let $\sigma \in S_{6}$ act on K via $\sigma\left(x_{i}\right)=x_{\sigma(i)}$. Let $F=K^{S_{6}}=\Omega_{S_{6}}$ be the field of the elements of K fixed by S_{6}. Then $F=\mathbb{Q}\left(s_{1}, \ldots, s_{6}\right)$, where

$$
s_{1}=x_{1}+\cdots+x_{6}, \quad s_{2}=\sum_{i<j} x_{i} x_{j}, \quad \ldots \quad s_{6}=x_{1} x_{2} \ldots x_{6},
$$

are the symmetric polynomials in the $x_{i} . K / F$ is a Galois extension with Galois group S_{6}. Given $\theta \in K$, we let $\operatorname{Stab}(\theta)=\left\{\sigma \in S_{6} \mid \sigma(\theta)=\theta\right\}$. If $\theta \in K$ is a polynomial and $\operatorname{Stab}(f)=G$, we call θ a G-polynomial. If $G \subset S_{6}$, then K / K^{G} is a Galois extension with group G, and $K^{G}=F(\theta)$ for some $\theta \in K$ with $\operatorname{Stab}(\theta)=G$.

Now θ will have $m=\left[S_{6}: G\right]$ conjugates $\theta=\theta_{1}, \ldots, \theta_{m}$ in K. The Galois resolvent of θ is defined as

$$
F_{\theta}(x)=\prod_{i=1}^{m}\left(x-\theta_{i}\right) \in F[x] .
$$

$F_{\theta}(x)$ has degree m and is the product of distinct irreducible factors in $K^{H}[x]$ for each $H \subset S_{6}$. Let X be the set of left G-cosets in S_{n}. The group H acts on X by left multiplication. Elementary group theory shows that
 the degrees of the irreducible factors of $F_{\theta}(x)$ in $K^{H}[x]$ are given by the lengths of the H-orbits in X. Hence, the set of degrees of the irreducible factors of $F_{\theta}(x)$ is independent of the choice of θ and depends only on G.

We now study three particular Galois resolvents. We denote by $F_{2}(x), F_{10}(x)$ and $F_{15}(x)$ the Galois resolvents corresponding to the pairs $\left(G, \theta_{G}\right)$, for $G=A_{6}, \theta_{A_{6}}=\prod_{i<j}\left(x_{i}-x_{j}\right) ; G=G_{72}$, $\theta_{72}=\left(x_{1}+x_{3}+x_{5}\right)\left(x_{2}+x_{4}+x_{6}\right) ;$ and $G=G_{48}, \theta_{48}=x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$. Whenever there is no ambiguity, we will often write F_{d} instead of F_{G}, where d will be the index $\left[S_{6}: G\right]$ (for example, $F_{2}=F_{A_{6}}$ and $\left[S_{6}: A_{6}\right]=2$). The degree of $F_{d}(x)$ is d. Table (4.2) indicates the degrees of the irreducible factors of these resolvents in $K^{H}[x]=\mathbb{Q}\left(x_{1} \ldots, x_{6}\right)^{H}$, for all transitive subgroups $H \subset S_{6}$.

Group G	$F_{2}(x)$	$F_{10}(x)$	$F_{15}(x)$
S_{6}	2	10	15
A_{6}	1,1	10	15
H_{120}	2	10	10,5
Γ_{60}	1,1	10	10,5
G_{72}	2	9,1	9,6
Γ_{36}	1,1	9,1	9,6
G_{36}	2	9,1	$9,3,3$
G_{18}	2	9,1	$9,3,3$
G_{48}	2	6,4	$8,6,1$
Γ_{24}	1,1	6,4	$8,6,1$
G_{24}	2	6,4	$8,6,1$
H_{24}	2	6,4	$6,4,4,1$
Γ_{12}	1,1	6,4	$6,4,4,1$
G_{12}	2	$6,3,1$	$6,3,3,2,1$
C_{6}	2	$6,3,1$	$6,3,3,2,1$
H_{6}	2	$3,3,3,1$	$3,3,3,3,1,1,1$

Table 4.2
We now introduce the notion of specialization. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic polynomial. Choose a numbering r_{1}, \ldots, r_{6} of the roots of f so that the corresponding embedding $G_{f} \hookrightarrow S_{6}$ is one of the groups listed in Table (4.1). We will need to distinguish between the action of S_{6} on x_{i} and the action of G_{f} on the roots r_{i}. Let L be the splitting field of $f(x)$ over \mathbb{Q}. Then let $\hat{\alpha}: R=\mathbb{Q}\left[x_{1} \ldots, x_{6}\right] \rightarrow L$ be the homomorphism defined by $\hat{\alpha}\left(x_{i}\right)=r_{i}$. Given $\theta \in R$, we let $\hat{\theta}$ denote the image $\hat{\alpha}(\theta) \in L$. If $g(x)=\sum_{i} a_{i} x^{i} \in R[x]$, we let $\hat{g}(x)=\sum_{i} \hat{a}_{i} x^{i}$. We will often
use the following simple observation: If $\theta \in R$ is invariant under the action of $G(f) \subset S_{6}$, then $\hat{\theta} \in \mathbb{Q}$. Similarly, if the coefficients of $g(x)$ are G_{f}-invariant, then $\hat{g}(x) \in \mathbb{Q}[x]$. In particular, for each $G \subset S_{6}$ and G-polynomial $\theta \in R$, we have $\hat{F}_{\theta}(x) \in \mathbb{Q}[x]$.

It is important to remember that all specializations are with respect to $f(x)$ and a given numbering of the r_{i}. However, the specialization of a Galois resolvent can be computed without knowing r_{i} or their numbering. Let θ be a G-polynomial for some $G \subset S$ and $F_{\theta}(x)$ be its Galois resolvent. Then the coefficients of $\hat{F}_{\theta}(x)$ are polynomials in the coefficients a_{i} of $f(x)$. Hence $\hat{F}_{\theta}(x)$ can be computed by knowing only $f(x)$.

We now study several specific specializations of Galois resolvents. Again, for ease of notation, we will often write $f_{G}(x)$ or $f_{d}(x)$ (if $d=\left[S_{6}: G\right]$) instead of $\hat{F}_{G}(x)$. For example, $f_{2}(x)=\hat{F}_{2}(x)=$ $x^{2}-\Delta$, where Δ is the discriminant of $f(x)$. Hence determining whether $f_{2}(x)$ has rational roots is equivalent to determining whether $G_{f} \subset A_{6}$. We will use $f_{10}(x)=\hat{F}_{10}(x)$ and $f_{15}(x)=\hat{F}_{15}(x)$ to draw similar conclusion about G_{f}. The coefficients of $f_{2}(x), f_{10}(x)$ and $f_{15}(x)$ are symmetric polynomials in the r_{i} and can be expressed as polynomials in the coefficients a_{1}, \ldots, a_{6} of $f(x)$. Let now write $f_{10}, f_{15} \in \mathbb{Q}[x]$ as

$$
f_{10}=x^{10}+\sum_{i=1}^{10}(-1)^{i} b_{i} x^{10-i}, \quad f_{15}=x^{15}+\sum_{i=1}^{15}(-1)^{i} c_{i} x^{15-i}
$$

where the coefficients $b_{i}, c_{i} \in \mathbb{Q}$ are defined in the Appendix in function of the coefficients a_{1}, \ldots, a_{6} of $f(x)$. We also give an explicit formula for the discriminant Δ.

Let us now review how Galois resolvents can be used to calculate G_{f}. Let $G \subset S_{6}$ and choose a G-polynomial $\theta_{G} \in \mathbb{Q}\left[x_{1}, \ldots, x_{6}\right]$. Let $F_{\theta_{G}}(x)$ be the Galois resolvent. We will write $G_{f} \subset_{c} G$ if G_{f} is conjugate in S_{6} to a subgroup of G. It can be easily shown:

Proposition 1 ([5]). If $G_{f} \subset_{c} G$, then $\hat{F}_{\theta_{G}}(x) \in \mathbb{Q}[x]$ has a rational root. Conversly, if $\hat{F}_{\theta_{G}}(x)$ has a rational root with multiplicity one, then $G_{f} \subset_{c} G$.

By assuming that G_{f} is one of the 16 groups in Table (4.1), we can replace \subset_{c} in Proposition 1 by \subset when $G=G_{72}, G_{48}$ or A_{6}. If for each transitive subgroup $G \subset S_{6}$, there exists $\theta_{G} \in$ $\mathbb{Q}\left[x_{1}, \ldots, x_{6}\right]$ such that the specialization $\hat{F}_{\theta_{G}}(x)$ always has distinct roots, then Proposition 1 would solve the problem of determining Galois groups.

The key to our approach is that we can choose θ_{G} for $G=G_{72}, G_{48}$, so that $\hat{F}_{\theta_{G}}$ has a rational root with multiplicity one most of the time. And in the remaining cases, we can use the factorization of $\hat{F}_{\theta_{G}}(x)$ to determine whether $G_{f} \subset G$. Then, once we know whether $G_{f} \subset G_{72}$ and $G_{f} \subset G_{48}$, we can use other criteria to determine G_{f} precisely. The three Galois resolvents we will use are $f_{2}(x)=x^{2}-\Delta, f_{10}(x)$ and $f_{15}(x)$.

We now consider the factorization of $f_{2}(x), f_{10}(x), f_{15}(x)$ in $\mathbb{Q}[x]$ when $G_{f}=G$, for each transitive subgroup G of S_{6}. The factorization of $f_{2}(x)$ is easy to determine. $f_{2}(x)=x^{2}-\Delta$ has a rational root if and only if $G_{f} \subset A_{6}$. And since $\Delta \neq 0$, these statements are equivalent to Δ being a square in \mathbb{Q}. For the other cases, we will make heavy use of the well-known lemma:

Lemma 4.3.1 ([5]). Let $F_{\theta_{G}}(x)$ be the Galois resolvent associated to $G \subset S_{6}$. Assume that $f(x)$ is an irreducible polynomial with G_{f}. If $F(x)$ is an irreducible factor of the Galois resolvent $F_{\theta_{G}}(x)$ in $K^{G_{f}}[x]$, the $\hat{F}(x)$ is either an irreducible polynomial or the power of a linear polynomial in $\mathbb{Q}[x]$.

We now consider the factorization of f_{10} in $\mathbb{Q}[x]$. We can recall that $f_{10}=\hat{F}_{10}(x)$. Let $\theta_{(a b c)(d e f)}=\left(x_{a}+x_{b}+x_{c}\right)\left(x_{d}+x_{e}+x_{f}\right)$. Then the ten roots of $F_{10}(x)$ are the $\theta_{(a b c)(d e f)}$, where $\{(a b c)(d e f)\}$ ranges over all ten partition of $\{1, \ldots, 6\}$ into two sets of three element each. Since $\theta_{(135)(246)}=\theta_{72}$ is a G_{72}-polynomial, if $G_{f} \subset G_{72}$, then $\theta=\hat{\theta}_{(135)(246)}$ is a rational root of $f_{10}(x)$.

Proposition $2([5])$. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic polynomial and assume that G_{f} is one of the groups in Table (4.1).
(a) $G_{f} \subset G_{72} \Longleftrightarrow f_{10}(x)$ has a rational root. When this holds, $f_{10}(x)$ has a rational root with multiplicity one.
(b) If $F(x)$ is an irreducible factor of $F_{10}(x)$ in $K^{G_{f}}[x]$ of degree ≥ 4, then $\hat{F}(x)$ is an irreducible factor of f_{10} in $\mathbb{Q}[x]$.

Proof. We first prove (b). By Table (4.2), we can assume that $G_{f} \neq H_{6}$. Inspection then shows that whenever $F_{10}(x)$ has an irreducible factor $F(x)$ of degree 6,9 or 10 , then $F(x)$ has $\theta_{(123)(456)}, \theta_{(124)(356)}$ and $\theta_{(125)(346)}$ as roots. By Lemma 4.3.1, $\hat{F}(x)$ is either irreducible in $\mathbb{Q}[x]$ or

$$
\hat{\theta}_{(123)(456)}=\hat{\theta}_{(124)(356)}=\hat{\theta}_{(125)(346)} .
$$

Assume that the latter holds. Then the first equality shows that $r_{1}+r_{2}=r_{5}+r_{6}$, the second gives $r_{1}+r_{2}=r_{3}+r_{6}$ and we obtain the contradiction $r_{3}=r_{5}$. Hence $\hat{F}(x) \in \mathbb{Q}[x]$ is irreducible. By process of elimination, we can now assume that $F(x)$ is the irreducible factor of degree four occurring when $G_{f} \subset G_{48}, G_{f} \not \subset G_{72}$. The roots of $F(x)$ are then $\theta_{(135)(246)}, \theta_{(136)(245)}, \theta_{(145)(236)}$ and $\theta_{(146)(235)}$. Again, by Lemma 4.3.1, if $\hat{F}(x)$ is not irreducible, then $\hat{\theta}_{(135)(246)}=\hat{\theta}_{(136)(245)}$ and $\hat{\theta}_{(145)(236)}=\hat{\theta}_{(146)(235)}$. Hence, $r_{1}+r_{3}=r_{2}+r_{4}$ and $r_{1}+r_{4}=r_{2}+r_{3}$ and we obtain the contradiction $r_{1}=r_{2}$. Thus $\hat{F}(x)$ is irreducible and (b) is proved.

We now prove (a). The direction (\Longrightarrow) follows from Proposition 1. Now (\Longleftarrow) follows from (b) since if $G_{f} \not \subset G_{72}$, then $f_{10}(x)$ does not have a rational root. Hence the equivalence in (a) is proved. We now show that when it holds, $f_{10}(x)$ has a rational root with multiplicity one. When $G_{f} \subset G_{72}, G_{f} \not \subset G_{48}$, then by (b), f_{10} has a rational root with multiplicity one. Hence we can assume that $G_{f}=G_{12}, C_{6}$ or H_{6}. We will show that in each case, f_{10} has a rational root with multiplicity one. We first consider the case when $G_{f}=H_{6}$. It suffices to show that if the specialization $\hat{F}(x)$ of an irreducible cubic factor $F(x)$ of $F_{10}(x)$ equals $(x-a)^{3}$, then $a \neq \theta\left(=\hat{\theta}_{(135)(246)}\right)$. Inspection shows that the roots of the three irreducible cubic factors are given by the sets

$$
\begin{gathered}
\left\{\hat{\theta}_{(136)(245)}, \hat{\theta}_{(145)(236)}, \hat{\theta}_{(146)(235)}\right\},\left\{\hat{\theta}_{(132)(456)}, \hat{\theta}_{(126)(354)}, \hat{\theta}_{(156)(234)}\right\}, \\
\left\{\hat{\theta}_{(134)(256)}, \hat{\theta}_{(146)(235)}, \hat{\theta}_{(145)(236)}\right\} .
\end{gathered}
$$

If $a=\theta$, then either

$$
\hat{\theta}_{(135)(246)}=\hat{\theta}_{(136)(245)}=\hat{\theta}_{(145)(236)}=\hat{\theta}_{(146)(235)},
$$

or
or

$$
\hat{\theta}_{(135)(246)}=\hat{\theta}_{(132)(456)}=\hat{\theta}_{(126)(354)}=\hat{\theta}_{(156)(234)},
$$

$$
\hat{\theta}_{(135)(246)}=\hat{\theta}_{(134)(256)}=\hat{\theta}_{(146)(235)}=\hat{\theta}_{(145)(236)} \text {. }
$$

Proceeding as in the second part of the proof for (b), we obtain a contradiction in all three cases. The cases when $G_{f}=G_{12}, C_{6}$ are similar. Hence (a) is proved.

More generally, for any Galois resolvents coming from a G_{72}-polynomial, we can show
Proposition 3 ([5]). Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic polynomial and assume that G_{f} is one of the groups in Table (4.1).
(a) Let $\theta \in \mathbb{Q}\left[x_{1}, \ldots, x_{6}\right]$ be a G_{72}-polynomial. If $G_{f} \subset G_{72}$, then $\hat{\theta} \in \mathbb{Q}$ and is the unique root of $\hat{F}_{\theta}(x) \in \mathbb{Q}[x]$ occurring with multiplicity $1,4,7$ or 10.
(b) Let $\theta \in \mathbb{Q}\left[x_{1}, \ldots, x_{6}\right]$ be a G_{48}-polynomial. If $G_{f} \subset G_{48}, G_{f} \not \subset G_{72}$, then $\hat{\theta} \in \mathbb{Q}$ and is the unique root of $\hat{F}_{\theta}(x) \in \mathbb{Q}[x]$ with multiplicity $1,5,7,9,11$ or 15.

Proof. We prove (a). Using Table (4.2) and Lemma 4.3.1, for each possible Galois group $G_{f}=$ $G \subset G_{72}$, one can determine the possible decomposition of $\hat{F}_{\theta}(x)$ in $\mathbb{Q}[x]$. For each possible decomposition, inspection shows that there exists a positive integer n such that $\hat{\theta}$ is the unique root r of $\hat{F}_{\theta}(x)$ with multiplicity n. The list of such n is the list in (a). Since no other root can have this multiplicity, (a) is proved. The proof of (b) is the same. The restriction $G_{f} \subset G_{48}, G_{f} \not \subset G_{72}$ occurs because when $G_{f} \subset G_{12}$, it can be the case that $\hat{\theta}$ cannot be determined because there are multiple roots with the same multiplicity.

We now consider the factorization of $f_{15}(x)=$ in $\mathbb{Q}[x]$. Let

$$
\theta_{(a b)(c d)(e f)}=x_{a} x_{b}+x_{c} x_{d}+x_{e} x_{f}
$$

The roots of $F_{15}(x)=F_{\theta_{48}}(x)$ are the fifteen conjugates of θ_{48} listed in Table (4.3).

$\theta_{(12)(34)(56)}$	$\theta_{(12)(35)(46)}$	$\theta_{(12)(36)(45)}$
$\theta_{(13)(24)(56)}$	$\theta_{(13)(25)(46)}$	$\theta_{(13)(26)(45)}$
$\theta_{(14)(23)(56)}$	$\theta_{(14)(25)(36)}$	$\theta_{(14)(26)(35)}$
$\theta_{(15)(23)(46)}$	$\theta_{(15)(24)(36)}$	$\theta_{(15)(26)(34)}$
$\theta_{(16)(23)(45)}$	$\theta_{(16)(24)(35)}$	$\theta_{(16)(25)(34)}$

Table 4.3: Roots of $F_{15}(x)$
We have:
Proposition $4([5])$. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic polynomial. If $F(x)$ is an irreducible factor of $F_{15}(x)$ in $K^{G_{f}}[x]$ with degree $d \geq 6$, then $\hat{F}(x) \in \mathbb{Q}[x]$ is irreducible.

Proof. Assume $\hat{F}(x)$ is reducible. Then $\hat{F}(x)=(x-a)^{d}$ for some $a \in \mathbb{Q}$, by Lemma 4.3.1. Since $\operatorname{deg} F(x) \geq 6$, two of the roots of $F(x)$ must be $\theta_{(1 b)(c d)(e f)}, \theta_{(1 b)(c e)(d f)}$, for some permutation b, c, d, e, f of the numbers $2, \ldots, 6$. Since $\hat{\theta}_{(1 b)(c d)(e f)}=\hat{\theta}_{(1 b)(c e)(d f)}$, we have $\left(r_{c}-r_{f}\right)\left(r_{d}-\right.$ $\left.r_{e}\right)=0$ and thus, either the contradiction $r_{c}=r_{f}$ or the contradiction $r_{d}=r_{e}$. Hence $\hat{F}(x)$ is irreducible.

We are now ready to give our criterion to determine whether G_{f} is solvable, as a corollary of the following Theorem.

Theorem 4.3.2 ([5]). If $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic polynomial, then
(a) $G_{f} \subset G_{72} \Longleftrightarrow f_{10}(x)$ has a rational root.
(b) $G_{f} \subset G_{48} \Longleftrightarrow$ one of the following statements holds:
(i) $f_{15}(x)$ has a rational root with multiplicity $\neq 3,5$.
(ii) $f_{15}(x)$ has a rational root with multiplicity three and $f_{10}(x)$ has either an irreducible cubic factor or at least two distinct linear factors.
(iii) $f_{15}(x)$ has a rational root with multiplicity five and $f_{10}(x)$ is reducible.

Proof. Part (a) is proved in Proposition 2(a). We now prove $(b)(\Longrightarrow)$. Assume $G_{f} \subset G_{48}$. By Proposition 1, $f_{15}(x)$ has a rational root. If $f_{15}(x)$ has a rational root with multiplicity $\neq 3,5$, then condition (i) holds. We now assume that (i) does not hold. If $f_{15}(x)$ has a rational root with multiplicity 3 , then by Proposition 4 and Table 4.2, either $G_{f}=G_{12}, C_{6}$ or H_{6}. Inspection, along the lines of the proof of Proposition 2(b), then shows that the criterion in condition (ii) holds. If $G_{f} \subset G_{48}$ and $f_{15}(x)$ does not have any rational roots except with multiplicity 5 , then by Proposition 4 we have $G_{f}=H_{24}$ or Γ_{12}. Then since $F_{10}(x)$ is reducible in $K^{G}[x]$ when $G=H_{24}$ or $\Gamma_{12}, f_{10}(x)$ is reducible. Hence (iii) holds.

We now prove $(b)(\Longleftarrow)$. Assume that condition (i) holds. Then by Proposition 4, we must have $G_{f} \subset G_{48}$. Assume now that condition (ii) holds. Since there is a root with multiplicity 3, then by Table 4.2 and Proposition 4, we must have $G_{f}=G_{36}, G_{18}$ or $G_{f} \subset G_{12}$. But Proposition 2 shows that $f_{10}(x)$ contains an irreducible factor of degree 9 when $G_{f}=G_{36}, G_{18}$. Hence $G_{f} \subset G_{12} \subset G_{48}$. Finally, assume that condition (iii) holds. If $f_{15}(x)$ has a root with multiplicity 5 then $G_{f}=H_{120}, \Gamma_{60}$ or $G_{f} \subset G_{48}$ by Lemma 4.3.1. Since $f_{10}(x)$ is reducible, by Proposition 2 we have $G_{f} \neq H_{120}, \Gamma_{60}$. Hence $G_{f} \subset G_{48}$ and the theorem is proven.

Corollary 4.3.3 ([5]). Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic polynomial. Then G_{f} is solvable \Longleftrightarrow one of the following statements holds:
(a) $f_{10}(x)$ has a rational root.
(b) $f_{15}(x)$ has a rational root with multiplicity $\neq 5$.
(c) $f_{15}(x)$ has a rational root with multiplicity five and $f_{10}(x)$ is the product of irreducible quartic and sextic polynomials.

Proof. G_{f} is solvable if and only if $G_{f} \subset G_{72}$ or $G_{f} \subset G_{48}$. Hence Corollary 4.3.3 follows from Theorem 4.3.2, Table 4.2 and the observation that $f_{15}(x)$ can only have a rational root with multiplicity three when $G_{f} \subset G_{72}$ or $G_{f} \subset G_{48}$.

Once it is known by Theorem 4.3.2 that G_{f} is not solvable, it is easy to determine G_{f}. We have

Proposition 5 ([5]). Let $f(x) \in \mathbb{Q}[x]$ be a non-solvable irreducible sextic polynomial. Then
(a) $G_{f} \cong S_{6} \Longleftrightarrow f_{15}(x)$ is irreducible in $\mathbb{Q}[x]$ and Δ is not a square in \mathbb{Q}.
(b) $G_{f} \cong A_{6} \Longleftrightarrow f_{15}(x)$ is irreducible in $\mathbb{Q}[x]$ and Δ is a square in \mathbb{Q}.
(c) $G_{f} \cong H_{120} \Longleftrightarrow f_{15}(x)$ is reducible in $\mathbb{Q}[x]$ and Δ is not a square in \mathbb{Q}.
(d) $G_{f} \cong \Gamma_{60} \Longleftrightarrow f_{15}(x)$ is reducible in $\mathbb{Q}[x]$ and Δ is a square in \mathbb{Q}.

Proof. We have $G_{f} \cong S_{6}, A_{6}, H_{120}$ or Γ_{60}. By Proposition $4, f_{15}(x)$ is irreducible $\Longleftrightarrow G_{f} \cong S_{6}$ or A_{6}. The discriminant Δ distinguishes the remaining cases.

4.4 Solving the sextic: $G_{f} \subseteq G_{48}, G_{f} \nsubseteq G_{72}$

Once it is proved Theorem 4.3.2, we now assume that $G_{f} \subseteq G_{48}$ and $G_{f} \nsubseteq G_{72}$. We first explain how to determine G_{f}, then how to determine the roots of the sextic $f(x)$ and finally how to explicitly determine the action of G_{f} on the roots.

We recall that by Proposition 3, we know the value of the rational root $\theta_{1}=\hat{\theta}_{48}=r_{1} r_{2}+$ $r_{3} r_{4}+r_{5} r_{6}$ of $f_{15}(x)$. We introduce the variables:

$$
\begin{gather*}
d_{12}=x_{1}+x_{2}, \quad d_{34}=x_{3}+x_{4}, \quad d_{56}=x_{5}+x_{6}, \\
e_{12}=x_{1} x_{2}, \quad e_{34}=x_{3} x_{4}, \quad e_{56}=x_{5} x_{6} \\
\chi_{1}=\left(d_{12}-d_{34}\right)\left(d_{34}-d_{56}\right)\left(d_{56}-d_{12}\right) \tag{4.1}\\
\chi_{2}=\left(e_{12}-e_{34}\right)\left(e_{34}-e_{56}\right)\left(e_{56}-e_{12}\right)
\end{gather*}
$$

Now $\chi_{1}^{2}, \chi_{2}^{2}$ are G_{48}-polynomials and by Proposition 3, the values of $\hat{\chi}_{1}^{2}, \hat{\chi}_{2}^{2}$ can be determined as roots of the Galois resolvents $f_{\chi_{i}^{2}}$. We now state some elementary properties of $\hat{\chi}_{1}, \hat{\chi}_{2}$.

Lemma 4.4.1 ([5]). Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic with $G_{f}=G_{48}, \Gamma_{24}, G_{24}, H_{24}$ or Γ_{12}. Then
(a) $\hat{\chi}_{1}=0 \Longleftrightarrow \hat{d}_{12}=\hat{d}_{34}=\hat{d}_{56}=a_{1} / 3$.
(b) $\hat{\chi}_{2}=0 \Longleftrightarrow \hat{e}_{12}=\hat{e}_{34}=\hat{e}_{56}=\theta_{1} / 3$.
(c) At least one of the $\hat{\chi}_{i}$ is non-zero. If both $\hat{\chi}_{1}, \hat{\chi}_{2}$ are non-zero, then $\hat{\chi}_{1}^{2}$ is a square in $\mathbb{Q} \Longleftrightarrow \hat{\chi}_{2}^{2}$ is a square in \mathbb{Q}.

Proof. We first prove (a). Suppose $\hat{\chi}_{1}=0$. Then one of the three factors of $\hat{\chi}_{1}$ must vanish. Assume that $\hat{d}_{12}=\hat{d}_{34}$. Then applying the automorphism $\sigma=(135)(246) \in \Gamma_{12} \subset G$, we obtain $\hat{d}_{34}=\hat{d}_{56}$, and $a_{1}=3 \hat{d}_{12}$. Thus (\Rightarrow) is proved. The converse (\Leftarrow) is clear. Statement (b) is proved in the same way. We now prove (c). Assume that $\hat{\chi}_{1}=\hat{\chi}_{2}=0$. Then by (a), (b), the symmetric functions in r_{1} and r_{2} are rational numbers. But then

$$
x^{2}-\hat{d}_{12} x+\hat{e}_{12}=\left(x-r_{1}\right)\left(x-r_{2}\right)
$$

is a rational quadratic factor of $f(x)$, contradicting the irreducibility of $f(x)$. Hence, at least one of the $\hat{\chi}_{i}$ is non-zero. Now suppose that both are non-zero. Since χ_{1} / χ_{2} is fixed by $G_{48}, \hat{\chi}_{1} / \hat{\chi}_{2} \in \mathbb{Q}^{*}$ and (c) is proved.

By Lemma 4.4.1, we can define a non-zero number $\chi \in \mathbb{Q}$ by $\chi=\hat{\chi}_{1}^{2}$ if $\hat{\chi}_{1} \neq 0$ and $\chi=\hat{\chi}_{2}^{2}$ otherwise. We recall that Δ is the discriminant of $f(x)$. We are now ready to prove the following Theorem to determine G_{f}.

Theorem 4.4.2 ([5]). Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic with $G_{f}=G_{48}, \Gamma_{24}, G_{24}, H_{24}$ or Γ_{12}. Then
(a) $G_{f}=G_{48} \Longleftrightarrow$ none of the numbers $\chi, \Delta, \chi \Delta$ are squares in \mathbb{Q}.
(b) $G_{f}=\Gamma_{24} \Longleftrightarrow \Delta$ is a square in \mathbb{Q}, but $\chi, \chi \Delta$ are not squares in \mathbb{Q}.
(c) $G_{f}=G_{24} \Longleftrightarrow \chi$ is a square in \mathbb{Q}, but $\Delta, \chi \Delta$ are not squares in \mathbb{Q}.
(d) $G_{f}=H_{24} \Longleftrightarrow \chi \Delta$ is a square in \mathbb{Q}, but χ, Δ are not squares in \mathbb{Q}.
(e) $G_{f}=\Gamma_{12} \Longleftrightarrow \chi, \Delta$ and $\chi \Delta$ are squares in \mathbb{Q}.

Proof. We first prove (b). Let σ denote the element (12)(34)(56) $\in G_{48}$. Then $\sigma(\Delta)=-\Delta$ and the stabilizer of Δ in G_{48} is Γ_{24}. Since Δ is non-zero, we have that Δ is a rational square if and only if $G_{f} \subset \Gamma_{24}$. Since $\chi \neq 0,(13)(24) \chi=-\chi$ and $(13)(24) \chi \Delta=-\chi \Delta$, and G_{24} and H_{24} are the respective stabilizers of χ and $\chi \Delta$ in G_{48}, we obtain the corresponding statements (c), (d) for G_{24} and H_{24}. Cases (a) and (e) then follow from cases (b), (c) and (d) and the fact that $\Gamma_{12}=\Gamma_{24} \cap G_{24} \cap H_{24}$.

We now show that there are general formulas for finding the roots of $f(x)$. Implicit in our approach will be the assumption that we can simplify algebraic numbers to determine whether they are rational numbers. First, we introduce some useful symmetric functions of the $d_{i j}$ and $e_{i j}$. Some of these symmetric functions can be easily expressed in terms of a_{i}, θ_{1}. We have

$$
\begin{gathered}
a_{1}=\hat{d}_{12}+\hat{d}_{34}+\hat{d}_{56}, \\
a_{2}-\theta_{1}=\hat{d}_{12} \hat{d}_{34}+\hat{d}_{34} \hat{d}_{56}+\hat{d}_{12} \hat{d}_{56}, \\
\theta_{1}=\hat{e}_{12}+\hat{e}_{34}+\hat{e}_{56}, \\
a_{6}=\hat{e}_{12} \hat{e}_{34} \hat{e}_{56}
\end{gathered}
$$

The other two symmetric functions, which are specializations of the two G_{48}-polynomials

$$
\begin{align*}
& D=d_{12} d_{34} d_{56} \\
& E=e_{12} e_{34}+e_{34} e_{56}+e_{12} e_{56} \tag{4.2}
\end{align*}
$$

are not easily expressed. By Proposition $3, \hat{D}, \hat{E}$ can be determined as rational roots of their Galois resolvents $\hat{F}_{D}(x), \hat{F}_{E}(x) \in \mathbb{Q}[x]$. Let

$$
\begin{gather*}
g_{2}(x)=x^{3}-a_{1} x^{2}+\left(a_{2}-\theta_{1}\right) x-\hat{D} \in \mathbb{Q}[x], \tag{4.3}\\
g_{3}(x)=x^{3}-\theta_{1} x^{2}+\hat{E} x-a_{6} \in \mathbb{Q}[x] . \tag{4.4}
\end{gather*}
$$

Let ω be a primitive cubic root of unity. Formulas $y_{g}\left(\omega^{i}\right)$ for finding the roots of a cubic polynomial g are given in the Appendix (Lemma A.0.1). Define $l_{i}=y_{g_{2}}\left(\omega^{i}\right), m_{i}=y_{g_{3}}\left(\omega^{i}\right)$ for $i=1,2,3$. The $l_{i}\left(\right.$ resp. $\left.m_{i}\right)$ are the roots of $g_{2}(x)$ (resp. $g_{3}(x)$). We than have

$$
\left\{l_{1}, l_{2}, l_{3}\right\}=\left\{\hat{d}_{12}, \hat{d}_{34}, \hat{d}_{56}\right\}, \quad\left\{m_{1}, m_{2}, m_{3}\right\}=\left\{\hat{e}_{12}, \hat{e}_{34}, \hat{e}_{56}\right\}
$$

We note that we do not yet know haw to identify the l_{i} (resp. m_{i}) with the $\hat{d}_{i j}$ (resp. $\hat{e}_{i j}$). Finally, let us define for $k=1,2$ the two G_{48}-polynomials:

$$
\begin{equation*}
h_{1 k}=d_{12}^{k} e_{12}+d_{34}^{k} e_{34}+d_{56}^{k} e_{56} \tag{4.5}
\end{equation*}
$$

Since h_{11}, h_{12} are G_{48}-polynomials, $\hat{h}_{11}, \hat{h}_{12} \in \mathbb{Q}$ when $G_{f} \subseteq G_{48}$.
Proposition $6([5])$. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic polynomial with $G_{f} \subseteq G_{48}$. Assume that the values of $\theta_{1}, l_{i}, m_{i}, \hat{h}_{11}$ and \hat{h}_{12} are known. Then there is an effective algorithm for determining $\sigma \in S_{3}$ such that for each i, l_{i} and $m_{\sigma(i)}$ correspond to the same pair of roots. In other words, we can find σ such that

$$
\begin{equation*}
\left\{\left(l_{i}, m_{\sigma(i)}\right)\right\}_{i=1,2,3}=\left\{\left(\hat{d}_{12}, \hat{e}_{12}\right),\left(\hat{d}_{34}, \hat{e}_{34}\right),\left(\hat{d}_{56}, \hat{e}_{56}\right)\right\} \tag{4.6}
\end{equation*}
$$

Before reading through the proof of Proposition 6, we now introduce some additional notation and prove a lemma needed to prove Proposition 6. Let $k=1$ or 2 . Define

$$
\begin{array}{ll}
& j_{1 k}=d_{12}^{k} e_{12}+d_{34}^{k} e_{56}+d_{56}^{k} e_{34} \\
h_{2 k}=d_{12}^{k} e_{34}+d_{34}^{k} e_{56}+d_{56}^{k} e_{12}, & j_{2 k}=d_{12}^{k} e_{56}+d_{34}^{k} e_{34}+d_{56}^{k} e_{12} \tag{4.7}\\
h_{3 k}=d_{12}^{k} e_{56}+d_{34}^{k} e_{12}+d_{56}^{k} e_{34}, & j_{3 k}=d_{12}^{k} e_{34}+d_{34}^{k} e_{12}+d_{56}^{k} e_{56}
\end{array}
$$

Fix $k=1,2$. Then for all groups G in Figure 4.1 with $G \subseteq G_{48}$, the set $\left\{h_{2 k}, h_{3 k}\right\}$ is G-stable and the set $\left\{j_{1 k}, j_{2 k}, h_{3 k}\right\}$ is a G-orbit in $\mathbb{Q}\left[x_{1}, \ldots, x_{6}\right]$.

Since G_{f} satisfies this condition, we have

$$
\begin{equation*}
\hat{h}_{2 k} \in \mathbb{Q} \Longleftrightarrow \hat{h}_{3 k} \in \mathbb{Q} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{j}_{i k} \in \mathbb{Q} \text { for some } i \Longleftrightarrow \hat{j}_{i k} \in \mathbb{Q} \text { for all } i . \tag{4.9}
\end{equation*}
$$

When the last case occurs, $\hat{j}_{1 k}=\hat{j}_{2 k}=\hat{j}_{3 k}$.
Lemma 4.4.3 ([5]). Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic polynomial with $G_{f} \subseteq G_{48}$. Let $l_{i}, m_{i}, h_{i k}, j_{i k}$ be defined as above. Fix $k=1,2$. If the l_{i} are distinct and the m_{i} are distinct, then

$$
\hat{h}_{i k} \notin\left\{\hat{j}_{1 k}, \hat{j}_{2 k}, \hat{j}_{3 k}\right\} .
$$

Proof. We first assume that $k=1$. If $\hat{h}_{11}=\hat{j}_{11}$, then $\left(\hat{d}_{34}-\hat{d}_{56}\right)\left(\hat{e}_{34}-\hat{e}_{56}\right)=0$ and $\hat{d}_{34}=\hat{d}_{56}$ or $\hat{e}_{34}=\hat{e}_{56}$. But this contradicts either the distinctness of the l_{i} or that of the m_{i}. Hence $\hat{h}_{11} \neq \hat{j}_{11}$. The other cases are proved similarly. Now suppose that $k=2$ and that \hat{h}_{12} equals one of the $\hat{j}_{i 2}$. Then $\hat{j}_{i 2} \in \mathbb{Q}$ for $i=1,2,3$. Hence $\hat{j}_{12}=\hat{j}_{22}=\hat{j}_{32}$. Now the same argument as when $k=1$ shows that $\hat{h}_{12}=\hat{j}_{12}$ implies that $\hat{d}_{34}=-\hat{d}_{56}$. Similarly $\hat{h}_{12}=\hat{j}_{22}$ implies that $\hat{d}_{12}=-\hat{d}_{56}$. Hence $\hat{d}_{12}=\hat{d}_{34}$ and the l_{i} are not distinct, contradicting the hypothesis. Hence the lemma is proved.

Finally, for $k=1,2, \sigma \in S_{3}$, define

$$
\begin{equation*}
p_{k \sigma}=l_{1}^{k} m_{\sigma(1)}+l_{2}^{k} m_{\sigma(2)}+l_{3}^{k} m_{\sigma(3)} . \tag{4.10}
\end{equation*}
$$

The $p_{k \sigma}$ have the property that $\left\{p_{k \sigma} \mid \sigma \in S_{3}\right\}=\left\{\hat{h}_{i k}, \hat{j}_{i k} \mid i=1,2,3\right\}$. The following lemma is essential

Lemma 4.4.4 ([5]). Let $f(x) \in \mathbb{Q}[x]$ be an irreducible sextic polynomial with $G_{f} \subseteq G_{48}$. Let $l_{i}, m_{i}, p_{k \sigma}$ be defined as above. Assume that the l_{i} are distinct and the m_{i} are distinct. Then there exists a unique $\sigma \in S_{3}$ such that $p_{1 \sigma}=\hat{h}_{11}$ and $p_{2 \sigma}=\hat{h}_{12}$.

Proof. By definition of l_{i}, m_{i}, the equations $p_{j \sigma}=\hat{h}_{1 j}$, for $j=1,2$, have at least one solution σ. We now establish uniqueness. Assume that we have $\sigma_{1}, \sigma_{2} \in S_{3}$ with $p_{k \sigma_{1}}=p_{k \sigma_{2}}=\hat{h}_{1 k}$ for $k=1,2$. Then the three equations

$$
\begin{array}{r}
x+y+z=0 \\
l_{1} x+l_{2} y+l_{3} z=0 \tag{4.11}\\
l_{1}^{2} x+l_{2}^{2} y+l_{3}^{2} z=0
\end{array}
$$

have the non-zero solution

$$
(x, y, z)=\left(m_{\sigma_{1}(1)}-m_{\sigma_{2}(1)}, m_{\sigma_{1}(2)}-m_{\sigma_{2}(2)}, m_{\sigma_{1}(3)}-m_{\sigma_{2}(3)}\right)
$$

But since the determinant

$$
\Delta^{\prime}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
l_{1} & l_{2} & l_{3} \\
l_{1}^{2} & l_{2}^{2} & l_{3}^{2}
\end{array}\right|=-\prod_{i<j}\left(l_{i}-l_{j}\right)
$$

is non-zero as the l_{i} are distinct, the only solution to (4.11) is the trivial solution. Since the m_{i} are distinct, we have $\sigma_{1}=\sigma_{2}$ and the lemma is proved.

We can now prove Proposition 6.
Proof. We first note that (4.6) is satisfied for at least one $\sigma \in S_{3}$, and to prove the proposition, we need only show how to determine σ. We first consider the case when two of the l_{i} coincide. Then the action of $(135)(246) \in G_{f}$ shows that $l_{1}=l_{2}=l_{3}$. Similarly, if two of the m_{i} coincide, then they are all equal. In either case, the proposition holds trivially by letting $\sigma=(1)$. We now consider the case when the l_{i} are m_{i} are distinct. Now (4.6) has at least one solution $\sigma \in S_{3}$ and any solution is a solution to the equations $p_{1 \sigma}=\hat{h}_{11}$ and $p_{2 \sigma}=\hat{h}_{12}$. By Lemma 4.4.4, these equations have a unique solution. Hence by comparing the value of $p_{j \sigma}$ to those of the known constants $\hat{h}_{11}, \hat{h}_{12}$, we can determine $\sigma \in S_{3}$ satisfying (4.6) and the proposition is proved.

Proposition 6 is the key to solving the sextic when $G_{f} \subseteq G_{48}, G_{f} \nsubseteq G_{72}$.
Theorem 4.4.5 ([5]). Let G be ine of the transitive, solvable subgroups $G_{48}, \Gamma_{24}, G_{24}, H_{24}, \Gamma_{12}$ of S_{6}. Let \bar{G} be its conjugacy class in Σ_{6}.
(a) The general equation of type $(6, \bar{G})$ is explicitly solvable by radicals.
(b) The formulas $z_{i}\left(t_{j}\right)$ in (a) can be numbered so that for each $f \in \Gamma_{\bar{G}}$, the Galois action of $\tau \in G_{f}$ on the roots $z_{i}=z_{i}\left(\hat{t}_{j}(f)\right)$ is given by $\tau\left(z_{i}\right)=z_{\tau(i)}$.

Proof. (a) Given an irreducible sextic polynomial $f \in \Gamma_{\bar{G}}$ with $G_{f}=G$, define the polynomials g_{2}, g_{3} as in (4.3), (4.4). Let $y_{g}(a)$ be defined as in Lemma A.0.1 in the Appendix, ω a primitive cubic root of unity and define $z(f, a, b, \varepsilon)=\frac{1}{2}\left(y_{g_{2}}(a)+\varepsilon \sqrt{y_{g_{2}}(a)^{2}-4 y_{g_{3}}(b)}\right)$. Let l_{i}, m_{i} be the roots of g_{2}, g_{3} defined following (4.3), (4.4). By Proposition 3, we can determine the values of $\theta_{1}=\hat{\theta}_{48}, \hat{h}_{11}, \hat{h}_{12}$. By Proposition 6, one can calculate $\sigma \in S_{3}$ such that (4.6) holds. Define

$$
\begin{equation*}
z_{2 i-1}=z\left(f, \omega^{i}, \omega^{\sigma(i)}, 1\right), \quad z_{2 i}=z\left(f, \omega^{i}, \omega^{\sigma(i)},-1\right), \quad \text { for } i=1,2,3 \tag{4.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\{\left\{r_{1}, r_{2}\right\},\left\{r_{3}, r_{4}\right\},\left\{r_{5}, r_{6}\right\}\right\}=\left\{\left\{z_{1}, z_{2}\right\},\left\{z_{3}, z_{4}\right\},\left\{z_{5}, z_{6}\right\}\right\} . \tag{4.13}
\end{equation*}
$$

Hence $z(f, a, b, \varepsilon)$ provides formulas for the roots $\left\{z_{i}\right\}$ of f in terms of the variables $a, b, \varepsilon, \hat{D}, \hat{E}$ and θ_{1}. Since there is a finite algorithm for calculating their values given f and all values in $K=\mathbb{Q}[\omega],(a)$ is proved.

To prove (b), it suffices to show that for any z_{i} arising from the formulas in (a), there is an automorphism $\alpha: G_{f} \rightarrow G_{f}$ satisfying $\alpha(\sigma)\left(z_{i}\right)=z_{\sigma(i)}$ for $\sigma \in G_{f}$. Then, by twisting the Galois action by α, (b) holds. Now the roots r_{i} were initially chosen so that G_{f} was one of the five subgroups $G_{48}, \Gamma_{24}, G_{24}, H_{24}, \Gamma_{12}$ and have the property that $\sigma\left(r_{i}\right)=r_{\sigma(i)}$ for $\sigma \in G_{f}$. Now the proof of (a) shows (4.13) holds. Hence, there exists $\tau \in G_{48}$ such that $z_{i}=r_{\tau(i)}$ and consequently, $\sigma\left(r_{i}\right)=z_{\tau^{-1} \sigma \tau(i)}$ for $\sigma \in G_{f . .}$ Since τ normalizes each of the groups $G_{48}, \Gamma_{24}, G_{24}, H_{24}$ and Γ_{12}, we have $\tau \sigma \tau^{-1} \in G_{f}$ and $\left(\tau \sigma \tau^{-1}\right)\left(z_{i}\right)=z_{\sigma(i)}$. Hence, letting $\alpha(\sigma)=\tau \sigma \tau^{-1}$ gives the desired map.

The following lemma follows trivially from the proof of Theorem 4.4.5
Lemma 4.4.6 ([5]). Let $G \subseteq G_{48}$ be one of the transitive groups in Figure 4.1 and let \bar{G} be its conjugacy class in Σ_{6}. Suppose that $f \in \Gamma_{\bar{G}}$ is an irreducible sextic with $G_{f}=G$, let r_{i} be the corresponding numbering of the roots, and suppose that the values of $\theta_{1}, \hat{D}, \hat{E}, l_{i}, m_{i}, \hat{h}_{11}, \hat{h}_{12}$ are known. Let $\sigma \in S_{3}$ be the element determined by Proposition 6 and let z_{i} be defined as in (4.12). Then

$$
\left\{\left\{r_{1}, r_{2}\right\},\left\{r_{3}, r_{4}\right\},\left\{r_{5}, r_{6}\right\}\right\}=\left\{\left\{z_{1}, z_{2}\right\},\left\{z_{3}, z_{4}\right\},\left\{z_{5}, z_{6}\right\}\right\} .
$$

In conclusion, we now summarize this section. Formulas for finding the roots of an irreducible sextic $f(x) \in \mathbb{Q}[x]$ whan $G_{f} \subseteq G_{48}, G_{f} \nsubseteq G_{72}$:

1. Let $f(x)=x^{6}-a_{1} x^{5}+a_{2} x^{4}-a_{3} x^{3}+a_{4} x^{2}-a_{5} x+a_{6}$.
2. Use Theorem 4.3.2 to determine $G_{f} \subseteq G_{48}$ and $G_{f} \nsubseteq G_{72}$. Let θ_{1} be the unique rational root of $f_{15}(x)$ with multiplicity $1,5,7$ or 9 .
3. For $z=D, E, h_{11}, h_{12}$ defined as in (4.1), (4.2), (4.5), calculate the G_{48}-resolvent $F_{z}(x)$. For each z, let $\hat{z} \in \mathbb{Z}$ be the unique rational root of $\hat{F}_{z}(x)$ with multiplicity $1,5,7$ or 9 .
4. Let ω be a primitive cubic root of unity and let $y_{g}\left(\omega^{i}\right)$ be the formulas in Lemma A.0.1 in the Appendix.
5. Let $l_{i}=y_{g_{2}}\left(\omega^{i}\right)$ be the three roots of the cubic polynomial $g_{2}=x^{3}-a_{1} x^{2}+\left(a_{2}-\theta_{1}\right) x-\hat{D}$ and let $m_{i}=y_{g_{3}}\left(\omega^{i}\right)$ be the three roots of the cubic polynomial $g_{3}=x^{3}-\theta_{1} x^{2}+\hat{E} x-a_{6}$.
6. For $k=1,2, \sigma \in S_{3}$, define $p_{k \sigma}=\sum_{i=1}^{3} l_{i}^{k} m_{\sigma(i)}$.
7. (a) If $l_{i}=l_{j}$ or $m_{i}=m_{j}$ for some $i \neq j$, let $\sigma=1$.
(b) Otherwise, let σ be the unique element of S_{3} with $p_{1 \sigma}=\hat{h}_{11}, p_{2 \sigma}=\hat{h}_{12}$.
8. Define $z(f, a, b, \varepsilon)=\frac{1}{2}\left(y_{g_{2}}(a)+\varepsilon \sqrt{y_{g_{2}}(a)^{2}-4 y_{g_{3}}(b)}\right)$. Let $z_{2 i-1}=z\left(f, \omega^{i}, \omega^{\sigma(i)}, 1\right)$ for $i=1,2,3$ and $z_{2 i}=z\left(f, \omega^{i}, \omega^{\sigma(i)},-1\right)$ for $i=1,2,3$.
9. The z_{i} are formulas for the roots of $f(x)$ in the variables $a_{i}, \theta_{1}, \hat{D}, \hat{E}$. The formulas use only the basic arithmetic operations and radicals. The Galois action of $\tau \in G_{f}$ on the z_{i} is given by $\tau\left(z_{i}\right)=z_{\tau(i)}$.

We now give example on an irreducible sextic polynomial $f(x) \in \mathbb{Q}[x]$ where we calculate $\mathrm{Gal}_{f}=G_{f}$, the roots z_{i} of f and the Galois action on the z_{i}. Let

$$
f(x)=x^{6}+x^{4}-x^{3}-2 x^{2}+3 x-1 \in \mathbb{Q}[x] .
$$

One can calculate that $f_{10}(x)$ factors into irreducible polynomials as

$$
f_{10}(x)=\left(x^{4}-2 x^{3}-x^{2}+71 x+1\right)\left(x^{6}-4 x^{5}+20 x^{4}-30 x^{3}+60 x^{2}-15 x+1\right)
$$

The resolvent $f_{15}(x)$ has the $\theta_{1}=\hat{\theta}_{48}=0$ as its unique rational root. Its factorization into irreducible polynomials is given by

$$
\begin{aligned}
& f_{15}(x)=x\left(x^{6}-x^{5}+4 x^{4}+19 x^{3}-46 x^{2}-82 x-31\right) \\
& \cdot\left(x^{8}-2 x^{7}+9 x^{6}-4 x^{5}-25 x^{4}+53 x^{3}-144 x^{2}-74 x+877\right) .
\end{aligned}
$$

By Theorem 4.3.2, $G_{f} \subseteq G_{48}$ and $G_{f} \nsubseteq G_{72}$. Looking at the possible factorizations of $F_{15}(x)$ (and thus f_{15}) in Table 4.2, we canfurther conclude that $G_{f}=G_{48}, \Gamma_{24}$ or G_{24}. Using the formula for Δ in the Appendix, one calculates that $\Delta=66309=69(31)^{2}$. Similarly, one can calculate the values $\hat{\chi}_{1}^{2}=\hat{\chi}_{2}^{2}=-31$, where χ_{i} is defined following 4.1. We thus let $\chi=-31$ and by Theorem 4.4.2, we conclude that $\operatorname{Gal}(f)=G_{f}=G_{48}$.

To find formulas for the roots of f, by using the algorithm listed above, we must calculate \hat{D}, \hat{E} as roots of their G_{48}-resolvents. We find $\hat{D}=-1$ and $\hat{E}=1$. Following the definitions in (4.3), (4.4), we have

$$
g_{2}(x)=g_{3}(x)=x^{3}+x+1 .
$$

Letting $y_{g}\left(\omega^{i}\right)$ be defined as above, we let $l_{i}=m_{i}=y_{g_{2}}\left(\omega^{i}\right)$. We have

$$
\begin{gathered}
l_{1}=m_{1}=d_{1} \omega+d_{2} \omega^{2}, \\
l_{2}=m_{2}=d_{1} \omega^{2}+d_{2} \omega, \\
l_{3}=m_{2}=d_{1}+d_{2},
\end{gathered}
$$

where

$$
d_{1}=\sqrt[3]{-\frac{1}{2}+\sqrt{\frac{31}{108}}}, \quad d_{2}=-\frac{1}{3 d_{1}}
$$

Define $p_{k \sigma}, k=1,2, \sigma \in S_{3}$ as in Step 6 of the algorithm above. Calculation shows $p_{1(1)}=$ $-2, p_{1(123)}=p_{1(132)}=1$, and $p_{2(1)}=-3$ is the only integral value amongst the $p_{2 \sigma}$. Hence, without needing to calculate $\hat{h}_{11}, \hat{h}_{12}$ (which equal $-2,-3$ respectively), by Step 7 of the algorithm, we can determine that $\sigma=1$. Then for each $i=1,2,3$ let $z_{2 i-1}, z_{2 i}$ be the two roots of the polynomial $x^{2}-l_{i} x+m_{i}$. The z_{i} are the roots of f and the Galois action of $\tau \in G_{48}$ on the z_{i} is given by $\tau\left(z_{i}\right)=z_{\tau(i)}$.

4.5 Solving the sextic: $G_{f} \subseteq G_{72}, G_{f} \nsubseteq G_{48}$

For this and the next Section we are just going to give the main idea behind how to determine G_{f} and how to find the roots of $f(x)$.

Once it is proved Theorem 4.3.2, we now assume that $G_{f} \subseteq G_{72}$ and $G_{f} \nsubseteq G_{48}$. We first explain how to determine G_{f}. Let

$$
\begin{gathered}
\beta_{1}=\left(x_{1}-x_{3}\right)\left(x_{3}-x_{5}\right)\left(x_{5}-x_{1}\right) \\
\beta_{2}=\left(x_{2}-x_{4}\right)\left(x_{4}-x_{6}\right)\left(x_{6}-x_{2}\right) \\
\delta=\beta_{1}+\beta_{2}, \quad \mu=\beta_{1}-\beta_{2} \\
M=\delta^{2}+\mu^{2}, \quad N=\delta^{2} \mu^{2}
\end{gathered}
$$

Now M and N are G_{72}-polynomials. Let $f_{M}(x), f_{N}(x)$ be the specializations of their Galois resolvents. \hat{M}, \hat{N} are rational roots of $f_{M}(x), f_{N}(x)$, respectively, which can be determined by Proposition 3. Let

$$
g(x)=x^{2}-\hat{M} x+\hat{N} \in \mathbb{Q}[x]
$$

and recall Δ is the discriminant of $f(x)$.
Theorem 4.5.1. Suppose $f(x) \in \mathbb{Q}[x]$ is an irreducible sextic with $G_{f}=G_{72}, G_{36}, \Gamma_{36}$ or G_{18}. Then
(a) $G_{f}=\Gamma_{36} \Longleftrightarrow \Delta$ is a square in \mathbb{Q}.
(b) $G_{f}=G_{72} \Longleftrightarrow \Delta$ is not a square in \mathbb{Q} and $g(x) \in \mathbb{Q}[x]$ is irreducible.
(c) $G_{f} \subseteq G_{36} \Longleftrightarrow \Delta$ is not a square in \mathbb{Q} and $g(x) \in \mathbb{Q}[x]$ is reducible.

Proof. We first prove (a). Out of the four groups, only Γ_{36} is a subset of A_{6}. Hence Δ is a rational square $\Longleftrightarrow G_{f} \subset A_{6} \cap G_{72} \Longleftrightarrow G_{f}=\Gamma_{36}$ and (a) is proved.

We now prove (b). By (a), we can assume that Δ is not a rational square and $G_{f}=G_{72}, G_{36}$ or G_{18}. Since $\beta_{1}, \beta_{2} \neq 0$, we have $\delta^{2} \neq \mu^{2}$. Since δ^{2}, μ^{2} are G_{36}-polynomials which are permuted by the action of $(24) \in G_{72}$, we have $g(x)$ is irreducible if and only if $(24) \in G_{f}$. Hence (b) is proved and (c) follows immediately.

The next step is determine a criteria to distinguish between the cases $G_{f}=G_{36}$ and $G_{f}=G_{18}$. After some work and the introduction of new variables this criteria can be found.

Finally, we turn our attention to finding the roots of $f(x)$. This formulas do not depend upon precisely knowing G_{f}.
Proposition 7 ([5]). Let $G \subseteq G_{72}$ be one of the groups in Figure 4.1. Let $\bar{G} \in \Sigma_{6}$ be the conjugacy class containing G.

1. The general equation of type $(6, \bar{G})$ is explicitly solvable by radicals.
2. If $G_{18} \subseteq G \subseteq G_{72}$, then the formulas $z_{i}\left(t_{j}\right)$ and the algorithm can be chosen so that for each $f \in \Gamma_{\bar{G}}$, the Galois action of $\tau \in G_{f}$ on the roots $z_{i}=z_{i}\left(\hat{t}_{j}(f)\right)$ is given by $\tau\left(z_{i}\right)=z_{\tau(i)}$.
To see the proof of Proposition 7 and the other details we remind to check Thomas R. Hagedorn article ([5]).

4.6 Solving the sextic: $G_{f} \subseteq G_{12}$

As said previously, we now give the main idea of the case $G_{f} \subseteq G_{12}$ describe in the article ([5]). This case is strictly connected with the previous one.

When $G_{f} \subseteq G_{12}$, we can easily find a criteria for determining G_{f} among G_{12}, C_{6} and H_{6} using the same notation introduced in Section 4.5. Problems come from the fact that the crucial variables determining G_{f} can be found as a set of roots but can not be distinguished with the same facility. Some work is done to say that this variables can effectively be computed.

As $G_{f} \subset G_{72}$, Proposition 7 shows that there are formulas for finding the roots z_{i} of $f(x)$. They can be calculated using the same algorithm described for the case $G_{f} \subseteq G_{72}, G_{f} \nsubseteq G_{48}$.

Finally, we show how to explicitly exhibit the Galois action of G_{f} on the roots z_{i} of $f(x)$. Unlike in Sections 4.4 and 4.5, the algorithm will depend upon G_{f}.

Appendix A

Notation for sextics

We first give formulas for the roots of a cubic polynomial:
Lemma A.0.1. Let $f(x)=x^{3}+a_{1} x^{2}+a_{2} x+a_{3} \in \mathbb{Q}[x]$ be a cubic polynomial and define

$$
\begin{aligned}
c_{1} & =\frac{1}{6}\left(a_{1} a_{2}-3 a_{3}\right)-\frac{1}{27} a_{1}^{3}, & c_{2} & =\frac{1}{3} a_{2}-\frac{1}{9} a_{1}^{2} \\
d_{1} & =\sqrt[3]{c_{1}+\sqrt{c_{2}^{3}+c_{1}^{2}}}, & d_{2} & =-\frac{c_{2}}{d_{1}}
\end{aligned}
$$

Letting $\bar{\alpha}$ denote the complex conjugate of α, define

$$
y_{f}(\alpha)=-\frac{a_{1}}{3}+d_{1} \alpha+d_{2} \bar{\alpha} .
$$

The roots of f are then $y_{f}(1), y_{f}(\omega)$ and $y_{f}\left(\omega^{2}\right)$, where ω is a primitive cubic root of unity.
Now let $f(x)=x^{6}-a_{1} x^{5}+a_{2} x^{4}-a_{3} x^{3}+a_{4} x^{2}-a_{5} x+a_{6} \in \mathbb{Q}[x]$ be an irreducible sextic and $f_{10}(x), f_{15}(x) \in \mathbb{Q}[x]$ be the rational polynomials defined by

$$
f_{10}(x)=x^{10}+\sum_{i=1}^{10}(-1)^{i} b_{i} x^{10-i}, \quad f_{15}(x)=x^{15}+\sum_{i=1}^{15}(-1)^{i} c_{i} x^{15-i}
$$

Now we give explicit formulas for the rational numbers b_{i}, c_{i} and for the discriminant Δ in terms of the coefficients a_{i} of $f(x)$.
(For your convenience, we report them in the following pages directly from the Appendix of the original article and we remind to consult it for more details (Thomas R. Hagedorn, [5])).

$$
\begin{aligned}
& \Delta=108 a_{4}^{3} a_{3}^{4} a_{6}-27 a_{4}^{2} a_{3}^{4} a_{5}^{2}-3750 a_{5}^{5} a_{2} a_{3}-1350 a_{6} a_{3}^{3} a_{5}^{3}-22500 a_{6} a_{5}^{4} a_{4} \\
& +320 a_{6} a_{1}^{4} a_{5}^{4}+1500 a_{6} a_{5}^{4} a_{2}^{2}-8748 a_{3}^{4} a_{6}^{3}+34992 a_{3}^{2} a_{6}^{4}-13824 a_{4}^{3} a_{6}^{3} \\
& -13824 a_{2}^{3} a_{6}^{4}+256 a_{1}^{5} a_{5}^{5}-4860 a_{4} a_{2} a_{3}^{4} a_{6}^{2}-630 a_{4} a_{2} a_{3}^{3} a_{5}^{3} \\
& +3888 a_{4} a_{2} a_{3}^{2} a_{6}^{3}-192 a_{4} a_{2} a_{1}^{4} a_{5}^{4}+16 a_{4}^{4} a_{2}^{3} a_{1}^{2} a_{6} \\
& +8208 a_{4}^{2} a_{2}^{2} a_{3}^{2} a_{6}^{2}-6 a_{4}^{2} a_{2}^{2} a_{1}^{3} a_{5}^{3}+560 a_{4}^{2} a_{2}^{2} a_{5}^{3} a_{3}+4816 a_{4}^{3} a_{2}^{2} a_{1}^{2} a_{6}^{2} \\
& +24 a_{4}^{2} a_{2}^{3} a_{1} a_{5}^{3}+4816 a_{4}^{2} a_{2}^{3} a_{6} a_{5}^{2}-4 a_{4}^{3} a_{2}^{3} a_{1}^{2} a_{5}^{2}-6480 a_{4}^{2} a_{2} a_{1}^{2} a_{6}^{3} \\
& -6480 a_{4} a_{2}^{2} a_{6}^{2} a_{5}^{2}+1020 a_{4} a_{2}^{2} a_{1}^{2} a_{5}^{4}-64 a_{4}^{4} a_{2}^{4} a_{6}-4352 a_{4}^{3} a_{2}^{3} a_{6}^{2} \\
& +16 a_{4}^{3} a_{2}^{4} a_{5}^{2}-17280 a_{4}^{2} a_{2}^{2} a_{6}^{3}+62208 a_{4} a_{2} a_{6}^{4}+512 a_{4}^{5} a_{2}^{2} a_{6} \\
& -128 a_{4}^{4} a_{2}^{2} a_{5}^{2}+512 a_{4}^{2} a_{2}^{5} a_{6}^{2}-900 a_{4} a_{2}^{3} a_{5}^{4}+2000 a_{4}^{2} a_{2} a_{5}^{4} \\
& +9216 a_{4}^{4} a_{2} a_{6}^{2}+9216 a_{4} a_{2}^{4} a_{6}^{3}+1500 a_{4}^{2} a_{1}^{4} a_{6}^{3}-32400 a_{4} a_{1}^{2} a_{6}^{4} \\
& -36 a_{4}^{3} a_{1}^{3} a_{5}^{3}+108 a_{4}^{5} a_{1}^{4} a_{6}-27 a_{4}^{4} a_{1}^{4} a_{5}^{2}-50 a_{4}^{2} a_{1}^{2} a_{5}^{4}-192 a_{4}^{4} a_{1}^{2} a_{6}^{2} \\
& +27000 a_{6}^{2} a_{5}^{3} a_{3}-1350 a_{3}^{3} a_{1}^{3} a_{6}^{3}+38880 a_{6}^{4} a_{1} a_{5}+540 a_{6}^{3} a_{1}^{2} a_{5}^{2} \\
& -32400 a_{6}^{3} a_{5}^{2} a_{2}+27000 a_{3} a_{1}^{3} a_{6}^{4}+410 a_{6}^{2} a_{1}^{3} a_{5}^{3}-8640 a_{3}^{2} a_{2}^{3} a_{6}^{3} \\
& +43200 a_{1}^{2} a_{2}^{2} a_{6}^{4}+43200 a_{5}^{2} a_{4}^{2} a_{6}^{2}-8640 a_{4}^{3} a_{3}^{2} a_{6}^{2}-192 a_{2}^{4} a_{5}^{2} a_{6}^{2} \\
& -22500 a_{2} a_{1}^{4} a_{6}^{4}-900 a_{1} a_{5}^{4} a_{3}^{3}-128 a_{1}^{4} a_{5}^{4} a_{3}^{2}+2000 a_{1}^{2} a_{5}^{5} a_{3} \\
& -1600 a_{1}^{3} a_{5}^{5} a_{2}+2250 a_{1} a_{5}^{5} a_{2}^{2}-2500 a_{1} a_{5}^{5} a_{4}+2250 a_{4} a_{3}^{2} a_{5}^{4}+825 a_{3}^{2} a_{2}^{2} a_{5}^{4} \\
& -1600 a_{4}^{3} a_{5}^{3} a_{3}+19800 a_{4} a_{2} a_{6} a_{5}^{3} a_{3}-46656 a_{6}^{5}+2808 a_{4} a_{2}^{2} a_{3}^{3} a_{1} a_{6}^{2} \\
& +2808 a_{4}^{2} a_{2} a_{3}^{3} a_{5} a_{6}-4536 a_{4}^{2} a_{2} a_{3}^{2} a_{1}^{2} a_{6}^{2}-22896 a_{4} a_{2} a_{3}^{2} a_{6}^{2} a_{1} a_{5} \\
& +356 a_{4} a_{2}^{2} a_{3}^{2} a_{1} a_{5}^{3}-4536 a_{4} a_{2}^{2} a_{3}^{2} a_{6} a_{5}^{2}+144 a_{4} a_{2}^{3} a_{3}^{2} a_{1}^{2} a_{6}^{2} \\
& +18 a_{4} a_{2}^{3} a_{3} a_{1}^{2} a_{5}^{3}-3456 a_{4} a_{2}^{2} a_{3} a_{1} a_{6}^{3}-13040 a_{4}^{2} a_{2} a_{1}^{3} a_{5} a_{6}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -5760 a_{4}^{3} a_{2} a_{1} a_{3} a_{6}^{2}-5760 a_{4} a_{2}^{3} a_{3} a_{5} a_{6}^{2}-3456 a_{4}^{2} a_{2} a_{5} a_{3} a_{6}^{2} \\
& +1020 a_{4}^{2} a_{2} a_{1}^{4} a_{5}^{2} a_{6}-746 a_{4}^{2} a_{2} a_{1}^{2} a_{5}^{3} a_{3}-2050 a_{4} a_{2} a_{1}^{4} a_{5} a_{3} a_{6}^{2} \\
& -80 a_{4} a_{2} a_{3}^{2} a_{1}^{3} a_{5}^{3}-630 a_{4} a_{2} a_{3}^{3} a_{1}^{3} a_{6}^{2}+31968 a_{4} a_{2} a_{6}^{3} a_{1} a_{5} \\
& +8748 a_{4} a_{2} a_{6}^{2} a_{1}^{2} a_{5}^{2}+19800 a_{4} a_{2} a_{3} a_{1}^{3} a_{6}^{3}-2050 a_{4} a_{2} a_{1} a_{5}^{4} a_{3} \\
& -1584 a_{4}^{2} a_{2}^{2} a_{3}^{2} a_{6} a_{1} a_{5}-2496 a_{4}^{2} a_{2}^{3} a_{3} a_{1} a_{6}^{2}+24 a_{4}^{3} a_{2}^{2} a_{1}^{3} a_{5} a_{6} \\
& +320 a_{4}^{4} a_{2}^{2} a_{1} a_{3} a_{6}-80 a_{4}^{3} a_{2}^{2} a_{1} a_{5}^{2} a_{3}+320 a_{4}^{2} a_{2}^{4} a_{3} a_{5} a_{6}-2496 a_{4}^{3} a_{2}^{2} a_{5} a_{3} a_{6} \\
& +15264 a_{4}^{2} a_{2}^{2} a_{6}^{2} a_{1} a_{5}-5428 a_{4}^{2} a_{2}^{2} a_{6} a_{1}^{2} a_{5}^{2}+560 a_{4}^{2} a_{2}^{2} a_{3} a_{1}^{3} a_{6}^{2} \\
& -96 a_{4}^{3} a_{2}^{3} a_{6} a_{1} a_{5}-80 a_{4}^{2} a_{2}^{3} a_{3} a_{1}^{2} a_{6} a_{5}+356 a_{4}^{2} a_{2} a_{3}^{2} a_{1}^{3} a_{5} a_{6} \\
& +10152 a_{4} a_{2}^{2} a_{3} a_{1}^{2} a_{6}^{2} a_{5}-746 a_{4} a_{2}^{2} a_{3} a_{1}^{3} a_{6} a_{5}^{2}+3272 a_{4} a_{2}^{3} a_{3} a_{1} a_{6} a_{5}^{2} \\
& +3272 a_{4}^{3} a_{2} a_{1}^{2} a_{5} a_{3} a_{6}+9768 a_{4} a_{2} a_{6} a_{1}^{3} a_{5}^{3}-72 a_{4} a_{2}^{4} a_{3} a_{5}^{3} \\
& -576 a_{4} a_{2}^{4} a_{3}^{2} a_{6}^{2}-10560 a_{4} a_{2}^{3} a_{1}^{2} a_{6}^{3}+160 a_{4}^{3} a_{2} a_{1} a_{5}^{3}-10560 a_{4}^{3} a_{2} a_{5}^{2} a_{6} \\
& -900 a_{4}^{3} a_{2} a_{1}^{4} a_{6}^{2}-576 a_{4}^{5} a_{2} a_{1}^{2} a_{6}+144 a_{4}^{4} a_{2} a_{1}^{2} a_{5}^{2}-576 a_{4}^{4} a_{2} a_{3}^{2} a_{6} \\
& +144 a_{4}^{3} a_{2} a_{3}^{2} a_{5}^{2}-576 a_{4} a_{2}^{5} a_{5}^{2} a_{6}+2000 a_{4} a_{2}^{2} a_{1}^{4} a_{6}^{3}-128 a_{4}^{2} a_{2}^{4} a_{1}^{2} a_{6}^{2} \\
& +162 a_{4} a_{1}^{2} a_{3}^{4} a_{6}^{2}+24 a_{4} a_{1}^{2} a_{3}^{3} a_{5}^{3}-27540 a_{4} a_{1}^{2} a_{3}^{2} a_{6}^{3}+825 a_{4}^{2} a_{1}^{4} a_{3}^{2} a_{6}^{2} \\
& +2250 a_{4}^{2} a_{1}^{5} a_{5} a_{6}^{2}-120 a_{4}^{3} a_{1}^{3} a_{3} a_{6}^{2}+144 a_{4}^{2} a_{1}^{4} a_{5}^{3} a_{3}-1800 a_{4} a_{1}^{3} a_{6}^{3} a_{5} \\
& -1700 a_{4} a_{1}^{4} a_{6}^{2} a_{5}^{2}-3750 a_{4} a_{1}^{5} a_{3} a_{6}^{3}+160 a_{4} a_{1}^{3} a_{5}^{4} a_{3}-1600 a_{4} a_{1}^{5} a_{6} a_{5}^{3} \\
& +248 a_{4}^{3} a_{1}^{2} a_{5}^{2} a_{6}+24 a_{4}^{4} a_{1}^{2} a_{3}^{2} a_{6}-6 a_{4}^{3} a_{1}^{2} a_{3}^{2} a_{5}^{2}+144 a_{4}^{4} a_{1}^{3} a_{5} a_{6} \\
& +21384 a_{3}^{3} a_{1} a_{2} a_{6}^{3}+21384 a_{3}^{3} a_{5} a_{4} a_{6}^{2}+15552 a_{3}^{2} a_{6}^{3} a_{1} a_{5} \\
& -27540 a_{3}^{2} a_{6}^{2} a_{5}^{2} a_{2}-9720 a_{3}^{2} a_{1}^{2} a_{2}^{2} a_{6}^{3}-77760 a_{3} a_{1} a_{2} a_{6}^{4} \\
& +46656 a_{1} a_{4}^{2} a_{3} a_{6}^{3}+46656 a_{3} a_{2}^{2} a_{5} a_{6}^{3}-77760 a_{5} a_{4} a_{3} a_{6}^{3} \\
& +2250 a_{1}^{4} a_{5} a_{3} a_{6}^{3}-1800 a_{6}^{2} a_{1} a_{5}^{3} a_{2}+248 a_{1}^{2} a_{2}^{3} a_{5}^{2} a_{6}^{2}-21888 a_{1} a_{2}^{3} a_{5} a_{6}^{3} \\
& +15600 a_{1}^{3} a_{2}^{2} a_{6}^{3} a_{5}-21888 a_{5} a_{1} a_{4}^{3} a_{6}^{2}-6318 a_{1} a_{5} a_{3}^{4} a_{6}^{2} \\
& +15417 a_{1}^{2} a_{5}^{2} a_{3}^{2} a_{6}^{2}+560 a_{1}^{2} a_{5}^{4} a_{3}^{2} a_{2}+144 a_{1}^{3} a_{5}^{4} a_{3} a_{2}^{2}+2000 a_{1}^{5} a_{5}^{2} a_{3} a_{6}^{2} \\
& -900 a_{1}^{4} a_{5} a_{3}^{3} a_{6}^{2}-630 a_{1} a_{5}^{4} a_{3} a_{2}^{3}+1020 a_{1} a_{5}^{3} a_{4}^{2} a_{3}^{2}+144 a_{1} a_{5}^{3} a_{2}^{4} a_{6} \\
& +2250 a_{6} a_{1} a_{5}^{4} a_{3}-1700 a_{6} a_{1}^{2} a_{5}^{4} a_{2}-120 a_{6} a_{3} a_{2}^{3} a_{5}^{3}+15600 a_{6} a_{1} a_{4}^{2} a_{5}^{3} \\
& -9720 a_{6} a_{4}^{2} a_{3}^{2} a_{5}^{2}+10152 a_{4}^{2} a_{2} a_{6} a_{1} a_{5}^{2} a_{3}-13040 a_{4} a_{2}^{2} a_{6} a_{1} a_{5}^{3} \\
& +144 a_{4} a_{2}^{4} a_{1}^{2} a_{5}^{3} a_{6}-640 a_{4} a_{2}^{4} a_{1} a_{5} a_{6}^{2}+160 a_{4} a_{2}^{3} a_{1}^{3} a_{6}^{2} a_{5}
\end{aligned}
$$

$$
\begin{aligned}
& -72 a_{4}^{4} a_{2} a_{1}^{3} a_{3} a_{6}+18 a_{4}^{3} a_{2} a_{1}^{3} a_{3} a_{5}^{2}-640 a_{4}^{4} a_{2} a_{5} a_{1} a_{6} \\
& -12330 a_{4} a_{1}^{2} a_{6} a_{5}^{3} a_{3}-108 a_{4}^{2} a_{1}^{2} a_{3}^{3} a_{5} a_{6}+1980 a_{4} a_{1}^{3} a_{3}^{2} a_{6}^{2} a_{5} \\
& -2412 a_{4} a_{1}^{2} a_{3}^{2} a_{6} a_{5}^{2} a_{2}+16632 a_{4}^{2} a_{1}^{2} a_{5} a_{3} a_{6}^{2}-630 a_{4}^{3} a_{1}^{4} a_{5} a_{3} a_{6} \\
& -682 a_{4}^{2} a_{1}^{3} a_{6} a_{5}^{2} a_{3}-31320 a_{3} a_{1}^{2} a_{2} a_{6}^{3} a_{5}-12330 a_{3} a_{1}^{3} a_{2} a_{6}^{2} a_{5}^{2} \\
& +16632 a_{3} a_{1} a_{2}^{2} a_{6}^{2} a_{5}^{2}-31320 a_{6}^{2} a_{1} a_{4} a_{5}^{2} a_{3}+3942 a_{1}^{2} a_{5} a_{3}^{3} a_{2} a_{6}^{2} \\
& +3942 a_{1} a_{5}^{2} a_{3}^{3} a_{4} a_{6}+1020 a_{1}^{3} a_{5} a_{3}^{2} a_{2}^{2} a_{6}^{2}+560 a_{1}^{4} a_{5}^{2} a_{3}^{2} a_{4} a_{6} \\
& +160 a_{1}^{4} a_{5}^{3} a_{3} a_{2} a_{6}-4464 a_{1} a_{5} a_{3}^{2} a_{2}^{3} a_{6}^{3}-4464 a_{1} a_{5} a_{4}^{3} a_{3}^{2} a_{6} \\
& +1980 a_{6} a_{3}^{2} a_{1} a_{5}^{3} a_{2}-682 a_{6} a_{3} a_{1}^{2} a_{2}^{2} a_{5}^{3}+3125 a_{5}^{6}+16 a_{3}^{3} a_{2}^{3} a_{5}^{3} \\
& +108 a_{3}^{4} a_{2}^{3} a_{6}^{2}+16 a_{3}^{4} a_{1}^{3} a_{5}^{3}+108 a_{3}^{5} a_{1}^{3} a_{6}^{2}-27 a_{2}^{4} a_{5}^{4} a_{1}^{2}+256 a_{2}^{5} a_{1}^{2} a_{6}^{3} \\
& +5832 a_{1} a_{4}^{2} a_{3}^{3} a_{6}^{2}+768 a_{1} a_{4}^{5} a_{3} a_{6}-192 a_{1} a_{4}^{4} a_{5}^{2} a_{3}+162 a_{3}^{4} a_{2} a_{5}^{2} a_{6} \\
& +24 a_{3}^{2} a_{2}^{4} a_{5}^{2} a_{6}+16 a_{3}^{2} a_{2}^{3} a_{4}^{3} a_{6}+2250 a_{3}^{2} a_{2} a_{1}^{4} a_{6}^{3}+6912 a_{3} a_{2}^{4} a_{1} a_{6}^{3} \\
& -72 a_{3}^{4} a_{2} a_{1} a_{5}^{3}-486 a_{3}^{5} a_{2} a_{1} a_{6}^{2}+768 a_{3} a_{2}^{5} a_{5} a_{6}^{2}-1600 a_{3} a_{2}^{3} a_{1}^{3} a_{6}^{3} \\
& -4 a_{3}^{2} a_{2}^{3} a_{4}^{2} a_{5}^{2}-27 a_{3}^{4} a_{2}^{2} a_{1}^{2} a_{6}^{2}-4 a_{3}^{3} a_{2}^{2} a_{1}^{2} a_{5}^{3}+16 a_{3}^{3} a_{1}^{3} a_{4}^{3} a_{6} \\
& -4 a_{3}^{3} a_{1}^{3} a_{4}^{2} a_{5}^{2}+5832 a_{5} a_{3}^{3} a_{2}^{2} a_{6}^{2}+6912 a_{5} a_{4}^{4} a_{3} a_{6}-1024 a_{4}^{6} a_{6} \\
& +256 a_{4}^{5} a_{5}^{2}+108 a_{2}^{5} a_{5}^{4}-1024 a_{2}^{6} a_{6}^{3}+108 a_{3}^{5} a_{5}^{3}+729 a_{3}^{6} a_{6}^{2} \\
& -72 a_{3}^{3} a_{2} a_{4}^{3} a_{1} a_{6}+18 a_{3}^{3} a_{2} a_{4}^{2} a_{1} a_{5}^{2}-108 a_{3}^{3} a_{2}^{2} a_{5}^{2} a_{6} a_{1}-6 a_{3}^{2} a_{2}^{3} a_{5}^{2} a_{1}^{2} a_{6} \\
& -4 a_{3}^{2} a_{2}^{2} a_{4}^{3} a_{1}^{2} a_{6}+324 a_{3}^{4} a_{2} a_{4} a_{6} a_{1} a_{5}-72 a_{3}^{3} a_{2}^{3} a_{4} a_{5} a_{6} \\
& -192 a_{3} a_{2}^{4} a_{1}^{2} a_{5} a_{6}^{2}+24 a_{3}^{3} a_{2} a_{1}^{3} a_{6} a_{5}^{2}+a_{3}^{2} a_{2}^{2} a_{4}^{2} a_{1}^{2} a_{5}^{2}+18 a_{3}^{3} a_{2}^{2} a_{4} a_{1}^{2} a_{6} a_{5} \\
& -72 a_{3}^{4} a_{1}^{3} a_{4} a_{6} a_{5}-486 a_{4} a_{3}^{5} a_{5} a_{6}+3125 a_{1}^{6} a_{6}^{4} \\
& b_{1}=6 a_{2} \\
& b_{2}=15 a_{2}^{2}+3 a_{1} a_{3}-6 a_{4} \\
& b_{3}=20 a_{2}^{3}+15 a_{1} a_{2} a_{3}-3 a_{3}^{2}+\left(-a_{1}^{2}-22 a_{2}\right) a_{4}-11 a_{1} a_{5}+66 a_{6} \\
& b_{4}=15 a_{2}^{4}+30 a_{1} a_{2}^{2} a_{3}+\left(3 a_{1}^{2}-12 a_{2}\right) a_{3}^{2}+\left(-3 a_{1}^{2} a_{2}-28 a_{2}^{2}-13 a_{1} a_{2}\right) a_{4} \\
& +a_{4}^{2}+\left(-3 a_{1}^{3}-47 a_{1} a_{2}+36 a_{3}\right) a_{5}+\left(58 a_{1}^{2}+138 a_{2}\right) a_{6} \\
& b_{5}=6 a_{2}^{5}+30 a_{1} a_{2}^{3} a_{3}+12 a_{1}^{2} a_{2} a_{3}^{2}-18 a_{2}^{2} a_{3}^{2}-6 a_{1} a_{3}^{3}-2 a_{1}^{2} a_{2}^{2} a_{4} \\
& -12 a_{2}^{3} a_{4}-2 a_{1}^{3} a_{3} a_{4}-36 a_{1} a_{2} a_{3} a_{4}+12 a_{3}^{2} a_{4}-4 a_{1}^{2} a_{4}^{2}-12 a_{2} a_{4}^{2} \\
& -13 a_{1}^{3} a_{2} a_{5}-78 a_{1} a_{2}^{2} a_{5}+3 a_{1}^{2} a_{3} a_{5}+96 a_{2} a_{3} a_{5}+63 a_{1} a_{4} a_{5}
\end{aligned}
$$

$$
\begin{aligned}
& -123 a_{5}^{2}+11 a_{1}^{4} a_{6}+156 a_{1}^{2} a_{2} a_{6}+84 a_{2}^{2} a_{6}-57 a_{1} a_{3} a_{6}+114 a_{4} a_{6} \\
& b_{6}=a_{2}^{6}+15 a_{1} a_{2}^{4} a_{3}+18 a_{1}^{2} a_{2}^{2} a_{3}^{2}-12 a_{2}^{3} a_{3}^{2}+a_{1}^{3} a_{3}^{3}-18 a_{1} a_{2} a_{3}^{3}+3 a_{3}^{4} \\
& +2 a_{1}^{2} a_{2}^{3} a_{4}+2 a_{2}^{4} a_{4}-4 a_{1}^{3} a_{2} a_{3} a_{4}-30 a_{1} a_{2}^{2} a_{3} a_{4}-6 a_{1}^{2} a_{3}^{2} a_{4} \\
& +20 a_{2} a_{3}^{2} a_{4}-a_{1}^{4} a_{4}^{2}-20 a_{1}^{2} a_{2} a_{4}^{2}-26 a_{2}^{2} a_{4}^{2}+10 a_{1} a_{3} a_{4}^{2}+24 a_{4}^{3} \\
& -22 a_{1}^{3} a_{2}^{2} a_{5}-62 a_{1} a_{2}^{3} a_{5}-2 a_{1}^{4} a_{3} a_{5}+88 a_{2}^{2} a_{3} a_{5}+46 a_{1} a_{3}^{2} a_{5} \\
& +32 a_{1}^{3} a_{4} a_{5}+140 a_{1} a_{2} a_{4} a_{5}-138 a_{3} a_{4} a_{5}-111 a_{1}^{2} a_{5}^{2}-94 a_{2} a_{5}^{2} \\
& +33 a_{1}^{4} a_{2} a_{6}+156 a_{1}^{2} a_{2}^{2} a_{6}+20 a_{2}^{3} a_{6}-3 a_{1}^{3} a_{3} a_{6}-228 a_{1} a_{2} a_{3} a_{6} \\
& +138 a_{3}^{2} a_{6}+113 a_{1}^{2} a_{4} a_{6}+88 a_{2} a_{4} a_{6}-43 a_{1} a_{5} a_{6}+129 a_{6}^{2} \\
& b_{7}=3 a_{1} a_{2}^{5} a_{3}+12 a_{1}^{2} a_{2}^{3} a_{3}^{2}-3 a_{2}^{4} a_{3}^{2}+3 a_{1}^{3} a_{2} a_{3}^{3}-18 a_{1} a_{2}^{2} a_{3}^{3}-3 a_{1}^{2} a_{3}^{4} \\
& +6 a_{2} a_{3}^{4}+3 a_{1}^{2} a_{2}^{4} a_{4}+2 a_{2}^{5} a_{4}-4 a_{1} a_{2}^{3} a_{3} a_{4}-a_{1}^{4} a_{3}^{2} a_{4} \\
& -14 a_{1}^{2} a_{2} a_{3}^{2} a_{4}+4 a_{2}^{2} a_{3}^{2} a_{4}+14 a_{1} a_{3}^{3} a_{4}-4 a_{1}^{4} a_{2} a_{4}^{2}-28 a_{1}^{2} a_{2}^{2} a_{4}^{2} \\
& -12 a_{2}^{3} a_{4}^{2}-2 a_{1}^{3} a_{3} a_{4}^{2}+6 a_{1} a_{2} a_{3} a_{4}^{2}-2 a_{3}^{2} a_{4}^{2}+30 a_{1}^{2} a_{4}^{3}+16 a_{2} a_{4}^{3} \\
& -18 a_{1}^{3} a_{2}^{3} a_{5}-23 a_{1} a_{2}^{4} a_{5}-8 a_{1}^{4} a_{2} a_{3} a_{5}-10 a_{1}^{2} a_{2}^{2} a_{3} a_{5}+32 a_{2}^{3} a_{3} a_{5} \\
& +17 a_{1}^{3} a_{3}^{2} a_{5}+82 a_{1} a_{2} a_{3}^{2} a_{5}-36 a_{3}^{3} a_{5}+4 a_{1}^{5} a_{4} a_{5}+72 a_{1}^{3} a_{2} a_{4} a_{5} \\
& +90 a_{1} a_{2}^{2} a_{4} a_{5}-72 a_{1}^{2} a_{3} a_{4} a_{5}-82 a_{2} a_{3} a_{4} a_{5}-76 a_{1} a_{4}^{2} a_{5} \\
& -36 a_{1}^{4} a_{5}^{2}-76 a_{1}^{2} a_{2} a_{5}^{2}-44 a_{2}^{2} a_{5}^{2}+10 a_{1} a_{3} a_{5}^{2}+94 a_{4} a_{5}^{2} \\
& +38 a_{1}^{4} a_{2}^{2} a_{6}+80 a_{1}^{2} a_{2}^{3} a_{6}+10 a_{2}^{4} a_{6}+4 a_{1}^{5} a_{3} a_{6}-60 a_{1}^{3} a_{2} a_{3} a_{6} \\
& -230 a_{1} a_{2}^{2} a_{3} a_{6}+52 a_{1}^{2} a_{3}^{2} a_{6}+186 a_{2} a_{3}^{2} a_{6}+48 a_{1}^{4} a_{4} a_{6} \\
& +76 a_{1}^{2} a_{2} a_{4} a_{6}-36 a_{2}^{2} a_{4} a_{6}+34 a_{1} a_{3} a_{4} a_{6}+80 a_{4}^{2} a_{6}-88 a_{1}^{3} a_{5} a_{6} \\
& +184 a_{1} a_{2} a_{5} a_{6}-342 a_{3} a_{5} a_{6}+74 a_{1}^{2} a_{6}^{2}+132 a_{2} a_{6}^{2} \\
& b_{8}=3 a_{1}^{2} a_{2}^{4} a_{3}^{2}+3 a_{1}^{3} a_{2}^{2} a_{3}^{3}-6 a_{1} a_{2}^{3} a_{3}^{3}-6 a_{1}^{2} a_{2} a_{3}^{4}+3 a_{2}^{2} a_{3}^{4}+3 a_{1} a_{3}^{5} \\
& +a_{1}^{2} a_{2}^{5} a_{4}+4 a_{1}^{3} a_{2}^{3} a_{3} a_{4}+3 a_{1} a_{2}^{4} a_{3} a_{4}-a_{1}^{4} a_{2} a_{3}^{2} a_{4}-10 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4} \\
& -4 a_{2}^{3} a_{3}^{2} a_{4}+a_{1}^{3} a_{3}^{3} a_{4}+12 a_{1} a_{2} a_{3}^{3} a_{4}-6 a_{3}^{4} a_{4}-5 a_{1}^{4} a_{2}^{2} a_{4}^{2}-12 a_{1}^{2} a_{2}^{3} a_{4}^{2} \\
& +a_{2}^{4} a_{4}^{2}-a_{1}^{5} a_{3} a_{4}^{2}-12 a_{1}^{3} a_{2} a_{3} a_{4}^{2}-2 a_{1} a_{2}^{2} a_{3} a_{4}^{2}+13 a_{1}^{2} a_{3}^{2} a_{4}^{2} \\
& +12 a_{2} a_{3}^{2} a_{4}^{2}+10 a_{1}^{4} a_{4}^{3}+28 a_{1}^{2} a_{2} a_{4}^{3}-8 a_{2}^{2} a_{4}^{3}-24 a_{1} a_{3} a_{4}^{3}+16 a_{4}^{4} \\
& -7 a_{1}^{3} a_{2}^{4} a_{5}-3 a_{1} a_{2}^{5} a_{5}-11 a_{1}^{4} a_{2}^{2} a_{3} a_{5}-8 a_{1}^{2} a_{2}^{3} a_{3} a_{5}+4 a_{2}^{4} a_{3} a_{5} \\
& +a_{1}^{5} a_{3}^{2} a_{5}+29 a_{1}^{3} a_{2} a_{3}^{2} a_{5}+42 a_{1} a_{2}^{2} a_{3}^{2} a_{5}-15 a_{1}^{2} a_{3}^{3} a_{5}-24 a_{2} a_{3}^{3} a_{5}
\end{aligned}
$$

$$
\begin{aligned}
& +9 a_{1}^{5} a_{2} a_{4} a_{5}+48 a_{1}^{3} a_{2}^{2} a_{4} a_{5}+12 a_{1} a_{2}^{3} a_{4} a_{5}-9 a_{1}^{4} a_{3} a_{4} a_{5} \\
& -33 a_{1}^{2} a_{2} a_{3} a_{4} a_{5}-6 a_{2}^{2} a_{3} a_{4} a_{5}-9 a_{1} a_{3}^{2} a_{4} a_{5} \\
& b_{9}=a_{1}^{3} a_{2}^{3} a_{3}^{3}-3 a_{1}^{2} a_{2}^{2} a_{3}^{4}+3 a_{1} a_{2} a_{3}^{5}-a_{3}^{6}+2 a_{1}^{3} a_{2}^{4} a_{3} a_{4}+a_{1}^{4} a_{2}^{2} a_{3}^{2} a_{4} \\
& -2 a_{1}^{2} a_{2}^{3} a_{3}^{2} a_{4}-2 a_{1}^{3} a_{2} a_{3}^{3} a_{4}-2 a_{1} a_{2}^{2} a_{3}^{3} a_{4}+a_{1}^{2} a_{3}^{4} a_{4}+2 a_{2} a_{3}^{4} a_{4} \\
& -2 a_{1}^{4} a_{2}^{3} a_{4}^{2}-3 a_{1}^{5} a_{2} a_{3} a_{4}^{2}-10 a_{1}^{3} a_{2}^{2} a_{3} a_{4}^{2}+2 a_{1} a_{2}^{3} a_{3} a_{4}^{2}+3 a_{1}^{4} a_{3}^{2} a_{4}^{2} \\
& +22 a_{1}^{2} a_{2} a_{3}^{2} a_{4}^{2}-2 a_{2}^{2} a_{3}^{2} a_{4}^{2}-10 a_{1} a_{3}^{3} a_{4}^{2}+a_{1}^{6} a_{4}^{3}+10 a_{1}^{4} a_{2} a_{4}^{3} \\
& -2 a_{1}^{2} a_{2}^{2} a_{4}^{3}-10 a_{1}^{3} a_{3} a_{4}^{3}-8 a_{1} a_{2} a_{3} a_{4}^{3}+8 a_{3}^{2} a_{4}^{3}+8 a_{1}^{2} a_{4}^{4}-a_{1}^{3} a_{2}^{5} a_{5} \\
& -6 a_{1}^{4} a_{2}^{3} a_{3} a_{5}-a_{1}^{2} a_{2}^{4} a_{3} a_{5}+a_{1}^{5} a_{2} a_{3}^{2} a_{5}+15 a_{1}^{3} a_{2}^{2} a_{3}^{2} a_{5}+6 a_{1} a_{2}^{3} a_{3}^{2} a_{5} \\
& -a_{1}^{4} a_{3}^{3} a_{5}-10 a_{1}^{2} a_{2} a_{3}^{3} a_{5}-4 a_{2}^{2} a_{3}^{3} a_{5}+a_{1} a_{3}^{4} a_{5}+6 a_{1}^{5} a_{2}^{2} a_{4} a_{5} \\
& +8 a_{1}^{3} a_{2}^{3} a_{4} a_{5}-a_{1} a_{2}^{4} a_{4} a_{5}+2 a_{1}^{4} a_{2} a_{3} a_{4} a_{5}-10 a_{1}^{2} a_{2}^{2} a_{3} a_{4} a_{5} \\
& +2 a_{2}^{3} a_{3} a_{4} a_{5}-7 a_{1}^{3} a_{3}^{2} a_{4} a_{5}+10 a_{1} a_{2} a_{3}^{2} a_{4} a_{5}-6 a_{3}^{3} a_{4} a_{5}-13 a_{1}^{5} a_{4}^{2} a_{5} \\
& -6 a_{1}^{3} a_{2} a_{4}^{2} a_{5}+4 a_{1} a_{2}^{2} a_{4}^{2} a_{5}-10 a_{1}^{2} a_{3} a_{4}^{2} a_{5}-8 a_{2} a_{3} a_{4}^{2} a_{5} \\
& -4 a_{1}^{6} a_{2} a_{5}^{3}-4 a_{1}^{4} a_{2}^{2} a_{5}^{2}+2 a_{1}^{2} a_{2}^{3} a_{5}^{2}-a_{2}^{4} a_{5}^{2}+4 a_{1}^{5} a_{3} a_{5}^{2} \\
& -11 a_{1}^{3} a_{2} a_{3} a_{5}^{2}-20 a_{1} a_{2}^{2} a_{3} a_{5}^{2}+14 a_{1}^{2} a_{3}^{2} a_{5}^{2}+16 a_{2} a_{3}^{2} a_{5}^{2}+19 a_{1}^{4} a_{4} a_{5}^{2} \\
& +6 a_{1}^{2} a_{2} a_{4} a_{5}^{2}+6 a_{2}^{2} a_{4} a_{5}^{2}+18 a_{1} a_{3} a_{4} a_{5}^{2}-8 a_{4}^{2} a_{5}^{2}-7 a_{1}^{3} a_{5}^{3} \\
& +6 a_{1} a_{2} a_{5}^{3}-14 a_{3} a_{5}^{3}+7 a_{1}^{4} a_{2}^{4} a_{6}+4 a_{1}^{2} a_{2}^{5} a_{6}-2 a_{1}^{5} a_{2}^{2} a_{3} a_{6} \\
& -28 a_{1}^{3} a_{2}^{3} a_{3} a_{6}-9 a_{1} a_{2}^{4} a_{3} a_{6}+a_{1}^{6} a_{3}^{2} a_{6}+42 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{6}+6 a_{2}^{3} a_{3}^{2} a_{6} \\
& +5 a_{1}^{3} a_{3}^{3} a_{6}-30 a_{1} a_{2} a_{3}^{3} a_{6}+12 a_{3}^{4} a_{6}+10 a_{1}^{6} a_{2} a_{4} a_{6}-4 a_{1}^{4} a_{2}^{2} a_{4} a_{6} \\
& -20 a_{1}^{2} a_{2}^{3} a_{4} a_{6}+2 a_{2}^{4} a_{4} a_{6}-2 a_{1}^{5} a_{3} a_{4} a_{6}-10 a_{1}^{3} a_{2} a_{3} a_{4} a_{6} \\
& +30 a_{1} a_{2}^{2} a_{3} a_{4} a_{6}+26 a_{1}^{2} a_{3}^{2} a_{4} a_{6}-4 a_{2} a_{3}^{2} a_{4} a_{6}+14 a_{1}^{4} a_{4}^{2} a_{6} \\
& +36 a_{1}^{2} a_{2} a_{4}^{2} a_{6}-16 a_{2}^{2} a_{4}^{2} a_{6}-56 a_{1} a_{3} a_{4}^{2} a_{6}+32 a_{4}^{3} a_{6}-4 a_{1}^{7} a_{5} a_{6} \\
& -6 a_{1}^{5} a_{2} a_{5} a_{6}+44 a_{1}^{3} a_{2}^{2} a_{5} a_{6}+16 a_{1} a_{2}^{3} a_{5} a_{6}-14 a_{1}^{4} a_{3} a_{5} a_{6} \\
& -74 a_{1}^{2} a_{2} a_{3} a_{5} a_{6}-26 a_{2}^{2} a_{3} a_{5} a_{6}+4 a_{1} a_{3}^{2} a_{5} a_{6}-36 a_{1}^{3} a_{4} a_{5} a_{6} \\
& -24 a_{1} a_{2} a_{4} a_{5} a_{6}+24 a_{3} a_{4} a_{5} a_{6}+30 a_{1}^{2} a_{5}^{2} a_{6}+20 a_{2} a_{5}^{2} a_{6}-6 a_{1}^{6} a_{6}^{2} \\
& +48 a_{1}^{4} a_{2} a_{6}^{2}-26 a_{1}^{2} a_{2}^{2} a_{6}^{2}+4 a_{2}^{3} a_{6}^{2}-52 a_{1}^{3} a_{3} a_{6}^{2}+72 a_{1} a_{2} a_{3} a_{6}^{2} \\
& +48 a_{3}^{2} a_{6}^{2}+72 a_{1}^{2} a_{4} a_{6}^{2}-16 a_{2} a_{4} a_{6}^{2}-32 a_{1} a_{5} a_{6}^{2}+64 a_{6}^{3} \\
& b_{10}=a_{1}^{4} a_{2}^{3} a_{3}^{2} a_{4}-3 a_{1}^{3} a_{2}^{2} a_{3}^{3} a_{4}+3 a_{1}^{2} a_{2} a_{3}^{4} a_{4}-a_{1} a_{3}^{5} a_{4}-2 a_{1}^{5} a_{2}^{2} a_{3} a_{4}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +4 a_{1}^{4} a_{2} a_{3}^{2} a_{4}^{2}+a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2}-2 a_{1}^{3} a_{3}^{3} a_{4}^{2}-2 a_{1} a_{2} a_{3}^{3} a_{4}^{2}+a_{3}^{4} a_{4}^{2}+a_{1}^{6} a_{2} a_{4}^{3} \\
& -a_{1}^{5} a_{3} a_{4}^{3}-2 a_{1}^{3} a_{2} a_{3} a_{4}^{3}+2 a_{1}^{2} a_{3}^{2} a_{4}^{3}+a_{1}^{4} a_{4}^{4}-a_{1}^{4} a_{2}^{4} a_{3} a_{5}+3 a_{1}^{3} a_{2}^{3} a_{3}^{2} a_{5} \\
& -3 a_{1}^{2} a_{2}^{2} a_{3}^{3} a_{5}+a_{1} a_{2} a_{3}^{4} a_{5}+a_{1}^{5} a_{2}^{3} a_{4} a_{5}+a_{1}^{6} a_{2} a_{3} a_{4} a_{5}-a_{1}^{4} a_{2}^{2} a_{3} a_{4} a_{5} \\
& -a_{1}^{2} a_{2}^{3} a_{3} a_{4} a_{5}-a_{1}^{5} a_{3}^{2} a_{4} a_{5}+a_{1}^{3} a_{2} a_{3}^{2} a_{4} a_{5}+3 a_{1} a_{2}^{2} a_{3}^{2} a_{4} a_{5}-a_{1}^{2} a_{3}^{3} a_{4} a_{5} \\
& -2 a_{2} a_{3}^{3} a_{4} a_{5}-a_{1}^{7} a_{4}^{2} a_{5}-a_{1}^{5} a_{2} a_{4}^{2} a_{5}+a_{1}^{3} a_{2}^{2} a_{4}^{2} a_{5}-a_{1}^{4} a_{3} a_{4}^{2} a_{5} \\
& -2 a_{1}^{2} a_{2} a_{3} a_{4}^{2} a_{5}-a_{1}^{6} a_{2}^{2} a_{5}^{2}+a_{1}^{4} a_{2}^{3} a_{5}^{2}+a_{1}^{5} a_{2} a_{3} a_{5}^{2}-5 a_{1}^{3} a_{2}^{2} a_{3} a_{5}^{2} \\
& -a_{1} a_{2}^{3} a_{3} a_{5}^{2}+5 a_{1}^{2} a_{2} a_{3}^{2} a_{5}^{2}+a_{2}^{2} a_{3}^{2} a_{5}^{2}-a_{1} a_{3}^{3} a_{5}^{2}+2 a_{1}^{6} a_{4} a_{5}^{2} \\
& -a_{1}^{4} a_{2} a_{4} a_{5}^{2}+2 a_{1}^{2} a_{2}^{2} a_{4} a_{5}^{2}+5 a_{1}^{3} a_{3} a_{4} a_{5}^{2}-2 a_{1} a_{2} a_{3} a_{4} a_{5}^{2}+2 a_{3}^{2} a_{4} a_{5}^{2} \\
& -2 a_{1}^{2} a_{4}^{2} a_{5}^{2}-a_{1}^{5} a_{5}^{3}+a_{1}^{3} a_{2} a_{5}^{3}+a_{1} a_{2}^{2} a_{5}^{3}-3 a_{1}^{2} a_{3} a_{5}^{3}-2 a_{2} a_{3} a_{5}^{3} \\
& +a_{5}^{4}+a_{1}^{4} a_{2}^{5} a_{6}-a_{1}^{5} a_{2}^{3} a_{3} a_{6}-3 a_{1}^{3} a_{2}^{4} a_{3} a_{6}+3 a_{1}^{4} a_{2}^{2} a_{3}^{2} a_{6} \\
& +3 a_{1}^{2} a_{2}^{3} a_{3}^{2} a_{6}-3 a_{1}^{3} a_{2} a_{5}^{3} a_{6}-a_{1} a_{2}^{2} a_{3}^{3} a_{6}+a_{1}^{2} a_{3}^{4} a_{6}+3 a_{1}^{6} a_{2}^{2} a_{4} a_{6} \\
& -6 a_{1}^{4} a_{2}^{3} a_{4} a_{6}+a_{1}^{2} a_{2}^{4} a_{4} a_{6}+a_{1}^{7} a_{3} a_{4} a_{6}-10 a_{1}^{5} a_{2} a_{3} a_{4} a_{6} \\
& +15 a_{1}^{3} a_{2}^{2} a_{3} a_{4} a_{6}-2 a_{1} a_{2}^{3} a_{3} a_{4} a_{6}+10 a_{1}^{4} a_{3}^{2} a_{4} a_{6}-14 a_{1}^{2} a_{2} a_{3}^{2} a_{4} a_{6} \\
& +2 a_{2}^{2} a_{3}^{2} a_{4} a_{6}+8 a_{1} a_{3}^{3} a_{4} a_{6}+10 a_{1}^{4} a_{2} a_{4}^{2} a_{6}-6 a_{1}^{2} a_{2}^{2} a_{4}^{2} a_{6} \\
& -16 a_{1}^{3} a_{3} a_{4}^{2} a_{6}+8 a_{1} a_{2} a_{3} a_{4}^{2} a_{6} \\
& c_{1}=3 a_{2} \\
& c_{2}=3 a_{2}^{2}+3 a_{1} a_{3}-6 a_{4} \\
& c_{3}=a_{2}^{3}+6 a_{1} a_{2} a_{3}+3 a_{3}^{2}+3 a_{1}^{2} a_{4}-20 a_{2} a_{4}-7 a_{1} a_{5}+42 a_{6} \\
& c_{4}=3 a_{1} a_{2}^{2} a_{3}+\left(3 a_{1}^{2}+6 a_{2}\right) a_{3}^{2}+\left(6 a_{1}^{2}-22 a_{2}\right) a_{2} a_{4}-10 a_{1} a_{3} a_{4}+7 a_{4}^{2} \\
& +\left(3 a_{1}^{3}-26 a_{1} a_{2}+9 a_{3}\right) a_{5}+\left(-8 a_{1}^{2}+120 a_{2}\right) a_{6} \\
& c_{5}=\left(3 a_{1}^{2}+3 a_{2}\right) a_{2} a_{3}^{2}+6 a_{1} a_{3}^{3}+\left(3 a_{1}^{2}-8 a_{2}\right) a_{2}^{2} a_{4} \\
& +\left(6 a_{1}^{3}-24 a_{1} a_{2}-12 a_{3}\right) a_{3} a_{4}+\left(-12 a_{1}^{2}+35 a_{2}\right) a_{4}^{2}+6 a_{1}^{3} a_{2} a_{5} \\
& -31 a_{1} a_{2}^{2} a_{5}+\left(-13 a_{1}^{2}+15 a_{2}\right) a_{3} a_{5}+23 a_{1} a_{4} a_{5}+21 a_{5}^{2} \\
& +\left(3 a_{1}^{4}+-32 a_{1}^{2} a_{2}+126 a_{2}^{2}+111 a_{1} a_{3}-222 a_{4}\right) a_{6} \\
& c_{6}=a_{1}^{3} a_{3}^{3}+6 a_{1} a_{2} a_{3}^{3}+3 a_{3}^{4}+6 a_{1}^{3} a_{2} a_{3} a_{4}-14 a_{1} a_{2}^{2} a_{3} a_{4}+4 a_{1}^{2} a_{5}^{2} a_{4} \\
& -28 a_{2} a_{3}^{2} a_{4}+3 a_{1}^{4} a_{4}^{2}-28 a_{1}^{2} a_{2} a_{4}^{2}+50 a_{2}^{2} a_{4}^{2}-5 a_{1} a_{3} a_{4}^{2}+8 a_{4}^{3} \\
& +3 a_{1}^{3} a_{2}^{2} a_{5}-12 a_{1} a_{2}^{3} a_{5}+6 a_{1}^{4} a_{3} a_{5}-36 a_{1}^{2} a_{2} a_{3} a_{5}+4 a_{2}^{2} a_{3} a_{5}
\end{aligned}
$$

$$
\begin{aligned}
& +a_{1} a_{3}^{2} a_{5}-26 a_{1}^{3} a_{4} a_{5}+103 a_{1} a_{2} a_{4} a_{5}-21 a_{3} a_{4} a_{5}+23 a_{1}^{2} a_{5}^{2}+17 a_{2} a_{5}^{2} \\
& +6 a_{1}^{4} a_{2} a_{6}-40 a_{1}^{2} a_{2}^{2} a_{6}+56 a_{2}^{3} a_{6}-16 a_{1}^{3} a_{3} a_{6}+225 a_{1} a_{2} a_{3} a_{6} \\
& +57 a_{3}^{2} a_{6}+91 a_{1}^{2} a_{4} a_{6}-602 a_{2} a_{4} a_{6}-151 a_{1} a_{5} a_{6}+453 a_{6}^{2} \\
& c_{7}=3 a_{1}^{2} a_{3}^{4}+3 a_{2} a_{3}^{4}+3 a_{1}^{4} a_{3}^{2} a_{4}+2 a_{1}^{2} a_{2} a_{3}^{2} a_{4}-16 a_{2}^{2} a_{3}^{2} a_{4}-8 a_{1} a_{3}^{3} a_{4} \\
& +3 a_{1}^{4} a_{2} a_{4}^{2}-16 a_{1}^{2} a_{2}^{2} a_{4}^{2}+22 a_{2}^{3} a_{4}^{2}-8 a_{1}^{3} a_{3} a_{4}^{2}+6 a_{1} a_{2} a_{3} a_{4}^{2} \\
& +5 a_{3}^{2} a_{4}^{2}+5 a_{1}^{2} a_{4}^{3}-4 a_{2} a_{4}^{3}+6 a_{1}^{4} a_{2} a_{3} a_{5}-23 a_{1}^{2} a_{2}^{2} a_{3} a_{5}-2 a_{2}^{3} a_{3} a_{5} \\
& +a_{1}^{3} a_{3}^{2} a_{5}-28 a_{1} a_{2} a_{3}^{2} a_{5}+9 a_{3}^{3} a_{5}+6 a_{1}^{5} a_{4} a_{5}-66 a_{1}^{3} a_{2} a_{4} a_{5} \\
& +144 a_{1} a_{2}^{2} a_{4} a_{5}+12 a_{1}^{2} a_{3} a_{4} a_{5}-20 a_{2} a_{3} a_{4} a_{5}+16 a_{1} a_{4}^{2} a_{5} \\
& -14 a_{1}^{4} a_{5}^{2}+91 a_{1}^{2} a_{2} a_{5}^{2}-49 a_{2}^{2} a_{5}^{2}+20 a_{1} a_{3} a_{5}^{2}-109 a_{4} a_{5}^{2} \\
& +3 a_{1}^{4} a_{2}^{2} a_{6}-16 a_{1}^{2} a_{2}^{3} a_{6}+8 a_{2}^{4} a_{6}+6 a_{1}^{5} a_{3} a_{6}-48 a_{1}^{3} a_{2} a_{3} a_{6} \\
& +134 a_{1} a_{2}^{2} a_{3} a_{6}+95 a_{1}^{2} a_{3}^{2} a_{6}+120 a_{2} a_{3}^{2} a_{6}-28 a_{1}^{4} a_{4} a_{6} \\
& +263 a_{1}^{2} a_{2} a_{4} a_{6}-588 a_{2}^{2} a_{4} a_{6}-409 a_{1} a_{3} a_{4} a_{6}+340 a_{4}^{2} a_{6} \\
& +88 a_{1}^{3} a_{5} a_{6}-529 a_{1} a_{2} a_{5} a_{6}+207 a_{3} a_{5} a_{6}-149 a_{1}^{2} a_{6}^{2}+1173 a_{2} a_{6}^{2} \\
& c_{8}=3 a_{1} a_{3}^{5}+8 a_{1}^{3} a_{3}^{3} a_{4}-12 a_{1} a_{2} a_{3}^{3} a_{4}-6 a_{3}^{4} a_{4}+3 a_{1}^{5} a_{3} a_{4}^{2}-12 a_{1}^{3} a_{2} a_{3} a_{4}^{2} \\
& +12 a_{1} a_{2}^{2} a_{3} a_{4}^{2}-23 a_{1}^{2} a_{3}^{2} a_{4}^{2}+28 a_{2} a_{3}^{2} a_{4}^{2}-6 a_{1}^{4} a_{4}^{3}+28 a_{1}^{2} a_{2} a_{4}^{3} \\
& -40 a_{2}^{2} a_{4}^{3}+20 a_{1} a_{3} a_{4}^{3}-17 a_{4}^{4}+3 a_{1}^{5} a_{3}^{2} a_{5}-4 a_{1}^{3} a_{2} a_{3}^{2} a_{5}-28 a_{1} a_{2}^{2} a_{3}^{2} a_{5} \\
& -5 a_{1}^{2} a_{3}^{3} a_{5}+6 a_{1}^{5} a_{2} a_{4} a_{5}-40 a_{1}^{3} a_{2}^{2} a_{4} a_{5}+64 a_{1} a_{2}^{3} a_{4} a_{5}-20 a_{1}^{4} a_{3} a_{4} a_{5} \\
& +38 a_{1}^{2} a_{2} a_{3} a_{4} a_{5}+32 a_{2}^{2} a_{3} a_{4} a_{5}-2 a_{1} a_{3}^{2} a_{4} a_{5}+22 a_{1}^{3} a_{4}^{2} a_{5} \\
& -24 a_{1} a_{2} a_{4}^{2} a_{5}+42 a_{3} a_{4}^{2} a_{5}+3 a_{1}^{6} a_{5}^{2}-38 a_{1}^{4} a_{2} a_{5}^{2}+122 a_{1}^{2} a_{2}^{2} a_{5}^{2} \\
& -72 a_{2}^{3} a_{5}^{2}+27 a_{1}^{3} a_{3} a_{5}^{2}-2 a_{1} a_{2} a_{3} a_{5}^{2}+9 a_{3}^{2} a_{5}^{2}+18 a_{1}^{2} a_{4} a_{5}^{2} \\
& -236 a_{2} a_{4} a_{5}^{2}-48 a_{1} a_{5}^{3}+6 a_{1}^{5} a_{2} a_{3} a_{6}-32 a_{1}^{3} a_{2}^{2} a_{3} a_{6}+16 a_{1} a_{2}^{3} a_{3} a_{6} \\
& -2 a_{1}^{4} a_{3}^{2} a_{6}+74 a_{1}^{2} a_{2} a_{3}^{2} a_{6}+72 a_{2}^{2} a_{3}^{2} a_{6}+138 a_{1} a_{3}^{3} a_{6}+6 a_{1}^{6} a_{4} a_{6} \\
& -76 a_{1}^{4} a_{2} a_{4} a_{6}+272 a_{1}^{2} a_{2}^{2} a_{4} a_{6}-224 a_{2}^{3} a_{4} a_{6}+146 a_{1}^{3} a_{3} a_{4} a_{6} \\
& -768 a_{1} a_{2} a_{3} a_{4} a_{6}-276 a_{3}^{2} a_{4} a_{6}-220 a_{1}^{2} a_{4}^{2} a_{6}+920 a_{2} a_{4}^{2} a_{6} \\
& -30 a_{1}^{5} a_{5} a_{6}+312 a_{1}^{3} a_{2} a_{5} a_{6}-768 a_{1} a_{2}^{2} a_{5} a_{6}-370 a_{1}^{2} a_{3} a_{5} a_{6} \\
& +648 a_{2} a_{3} a_{5} a_{6}+380 a_{1} a_{4} a_{5} a_{6}+288 a_{5}^{2} a_{6}+22 a_{1}^{4} a_{6}^{2}-344 a_{1}^{2} a_{2} a_{6}^{2} \\
& c_{9}=a_{3}^{6}+7 a_{1}^{2} a_{3}^{4} a_{4}-8 a_{2} a_{3}^{4} a_{4}+7 a_{1}^{4} a_{3}^{2} a_{4}^{2}-25 a_{1}^{2} a_{2} a_{3}^{2} a_{4}^{2}+24 a_{2}^{2} a_{3}^{2} a_{4}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -14 a_{1} a_{3}^{3} a_{4}^{2}+a_{1}^{6} a_{4}^{3}-8 a_{1}^{4} a_{2} a_{4}^{3}+24 a_{1}^{2} a_{2}^{2} a_{4}^{3}-28 a_{2}^{3} a_{4}^{3}-14 a_{1}^{3} a_{3} a_{4}^{3} \\
& +30 a_{1} a_{2} a_{3} a_{4}^{3}+14 a_{3}^{2} a_{4}^{3}+14 a_{1}^{2} a_{4}^{4}-39 a_{2} a_{4}^{4}+7 a_{1}^{4} a_{3}^{3} a_{5}-23 a_{1}^{2} a_{2} a_{3}^{3} a_{5} \\
& +8 a_{2}^{2} a_{3}^{3} a_{5}-a_{1} a_{3}^{4} a_{5}+6 a_{1}^{6} a_{3} a_{4} a_{5}-34 a_{1}^{4} a_{2} a_{3} a_{4} a_{5}+34 a_{1}^{2} a_{2}^{2} a_{3} a_{4} a_{5} \\
& +30 a_{2}^{3} a_{3} a_{4} a_{5}-39 a_{1}^{3} a_{3}^{2} a_{4} a_{5}+77 a_{1} a_{2} a_{3}^{2} a_{4} a_{5}-21 a_{3}^{3} a_{4} a_{5}-19 a_{1}^{5} a_{4}^{2} a_{5} \\
& +102 a_{1}^{3} a_{2} a_{4}^{2} a_{5}-134 a_{1} a_{2}^{2} a_{4}^{2} a_{5}+37 a_{1}^{2} a_{3} a_{4}^{2} a_{5}+88 a_{2} a_{3} a_{4}^{2} a_{5} \\
& -46 a_{1} a_{4}^{3} a_{5}+3 a_{1}^{6} a_{2} a_{5}^{2}-24 a_{1}^{4} a_{2}^{2} a_{5}^{2}+54 a_{1}^{2} a_{2}^{3} a_{5}^{2}-26 a_{2}^{4} a_{5}^{2} \\
& -12 a_{1}^{5} a_{3} a_{5}^{2}+58 a_{1}^{3} a_{2} a_{3} a_{5}^{2}-27 a_{1} a_{2}^{2} a_{3} a_{5}^{2}+42 a_{1}^{2} a_{3}^{2} a_{5}^{2}-22 a_{2} a_{3}^{2} a_{5}^{2} \\
& +37 a_{1}^{4} a_{4} a_{5}^{2}-68 a_{1}^{2} a_{2} a_{4} a_{5}^{2}-128 a_{2}^{2} a_{4} a_{5}^{2}-136 a_{1} a_{3} a_{4} a_{5}^{2}+144 a_{4}^{2} a_{5}^{2} \\
& -35 a_{1}^{3} a_{5}^{3}+14 a_{1} a_{2} a_{5}^{3}-49 a_{3} a_{5}^{3}+3 a_{1}^{6} a_{3}^{2} a_{6}-10 a_{1}^{4} a_{2} a_{3}^{2} a_{6} \\
& -22 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{6}+6 a_{2}^{3} a_{3}^{2} a_{6}+29 a_{1}^{3} a_{3}^{3} a_{6}+141 a_{1} a_{2} a_{3}^{3} a_{6}+69 a_{3}^{4} a_{6} \\
& +6 a_{1}^{6} a_{2} a_{4} a_{6}-48 a_{1}^{4} a_{2}^{2} a_{4} a_{6}+96 a_{1}^{2} a_{2}^{3} a_{4} a_{6}-16 a_{2}^{4} a_{4} a_{6} \\
& -24 a_{1}^{5} a_{3} a_{4} a_{6}+210 a_{1}^{3} a_{2} a_{3} a_{4} a_{6}-338 a_{1} a_{2}^{2} a_{3} a_{4} a_{6}-87 a_{1}^{2} a_{3}^{2} a_{4} a_{6} \\
& -650 a_{2} a_{3}^{2} a_{4} a_{6}+66 a_{1}^{4} a_{4}^{2} a_{6}-540 a_{1}^{2} a_{2} a_{4}^{2} a_{6}+964 a_{2}^{2} a_{4}^{2} a_{6} \\
& +368 a_{1} a_{3} a_{4}^{2} a_{6}-300 a_{4}^{3} a_{6}+6 a_{1}^{7} a_{5} a_{6}-86 a_{1}^{5} a_{2} a_{5} a_{6}+388 a_{1}^{3} a_{2}^{2} a_{5} a_{6} \\
& -524 a_{1} a_{2}^{3} a_{5} a_{6}+148 a_{1}^{4} a_{3} a_{5} a_{6}-920 a_{1}^{2} a_{2} a_{3} a_{5} a_{6}+722 a_{2}^{2} a_{3} a_{5} a_{6} \\
& +77 a_{1} a_{3}^{2} a_{5} a_{6}-212 a_{1}^{3} a_{4} a_{5} a_{6}+904 a_{1} a_{2} a_{4} a_{5} a_{6}+246 a_{3} a_{4} a_{5} a_{6} \\
& +224 a_{1}^{2} a_{5}^{2} a_{6}+112 a_{2} a_{5}^{2} a_{6}-16 a_{1}^{6} a_{6}^{2}+146 a_{1}^{4} a_{2} a_{6}^{2}-410 a_{1}^{2} a_{2}^{2} a_{6}^{2} \\
& +128 a_{2}^{3} a_{6}^{2}-453 a_{1}^{3} a_{3} a_{6}^{2}+2514 a_{1} a_{2} a_{3} a_{6}^{2}-600 a_{3}^{2} a_{6}^{2}+530 a_{1}^{2} a_{4} a_{6}^{2} \\
& -3428 a_{2} a_{4} a_{6}^{2}-616 a_{1} a_{5} a_{6}^{2}+1232 a_{6}^{3} \\
& c_{10}=2 a_{1} a_{3}^{5} a_{4}+5 a_{1}^{3} a_{3}^{3} a_{4}^{2}-8 a_{1} a_{2} a_{3}^{3} a_{4}^{2}-2 a_{3}^{4} a_{4}^{2}+2 a_{1}^{5} a_{3} a_{4}^{3}-8 a_{1}^{3} a_{2} a_{3} a_{4}^{3} \\
& +6 a_{1} a_{2}^{2} a_{3} a_{4}^{3}-8 a_{1}^{2} a_{3}^{2} a_{4}^{3}+6 a_{2} a_{3}^{2} a_{4}^{3}-2 a_{1}^{4} a_{4}^{4}+6 a_{1}^{2} a_{2} a_{4}^{4} \\
& -5 a_{2}^{2} a_{4}^{4}+a_{1} a_{3} a_{4}^{4}+2 a_{4}^{5}+6 a_{1}^{3} a_{3}^{4} a_{5}-20 a_{1} a_{2} a_{3}^{4} a_{5}+12 a_{1}^{5} a_{3}^{2} a_{4} a_{5} \\
& -69 a_{1}^{3} a_{2} a_{3}^{2} a_{4} a_{5}+93 a_{1} a_{2}^{2} a_{3}^{2} a_{4} a_{5}-31 a_{1}^{2} a_{3}^{3} a_{4} a_{5}+13 a_{2} a_{3}^{3} a_{4} a_{5} \\
& +3 a_{1}^{7} a_{4}^{2} a_{5}-28 a_{1}^{5} a_{2} a_{4}^{2} a_{5}+88 a_{1}^{3} a_{2}^{2} a_{4}^{2} a_{5}-96 a_{1} a_{2}^{3} a_{4}^{2} a_{5} \\
& -40 a_{1}^{4} a_{3} a_{4}^{2} a_{5}+128 a_{1}^{2} a_{2} a_{3} a_{4}^{2} a_{5}-12 a_{2}^{2} a_{3} a_{4}^{2} a_{5}+69 a_{1} a_{3}^{2} a_{4}^{2} a_{5} \\
& +51 a_{1}^{3} a_{4}^{3} a_{5}-130 a_{1} a_{2} a_{4}^{3} a_{5}-18 a_{3} a_{4}^{3} a_{5}+3 a_{1}^{7} a_{3} a_{5}^{2}-22 a_{1}^{5} a_{2} a_{3} a_{5}^{2} \\
& +41 a_{1}^{3} a_{2}^{2} a_{3} a_{5}^{2}-7 a_{1} a_{2}^{3} a_{3} a_{5}^{2}-13 a_{1}^{4} a_{3}^{2} a_{5}^{2}+83 a_{1}^{2} a_{2} a_{3}^{2} a_{5}^{2}-56 a_{2}^{2} a_{3}^{2} a_{5}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +20 a_{1} a_{3}^{3} a_{5}^{2}-20 a_{1}^{6} a_{4} a_{5}^{2}+140 a_{1}^{4} a_{2} a_{4} a_{5}^{2}-251 a_{1}^{2} a_{2}^{2} a_{4} a_{5}^{2} \\
& +54 a_{2}^{3} a_{4} a_{5}^{2}+86 a_{1}^{3} a_{3} a_{4} a_{5}^{2}-224 a_{1} a_{2} a_{3} a_{4} a_{5}^{2}-121 a_{3}^{2} a_{4} a_{5}^{2} \\
& -201 a_{1}^{2} a_{4}^{2} a_{5}^{2}+372 a_{2} a_{4}^{2} a_{5}^{2}+19 a_{1}^{5} a_{5}^{3}-120 a_{1}^{3} a_{2} a_{5}^{3} \\
& +169 a_{1} a_{2}^{2} a_{5}^{3}-126 a_{1}^{2} a_{3} a_{5}^{3}+4 a_{2} a_{3} a_{5}^{3}+381 a_{1} a_{4} a_{5}^{3}-353 a_{5}^{4} \\
& +6 a_{1}^{5} a_{3}^{3} a_{6}-27 a_{1}^{3} a_{2} a_{3}^{3} a_{6}-7 a_{1} a_{2}^{2} a_{3}^{3} a_{6}+79 a_{1}^{2} a_{3}^{4} a_{6}+81 a_{2} a_{3}^{4} a_{6} \\
& +6 a_{1}^{7} a_{3} a_{4} a_{6}-44 a_{1}^{5} a_{2} a_{3} a_{4} a_{6}+64 a_{1}^{3} a_{2}^{2} a_{3} a_{4} a_{6}+40 a_{1} a_{2}^{3} a_{3} a_{4} a_{6} \\
& +43 a_{1}^{4} a_{3}^{2} a_{4} a_{6}+46 a_{1}^{2} a_{2} a_{3}^{2} a_{4} a_{6}-418 a_{2}^{2} a_{3}^{2} a_{4} a_{6}-313 a_{1} a_{3}^{3} a_{4} a_{6} \\
& -20 a_{1}^{6} a_{4}^{2} a_{6}+172 a_{1}^{4} a_{2} a_{4}^{2} a_{6}-456 a_{1}^{2} a_{2}^{2} a_{4}^{2} a_{6}+408 a_{2}^{3} a_{4}^{2} a_{6} \\
& -261 a_{1}^{3} a_{3} a_{4}^{2} a_{6}+626 a_{1} a_{2} a_{3} a_{4}^{2} a_{6}+232 a_{3}^{2} a_{4}^{2} a_{6}+260 a_{1}^{2} a_{4}^{3} a_{6} \\
& -636 a_{2} a_{4}^{3} a_{6}+6 a_{1}^{7} a_{2} a_{5} a_{6}-56 a_{1}^{5} a_{2}^{2} a_{5} a_{6}+160 a_{1}^{3} a_{2}^{3} a_{5} a_{6} \\
& -128 a_{1} a_{2}^{4} a_{5} a_{6}-28 a_{1}^{6} a_{3} a_{5} a_{6}+282 a_{1}^{4} a_{2} a_{3} a_{5} a_{6}-706 a_{1}^{2} a_{2}^{2} a_{3} a_{5} a_{6} \\
& +328 a_{2}^{3} a_{3} a_{5} a_{6}-109 a_{1}^{3} a_{3}^{2} a_{5} a_{6}-136 a_{1} a_{2} a_{3}^{2} a_{5} a_{6}+243 a_{3}^{3} a_{5} a_{6} \\
& +128 a_{1}^{5} a_{4} a_{5} a_{6}-882 a_{1}^{3} a_{2} a_{4} a_{5} a_{6}+1316 a_{1} a_{2}^{2} a_{4} a_{5} a_{6} \\
& +718 a_{1}^{2} a_{3} a_{4} a_{5} a_{6}+56 a_{2} a_{3} a_{4} a_{5} a_{6}-870 a_{1} a_{4}^{2} a_{5} a_{6}-180 a_{1}^{4} a_{5}^{2} a_{6} \\
& +1058 a_{1}^{2} a_{2} a_{5}^{2} a_{6}-1030 a_{2}^{2} a_{5}^{2} a_{6}+55 a_{1} a_{3} a_{5}^{2} a_{6} \\
& c_{11}=a_{1}^{2} a_{3}^{4} a_{4}^{2}+2 a_{2} a_{3}^{4} a_{4}^{2}+a_{1}^{4} a_{3}^{2} a_{4}^{3}+2 a_{1}^{2} a_{2} a_{3}^{2} a_{4}^{3}-12 a_{2}^{2} a_{3}^{2} a_{4}^{3}+2 a_{1} a_{3}^{3} a_{4}^{3} \\
& +2 a_{1}^{4} a_{2} a_{4}^{4}-12 a_{1}^{2} a_{2}^{2} a_{4}^{4}+17 a_{2}^{3} a_{4}^{4}+2 a_{1}^{3} a_{3} a_{4}^{4}-12 a_{1} a_{2} a_{3} a_{4}^{4}-9 a_{3}^{2} a_{4}^{4} \\
& -9 a_{1}^{2} a_{4}^{5}+28 a_{2} a_{4}^{5}+2 a_{1}^{2} a_{3}^{5} a_{5}-6 a_{2} a_{3}^{5} a_{5}+8 a_{1}^{4} a_{3}^{3} a_{4} a_{5} \\
& -37 a_{1}^{2} a_{2} a_{3}^{3} a_{4} a_{5}+38 a_{2}^{2} a_{3}^{3} a_{4} a_{5}-25 a_{1} a_{3}^{4} a_{4} a_{5}+5 a_{1}^{6} a_{3} a_{4}^{2} a_{5} \\
& -36 a_{1}^{4} a_{2} a_{3} a_{4}^{2} a_{5}+79 a_{1}^{2} a_{2}^{2} a_{3} a_{4}^{2} a_{5}-54 a_{2}^{3} a_{3} a_{4}^{2} a_{5}-49 a_{1}^{3} a_{3}^{2} a_{4}^{2} a_{5} \\
& +123 a_{1} a_{2} a_{3}^{2} a_{4}^{2} a_{5}+48 a_{3}^{3} a_{4}^{2} a_{5}-10 a_{1}^{5} a_{4}^{3} a_{5}+47 a_{1}^{3} a_{2} a_{4}^{3} a_{5} \\
& -44 a_{1} a_{2}^{2} a_{4}^{3} a_{5}+82 a_{1}^{2} a_{3} a_{4}^{3} a_{5}-138 a_{2} a_{3} a_{4}^{3} a_{5}-11 a_{1} a_{4}^{4} a_{5}+5 a_{1}^{6} a_{3}^{2} a_{5}^{2} \\
& -37 a_{1}^{4} a_{2} a_{3}^{2} a_{5}^{2}+73 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{5}^{2}-25 a_{2}^{3} a_{3}^{2} a_{5}^{2}+25 a_{1} a_{2} a_{3}^{3} a_{5}^{2}+6 a_{3}^{4} a_{5}^{2} \\
& +3 a_{1}^{8} a_{4} a_{5}^{2}-32 a_{1}^{6} a_{2} a_{4} a_{5}^{2}+119 a_{1}^{4} a_{2}^{2} a_{4} a_{5}^{2}-169 a_{1}^{2} a_{2}^{3} a_{4} a_{5}^{2} \\
& +48 a_{2}^{4} a_{4} a_{5}^{2}-34 a_{1}^{5} a_{3} a_{4} a_{5}^{2}+206 a_{1}^{3} a_{2} a_{3} a_{4} a_{5}^{2}-242 a_{1} a_{2}^{2} a_{3} a_{4} a_{5}^{2} \\
& +53 a_{1}^{2} a_{3}^{2} a_{4} a_{5}^{2}-179 a_{2} a_{3}^{2} a_{4} a_{5}^{2}+102 a_{1}^{4} a_{4}^{2} a_{5}^{2}-477 a_{1}^{2} a_{2} a_{4}^{2} a_{5}^{2} \\
& +372 a_{2}^{2} a_{4}^{2} a_{5}^{2}-58 a_{1} a_{3} a_{4}^{2} a_{5}^{2}-48 a_{4}^{3} a_{5}^{2}-7 a_{1}^{7} a_{5}^{3}+64 a_{1}^{5} a_{2} a_{5}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& -191 a_{1}^{3} a_{2}^{2} a_{5}^{3}+195 a_{1} a_{2}^{3} a_{5}^{3}+17 a_{1}^{4} a_{3} a_{5}^{3}-148 a_{1}^{2} a_{2} a_{3} a_{5}^{3}+125 a_{2}^{2} a_{3} a_{5}^{3} \\
& -181 a_{1} a_{3}^{2} a_{5}^{3}-244 a_{1}^{3} a_{4} a_{5}^{3}+905 a_{1} a_{2} a_{4} a_{5}^{3}+378 a_{3} a_{4} a_{5}^{3}+336 a_{1}^{2} a_{5}^{4} \\
& -1153 a_{2} a_{5}^{4}+6 a_{1}^{4} a_{3}^{4} a_{6}-29 a_{1}^{2} a_{2} a_{3}^{4} a_{6}+6 a_{2}^{2} a_{3}^{4} a_{6}+81 a_{1} a_{3}^{5} a_{6} \\
& +10 a_{1}^{6} a_{3}^{2} a_{4} a_{6}-77 a_{1}^{4} a_{2} a_{3}^{2} a_{4} a_{6}+143 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4} a_{6}-32 a_{2}^{3} a_{3}^{2} a_{4} a_{6} \\
& +132 a_{1}^{3} a_{3}^{3} a_{4} a_{6}-309 a_{1} a_{2} a_{3}^{3} a_{4} a_{6}-162 a_{3}^{4} a_{4} a_{6}+3 a_{1}^{8} a_{4}^{2} a_{6} \\
& -32 a_{1}^{6} a_{2} a_{4}^{2} a_{6}+108 a_{1}^{4} a_{2}^{2} a_{4}^{2} a_{6}-120 a_{1}^{2} a_{2}^{3} a_{4}^{2} a_{6}+24 a_{2}^{4} a_{4}^{2} a_{6} \\
& +26 a_{1}^{5} a_{3} a_{4}^{2} a_{6}-141 a_{1}^{3} a_{2} a_{3} a_{4}^{2} a_{6}+182 a_{1} a_{2}^{2} a_{3} a_{4}^{2} a_{6}-338 a_{1}^{2} a_{3}^{2} a_{4}^{2} a_{6} \\
& +644 a_{2} a_{3}^{2} a_{4}^{2} a_{6}-88 a_{1}^{4} a_{4}^{3} a_{6}+524 a_{1}^{2} a_{2} a_{4}^{3} a_{6}-672 a_{2}^{2} a_{4}^{3} a_{6} \\
& -20 a_{1} a_{3} a_{4}^{3} a_{6}+258 a_{4}^{4} a_{6}+6 a_{1}^{8} a_{3} a_{5} a_{6}-54 a_{1}^{6} a_{2} a_{3} a_{5} a_{6} \\
& +144 a_{1}^{4} a_{2}^{2} a_{3} a_{5} a_{6}-112 a_{1}^{2} a_{2}^{3} a_{3} a_{5} a_{6}+56 a_{2}^{4} a_{3} a_{5} a_{6}+42 a_{1}^{5} a_{3}^{2} a_{5} a_{6} \\
& -45 a_{1}^{3} a_{2} a_{3}^{2} a_{5} a_{6}-355 a_{1} a_{2}^{2} a_{3}^{2} a_{5} a_{6}-184 a_{1}^{2} a_{3}^{3} a_{5} a_{6}+291 a_{2} a_{3}^{3} a_{5} a_{6} \\
& -42 a_{1}^{7} a_{4} a_{5} a_{6}+414 a_{1}^{5} a_{2} a_{4} a_{5} a_{6}-1254 a_{1}^{3} a_{2}^{2} a_{4} a_{5} a_{6} \\
& +1136 a_{1} a_{2}^{3} a_{4} a_{5} a_{6}-294 a_{1}^{4} a_{3} a_{4} a_{5} a_{6}+918 a_{1}^{2} a_{2} a_{3} a_{4} a_{5} a_{6} \\
& -98 a_{2}^{2} a_{3} a_{4} a_{5} a_{6}+1088 a_{1} a_{3}^{2} a_{4} a_{5} a_{6}+396 a_{1}^{3} a_{4}^{2} a_{5} a_{6} \\
& -1334 a_{1} a_{2} a_{4}^{2} a_{5} a_{6}-1488 a_{3} a_{4}^{2} a_{5} a_{6}+69 a_{1}^{6} a_{5}^{2} a_{6}-678 a_{1}^{4} a_{2} a_{5}^{2} a_{6} \\
& +1950 a_{1}^{2} a_{2}^{2} a_{5}^{2} a_{6}-1670 a_{2}^{3} a_{5}^{2} a_{6}+434 a_{1}^{3} a_{3} a_{5}^{2} a_{6}-721 a_{1} a_{2} a_{3} a_{5}^{2} a_{6} \\
& -48 a_{3}^{2} a_{5}^{2} a_{6}-916 a_{1}^{2} a_{4} a_{5}^{2} a_{6}+2282 a_{2} a_{4} a_{5}^{2} a_{6}-32 a_{1} a_{5}^{3} a_{6}+3 a_{1}^{8} a_{2} a_{6}^{2} \\
& -32 a_{1}^{6} a_{2}^{2} a_{6}^{2}+112 a_{1}^{4} a_{2}^{3} a_{6}^{2}-96 a_{1}^{2} a_{2}^{4} a_{6}^{2}-112 a_{2}^{5} a_{6}^{2}-16 a_{1}^{7} a_{3} a_{6}^{2} \\
& +168 a_{1}^{5} a_{2} a_{3} a_{6}^{2}-592 a_{1}^{3} a_{2}^{2} a_{3} a_{6}^{2}+648 a_{1} a_{2}^{3} a_{3} a_{6}^{2}-349 a_{1}^{4} a_{3}^{2} a_{6}^{2} \\
& +1567 a_{1}^{2} a_{2} a_{3}^{2} a_{6}^{2}-534 a_{2}^{2} a_{3}^{2} a_{6}^{2}-648 a_{1} a_{3}^{3} a_{6}^{2}+29 a_{1}^{6} a_{4} a_{6}^{2} \\
& -201 a_{1}^{4} a_{2} a_{4} a_{6}^{2}+320 a_{1}^{2} a_{2}^{2} a_{4} a_{6}^{2}+128 a_{2}^{3} a_{4} a_{6}^{2}+972 a_{1}^{3} a_{3} a_{4} a_{6}^{2} \\
& -3786 a_{1} a_{2} a_{3} a_{4} a_{6}^{2}+1296 a_{3}^{2} a_{4} a_{6}^{2}-572 a_{1}^{2} a_{4}^{2} a_{6}^{2}+2414 a_{2} a_{4}^{2} a_{6}^{2} \\
& +3 a_{1}^{5} a_{5} a_{6}^{2}+163 a_{1}^{3} a_{2} a_{5} a_{6}^{2}-308 a_{1} a_{2}^{2} a_{5} a_{6}^{2}-592 a_{1}^{2} a_{3} a_{5} a_{6}^{2} \\
& -1068 a_{2} a_{3} a_{5} a_{6}^{2}+1232 a_{1} a_{4} a_{5} a_{6}^{2}+96 a_{5}^{2} a_{6}^{2}+10 a_{1}^{4} a_{6}^{3}-782 a_{1}^{2} a_{2} a_{6}^{3} \\
& +2040 a_{2}^{2} a_{6}^{3}+1296 a_{1} a_{3} a_{6}^{3}-2592 a_{4} a_{6}^{3} \\
& c_{12}=2 a_{1} a_{2} a_{3}^{3} a_{4}^{3}+2 a_{3}^{4} a_{4}^{3}+2 a_{1}^{3} a_{2} a_{3} a_{4}^{4}-7 a_{1} a_{2}^{2} a_{3} a_{4}^{4}+6 a_{1}^{2} a_{3}^{2} a_{4}^{4} \\
& -14 a_{2} a_{3}^{2} a_{4}^{4}+2 a_{1}^{4} a_{4}^{5}-14 a_{1}^{2} a_{2} a_{4}^{5}+22 a_{2}^{2} a_{4}^{5}-10 a_{1} a_{3} a_{4}^{5} \\
& +9 a_{4}^{6}+2 a_{1}^{3} a_{3}^{4} a_{4} a_{5}-5 a_{1} a_{2} a_{3}^{4} a_{4} a_{5}-9 a_{3}^{5} a_{4} a_{5}+2 a_{1}^{5} a_{3}^{2} a_{4}^{2} a_{5} \\
& -8 a_{1}^{3} a_{2} a_{3}^{2} a_{4}^{2} a_{5}+6 a_{1} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}-37 a_{1}^{2} a_{3}^{3} a_{4}^{2} a_{5}+62 a_{2} a_{3}^{3} a_{4}^{2} a_{5}
\end{aligned}
$$

$$
\begin{aligned}
& +4 a_{1}^{5} a_{2} a_{4}^{3} a_{5}-28 a_{1}^{3} a_{2}^{2} a_{4}^{3} a_{5}+48 a_{1} a_{2}^{3} a_{4}^{3} a_{5}-16 a_{1}^{4} a_{3} a_{4}^{3} a_{5} \\
& +74 a_{1}^{2} a_{2} a_{3} a_{4}^{3} a_{5}-88 a_{2}^{2} a_{3} a_{4}^{3} a_{5}+56 a_{1} a_{3}^{2} a_{4}^{3} a_{5}-7 a_{1}^{3} a_{4}^{4} a_{5} \\
& +50 a_{1} a_{2} a_{4}^{4} a_{5}-51 a_{3} a_{4}^{4} a_{5}+3 a_{1}^{5} a_{3}^{3} a_{5}^{2}-20 a_{1}^{3} a_{2} a_{3}^{3} a_{5}^{2}+32 a_{1} a_{2}^{2} a_{3}^{3} a_{5}^{2} \\
& +9 a_{2} a_{3}^{4} a_{5}^{2}+4 a_{1}^{7} a_{3} a_{4} a_{5}^{2}-38 a_{1}^{5} a_{2} a_{3} a_{4} a_{5}^{2}+122 a_{1}^{3} a_{2}^{2} a_{3} a_{4} a_{5}^{2} \\
& -140 a_{1} a_{2}^{3} a_{3} a_{4} a_{5}^{2}-32 a_{1}^{4} a_{3}^{2} a_{4} a_{5}^{2}+172 a_{1}^{2} a_{2} a_{3}^{2} a_{4} a_{5}^{2}-112 a_{2}^{2} a_{3}^{2} a_{4} a_{5}^{2} \\
& -4 a_{1} a_{3}^{3} a_{4} a_{5}^{2}-17 a_{1}^{6} a_{4}^{2} a_{5}^{2}+126 a_{1}^{4} a_{2} a_{4}^{2} a_{5}^{2}-256 a_{1}^{2} a_{2}^{2} a_{4}^{2} a_{5}^{2} \\
& +108 a_{2}^{3} a_{4}^{2} a_{5}^{2}+111 a_{1}^{3} a_{3} a_{4}^{2} a_{5}^{2}-412 a_{1} a_{2} a_{3} a_{4}^{2} a_{5}^{2}+55 a_{3}^{2} a_{4}^{2} a_{5}^{2} \\
& -24 a_{1}^{2} a_{4}^{3} a_{5}^{2}-104 a_{2} a_{4}^{3} a_{5}^{2}+a_{1}^{9} a_{5}^{3}-12 a_{1}^{7} a_{2} a_{5}^{3}+54 a_{1}^{5} a_{2}^{2} a_{5}^{3} \\
& -106 a_{1}^{3} a_{2}^{3} a_{5}^{3}+72 a_{1} a_{2}^{4} a_{5}^{3}-9 a_{1}^{6} a_{3} a_{5}^{3}+66 a_{1}^{4} a_{2} a_{3} a_{5}^{3}-136 a_{1}^{2} a_{2}^{2} a_{3} a_{5}^{3} \\
& +144 a_{2}^{3} a_{3} a_{5}^{3}-19 a_{1}^{3} a_{3}^{2} a_{5}^{3}-154 a_{1} a_{2} a_{3}^{2} a_{5}^{3}-90 a_{3}^{3} a_{5}^{3}+80 a_{1}^{5} a_{4} a_{5}^{3} \\
& -554 a_{1}^{3} a_{2} a_{4} a_{5}^{3}+878 a_{1} a_{2}^{2} a_{4} a_{5}^{3}-68 a_{1}^{2} a_{3} a_{4} a_{5}^{3}+872 a_{2} a_{3} a_{4} a_{5}^{3} \\
& +78 a_{1} a_{4}^{2} a_{5}^{3}-116 a_{1}^{4} a_{5}^{4}+856 a_{1}^{2} a_{2} a_{5}^{4}-1440 a_{2}^{2} a_{5}^{4}-157 a_{1} a_{3} a_{5}^{4} \\
& -94 a_{4} a_{5}^{4}+2 a_{1}^{3} a_{3}^{5} a_{6}-9 a_{1} a_{2} a_{3}^{5} a_{6}+27 a_{3}^{6} a_{6}+8 a_{1}^{5} a_{3}^{3} a_{4} a_{6} \\
& -52 a_{1}^{3} a_{2} a_{3}^{3} a_{4} a_{6}+68 a_{1} a_{2}^{2} a_{3}^{3} a_{4} a_{6}+111 a_{1}^{2} a_{3}^{4} a_{4} a_{6}-198 a_{2} a_{3}^{4} a_{4} a_{6} \\
& +4 a_{1}^{7} a_{3} a_{4}^{2} a_{6}-44 a_{1}^{5} a_{2} a_{3} a_{4}^{2} a_{6}+144 a_{1}^{3} a_{2}^{2} a_{3} a_{4}^{2} a_{6}-136 a_{1} a_{2}^{3} a_{3} a_{4}^{2} a_{6} \\
& +56 a_{1}^{4} a_{3}^{2} a_{4}^{2} a_{6}-334 a_{1}^{2} a_{2} a_{3}^{2} a_{4}^{2} a_{6}+460 a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{6}-162 a_{1} a_{3}^{3} a_{4}^{2} a_{6} \\
& +8 a_{1}^{6} a_{4}^{3} a_{6}-92 a_{1}^{4} a_{2} a_{4}^{3} a_{6}+336 a_{1}^{2} a_{2}^{2} a_{4}^{3} a_{6}-368 a_{2}^{3} a_{4}^{3} a_{6}-18 a_{1}^{3} a_{3} a_{4}^{3} a_{6} \\
& +40 a_{1} a_{2} a_{3} a_{4}^{3} a_{6}+56 a_{3}^{2} a_{4}^{3} a_{6}-72 a_{1}^{2} a_{4}^{4} a_{6}+320 a_{2} a_{4}^{4} a_{6}+8 a_{1}^{7} a_{3}^{2} a_{5} a_{6} \\
& -70 a_{1}^{5} a_{2} a_{3}^{2} a_{5} a_{6}+166 a_{1}^{3} a_{2}^{2} a_{3}^{2} a_{5} a_{6}-64 a_{1} a_{2}^{3} a_{3}^{2} a_{5} a_{6}+106 a_{1}^{4} a_{3}^{3} a_{5} a_{6} \\
& -376 a_{1}^{2} a_{2} a_{3}^{3} a_{5} a_{6}-9 a_{1} a_{3}^{4} a_{5} a_{6}+6 a_{1}^{9} a_{4} a_{5} a_{6}-72 a_{1}^{7} a_{2} a_{4} a_{5} a_{6} \\
& +304 a_{1}^{5} a_{2}^{2} a_{4} a_{5} a_{6}-528 a_{1}^{3} a_{2}^{3} a_{4} a_{5} a_{6}+320 a_{1} a_{2}^{4} a_{4} a_{5} a_{6} \\
& +42 a_{1}^{6} a_{3} a_{4} a_{5} a_{6}-152 a_{1}^{4} a_{2} a_{3} a_{4} a_{5} a_{6}-88 a_{1}^{2} a_{2}^{2} a_{3} a_{4} a_{5} a_{6} \\
& +224 a_{2}^{3} a_{3} a_{4} a_{5} a_{6}-432 a_{1}^{3} a_{3}^{2} a_{4} a_{5} a_{6}+1784 a_{1} a_{2} a_{3}^{2} a_{4} a_{5} a_{6} \\
& +234 a_{3}^{3} a_{4} a_{5} a_{6}-90 a_{1}^{5} a_{4}^{2} a_{5} a_{6}+508 a_{1}^{3} a_{2} a_{4}^{2} a_{5} a_{6}-680 a_{1} a_{2}^{2} a_{4}^{2} a_{5} a_{6} \\
& +454 a_{1}^{2} a_{3} a_{4}^{2} a_{5} a_{6}-2264 a_{2} a_{3} a_{4}^{2} a_{5} a_{6}+148 a_{1} a_{4}^{3} a_{5} a_{6}-22 a_{1}^{8} a_{5}^{2} a_{6} \\
& +256 a_{1}^{6} a_{2} a_{5}^{2} a_{6}-1058 a_{1}^{4} a_{2}^{2} a_{5}^{2} a_{6}+1792 a_{1}^{2} a_{2}^{3} a_{5}^{2} a_{6}-1008 a_{2}^{4} a_{5}^{2} a_{6} \\
& -178 a_{1}^{5} a_{3} a_{5}^{2} a_{6}+998 a_{1}^{3} a_{2} a_{3} a_{5}^{2} a_{6}-1430 a_{1} a_{2}^{2} a_{3} a_{5}^{2} a_{6}+592 a_{1}^{2} a_{3}^{2} a_{5}^{2} a_{6} \\
& -612 a_{2} a_{3}^{2} a_{5}^{2} a_{6}+322 a_{1}^{4} a_{4} a_{5}^{2} a_{6}-1764 a_{1}^{2} a_{2} a_{4} a_{5}^{2} a_{6}+2764 a_{2}^{2} a_{4} a_{5}^{2} a_{6}
\end{aligned}
$$

$$
\begin{aligned}
& -1244 a_{1} a_{3} a_{4} a_{5}^{2} a_{6}+284 a_{4}^{2} a_{5}^{2} a_{6}-152 a_{1}^{3} a_{5}^{3} a_{6}+144 a_{1} a_{2} a_{5}^{3} a_{6} \\
& +1224 a_{3} a_{5}^{3} a_{6}+3 a_{1}^{9} a_{3} a_{6}^{2}-32 a_{1}^{7} a_{2} a_{3} a_{6}^{2}+112 a_{1}^{5} a_{2}^{2} a_{3} a_{6}^{2} \\
& -96 a_{1}^{3} a_{2}^{3} a_{3} a_{6}^{2}-112 a_{1} a_{2}^{4} a_{3} a_{6}^{2}+28 a_{1}^{6} a_{3}^{2} a_{6}^{2}-278 a_{1}^{4} a_{2} a_{3}^{2} a_{6}^{2} \\
& +664 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{6}^{2}-144 a_{2}^{3} a_{3}^{2} a_{6}^{2}-52 a_{1}^{3} a_{3}^{3} a_{6}^{2}+234 a_{1} a_{2} a_{3}^{3} a_{6}^{2}-324 a_{3}^{4} a_{6}^{2} \\
& -22 a_{1}^{8} a_{4} a_{6}^{2}+224 a_{1}^{6} a_{2} a_{4} a_{6}^{2}-688 a_{1}^{4} a_{2}^{2} a_{4} a_{6}^{2}+416 a_{1}^{2} a_{2}^{3} a_{4} a_{6}^{2} \\
& +608 a_{2}^{4} a_{4} a_{6}^{2}-338 a_{1}^{5} a_{3} a_{4} a_{6}^{2}+2308 a_{1}^{3} a_{2} a_{3} a_{4} a_{6}^{2}-3584 a_{1} a_{2}^{2} a_{3} a_{4} a_{6}^{2} \\
& -942 a_{1}^{2} a_{3}^{2} a_{4} a_{6}^{2}+1260 a_{2} a_{3}^{2} a_{4} a_{6}^{2}+228 a_{1}^{4} a_{4}^{2} a_{6}^{2}-1220 a_{1}^{2} a_{2} a_{4}^{2} a_{6}^{2} \\
& +1040 a_{2}^{2} a_{4}^{2} a_{6}^{2}+1782 a_{1} a_{3} a_{4}^{2} a_{6}^{2}-1012 a_{4}^{3} a_{6}^{2}+26 a_{1}^{7} a_{5} a_{6}^{2} \\
& -318 a_{1}^{5} a_{2} a_{5} a_{6}^{2}+1160 a_{1}^{3} a_{2}^{2} a_{5} a_{6}^{2}-1152 a_{1} a_{2}^{3} a_{5} a_{6}^{2}+560 a_{1}^{4} a_{3} a_{5} a_{6}^{2} \\
& -2996 a_{1}^{2} a_{2} a_{3} a_{5} a_{6}^{2}+2592 a_{2}^{2} a_{3} a_{5} a_{6}^{2}-252 a_{1} a_{3}^{2} a_{5} a_{6}^{2}-830 a_{1}^{3} a_{4} a_{5} a_{6}^{2} \\
& +3384 a_{1} a_{2} a_{4} a_{5} a_{6}^{2}-792 a_{3} a_{4} a_{5} a_{6}^{2}+944 a_{1}^{2} a_{5}^{2} a_{6}^{2}-2880 a_{2} a_{5}^{2} a_{6}^{2} \\
& +170 a_{1}^{6} a_{6}^{3}-1216 a_{1}^{4} a_{2} a_{6}^{3}+2384 a_{1}^{2} a_{2}^{2} a_{6}^{3} \\
& c_{13}=a_{2}^{2} a_{3}^{2} a_{4}^{4}+2 a_{1} a_{3}^{3} a_{4}^{4}+a_{1}^{2} a_{2}^{2} a_{4}^{5}-4 a_{2}^{3} a_{4}^{5}+2 a_{1}^{3} a_{3} a_{4}^{5}-6 a_{1} a_{2} a_{3} a_{4}^{5} \\
& -2 a_{3}^{2} a_{4}^{5}-2 a_{1}^{2} a_{4}^{6}+a_{2} a_{4}^{6}+3 a_{1}^{2} a_{2} a_{3}^{3} a_{4}^{2} a_{5}-6 a_{2}^{2} a_{3}^{3} a_{4}^{2} a_{5} \\
& -9 a_{1} a_{3}^{4} a_{4}^{2} a_{5}+3 a_{1}^{4} a_{2} a_{3} a_{4}^{3} a_{5}-18 a_{1}^{2} a_{2}^{2} a_{3} a_{4}^{3} a_{5}+26 a_{2}^{3} a_{3} a_{4}^{3} a_{5} \\
& -6 a_{1}^{3} a_{3}^{2} a_{4}^{3} a_{5}+7 a_{1} a_{2} a_{3}^{2} a_{4}^{3} a_{5}+9 a_{3}^{3} a_{4}^{3} a_{5}+3 a_{1}^{5} a_{4}^{4} a_{5}-30 a_{1}^{3} a_{2} a_{4}^{4} a_{5} \\
& +69 a_{1} a_{2}^{2} a_{4}^{4} a_{5}+17 a_{2} a_{3} a_{4}^{4} a_{5}+23 a_{1} a_{4}^{5} a_{5}+a_{1}^{4} a_{3}^{4} a_{5}^{2}-6 a_{1}^{2} a_{2} a_{3}^{4} a_{5}^{2} \\
& +9 a_{2}^{2} a_{3}^{4} a_{5}^{2}+a_{1}^{6} a_{3}^{2} a_{4} a_{5}^{2}-9 a_{1}^{4} a_{2} a_{3}^{2} a_{4} a_{5}^{2}+30 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4} a_{5}^{2} \\
& -42 a_{2}^{3} a_{3}^{2} a_{4} a_{5}^{2}-25 a_{1}^{3} a_{3}^{3} a_{4} a_{5}^{2}+93 a_{1} a_{2} a_{3}^{3} a_{4} a_{5}^{2}+3 a_{1}^{6} a_{2} a_{4}^{2} a_{5}^{2} \\
& -23 a_{1}^{4} a_{2}^{2} a_{4}^{2} a_{5}^{2}+48 a_{1}^{2} a_{2}^{3} a_{4}^{2} a_{5}^{2}-18 a_{2}^{4} a_{4}^{2} a_{5}^{2}-23 a_{1}^{5} a_{3} a_{4}^{2} a_{5}^{2} \\
& +179 a_{1}^{3} a_{2} a_{3} a_{4}^{2} a_{5}^{2}-333 a_{1} a_{2}^{2} a_{3} a_{4}^{2} a_{5}^{2}+75 a_{1}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2}-84 a_{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \\
& +3 a_{1}^{4} a_{4}^{3} a_{5}^{2}+34 a_{1}^{2} a_{2} a_{4}^{3} a_{5}^{2}-164 a_{2}^{2} a_{4}^{3} a_{5}^{2}-182 a_{1} a_{3} a_{4}^{3} a_{5}^{2}-5 a_{4}^{4} a_{5}^{2} \\
& +a_{1}^{8} a_{3} a_{5}^{3}-11 a_{1}^{6} a_{2} a_{3} a_{5}^{3}+47 a_{1}^{4} a_{2}^{2} a_{3} a_{5}^{3}-90 a_{1}^{2} a_{2}^{3} a_{3} a_{5}^{3}+54 a_{2}^{4} a_{3} a_{5}^{3} \\
& -11 a_{1}^{5} a_{3}^{2} a_{5}^{3}+61 a_{1}^{3} a_{2} a_{3}^{2} a_{5}^{3}-21 a_{1} a_{2}^{2} a_{3}^{2} a_{5}^{3}-75 a_{1}^{2} a_{3}^{3} a_{5}^{3}-99 a_{2} a_{3}^{3} a_{5}^{3} \\
& -13 a_{1}^{7} a_{4} a_{5}^{3}+116 a_{1}^{5} a_{2} a_{4} a_{5}^{3}-330 a_{1}^{3} a_{2}^{2} a_{4} a_{5}^{3}+306 a_{1} a_{2}^{3} a_{4} a_{5}^{3} \\
& +40 a_{1}^{4} a_{3} a_{4} a_{5}^{3}-483 a_{1}^{2} a_{2} a_{3} a_{4} a_{5}^{3}+858 a_{2}^{2} a_{3} a_{4} a_{5}^{3}+285 a_{1} a_{3}^{2} a_{4} a_{5}^{3} \\
& -37 a_{1}^{3} a_{4}^{2} a_{5}^{3}+252 a_{1} a_{2} a_{4}^{2} a_{5}^{3}+117 a_{3} a_{4}^{2} a_{5}^{3}+29 a_{1}^{6} a_{5}^{4}-278 a_{1}^{4} a_{2} a_{5}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& +855 a_{1}^{2} a_{2}^{2} a_{5}^{4}-864 a_{2}^{3} a_{5}^{4}+113 a_{1}^{3} a_{3} a_{5}^{4}-219 a_{1} a_{2} a_{3} a_{5}^{4}-234 a_{3}^{2} a_{5}^{4} \\
& -69 a_{1}^{2} a_{4} a_{5}^{4}-222 a_{2} a_{4} a_{5}^{4}+132 a_{1} a_{5}^{5}+2 a_{1}^{4} a_{3}^{4} a_{4} a_{6}-9 a_{1}^{2} a_{2} a_{3}^{4} a_{4} a_{6} \\
& +27 a_{1} a_{3}^{5} a_{4} a_{6}+2 a_{1}^{6} a_{3}^{2} a_{4}^{2} a_{6}-15 a_{1}^{4} a_{2} a_{3}^{2} a_{4}^{2} a_{6}+24 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{6} \\
& +6 a_{2}^{3} a_{3}^{2} a_{4}^{2} a_{6}+28 a_{1}^{3} a_{3}^{3} a_{4}^{2} a_{6}-81 a_{1} a_{2} a_{3}^{3} a_{4}^{2} a_{6}-27 a_{3}^{4} a_{4}^{2} a_{6} \\
& -4 a_{1}^{4} a_{2}^{2} a_{4}^{3} a_{6}+24 a_{1}^{2} a_{2}^{3} a_{4}^{3} a_{6}-32 a_{2}^{4} a_{4}^{3} a_{6}-7 a_{1}^{5} a_{3} a_{4}^{3} a_{6} \\
& +22 a_{1}^{3} a_{2} a_{3} a_{4}^{3} a_{6}+10 a_{1} a_{2}^{2} a_{3} a_{4}^{3} a_{6}-59 a_{1}^{2} a_{3}^{2} a_{4}^{3} a_{6}-18 a_{2} a_{3}^{2} a_{4}^{3} a_{6} \\
& +27 a_{1}^{4} a_{4}^{4} a_{6}-136 a_{1}^{2} a_{2} a_{4}^{4} a_{6}+174 a_{2}^{2} a_{4}^{4} a_{6}+145 a_{1} a_{3} a_{4}^{4} a_{6}-118 a_{4}^{5} a_{6} \\
& +6 a_{1}^{6} a_{3}^{3} a_{5} a_{6}-49 a_{1}^{4} a_{2} a_{3}^{3} a_{5} a_{6}+102 a_{1}^{2} a_{2}^{2} a_{3}^{3} a_{5} a_{6}-18 a_{2}^{3} a_{3}^{3} a_{5} a_{6} \\
& +81 a_{1}^{3} a_{3}^{4} a_{5} a_{6}-270 a_{1} a_{2} a_{3}^{4} a_{5} a_{6}+6 a_{1}^{8} a_{3} a_{4} a_{5} a_{6}-74 a_{1}^{6} a_{2} a_{3} a_{4} a_{5} a_{6} \\
& +294 a_{1}^{4} a_{2}^{2} a_{3} a_{4} a_{5} a_{6}-408 a_{1}^{2} a_{2}^{3} a_{3} a_{4} a_{5} a_{6}+120 a_{2}^{4} a_{3} a_{4} a_{5} a_{6} \\
& +117 a_{1}^{5} a_{3}^{2} a_{4} a_{5} a_{6}-708 a_{1}^{3} a_{2} a_{3}^{2} a_{4} a_{5} a_{6}+942 a_{1} a_{2}^{2} a_{3}^{2} a_{4} a_{5} a_{6} \\
& -27 a_{1}^{2} a_{3}^{3} a_{4} a_{5} a_{6}+540 a_{2} a_{3}^{3} a_{4} a_{5} a_{6}+12 a_{1}^{7} a_{4}^{2} a_{5} a_{6} \\
& -104 a_{1}^{5} a_{2} a_{4}^{2} a_{5} a_{6}+328 a_{1}^{3} a_{2}^{2} a_{4}^{2} a_{5} a_{6}-396 a_{1} a_{2}^{3} a_{4}^{2} a_{5} a_{6} \\
& -139 a_{1}^{4} a_{3} a_{4}^{2} a_{5} a_{6}+864 a_{1}^{2} a_{2} a_{3} a_{4}^{2} a_{5} a_{6}-1002 a_{2}^{2} a_{3} a_{4}^{2} a_{5} a_{6} \\
& -387 a_{1} a_{3}^{2} a_{4}^{2} a_{5} a_{6}-92 a_{1}^{3} a_{4}^{3} a_{5} a_{6}+136 a_{1} a_{2} a_{4}^{3} a_{5} a_{6}+450 a_{3} a_{4}^{3} a_{5} a_{6} \\
& +3 a_{1}^{10} a_{5}^{2} a_{6}-40 a_{1}^{8} a_{2} a_{5}^{2} a_{6}+206 a_{1}^{6} a_{2}^{2} a_{5}^{2} a_{6}-506 a_{1}^{4} a_{2}^{3} a_{5}^{2} a_{6} \\
& +576 a_{1}^{2} a_{2}^{4} a_{5}^{2} a_{6}-216 a_{2}^{5} a_{5}^{2} a_{6}+19 a_{1}^{7} a_{3} a_{5}^{2} a_{6}-136 a_{1}^{5} a_{2} a_{3} a_{5}^{2} a_{6} \\
& +316 a_{1}^{3} a_{2}^{2} a_{3} a_{5}^{2} a_{6}-318 a_{1} a_{2}^{3} a_{3} a_{5}^{2} a_{6}-152 a_{1}^{4} a_{3}^{2} a_{5}^{2} a_{6}+999 a_{1}^{2} a_{2} a_{3}^{2} a_{5}^{2} a_{6} \\
& -1260 a_{2}^{2} a_{3}^{2} a_{5}^{2} a_{6}+270 a_{1} a_{3}^{3} a_{5}^{2} a_{6}-26 a_{1}^{6} a_{4} a_{5}^{2} a_{6}+222 a_{1}^{4} a_{2} a_{4} a_{5}^{2} a_{6} \\
& -924 a_{1}^{2} a_{2}^{2} a_{4} a_{5}^{2} a_{6}+1644 a_{2}^{3} a_{4} a_{5}^{2} a_{6}+569 a_{1}^{3} a_{3} a_{4} a_{5}^{2} a_{6} \\
& -2208 a_{1} a_{2} a_{3} a_{4} a_{5}^{2} a_{6}-540 a_{3}^{2} a_{4} a_{5}^{2} a_{6}+192 a_{1}^{2} a_{4}^{2} a_{5}^{2} a_{6} \\
& -204 a_{2} a_{4}^{2} a_{5}^{2} a_{6}-2 a_{1}^{5} a_{5}^{3} a_{6}+238 a_{1}^{3} a_{2} a_{5}^{3} a_{6}-744 a_{1} a_{2}^{2} a_{5}^{3} a_{6} \\
& -1203 a_{1}^{2} a_{3} a_{5}^{3} a_{6}+3852 a_{2} a_{3} a_{5}^{3} a_{6}+336 a_{1} a_{4} a_{5}^{3} a_{6}-792 a_{5}^{4} a_{6} \\
& +3 a_{1}^{8} a_{3}^{2} a_{6}^{2}-30 a_{1}^{6} a_{2} a_{3}^{2} a_{6}^{2}+102 a_{1}^{4} a_{2}^{2} a_{3}^{2} a_{6}^{2}-535 a_{1}^{3} a_{3} a_{4}^{2} a_{6}^{2} \\
& +1782 a_{1} a_{2} a_{3} a_{4}^{2} a_{6}^{2}+216 a_{3}^{2} a_{4}^{2} a_{6}^{2}+326 a_{1}^{2} a_{4}^{3} a_{6}^{2}-900 a_{2} a_{4}^{3} a_{6}^{2} \\
& -23 a_{1}^{9} a_{5} a_{6}^{2}+276 a_{1}^{7} a_{2} a_{5} a_{6}^{2}-1228 a_{1}^{5} a_{2}^{2} a_{5} a_{6}^{2}+2368 a_{1}^{3} a_{2}^{3} a_{5} a_{6}^{2} \\
& -1632 a_{1} a_{2}^{4} a_{5} a_{6}^{2}-287 a_{1}^{6} a_{3} a_{5} a_{6}^{2}+2232 a_{1}^{4} a_{2} a_{3} a_{5} a_{6}^{2} \\
& -5214 a_{1}^{2} a_{2}^{2} a_{3} a_{5} a_{6}^{2}+3528 a_{2}^{3} a_{3} a_{5} a_{6}^{2}-639 a_{1}^{3} a_{3}^{2} a_{5} a_{6}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +1080 a_{1} a_{2} a_{3}^{2} a_{5} a_{6}^{2}+402 a_{1}^{5} a_{4} a_{5} a_{6}^{2}-2542 a_{1}^{3} a_{2} a_{4} a_{5} a_{6}^{2} \\
& +4008 a_{1} a_{2}^{2} a_{4} a_{5} a_{6}^{2}+1566 a_{1}^{2} a_{3} a_{4} a_{5} a_{6}^{2}-2160 a_{2} a_{3} a_{4} a_{5} a_{6}^{2} \\
& -1224 a_{1} a_{4}^{2} a_{5} a_{6}^{2}-793 a_{1}^{4} a_{5}^{2} a_{6}^{2}+4200 a_{1}^{2} a_{2} a_{5}^{2} a_{6}^{2}-5472 a_{2}^{2} a_{5}^{2} a_{6}^{2} \\
& -1080 a_{1} a_{3} a_{5}^{2} a_{6}^{2}+2160 a_{4} a_{5}^{2} a_{6}^{2}-20 a_{1}^{8} a_{6}^{3}+294 a_{1}^{6} a_{2} a_{6}^{3} \\
& -1376 a_{1}^{4} a_{2}^{2} a_{6}^{3}+2472 a_{1}^{2} a_{2}^{3} a_{6}^{3}-1440 a_{2}^{4} a_{6}^{3}-118 a_{1}^{5} a_{3} a_{6}^{3} \\
& +774 a_{1}^{3} a_{2} a_{3} a_{6}^{3}-1080 a_{1} a_{2}^{2} a_{3} a_{6}^{3}+216 a_{1}^{2} a_{3}^{2} a_{6}^{3}+444 a_{1}^{4} a_{4} a_{6}^{3} \\
& -2412 a_{1}^{2} a_{2} a_{4} a_{6}^{3}+2160 a_{2}^{2} a_{4} a_{6}^{3}+432 a_{1} a_{3} a_{4} a_{6}^{3}-432 a_{4}^{2} a_{6}^{3} \\
& +288 a_{1}^{3} a_{5} a_{6}^{3}-432 a_{1}^{2} a_{6}^{4} \\
& c_{14}=2 a_{2} a_{3}^{2} a_{4}^{5}+2 a_{1}^{2} a_{2} a_{4}^{6}-8 a_{2}^{2} a_{4}^{6}+a_{1} a_{3} a_{4}^{6}-4 a_{4}^{7}+a_{1} a_{2}^{2} a_{3}^{2} a_{4}^{3} a_{5} \\
& +2 a_{1}^{2} a_{3}^{3} a_{4}^{3} a_{5}-15 a_{2} a_{3}^{3} a_{4}^{3} a_{5}+a_{1}^{3} a_{2}^{2} a_{4}^{4} a_{5}-4 a_{1} a_{2}^{3} a_{4}^{4} a_{5}+2 a_{1}^{4} a_{3} a_{4}^{4} a_{5} \\
& -24 a_{1}^{2} a_{2} a_{3} a_{4}^{4} a_{5}+64 a_{2}^{2} a_{3} a_{4}^{4} a_{5}-16 a_{1} a_{3}^{2} a_{4}^{4} a_{5}-7 a_{1}^{3} a_{4}^{5} a_{5} \\
& +27 a_{1} a_{2} a_{4}^{5} a_{5}+39 a_{3} a_{4}^{5} a_{5}+a_{1}^{3} a_{2} a_{5}^{3} a_{4} a_{5}^{2}-3 a_{1} a_{2}^{2} a_{3}^{3} a_{4} a_{5}^{2} \\
& -9 a_{1}^{2} a_{3}^{4} a_{4} a_{5}^{2}+27 a_{2} a_{3}^{4} a_{4} a_{5}^{2}+a_{1}^{5} a_{2} a_{3} a_{4}^{2} a_{5}^{2}-8 a_{1}^{3} a_{2}^{2} a_{3} a_{4}^{2} a_{5}^{2} \\
& +15 a_{1} a_{2}^{3} a_{3} a_{4}^{2} a_{5}^{2}-7 a_{1}^{4} a_{3}^{2} a_{4}^{2} a_{5}^{2}+51 a_{1}^{2} a_{2} a_{3}^{2} a_{4}^{2} a_{5}^{2}-114 a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5}^{2} \\
& +72 a_{1} a_{3}^{3} a_{4}^{2} a_{5}^{2}+3 a_{1}^{6} a_{4}^{3} a_{5}^{2}-32 a_{1}^{4} a_{2} a_{4}^{3} a_{5}^{2}+103 a_{1}^{2} a_{2}^{2} a_{4}^{3} a_{5}^{2}-90 a_{2}^{3} a_{4}^{3} a_{5}^{2} \\
& +50 a_{1}^{3} a_{3} a_{4}^{3} a_{5}^{2}-166 a_{1} a_{2} a_{3} a_{4}^{3} a_{5}^{2}-129 a_{3}^{2} a_{4}^{3} a_{5}^{2}-2 a_{1}^{2} a_{4}^{4} a_{5}^{2} \\
& -49 a_{2} a_{4}^{4} a_{5}^{2}+2 a_{1}^{3} a_{2}^{2} a_{3}^{2} a_{5}^{3}-9 a_{1} a_{2}^{3} a_{3}^{2} a_{5}^{3}-12 a_{1}^{4} a_{3}^{3} a_{5}^{3}+63 a_{1}^{2} a_{2} a_{3}^{3} a_{5}^{3} \\
& -27 a_{2}^{2} a_{3}^{3} a_{5}^{3}-81 a_{1} a_{3}^{4} a_{5}^{3}+a_{1}^{7} a_{2} a_{4} a_{5}^{3}-7 a_{1}^{5} a_{2}^{2} a_{5}^{3}+12 a_{1}^{3} a_{2}^{3} a_{4} a_{5}^{3} \\
& -17 a_{1}^{6} a_{3} a_{4} a_{5}^{3}+158 a_{1}^{4} a_{2} a_{3} a_{4} a_{5}^{3}-426 a_{1}^{2} a_{2}^{2} a_{3} a_{4} a_{5}^{3}+324 a_{2}^{3} a_{3} a_{4} a_{5}^{3} \\
& +67 a_{1}^{3} a_{3}^{2} a_{4} a_{5}^{3}+159 a_{1} a_{2} a_{3}^{2} a_{4} a_{5}^{3}+135 a_{3}^{3} a_{4} a_{5}^{3}+8 a_{1}^{5} a_{4}^{2} a_{5}^{3} \\
& -64 a_{1}^{3} a_{2} a_{4}^{2} a_{5}^{3}+93 a_{1} a_{2}^{2} a_{4}^{2} a_{5}^{3}-42 a_{1}^{2} a_{3} a_{4}^{2} a_{5}^{3}+336 a_{2} a_{3} a_{4}^{2} a_{5}^{3} \\
& +57 a_{1} a_{4}^{3} a_{5}^{3}-4 a_{1}^{8} a_{5}^{4}+43 a_{1}^{6} a_{2} a_{5}^{4}-174 a_{1}^{4} a_{2}^{2} a_{5}^{4}+324 a_{1}^{2} a_{2}^{3} a_{5}^{4} \\
& -243 a_{2}^{4} a_{5}^{4}-7 a_{1}^{5} a_{3} a_{5}^{4}-13 a_{1}^{3} a_{2} a_{3} a_{5}^{4}+99 a_{1} a_{2}^{2} a_{3} a_{5}^{4}+153 a_{1}^{2} a_{3}^{2} a_{5}^{4} \\
& -432 a_{2} a_{3}^{2} a_{5}^{4}+11 a_{1}^{4} a_{4} a_{5}^{4}+48 a_{1}^{2} a_{2} a_{4} a_{5}^{4}-162 a_{2}^{2} a_{4} a_{5}^{4}-210 a_{1} a_{3} a_{4} a_{5}^{4} \\
& -60 a_{4}^{2} a_{5}^{4}-34 a_{1}^{3} a_{5}^{5}+72 a_{1} a_{2} a_{5}^{5}+216 a_{3} a_{5}^{5}+2 a_{1}^{3} a_{2} a_{3}^{3} a_{4}^{2} a_{6} \\
& -9 a_{1} a_{2}^{2} a_{3}^{3} a_{4}^{2} a_{6}+27 a_{2} a_{3}^{4} a_{4}^{2} a_{6}+2 a_{1}^{5} a_{2} a_{3} a_{4}^{3} a_{6}-16 a_{1}^{3} a_{2}^{2} a_{3} a_{4}^{3} a_{6} \\
& +32 a_{1} a_{2}^{3} a_{3} a_{4}^{3} a_{6}-8 a_{1}^{4} a_{3}^{2} a_{4}^{3} a_{6}+64 a_{1}^{2} a_{2} a_{3}^{2} a_{4}^{3} a_{6}-138 a_{2}^{2} a_{3}^{2} a_{4}^{3} a_{6}
\end{aligned}
$$

$$
\begin{aligned}
& -27 a_{1} a_{3}^{3} a_{4}^{3} a_{6}-6 a_{1}^{6} a_{4}^{4} a_{6}+50 a_{1}^{4} a_{2} a_{4}^{4} a_{6}-136 a_{1}^{2} a_{2}^{2} a_{4}^{4} a_{6} \\
& +128 a_{2}^{3} a_{4}^{4} a_{6}-23 a_{1}^{3} a_{3} a_{4}^{4} a_{6}+69 a_{1} a_{2} a_{3} a_{4}^{4} a_{6}+27 a_{3}^{2} a_{4}^{4} a_{6}+45 a_{1}^{2} a_{4}^{5} a_{6} \\
& -122 a_{2} a_{4}^{5} a_{6}+2 a_{1}^{5} a_{3}^{4} a_{5} a_{6}-15 a_{1}^{3} a_{2} a_{3}^{4} a_{5} a_{6}+27 a_{1} a_{2}^{2} a_{3}^{4} a_{5} a_{6} \\
& +27 a_{1}^{2} a_{3}^{5} a_{5} a_{6}-81 a_{2} a_{3}^{5} a_{5} a_{6}+2 a_{1}^{7} a_{3}^{2} a_{4} a_{5} a_{6}-24 a_{1}^{5} a_{2} a_{3}^{2} a_{4} a_{5} a_{6} \\
& +84 a_{1}^{3} a_{2}^{2} a_{3}^{2} a_{4} a_{5} a_{6}-84 a_{1} a_{2}^{3} a_{3}^{2} a_{4} a_{5} a_{6}+59 a_{1}^{4} a_{3}^{3} a_{4} a_{5} a_{6} \\
& -342 a_{1}^{2} a_{2} a_{3}^{3} a_{4} a_{5} a_{6}+432 a_{2}^{2} a_{3}^{3} a_{4} a_{5} a_{6}+27 a_{1} a_{3}^{4} a_{4} a_{5} a_{6} \\
& -8 a_{1}^{5} a_{2}^{2} a_{4}^{2} a_{5} a_{6}+56 a_{1}^{3} a_{2}^{3} a_{4}^{2} a_{5} a_{6}-96 a_{1} a_{2}^{4} a_{4}^{2} a_{5} a_{6}+24 a_{1}^{6} a_{3} a_{4}^{2} a_{5} a_{6} \\
& -196 a_{1}^{4} a_{2} a_{3} a_{4}^{2} a_{5} a_{6}+474 a_{1}^{2} a_{2}^{2} a_{3} a_{4}^{2} a_{5} a_{6}-312 a_{2}^{3} a_{3} a_{4}^{2} a_{5} a_{6} \\
& +15 a_{1}^{3} a_{3}^{2} a_{4}^{2} a_{5} a_{6}+36 a_{1} a_{2} a_{3}^{2} a_{4}^{2} a_{5} a_{6}-81 a_{3}^{3} a_{4}^{2} a_{5} a_{6}+10 a_{1}^{5} a_{4}^{3} a_{5} a_{6} \\
& -10 a_{1}^{3} a_{2} a_{4}^{3} a_{5} a_{6}-108 a_{1} a_{2}^{2} a_{4}^{3} a_{5} a_{6}-158 a_{1}^{2} a_{3} a_{4}^{3} a_{5} a_{6} \\
& +600 a_{2} a_{3} a_{4}^{3} a_{5} a_{6}-83 a_{1} a_{4}^{4} a_{5} a_{6}+2 a_{1}^{9} a_{3} a_{5}^{2} a_{6}-25 a_{1}^{7} a_{2} a_{3} a_{5}^{2} a_{6} \\
& +115 a_{1}^{5} a_{2}^{2} a_{3} a_{5}^{2} a_{6}-1134 a_{2} a_{3}^{2} a_{4} a_{5}^{2} a_{6}-232 a_{1}^{3} a_{2}^{3} a_{3} a_{5}^{2} a_{6} \\
& +180 a_{1} a_{2}^{4} a_{3} a_{5}^{2} a_{6}+29 a_{1}^{6} a_{3}^{2} a_{5}^{2} a_{6}-228 a_{1}^{4} a_{2} a_{3}^{2} a_{5}^{2} a_{6}+579 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{5}^{2} a_{6} \\
& -594 a_{2}^{3} a_{3}^{2} a_{5}^{2} a_{6}+24 a_{1}^{3} a_{3}^{3} a_{5}^{2} a_{6}+135 a_{1} a_{2} a_{3}^{3} a_{5}^{2} a_{6}+81 a_{3}^{4} a_{5}^{2} a_{6} \\
& +a_{1}^{8} a_{4} a_{5}^{2} a_{6}-16 a_{1}^{6} a_{2} a_{4} a_{5}^{2} a_{6}+130 a_{1}^{4} a_{2}^{2} a_{4} a_{5}^{2} a_{6}-492 a_{1}^{2} a_{2}^{3} a_{4} a_{5}^{2} a_{6} \\
& +648 a_{2}^{4} a_{4} a_{5}^{2} a_{6}-90 a_{1}^{5} a_{3} a_{4} a_{5}^{2} a_{6}+526 a_{1}^{3} a_{2} a_{3} a_{4} a_{5}^{2} a_{6} \\
& -654 a_{1} a_{2}^{2} a_{3} a_{4} a_{5}^{2} a_{6}+9 a_{1}^{2} a_{3}^{2} a_{4} a_{5}^{2} a_{6}-82 a_{1}^{4} a_{4}^{2} a_{5}^{2} a_{6}+510 a_{1}^{2} a_{2} a_{4}^{2} a_{5}^{2} a_{6} \\
& -606 a_{2}^{2} a_{4}^{2} a_{5}^{2} a_{6}+225 a_{1} a_{3} a_{4}^{2} a_{5}^{2} a_{6}+138 a_{4}^{3} a_{5}^{2} a_{6}+35 a_{1}^{7} a_{5}^{3} a_{6} \\
& -336 a_{1}^{5} a_{2} a_{5}^{3} a_{6}+1078 a_{1}^{3} a_{2}^{2} a_{5}^{3} a_{6}-1152 a_{1} a_{2}^{3} a_{5}^{3} a_{6}+468 a_{1}^{4} a_{3} a_{5}^{3} a_{6} \\
& -2562 a_{1}^{2} a_{2} a_{3} a_{5}^{3} a_{6}+3348 a_{2}^{2} a_{3} a_{5}^{3} a_{6}+486 a_{1} a_{3}^{2} a_{5}^{3} a_{6}-302 a_{1}^{3} a_{4} a_{5}^{3} a_{6} \\
& +720 a_{1} a_{2} a_{4} a_{5}^{3} a_{6}-540 a_{3} a_{4} a_{5}^{3} a_{6}+516 a_{1}^{2} a_{5}^{4} a_{6}-1296 a_{2} a_{5}^{4} a_{6} \\
& +3 a_{1}^{7} a_{3}^{3} a_{6}^{2}-29 a_{1}^{5} a_{2} a_{3}^{3} a_{6}^{2}+96 a_{1}^{3} a_{2}^{2} a_{3}^{3} a_{6}^{2}-108 a_{1} a_{2}^{3} a_{3}^{3} a_{6}^{2} \\
& -27 a_{1}^{2} a_{2} a_{3}^{4} a_{6}^{2}+81 a_{2}^{2} a_{3}^{4} a_{6}^{2}+2 a_{1}^{9} a_{3} a_{4} a_{6}^{2}-32 a_{1}^{7} a_{2} a_{3} a_{4} a_{6}^{2} \\
& +184 a_{1}^{5} a_{2}^{2} a_{3} a_{4} a_{6}^{2}-448 a_{1}^{3} a_{2}^{3} a_{3} a_{4} a_{6}^{2}+384 a_{1} a_{2}^{4} a_{3} a_{4} a_{6}^{2}+5 a_{1}^{6} a_{3}^{2} a_{4} a_{6}^{2} \\
& -78 a_{1}^{4} a_{2} a_{3}^{2} a_{4} a_{6}^{2}+288 a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4} a_{6}^{2}-216 a_{2}^{3} a_{3}^{2} a_{4} a_{6}^{2}+27 a_{1}^{3} a_{3}^{3} a_{4} a_{6}^{2} \\
& -162 a_{1} a_{2} a_{3}^{3} a_{4} a_{6}^{2}+10 a_{1}^{8} a_{4}^{2} a_{6}^{2}-80 a_{1}^{6} a_{2} a_{4}^{2} a_{6}^{2}+160 a_{1}^{4} a_{2}^{2} a_{4}^{2} a_{6}^{2} \\
& +96 a_{1}^{2} a_{2}^{3} a_{4}^{2} a_{6}^{2}-384 a_{2}^{4} a_{4}^{2} a_{6}^{2}+54 a_{1}^{5} a_{3} a_{4}^{2} a_{6}^{2}-221 a_{1}^{3} a_{2} a_{3} a_{4}^{2} a_{6}^{2} \\
& +144 a_{1} a_{2}^{2} a_{3} a_{4}^{2} a_{6}^{2}+81 a_{1}^{2} a_{3}^{2} a_{4}^{2} a_{6}^{2}-54 a_{2} a_{3}^{2} a_{4}^{2} a_{6}^{2}-53 a_{1}^{4} a_{4}^{3} a_{6}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +62 a_{1}^{2} a_{2} a_{4}^{3} a_{6}^{2}+336 a_{2}^{2} a_{4}^{3} a_{6}^{2}-54 a_{1} a_{3} a_{4}^{3} a_{6}^{2}-27 a_{4}^{4} a_{6}^{2}+3 a_{1}^{11} a_{5} a_{6}^{2} \\
& -44 a_{1}^{9} a_{2} a_{5} a_{6}^{2}+256 a_{1}^{7} a_{2}^{2} a_{5} a_{6}^{2}-736 a_{1}^{5} a_{2}^{3} a_{5} a_{6}^{2}+1040 a_{1}^{3} a_{2}^{4} a_{5} a_{6}^{2} \\
& -576 a_{1} a_{2}^{5} a_{5} a_{6}^{2}+26 a_{1}^{8} a_{3} a_{5} a_{6}^{2}-278 a_{1}^{6} a_{2} a_{3} a_{5} a_{6}^{2}+1048 a_{1}^{4} a_{2}^{2} a_{3} a_{5} a_{6}^{2} \\
& -1608 a_{1}^{2} a_{2}^{3} a_{3} a_{5} a_{6}^{2}+864 a_{2}^{4} a_{3} a_{5} a_{6}^{2}+31 a_{1}^{5} a_{3}^{2} a_{5} a_{6}^{2}-93 a_{1}^{3} a_{2} a_{3}^{2} a_{5} a_{6}^{2} \\
& -108 a_{1} a_{2}^{2} a_{3}^{2} a_{5} a_{6}^{2}-297 a_{1}^{2} a_{3}^{3} a_{5} a_{6}^{2}+648 a_{2} a_{3}^{3} a_{5} a_{6}^{2}-115 a_{1}^{7} a_{4} a_{5} a_{6}^{2} \\
& +1048 a_{1}^{5} a_{2} a_{4} a_{5} a_{6}^{2}-3080 a_{1}^{3} a_{2}^{2} a_{4} a_{5} a_{6}^{2}+2880 a_{1} a_{2}^{3} a_{4} a_{5} a_{6}^{2} \\
& -554 a_{1}^{4} a_{3} a_{4} a_{5} a_{6}^{2}+2448 a_{1}^{2} a_{2} a_{3} a_{4} a_{5} a_{6}^{2}-1728 a_{2}^{2} a_{3} a_{4} a_{5} a_{6}^{2} \\
& +108 a_{1} a_{3}^{2} a_{4} a_{5} a_{6}^{2}+807 a_{1}^{3} a_{4}^{2} a_{5} a_{6}^{2}-2844 a_{1} a_{2} a_{4}^{2} a_{5} a_{6}^{2}+324 a_{3} a_{4}^{2} a_{5} a_{6}^{2} \\
& +103 a_{1}^{6} a_{5}^{2} a_{6}^{2}-1048 a_{1}^{4} a_{2} a_{5}^{2} a_{6}^{2}+3318 a_{1}^{2} a_{2}^{2} a_{5}^{2} a_{6}^{2}-3240 a_{2}^{3} a_{5}^{2} a_{6}^{2} \\
& +39 a_{1}^{3} a_{3} a_{5}^{2} a_{6}^{2}-540 a_{1} a_{2} a_{3} a_{5}^{2} a_{6}^{2}-648 a_{3}^{2} a_{5}^{2} a_{6}^{2}-810 a_{1}^{2} a_{4} a_{5}^{2} a_{6}^{2} \\
& +4104 a_{2} a_{4} a_{5}^{2} a_{6}^{2}-648 a_{1} a_{5}^{3} a_{6}^{2}-8 a_{1}^{10} a_{6}^{3}+88 a_{1}^{8} a_{2} a_{6}^{3}-352 a_{1}^{6} a_{2}^{2} a_{6}^{3} \\
& +608 a_{1}^{4} a_{2}^{3} a_{6}^{3}-384 a_{1}^{2} a_{2}^{4} a_{6}^{3}-29 a_{1}^{7} a_{3} a_{6}^{3}+200 a_{1}^{5} a_{2} a_{3} a_{6}^{3} \\
& -492 a_{1}^{3} a_{2}^{2} a_{3} a_{6}^{3}+432 a_{1} a_{2}^{3} a_{3} a_{6}^{3}-27 a_{1}^{4} a_{3}^{2} a_{6}^{3}+378 a_{1}^{2} a_{2} a_{3}^{2} a_{6}^{3} \\
& -648 a_{2}^{2} a_{3}^{2} a_{6}^{3}-6 a_{1}^{6} a_{4} a_{6}^{3}+228 a_{1}^{4} a_{2} a_{4} a_{6}^{3}-936 a_{1}^{2} a_{2}^{2} a_{4} a_{6}^{3} \\
& +864 a_{2}^{3} a_{4} a_{6}^{3}-270 a_{1}^{3} a_{3} a_{4} a_{6}^{3}+648 a_{1} a_{2} a_{3} a_{4} a_{6}^{3}+162 a_{1}^{2} a_{4}^{2} a_{6}^{3} \\
& -216 a_{2} a_{4}^{2} a_{6}^{3}-18 a_{1}^{5} a_{5} a_{6}^{3}+72 a_{1}^{3} a_{2} a_{5} a_{6}^{3}+756 a_{1}^{2} a_{3} a_{5} a_{6}^{3} \\
& -1296 a_{2} a_{3} a_{5} a_{6}^{3}-864 a_{1} a_{4} a_{5} a_{6}^{3}+1296 a_{5}^{2} a_{6}^{3}+189 a_{1}^{4} a_{6}^{4} \\
& -1080 a_{1}^{2} a_{2} a_{6}^{4}+1296 a_{2}^{2} a_{6}^{4} \\
& c_{15}=a_{3}^{2} a_{4}^{6}+a_{1}^{2} a_{4}^{7}-4 a_{2} a_{4}^{7}+a_{1} a_{2} a_{3}^{2} a_{4}^{4} a_{5}-9 a_{3}^{3} a_{4}^{4} a_{5}+a_{1}^{3} a_{2} a_{4}^{5} a_{5} \\
& -4 a_{1} a_{2}^{2} a_{4}^{5} a_{5}-10 a_{1}^{2} a_{3} a_{4}^{5} a_{5}+38 a_{2} a_{3} a_{4}^{5} a_{5}+2 a_{1} a_{4}^{6} a_{5}+a_{2}^{3} a_{3}^{2} a_{4}^{2} a_{5}^{2} \\
& +a_{1}^{3} a_{3}^{3} a_{4}^{2} a_{5}^{2}-9 a_{1} a_{2} a_{3}^{3} a_{4}^{2} a_{5}^{2}-27 a_{3}^{4} a_{4}^{2} a_{5}^{2}+a_{1}^{2} a_{2}^{3} a_{4}^{3} a_{5}^{2}-4 a_{2}^{4} a_{4}^{3} a_{5}^{2} \\
& +a_{1}^{5} a_{3} a_{4}^{3} a_{5}^{2}-14 a_{1}^{3} a_{2} a_{3} a_{4}^{3} a_{5}^{2}+38 a_{1} a_{2}^{2} a_{3} a_{4}^{3} a_{5}^{2}+33 a_{1}^{2} a_{3}^{2} a_{4}^{3} a_{5}^{2} \\
& -117 a_{2} a_{3}^{2} a_{4}^{3} a_{5}^{2}+2 a_{1}^{4} a_{4}^{4} a_{5}^{2}+18 a_{1}^{2} a_{2} a_{4}^{4} a_{5}^{2}-31 a_{2}^{2} a_{4}^{4} a_{5}^{2} \\
& -16 a_{1} a_{3} a_{4}^{4} a_{5}^{2}-3 a_{4}^{5} a_{5}^{2}+a_{1}^{2} a_{2}^{2} a_{3}^{3} a_{5}^{3}-4 a_{2}^{3} a_{3}^{3} a_{5}^{3}-4 a_{1}^{3} a_{3}^{4} a_{5}^{3} \\
& +18 a_{1} a_{2} a_{3}^{4} a_{5}^{3}-27 a_{3}^{5} a_{5}^{3}+a_{1}^{4} a_{2}^{2} a_{3} a_{4} a_{5}^{3}-9 a_{1}^{2} a_{2}^{3} a_{3} a_{4} a_{5}^{3} \\
& +18 a_{2}^{4} a_{3} a_{4} a_{5}^{3}-4 a_{1}^{5} a_{3}^{2} a_{4} a_{5}^{3}+38 a_{1}^{3} a_{2} a_{3}^{2} a_{4} a_{5}^{3}-80 a_{1} a_{2}^{2} a_{3}^{2} a_{4} a_{5}^{3} \\
& -33 a_{1}^{2} a_{3}^{3} a_{4} a_{5}^{3}+117 a_{2} a_{3}^{3} a_{4} a_{5}^{3}+a_{1}^{7} a_{4}^{2} a_{5}^{3}-10 a_{1}^{5} a_{2} a_{4}^{2} a_{5}^{3} \\
& +33 a_{1}^{3} a_{2}^{2} a_{4}^{2} a_{5}^{3}-33 a_{1} a_{2}^{3} a_{4}^{2} a_{5}^{3}-18 a_{1}^{4} a_{3} a_{4}^{2} a_{5}^{3}-120 a_{1}^{2} a_{2} a_{3} a_{4}^{2} a_{5}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& +157 a_{2}^{2} a_{3} a_{4}^{2} a_{5}^{3}+33 a_{1} a_{3}^{2} a_{4}^{2} a_{5}^{3}+12 a_{1}^{3} a_{4}^{3} a_{5}^{3}+41 a_{1} a_{2} a_{4}^{3} a_{5}^{3} \\
& +22 a_{3} a_{4}^{3} a_{5}^{3}+a_{1}^{6} a_{2}^{2} a_{5}^{4}-9 a_{1}^{4} a_{2}^{3} a_{5}^{4}+27 a_{1}^{2} a_{2}^{4} a_{5}^{4}-27 a_{2}^{5} a_{5}^{4} \\
& -4 a_{1}^{7} a_{3} a_{5}^{4}+38 a_{1}^{5} a_{2} a_{3} a_{5}^{4}-117 a_{1}^{3} a_{2}^{2} a_{3} a_{5}^{4}-117 a_{1} a_{2}^{3} a_{3} a_{5}^{4} \\
& -31 a_{1}^{4} a_{3}^{2} a_{5}^{4}+157 a_{1}^{2} a_{2} a_{3}^{2} a_{5}^{4}-186 a_{2}^{2} a_{3}^{2} a_{5}^{4}+18 a_{1} a_{3}^{3} a_{5}^{4}+2 a_{1}^{6} a_{4} a_{5}^{4} \\
& -16 a_{1}^{4} a_{2} a_{4} a_{5}^{4}+33 a_{1}^{2} a_{2}^{2} a_{4} a_{5}^{4}-18 a_{2}^{3} a_{4} a_{5}^{4}-41 a_{1}^{3} a_{3} a_{4} a_{5}^{4} \\
& -86 a_{1} a_{2} a_{3} a_{4} a_{5}^{4}-36 a_{3}^{2} a_{4} a_{5}^{4}+6 a_{1}^{2} a_{4}^{2} a_{5}^{4}-68 a_{2} a_{4}^{2} a_{5}^{4}-3 a_{1}^{5} a_{5}^{5} \\
& +22 a_{1}^{3} a_{2} a_{5}^{5}-36 a_{1} a_{2}^{2} a_{5}^{5}-68 a_{1}^{2} a_{3} a_{5}^{5}+168 a_{2} a_{3} a_{5}^{5}+40 a_{1} a_{4} a_{5}^{5} \\
& +32 a_{5}^{6}+a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{3} a_{6}-4 a_{2}^{3} a_{3}^{2} a_{4}^{3} a_{6}-2 a_{1}^{3} a_{3}^{3} a_{4}^{3} a_{6}+9 a_{1} a_{2} a_{3}^{3} a_{4}^{3} a_{6} \\
& +a_{1}^{4} a_{2}^{2} a_{4}^{4} a_{6}-8 a_{1}^{2} a_{2}^{3} a_{4}^{4} a_{6}+16 a_{2}^{4} a_{4}^{4} a_{6}-2 a_{1}^{5} a_{3} a_{4}^{4} a_{6} \\
& +17 a_{1}^{3} a_{2} a_{3} a_{4}^{4} a_{6}-36 a_{1} a_{2}^{2} a_{3} a_{4}^{4} a_{6}-3 a_{1}^{2} a_{3}^{2} a_{4}^{4} a_{6}-4 a_{1}^{4} a_{4}^{5} a_{6} \\
& -17 a_{1}^{2} a_{2} a_{4}^{5} a_{6}-4 a_{2}^{2} a_{4}^{5} a_{6}-3 a_{1} a_{3} a_{4}^{5} a_{6}+a_{1}^{4} a_{2} a_{3}^{3} a_{4} a_{5} a_{6} \\
& +9 a_{1}^{2} a_{2}^{2} a_{3}^{3} a_{4} a_{5} a_{6}+18 a_{2}^{3} a_{3}^{3} a_{4} a_{5} a_{6}+9 a_{1}^{3} a_{3}^{4} a_{4} a_{5} a_{6} \\
& -27 a_{1} a_{2} a_{3}^{4} a_{4} a_{5} a_{6}+a_{1}^{6} a_{2} a_{3} a_{4}^{2} a_{5} a_{6}-14 a_{1}^{4} a_{2}^{2} a_{3} a_{4}^{2} a_{5} a_{6} \\
& +60 a_{1}^{2} a_{2}^{3} a_{3} a_{4}^{2} a_{5} a_{6}-80 a_{2}^{4} a_{3} a_{4}^{2} a_{5} a_{6}+8 a_{1}^{5} a_{3}^{2} a_{4}^{2} a_{5} a_{6} \\
& -63 a_{1}^{3} a_{2} a_{3}^{2} a_{4}^{2} a_{5} a_{6}+117 a_{1} a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{5} a_{6}-27 a_{2} a_{3}^{3} a_{4}^{2} a_{5} a_{6} \\
& -3 a_{1}^{7} a_{4}^{3} a_{5} a_{6}+24 a_{1}^{5} a_{2} a_{4}^{3} a_{5} a_{6}-54 a_{1}^{3} a_{2}^{2} a_{4}^{3} a_{5} a_{6}+24 a_{1} a_{2}^{3} a_{4}^{3} a_{5} a_{6} \\
& +6 a_{1}^{4} a_{3} a_{4}^{3} a_{5} a_{6}-54 a_{1}^{2} a_{2} a_{3} a_{4}^{3} a_{5} a_{6}+138 a_{2}^{2} a_{3} a_{4}^{3} a_{5} a_{6} \\
& +54 a_{1} a_{3}^{2} a_{4}^{3} a_{5} a_{6}+28 a_{1}^{3} a_{4}^{4} a_{5} a_{6}-137 a_{1} a_{2} a_{4}^{4} a_{5} a_{6}+9 a_{3} a_{4}^{4} a_{5} a_{6} \\
& -a_{1}^{4} a_{2}^{2} a_{3}^{2} a_{5}^{2} a_{6}+6 a_{1}^{2} a_{2}^{3} a_{3}^{2} a_{5}^{2} a_{6}-6 a_{2}^{4} a_{3}^{2} a_{5}^{2} a_{6}+3 a_{1}^{3} a_{2} a_{3}^{3} a_{5}^{2} a_{6} \\
& -27 a_{1} a_{2}^{2} a_{3}^{3} a_{5}^{2} a_{6}+81 a_{2} a_{3}^{4} a_{5}^{2} a_{6}+a_{1}^{8} a_{2} a_{4} a_{5}^{2} a_{6}-15 a_{1}^{6} a_{2}^{2} a_{4} a_{5}^{2} a_{6} \\
& +80 a_{1}^{4} a_{2}^{3} a_{4} a_{5}^{2} a_{6}-180 a_{1}^{2} a_{2}^{4} a_{4} a_{5}^{2} a_{6}+144 a_{2}^{5} a_{4} a_{5}^{2} a_{6}+9 a_{1}^{7} a_{3} a_{4} a_{5}^{2} a_{6} \\
& -64 a_{1}^{5} a_{2} a_{3} a_{4} a_{5}^{2} a_{6}+119 a_{1}^{3} a_{2}^{2} a_{3} a_{4} a_{5}^{2} a_{6}-26 a_{1} a_{2}^{3} a_{3} a_{4} a_{5}^{2} a_{6} \\
& +3 a_{1}^{4} a_{3}^{2} a_{4} a_{5}^{2} a_{6}+135 a_{1}^{2} a_{2} a_{3}^{2} a_{4} a_{5}^{2} a_{6}-378 a_{2}^{2} a_{3}^{2} a_{4} a_{5}^{2} a_{6} \\
& -108 a_{1} a_{3}^{3} a_{4} a_{5}^{2} a_{6}-38 a_{1}^{4} a_{2} a_{4}^{2} a_{5}^{2} a_{6}+210 a_{1}^{2} a_{2}^{2} a_{4}^{2} a_{5}^{2} a_{6} \\
& -286 a_{2}^{3} a_{4}^{2} a_{5}^{2} a_{6}-94 a_{1}^{3} a_{3} a_{4}^{2} a_{5}^{2} a_{6}+261 a_{1} a_{2} a_{3} a_{4}^{2} a_{5}^{2} a_{6}-108 a_{3}^{2} a_{4}^{2} a_{5}^{2} a_{6} \\
& +20 a_{1}^{2} a_{4}^{3} a_{5}^{2} a_{6}+210 a_{2} a_{4}^{3} a_{5}^{2} a_{6}-4 a_{1}^{9} a_{5}^{3} a_{6}+49 a_{1}^{7} a_{2} a_{5}^{3} a_{6} \\
& -227 a_{1}^{5} a_{2}^{2} a_{5}^{3} a_{6}+468 a_{1}^{3} a_{2}^{3} a_{5}^{3} a_{6}-360 a_{1} a_{2}^{4} a_{5}^{3} a_{6}-35 a_{1}^{6} a_{3} a_{5}^{3} a_{6} \\
& +313 a_{1}^{4} a_{2} a_{3} a_{5}^{3} a_{6}-905 a_{1}^{2} a_{2}^{2} a_{3} a_{5}^{3} a_{6}+840 a_{2}^{3} a_{3} a_{5}^{3} a_{6}-11 a_{1}^{3} a_{3}^{2} a_{5}^{3} a_{6}
\end{aligned}
$$

$$
\begin{aligned}
& +18 a_{1} a_{2} a_{3}^{2} a_{5}^{3} a_{6}+216 a_{3}^{3} a_{5}^{3} a_{6}+49 a_{1}^{5} a_{4} a_{5}^{3} a_{6}-282 a_{1}^{3} a_{2} a_{4} a_{5}^{3} a_{6} \\
& +416 a_{1} a_{2}^{2} a_{4} a_{5}^{3} a_{6}+126 a_{1}^{2} a_{3} a_{4} a_{5}^{3} a_{6}-468 a_{2} a_{3} a_{4} a_{5}^{3} a_{6} \\
& -192 a_{1} a_{4}^{2} a_{5}^{3} a_{6}-54 a_{1}^{4} a_{5}^{4} a_{6}+308 a_{1}^{2} a_{2} a_{5}^{4} a_{6}-456 a_{2}^{2} a_{5}^{4} a_{6} \\
& +72 a_{1} a_{3} a_{5}^{4} a_{6}+144 a_{4} a_{5}^{4} a_{6}+a_{1}^{6} a_{3}^{4} a_{6}^{2}-9 a_{1}^{4} a_{2} a_{3}^{4} a_{6}^{2}+27 a_{1}^{2} a_{2}^{2} a_{3}^{4} a_{6}^{2} \\
& -27 a_{2}^{3} a_{3}^{4} a_{6}^{2}+a_{1}^{8} a_{3}^{2} a_{4} a_{6}^{2}-15 a_{1}^{6} a_{2} a_{3}^{2} a_{4} a_{6}^{2}+80 a_{1}^{4} a_{2}^{2} a_{3}^{2} a_{4} a_{6}^{2} \\
& -180 a_{1}^{2} a_{2}^{3} a_{3}^{2} a_{4} a_{6}^{2}+144 a_{2}^{4} a_{3}^{2} a_{4} a_{6}^{2}+3 a_{1}^{5} a_{3}^{3} a_{4} a_{6}^{2}-27 a_{1}^{3} a_{2} a_{3}^{3} a_{4} a_{6}^{2} \\
& +54 a_{1} a_{2}^{2} a_{3}^{3} a_{4} a_{6}^{2}-2 a_{1}^{8} a_{2} a_{4}^{2} a_{6}^{2}+24 a_{1}^{6} a_{2}^{2} a_{4}^{2} a_{6}^{2}-104 a_{1}^{4} a_{2}^{3} a_{4}^{2} a_{6}^{2} \\
& +192 a_{1}^{2} a_{2}^{4} a_{4}^{2} a_{6}^{2}-128 a_{2}^{5} a_{4}^{2} a_{6}^{2}+5 a_{1}^{7} a_{3} a_{4}^{2} a_{6}^{2}-58 a_{1}^{5} a_{2} a_{3} a_{4}^{2} a_{6}^{2} \\
& +212 a_{1}^{3} a_{2}^{2} a_{3} a_{4}^{2} a_{6}^{2}-240 a_{1} a_{2}^{3} a_{3} a_{4}^{2} a_{6}^{2}+12 a_{1}^{4} a_{3}^{2} a_{4}^{2} a_{6}^{2}-27 a_{1}^{2} a_{2} a_{3}^{2} a_{4}^{2} a_{6}^{2} \\
& -54 a_{2}^{2} a_{3}^{2} a_{4}^{2} a_{6}^{2}+8 a_{1}^{6} a_{4}^{3} a_{6}^{2}-31 a_{1}^{4} a_{2} a_{4}^{3} a_{6}^{2}-60 a_{1}^{2} a_{2}^{2} a_{4}^{3} a_{6}^{2} \\
& +224 a_{2}^{3} a_{4}^{3} a_{6}^{2}+4 a_{1}^{3} a_{3} a_{4}^{3} a_{6}^{2}+18 a_{1} a_{2} a_{3} a_{4}^{3} a_{6}^{2}+9 a_{1}^{2} a_{4}^{4} a_{6}^{2} \\
& -27 a_{2} a_{4}^{4} a_{6}^{2}+a_{1}^{10} a_{3} a_{5} a_{6}^{2}-14 a_{1}^{8} a_{2} a_{3} a_{5} a_{6}^{2}+80 a_{1}^{6} a_{2}^{2} a_{3} a_{5} a_{6}^{2} \\
& -232 a_{1}^{4} a_{2}^{3} a_{3} a_{5} a_{6}^{2}+336 a_{1}^{2} a_{2}^{4} a_{3} a_{5} a_{6}^{2}-192 a_{2}^{5} a_{3} a_{5} a_{6}^{2}+a_{1}^{7} a_{3}^{2} a_{5} a_{6}^{2} \\
& -13 a_{1}^{5} a_{2} a_{3}^{2} a_{5} a_{6}^{2}+60 a_{1}^{3} a_{2}^{2} a_{3}^{2} a_{5} a_{6}^{2}-72 a_{1} a_{2}^{3} a_{3}^{2} a_{5} a_{6}^{3}-27 a_{1}^{2} a_{2} a_{3}^{3} a_{5} a_{6}^{2} \\
& +10 a_{1}^{9} a_{4} a_{5} a_{6}^{2}-122 a_{1}^{7} a_{2} a_{4} a_{5} a_{6}^{2}+544 a_{1}^{5} a_{2}^{2} a_{4} a_{5} a_{6}^{2} \\
& -1048 a_{1}^{3} a_{2}^{3} a_{4} a_{5} a_{6}^{2}+736 a_{1} a_{2}^{4} a_{4} a_{5} a_{6}^{2}+31 a_{1}^{6} a_{3} a_{4} a_{5} a_{6}^{2} \\
& -209 a_{1}^{4} a_{2} a_{3} a_{4} a_{5} a_{6}^{2}+342 a_{1}^{2} a_{2}^{2} a_{3} a_{4} a_{5} a_{6}^{2}-72 a_{2}^{3} a_{3} a_{4} a_{5} a_{6}^{2} \\
& -54 a_{1}^{3} a_{3}^{2} a_{4} a_{5} a_{6}^{2}+324 a_{1} a_{2} a_{3}^{2} a_{4} a_{5} a_{6}^{2}-93 a_{1}^{5} a_{4}^{2} a_{5} a_{6}^{2} \\
& +695 a_{1}^{3} a_{2} a_{4}^{2} a_{5} a_{6}^{2}-1188 a_{1} a_{2}^{2} a_{4}^{2} a_{5} a_{6}^{2}-162 a_{1}^{2} a_{3} a_{4}^{2} a_{5} a_{6}^{2} \\
& +108 a_{2} a_{3} a_{4}^{2} a_{5} a_{6}^{2}+3 a_{1}^{8} a_{5}^{2} a_{6}^{2}+8 a_{1}^{6} a_{2} a_{5}^{2} a_{6}^{2}-192 a_{1}^{4} a_{2}^{2} a_{5}^{2} a_{6}^{2} \\
& +622 a_{1}^{2} a_{2}^{3} a_{5}^{2} a_{6}^{2}-600 a_{2}^{4} a_{5}^{2} a_{6}^{2}+8 a_{1}^{5} a_{3} a_{5}^{2} a_{6}^{2}-45 a_{1}^{3} a_{2} a_{3} a_{5}^{2} a_{6}^{2} \\
& +108 a_{1} a_{2}^{2} a_{3} a_{5}^{2} a_{6}^{2}+108 a_{1}^{2} a_{3}^{2} a_{5}^{2} a_{6}^{2}-648 a_{2} a_{3}^{2} a_{5}^{2} a_{6}^{2}+35 a_{1}^{4} a_{4} a_{5}^{2} a_{6}^{2} \\
& -666 a_{1}^{2} a_{2} a_{4} a_{5}^{2} a_{6}^{2}+1512 a_{2}^{2} a_{4} a_{5}^{2} a_{6}^{2}+432 a_{1} a_{3} a_{4} a_{5}^{2} a_{6}^{2}+136 a_{1}^{3} a_{5}^{3} a_{6}^{2} \\
& -360 a_{1} a_{2} a_{5}^{3} a_{6}^{2}-432 a_{3} a_{5}^{3} a_{6}^{2}+a_{1}^{12} a_{6}^{3}-16 a_{1}^{10} a_{2} a_{6}^{3}+104 a_{1}^{8} a_{2}^{2} a_{6}^{3} \\
& -352 a_{1}^{6} a_{2}^{3} a_{6}^{3}+656 a_{1}^{4} a_{2}^{4} a_{6}^{3}-640 a_{1}^{2} a_{2}^{5} a_{6}^{3}+256 a_{2}^{6} a_{6}^{3}+2 a_{1}^{9} a_{3} a_{6}^{3} \text {. }
\end{aligned}
$$

Bibliography

[1] A. Cayley. "On the substitution groups for two,...,eight letters". In: Coll. Math. Papers 13 (1897), pp. 125-130.
[2] F. N. Cole. "Note on the substitution groups of six, seven and eight letters". In: Bull. New York Math. Soc. 2 (1893), pp. 184-190.
[3] D. S. Dummit. "Solving Solvable Quintics". In: Mathematics of Computation 57 (1991), pp. 387-401.
[4] D. S. Dummit and R. M. Foote. Abstract Algebra. John Wiley Sons, Inc., 2004. ISBN: 0-471-43334-9.
[5] Thomas R. Hagedorn. "General Formulas for Solving Solvable Sextic Equations". In: Journal of Algebra 233 (2000), pp. 704-757.
[6] L-C. Kappe and B. Warren. "An Elementary Test for the Galois Group of a Quartic Polynomial". In: The American Mathematical Monthly 96 (1989), pp. 133-137.
[7] James S. Milne. Fields and Galois Theory (v5.00). Available at www.jmilne.org/math/. 2021.

