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”One who, treating such new subjects, taking a chance on such a strange road,
pretty often difficulties presented themselves that I was unable to overcome. Even
in these two memoirs, and especially in the second which is the more recent, the
formula ”I do not know” will often be found. The class of readers of whom I have
spoken at the beginning will not fail to find something laughable there. Unhappily
one cannot doubt that the most precious book of the greatest scientist will be that
in which he tells us everything that he does not know; one cannot doubt that an
author never betrays his readers so much as when he hides a difficulty.”
— Évariste Galois (1811-1832) in the preface of Deux mémoires d’Analyse pure, October 8, 1831.

”Si deve prevedere che, trattandosi di soggetti talmente nuovi, azzardati in una
veste cos̀ı insolita che molto spesso si sono presentate delle difficoltà che non sono
stato in grado di sormontare. Inoltre, in queste due memorie, e specialmente nella
seconda, che è la più recente, troveremo spesso la formula ”Non so”. La classe dei
lettori che ho menzionato all’inizio non mancherà di ridere di questo. Ciò accade
perché, sfortunatamente, non pensiamo che il libro più prezioso del più sapiente
sarebbe quello in cui egli dicesse tutto ciò che non sa; non comprendiamo che un au-
tore non nuoce mai cos̀ı tanto al suo lettore come quando dissimula una difficoltà.”
— Évariste Galois (1811-1832) nella prefazione di Deux mémoires d’Analyse pure, October 8, 1831.
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Abstract

This thesis contains the result of K. Conrad, D. S. Dummit and T. R. Hagedorn about solving
solvable polynomials of degree 4, 5 and 6 using Galois theory. First of all we will describe a
procedure for figuring out the Galois groups of separable irreducible quartics (we are not going
to derive the classical quartic formula by Ferrari). Then we will give general formulas for finding
the roots of all irreducible quintic (sextic respectively) polynomials f(x) ∈ Q[x] with Gal(f)= Gf ,
where Gf is a transitive, solvable subgroup of S5 (S6 resp.).
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Chapter 1

Introduction

1.1 Introduction

Given an irreducible polynomial f(x) ∈ Q[x], does there exist a formula for finding its roots
using only the basic arithmetic operations and the taking of n-th roots? The answer to this
classical question has been one of the main open problem in mathematics until the introduction
and development of Galois theory in the beginning of 19th century. When such a formula exists,
we say that the equation f(x) = 0 is solvable by radicals. If the same formula can be used for
all polynomials f(x) with degree n, we say that the general equation of degree n is solvable by
radicals.

The quadratic formula, the Cardano’s formula and the Ferrari’s method show that the general
equations of degree 2, 3 and 4 are solvable by radicals. Abel and Ruffini showed that the general
equation of degree n ≥ 5 is not solvable by radical. Even stronger, Galois theory established that
for each n ≥ 5, there are irreducible polynomials f(x) ∈ Q[x] of degree n which are not solvable
by radicals. In fact, for n ≥ 5, most irreducible polynomials f(x) of degree n are insolvable by
radicals.

We can ask whether such formulas exist when we restrict our attention to the class of polyno-
mials which are solvable by radicals. We recall a fundamental theorem:

Theorem 1.1.1 (Galois, 1832). Let F be a field of characteristic zero, and let f(x) ∈ F [x]. The
equation f(x) = 0 is solvable by radicals if and only if the Galois group Gal(f) of f(x) is solvable.

(see [7]) that let us switch our attention from the equation f(x) = 0 to the solvable subgroups
of Sn (n = deg(f)). We also know that when f(x) is irreducible, Gal(f) is a transitive subgroup
of Sn. We can now focus on this class of subgroups of Sn.

In this thesis, after a brief recall of some fundamental results and definitions, we are going to
describe in Chapter 2 two methods (a ’classical’ one and an ’alternative’ one by Kappe and Warren
(see as reference [6]) for figuring out the Galois groups of separable irreducible quartics. Then in
Chapter 3 an explicit resolvent sextic is constructed which has a rational root if and only if the
irreducible quintic f(x) = x5 + px3 + qx2 + rx + s ∈ Q[x] is solvable by radicals. When f(x) is
solvable by radicals, formulas for the roots are given in terms of p, q, r, s which produce the roots in
a cyclic order. Finally, in Chapter 4 we show that there is a common formula for finding the roots
of all irreducible sextic polynomials f(x) ∈ Q[x] with Gal(f) = G (transitive, solvable subgroup of
S6).

1.2 Theoretical background

In this Section we want to give some fundamental definitions and Theorems as a useful background
for the results shown and proved in the following Chapters.

Theorem 1.2.1 ([6]). Let f(x) ∈ K[x] be a separable polynomial of degree n.

1. If f(x) is irreducible in K[x] then its Galois group over K has order divisible by n.

3



1.2. THEORETICAL BACKGROUND CHAPTER 1. INTRODUCTION

2. The polynomial f(x) is irreducible in K[x] if and only if its Galois group over K is a
transitive subgroup of Sn.

Definition 1 (Discriminant, [6],[7]). If f(x) ∈ K[x] factors in a splitting field as

f(x) = c(x− r1) . . . (x− rn),

the discriminant of f(x) is defined to be

disc(f) =
∏

i<j

(rj − ri)
2.

Theorem 1.2.2 ([6]). Let f(x) ∈ K[x] be a separable polynomial of degree n. If K does not have
characteristic 2, the Galois group of f(x) over K is a subgroup of An if and only if disc(f) is a
square in K.

Theorem 1.2.2 is why we will assume our fields do not have characteristic 2.

We now introduce the fundamental Theorem of Galois theory:

Theorem 1.2.3 (Fundamental Theorem of Galois theory, [7]). Let K be a field and Ω/K be a
Galois extension of K with Galois group G = Gal(Ω/K). Than the subextensions of Ω/K are in
one-to-one correspondence with the subgroups of G, i.e. the map H 7→ ΩH := {α ∈ Ω | σ(α) =
α, ∀σ ∈ H} is a bijection from the set of subgroups of G to the set of subextensions of Ω/K,

{subgroups H ≤ G} 1:1←→ {subextensions K ≤ L ≤ Ω}

with inverse L 7→ GL = Gal(Ω/L) = {σ ∈ G | σ|L = idL}. Moreover,

(a) the correspondence is inclusion-reversing:

H1 ≤ H2 ⇔ ΩH1
≥ ΩH2

and L1 ≤ L2 ⇔ GL1
≥ GL2

;

(b) indexes equal degrees:

∀H1 ≤ H2, (H1 : H2) = [ΩH2
: ΩH1

] and ∀L1 ≤ L2, (L2 : L1) = [GL1
: GL2

];

(c) ∀σ ∈ G, let Hσ := σHσ−1. Then

ΩHσ = σ(ΩH) and (GL)
σ = Gσ(L);

(d) H is normal in G ⇔ ΩH/K is normal (hence Galois) over K, in which case

Gal(ΩH/K) = G/H.

Another fundamental Theorem of Galois theory is Theorem 1.1.1 in the previous Section.
Finally a Theorem about the splitting field of separable cubics:

Theorem 1.2.4 ([6]). Let K not have characteristic 2 and f(x) ∈ K[x] be a separable cubic with
discriminant ∆. If r is one root of f(x) then a splitting field of f(x) over K is K(r,

√
∆). In

particular, if f(x) is a reducible cubic then its splitting field over K is K(
√
∆).
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Chapter 2

Quartics

2.1 Transitive subgroups of S4

Figure 2.1: Subgroup diagram of S4

To compute the Galois group Gf of a separable irreducible quartic f(x) ∈ K[x], we first list
all subgroups of S4 in Figure 2.1. Among them, the candidates to be the Galois group are the
transitive subgroups of S4 such that 4 = deg(f) | |Gf |, by Theorem 1.2.1. These are (up to
isomorphism):
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2.2. CUBIC RESOLVENT CHAPTER 2. QUARTICS

Gf S4 A4 D4 C4 V ≃ C2 × C2

|Gf | 24 12 8 4 4

Table 2.1: Transitive subgroups of S4

With the information given by Table 2.1 and Figure 2.1, we can now make some useful obser-
vations:

• D4: Inside S4 there are 3 transitive subgroups isomorphic to D4, all conjugate to each other
(from Sylow theorems, they are 2-Sylow subgroups):

⟨(1234), (13)⟩, ⟨(1324), (12)⟩, ⟨(1243), (14)⟩.

• C4: There are 3 transitive subgroups of S4 isomorphic to C4. These are the the only cyclic
subgroups of order 4 in S4 and they are conjugate to each other:

⟨(1234)⟩, ⟨(1324)⟩, ⟨(1243)⟩.

• V : We write V for Klein’s four-group C2 ×C2. There is only one transitive subgroup of S4

isomorphic to V , that is:

{(1), (12)(34), (13)(24), (14)(23)}.

V is the intersection of the 3 2-Sylow subgroups quote in the first point. There are other
subgroups of S4 that are isomorphic to V , but they are not transitive.

• The only transitive subgroups of S4 inside A4 are A4 and V .

• The only transitive subgroups of S4 with size divisible by 3 are S4 and A4.

• The only transitive subgroups of S4 containing a transposition (a cycle of length 2) are S4

and D4.

2.2 Cubic resolvent

Let f(x) = x4 + ax3 + bx2 + cx + d ∈ K[x] be monic, separable, irreducible, so disc(f) ̸= 0. Let
r1, r2, r3, r4 be the roots of f(x), so

f(x) = x4 + ax3 + bx2 + cx+ d = (x− r1)(x− r2)(x− r3)(x− r4) ∈ Ωf

where Ωf is the splitting field of f(x) over K.
It is known that the Galois group of a separable irreducible cubic polynomial h(x) ∈ K[x] is

determined by whether or not its discriminant d = disc(h) is a square in K, which can be thought
of in terms of the associated quadratic polynomial x2 − d having a root in K. From this idea, we
will see that the Galois group of a quartic polynomial depends on the behavior of an associated
cubic polynomial.

We want to create a cubic polynomial with roots in Ωf by finding an expression in the roots of
f(x) which only has 3 possible images under the Galois group. One such expression is: x1x2+x3x4.
In fact, if we define

α = r1r2 + r3r4, β = r1r3 + r2r4, γ = r1r4 + r2r3

we can see that the group S4 = Sym({r1, r2, r3, r4}) permutes {α, β, γ} transitively: αS4 = βS4 =
γS4 = {α, β, γ}. The stabilizer of each of α, β, γ is a subgroup of S4 of index 3 = |{α, β, γ}|, hence
has order 8. So they must be the 3 2-Sylow subgroups. It follows that {α, β, γ} is fixed by their
intersection, that is V from the previous observations. Therefore, if we consider the intermediate
extension K ≤ K(α, β, γ) ≤ Ωf , the subgroup Gf ∩ V of Gf fix K(α, β, γ).
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K

K(α, β, γ)

Ωf

Gf/Gf ∩ V

Gf ∩ V

In particular we have the following lemma:

Lemma 2.2.1 ([7]). The fixed field of Gf ∩ V is K(α, β, γ). Hence
K(α, β, γ) is Galois over K with Galois group Gf/Gf ∩ V .

Proof. The above discussion shows that the subgroup of Gf of elements

fixing K(α, β, γ) is Gf ∩V , and so Ω
Gf∩V

f = K(α, β, γ) by the fundamen-
tal theorem of Galois theory. The remaining statements follow from the
fundamental theorem using that V is normal.

Definition 2 (Cubic resolvent, [7]). Let f(x) = (x− r1)(x− r2)(x− r3)(x− r4) ∈ Ωf ,

g(x) = (x− α)(x− β)(x− γ) ∈ K(α, β, γ)

is called cubic resolvent of f (α, β, γ defined as above).

We see that Ωg = K(α, β, γ) is the splitting field of g(x) over K. Every permutation σ of the
ri (a fortiori ∀σ ∈ Gf ) permutates α, β, γ, and so fixes g(x): gσ = g. We just prove that g ∈ K[x]
and Gg = Gf/Gf ∩ V . More explicitly, we can express the coefficients of the cubic resolvent g(x)
in terms of the coefficients of the starting quartic f(x):

Lemma 2.2.2 ([6]). Let f(x) = x4 + ax3 + bx2 + cx+ d, then

g(x) = x3 − bx2 + (ac− 4d)x− (a2d+ c2 − 4bd)

Moreover, disc(f) = disc(g) and g(x) is separable since f(x) is separable.

Proof. (Sketch of proof) Expand f(x) = (x − r1)(x − r2)(x − r3)(x − r4) to express a, b, c, d in
terms of r1, r2, r3, r4. Expand g(x) = (x−α)(x−β)(x− γ) to express the coefficients of g in terms
of r1, r2, r3, r4, and substitute to express them in terms of a, b, c, d. To prove that the quartic and
its cubic resolvent have the same discriminant, we just write the difference between the roots of
g(x). For example: α− β = (r1r2 + r3r4)− (r1r3 + r2r4) = (r1 − r4)(r2 − r3). Forming the other
two differences, multiplying, and squaring, we obtain disc(g) = disc(f).

Remark: There is a second polynomial that can be found in the literature under the name of
cubic resolvent for f(X). In terms of the coefficients of f(x), the cubic is: x3 − 2bx2 + (b2 + ac−
4d)x+(a2d+ c2−abc), whose roots are (r1+ r2)(r3+ r4), (r1+ r3)(r2+ r4), and (r1+ r4)(r2+ r3).
This amounts to exchanging additions and multiplications in the formation of the resolvent’s roots.

K

Ωg = K(α, β, γ)

Ωf

Gf/Gf ∩ V ≃ Gg

Gf ∩ V

Now let f be an irreducible quartic. Then Gf is one of the group
in Table 2.1. These are the following possibilities for Gf :

Gf ≃ |Gf | |Gf ∩ V | |Gg| Gg ≃ Gf/Gf ∩ V

S4 24 4 6 S3

A4 12 4 3 A3

V 4 4 1 {1}
D4 8 4 2 C2

C4 4 2 2 C2

We now have 2 ways to decide between D4 and C4 as Galois group:
the ”classical” procedure and the Theorem proved by Kappe and Warren ([6]).

From the fundamental Theorem of Galois theory, we remind the following equalities:

• |Gf ∩ V | = (Gf ∩ V : 1) = [Ωf : Ωg];

• |Gg| = (Gf : Gf ∩ V ) = [Ωg : K].

7



2.3. ”CLASSICAL” METHOD CHAPTER 2. QUARTICS

2.3 ”Classical” method

We can compute |Gg| from the resolvent cubic g, because Gg = Gal(Ωg/K) and Ωg is the splitting
field of g. Once we know |Gg| we can deduce Gf except in the case that is 2.

If [Ωg : K] = 2, then Gf ∩ V = V or C2. We know that a separable polynomial f(x) ∈ K[x] is
irreducible if and only if Gf permutes the roots of f transitively. Only V acts transitively on the
roots of f , and so G = D4 or C4 according as f is irreducible or not in Ωg[x].

We can rewrite this ”classical” procedure in the following Theorem:

Theorem 2.3.1 ([6]). Let f(x) ∈ K[x] be an irreducible quartic, where K does not have charac-
teristic 2, and set ∆ = disc(f). Suppose ∆ is not a square in K and g(x) is reducible in K[x], so
Gf is D4 or C4.

• If f(x) is irreducible over K(
√
∆) then Gf = D4.

• If f(x) is reducible over K(
√
∆) then Gf = C4.

Proof. We will make reference to the field diagrams in the proof of Theorem 2.4.4. When Gf =

D4, the field diagram in this case shows the splitting field of f(x) over K is K(r1,
√
∆). Since

[K(r1,
√
∆) : K] = 8, [K(r1,

√
∆) : K(

√
∆)] = 4, so f(x) must be irreducible over K(

√
∆). When

Gf = C4, the splitting field of f(x) over K(
√
∆) has degree 2, so f(x) is reducible over K(

√
∆).

Because the different Galois groups imply different behaviour of f(x) over K(
√
∆), these

properties of f(x) over K(
√
∆) tell us the Galois group.

The two versions of this classical method are equivalent. In fact we can prove that Ωg =

K(α, β, γ) is equal to K(
√
∆), which implies that the behaviour of f(x) over Ωg[x] is the same as

the behaviour of f(x) over K(
√
∆)[x].

From Lemma 2.2.2 we know that disc(f) = disc(g) and according to this information we can
write:

√
∆ = (α− β)(α− γ)(β − γ) and in particular

√
∆ ∈ K(α, β, γ). So K(

√
∆) ⊆ K(α, β, γ).

If Gf = D4 or Gf = C4, we have in both cases Gf ̸⊆ A4, so ∆ ̸= □ in K and [K(
√
∆) : K] = 2.

We also know from the previous diagram that |Gg| = [K(α, β, γ) : K] = 2, which means Ωg =

K(α, β, γ) = K(
√
∆).

2.4 ”New” method

With the notation above:

Theorem 2.4.1 ([6]). Let f(x) ∈ K[x] be a quartic, Gf can be described in terms of whether or
not disc(f) is a square in K and whether or not g(x) factors in K[x], according to the following
table:

disc(f) in K g(x) in K[x] Gf

̸= □ irreducible S4

= □ irreducible A4

̸= □ reducible D4 or C4

= □ reducible V

Table 2.2

Proof. We check each row of the table in order.

• disc(f) is not a square and g(x) is irreducible over K: Since disc(f) ̸= □, Gf ̸⊆ A4. Since
g(x) is irreducible over K and its roots are in the splitting field of f(x) over K, adjoining a
root of g(x) to K gives us a cubic extension of K inside the splitting field of f(x), so |Gf |
is divisible by 3. It’s also divisible by 4, so Gf = S4 or A4, which implies G4 = S4.

• disc(f) is a square and g(x) is irreducible over K: We have Gf ⊆ A4 and |Gf | divisible by
3 and 4, so Gf = A4.

8
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• disc(f) is not a square and g(x) is reducible over K: Since disc(f) ̸= □, Gf ̸⊆ A4, so Gf is
S4, D4 or C4. We will show Gf ̸= S4.

What distinguishes S4 from the other two choices for Gf is that S4 contains 3-cycles. If
Gf = S4 then (123) ∈ Gf . Applying the hypothetical automorphism in the Galois group to
the roots of g(x) carries them through the single orbit:

r1r2 + r3r4 7→ r2r3 + r1r4 7→ r3r1 + r2r4 7→ r1r2 + r3r4.

These numbers are distinct since g(x) is separable. At least one root of g(x) lies in K, so
the Gf -orbit of that root is just itself, not three numbers. We have a contradiction.

• disc(f) is a square and g(x) is reducible over K: The group Gf lies in A4, so Gf = V or
Gf = A4. We want to eliminate the second choice. As in the previous case, we can
distinguish V from A4 using 3-cycles: there are 3-cycles in A4 but not in V . If there were a
3-cycle on the roots of f(x) in Gf then applying it to a root of g(x) shows all the roots of
g(x) are in single Gf -orbit, which is a contradiction since g(x) is (separable and) reducible
over K. Thus Gf contains no 3-cycles.

To make it more clear, Table 2.3 gives some examples of Galois group computations over Q

using Theorem 2.4.1:

f(x) disc(f) g(x) Gf

x4 − x− 1 -283 x3 + 4x− 1 S4

x4 + 2x+ 2 101 · 42 x3 − 8x− 4 S4

x4 + 8x+ 12 5762 x3 − 48x− 64 A4

x4 + 3x+ 3 21 · 152 (x+ 3)(x2 − 3x− 3) D4 or C4

x4 + 5x+ 5 5 · 552 (x− 5)(x2 + 5x+ 5) D4 or C4

x4 + 36x+ 63 43202 (x− 18)(x+ 6)(x+ 12) V

Table 2.3: Some examples

By Theorem 2.4.1, g(x) is reducible over K only when Gf is D4, C4 or V . Looking at the
examples in Table 2.3 of such Galois groups, we can make the following observation: g(x) has one
root in Q when Gf is D4 or C4 and all three roots are in Q when Gf is V . It is no coincidence:

Corollary 2.4.2 ([6]). With the notation above, Gf = V if and only if g(x) splits completely over
K and Gf = D4 or C4 if and only if g(x) has a unique root in K.

Proof. The condition for Gf to be V is: disc(f) = □ and g(x) is reducible over K. Since disc(g) =
disc(f), Gf = V if and only if disc(g) is a square in K and g(x) is reducible over K. By Theorem

1.2.4, a splitting field of g(x) over K is K(r,
√

disc(g)), where r is any root of g(x). Therefore
Gf = V if and only if g(x) splits completely over K.

The condition for Gf to be D4 or C4 is: disc(f) ̸= □ and g(x) is reducible over K. These
conditions, by Theorem 1.2.4 for the cubic g(x), are equivalent to g(x) having a root in K but not
splitting completely over K, which is the same as saying g(x) has a unique root in K.

As we said, Theorem 2.4.1 does not decide between Galois groups D4 and C4. The following
theorem provides a partial way to do this over Q, by checking the sign of the discriminant.

Theorem 2.4.3 ([6]). Let f(x) ∈ Q[x] be an irreducible quartic. If Gf = C4 then disc(f) > 0.
Therefore if Gf is D4 or C4 and disc(f) < 0, Gf = D4.

Proof. If Gf = C4, the splitting field of f(x) over Q has degree 4. Any root of f(x) already
generates an extension of Q with degree 4, so the field generated over K by one root of f(x)
contains all the other roots. Therefore if f(x) has one real root it has 4 rela roots: the number of
real roots of f(x) is either 0 or 4.

If f(x) has 0 real roots then they fall into complex conjugate pairs, say z and z and w and w.
Then disc(f) is the square of

(z − z)(z − w)(z − w)(z − w)(z − w)(w − w) = |z − w|2|z − w|2(z − z)(w − w) (2.1)

9
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The differences z − z and w−w are purely imaginary (and non-zero, since z and w are not real),
so their product is real and non-zero. Thus when we square (2.4), we find disc(f) > 0.

If f(x) has 4 real roots then the product of the differences of its roots is real and non-zero, so
disc(f) > 0.

Let’s give an example: the polynomial x4 + 4x2 − 2, which is irreducible by the Eisenstein
criterion, has discriminant −18432 and cubic resolvent x3 − 4x2 + 8x − 32 = (x − 4)(x2 − 8).
Theorem 2.4.1 says its Galois group is D4 or C4. Since the discriminant is negative, Theorem 2.4.3
says the Galois group must be D4.

Theorem 2.4.3 provides only a partial way to decide betweenD4 and C4. It does not distinguish
the two possibilities when disc(f) > 0, since some polynomials with Galois group D4 have positive
discriminant. For example, we can’t decide yet in Table 2.3 if x4 + 5x+ 5 has Galois group D4 or
C4 over Q.

We can finally prove the following

Theorem 2.4.4 (Kappe, Warren, 1989, [6]). Let K be a field not of characteristic 2, f(x) =
x4 + ax3 + bx2 + cx + d ∈ K[x], and ∆ = disc(f). Suppose ∆ ̸= □ in K and g(x) is reducible in
K[x] with unique root r′ ∈ K. Then Gf = C4 if the polynomials x2+ax+(b− r′) and x2− r′x+d

split over K(
√
∆), while Gf = D4 otherwise.

Proof. Index the roots r1, r2, r3, r4 of f(x) so that r′ = α = r1r2 + r3r4. Both D4 and C4, as
subgroups of S4, contain a 4-cycle. (The elements of order 4 in S4 are 4-cycles). In Table 2.4 we
describe the effect of each 4-cycle in S4 on r′ if the 4-cycle were in the Galois group. The (distinct)
roots of g(x) are in the second row, each appearing twice.

σ (1234) (1432) (1243) (1342) (1324) (1423)

σ(r1r2 + r3r4) r2r3 + r4r1 r4r1 + r2r3 r2r4 + r1r3 r3r1 + r4r2 r3r4 + r2r1 r4r3 + r1r2

Table 2.4: Effect of a 4-cycle on r′

Since r1r2 + r3r4 is fixed by Gf , the only possible 4-cycles in Gf are (1324) and (1432). Both
are in Gf since at least one is and they are inverses. Let σ = (1324).

If Gf = C4 then Gf = ⟨σ⟩. If Gf = D4 then the observations in section 2.1 tell us Gf =
⟨(1324), (12)⟩ = {(1), (1324), (12)(34), (1423), (12), (34), (13)(24), (14)(23)} and the elements of Gf

fixing r1 are (1) and (34). Set τ = (34). Products of σ and τ as disjoints cycles are in Table 2.5.

1 σ σ2 σ3 τ στ σ2τ σ3τ

(1) (1324) (12)(34) (1423) (34) (13)(24) (12) (14)(23)

Table 2.5: Products of σ and τ

Hence, if Gf = D4 then Gf = ⟨(1324), (12)⟩ = ⟨σ, τ⟩. The subgroups of ⟨σ⟩ and ⟨σ, τ⟩ look
very different.

⟨σ, τ⟩

⟨σ⟩⟨σ2, τ⟩ ⟨σ2, στ⟩

⟨σ2⟩⟨σ2τ⟩⟨τ⟩ ⟨στ⟩ ⟨σ3τ⟩

{id}

⟨σ2⟩

⟨σ⟩

{id}

10
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Corresponding to the above subgroup lattices we have the following subfield lattices of the splitting
field, where L in both cases denotes the unique quadratic extension of K inside K(r1): if Gf = C4

then L corresponds to ⟨σ2⟩, while if Gf = D4 then L corresponds to ⟨σ2, τ⟩. Since ∆ ̸= □ in K,

[K(
√
∆) : K] = 2.

K(r1, r2, r3, r4)

?K(r3)K(r1) ? ?

?L K(
√
∆)

K

K(r1)

L = K(
√
∆)

K

If Gf = C4, then L = K(
√
∆) since there is only one quadratic extension of K in the splitting

field.
If Gf = D4, in the subgroup and subfield lattice diagrams above, we know K(r1) corresponds

to ⟨τ⟩, K(r3) corresponds to ⟨σ2τ⟩ and K(
√
∆) corresponds to ⟨σ2, στ⟩. Let’s explain why: the

degree [K(r1) : K] = 4, so its corresponding subgroup in D4 = ⟨σ, τ⟩ has order 8/4=2 and
τ = (34) fixes r1 and has order 2. Similarly, [K(r3) : K] = 4 and σ2τ = (12) fixes r3. The
subgroup corresponding to K(

√
∆) is the even permutations in the Galois group, and that is

{(1), (12)(34), (13)(24), (14)(23)} = ⟨σ2, στ⟩.
Although the two cases of Gf are different, we are going to develop some common ideas for

both of them concerning the quadratic extensions K(r1)/L and L/K before we distinguish the
two cases from each other. If Gf = C4, Gal(K(r1)/L) = {1, σ2}. If Gf = D4, Gal(K(r1)/L) =
⟨σ2, τ⟩/⟨τ⟩ = {1, σ2}. So in both cases, the L-conjugate of r1 is σ2(r1) = r2 and the minimal
polynomial of r1 over L must be

(x− r1)(x− r2) = x2 − (r1 + r2)x+ r1r2 ∈ L[x]

Therefore r1 + r2 and r1r2 are in L. Since [K(r1) : K] = 4, this polynomial is not in K[x]:

r1 + r2 /∈ K or r1r2 /∈ K. (2.2)

If Gf = C4 then Gal(L/K) = ⟨σ⟩/⟨σ2⟩ = {1, σ}, and if Gf = D4 then Gal(L/K) = ⟨σ, τ⟩/⟨σ2, τ⟩ =
{1, σ}. The coset of σ in Gal(L/K) represents the nontrivial coset both times, so Lσ = K. That is,
an element of L fixed by σ is in K. Since σ(r1 + r2) = r3 + r4 and σ(r1r2) = r3r4, the polynomials

(x− (r1 + r2))(x− (r3 + r4)) = x2 − (r1 + r2 + r3 + r4)x+ (r1 + r2)(r3 + r4), (2.3)

and
(x− r1r2)(x− r3r4) = x2 − (r1r2 + r3r4)x+ r1r2r3r4 (2.4)

have coefficients in Lσ = K. The linear coefficient in (2.3) is a and the constant term is

(r1 + r2)(r3 + r4) = r1r3 + r1r4 + r2r3 + r2r4 = b− (r1r2 + r3r4) = b− r′

so (2.3) equals x2+ax+(b−r′). The quadratic polynomial (2.4) is x2−r′x+d. When r1+r2 /∈ K,
(2.3) is irreducible in K[x], so its discriminant is a non-square in K, and if r1 + r2 ∈ K then (2.3)
has a double root and its discriminant is 0. Similarly, (2.4) has a discriminant that is a non-square
in K or is 0. Therefore the splitting field of (2.3) or (2.4) over K is either L or K and (2.2) tells
us at least one of (2.3) and (2.4) has a non-square discriminant in K (so has splitting field L).

Since r1 + r2 and r1r2 are in L and [L : K] = 2, each one generates L over K if it is not in K.
This happens for at least one of the two numbers, by (2.2).

First suppose Gf = C4. Then L = K(
√
∆), so x2 + ax + (b − r′) and x2 − r′x + d both split

completely over K(
√
∆), since their roots are in L.

11
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Next suppose Gf = D4. Then L ̸= K(
√
∆). By (2.2) at least one of (2.3) or (2.4) is irreducible

over K, so its roots generate L over K and therefore are not in K(
√
∆). Thus the polynomial in

(2.3) or (2.4) will be irreducible over K(
√
∆) if it’s irreducible over K.

Since the conclusions about the two quadratic polynomials overK(
√
∆) are different depending

on whether Gf is C4 or D4, these conclusions tell us the Galois group.

Corollary 2.4.5 ([6]). When K does not have characteristic 2 and

f(x) = x4 + ax3 + bx2 + cx+ d

is an irreducible quaric in K[x], define

∆ = disc(f) and g(x) = x3 − bx2 + (ac− 4d)x− (a2d+ c2 − 4bd).

The Galois group of f(x) over K is described by Table 2.6.

∆ in K g(x) in K[x] (a2 − 4(b− r′))∆ and (r′2 − 4d)∆ Gf

̸= □ irreducible S4

= □ irreducible A4

̸= □ root r′ ∈ K at least one ̸= □ in K D4

̸= □ root r′ ∈ K both = □ in K C4

= □ reducible V

Table 2.6: Galois groups distinction

Proof. The polynomials x2 + ax + (b − r′) and x2 − r′ + d split completely over K(
√
∆) if and

only if their discriminants a2 − 4(b− r′) and r′2 − 4d are squares in K(
√
∆). We saw in the proof

of Theorem 2.4.4 that these discriminants are either 0 or nonsquares in K. A nonsquare in K is
a square in K(

√
∆) if and only if its product with ∆ is a square, and this is vacuously true for 0

also.

In Table 2.7 we now give some examples of Galois group computations over Q using Corollary
2.4.5. In particular we list some quartic trinomials x4+cx+d, all irreducible by Eisenstein criterion.
If you pick a quartic in Q[x] at random it probably will be irreducible and have Galois group S4,
or perhaps A4 if by chance the discriminant is a square, so we only list examples in Table 2.7
where the Galois group is smaller, which means the cubic resolvent is reducible. Since we choose a
particular case where a = b = 0, a2 − 4(b− r′) become 4r′, so we need to decide when the rational
numbers 4r′∆ and (r′2 − 4d)∆ are both squares in Q:

x4 + cx+ d ∆ x3 − 4dx− c2 4r′∆ and (r′2 − 4d)∆ Gf

x4 + 3x+ 3 21 · 152 (x+ 3)(x2 − 3x− 3) −56700, −14175 D4

x4 + 5x+ 5 5 · 552 (x− 5)(x2 + 5x+ 5) 5502, 2752 C4

x4 + 8x+ 14 2 · 5442 (x− 8)(x2 + 8x+ 8) 46082, 21762 C4

x4 + 3x+ 3 13 · 10532 (x− 13)(x2 + 13x+ 13) 273782, 136892 C4

Table 2.7: Some examples of Galois group computations

Remark: A fundamental assumption before applying Corollary 2.4.5 is that the quartic must
be irreducible. For example, f(x) = x4+4 has discriminant ∆ = disc(f) = 1282 and cubic resolvent
g(x) = x3 − 16x = x(x + 4)(x − 4). Such data (square discriminant, reducible resolvent) suggest
the Galois group of f(x) over Q is V , but f(x) is reducible: it factors as (x2+2x+2)(x2−2x+2).
Both factors have discriminant 4, so the splitting field of f(x) over Q is Q(

√
−4) = Q(i) and the

Galois group of f(x) over Q is cyclic of order 2.
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Chapter 3

Quintics

3.1 Transitive subgroups of S5

First of all, we want to identify the suitable subgroups of S5 for being Galois group of an irreducible
quintic f(x) ∈ Q[x]. The candidates are the transitive subgroups of S5, such that 5 = deg(f) | |Gf |,
by Theorem 1.2.1. Up to isomorphism, these are:

Gf S5 A5 F20 D5 C5

|Gf | 120 60 20 10 5

Table 3.1: Transitive subgroups of S5

We now want to study whether or not the equation f(x) = 0 is solvable by radicals. By
Theorem 1.1.1, we have to choose the solvable groups from the ones in Table 3.1. Since S5 and A5

are not solvable, an irreducible quintic f(x) ∈ Q[x] is solvable by radicals if and only if the Galois
group is contained in the Frobenius group F20, i.e., if and only if the Galois group is isomorphic
to F20, to the dihedral group D10 of order 10, or the cyclic group C5.

F20

D10C4

C5C2

C1

There are different notation in literature for some of this groups:

• F20 = F5 = C5 ⋊ C4 = ⟨(12345), (2354)⟩ = ⟨(12345), (1243)⟩;

• D10 = D5 = C5 ⋊ C2 = ⟨(12345), (25)(34)⟩.

where the last equality gives just an example of possible generators of the
group. More generally, for any prime p, a solvable subgroup of the symmetric
group Sp whose order is divisible by p is contained in the normalizer of a
Sylow p-subgroup of Sp. (In our case a Sylow p-subgroups is isomorphic to
a copy of C5 and its normalizer to a copy of F20).

The purpose here is to give a criterion for the solvability of such a general
quintic in terms of the existence of a rational root of an explicit associated
resolvent sextic polynomial. When this is the case, we are going to give for-
mulas for the roots analogous to Cardano’s formulas for the general cubic
and quartic polynomials and to determine the precise Galois group. In par-
ticular, the roots are produced in an order which is a cyclic permutation of the roots, which can
be useful in other computations.

We work over the rationals Q, but the results are valid over any field K of characteristic
different from 2 and 5.

13



3.2. CRITERION FOR THE SOLVABILITY CHAPTER 3. QUINTICS

3.2 Criterion for the solvability

Let f(x) = x5 + ax4 + bx3 + cx2 + dx + e ∈ Q[x] be a general quintic polynomial with roots
r1, r2, r3, r4, r5. Then

f(x) = x5 − s1x
4 + s2x

3 − s3x
2 + s4x− s5,

where the si are the elementary symmetric function in the roots ri. This can be easily shown
expanding f(x) =

∏5
i=1(x − ri) and remembering the definition of the elementary symmetric

function si =
∑

1≤j1<···<ji≤5 rj1 . . . rji . In our case: s1 = r1 + r2 + r3 + r4 + r5, s2 = r1r2 + r1r3 +
r1r4 + r1r5 + r2r3 + r2r4 + r2r5 + r3r4 + r3r5 + r4r5, . . . , s5 = r1r2r3r4r5.

Let F20 < S5 be the Frobenius group of order 20 with generators (12345) and (2354). Then
the stabilizer of the element

θ = θ1 =r21r2r5 + r21r3r4 + r22r1r3 + r22r4r5 + r23r1r5

+ r23r2r4 + r24r1r2 + r24r3r5 + r25r1r4 + r25r2r3

is precisely F20. It follows that θ1 satisfies a polynomial equation of degree 6 over Q(s1, s2, s3, s4, s5)
with conjugates θS5 = {θ, θ2, θ3, θ4, θ5, θ6}, where:

θ2 =(123)θ1

=r21r2r5 + r21r3r4 + r22r1r4 + r22r3r5 + r23r1r2

+ r23r4r5 + r24r1r5 + r24r2r3 + r25r1r3 + r25r2r4;

θ3 =(132)θ1

=r21r2r3 + r21r4r5 + r22r1r4 + r22r3r5 + r23r1r5

+ r23r2r4 + r24r1r3 + r24r2r5 + r25r1r2 + r25r3r4;

θ4 =(12)θ1

=r21r2r3 + r21r4r5 + r22r1r5 + r22r3r4 + r23r1r4

+ r23r2r5 + r24r1r2 + r24r3r5 + r25r1r3 + r25r2r4;

θ5 =(23)θ1

=r21r2r4 + r21r3r5 + r22r1r5 + r22r3r4 + r23r1r2

+ r23r4r5 + r24r1r3 + r24r2r5 + r25r1r4 + r25r2r3;

θ6 =(13)θ1

=r21r2r4 + r21r3r5 + r22r1r3 + r22r4r5 + r23r1r4

+ r23r2r5 + r24r1r5 + r24r2r3 + r25r1r2 + r25r3r4.

We are now ready to define the resolvent sextic (we will call it f20) as the sextic polynomial
with θi as a root. By computing the elementary symmetric functions of the θi, which are symmetric
polynomials in r1, r2, r3, r4, r5, it is a relatively straightforward matter to express these elements
in terms of s1, s2, s3, s4, s5 to determine the resolvent sextic f20. By making a translation, we may
assume s1 = 0, i.e., that our quintic is

f(x) = x5 + px3 + qx2 + rx+ s,

in which case f20 is

14
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f20(x) = x6 + 8rx5 + (2pq2 − 6p2r + 40r2 − 50qs)x4

+ (−2q4 + 21pq2r − 40p2r2 + 160r3 − 15p2qs− 400qrs+ 125ps2)x3

+ (p2q4 − 6p3q2r − 8q4r + 9p4r2 + 76pq2r2 − 136p2r3 + 400r4

− 50pq3s+ 90p2qrs− 1400qr2s+ 625q2s2 + 500prs2)x2

+ (−2pq6 + 19p2q4r − 51p3q2r2 + 3q4r2 + 32p4r3 + 76pq2r3

− 256p2r4 + 512r5 − 31p3q3s− 58q5s+ 117p4qrs+ 105pq3rs

+ 260p2qr2s− 2400qr3s− 108p5s2 − 325p2q2s2 + 525p3es2

+ 2750q2rs2 − 500pr2s2 + 625pqs3 − 3125s4)x

+ (q8 − 13pq6r + p5q2r2 + 65p2q4r2 − 4p6r3 − 128p3q2r3 + 17q4r3

+ 48p4r4 − 16pq2r4 − 192p2r5 + 256r6 − 4p5q3s− 12p2q5s

+ 18p6qrs+ 12p3q3rs− 124q5rs+ 196p4qr2s+ 590pq3r2s

− 160p2qr3s− 1600qr4s− 27p7s2 − 150p4q2s2 − 125pq4s2

− 99p5rs2 − 725p2q2rs2 + 1200p3r2s2 + 3250q2r2s2

− 2000pr3s2 − 1250pqrs3 + 3125p2s4 − 9375rs4).

(3.1)

For the particular case when f(x) = x5 + ax+ b, this polynomial is simply

f20(x) = x6 + 8ax5 + 40a2x4 + 160a3x3 + 400a4x2

+ (512a5 − 3125b4)x+ (256a6 − 9375ab4).

We are now ready to give the criterion for the solvability of a general quintic polynomial.

Theorem 3.2.1 ([3]). The irreducible quintic f(x) = x5 + px3 + qx2 + rx + s ∈ Q[x] is solvable
by radicals if and only if the polynomial f20(x) in (3.1) has a rational root. If this is the case, the
sextic f20(x) factors into the product of a linear polynomial and an irreducible quintic.

Proof. The polynomial f(x) is solvable if and only if the Galois group of f(x), considered as a
permutation group on the roots, is contained in the normalizer of some Sylow 5-subgroup in S5.
The normalizers of the six Sylow 5-subgroups in S5 are precisely the conjugates of F20 above, hence
are the stabilizers of the elements θ1, ..., θ6. It follows that f(x) is solvable by radicals if and only if
one of the θ1 is rational. By renumbering the roots as r1, ..., r5, we may assume θ = θ1 is rational, so
that the Galois group of f(x) is contained in the specific group F20 above, F20 = ⟨(12345), (1243)⟩.
Since f(x) is irreducible, the order of its Galois group is divisible by 5. It follows that the 5-cycle
(12345) survives any specialization (this element generates the unique subgroup of order 5 in this
F20). Because this element is transitive on θ2, ..., θ6 (in fact cycling them as θ2, θ6, θ3, θ4, θ5), the
remaining roots θi are roots of an irreducible quintic over Q(θ) = Q.

We now consider the question of solving for the roots of f(x) when f(x) is solvable, i.e., solving
for the roots r1, . . . , r5 in terms of radicals over the field Q(s1, . . . , s5, θ). We suppose the rational
root of f20 is the root θ above. This determines an ordering of the roots ri up to a permutation in
F20.

3.3 Lagrange resolvent

Let’s introduce the Lagrange resolvent.

Definition 3 (Cyclic extension, [4]). The extension K/F is said to be cyclic it is Galois with a
cyclic Galois group.

Lemma 3.3.1 ([4]). Let F be a field with characteristic not dividing n which contains the nth roots
of unity. Then the extension F ( n

√
a) for a ∈ F is cyclic over F of order dividing n.

Let now K be any cyclic extension of degree n over a field F of characteristic not dividing n
which contains the nth roots of unity. Let σ be a generator for the cyclic group Gal(K/F ).

15



3.3. LAGRANGE RESOLVENT CHAPTER 3. QUINTICS

Definition 4 (Lagrange resolvent, [4]). For α ∈ K and any nth root of unity ζ, define the Lagrange
resolvent (α, ζ) ∈ K by

(α, ζ) = α+ ζσ(α) + ζ2σ2(α) + · · ·+ ζn−1σn−1(α).

If we apply the automorphism σ to (α, ζ) we obtain

σ(α, ζ) = σα+ ζσ2(α) + ζ2σ3(α) + · · ·+ ζn−1σn(α)

since ζ is an element of the base field F so is fixed by σ. We have ζn = 1 in µn
∼= Z/nZ (as group

of the nth roots of unity over Q, under multiplication on the right, addition on the left) and σn = 1
in Gal(K/F ) so this can be written

σ(α, ζ) = σα+ ζσ2(α) + ζ2σ3(α) + · · ·+ ζn−1(α)

= ζ−1(α+ ζσα+ ζ2σ2(α) + · · ·+ ζn−1σn−1(α))

= ζ−1(α, ζ). (3.2)

It follows that
σ(α, ζ)n = (ζ−1)n(α, ζ)n = (α, ζ)n

so that (α, ζ)n is fixed by Gal(K/F ), hence is an element of F for any α ∈ K.
Let ζ be a nth root of unity. By the linear independence of the automorphisms 1, σ, . . . , σn−1,

there is an element α ∈ K with (α, ζ) ̸= 0. Iterating (3.2) we have

σi(α, ζ) = ζ−i(α, ζ), i = 0, 1, . . . ,

and it follows that σi does not fix (α, ζ) for any i < n. Hence this element cannot lie in any
proper subfield of K, so K = F ((α, ζ)). Since we proved (α, ζ)n = a ∈ F above, we have
F ( n
√
a) = F ((α, ζ)) = K. This proves the following converse of Lemma (3.3.2)

Lemma 3.3.2 ([4]). Any cyclic extension of degree n over a field F of characteristic not dividing
n which contains the nth roots of unity is of the form F ( n

√
a) for some a ∈ F .

In our case, let ζ be a fixed primitive 5th root of unity and define the function fields k =
Q(s1, . . . , s5), K = k(θ) and F = Q(r1, . . . , r5), so that F (ζ)/K is a Galois extension with F20 ×
(Z/nZ)× as Galois group. Define the automorphism σ, τ and ω of F to be σ = (12345) (trivial on
constants), τ = (2354) (trivial on constants) and ω : ζ 7→ ζ3 (trivial on r1, . . . , r5).

Let ∆ = disc(f) be the discriminant of the quintic f(x) and
√
∆ =

∏

i<j(ri − rj) the fixed
square root of ∆. Note that for a solvable quintic, the discriminant ∆ is always positive: if the
Galois group is dihedral or cyclic, then the Galois group is contained in A5, so that ∆ is actually
a square; if the Galois group is the Frobenius group, then

√
∆ generates a quadratic extension

which is a subfield of a cyclic quartic extension, so again ∆ > 0 (in fact, ∆ is then the sum of two
squares).

Define the usual Lagrange resolvents of the root r1:

(r1, 1) = r1 + 1 · σ(r1) + 12 · σ2(r1) + 13 · σ3(r1) + 14 · σ4(r1)

= r1 + r2 + r3 + r4 + r5 = s1 = 0,

z1 = (r1, ζ) = r1 + r2ζ + r3ζ
2 + r4ζ

3 + r5ζ
4,

z2 = (r1, ζ
2) = r1 + r2ζ

2 + r3ζ
4 + r4ζ

+r5ζ
3,

z3 = (r1, ζ
3) = r1 + r2ζ

3 + r3ζ + r4ζ
4 + r5ζ

2,

z4 = (r1, ζ
4) = r1 + r2ζ

4 + r3ζ
3 + r4ζ

2 + r5ζ,

so that

r1 = (z1 + z2 + z3 + z4)/5,

r2 = (ζ4z1 + ζ3z2 + ζ2z3 + ζz4)/5,

r3 = (ζ3z1 + ζz2 + ζ4z3 + ζ2z4)/5, (3.3)

r4 = (ζ2z1 + ζ4z2 + ζz3 + ζ3z4)/5,

r5 = (ζz1 + ζ2z2 + ζ3z3 + ζ4z4)/5.
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Write

(r1, t) = r1 + r2t+ r3t
2 + r4t

3 + r5t
4

with an indeterminate t (so t = ζ gives the Lagrange resolvent z1). Expanding (r1, t)
5 gives

Z1 = z51 = (r1, ζ)
5 = l0 + l1ζ + l2ζ

2 + l3ζ
3 + l4ζ

4 (3.4)

where l0 by definition is the sum of the terms in (r1, t)
5 involving powers ti of t with i divisible by

5, l1 is the sum of the terms with i ≡ 1 mod 5, and so forth. Explicitly,

l0 = 30r2r4r
2
5 + 20r1r4r

3
5 + 20r31r2r5 + 20r2r3r

3
5 + r52 + r55

+ r51 + r53 + r54 + 20r31r3r4 + 30r21r
2
2r4 + 30r21r2r

2
3 + 20r1r

3
2r3

+ 30r21r3r
2
5 + 30r21r

2
4r5 + 30r22r

2
3r5 + 30r22r3r

2
4

+ 20r32r4r5 + 20r2r
3
3r4 + 20r1r2r

3
4 + 30r1r

2
2r

2
5 + 30r1r

2
3r

2
4

+ 20r1r
3
3r5 + 120r1r2r3r4r5 + 30r23r4r

2
5 + 20r3r

3
4r5,

l1 = 20r1r3r
3
4 + 30r21r4r

2
5 + 5r41r2 + 10r31r

2
4 + 10r21r

3
3

+ 5r42r3 + 10r22r
3
4 + 5r43r4 + 10r32r

2
5 + 10r23r

3
5 + 5r44r5

+ 5r1r
4
5 + 20r31r3r5 + 30r21r

2
2r5 + 30r1r

2
2r

2
3 + 20r1r

3
2r4

+ 30r2r
2
3r

2
4 + 20r2r

3
3r5 + 20r2r4r

3
5 + 30r3r

2
4r

2
5 + 60r21r2r3r4

+ 60r22r3r4r5 + 60r1r2r
2
4r5 + 60r1r2r3r

2
5 + 60r1r

2
3r4r5,

l2 = 20r31r4r5 + 10r31r
2
2 + 5r41r3 + 10r32r

2
3 + 5r42r4 + 10r21r

3
5

+ 10r33r
2
4 + 5r1r

4
4 + 5r43r5 + 5r2r

4
5 + 10r34r

2
5 + 30r21r2r

2
4

+ 30r21r
2
3r4 + 20r1r2r

3
3 + 20r1r

3
2r5 + 30r22r3r

2
5

+ 20r2r3r
3
4 + 30r22r

2
4r5 + 30r2r

2
3r

2
5 + 60r21r2r3r5 + 60r1r

2
2r3r4

+ 60r1r2r4r
2
5 + 60r2r

2
3r4r5 + 60r1r3r

2
4r5 + 20r3r4r

3
5,

l3 = 20r32r3r4 + 20r33r4r5 + 5r41r4 + 10r21r
3
2 + 10r31r

2
5 + 10r22r

3
3

+ 5r42r5 + 5r1r
4
3 + 5r2r

4
4 + 10r23r

3
4 + 5r3r

4
5 + 10r24r

3
5

+ 20r31r2r3 + 30r21r3r
2
4 + 30r21r

2
3r5 + 30r1r

2
2r

2
4 + 30r2r

2
3r

2
5

+ 30r22r4r
2
5 + 20r1r2r

3
5 + 20r1r

3
4r5 + 60r21r2r4r5

+ 60r1r2r
2
3r4 + 60r1r

2
2r3r5 + 60r2r3r

2
4r5 + 60r1r3r4r

2
5,

l4 = 30r21r2r
2
5 + 5r41r5 + 10r31r

2
3 + 5r1r

4
2 + 5r2r

4
3 + 10r21r

3
4

+ 10r32r
2
4 + 10r22r

3
5 + 5r3r

4
4 + 10r33r

2
5 + 5r4r

4
5 + 20r31r2r4

+ 30r21r
2
2r3 + 30r22r

2
3r4 + 20r32r3r5 + 20r1r

3
3r4 + 20r2r

3
4r5

+ 30r23r
2
4r5 + 20r1r3r

3
5 + 30r1r

2
4r

2
5 + 60r21r3r4r5

+ 60r1r
2
2r4r5 + 60r1r2r3r

2
4 + 60r1r2r

2
3r5 + 60r2r3r4r

2
5.

(3.5)

(Note also that setting t = 1 shows that

l0 + l1 + l2 + l3 + l4 = (r1 + r2 + r3 + r4 + r5)
5.

In particular, if s1 = 0, we have l0 = −l1 − l2 − l3 − l4.)
Similarly we have

Z2 = z52 = l0 + l3ζ + l1ζ
2 + l4ζ

3 + l2ζ
4,

Z3 = z53 = l0 + l2ζ + l4ζ
2 + l1ζ

3 + l3ζ
4,

Z4 = z54 = l0 + l4ζ + l3ζ
2 + l2ζ

3 + l1ζ
4.

The Galois action over K on these elements is the following: The elements l0, l1, l2, l3, l4 are
contained in the field F and are fixed by σ;

τ l0 = l0, τ l1 = l2, τ l2 = l4, τ l3 = l1, τ l4 = l3,

17
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and the action on the Lagrange resolvents is given by

σz1 = ζ4z1, τz1 = ωz1 = z3,

σz2 = ζ3z2, τz2 = ωz2 = z1,

σz3 = ζ2z3, τz3 = ωz3 = z4,

σz4 = ζ1z4, τz4 = ωz4 = z2.

(3.6)

It follows that l0 ∈ K and that l1, l2, l3, l4 are the roots of a quartic polynomial over K, and
the field L = K(l1) = K(l1, l2, l3, l4) is a cyclic extension of K of degree 4 (with Galois group
generated by the restriction of τ = (2354). The unique quadratic subfield of L over K is the field
K(
√
∆). The field diagram is the following:

F (ζ) = Q(r1, r2, r3, r4, r5, ζ)

L(ζ)F = Q(r1, r2, r3, r4, r5)

L = K(l1) = K(l1, l2, l3, l4)

K(
√
∆)

K = k(θ)

k = Q(s1, s2, s3, s4, s5)

⟨(ω : ζ 7→ ζ3)⟩

⟨σ = (12345)⟩

Since the Galois group of L/K is cyclic of degree 4, it follows that l1, l2, l3, l4 are the roots of
a quartic over K which factors over K(

√
∆) into the product of two conjugate quadratics:

[x2 + (T1 + T2

√
∆)x+ (T3 + T4

√
∆)][x2 + (T1 + T2

√
∆)x+ (T3 − T4

√
∆)] (3.7)

with T1, T2, T3, T4 ∈ K. The roots of one of these two quadratic factors are {l1, l4(= τ2l1)}, and the
roots of the other are the conjugates {l2(= τ l1), l3(= τ3l1)} for the specific li defined in equations
(3.5). We may fix the order of the factors and determine the coefficients Ti explicitly by assuming
that the roots of the first factor in (3.7) are {l1, l4}. Then

l1 + l4 = −T1 − T2

√
∆, l2 + l3 = −T1 + T2

√
∆,

l1l4 = T3 + T4

√
∆, l2l3 = T3 − T4

√
∆,

which defines the Ti as explicit rational functions in r1, . . . , r5. Writing these elements as linear
combinations of 1, θ, θ2, . . . , θ5 with symmetric functions as coefficients would be relatively more
straightforward if Z[s1, . . . , s5][θ] were integrally closed in K, but unfortunately this is not the case.
We proceed as follows. In a relation of the form

P = α0 + α1θ + α2θ
2 + α3θ

3 + α4θ
4 + α5θ

5,

where the αi are rational symmetric functions, if we apply the automorphisms (123) and (12)
(which generate a complement to F20 in S5 and so give the automorphisms of K = k(θ)), we
obtain the system of equations

P = α0 + α1θ1 + α2θ
2
1 + α3θ

3
1 + α4θ

4
1 + α5θ

5
1,

(123)P = α0 + α1θ2 + α2θ
2
2 + α3θ

3
2 + α4θ

4
2 + α5θ

5
2,

(132)P = α0 + α1θ3 + α2θ
2
3 + α3θ

3
3 + α4θ

4
3 + α5θ

5
3,

(12)P = α0 + α1θ4 + α2θ
2
4 + α3θ

3
4 + α4θ

4
4 + α5θ

5
4,

(23)P = α0 + α1θ5 + α2θ
2
5 + α3θ

3
5 + α4θ

4
5 + α5θ

5
5,

(13)P = α0 + α1θ6 + α2θ
2
6 + α3θ

3
6 + α4θ

4
6 + α5θ

5
6,
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from which we may solve for the αi using Cramer’s rule. The denominator appearing in Cramer’s
rule is the Vandermonde determinant −

∏

i<j(θi − θj), and it is not difficult to see that this is

(
√
∆)3F , where F is a symmetric polynomial. In particular, if P is a polynomial, this gives

a bound for the denominator necessary for the rational symmetric functions αi (since then the
numerator in Cramer’s rule is a polynomial).

3.4 Ordering the resolvents

Once we have defined all this variables, our goal is to find l1, l2, l3, l4 as roots of (3.7) and from the
irreducibility of this polynomial to determine Gf . Then we want to determine the roots ri of f(x)
using (3.3) and to do so we have to find a way to determine zi. This is just a brief idea of what
we have to do and what we will find in the final Theorem 3.4.2.

If we write
l0 = (a0 + a1θ + a2θ

2 + a3θ
3 + a4θ

4 + a5θ
5)/F (3.8)

and

T1 = (b10 + b11θ + b12θ
2 + b13θ

3 + b14θ
4 + b15θ

5)/(2F ), (3.9)

T2 = (b20 + b21θ + b22θ
2 + b23θ

3 + b24θ
4 + b25θ

5)/(2∆F ), (3.10)

T3 = (b30 + b31θ + b32θ
2 + b33θ

3 + b34θ
4 + b35θ

5)/(2F ), (3.11)

T4 = (b40 + b41θ + b42θ
2 + b43θ

3 + b44θ
4 + b45θ

5)/(2∆F ), (3.12)

the values can be found explicitly for the general polynomial f(x) = x5 + px3 + qx2 + rx + s in
terms of p, q, r, s. We will give them only for the particular case when f(x) = x5 + ax+ b. These
values are

T1 =
(215a5 − 15625b4 + 768a4θ + 416a3θ2 + 112a2θ3 + 24aθ4 + 4θ5)

(50b3)
, (3.13)

T2 =
(3840a5 − 78125b4 + 4480a4θ + 2480a3θ2 + 760a2θ3 + 140aθ4 + 30θ5)

(512a5b+ 6250b5)
, (3.14)

T3 =
(−18880a5 + 781250b4 − 34240a4θ − 21260a3θ2 − 5980a2θ3 − 1255aθ4 − 240θ5)

(2b2)
, (3.15)

T4 =
(68800a5 + 25000a4θ + 11500a3θ2 + 3250a2θ3 + 375aθ4 + 100θ5)

(512a5 + 6250b4)
. (3.16)

If we compute these expressions in terms of our given rational θ, and choose a specific δ as our
square root of ∆ = disc(f), then the roots of the quadratics in (3.7) give us {l1, l4} and {l2, l3}, up
to a permutation of the two pairs. This is not sufficient to solve for the resolvents Z1, Z2, Z3, Z4,
however, since for example if our choice of the roots in fact corresponds to {l1, l3, l2, l4}, then we
do not simply obtain a permutation of the Zi (this permutation is not obtained by an element
of F20). This difficulty is overcome by introducing an ordering condition. For this, observe that
(l1 − l4)(l2 − l3) = ηδ for some element η ∈ K. Computing this element as before, we write

η = (o0 + o1θ + o2θ
2 + o3θ

3 + o4θ
4 + o5θ

5)/(∆F ), (3.17)

where again the values o1, . . . , o5 can be found for general f(x). As above, we will give them for
the special case of f(x) = x5 + ax+ b. We have

η =
(−1036800a5 + 48828125b4 − 2280000a4θ − 1291500a3θ2 − 399500a2θ3 − 76625aθ4 − 16100θ5)

(256a5 + 3125b4)

For any specific quintic f(x), choose a square root δ′ of the discriminant ∆, then define the
roots of the first quadratic in (3.7) to be l′1 and l′4, and the roots of the second quadratic to be l′2
and l′3, ordered so that (l′1 − l′4)(l

′
2 − l′3) = ηδ′. If our choice of square root δ′ is the same as that

corresponding to δ determined by the ordering of the roots above, then our choice of l′1, l
′
2, l

′
3, l

′
4 is

either l1, l2, l3, l4 or l4, l3, l2, l1. If our choice of square root δ′ corresponds to −δ, then our choice
of l′1, l

′
2, l

′
3, l

′
4 is either l2, l4, l1, l3 or l3, l1, l4, l2. The corresponding resolvents computed in (3.4) are
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then simply permuted (namely, (Z1, Z2, Z3, Z4), (Z4, Z3, Z2, Z1), (Z3, Z1, Z4, Z2), (Z2, Z4, Z1, Z3),
respectively), which will simply permute the order of the roots ri in (3.3), as we shall see.

It remains to consider the choice of the fifth roots of the Zi to obtain the resolvents zi. We
now show that, given Z1 = z51 , each of the five possible choices for z1 uniquely defines the choices
for z2, z3, z4, hence uniquely defines the five roots of the quintic.

Consider the expressions z1z4 and z2z3, which by the explicit Galois actions above are fixed
by σ, τω−1 and τ2, hence are elements of the corresponding fixed field K(δ

√
5).

As mentioned above, the discriminant ∆ for any solvable quintic is a positive rational number.
It follows that under any specialization, the elements z1z4 and z2z3 are elements of the field
Q(
√
5∆). Since the zi are uniquely defined up to multiplication by a fifth root of unity, this

uniquely determines z4 given z1, and z3 given z2. It remains to see how z2 is determined by
z1. Consider now the elements z1z

2
2 , z3z

2
1 , z4z

2
3 , z2z

2
4 , which are invariant under σ and cyclically

permuted by both τ and ω. It follows that these are the roots of a cyclic quartic over K, and that
in particular

z1z
2
2 + z4z

2
3 = u+ vδ

√
5, z3z

2
1 + z2z

2
4 = u− vδ

√
5 (3.18)

for some u, c ∈ K, where
√
5 is defined by the choice of ζ: ζ + ζ−1 = (−1 +

√
5)/2.

Lemma 3.4.1 ([3]). Given z1, there is a unique choice of z2, z3, z4 such that z1z4, z2z3 ∈ K(δ
√
5)

and such that the two equations in (3.18) are satisfied.

Proof. We have already seen that z1 uniquely determines z4 and that z2 uniquely determines z3
by the conditions z1z4, z2z3 ∈ K(δ

√
5). It remains to show that z1 uniquely defines z2 subject to

the equations in (3.18).
If z2 were replaced be εz2 for some nontrivial fifth root of unity ε, then z3 would be replaced

by εz3 (where εε = 1), since their product must lie in K(δ
√
5). If this new choice for z2 and z3

(together with the fixed z1 and z4) also satisfied the equations in (3.18), we would have

z1z
2
2 + z4z

2
3 = u+ vδ

√
5, and z1(εz2)

2 + z4(εz3)
2 = u+ vδ

√
5,

z3z
2
1 + z2z

2
4 = u− vδ

√
5, and (εz3)z

2
1 + (εz2)z

2
4 = u− vδ

√
5.

Equating the expressions for u+ vδ
√
5 gives

z1z
2
2

z4z23
= −1− ε2

1− ε2
=

1

ε2
,

and equating the expressions for u− vδ
√
5 gives

z21z3
z24z2

= −1− ε

1− ε
= ε.

These two equations give (z1/z4)
5 = 1, which implies that z1/z4 is a fifth root of unity. This

is a contradiction, since this element generates a quintic extension of L(ζ) which survives any
specialization (the order of the Galois group of the irreducible f(x) is divisible by 5), and completes
the proof.

The elements u and v are computed as before:

u = −25q/2,
v = (c0 + c1θ + c2θ

2 + c3θ
3 + c4θ

4 + c5θ
5)/(2∆F ),

where the coefficient ci for the general f(x) can be found. We will give them for the special case
of f(x) = x5 + ax+ b:

u =0,

v =(−2048a7 + 25000a2b4 − 3072a6θ − 6250ab4θ − 1664a5θ2−
− 3125b4θ2 − 448a4θ3 − 96a3θ4 − 16a2θ5)/(32000a5b3 + 390625b7),

We are now ready for the final theorem:
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Theorem 3.4.2 ([3]). Suppose the irreducible polynomial f(x) = x5 + px3 + qx2 + rx+ s ∈ Q[x]
is solvable by radicals, and let θ be the unique rational root of the associated resolvent sextic f20
as in Theorem 3.2.1. Fix any square root δ of the discriminant ∆ of f(x) and fix any primitive
fifth root of unity ζ. Define l0 as in equation (3.8), and define l1, l4 and l2, l3 to be the roots of
the quadratic factors in (3.7), subject to the condition (l1 − l4)(l2 − l3) = ηδ in (3.17). Then the
Galois group of f(x) is:

(a) the Frobenius group of order 20 if and only if the discriminant ∆ of f(x) is not a square, which
occurs if and only if the quadratic factors in (3.7) are irreducible over Q(

√
∆),

(b) the dihedral group of order 10 if and only if ∆ is a square and the rational quadratics in (3.7)
are irreducible over Q,

(c) the cyclic group of order 5 if and only if ∆ is a square and the rational quadratics in (3.7) are
reducible over Q.

Let z1 be any fifth root of Z1 in (3.4), and let z2, z3, z4 be the corresponding fifth roots of Z2, Z3, Z4

as in the lemma above. Then the formulas (3.3) give the roots of f(x) in terms of the radicals and
r1, r2, r3, r4, r5 are permuted cyclically by some 5-cycle in the Galois group

Proof. The conditions in (a) to (c) are simply restatements of the structure of the field L = K(l1) =
K(l1, l2, l3, l4) under specialization. We have already seen that the choice of δ and the roots li,
of the quadratics determines the Zi up to an ordering: (Z1, Z2, Z3, Z4) or (Z4, Z3, Z2, Z1) if the
choice of δ is the same as that in the computations above, and (Z3, Z1, Z4, Z2) or (Z2, Z4, Z1, Z3)
if the choice of δ is the negative of that used in the computations above. It is easy to check that
the corresponding resolvents zi are then simply (z1, z2, z3, z4), (z4, z3, z2, z1), (z3, z1, z4, z2), and
(z2, z4, z1, z3), respectively (this is the action of the automorphism τ = (2354) above). The formulas
(3.3) then give the roots ri in the orders (r1, r2, r3, r4, r5), (r1, r5, r4, r3, r2), (r1, r3, r5, r2, r4), and
(r1, r4, r2, r5, r3), respectively. In terms of the 5-cycle σ = (12345) above, these correspond to
cyclic permutations by σ, σ−1, σ2 and σ3, respectively. Finally, any choice of primitive fifth root of
unity ζ produces precisely the same permutations of the roots ri, so the roots of f(x) are produced
in a cyclic ordering independent of all choices.

We now give some examples of Galois group and roots computations

1. Let f(x) = x5 + 15x+ 12, whose discriminant is ∆ = 2103455. The corresponding resolvent
sextic f20(x) is the polynomial

x6 + 120x5 + 9000x4 + 540000x3 + 20250000x2 + 324000000x,

which clearly has θ = 0 as a root. It follows that the Galois group of f(x) is the Frobenius
group F20 and that f(x) is solvable by radicals. With δ = 7200

√
5, where ζ + ζ−1 =

(−1+
√
5)/2, the roots l1, l2, l3, l4 of the quadratics in (3.7) (subject to the ordering condition

in (3.17)) are

l1 = −375− 750
√
5 + 75i

√

625 + 29
√
5,

l4 = −375− 750
√
5− 75i

√

625 + 29
√
5,

l1 = −375 + 750
√
5− 75i

√

625− 29
√
5,

l1 = −375 + 750
√
5 + 75i

√

625− 29
√
5.

Then

Z1 = −1875− 75

√

1635 + 385
√
5 + 75

√

1635− 385
√
5,

Z4 = −1875 + 75

√

1635 + 385
√
5− 75

√

1635− 385
√
5,

Z2 = 5625− 75

√

1490 + 240
√
5− 75

√

1490− 240
√
5,

Z3 = 5625 + 75

√

1490 + 240
√
5 + 75

√

1490− 240
√
5.
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Viewing these as real numbers, and letting z1 be the real fifth root of Z1, we conclude
that the corresponding z2, z3 and z4 are the real fifth roots of Z2, Z3 and Z4, respectively,
and then (3.3) gives the roots of f(x). For example, the sum of the real fifth roots of
Z1, Z2, Z3, Z4 above gives five times the (unique) real root of f(x).

2. Let f(x) = x5 − 5x + 12, whose discriminant is ∆ = 21256. The corresponding resolvent
sextic f20(x) is the polynomial

x6 − 40x5 + 1000x4 + 20000x3 + 250000x2 − 66400000x+ 976000000,

which has θ = 40 as a root, so that f(x) has a solvable Galois group. Since in this case the
quadratic factors in (3.7) are x2 + 1250x + 6015625 and x2 − 3750x + 4921875, which are
irreducible over Q, it follows that the Galois group of f(x) is the dihedral group of order 10.
If δ = 8000, the roots l1, l2, l3, l4 of the quadratics in (3.7) (subject to the ordering condition
in (3.17)) are

l1 = −625 + 750
√
−10,

l4 = −625− 750
√
−10,

l2 = 1875 + 375
√
−10,

l2 = 1875− 375
√
−10.

Then

Z1 = −3125− 1250
√
5− 750

2

√

100 + 20
√
5− 375

2

√

100− 20
√
5,

Z4 = −3125− 1250
√
5 +

750

2

√

100 + 20
√
5 +

375

2

√

100− 20
√
5,

Z2 = −3125 + 1250
√
5 +

750

2

√

100 + 20
√
5− 375

2

√

100− 20
√
5,

Z3 = −3125 + 1250
√
5− 750

2

√

100 + 20
√
5 +

375

2

√

100− 20
√
5.

Again viewing these as real numbers, and letting z1 be the real fifth root of Z1, we conclude
that the corresponding z2, z3 and z4 are the real fifth rots of Z2, Z3 and Z4, respectively,
and then (3.3) gives the roots of f(x). For example, the sum of the real fifth roots of
Z1, Z2, Z3, Z4 above again gives five times the (unique) real root in this example.

3. Let f(x) = x5 − 110x3 − 55x2 + 2310x + 979, whose discriminant is ∆ = 520114. The
corresponding resolvent sextic f20(x) is the polynomial

x6 + 18480x5 + 47764750x4 − 580262760000x3 − 1796651418959375x2

+ 2980357148316659375x− 36026068564469671875,

which has θ = −9955 as a root, so that f(x) ha a solvable Galois group. Since in this case
the quadratic factors in (3.7) are (x− 797500)(x+ 61875) and (x− 281875)(x+ 405625), it
follows that the Galois group of f(x) is the cyclic group of order 5. If δ = 510112, the roots
l1, l2, l3, l4 of the quadratics in (3.7) (subject to the ordering condition in (3.17)) are

l1 = 797500,

l2 = −61875,
l3 = 281875,

l4 = −405625.

Then

Z1 = 5511(41ζ + 26ζ2 + 6ζ3 + 16ζ4),

Z2 = 5511(6ζ + 41ζ2 + 16ζ3 + 26ζ4),

Z3 = 5511(26ζ + 16ζ2 + 41ζ3 + 6ζ4),

Z4 = 5511(16ζ + 6ζ2 + 26ζ3 + 41ζ4),

22



CHAPTER 3. QUINTICS 3.4. ORDERING THE RESOLVENTS

Here,

u+ vδ =
1375 + 6875

√
5

2
, u− vδ =

1375− 6875
√
5

2
,

so with z1 any fifth root of Z1, z4 is the fifth root of Z4 such that z1z4 is real, and z2, z3 are the
fifth roots of Z2, Z3 whose product is real and which satisfy z3z

2
1+z2z

2
4 = (1375−6875

√
5)/2.
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Chapter 4

Sextics

4.1 Introduction and notation

Let f(x) ∈ Q[x] be an irreducible polynomial of degree 6 and Gal(f) = Gf its Galois group. If
we number the roots ri of f(x), then we can embed Gf as a transitive subgroup of S6 through its
action upon the ri. Since changing the numbering of the roots conjugates the embedding of Gf in
S6, Gf is not a well-defined function of f .

Let Gal(f) = Gf be the S6-conjugacy class of Gf and let Σ6 be the S6-conjugacy classes of
transitive subgroups of S6. Then for each irreducible polynomial f , Gf gives a well-defined element
of Σ6. Given G ∈ Σ6, we let ΓG be the set of all irreducible polynomials f(x) ∈ Q[x] with degree
6 such that Gf = G.

Given G ∈ Σn, we say that the general equation of type (n,G) is explicitly solvable by radicals
if (we will recall this definition in Theorem 4.4.5 of Section 4.4):

(i) There are formulas z1(ti), z2(ti), . . . , zn(ti) using only the basic arithmetic operations and
radicals in variables t1, t2, . . . , tm;

(ii) A number field K, [K : Q] < ∞, and bounded algorithm which associates to each f ∈ ΓG,
numbers t̂1(f), t̂2(f), . . . , t̂n(f) ∈ K such that z1(t̂i(f)), . . . , zn(t̂i(f)) are the roots of f .

4.2 Transitive subgroups of S6

We know that given f(x) an irreducible sextic polynomial, its Galois group Gal(f) is a transitive
subgroup of S6. The candidates are the subgroup of S6 such that 6 = deg(f) | |Gf |. Up to
isomorphism, these are:

Gf S6 A6 H120 G72 Γ60 G48 Γ36 G36

|Gf | 720 360 120 72 60 48 36 36

Gf Γ24 G24 H24 G18 Γ12 G12 C6 H6

|Gf | 24 24 24 18 12 12 6 6

Table 4.1: Transitive subgroups of S6

We can say ”up to isomorphism” because Cayley and Cole (see [1],[2]) proved that each tran-
sitive subgroup of S6 is conjugate in S6 to one of sixteen non-isomorphic groups in Table (4.1).
With the only exception of S6 and A6, in the notation above the subscript will denote the number
of elements in the group. The groups Hm! are isomorphic to Sm and the use of the notation Γm

indicates that Γm = G2m ∩A6, with the exception that Γ60 = H120 ∩A6. One can also show that
Γ12
∼= A4 and Γ60

∼= A5.
The four maximal transitive subgroups of S6 are S6, H120, G72 and G48. We now explicitly

describe their generators and subgroups.

• H120 is generated by the elements (1452), (16524) and (143562) and is isomorphic to S5.
Γ60 = H120 ∩A6 is a subgroup of H120 of index 2 and is isomorphic to A5.
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• We now consider G72 and its subgroups Γ36, G36 and G18. Let X = {1, 3, 5}, Y = {2, 4, 6}
and let SymZ denote the symmetric group of a set Z. We regard SymX and SymY as
subgroups of S6. Since σ = (12)(34)(56) ∈ S6 acts on SymX × SymY ⊂ S6 by conjugation,
we can define the semi-direct product

G72 = (SymX × SymY )⋊ ⟨σ⟩ ⊂ S6.

It is the stabilizer in S6 of the set S = {X,Y } and is generated by (13), (15) and σ.

Now Γ36 = G72 ∩A6 is the subgroup of A6 stabilizing S.

The subgroup G36 is defined by G36 = [A6 ∩ (SymX × SymY )] ⋊ ⟨σ⟩. It is generated by
(13)(24), (135) and σ.

Finally, let G18 be the subgroup defined by G18 = (AX × AY ) ⋊ ⟨σ⟩, where AZ is the
alternating subgroup of SymZ , for a set Z. The group G18 is generated by (135) and σ.

• We now describe G48 and its transitive subgroups. Let X = {1, 2}, Y = {3, 4}, Z = {5, 6}
and T = {X,Y, Z}. We define G48 to be the stabilizer of T in S6. It is generated by
the elements (12), (13)(24) and (135)(246). The subgroup H = SymX × SymY × SymZ

∼=
(Z/3Z)3 is generated by the cycles (12), (34) and (56). It is a normal subgroup of G48 of
order 8 and G48/H ∼= SymT . We have G48

∼= SymT ⋉H.

To define the subgroups of G48 we introduce two characters on G48. Let α : G48 → {±1}
be the restriction from S6 to G48 of the sign homomorphism S6 → {±1}. We let α1 :
G48 → {±1} be the composition of G48 → G48/H ∼= SymT and the sign homomorphism
SymT → {±1}.
We now define the three subgroups Γ24, G24 andH24 to be the kernels inG48 of the respective
homomorphism α, α1 and αα1.

We define Γ12 = Γ24 ∩G24(= Γ24 ∩H24 = G24 ∩H24). In terms of generators, these groups
are easily described. For example, G24 is generated by (12) and (135)(246), and Γ12 is
generated by (135)(246) and (12)(34). We have G24

∼= H24
∼= S4, but G24 and H24 are not

conjugate groups in S4.

• Finally, we describe G12 and its two transitive subgroups C6 and H6 of order 6. We have
G12 = G72 ∩G48. It is generated by the cycles (135)(246), (13)(24) and (12)(34)(56).

We denote by C6 the cyclic subgroup generated by (145236) and by H6 the group generated
by (135)(246) and (12)(36)(45). We have H6

∼= S3.

The set Σ6 has 16 elements and the representative of each conjugacy class are given in Table
(4.1). Twelve of these groups are solvable (all 16 except for S6, A6, H120

∼= S5 and Γ60
∼= A5),

and there are two maximal solvable groups, G72 and G48. When Gf is solvable, we have

Gf ⊆ G72 or Gf ⊆ G48.

We will give some subgroup relations between the transitive subgroups of S6 in the following
figure:

S6

A6

H120

Γ60 Γ24 G24 H24

G48

Γ12

Γ36

G72

G36

G18

G12

G48 G72

C6 H6

Figure 4.1
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4.3 Galois resolvents

First of all, let’s give some notation. Let x1, . . . , x6 be indeterminates over Q, R = Q[x1, . . . , x6]
and K = Q(x1, . . . , x6) the quotient field of R. We let σ ∈ S6 act on K via σ(xi) = xσ(i). Let
F = KS6 = ΩS6

be the field of the elements of K fixed by S6. Then F = Q(s1, . . . , s6), where

s1 = x1 + · · ·+ x6, s2 =
∑

i<j

xixj , . . . s6 = x1x2 . . . x6,

are the symmetric polynomials in the xi. K/F is a Galois extension with Galois group S6. Given
θ ∈ K, we let Stab(θ) = {σ ∈ S6 | σ(θ) = θ}. If θ ∈ K is a polynomial and Stab(f) = G, we call θ
a G-polynomial. If G ⊂ S6, then K/KG is a Galois extension with group G, and KG = F (θ) for
some θ ∈ K with Stab(θ) = G.

K

KG = ΩG

F {1}

G

S6

Now θ will have m = [S6 : G] conjugates θ = θ1, . . . , θm in K. The
Galois resolvent of θ is defined as

Fθ(x) =

m
∏

i=1

(x− θi) ∈ F [x].

Fθ(x) has degree m and is the product of distinct irreducible factors in
KH [x] for eachH ⊂ S6. LetX be the set of leftG-cosets in Sn. The group
H acts on X by left multiplication. Elementary group theory shows that
the degrees of the irreducible factors of Fθ(x) in KH [x] are given by the
lengths of the H-orbits in X. Hence, the set of degrees of the irreducible
factors of Fθ(x) is independent of the choice of θ and depends only on G.

We now study three particular Galois resolvents. We denote by F2(x), F10(x) and F15(x) the
Galois resolvents corresponding to the pairs (G, θG), for G = A6, θA6

=
∏

i<j(xi − xj); G = G72,
θ72 = (x1 + x3 + x5)(x2 + x4 + x6); and G = G48, θ48 = x1x2 + x3x4 + x5x6. Whenever there is no
ambiguity, we will often write Fd instead of FG, where d will be the index [S6 : G] (for example,
F2 = FA6

and [S6 : A6] = 2). The degree of Fd(x) is d. Table (4.2) indicates the degrees of
the irreducible factors of these resolvents in KH [x] = Q(x1 . . . , x6)

H , for all transitive subgroups
H ⊂ S6.

Group G F2(x) F10(x) F15(x)
S6 2 10 15
A6 1,1 10 15
H120 2 10 10,5
Γ60 1,1 10 10,5
G72 2 9,1 9,6
Γ36 1,1 9,1 9,6
G36 2 9,1 9,3,3
G18 2 9,1 9,3,3
G48 2 6,4 8,6,1
Γ24 1,1 6,4 8,6,1
G24 2 6,4 8,6,1
H24 2 6,4 6,4,4,1
Γ12 1,1 6,4 6,4,4,1
G12 2 6,3,1 6,3,3,2,1
C6 2 6,3,1 6,3,3,2,1
H6 2 3,3,3,1 3,3,3,3,1,1,1

Table 4.2

We now introduce the notion of specialization. Let f(x) ∈ Q[x] be an irreducible sextic
polynomial. Choose a numbering r1, . . . , r6 of the roots of f so that the corresponding embedding
Gf →֒ S6 is one of the groups listed in Table (4.1). We will need to distinguish between the action
of S6 on xi and the action of Gf on the roots ri. Let L be the splitting field of f(x) over Q. Then
let α̂ : R = Q[x1 . . . , x6] → L be the homomorphism defined by α̂(xi) = ri. Given θ ∈ R, we let

θ̂ denote the image α̂(θ) ∈ L. If g(x) =
∑

i aix
i ∈ R[x], we let ĝ(x) =

∑

i âix
i. We will often
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use the following simple observation: If θ ∈ R is invariant under the action of G(f) ⊂ S6, then

θ̂ ∈ Q. Similarly, if the coefficients of g(x) are Gf -invariant, then ĝ(x) ∈ Q[x]. In particular, for

each G ⊂ S6 and G-polynomial θ ∈ R, we have F̂θ(x) ∈ Q[x].
It is important to remember that all specializations are with respect to f(x) and a given

numbering of the ri. However, the specialization of a Galois resolvent can be computed without
knowing ri or their numbering. Let θ be a G-polynomial for some G ⊂ S and Fθ(x) be its Galois
resolvent. Then the coefficients of F̂θ(x) are polynomials in the coefficients ai of f(x). Hence F̂θ(x)
can be computed by knowing only f(x).

We now study several specific specializations of Galois resolvents. Again, for ease of notation,
we will often write fG(x) or fd(x) (if d = [S6 : G]) instead of F̂G(x). For example, f2(x) = F̂2(x) =
x2 −∆, where ∆ is the discriminant of f(x). Hence determining whether f2(x) has rational roots
is equivalent to determining whether Gf ⊂ A6. We will use f10(x) = F̂10(x) and f15(x) = F̂15(x)
to draw similar conclusion about Gf . The coefficients of f2(x), f10(x) and f15(x) are symmetric
polynomials in the ri and can be expressed as polynomials in the coefficients a1, . . . , a6 of f(x).
Let now write f10, f15 ∈ Q[x] as

f10 = x10 +

10
∑

i=1

(−1)ibix10−i, f15 = x15 +

15
∑

i=1

(−1)icix15−i

where the coefficients bi, ci ∈ Q are defined in the Appendix in function of the coefficients a1, . . . , a6
of f(x). We also give an explicit formula for the discriminant ∆.

Let us now review how Galois resolvents can be used to calculate Gf . Let G ⊂ S6 and choose
a G-polynomial θG ∈ Q[x1, . . . , x6]. Let FθG(x) be the Galois resolvent. We will write Gf ⊂c G if
Gf is conjugate in S6 to a subgroup of G. It can be easily shown:

Proposition 1 ([5]). If Gf ⊂c G, then F̂θG(x) ∈ Q[x] has a rational root. Conversly, if F̂θG(x)
has a rational root with multiplicity one, then Gf ⊂c G.

By assuming that Gf is one of the 16 groups in Table (4.1), we can replace ⊂c in Proposition
1 by ⊂ when G = G72, G48 or A6. If for each transitive subgroup G ⊂ S6, there exists θG ∈
Q[x1, . . . , x6] such that the specialization F̂θG(x) always has distinct roots, then Proposition 1
would solve the problem of determining Galois groups.

The key to our approach is that we can choose θG for G = G72, G48, so that F̂θG has a
rational root with multiplicity one most of the time. And in the remaining cases, we can use the
factorization of F̂θG(x) to determine whether Gf ⊂ G. Then, once we know whether Gf ⊂ G72

and Gf ⊂ G48, we can use other criteria to determine Gf precisely. The three Galois resolvents
we will use are f2(x) = x2 −∆, f10(x) and f15(x).

We now consider the factorization of f2(x), f10(x), f15(x) in Q[x] when Gf = G, for each
transitive subgroup G of S6. The factorization of f2(x) is easy to determine. f2(x) = x2−∆ has a
rational root if and only if Gf ⊂ A6. And since ∆ ̸= 0, these statements are equivalent to ∆ being
a square in Q. For the other cases, we will make heavy use of the well-known lemma:

Lemma 4.3.1 ([5]). Let FθG(x) be the Galois resolvent associated to G ⊂ S6. Assume that f(x) is
an irreducible polynomial with Gf . If F (x) is an irreducible factor of the Galois resolvent FθG(x)

in KGf [x], the F̂ (x) is either an irreducible polynomial or the power of a linear polynomial in Q[x].

We now consider the factorization of f10 in Q[x]. We can recall that f10 = F̂10(x). Let
θ(abc)(def) = (xa + xb + xc)(xd + xe + xf ). Then the ten roots of F10(x) are the θ(abc)(def), where
{(abc)(def)} ranges over all ten partition of {1, . . . , 6} into two sets of three element each. Since

θ(135)(246) = θ72 is a G72-polynomial, if Gf ⊂ G72, then θ = θ̂(135)(246) is a rational root of f10(x).

Proposition 2 ([5]). Let f(x) ∈ Q[x] be an irreducible sextic polynomial and assume that Gf is
one of the groups in Table (4.1).

(a) Gf ⊂ G72 ⇐⇒ f10(x) has a rational root. When this holds, f10(x) has a rational root with
multiplicity one.

(b) If F (x) is an irreducible factor of F10(x) in KGf [x] of degree ≥ 4, then F̂ (x) is an irreducible
factor of f10 in Q[x].
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Proof. We first prove (b). By Table (4.2), we can assume that Gf ̸= H6. Inspection then
shows that whenever F10(x) has an irreducible factor F (x) of degree 6, 9 or 10, then F (x) has
θ(123)(456), θ(124)(356) and θ(125)(346) as roots. By Lemma 4.3.1, F̂ (x) is either irreducible in Q[x]
or

θ̂(123)(456) = θ̂(124)(356) = θ̂(125)(346).

Assume that the latter holds. Then the first equality shows that r1 + r2 = r5 + r6, the second
gives r1 + r2 = r3 + r6 and we obtain the contradiction r3 = r5. Hence F̂ (x) ∈ Q[x] is irreducible.
By process of elimination, we can now assume that F (x) is the irreducible factor of degree four
occurring when Gf ⊂ G48, Gf ̸⊂ G72. The roots of F (x) are then θ(135)(246), θ(136)(245), θ(145)(236)
and θ(146)(235). Again, by Lemma 4.3.1, if F̂ (x) is not irreducible, then θ̂(135)(246) = θ̂(136)(245)
and θ̂(145)(236) = θ̂(146)(235). Hence, r1 + r3 = r2 + r4 and r1 + r4 = r2 + r3 and we obtain the

contradiction r1 = r2. Thus F̂ (x) is irreducible and (b) is proved.
We now prove (a). The direction (=⇒) follows from Proposition 1. Now (⇐=) follows from

(b) since if Gf ̸⊂ G72, then f10(x) does not have a rational root. Hence the equivalence in (a)
is proved. We now show that when it holds, f10(x) has a rational root with multiplicity one.
When Gf ⊂ G72, Gf ̸⊂ G48, then by (b), f10 has a rational root with multiplicity one. Hence
we can assume that Gf = G12, C6 or H6. We will show that in each case, f10 has a rational
root with multiplicity one. We first consider the case when Gf = H6. It suffices to show that

if the specialization F̂ (x) of an irreducible cubic factor F (x) of F10(x) equals (x − a)3, then

a ̸= θ (= θ̂(135)(246)). Inspection shows that the roots of the three irreducible cubic factors are
given by the sets

{

θ̂(136)(245), θ̂(145)(236), θ̂(146)(235)
}

,
{

θ̂(132)(456), θ̂(126)(354), θ̂(156)(234)
}

,

{

θ̂(134)(256), θ̂(146)(235), θ̂(145)(236)
}

.

If a = θ, then either
θ̂(135)(246) = θ̂(136)(245) = θ̂(145)(236) = θ̂(146)(235),

or
θ̂(135)(246) = θ̂(132)(456) = θ̂(126)(354) = θ̂(156)(234),

or
θ̂(135)(246) = θ̂(134)(256) = θ̂(146)(235) = θ̂(145)(236).

Proceeding as in the second part of the proof for (b), we obtain a contradiction in all three cases.
The cases when Gf = G12, C6 are similar. Hence (a) is proved.

More generally, for any Galois resolvents coming from a G72-polynomial, we can show

Proposition 3 ([5]). Let f(x) ∈ Q[x] be an irreducible sextic polynomial and assume that Gf is
one of the groups in Table (4.1).

(a) Let θ ∈ Q[x1, . . . , x6] be a G72-polynomial. If Gf ⊂ G72, then θ̂ ∈ Q and is the unique root of

F̂θ(x) ∈ Q[x] occurring with multiplicity 1, 4, 7 or 10.

(b) Let θ ∈ Q[x1, . . . , x6] be a G48-polynomial. If Gf ⊂ G48, Gf ̸⊂ G72, then θ̂ ∈ Q and is the

unique root of F̂θ(x) ∈ Q[x] with multiplicity 1, 5, 7, 9, 11 or 15.

Proof. We prove (a). Using Table (4.2) and Lemma 4.3.1, for each possible Galois group Gf =

G ⊂ G72, one can determine the possible decomposition of F̂θ(x) in Q[x]. For each possible

decomposition, inspection shows that there exists a positive integer n such that θ̂ is the unique
root r of F̂θ(x) with multiplicity n. The list of such n is the list in (a). Since no other root can have
this multiplicity, (a) is proved. The proof of (b) is the same. The restriction Gf ⊂ G48, Gf ̸⊂ G72

occurs because when Gf ⊂ G12, it can be the case that θ̂ cannot be determined because there are
multiple roots with the same multiplicity.

We now consider the factorization of f15(x) = in Q[x]. Let

θ(ab)(cd)(ef) = xaxb + xcxd + xexf .

The roots of F15(x) = Fθ48(x) are the fifteen conjugates of θ48 listed in Table (4.3).
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θ(12)(34)(56) θ(12)(35)(46) θ(12)(36)(45)
θ(13)(24)(56) θ(13)(25)(46) θ(13)(26)(45)
θ(14)(23)(56) θ(14)(25)(36) θ(14)(26)(35)
θ(15)(23)(46) θ(15)(24)(36) θ(15)(26)(34)
θ(16)(23)(45) θ(16)(24)(35) θ(16)(25)(34)

Table 4.3: Roots of F15(x)

We have:

Proposition 4 ([5]). Let f(x) ∈ Q[x] be an irreducible sextic polynomial. If F (x) is an irreducible
factor of F15(x) in KGf [x] with degree d ≥ 6, then F̂ (x) ∈ Q[x] is irreducible.

Proof. Assume F̂ (x) is reducible. Then F̂ (x) = (x − a)d for some a ∈ Q, by Lemma 4.3.1. Since
degF (x) ≥ 6, two of the roots of F (x) must be θ(1b)(cd)(ef), θ(1b)(ce)(df), for some permutation

b, c, d, e, f of the numbers 2, . . . , 6. Since θ̂(1b)(cd)(ef) = θ̂(1b)(ce)(df), we have (rc − rf )(rd −
re) = 0 and thus, either the contradiction rc = rf or the contradiction rd = re. Hence F̂ (x) is
irreducible.

We are now ready to give our criterion to determine whether Gf is solvable, as a corollary of
the following Theorem.

Theorem 4.3.2 ([5]). If f(x) ∈ Q[x] be an irreducible sextic polynomial, then

(a) Gf ⊂ G72 ⇐⇒ f10(x) has a rational root.

(b) Gf ⊂ G48 ⇐⇒ one of the following statements holds:

(i) f15(x) has a rational root with multiplicity ̸= 3, 5.

(ii) f15(x) has a rational root with multiplicity three and f10(x) has either an irreducible
cubic factor or at least two distinct linear factors.

(iii) f15(x) has a rational root with multiplicity five and f10(x) is reducible.

Proof. Part (a) is proved in Proposition 2(a). We now prove (b)(=⇒). Assume Gf ⊂ G48. By
Proposition 1, f15(x) has a rational root. If f15(x) has a rational root with multiplicity ̸= 3, 5,
then condition (i) holds. We now assume that (i) does not hold. If f15(x) has a rational root
with multiplicity 3, then by Proposition 4 and Table 4.2, either Gf = G12, C6 or H6. Inspection,
along the lines of the proof of Proposition 2(b), then shows that the criterion in condition (ii)
holds. If Gf ⊂ G48 and f15(x) does not have any rational roots except with multiplicity 5, then by
Proposition 4 we have Gf = H24 or Γ12. Then since F10(x) is reducible in KG[x] when G = H24

or Γ12, f10(x) is reducible. Hence (iii) holds.
We now prove (b)(⇐=). Assume that condition (i) holds. Then by Proposition 4, we must

have Gf ⊂ G48. Assume now that condition (ii) holds. Since there is a root with multiplicity 3,
then by Table 4.2 and Proposition 4, we must have Gf = G36, G18 or Gf ⊂ G12. But Proposition
2 shows that f10(x) contains an irreducible factor of degree 9 when Gf = G36, G18. Hence
Gf ⊂ G12 ⊂ G48. Finally, assume that condition (iii) holds. If f15(x) has a root with multiplicity
5 then Gf = H120, Γ60 or Gf ⊂ G48 by Lemma 4.3.1. Since f10(x) is reducible, by Proposition 2
we have Gf ̸= H120, Γ60. Hence Gf ⊂ G48 and the theorem is proven.

Corollary 4.3.3 ([5]). Let f(x) ∈ Q[x] be an irreducible sextic polynomial. Then Gf is solvable
⇐⇒ one of the following statements holds:

(a) f10(x) has a rational root.

(b) f15(x) has a rational root with multiplicity ̸= 5.

(c) f15(x) has a rational root with multiplicity five and f10(x) is the product of irreducible quartic
and sextic polynomials.

Proof. Gf is solvable if and only if Gf ⊂ G72 or Gf ⊂ G48. Hence Corollary 4.3.3 follows from
Theorem 4.3.2, Table 4.2 and the observation that f15(x) can only have a rational root with
multiplicity three when Gf ⊂ G72 or Gf ⊂ G48.
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Once it is known by Theorem 4.3.2 that Gf is not solvable, it is easy to determine Gf . We
have

Proposition 5 ([5]). Let f(x) ∈ Q[x] be a non-solvable irreducible sextic polynomial. Then

(a) Gf
∼= S6 ⇐⇒ f15(x) is irreducible in Q[x] and ∆ is not a square in Q.

(b) Gf
∼= A6 ⇐⇒ f15(x) is irreducible in Q[x] and ∆ is a square in Q.

(c) Gf
∼= H120 ⇐⇒ f15(x) is reducible in Q[x] and ∆ is not a square in Q.

(d) Gf
∼= Γ60 ⇐⇒ f15(x) is reducible in Q[x] and ∆ is a square in Q.

Proof. We have Gf
∼= S6, A6, H120 or Γ60. By Proposition 4, f15(x) is irreducible ⇐⇒ Gf

∼= S6

or A6. The discriminant ∆ distinguishes the remaining cases.

4.4 Solving the sextic: Gf ⊆ G48, Gf ̸⊆ G72

Once it is proved Theorem 4.3.2, we now assume that Gf ⊆ G48 and Gf ̸⊆ G72. We first explain
how to determine Gf , then how to determine the roots of the sextic f(x) and finally how to
explicitly determine the action of Gf on the roots.

We recall that by Proposition 3, we know the value of the rational root θ1 = θ̂48 = r1r2 +
r3r4 + r5r6 of f15(x). We introduce the variables:

d12 = x1 + x2, d34 = x3 + x4, d56 = x5 + x6,

e12 = x1x2, e34 = x3x4, e56 = x5x6,

χ1 = (d12 − d34)(d34 − d56)(d56 − d12),

χ2 = (e12 − e34)(e34 − e56)(e56 − e12).

(4.1)

Now χ2
1, χ2

2 are G48-polynomials and by Proposition 3, the values of χ̂2
1, χ̂2

2 can be determined as
roots of the Galois resolvents fχ2

i
. We now state some elementary properties of χ̂1, χ̂2.

Lemma 4.4.1 ([5]). Let f(x) ∈ Q[x] be an irreducible sextic with Gf = G48, Γ24, G24, H24 or
Γ12. Then

(a) χ̂1 = 0⇐⇒ d̂12 = d̂34 = d̂56 = a1/3.

(b) χ̂2 = 0⇐⇒ ê12 = ê34 = ê56 = θ1/3.

(c) At least one of the χ̂i is non-zero. If both χ̂1, χ̂2 are non-zero, then χ̂2
1 is a square in Q⇐⇒ χ̂2

2

is a square in Q.

Proof. We first prove (a). Suppose χ̂1 = 0. Then one of the three factors of χ̂1 must vanish.

Assume that d̂12 = d̂34. Then applying the automorphism σ = (135)(246) ∈ Γ12 ⊂ G, we obtain

d̂34 = d̂56, and a1 = 3d̂12. Thus (⇒) is proved. The converse (⇐) is clear. Statement (b) is proved
in the same way. We now prove (c). Assume that χ̂1 = χ̂2 = 0. Then by (a), (b), the symmetric
functions in r1 and r2 are rational numbers. But then

x2 − d̂12x+ ê12 = (x− r1)(x− r2)

is a rational quadratic factor of f(x), contradicting the irreducibility of f(x). Hence, at least one of
the χ̂i is non-zero. Now suppose that both are non-zero. Since χ1/χ2 is fixed by G48, χ̂1/χ̂2 ∈ Q∗

and (c) is proved.

By Lemma 4.4.1, we can define a non-zero number χ ∈ Q by χ = χ̂2
1 if χ̂1 ̸= 0 and χ = χ̂2

2

otherwise. We recall that ∆ is the discriminant of f(x). We are now ready to prove the following
Theorem to determine Gf .
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Theorem 4.4.2 ([5]). Let f(x) ∈ Q[x] be an irreducible sextic with Gf = G48, Γ24, G24, H24 or
Γ12. Then

(a) Gf = G48 ⇐⇒ none of the numbers χ, ∆, χ∆ are squares in Q.

(b) Gf = Γ24 ⇐⇒ ∆ is a square in Q, but χ, χ∆ are not squares in Q.

(c) Gf = G24 ⇐⇒ χ is a square in Q, but ∆, χ∆ are not squares in Q.

(d) Gf = H24 ⇐⇒ χ∆ is a square in Q, but χ, ∆ are not squares in Q.

(e) Gf = Γ12 ⇐⇒ χ, ∆ and χ∆ are squares in Q.

Proof. We first prove (b). Let σ denote the element (12)(34)(56) ∈ G48. Then σ(∆) = −∆ and
the stabilizer of ∆ in G48 is Γ24. Since ∆ is non-zero, we have that ∆ is a rational square if and
only if Gf ⊂ Γ24. Since χ ̸= 0, (13)(24)χ = −χ and (13)(24)χ∆ = −χ∆, and G24 and H24 are
the respective stabilizers of χ and χ∆ in G48, we obtain the corresponding statements (c), (d)
for G24 and H24. Cases (a) and (e) then follow from cases (b), (c) and (d) and the fact that
Γ12 = Γ24 ∩G24 ∩H24.

We now show that there are general formulas for finding the roots of f(x). Implicit in our
approach will be the assumption that we can simplify algebraic numbers to determine whether
they are rational numbers. First, we introduce some useful symmetric functions of the dij and eij .
Some of these symmetric functions can be easily expressed in terms of ai, θ1. We have

a1 = d̂12 + d̂34 + d̂56,

a2 − θ1 = d̂12d̂34 + d̂34d̂56 + d̂12d̂56,

θ1 = ê12 + ê34 + ê56,

a6 = ê12ê34ê56

The other two symmetric functions, which are specializations of the two G48-polynomials

D = d12d34d56,

E = e12e34 + e34e56 + e12e56,
(4.2)

are not easily expressed. By Proposition 3, D̂, Ê can be determined as rational roots of their
Galois resolvents F̂D(x), F̂E(x) ∈ Q[x]. Let

g2(x) = x3 − a1x
2 + (a2 − θ1)x− D̂ ∈ Q[x], (4.3)

g3(x) = x3 − θ1x
2 + Êx− a6 ∈ Q[x]. (4.4)

Let ω be a primitive cubic root of unity. Formulas yg(ω
i) for finding the roots of a cubic

polynomial g are given in the Appendix (Lemma A.0.1). Define li = yg2(ω
i), mi = yg3(ω

i) for
i = 1, 2, 3. The li (resp. mi) are the roots of g2(x) (resp. g3(x)). We than have

{l1, l2, l3} =
{

d̂12, d̂34, d̂56
}

, {m1,m2,m3} =
{

ê12, ê34, ê56
}

We note that we do not yet know haw to identify the li (resp. mi) with the d̂ij (resp. êij).
Finally, let us define for k = 1, 2 the two G48-polynomials:

h1k = dk12e12 + dk34e34 + dk56e56. (4.5)

Since h11, h12 are G48-polynomials, ĥ11, ĥ12 ∈ Q when Gf ⊆ G48.

Proposition 6 ([5]). Let f(x) ∈ Q[x] be an irreducible sextic polynomial with Gf ⊆ G48. Assume

that the values of θ1, li,mi, ĥ11 and ĥ12 are known. Then there is an effective algorithm for de-
termining σ ∈ S3 such that for each i, li and mσ(i) correspond to the same pair of roots. In other
words, we can find σ such that

{

(li,mσ(i))
}

i=1,2,3
=

{

(d̂12, ê12), (d̂34, ê34), (d̂56, ê56)
}

(4.6)
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Before reading through the proof of Proposition 6, we now introduce some additional notation
and prove a lemma needed to prove Proposition 6. Let k = 1 or 2. Define

j1k = dk12e12 + dk34e56 + dk56e34

h2k = dk12e34 + dk34e56 + dk56e12, j2k = dk12e56 + dk34e34 + dk56e12 (4.7)

h3k = dk12e56 + dk34e12 + dk56e34, j3k = dk12e34 + dk34e12 + dk56e56

Fix k = 1, 2. Then for all groups G in Figure 4.1 with G ⊆ G48, the set {h2k, h3k} is G-stable and
the set {j1k, j2k, h3k} is a G-orbit in Q[x1, . . . , x6].

Since Gf satisfies this condition, we have

ĥ2k ∈ Q⇐⇒ ĥ3k ∈ Q, (4.8)

and
ĵik ∈ Q for some i⇐⇒ ĵik ∈ Q for all i. (4.9)

When the last case occurs, ĵ1k = ĵ2k = ĵ3k.

Lemma 4.4.3 ([5]). Let f(x) ∈ Q[x] be an irreducible sextic polynomial with Gf ⊆ G48. Let
li,mi, hik, jik be defined as above. Fix k = 1, 2. If the li are distinct and the mi are distinct, then

ĥik ̸∈
{

ĵ1k, ĵ2k, ĵ3k

}

.

Proof. We first assume that k = 1. If ĥ11 = ĵ11, then (d̂34 − d̂56)(ê34 − ê56) = 0 and d̂34 = d̂56 or

ê34 = ê56. But this contradicts either the distinctness of the li or that of the mi. Hence ĥ11 ̸= ĵ11.
The other cases are proved similarly. Now suppose that k = 2 and that ĥ12 equals one of the ĵi2.
Then ĵi2 ∈ Q for i = 1, 2, 3. Hence ĵ12 = ĵ22 = ĵ32. Now the same argument as when k = 1
shows that ĥ12 = ĵ12 implies that d̂34 = −d̂56. Similarly ĥ12 = ĵ22 implies that d̂12 = −d̂56. Hence
d̂12 = d̂34 and the li are not distinct, contradicting the hypothesis. Hence the lemma is proved.

Finally, for k = 1, 2, σ ∈ S3, define

pkσ = lk1mσ(1) + lk2mσ(2) + lk3mσ(3). (4.10)

The pkσ have the property that {pkσ | σ ∈ S3} = {ĥik, ĵik | i = 1, 2, 3}. The following lemma is
essential

Lemma 4.4.4 ([5]). Let f(x) ∈ Q[x] be an irreducible sextic polynomial with Gf ⊆ G48. Let
li,mi, pkσ be defined as above. Assume that the li are distinct and the mi are distinct. Then there
exists a unique σ ∈ S3 such that p1σ = ĥ11 and p2σ = ĥ12.

Proof. By definition of li, mi, the equations pjσ = ĥ1j , for j = 1, 2, have at least one solution

σ. We now establish uniqueness. Assume that we have σ1, σ2 ∈ S3 with pkσ1
= pkσ2

= ĥ1k for
k = 1, 2. Then the three equations

x+ y + z = 0

l1x+ l2y + l3z = 0

l21x+ l22y + l23z = 0

(4.11)

have the non-zero solution

(x, y, z) = (mσ1(1) −mσ2(1),mσ1(2) −mσ2(2),mσ1(3) −mσ2(3)).

But since the determinant

∆′ =

∣

∣

∣

∣

∣

∣

1 1 1
l1 l2 l3
l21 l22 l23

∣

∣

∣

∣

∣

∣

= −
∏

i<j

(li − lj)

is non-zero as the li are distinct, the only solution to (4.11) is the trivial solution. Since the mi

are distinct, we have σ1 = σ2 and the lemma is proved.
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We can now prove Proposition 6.

Proof. We first note that (4.6) is satisfied for at least one σ ∈ S3, and to prove the proposition,
we need only show how to determine σ. We first consider the case when two of the li coincide.
Then the action of (135)(246) ∈ Gf shows that l1 = l2 = l3. Similarly, if two of the mi coincide,
then they are all equal. In either case, the proposition holds trivially by letting σ = (1). We now
consider the case when the li are mi are distinct. Now (4.6) has at least one solution σ ∈ S3

and any solution is a solution to the equations p1σ = ĥ11 and p2σ = ĥ12. By Lemma 4.4.4, these
equations have a unique solution. Hence by comparing the value of pjσ to those of the known

constants ĥ11, ĥ12, we can determine σ ∈ S3 satisfying (4.6) and the proposition is proved.

Proposition 6 is the key to solving the sextic when Gf ⊆ G48, Gf ̸⊆ G72.

Theorem 4.4.5 ([5]). Let G be ine of the transitive, solvable subgroups G48,Γ24, G24, H24,Γ12 of
S6. Let G be its conjugacy class in Σ6.

(a) The general equation of type (6, G) is explicitly solvable by radicals.

(b) The formulas zi(tj) in (a) can be numbered so that for each f ∈ ΓG, the Galois action of
τ ∈ Gf on the roots zi = zi(t̂j(f)) is given by τ(zi) = zτ(i).

Proof. (a) Given an irreducible sextic polynomial f ∈ ΓG with Gf = G, define the polynomials
g2, g3 as in (4.3), (4.4). Let yg(a) be defined as in Lemma A.0.1 in the Appendix, ω a primitive

cubic root of unity and define z(f, a, b, ε) = 1
2 (yg2(a) + ε

√

yg2(a)
2 − 4yg3(b)). Let li, mi be the

roots of g2, g3 defined following (4.3), (4.4). By Proposition 3, we can determine the values of

θ1 = θ̂48, ĥ11, ĥ12. By Proposition 6, one can calculate σ ∈ S3 such that (4.6) holds. Define

z2i−1 = z(f, ωi, ωσ(i), 1), z2i = z(f, ωi, ωσ(i),−1), for i = 1, 2, 3. (4.12)

Then
{

{r1, r2}, {r3, r4}, {r5, r6}
}

=
{

{z1, z2}, {z3, z4}, {z5, z6}
}

. (4.13)

Hence z(f, a, b, ε) provides formulas for the roots {zi} of f in terms of the variables a, b, ε, D̂, Ê
and θ1. Since there is a finite algorithm for calculating their values given f and all values in
K = Q[ω], (a) is proved.

To prove (b), it suffices to show that for any zi arising from the formulas in (a), there is an
automorphism α : Gf → Gf satisfying α(σ)(zi) = zσ(i) for σ ∈ Gf . Then, by twisting the Galois
action by α, (b) holds. Now the roots ri were initially chosen so that Gf was one of the five
subgroups G48,Γ24, G24, H24,Γ12 and have the property that σ(ri) = rσ(i) for σ ∈ Gf . Now the
proof of (a) shows (4.13) holds. Hence, there exists τ ∈ G48 such that zi = rτ(i) and consequently,
σ(ri) = zτ−1στ(i) for σ ∈ Gf .. Since τ normalizes each of the groups G48,Γ24, G24, H24 and Γ12,
we have τστ−1 ∈ Gf and (τστ−1)(zi) = zσ(i). Hence, letting α(σ) = τστ−1 gives the desired
map.

The following lemma follows trivially from the proof of Theorem 4.4.5

Lemma 4.4.6 ([5]). Let G ⊆ G48 be one of the transitive groups in Figure 4.1 and let G be its
conjugacy class in Σ6. Suppose that f ∈ ΓG is an irreducible sextic with Gf = G, let ri be the

corresponding numbering of the roots, and suppose that the values of θ1, D̂, Ê, li, mi, ĥ11, ĥ12

are known. Let σ ∈ S3 be the element determined by Proposition 6 and let zi be defined as in
(4.12). Then

{

{r1, r2}, {r3, r4}, {r5, r6}
}

=
{

{z1, z2}, {z3, z4}, {z5, z6}
}

.

In conclusion, we now summarize this section. Formulas for finding the roots of an irreducible
sextic f(x) ∈ Q[x] whan Gf ⊆ G48, Gf ̸⊆ G72:

1. Let f(x) = x6 − a1x
5 + a2x

4 − a3x
3 + a4x

2 − a5x+ a6.

2. Use Theorem 4.3.2 to determine Gf ⊆ G48 and Gf ̸⊆ G72. Let θ1 be the unique rational
root of f15(x) with multiplicity 1, 5, 7 or 9.

3. For z = D, E, h11, h12 defined as in (4.1), (4.2), (4.5), calculate the G48-resolvent Fz(x).
For each z, let ẑ ∈ Z be the unique rational root of F̂z(x) with multiplicity 1, 5, 7 or 9.
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4. Let ω be a primitive cubic root of unity and let yg(ω
i) be the formulas in Lemma A.0.1 in

the Appendix.

5. Let li = yg2(ω
i) be the three roots of the cubic polynomial g2 = x3− a1x

2 + (a2− θ1)x− D̂

and let mi = yg3(ω
i) be the three roots of the cubic polynomial g3 = x3 − θ1x

2 + Êx− a6.

6. For k = 1, 2, σ ∈ S3, define pkσ =
∑3

i=1 l
k
i mσ(i).

7. (a) If li = lj or mi = mj for some i ̸= j, let σ = 1.

(b) Otherwise, let σ be the unique element of S3 with p1σ = ĥ11, p2σ = ĥ12.

8. Define z(f, a, b, ε) = 1
2 (yg2(a) + ε

√

yg2(a)
2 − 4yg3(b)). Let z2i−1 = z(f, ωi, ωσ(i), 1) for

i = 1, 2, 3 and z2i = z(f, ωi, ωσ(i),−1) for i = 1, 2, 3.

9. The zi are formulas for the roots of f(x) in the variables ai, θ1, D̂, Ê. The formulas use
only the basic arithmetic operations and radicals. The Galois action of τ ∈ Gf on the zi is
given by τ(zi) = zτ(i).

We now give example on an irreducible sextic polynomial f(x) ∈ Q[x] where we calculate
Galf = Gf , the roots zi of f and the Galois action on the zi. Let

f(x) = x6 + x4 − x3 − 2x2 + 3x− 1 ∈ Q[x].

One can calculate that f10(x) factors into irreducible polynomials as

f10(x) = (x4 − 2x3 − x2 + 71x+ 1)(x6 − 4x5 + 20x4 − 30x3 + 60x2 − 15x+ 1).

The resolvent f15(x) has the θ1 = θ̂48 = 0 as its unique rational root. Its factorization into
irreducible polynomials is given by

f15(x) = x(x6 − x5 + 4x4 + 19x3 − 46x2 − 82x− 31)·
· (x8 − 2x7 + 9x6 − 4x5 − 25x4 + 53x3 − 144x2 − 74x+ 877).

By Theorem 4.3.2, Gf ⊆ G48 and Gf ̸⊆ G72. Looking at the possible factorizations of F15(x) (and
thus f15) in Table 4.2, we canfurther conclude that Gf = G48, Γ24 or G24. Using the formula for
∆ in the Appendix, one calculates that ∆ = 66309 = 69(31)2. Similarly, one can calculate the
values χ̂2

1 = χ̂2
2 = −31, where χi is defined following 4.1. We thus let χ = −31 and by Theorem

4.4.2, we conclude that Gal(f) = Gf = G48.

To find formulas for the roots of f , by using the algorithm listed above, we must calculate
D̂, Ê as roots of their G48-resolvents. We find D̂ = −1 and Ê = 1. Following the definitions in
(4.3), (4.4), we have

g2(x) = g3(x) = x3 + x+ 1.

Letting yg(ω
i) be defined as above, we let li = mi = yg2(ω

i). We have

l1 = m1 = d1ω + d2ω
2,

l2 = m2 = d1ω
2 + d2ω,

l3 = m2 = d1 + d2,

where

d1 =
3

√

−1

2
+

√

31

108
, d2 = − 1

3d1

Define pkσ, k = 1, 2, σ ∈ S3 as in Step 6 of the algorithm above. Calculation shows p1(1) =
−2, p1(123) = p1(132) = 1, and p2(1) = −3 is the only integral value amongst the p2σ. Hence,

without needing to calculate ĥ11, ĥ12 (which equal -2, -3 respectively), by Step 7 of the algorithm,
we can determine that σ = 1. Then for each i = 1, 2, 3 let z2i−1, z2i be the two roots of the
polynomial x2 − lix+mi. The zi are the roots of f and the Galois action of τ ∈ G48 on the zi is
given by τ(zi) = zτ(i).
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4.5 Solving the sextic: Gf ⊆ G72, Gf ̸⊆ G48

For this and the next Section we are just going to give the main idea behind how to determine Gf

and how to find the roots of f(x).
Once it is proved Theorem 4.3.2, we now assume that Gf ⊆ G72 and Gf ̸⊆ G48. We first

explain how to determine Gf . Let

β1 = (x1 − x3)(x3 − x5)(x5 − x1),

β2 = (x2 − x4)(x4 − x6)(x6 − x2),

δ = β1 + β2, µ = β1 − β2,

M = δ2 + µ2, N = δ2µ2

Now M and N are G72-polynomials. Let fM (x), fN (x) be the specializations of their Galois
resolvents. M̂, N̂ are rational roots of fM (x), fN (x), respectively, which can be determined by
Proposition 3. Let

g(x) = x2 − M̂x+ N̂ ∈ Q[x],

and recall ∆ is the discriminant of f(x).

Theorem 4.5.1. Suppose f(x) ∈ Q[x] is an irreducible sextic with Gf = G72, G36, Γ36 or G18.
Then

(a) Gf = Γ36 ⇐⇒ ∆ is a square in Q.

(b) Gf = G72 ⇐⇒ ∆ is not a square in Q and g(x) ∈ Q[x] is irreducible.

(c) Gf ⊆ G36 ⇐⇒ ∆ is not a square in Q and g(x) ∈ Q[x] is reducible.

Proof. We first prove (a). Out of the four groups, only Γ36 is a subset of A6. Hence ∆ is a rational
square ⇐⇒ Gf ⊂ A6 ∩G72 ⇐⇒ Gf = Γ36 and (a) is proved.

We now prove (b). By (a), we can assume that ∆ is not a rational square and Gf = G72, G36

or G18. Since β1, β2 ̸= 0, we have δ2 ̸= µ2. Since δ2, µ2 are G36-polynomials which are permuted
by the action of (24)∈ G72, we have g(x) is irreducible if and only if (24)∈ Gf . Hence (b) is proved
and (c) follows immediately.

The next step is determine a criteria to distinguish between the cases Gf = G36 and Gf = G18.
After some work and the introduction of new variables this criteria can be found.

Finally, we turn our attention to finding the roots of f(x). This formulas do not depend upon
precisely knowing Gf .

Proposition 7 ([5]). Let G ⊆ G72 be one of the groups in Figure 4.1. Let G ∈ Σ6 be the conjugacy
class containing G.

1. The general equation of type (6, G) is explicitly solvable by radicals.

2. If G18 ⊆ G ⊆ G72, then the formulas zi(tj) and the algorithm can be chosen so that for each
f ∈ ΓG, the Galois action of τ ∈ Gf on the roots zi = zi(t̂j(f)) is given by τ(zi) = zτ(i).

To see the proof of Proposition 7 and the other details we remind to check Thomas R. Hagedorn
article ([5]).

4.6 Solving the sextic: Gf ⊆ G12

As said previously, we now give the main idea of the case Gf ⊆ G12 describe in the article ([5]).
This case is strictly connected with the previous one.

When Gf ⊆ G12, we can easily find a criteria for determining Gf among G12, C6 and H6

using the same notation introduced in Section 4.5. Problems come from the fact that the crucial
variables determining Gf can be found as a set of roots but can not be distinguished with the same
facility. Some work is done to say that this variables can effectively be computed.

As Gf ⊂ G72, Proposition 7 shows that there are formulas for finding the roots zi of f(x).
They can be calculated using the same algorithm described for the case Gf ⊆ G72, Gf ̸⊆ G48.

Finally, we show how to explicitly exhibit the Galois action of Gf on the roots zi of f(x).
Unlike in Sections 4.4 and 4.5, the algorithm will depend upon Gf .
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Appendix A

Notation for sextics

We first give formulas for the roots of a cubic polynomial:

Lemma A.0.1. Let f(x) = x3 + a1x
2 + a2x+ a3 ∈ Q[x] be a cubic polynomial and define

c1 =
1

6
(a1a2 − 3a3)−

1

27
a31, c2 =

1

3
a2 −

1

9
a21,

d1 =
3

√

c1 +
√

c32 + c21, d2 = − c2
d1

.

Letting α denote the complex conjugate of α, define

yf (α) = −
a1
3

+ d1α+ d2α.

The roots of f are then yf (1), yf (ω) and yf (ω
2), where ω is a primitive cubic root of unity.

Now let f(x) = x6 − a1x
5 + a2x

4 − a3x
3 + a4x

2 − a5x+ a6 ∈ Q[x] be an irreducible sextic and
f10(x), f15(x) ∈ Q[x] be the rational polynomials defined by

f10(x) = x10 +

10
∑

i=1

(−1)ibix10−i, f15(x) = x15 +

15
∑

i=1

(−1)icix15−i.

Now we give explicit formulas for the rational numbers bi, ci and for the discriminant ∆ in terms
of the coefficients ai of f(x).

(For your convenience, we report them in the following pages directly from the Appendix of
the original article and we remind to consult it for more details (Thomas R. Hagedorn, [5])).
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