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Abstract 

 

The behavior of post-consumer recycled Polypropylene for aesthetic purposes was 

investigated. In order to do that, the most influent processing parameters in terms of 

surface defectiveness were identified and then varied following a Multifactorial Design 

of Experiment. 

 

After the samples were obtained according to the experimental plan, a series of photos 

was collected of their surfaces. The photos were then processed using the OpenCV 

python library.  

The first step of the image processing was to establish an object detection algorithm 

to locate the area of the images in which only the sample’s surface was present. 

Then, once the sample’s surface was identified in all the photos, an edge detection 

algorithm was used to highlight the borders of the defects present on the surface. After 

that a defectiveness index was defined for each sample from the image representing 

the edges. 

 

With the indices measured from the photos and through the means of data analysis, 

the influence of each parameter and their mutual interactions were studied on the 

surface defectiveness.  

Firstly, an analysis of variance was performed to identify which parameter variations 

were statistically significant. 

Then, the Main Effects and the Mutual Interactions plots were individually analyzed. 

This allowed to assign to each parameter and each interaction its corresponding 

influence in terms of defectiveness index. 

A Linear Regression Model to forecast the defectiveness of new samples obtained in 

new processing conditions was finally built using the data collected in the experiments. 

 

In the last pages, a possible correlation between the conditions that lead to more 

surface defectiveness and the mold wall’s contamination was investigated. To do so, 



 
 

data about machine operating conditions and contamination was collected in 

collaboration with FHP establishment in Monselice. 
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 Introduction 

Problem exposition 

 

The transition to a sustainable and circular plastics economy demands focus, 

collaboration and sizeable, long-term investments in systems and technology that can 

deliver the transition to a zero-waste future. In the recent past, a big obstacle to this 

transition was represented by the visual appearance of objects manufactured by using 

post-consumer recycled plastics. 

Nowadays, visual appearance of manufactured products is crucial in determining the 

final costumer choice: phone covers, car interiors and PC or TV encasings are just 

some of many examples. 

The presence of surface defects lowers the final product perceived quality, leading to 

product rejection even though the defect has no impact on functionality. (Marielle E. H. 

Creusen, Jan P. L. Schoormans, 2005) 

Moreover, depending on the cause that is responsible for the defect formation, some 

issues can emerge in the manufacturing process regarding contamination or 

degradation of the machinery used. These problems need to be addressed, because 

they lead to more frequent idle times to allow cleansing and replacement. 

Lastly, the process that originates the defects, while not changing the macroscopic 

behavior of the final product, may change its surface roughness; this needs to be 

accounted for in some use cases. 

  



6 
 

Injection Molding 

 

Injection Molding is the most popular technique used in mass-production of polymeric 

parts with complicated geometry, consistent quality, and attractive appearance. 

It consists in melting some polymeric pellets by viscous heating: 

• The pellets are introduced inside a barrel 

• The screw inside the barrel moves back while rotating, making the polymer 

advance towards the screw head. This movement induces friction on the 

pellets, that are deformed and melt as they proceed inside the barrel 

• Once enough material is stored in the barrel head, the screw stops rotating and 

pushes the molten polymer through a nozzle inside a Mold 

• After the Mold is completely filled, the screw keeps pushing, maintaining a pre-

set holding pressure to introduce new material that compensates for thermal 

shrinkage 

• After enough time has passed to guarantee the structural integrity of the 

solidified product, the Mold is opened, and the final product is extracted 

  

Fig. 1: Injection Molding Machine Model 
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Polypropylene Recycling 

 

 Recycling Process 

 

There are mainly two different ways to recycle a thermoplastic material: 

1. Mechanical Recycling - is the most common approach used for recycling 

plastics; it refers to the processing of plastics waste into secondary raw material 

without significantly changing the material’s chemical structure. In principle, all 

types of thermoplastics can be mechanically recycled with little impact on 

quality, but this only happens if the material collected from post-consumption is 

perfectly sorted and does not contain contaminants 

2. Chemical Recycling - is a growing approach for recycling and offers greater 

opportunity for scalability; it covers a set of technologies (pyrolysis, gasification, 

hydro-cracking, depolymerization) that change the chemical structure of plastic 

waste. Long hydrocarbon chains constituting plastics are broken into shorter 

hydrocarbon fractions or monomers using chemical, thermal, or catalytic 

(chemical/thermal) processes. These shorter molecules are ready to be used 

as feedstock for new chemical reactions to produce new recycled plastics and 

other chemicals. (PlasticsEurope) 

There are major differences between chemical and mechanical recycling. In 

mechanical recycling, plastic degrades over time due ultraviolet light and other 

environmental conditions. Additionally, as plastic is ground and melted during 

mechanical recycling, the polymer chains are partially broken down. Both of these 

factors reduce its tensile strength and viscosity, making it more difficult to process. 

Moreover, contaminants are introduced in the recycled material due to the recycling 

process characteristics, altering the macroscopic thermo-mechanical properties. This 

lower grade plastic can only be recycled a limited number of times before its altered 

physical properties make it unusable for plastic product containers.  

Chemical recycling is an infinite loop. Plastic recycled this way can be processed over 

and over again without any reduction in physical properties. This is because the waste 

is not just being cleaned and reheated, but it is being used as feedstock into a chemical 
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process which transforms it back to ethylene molecules and then ultimately into the 

exact same specified plastic used for the original package. (DrugPlastics, 2022) 

Even though Chemical recycling seems to be the better option, it is still less popular. 

This is mainly due to the higher costs, as separating plastics into different polymers is 

easier and way cheaper than degrading it into monomers. With modern technologies, 

this process requires lots of energy and costly machinery. Moreover, the fact that 

chemical recycling is a relative new technology in respect to mechanical recycling 

means that not enough advancements in research were made to make it competitive 

in costs. 

Ideally, both these two recycling techniques shall be implemented in order to achieve 

an optimal circular economy: mechanical recycling as it is a nice compromise between 

material degradation and energy/cost effectiveness, and chemical recycling as a mean 

to regenerate virgin polymers out of materials that would not be good to mechanically 

recycle anymore. 

  

 

Mechanical Recycling Stages 

 

Mechanical Recycling can be divided into 6 different stages: 

 

Collection: it is a vital phase for the purpose of circular economy. By separating waste 

correctly at the point of collection, the recycling process is more efficient and will 

increase the quality and quantities of recycled products. Improved waste collection 

positively impacts the waste streams and their suitability for downstream pre-

treatment, sorting and recovery operations. 

 

First Sorting: once plastic arrives to the recycling plant, it is sorted into different 

polymers. While some sorting may have taken place at the collection stage,  further 

separation by color or thickness may be necessary. A wide range of technologies are 

currently used for waste pre-treatment and sorting. These range from manual 

dismantling and picking to automated processes. Modern sorting plants are complex 

facilities that apply several technologies adapted to specific waste streams to achieve 
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optimum cost-effective output, producing sorted waste with a purity higher than 95% 

for some plastics. 

 

Shredding: after a first sorting, plastic products are shredded into small pieces to 

facilitate the successive washing, final sorting and melting stages 

 

Washing: Washing removes dust and dirt to ensure plastics are clean before they go 

onto the next stage. This can include removing traces of food, drink or labels. 

 

Second sorting and control: a second sorting, executed after shredding and washing, 

allows for a better recognition of any extraneous material that was left after the first 

sorting. 

 

Extrusion: plastic flakes are melted and converted into homogeneous pellets, ready to 

use in the manufacture of new products 

(PlasticsEurope) 

 

Mechanically Recycled Material Properties and Issues 

 

Due to high demands for sustainability in polymer engineering, the usage of recycled 

polymer materials is increasing. However, recycled polymer materials have been 

limited in the application for aesthetic parts due to the inferior surface quality resulting 

from their implementation. (Jinsu Gim, Lih-Sheng Turng, 2022) 

This is caused by the lower material homogeneity that is intrinsic to the production of 

mechanically recycled polymer materials: pellets resulting from this process will 

contain, together with the base polymer, both other kinds of polymers and additives. 

The presence of extraneous material causes the recycled polymer to behave differently 

from the virgin one. Moreover, some additives can thermally degrade, determining the 

presence of gas in the melt, which causes surface defects. 

As there is no easy way to determine the final thermo-mechanical properties of the 

pellets obtained from mechanical recycling, the virgin material properties must be 
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taken as reference in the conceptualization phases of any activity involving recycled 

plastics.  

In the following dissertation, the processing parameters for injection molding of post-

consumer recycled Polypropylene are selected in the same range as for virgin-

Polypropylene. 

 

Literature about photo acquisition and image processing 

 

At this moment in time, very few research is published regarding the application of 

Image Processing techniques on Surface Analysis in manufacturing industry. The main 

effort has been put on measuring the surface roughness and using it as a proxy for the 

presence of defects. This method is based on the assumption that the observed 

defects are caused by gases present in the molten fluid, that are pushed to the mold 

walls and dragged along the flux lines; this determines different cooling conditions 

where the gas bubbles are present, forming a valley on the surface for each bubble. 

(Jinsu Gim, Lih-Sheng Turng, 2022) 

In February 2023 Jinsu Gim, Huaguang Yang and Lih-Sheng Turng published an 

article in which they developed a model to detect surface defects for Transfer Learning 

between different machinery. In the article, to detect the presence of defects on the 

surface of a sample the following procedure was used: 

1. The photo was converted to grayscale (each pixel was assigned a value from 0 

to 255) 

2. The brightness of the image was normalized by standard white and standard 

black using as reference a perfect diffusing surface and a perfect absorbing 

surface included in the photo 

3. A median filter was applied to filter noise in the image 

4. A copy of the image was created, which was then heavily blurred to extract the 

base color of the sample 

5. The surface defects were revealed subtracting the blurred copy to the filtered 

image 

6. The severity of the defects was represented by the standard deviation of the 

values assigned to the pixels of the image resulting from the subtraction 
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7. A threshold value was defined for the standard deviation: values higher than the 

threshold referred to defective sample, values lower were considered as non-

defective 

 (Jinsu Gim, Huaguang Yang, Lih-Sheng Turng, 2023) 

 

Linear Regression Models and Statistical Data Analysis 

 

A designed experiment is a test (or a series of test) in which input parameters are 

purposely changed in order to observe and identify corresponding changes in the 

output response. 

In this dissertation, the experiments were conducted following a Multifactorial Design 

of Experiments. It consists in: 

• Choosing the input parameters, of which we want to study the effects: X1, X2, 

…, Xn 

• Choosing the levels over which the input parameters are varied  

• Choosing a significative output variable that is going to be monitored to evaluate 

the effects of the input parameters: Y 

• Perform a series of experiments, with all the possible combinations of the 

different levels of the monitored parameters 

Fig. 3: on the left greyscale of the image after median filtering, on the right the same area after gaussian blurring 

Fig. 2: image obtained after subtracting the blurred background from 
the original grayscale image 
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This design is particularly useful for screening the variables in a process to determine 

those that are most important. 
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 Experimental Phase 

The objective of this research has been to tackle the main critical point that inhibits the 

large-scale adoption of post-consumer Recycled Polypropylene for aesthetic 

purposes, which is the frequent presence of defects on the surface of objects obtained 

using this material. 

 

To do so, the first step was to identify all the parameters that could be influencing the 

final object aesthetic. A Multifactorial Design of Experiment was then used to create 

an experimental plan with all the possible combination of the chosen parameters. With 

the processing parameters settings provided by this plan a set of 3 samples was 

injection molded for each combination. 

 

After this, it was identified a method to evaluate the severity of the defects present on 

each sample’s surface. This was done by acquiring a photo of each sample, 

processing it via image processing algorithms and defining a defectiveness index. 

The index so defined was used to create a regression linear model, to find out how the 

chosen processing parameters influence the surface defectiveness. To determine 

which parameters were to be included into the regression model, the data obtained 

from the experiments were analyzed with the statistical tools provided by the Minitab 

software and Python. 

 

Finally, a possible relation between the surface defectiveness and the layer of dirt that 

forms on the mold walls while processing this material was investigated.  
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  Injection Molding Machine description 

 

The samples were obtained 

using a Battenfeld HM 110 / 

525H / 210 S Injection Molding 

machine. 

 

The clamping unit of this 

machine is capable of a 

clamping force up to 1100 kN. 

The cylinder diameter is 25 

mm. For this diameter, the 

maximum theoretical shot 

volume is 73,6 cm3 and the 

maximum injection pressure is 2940 bar. 

 

For the experiments it was used a mold with very simple geometry.  

A Heat Chamber separates the sprue from the mold. 

Even though there are two possible injection points in the cavity, one was closed. This 

eliminates the chance of having weld lines formation in the middle of the piece, at the 

cost of higher pressure loss inside the cavity and doubling the injection time. 

 

  Sample Description 
 

The sample chosen to conduct the 

experiments has a very simple geometry: it 

is almost flat and is composed of a 

rectangular shape  (14,5 cm x 5 cm ) with 

two triangles at its extremes.  

 

The triangular portion of the sample only 

serves to distribute the material along the 

Fig. 4: Photo of a Battenfeld Injection Molding Machine 

Fig. 5: Photo of the sample 
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sample’s section. Then only the rectangular portion of the sample will be object of this 

study. 

 

  Multifactorial Parameters Choice 

 

To build a significant regression model that is able to predict the presence of defects 

on the surfaces of samples obtained from recycled-Polypropylene, the most influent 

processing parameters must be chosen as the variables of the model. 

In the following paragraphs the monitored parameters are presented, explaining the 

reasons why they were chosen and the way the ranges were determined for each 

parameter. 

 

 Injection Rate 

 

The Injection Rate is the amount of volume of melt material injected in the Mold in a 

unit of time. It is measured in cubic centimeters per second [ccm/s]. 

Injection Rate is crucial in determining whether Surface Defects will be present on the 

sample. Higher Injection Rates make so that a lot of frictional heating is generated 

when the melt is injected into the cavity through the nozzle; this makes the melt hotter, 

and combined with the fact that the cavity is filled up quicker, ends up in more 

homogeneous cooling conditions of the material throughout the mold. 

When lower injection rates are used, the filling time gets longer and it has been 

observed that the liquid viscosity gets higher very quickly. The combination of these 

two factors results in the fact that material  

initially injected into the cavity cools down rapidly, meaning that higher pressure is 

needed for the subsequent phases of the injection and possibly the cavity will be filled 

unevenly. (Jian Wang, Qianchao Mao, Nannan Jiang, Jinnan Chen, 2021) 

More often than not, the low-speed injection of molten material leads to a long filling 

time and produces products highly prone to defects like uneven density, weld lines, as 

well as large residual stress. (KBdelta, s.d.)  
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Given these considerations, two levels were chosen for Injection Rate, to evaluate the 

difference between low flow rates and higher ones.  

 

 Backpressure 

 

Backpressure is the pressure to which is the molten polymer is kept during the metering 

phase. It is controlled setting how restrictive the return valve will be as the hydraulic 

fluid returns to the hydraulic fluid tank during screw recovery. 

It is generated by the plastic itself: as the screw rotates, the pressure of the plastic in 

front of the screw builds up; once that plastic generates enough pressure to exceed 

the pressure required to force hydraulic fluid through the proportional return valve, then 

the screw begins to retract its position. 

Backpressure is calculated by taking the hydraulic pressure inside the valve and 

multiplying it by the intensification ratio, which is the ratio between the diameter of the 

hydraulic piston pushing the screw and the screw diameter itself. Even though this 

does not take into account the non-Newtonian behaviour of molten polymers, it is still 

a good enough way to keep track of backpressure regardless of the processed polymer 

or its Temperature. 

From the polymer point of view, a higher Backpressure means higher levels of 

deformation stresses, resulting in more heat added to the material and possibly lower 

density of the fluid in the shot volume. A higher backpressure guarantees better melt 

uniformity, too. (Robert Gattshall, 2022) 

Backpressure is usually set between 35 to 70 bar, but higher levels can be used if 

more heat need to be introduced in the fluid or the melt is not adequately uniform. In 

case the processing material contains fibres, backpressure should not exceed 20% of 

the injection unit capacity to prevent glass fibre breakage. (AshaiKASEIplastics, 2018) 

Table 1: Chosen levels for Injection Flow Rate 
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For backpressure, two levels were chosen to represent the two extremes of the 

suggested range. Some experiments were run with much higher values (140 bar), 

which resulted in way longer  

 

 Melt Temperature 

For virgin-Polypropylene pellets, the Melting Point is reached at 166 °C. (Jian Wang, 

Qianchao Mao, Nannan Jiang, Jinnan Chen, 2021). The target Melt Temperature for 

Injection Molding is between 190 and 250 °C.  

To control the Melt Temperature, an 

ascending profile is chosen for the 

Temperatures of the various cylinder zones. 

The polymer enters the cylinder in the feeding 

zone, which is kept at 60 °C, and is gradually 

heated as it goes through the various zones. 

The cylinder zones on the screw head are set 

to the Target Temperature. 

Too low Temperatures can promote flow marks, weld lines, poor surfaces, lamination, 

and short shots. This is caused by parts of the injected fluid that solidify too soon. 

Too high of a Temperature can cause problems with flashing and burning and with 

shrink phenomena such as sinking, warpage, shrinkage, and void formation. 

(AshaiKASEIplastics, 2018) 

For the post consumer Recycled Polypropylene, one more problem the arises when 

setting Melt Temperature is that additives are present in the processed pellets. Those 

additive, especially organic ones, can degrade at high Temperature, resulting in the 

presence of gases inside the fluid. 

As the additive degradation is a Thermically activated process, it increases 

exponentially with Temperature and Residence Time. 

Table 2: Chosen levels for Backpressure 

Fig. 6: Ascending Cylinder Temperature diagram 
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Temperature levels are chosen at the extremes and in the middle of the suggested 

range, in order to return a decent representation of how Temperature affects Surface 

defects in all its domain. 

 

 Drying Time 

As polypropylene is not hygroscopic, it is unaffected by moisture content. Moisture 

contents up to 0.2% do not affect the physical properties of polypropylene in moulded 

parts, so drying is not typically required. 

However, if the resin contains mineral or bio fillers, the likelihood of moisture absorption 

increases. This is the case of post-consumer Recycled-PP, as the many additives 

present in it will absorb a relevant amount of humidity from the air. 

(AshaiKASEIplastics, 2018)  

To remove the humidity absorbed, it is suggested to keep the pellets at 90 °C in a drier 

for 90 minutes. 

Experiments were performed both with and without previous pellets’ drying. This is 

done to single out the influence of the additives’ degradation on Surface Defects and 

to see how humidity compounds with it. 

 

 Cycle Time 

As material degradation increases with time spent at a certain Temperature, Cycle time 

was used as a proxy to evaluate how much time was spent from the molten polymer 

inside the high Temperature zones of the cylinder. 

 

Table 3: Chosen levels for Melt Temperature 

Table 4: Chosen levels for Drying Time 
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Cycle time was artificially changed in two ways: 

• To reduce it to 48 s, metering was delayed by 12 seconds. This is the least 

amount of time that the machine used could invest to produce the piece, as 

metering needs to happen while the solidified piece is cooling inside the mold. 

As cooling is set to take 27 seconds and metering happens in just less than 15 

seconds, metering can be delayed of 12 seconds maximum 

• To increase it to 120 s, 60 seconds were spent idle between an injection and 

the other. Doubling Cycle time in this way simulates having double the amount 

of molten polymer on the screw head, half of which does not get injected into 

the mold and is kept an entire cycle time more at the highest Temperature 

 

 Factorial Design recap 

The table underneath contains all the chosen levels for the selected parameters. 

During the data acquisition campaign, a set of 3 samples was created with every 

possible combination of these parameters. 

While changing Backpressure and Injection rate between two cycles rose no problems, 

changing the other parameters (especially Melt Temperature and Drying Time) meant 

that produced pieces needed to be discarded until regime conditions were achieved. 

 

Table 5: Chosen levels for Cycle Time 

Table 6: Summary table of all the chosen levels 
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 Other constant parameters 

 

Injection pressure 

Injection pressure controls the rate at which the material enters the mould. Based on 

the required fill pressure, an additional 10% should be available on high setting. This 

should be applied for 99% of ram travel during the filling phase to maintain control of 

fill velocity. Too much pressure can cause parts to flash, burn, and stick in the mould. 

This means having high enough Injection pressure is crucial to effectively control Flow 

Rate levels, which is a parameter monitored in our DOE. 

An Injection pressure of 1100 bar was chosen. 

 

Packing pressure 

Packing pressure affects the final part aesthetics. When packing pressure is applied 

evenly, it controls sink marks and shrinkage.  

A packing pressure of 450 bar was chosen for all the experiments. 

 

Packing time 

Packing pressure should be applied until the gate freezes off or when consistent part 

weight is achieved. 

As the produced sample is very thin and the differential between maximum Melt 

Temperature and Melting Temperature is 250 - 166 = 84 °C, it was observed that 

applying Packing pressure for 12 seconds was enough. 

 

Mold Temperature 

Mould temperatures usually are in the range 20 – 60 °C. Temperatures should be high 

enough to produce good part surfaces and to avoid flow marks, weld lines, lamination, 

brittle parts, voids, short shots, and core sticking. Temperatures should not be so high 

however, that shrinkage, warpage, sinking, and cavity sticking become problems. 

Cooling the mould should be uniform unless differential cooling is needed to reduce 

part warpage. 

For applications where aesthetics are critical, a surface temperature of 80-95˚C is 

suggested, even though this means longer cycle times. 
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A Temperature of 50 °C was chosen, as the experiments wants to emulate typical 

production conditions, with contained cycle times. This value is in the high part of the 

20 – 60 °C range, as we wanted to assure that no surface defects could be attributed 

to the mould Temperature. 

 

Cooling time 

Cooling time allows to cool the part before removing it from the mould, preferably at 

about 60 °C. Shortening the cooling time increases warpage. Sinking and shrinkage 

also increase if the cure time is shortened. 

During the experiments, cooling time was set to 27 seconds. This, in combination with 

the mould Temperature, made so that the final piece had sufficient structural resistance 

when extracted and no shrinkage was visible. 

 

Metering volume 

At the end of each cycle, the screw was retracted to have 44 cubic centimeters of 

molten plastic on its head. This value was chosen as it left a small enough cushion of 

melt material after injection and was high enough not to have short shots occur.  
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 Image Acquisition and Image 

Processing 

 

  Photo Acquisition 

 

To evaluate the severity of the surface defects present on the surface of the samples 

created following the Experimental Design, it was chosen to make use of Computer 

vision algorithms that developed in the last decades.  

 

Camera and camera settings 

 

The device used to acquire photos of all 

the samples was a Nikon D5300 camera, 

which is a 24 megapixel digital single-

lens reflex camera.   

 

This camera’s 24 megapixel allow to 

acquire images with a resolution of 

6000x4000 pixels. The ISO sensitivity 

can be changed in a range from 100 up 

to 25600 and the shutter speed can vary 

from 1/4000 s to 30 s. 

 

It has a 640x480 pixels LCD screen to easily navigate between the camera settings 

and replicate what is seen looking into the camera scope. 

 

The camera can also be used as a tethering hotspot, allowing to change camera focus 

and take photos through a wireless device. This is particularly useful for our 

experiment’s objective, as not touching the camera in between photos ensures the 

photos are as similar as it gets. 

Fig. 7: photo of a Nikon D5300 camera 
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Photoset 

 

The photos were taken in a dark room, that was completely obscured from outer light 

sources by masking all the windows and closing all the doors. 

 

As the samples needed to be held all in a similar position, a support was built to keep 

them in place. The support needs to be uniformly colored of a color that is clearly 

different to the color of the samples. A heavy weight was put on its top to keep it from 

moving while the samples were replaced. 

 

To guarantee a good enough 

repeatability of the observations, the 

photoset had to be arranged in a way to 

satisfy the following requisites: 

• The camera lens have to be 

parallel to the surface, to represent 

all the surface in the most 

homogeneous way possible 

• The longest side of the sample has 

to be aligned with the longest side 

of the photo; this allows to get 

closer to the sample while still 

managing to entirely fit it into the 

photo, enhancing the resolution of 

the surface 

• The light source must come from a 

45° angle; in this way the reflected light is not directed straight to the camera 

lens, which would cause to have light spots on the photo 

One more thing to be wary about is to position the light source far enough from the 

sample. This is done so that the light can reach every point of the sample with a similar 

intensity. If the light distribution over the sample surface is not satisfactory, a white 

Fig. 8: photoset 
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panel can be placed between the light source and the support; this trick gives better 

light diffusion, at the cost of reducing the overall intensity. 

After having prepared all the setup, every photo was shot making use of the wireless 

tethering of the camera. This function creates a wireless network hosted by the 

camera, to which any device like a laptop or a mobile phone can join. Through this 

wireless connection the focal point of the camera can be changed and the trigger to 

take the photo can be given remotely, without the need to touch the camera.  

By limiting the number of times the camera needs to be directly operated on, it was 

ensured that all the photos had very slight differences in where the samples were 

located, simplifying greatly the successive object location phase. 

 

  Image Processing 

 

After the photos of all the samples were acquired, they were transferred from the SD 

card inside the camera to a computer to be analyzed. 

The first step in this analysis has been to identify a procedure that automatically locates 

the sample inside the photo, so that it can isolate it and crop it out. 

Then, it was defined a procedure to elaborate the cropped samples in a way to obtain 

a defectiveness index, which gives an esteem of how severe the presence of defects 

on each sample is.  

All the Image Processing steps were performed writing a Python code that mainly used 

the OpenCV and Numpy libraries. 

 

 Image Mask and Object Detection 

 

First of all, as precautions were used to ensure that the samples were located more or 

less in the same part of the photos, a smaller area of the images was cropped in such 

a way that all the flat surfaces of the samples in all the photos were surely inside it. 

This allowed to reduce the images from 6000x4000 pixels to 4300x1750 pixels, cutting 

the amount of data that needed to be processed to less than a third, thus improving 

the processing speed. 
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To obtain a mask that replicates the shape of the sample, the following procedure 

was used: 

1. it was applied the inRange method of the OpenCV library on the reduced area 

2. five iterations of the Closing morphological operator were performed 

3. the floodFill method was used to change the color of the pixels belonging to 

the sample 

4. the where method of the Numpy library was used to filter the pixels that were 

identified from the inRange method not belonging to the sample 

5. if any point inside the resulting shape is not considered as belonging to the 

mask, its color is changed to become part of the mask 

6. columns with a fraction of white pixels that is less than 95% of the maximum 

fraction were completely obscured 

The inRange OpenCV method is a function that receives in input a NxN three levels 

matrix and returns a single level NxN binary matrix. Each pixel of the original-colored 

Fig. 9: Original acquired photo with the reduced area highlilghted by a green rectangle 
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image is represented in the input matrix by a 3D vector, which is the combination of 

the fundamental colors (Reg, Green and Blue from 0 to 255) present in that pixel.  

This function checks if each pixel is inside or outside of a provided range, returning 

255 if True and 0 if False. The values returned by this algorithm are then arranged to 

create a Black-White image that masks the pixels inside the provided range. 

 

The Closing morphological operator is composed by a Dilation followed by an Erosion. 

The Dilation expands objects inside the image: a copy of the input image is created, 

where each pixel is set to 255 if at least one its bordering neighbors (plus itself) was at 

255 in the original image. 

The Erosion reduces the dimension of the objects and removes the smaller details: it 

works in the same way as Dilation, but the rule is changed so that pixels are set to 0 if 

at least one its bordering neighbors (plus itself) was at 0 in the original image. 

Morphological closing is useful for filling small holes in an image while preserving the 

shape and size of large holes and objects in the image. (MathWorks, s.d.) 

In this particular case, it serves for two important functions: 

• it straightens the borders of the sample, filling the holes left from the brightest 

spots that were located on the sample’s contour 

• it connects together all the pixels set at 255 belonging to the sample, preparing 

for the successive floodFill method 

The floodFill method behaves in the following way: starting from a point chosen as 

input, it changes the color value from the original to another one; then, for all the 

bordering pixels, it checks if any of them has the same color value as the original 

starting point and, if so, changes their color value too.  

To better understand the way this method works, the pixels of the image matrix can be 

imagined as a grid that subdivide the areas of a map: the ones with different color 

values from the originally selected one can be imagined at the ground level, while the 

ones that have the same color value are engraved to a lower level. When a bucket of 

water is spilled from the original point, the water floods all the areas that are directly 

connected to it, changing their level to another one; the ones that do not have a direct 

connection are left to their original value. 
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This method is used to single out only the pixels belonging to the sample’s surface, as 

the inRange method may identify pixels even outside of this area. Their color value is 

changed to 125, differentiating them from all the other pixels in the mask, whose values 

remain set either to 0 or 255. 

 

After having singled out only the pixels of the right color that belong to the sample, the 

where Numpy method is used to go back to a binary identification of the pixels, 

mapping the ones whose value is 125 to 255 and all the others to 0. 

 

A control loop is then defined to check for each row of the mask matrix if there are any 

white pixels (set to 255) in it. If so, the pixels between the two most distant white pixels 

are set to 255, filling the holes that are left in the shape. 

This loop is defined to check over each row and not each column because, given the 

orientation of the images, there are way less rows than columns, thus improving the 

computation speed for the loop. 

 

Finally, as only the rectangular surface of the sample is object of this study, it was 

found the maximum amount of white pixels inside a column among every column. 

Then, the columns where the number of white pixels was less then 95% the maximum 

amount were completely turned to black.  
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1) inRange function to identify pixels of the sample’s color 

2) Closing morphological operator to connect the pixels 
inside the shape 

3) The connected pixels of the sample are singled out by 
changing their color 
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4) The mask is turned back to Black and White, where only 
the connected pixels belonging to the sample are white 

5) The black spots inside the shape are all turned to white 

6) Only the rectangular face of the sample is left unmasked 
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 Edge Detection to identify Defects 

 

Once a mask of the sample has been obtained, it can be applied to the original image, 

after it has been converted from RGB to Grayscale. This makes so that the successive 

operations can be performed considering only the area of the photos belonging to the 

sample. 

 

To identify defects on the surface, it was chosen to use the Canny edge detection 

algorithm present in the OpenCV library. This is a multi-stage process, which is able 

to return a Black-White image matrix for an input Grayscale image matrix, where the 

pixels identified as edges are set to 255 and all the others to 0. 

 

Step 1: Noise Reduction 

To reduce noise in the image, a 5x5 Gaussian filter is applied to the image. 

 

Step 2: Finding intensity Gradient of the Image 

To perform this step, a Sobel operator is applied to the image along both the x-

axis and the y-axis. The image gradient is then found applying Pitagora’s 

Theorem and its direction is rounded to be horizontal, vertical or along the two 

diagonal directions. 

 

𝐺𝑥 = [
−1 0 +1
−2 0 +2
−1 0 +1

] ∙ 𝐼 𝐺𝑦 = [
−1 −2 −1
0 0 0

+1 +2 +1
] ∙ 𝐼 

 

𝐸𝑑𝑔𝑒 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝐺) = √𝐺𝑥
2 + 𝐺𝑦

2 𝐴𝑛𝑔𝑙𝑒 (𝜃) = 𝑎𝑟𝑐𝑡𝑔 (
𝐺𝑦

2

𝐺𝑥
2

) 

 

Step 3: Non-maximum Suppression 

After getting gradient magnitude and direction, for each pixel it is checked if it is 

a local maximum in its neighborhood in the direction of gradient. Take the 

following image as an example: 
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Point A is confronted with points B and C, which lay in the gradient direction. If 

A is greater than both, it is considered as a local point of maximum, otherwise it 

would be suppressed to 0.  

The result is a Grayscale image, where the edges’ color values are set to the 

gradient’s local value. 

 

Step 4: Hysteresis Thresholding 

At this stage it is determined which of the edges identified at the previous point 

are significant and which are not. 

To do so, two thresholds are defined: maxVal and minVal. Pixels with intensity 

gradient higher than maxVal are sure to be edges and pixels with intensity 

gradient below minVal are sure not to be edges. 

Pixels whose intensity gradient falls in between these two values need to be 

classified as edges or non-edges based on their connectivity: if they are 

connected to “sure edge” pixels, they are considered to be part of edge; if else, 

they are suppressed to 0. 

As an example, consider this case: 

Fig. 11: Example for hysteresis thresholding 

Fig. 10: Visualization of 
which points are considered 

 



33 
 

Both points B and C have an intensity gradient that falls in between maxVal and 

minVal, but only point C is considered to be part of an edge, as it is connected 

to point A, which is a sure edge as its intensity gradient is higher than maxVal. 

In order to effectively recognize edges, the values chosen for these two 

thresholds are very important. A suggested way to define them is: 

 

𝑚𝑎𝑥𝑉𝑎𝑙 = 1,3 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑖𝑛𝑉𝑎𝑙 = 0,7 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛 
 

Points that are recognized as belonging to an edge are set to 255. The result is 

a Black and White image, where all the edges are thin white lines over a total 

black background. 

This steps also removes small pixel noise, under the assumption that edges are 

long lines. 

(opencv, s.d.) 

 

After all these steps have been performed of the image of the sample, the result is the 

following: 

Fig. 12: Comparison of the original image with the post processed one 
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 Defectiveness index 

 

After the contours of the defects have been located in all the images, an index needs 

to be defined to represent how defective each sample’s surface is. 

 

Counting the amount of white pixels in each image is a first step, as the more defects 

are present, the bigger this number gets. 

This method is not enough tough, because it has some flaws that make it clunky to 

work with and may even introduce some unwanted errors: 

• the index so defined is of difficult interpretation, as the number of pixels is not 

correlated to anything. This means that it is quite difficult to tell whether the 

measured value is high or low, forcing to redefine the index interpretation every 

time an object with different dimensions is analyzed 

• it does not take into account potential changes in the distance that separates 

the samples from the camera. Closer distances would be resulting in a higher 

number of white pixels, but this would only be attributed to the fact that the 

sample takes more space in the photo and its defects appear to be bigger 

• it does not take into account for different camera resolutions, which acts on the 

measured index in a similar way as the previous issue 

To solve the first problem, the defect index can be defined as the ratio of white pixels 

over the total number of pixels not covered by the mask. This results in a fraction from 

0 to 1 that is very easy to interpret. It also gives a better representation of how 

defectiveness is perceived: comparing two samples with the same amount of defect 

edges(same amount of white pixels), where one has double the surface of the other, 

the one with the bigger surface will be classified as less defective. 

Still, the issue regarding camera positioning and camera resolution is not addressed 

by this index. 

 

A defectiveness index that addresses all the issues presented before can be found by 

replacing in the previous definition the total amount of pixels not masked (which can 

be interpreted as a measure of the surface area) with the length in pixels of a square 

whose pixel area is equal to that same amount of non-masked pixels. This makes even 
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more sense if considering the fact that the white pixels can be interpreted as the pixel 

length of all the defects’ contours. 

The ratio so defined, while being a bit less immediate to interpret, does not depend 

from the camera distance or the camera resolution, as long as these two factors are 

such that all the defects are clearly visible in the photos taken. 

The defectiveness index is finally defined as: 

 

𝑙 = √𝑁𝑛𝑜𝑛−𝑚𝑎𝑠𝑘𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 

 

𝑑𝑒𝑓_𝑖𝑛𝑑 =
𝑁𝑤ℎ𝑖𝑡𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑙
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 PROs and CONs of Edge Detection 

 

In literature regarding Surface Defects estimation, the most popular way to get an 

esteem of how defective a surface is can be summarized in three steps: 

 

1) the defective area is blurred enough to represent the base color of the surface 

2) the blurred image is subtracted from the original image, so that the defects are 

the only parts whose pixel colors are distant from 0 

3) a dispersion index is calculated for the resulting image 

More often than not, the dispersion index is the standard deviation of the color 

histogram of the final image, as in the article published by Jinsu Gim, Huaguang Yang, 

Lih-Sheng Turng already cited in the Introduction (Jinsu Gim, Huaguang Yang, Lih-

Sheng Turng, 2023). The index so defined is easy to interpret: the more dispersed the 

final image is, the more defects should be present on the analyzed surface. 

This does not take into account for the defects’ color or the lighting conditions, tough.  

The same defect, but with a different color, would give variations in the grayscale color 

histogram that would result in a change in the standard deviation value; this effect can 

fictitiously increase or decrease the measured defectiveness, while the actual amount 

of defects has not been varied. 

A similar problem arises when changing the type of light source: depending on it, the 

sample and the defects present on it can change color independently, thus changing 

the observed standard deviation.  

Another issue is the fact that light does not necessarily reach every part of the surface 

in the same condition: source direction and intensity can change depending on the 

point considered on the surface.  

 

The combination of the three effects just described lowers the repeatability of 

measurements taken with this method, as the setup required to take the photos has a 

very strict window inside which it can be varied to still obtain compatible results. This 

also means that an in-line production implementation of this method for quality control, 

while feasible, would be quite difficult and easily prone to faults. 
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The defective index defined using edge detection solves all these three problems, as 

it only checks for color gradients inside the image. This means that the measured index 

does not depend by lighting conditions or by the color perceived by the camera. 

For these reasons, repeatability of the measurements is greatly increased: the 

measurements can be performed using any kind of light source and the color of the 

processed material can be changed without any worry that new experiments must be 

performed to characterize the surface defectiveness from zero. This also makes an 

hypothetical in-line quality control way easier to implement and robust. 

 

On the other hand, edge detection has troubles when defects have different sizes 

relative to one another: elongated defects would have longer contours, meaning that 

they would be more represented than chunkier ones. 

Edge detection also comes short when in need to classify different types of defects. If 

the run experiment requires a defect classification based on their color or their surface 

area, algorithms for these purposes must be implemented in addition to edge 

detection. 

Table 7: PROs and CONs of using edge detection for defectivenes estimation 



38 
 

  



39 
 

 RESULTS 

After all the sample images have been processed, the results are collected in a table 

for further analysis. 

Table 8: Non-dried material measured Defective indices 
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Table 9: Dried material measured Defective indices 
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  Analysis of Variance 

 

Given a hypothetical regression function, the p-value is the probability of obtaining the 

observed difference (or a greater one), given that the changed parameter has no 

influence on the outcome of the measured output (Null hypothesis). In other terms, it 

esteems the probability that changing only one input parameter, the measured output’s 

variation is only to be attributed to noise introduced during sampling or during 

measuring phase.  

 

As an example, if the p-value is 0.004, it means that there is a 0.4% chance that the 

observed difference is only caused by random noise that originates from sampling. 

 

From a mathematical point of 

view, the p-value is 

determined by applying a 

Student’s distribution (T-

distribution) to the outputs 

corresponding to each of the 

two levels of an input 

parameter. This identifies the 

Probability Density Functions 

of each level, which can be 

represented as a curve in a 

bidimensional plane with the 

input parameter in the x-axis and the output parameter in the y-axis. The overlap area 

under the two curves is the probability that the measured output can be obtained 

independently from the chosen input parameter level. This area is called probability 

value or p-value. 

 

In case 3 or more levels are defined for a single parameter, the total dominion is divided 

into sub-dominions, each with extremes two successive levels of the input parameter. 

p-value 

Fig. 13: p-value area 
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Then, the previous definition can be applied to each sub-dominion, resulting in a 

different p-value for each one. 

From the p-value table, obtained using the Stat → ANOVA → General Linear Model 

→ Fit General Linear Model function with the Minitab software, it can be noticed that 

two parameters manifest very high p-values: Backpressure and Cycle time, just in the 

dominion between 48 and 60 s. 

Assuming a significance level of 95%, the threshold value, over which a p-value is 

considered to be too high, is α = 0.05. The two mentioned cases go well above this 

threshold, meaning that Backpressure and Cycle times under one minute have little to 

no influence on the observed Defects.  

 

  Principal Effects Plots 

 

Principal Effects Plots are obtained by taking the mean of the outputs measured 

when an input parameter is kept fixed to one level. The points obtained are then 

reported in a bidimensional plane with the input parameter in the x-axis and the 

output parameter in the y-axis and connected with a straight line. 

This allows for a better visualization of how much influence changing each parameter 

has on the response. 

 

Table 10: p-value and standard deviation table 
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 Injection Rate 

 

Higher Injection Rates appear 

to be beneficial for Surface 

Defects reduction. 

 

To explain this effect, we need 

to look in literature at 

experiments where gas-

counter pressure was applied 

and controlled during the 

injection phase to eliminate Surface 

Defects that were attributed to igroscopic retention of the processed material.  

The idea behind these experiments was not to let water evaporate, which would have 

caused gaseous bubbles inside the mold that lead to defects. To achieve this goal, 

cavity pressure was controlled and kept above the saturation pressure of water until 

the melt was solidified. 

Working with high Injection Rates may emulate this effect: the air present in the Mold 

before the injection would be expelled faster, but, as the air is a compressible fluid, 

(Yeong-Eun Yoo, Sang-Won Woo, Sun Kyoung Kim, 2012) 

 

 Backpressure 

 

Changing Backpressure 

during the metering phase 

does not result in any 

meaningful changes in 

Surface Defects. 

 

The explanation for this can be 

found considering the way in 

which heat is added to the 

Fig. 14: Main Effect of Injection Flow Rate 

Fig. 15: Main Effect of Backpressure 
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plastic material to melt it. In an Injection Molding Machine, the provided heat can be 

attributed into two quotas: 

a. Frictional Heat, which is the main contribution, representing around 70% of the 

total heat provided from the Machine to the plastic 

b. Thermal Heat, provided by electrical resistances positioned around the cylinder 

body; these resistances are controlled by a PID controller and are not used as 

the main heat providers, but as precise regulators to achieve the desired 

Temperature 

The fact that Backpressure has no influence on the output, even though in theory it 

should be resulting in more heat added to the plastic and consequently in higher defect 

occurrence, means that the regulation provided by the PID controller via the electrical 

resistances is enough to counterbalance the detrimental effects that raising 

Backpressure would have. 

 

 Melt Temperature 

 

Melt Temperature is the most 

influent parameter on the 

Defect Index. Surface Defects 

are more present when Melt 

Temperature is high. 

 

In terms of Defect Index, the 

jump from 220 to 250 °C is 

much higher than the jump 

from 190 to 220 °C. To explain this, 

it can be hypothesized that the degradation of whatever additive is present in the 

recycled-PP can be considered as a thermically activated process. This means that 

the amount of material that gets degraded in a unit of time increases exponentially with 

Melt Temperature. 

 

Fig. 16: Main Effect of Melt Temperature 
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Noticeably, the influence of Melt Temperature on the Defect Index is so big that just 

reducing it may be able to completely negate the presence of Defects to the human 

eye, independently from the other processing parameters. 

This is the case with all the samples that were obtained with Melt Temperature set to 

190 °C: considered the human eye threshold to be def_ind = 100, it can be seen that 

all the samples obtained with this Temperature have lower Defect Index values. 

 

 Drying time 

 

The material processed after 

having been dried for 90 

minutes at 90 °C consistently 

shows lower Defect Index 

values. 

 

While virgin Polypropylene 

has very low water retention, 

the same can not be said for 

recycled Polypropylene. The 

additives present inside this material, introduced from the Mechanical Recycle 

process, show to have igroscopic behavior. This means that the material, as it was 

provided, had some water in it. 

When the recycled-PP pellets are processed in the Cylinder, the water that was 

absorbed by the material gets turned into steam.  

The steam behaves in the same way as the gases formed by additive degradation, 

meaning that it condenses onto the walls of the Mold while the Injection is happening. 

The drops of water that condense on the walls are dragged with the melt and determine 

Surface Defects that follow the flow lines. 

 

 

Fig. 17: Main Effect of Drying time 
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 Cycle Time 

 

Higher Cycle times are 

connected to higher Defect 

Indices. 

 

Cycle time is used as a proxy 

for the time that the polymer 

spends at the preset Melt 

Temperature. 

The molten polymer can be 

considered as a gas generator, 

which has a fixed gas generation rate for a certain Temperature and Drying condition. 

If this fluid is kept at the same Temperature for a certain amount of time, the 

ingenerated gas increases linearly with the amount of time spent in these conditions. 

This hypothesis finds enough support in the main effect plot for Cycle time, as the 3 

points located for the 3 predetermined levels lie with sufficient accuracy on the same 

straight line. 

 

The fact that the p-value for the lower range is very high, meaning that Cycle time has 

less weight on the output in this range, can be attributed to the fact that the difference 

between the two extremes of this range is not that high. This low difference, combined 

with the fact that the average gas generation rate is not that high, results in low 

statistical meaning of this parameter in that range. 

Even tough it has low statistical weight, the difference in the outputs for these two 

levels can still be measured and used to support the linear dependence hypothesis. 

  

Fig. 18: Main Effect of Cycle time 
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  Interaction Plots 

 

While Main Effects Plots were obtained by taking the mean of all the outputs measured 

for every level of an input parameter, Interaction Effects Plots are obtained in the same 

way, but considering only the outputs obtained with a fixed value of a second input 

parameter. 

The points located in this way are drawn in the same bidimensional planes of the Main 

Effects. Then, all the points for which the second input parameter is the same are 

linked together by straight segments, in ascending order. 

If the straight segments between two levels of the first input parameter have different 

steepness, it means that the two input parameters that have been considered are 

interacting together in that range. 

 

As already observed while analyzing the statistical significance of the parameters and 

the Main Effects, Backpressure does not influence in any way the monitored output. 

This is manifest with the Interaction Plots too, as all the plots that use Backpressure 

as one of the two input parameters contain segments that have the same exact 

steepness inside the same range. 

Of the remaining input parameters, the only pairing between which there seems to be 

no interaction is the pair Flow Rate – Cycle Time. All the other pairs appear to have 

some sort of interaction. 

Fig. 19: Interaction plots overview 
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 Flow Rate vs Melt Temperature 

 

In the lower Temperature 

range (190 – 220 °C), 

increasing the Melt 

Temperature makes the 

improvement that comes from 

higher Flow Rates get better. 

The same does not happen in 

the higher Temperature range, 

where the two factors show no 

interaction. 

 

It is very difficult to imagine how the Melt Temperature should be influencing the way 

the air present inside the mold gets compressed by changing Flow Rate, especially 

because the Injection Phase happens very fast, so the Thermal exchange between air 

and polymer is negligible. 

Thus, it is more probable that the interaction registered at low Temperatures needs to 

be attributed to the fact that the Surface Defect Index def_ind has a floor value, 

corresponding to a Surface that has the lowest possible amount of defect and below 

which it is not feasible to go. 

 

 Flow Rate vs Drying time 

 

For material that was previously dried 

it is less beneficial to use higher 

Injection Rates. 

 

While it can be said that more def_ind 

values close to the floor level are 

present in the group of samples that 

Fig. 20: Interaction between Flow Rate and Melt Temperature 

Fig. 21: Interaction between Flow Rate and Drying time 
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was previously dried, the main reason for this difference might be another one. 

 

The steam present in the processed material tends to emerge from the liquid polymer 

and diffuse in the air present inside the mold cavity. This process happens fast enough 

to be relevant during the Injection Phase and contributes in raising the gas-

counterpressure ahead of the Injected fluid: the steam present in the liquid diffuses in 

the air, both raising the resulting gaseous mixture Temperature and the amount of 

gaseous mass present in the same volume; these two effects compound and result in 

higher gas-counterpressure ahead of the fluid than the counterpressure that would 

result if no water was present in the processed material. 

 

 Injection Rate vs Cycle time 

 

As previously stated, there is 

no interaction between these 

two parameters. 

 

While Longer Cycle times 

would mean that more 

degradation gas would be 

present in the injected fluid, 

the fact that there is no 

statistically relevant difference 

in Injection Rate’s influence over the 

output must mean that all the additives present in the recycled-Polypropylene that can 

be thermically degraded have already been turned into gas after the minimum 

processing time has passed. 

 

Fig. 22: Interaction between Flow Rate and Cycle time 
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 Melt Temperature vs Drying time 

 

In the lower Temperature 

range, the non-dried material 

is more severely affected from 

a Temperature increase. The 

opposite is true in the Higher 

Temperature range. 

 

Let’s consider only the plot 

obtained for t_d = 90. The way 

in which the points are 

disposed clearly hints to the 

fact that the additives degradation is a thermically activated process, as the jump from 

220 to 250 °C is around 20 times bigger than the jump from 190 to 220 °C.  

The def_ind value read at 190 °C in this condition almost coincides with the lowest 

possible value obtainable for this parameter 

 

According to the hypothesis that Tm = f(def_ind) is an exponential function, the 

difference between the plots obtained for the two conditions of td should be an 

horizontal or an ascending straight line. This is not the case, as the outputs obtained 

at the highest Temperature show convergence of the two lines while rising Melt 

Temperature. 

To explain this behavior, we follow the same reasoning that was used to explain the 

convergence at low Temperature: once again we must make the assumption that there 

is an upper bound that limits the possible value of the parameter def_ind, which, from 

the collected data, seems to be identifiable as def_indmax ≈ 400. 

This is easy to understand when thinking about an hypothetical worst case limit 

situation, in which the processing conditions are so bad that the sample alternates a 

line of base color to a line of defective color: in this situation, half of the surface is 

considered Defect and there is no way to increase this fraction, so it is considered to 

be the upper limit for defectiveness in the ideal case. Once the non-ideal nature of the 

Fig. 23: Interaction between Melt Temperature and Drying time 
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process is considered and after a translation of this concept to def_ind, the natural 

upper bound to the Defectiveness Index is defined. 

 

 Melt Temperature vs Cycle time 

 

In the lower Cycle time range 

(48 – 60 s) there is no 

significant interaction between 

Melt Temperature and Cycle 

Time. 

 

In the upper range, instead, 

the two plots start from the 

same point for 190 °C, but the 

one with higher Cycle time 

increases more quickly in the 

first half of the dominion. In the second half, from 220 to 250 °C, the plots show a 

convergence similar to the previous case, which can be explained in the same way. 

 

 Cycle time vs Drying time 

 

While for the humid material 

increasing Cycle time is 

detrimental for the Surface 

Defects, the dried material 

does not show to be very 

affected by the amount of time 

spent at high Temperature. 

 

As previously noted when 

discussing Injection Rate vs 

Drying time, this means that 

Fig. 24: Interaction between Melt Temperature and Cycle time 

Fig. 25: Interaction between Cycle time and Drying time 
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the additives responsible for Surface Defects are very quick to degrade into gas, so 

their influence on the output is already at its maximum at the lower Cycle time value 

and cannot be changed increasing this parameter. 

 

On the other hand, the fact that the humid material presents an increase in Surface 

Defectiveness for higher Cycle times must mean that the water present in the material 

as igroscopic retention is gradually released over time at a more or less constant rate. 
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  Linear Regression Model 

 

After the most influent parameters and their interactions have been identified, a Linear 

Model can be created applying a linear regression to the measured data. To create 

this model the LinearRegression class from the python scikit-learn library was used. 

 

 Preprocessing (parameters normalization) 

 

Before proceeding with the model creation, it is recommended to normalize the input 

parameters remapping the lower level to 0 and the higher level to 1. The formula for 

this is: 

 

𝑥 =
𝑋 − 𝑋𝐿

𝑋𝐻 − 𝑋𝐿
 

 

This normalization ensures that the interactions between multiple parameters are also 

bounded to vary in a range from 0 to 1.  

In this way, every parameter variation is considered equal and the coefficient 

corresponding to that parameter represents how influential it is in determining the 

output value. 

In other words: the parameters whose coefficient have the highest absolute value are 

the more influential ones, while smaller coefficients mean that that parameter is less 

influent. 

 

The normalization makes so that the created regression model is easy to read and 

exposes immediately how much certain parameters need to be changed to obtain a 

desired change in the output. 

 

 Final formulation of the Regression Model 

 

The general formulation of a Linear Regression Model with first order interactions is: 
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𝑑𝑒𝑓_𝑖𝑛𝑑 =  (𝑐1 ∙ 𝑄𝑖 + 𝑐2 ∙ 𝑝𝑏 + 𝑐3 ∙ 𝑇𝑚 + 𝑐4 ∙ 𝑡𝑑 + 𝑐5 ∙ 𝑡𝑐) + 𝑐𝑜𝑠𝑡 +  ∑ 𝑐𝑖𝑗 ∙ 𝑝𝑎𝑟𝑖 ∙ 𝑝𝑎𝑟𝑗
𝑖≠𝑗

 

 

For the final formulation of the regression model, only the most relevant parameters 

and interactions need to be taken into consideration. This reduces its formula to: 

 

𝑑𝑒𝑓_𝑖𝑛𝑑 =  (𝑐1 ∙ 𝑄𝑖 + 𝑐3 ∙ 𝑇𝑚 + 𝑐4 ∙ 𝑡𝑑 + 𝑐5 ∙ 𝑡𝑐) + ( 𝑐13 ∙ 𝑄𝑖𝑇𝑚 + 𝑐14 ∙ 𝑄𝑖𝑡𝑑 + 𝑐34 ∙ 𝑇𝑚𝑡𝑑

+ 𝑐35 ∙ 𝑇𝑚𝑡𝑐 + 𝑐45 ∙ 𝑡𝑑𝑡𝑐) + 𝑐𝑜𝑠𝑡 

 

As Melt Temperature and Cycle Time are varied over 3 levels, two different dominions 

as defined for each of these parameters; this means that a different regression shall 

be applied in the two different regions, meaning that 2 x 2 = 4 different regression 

models shall be used (one for each combination of the dominions). 

 

The coefficients and the regression scores obtained for each regression models are 

reported in the following tables. 

 

Low Tm, low tc: 

 

Qi Tm td tc Qi x Tm Qi x td Tm x td Tm x tc td x tc cost 

-48,16 67,54 -46,31 15,29 -45,07 48,22 -15,40 -3,46 -12,69 89,00 

Table 11: Regression coefficients for low Melt Temperature and low Cycle time 

Regression score 0,912 

 

High Tm, low tc: 

 

Qi Tm td tc Qi x Tm Qi x td Tm x td Tm x tc td x tc cost 

-87,03 233,34 -54,20 13,13 -12,77 35,81 15,79 -9,85 -15,29 152,79 

Table 12: Regression coefficients for  high Melt Temperature and low Cycle time 

Regression score 0,977 
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Low Tm, high tc: 

 

Qi Tm td tc Qi x Tm Qi x td Tm x td Tm x tc td x tc cost 

-56,81 91,27 -41,07 25,36 -52,53 59,27 -62,31 61,34 -53,58 96,89 

Table 13: Regression coefficients for low Melt Temperature and high Cycle time 

Regression score 0,919 

 

 

High Tm, high tc: 

 

Qi Tm td tc Qi x Tm Qi x td Tm x td Tm x tc td x tc cost 

-101,95 190,61 -103,41 79,27 -6,18 44,48 74,97 -33,55 -38,71 188,18 

Table 14: Regression coefficients for high Melt Temperature and high Cycle time 

Regression score 0,958 
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 Model test 
 

To test the effectiveness of the created Linear Model, a series of experiments was 

conducted with different processing parameters to the ones used to create the model. 

The results are reported in four tables. 

 

Low Tm, low tc: 

 

High Tm, low tc: 

 

  

Table 15: Predicted def_ind values for low Melt Temperature and low Cycle time 

Table 16: Predicted def_ind values for high Melt Temperature and low Cycle time 
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Low Tm, high tc: 

 

High Tm, high tc: 

 

The defective indices for the samples obtained at higher Melting Temperature can be 

predicted somewhat accurately by the Linear Regression model, while the ones 

obtained at lower Melting Temperature are overestimated by a lot. 

Table 17: Predicted def_ind values for low Melt Temperature and high Cycle time 

Table 18: Predicted def_ind values for high Melt Temperature and high Cycle time 
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This observation adds 

further credibility to the 

hypothesis that the 

degradation the additives 

present in the recycled-PP 

can be considered as a 

thermically activated 

process: when comparing 

an exponential function 

(representing a thermically 

activated process) to a 

linear function, both defined between two points H and L, it can be observed that in the 

exponential function is always below the linear one. At low Temperatures, when the 

degradation process has just started, the exponential function increases at very slow 

pace, so the predicted values using a linear function will always be overestimating the 

true value by a lot. 

 

One more trend that can be observed in this dataset is the tendency to overestimate 

when the material is not dried and underestimate in the other case. 

Once again, taking for good that the exponential function could represent the correct 

interpolation choice, this would mean that the exponent of the exponential function 

changes in response to the processed material being dried or not. 

 

 

 

 

 

 

 

 

 

  

L 

H 

Fig. 26: comparison of exponential vs linear increase between two points 
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 Mold Contamination 

While working with recycled-PP pellets, it was noticed that on the mold used there kept 

forming a layer of dirt. As this only happened with this kind of material, it was 

hypothesized that the cause of Surface Defects and Mold Contamination was the 

same.  

Then, we wanted to figure out whether the conditions that lead to higher Surface 

Defects were linked to the conditions that lead to higher contamination of the Mold’s 

walls. 

To further investigate mold contamination and the conditions that lead to more dirt 

deposits, it was scheduled a visit to FHP establishment in Monselice. 

In this establishment the main production consists of drying racks, both plastic ones 

and metallic ones. Recently they started the production of some components made of 

post-consumer recycled Polypropylene. Since then, the main issue that rose has been 

that their Molds get very dirty very quickly. 

These layers of dirt force the interruption of production, as the mold shape is replicated 

with less accuracy the more the dirt deposits on the Mold’s walls. 

Fig. 27: Photo of the FHP establishment in Monselice 
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After much time spent producing parts with this material, some signs started to be 

spotted that could indicate corrosion caused from the contamination. 

  Analyzed Molds presentation 

 

Dinamity Leg Joint 

 
LEAST prone to contamination 

Coated: Yes 

Heat Chamber: Yes 

Injection Point: direct 

Screw Diameter: 60 mm 

Metering Run: 270 mm 

Injected Volume: 763 cm3 

Injection Temperature: 230°C 

Medium Mold Temperature: 25°C 

Cycle time: 39 s 

Flow Rate: 7 g/s 

 

Fig. 28: Dinamity leg joint photo 

Fig. 29: Dinamity leg joint’s mold, with zoom on some layers of dirt deposited on its walls 
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This Machine gave no visible surface defects on the formed pieces while automatically 

cycling, but surface defects came to be after a few minutes stop. 

No blowholes are present to allow for a better exit to the air present in the cavity, so all 

the air and the gases must be expelled alongside the contour of the piece present in 

the divisor plane of the two mold pieces.  

 

Bridge Corner 

 

prone to contamination 

Coated: Yes 

Heat Chamber: No 

Injection Point: submerged (injection point under 

the divisor plane of the Mold) 

Screw Diameter: 55 mm 

Metering Run: 210 mm 

Injected Volume: 500 cm3 

Injection Temperature: 230°C 

Medium Mold Temperature: 37°C 

Cycle time: 25 s 

Flow Rate: 6,4 g/s 

As for the former Machine, here too there were no visible surface defects on the formed 

pieces while automatically cycling, but came to be after a few minutes stop. 

Fig. 30: Bridge corner photo 

Fig. 31: Bridge corner’s mold 
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As no blowholes are present to allow for a better exit to the air present in the cavity, 

here too the air and gases must be expelled alongside the contour of the piece present 

in the divisor plane of the two mold pieces.  

 

Dinamik Ring-Cover 

 

MOST Prone to contamination 

Coated: No 

Heat Chamber: Yes 

Injection Point: submerged (injection point under the divisor 

plane of the Mold) 

Screw Diameter: 105 mm 

Metering Run: 390 mm 

Injected Volume: 3380 cm3 

Injection Temperature: 230°C 

Medium Mold Temperature: 45°C 

Cycle time: 45 s 

Flow Rate: 8,5 g/s 

 

Fig. 32: Dinamik ring cover photo 

Fig. 33: Dinamik ring cover's mold 
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This Injection Molding Machine produced pieces with no surface defects while cycling 

and, even after a few minutes stop, surface defects were very hard to see, if there were 

any. 

Similarly to the previous molds, the air and gases inside the cavity are expelled from 

the shape’s contour alongside the divisor plane of the two mold pieces. 

 

Considerations on Contamination 

 

In the examined cases, the highest contamination manifested with the machine that 

had the highest throughput time, decreasing the less time was spent by the material at 

high Temperature inside the Cylinder.  

 

This resembles the results obtained in laboratory for the surface defectiveness: at 

equal conditions for Melt Temperature, Drying time and Injection Flow Rate, the 

material that determines the highest surface defectiveness is the one that has spent 

more time at high Temperature inside the Cylinder. 

For this reason, it can be stated that the root cause of the problems is the same, and 

it can be identified in how much of the additives present in the recycled material is 

degraded before the injection inside the cavity. 

 

Other factors that need to be taken into consideration are that a higher contamination 

rate manifested when there was no chemical coating on the Mold’s surface and Mold 

geometry. 

Fig. 34: correlation between mold contamination and fraction of the maximum metering run used 
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It can be hypothesized that the chemical coat transformed the mold’s surface in a way 

that would lower the chance to have nucleation points for the condensation of gases. 

This would result in a reduction of contamination. 

Regarding Mold geometry, the Molds that offer less resistance to gas expulsions give 

less time to the degraded material to deposit on the Mold’s walls, resulting in lower 

contamination rates. 

 

Finally, Medium Mold Temperature can be considered as concurring to dirt deposit, as 

lower Temperatures mean a greater Temperature gradient between gas condensation 

point and wall Temperature. This would lead to faster condensation. 

 

Considerations on Surface defects 

 

Before processing, all Recycled Polypropylene pellets were thermically treated for 90 

minutes at 90°C to remove any water present in it in the form of igroscopic retention. 

All the Injection Machines had same Melt Temperature of around 235°C and 

comparable Injection Rates.  

When artificially augmenting Residence time by waiting for 3 minutes before injecting 

the material, the only outlier was the Dinamik Ring-Cover, as with this mold surface 

defects were not significant even for very high Residence times. This may be attributed 

to the particular conformation of the cavity: the bigger space would allow for a faster 

gas expansion, as its partial pressure (which drives gas expansion through the air) 

would increase more slowly; as a consequence, the gas would diffuse more in the air 

instead of stagnating on the wall front (where it would condense and determine 

defects). 

 

  Further observations 

 

Contamination and Surface Defects seem to be related to the same root cause (which 

is presence of additive material inside recycled-PP). The dynamics that lead to their 

manifestation must be different. For Contamination, it’s a matter of how much gas 
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condenses on the Mold’s walls during all the process, while for Surface Defects it’s a 

matter of creating conditions for the gas to condense just in the injection phase. 

 

As for Surface Defects, their manifestation can be limited also by artificially rising gas 

counter pressure inside the cavity, so that the gas present inside the molten polymer 

wouldn’t even be able to surface during injection.  

This, while contrasting effectively Surface Defects, does nothing to decrease the 

contamination rate on the surface of the Mold.  

Taken this in consideration, presence of Surface Defects surely leads to 

Contamination, but eliminating them is not enough to guarantee absence of deposit. 

Noticeably, during production Surface Defects didn’t appear even though Flow Rates 

were small and Injection Temperatures were high compared to the experiments 

conducted in laboratory. Even though these two effects should be detrimental for 

Surface Defects, the very low Cycle time means that the recycled polymer has a 

smaller window of time to degrade and this could counter balance the detrimental 

effects. 

Other thing that may be reducing Surface Defects could be the more elaborate 

geometry of the produced pieces, as even in laboratory was noted that when Injection 

Molding more elaborate geometries (like a cup for automotive), the more convoluted 

path for the molten polymer meant that the pieces were more resilient to this kind of 

defect. 
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 Conclusions 

A novel method to evaluate surface defectiveness for injection molded objects was 

developed. This method, when compared to other methods present in literature, is 

easier to implement and is more robust with respect to changing light conditions. On 

top of increasing the repeatability of the experiments, this method would be easier to 

implement for quality control checks on in-line industrial production. 

 

From the analysis of the collected data, it was reconstructed how each processing 

parameter influences the defectiveness of the injection molded samples. A Linear 

Regression Model was built and then tested on samples obtained in different 

conditions to the ones described in the Multifactorial Design of Experiment. Checking 

the correspondence between predicted values from this model and the defectiveness 

indices measured from the photos of the test samples, further information on this 

material behavior was obtained. 

 

The most influential factor is Melt Temperature: if it is possible to lower it, doing so can 

completely solve the surface defectiveness issue. The more the Melt Temperature is 

risen, the faster the defectiveness increases, meaning that the effect of this parameter 

on surface defectiveness is more than linear. Having a high Melt Temperature means 

that the processes that cause the additive present in the material to degrade are 

accelerated, thus increasing the defects caused by their degradation. 

 

Drying the pellets before processing them reduces the amount of defects, but they are 

still significatively present. This means that the igroscopic retention, while being a 

contributing factor to surface defects, is not the only one. This confirms that there must 

be some additives present in the material that degrade at high Temperatures to form 

gases. 

 

Increasing Cycle time or Residence time resulted in an increase on the defectiveness 

index, meaning that the material degradation does not happen all at once: the more 

the material is kept at high Temperature, the more material will degrade. This effect is 
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well represented by a linear function, meaning that the degradation rate is constant 

with respect to time. 

 

Increasing Injection Flow Rate resulted in lower surface defectiveness. The reason to 

this seems to be that higher injection rates create a fictitious gas counter-pressure 

inside the mold cavity, which prevents the gases inside the molten polymer to emerge 

to the surface during the injection. 

 

Changing Backpressure had no statistically observable influence over surface quality. 

Although higher Backpressure means higher shear stress to melt the polymer, which 

would cause more heat to be transferred to the fluid, the effects in this supposed 

change were not seen. The reason for this is to be attributed to the PID controller that 

monitors the Cylinder Temperature, indirectly monitoring the polymer Temperature too: 

if the shear stress applied to the material acts in a way to increase its Temperature, 

the sensors inside the Cylinder read this change and the PID controller answers to that 

by lowering the amount of heat contributed by the resistances present in the machine. 

This feedback-based control system is sensible enough to compensate for the excess 

of heat that is provided by the increase in shear stress. 

 

Finally, when considering how processing conditions have effect over Contamination 

of the Mold walls, it was observed that keeping the recycled-PP at high Temperature 

for longer times resulted in an increase in contamination rates. This indicates that the 

very same degradation that is responsible for the increase in surface defectiveness 

even after the material has been dried, is also responsible for the dirt layers that get 

deposited onto the mold’s walls. The gases produced from the additives present in the 

recycled polypropylene condense on the mold, and the conditions that favor material 

deterioration are also the ones that lead to a faster contamination of the mold used. 
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