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Abstract

An acyclic directed graph can be viewed as a (labelled) poset (P, ω). To the latter, one can
associate a (P, ω)-partition generating function which is a quasisymmetric function. We propose
two expansions of this function in the recently introduced type-2 quasisymmetric power sums
basis φ and derive the leading coefficient of some types of posets.
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1. Introduction

1.1 Research context

In discrete mathematics, graphs are one of the structures that have been intensively studied.
Those studies have in particular helped to characterize, define certain properties of graphs
and compute some graphical invariants, thus facilitating their manipulation. In that direction,
(quasi)symmetric functions and graph polynomials such as Stanley’s chromatic symmetric func-
tion play an essential role.

The chromatic polynomial is a polynomial function in the number of colors that gives the number
of graph colourings. Stanley’s chromatic symmetric function is a generalization of the classical
chromatic polynomial. Given a simple graph (a graph with no loops and no multiple edges)
G = (V,E), the Stanley’s chromatic symmetric function of G is defined as follows [10]: Let
P = {1, 2, ...} be the set of positive integers (here, we can view elements of P as distinct
colours). A function κ : V → P is called a proper P-colouring of G if κ(i) 6= κ(j) whenever
(i, j) ∈ E, i.e., adjacent vertices have different colours. Then the Stanley’s chromatic symmetric
function is

XG(X) :=
∑
κ

Xκ; (1.1.1)

where the sum is over all proper P-colouring κ of G, X = (x1, x2, x3, ...) are commuting in-
determinates, Xκ = xκ(v1)xκ(v2)xκ(v3) ... xκ(vd) and d = |V | is the number of vertices of G. It
can be seen that XG(x) is a symmetric and homogeneous function of degree d. For instance,
considering the single edged graph G : , we have XG(X) =

∑
i 6=j

xixj.

Having a graph invariant, one of the natural questions to consider is whether this invariant
determines the graph. Considering the chromatic symmetric polynomial, the answer to this
question is “no” and thus it is possible for two non-isomorphic graphs to have the same chromatic
symmetric function. An example using graphs with five vertices is given in [10]. However,
although XG is not a complete isomorphism invariant, it is a stronger isomorphism invariant than
the chromatic polynomial χG. For instance, χG(x) = x(x−1)n−1 for all trees on n vertices, while
some families of trees can be determined by their chromatic symmetric function XG as proved in
[6]. More generally, Stanley [10] conjectured that the chromatic symmetric function distinguishes
trees. This conjecture continues to inspire research and is an important motivation to us.

Results on graphs derived from their chromatic functions mostly consider the expansion of XG

in the various bases of the ring Sym of symmetric functions. We will consider the refinement of
XG in the ring QSym of quasisymmetric functions (with coefficients in Q[X]) and extend from
the class of labelled graphs to directed graphs. We work with quasisymmetric functions because
complex combinatorial objects tend to have simpler formulas when considered into symmetric
functions, and expanding from symmetric to quasisymmetric functions can provide new insights
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about those objects and reduce the complexity of proofs. Thus it is natural to combine the study
of graphs polynomials with the theory of quasisymmetric functions (which we will overview in the
next chapter).

In that sense, Shareshian and Wachs [8] defined in 2016, the refinement of Stanley’s chromatic
symmetric function called the chromatic quasisymmetric function. The definition of the chromatic
quasisymmetric function only involves an additional parameter t in the definition of the chromatic
symmetric function and considers labelled graphs. It is given by

XG(X, t) :=
∑
κ

tasc(κ)Xκ; (1.1.2)

where asc(κ) := |(u, v) ∈ E : u < v and κ(u) < κ(v)| is the number of ascents and the sum
runs over all proper colourings κ of G. It can be seen that when t = 1 we recover the chromatic
symmetric function. Also, for some type of graphs, the chromatic quasisymmetric function is
symmetric. Various proprieties of XG(X, t) and resulting results for graphs are presented in [8].
Moreover, Ellzey [3] considered an extended version of the chromatic quasisymmetric function to
directed graphs. Recall that a directed graph (digraph for short) is a graph in which the edges

have directions. If we denote by
−→
G = (V,E) a directed graph, then its quasisymmetric function

X−→
G

(X, t) has the same expression as for labelled graphs in equation 1.1.2 except that

asc(κ) = |(u, v) ∈ E : κ(u) < κ(v)|

as there is no labelling considered. Therein, expansions of X−→
G

(X, t) into the fundamental qua-
sisymmetric basis, the power sum and elementary symmetric bases were considered.

We can now transition from digraphs to partially ordered sets (posets). We make this change
due to the fact that the set of vertices of an acyclic directed graph (directed tree) with the

reachability order forms a poset and that for a directed tree
−→
T = (V,E), each proper colouring

that contributes to the highest power of t (i.e, the coefficient of the highest power of t) in
its chromatic quasisymmetric function can be considered an order preserving P -partition of the

poset P of
−→
T . Thus, from this observation, distinguishing directed trees through their chromatic

quasisymmetric functions would be implied by distinguishing posets P through their P -partition
generating functions. We therefore wish to study the expansion of P -partition generating function
in various bases. The expansion in the monomial and fundamental quasisymmetric bases is well
known.

More recently, Ballantine et al. [2] studied two types (type 1: Ψ and type 2: Φ) of quasisymmetric
power sum bases. Liu and Weselcouch [4] studied the expansion of the (P,w)-partition generating
function K(P,w) of a labelled poset (P,w) (here, we deliberately opted to not define labelled poset
(P,w) and its (P,w)-partition generating function as we will have an entire section dedicated to
it in the next chapter) into the Ψ power sum basis and proved its irreducibility when the poset
is naturally labelled. In contract, expansions of K(P,w) in the quasisymmetric power sum φ basis
have not yet been explored and this constitutes the essence of this project.
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1.2 Motivation and goals

The main motivation behind the study of (P,w)-partition generating functions in the quasisym-
metric power sum φ basis is to examine the analogue to Stanley’s conjecture for the case of
directed trees. Note that this conjecture is still open and attempted proofs have been mostly
computational; it has been verified for trees up to 23 vertices (see [9]). Thus, in this quest, our
principal objective will be the expansion of the (P,w)-partition generating function K(P,w) of a
labelled poset (P,w) into the quasisymmetric power sum basis φ. Secondary goals would be to
derive some general results on some particular types of posets and to examine to what extend
one can distinguish posets of directed trees in general by this extension.

1.3 Thesis Outline

The remaining part of this thesis is structured as follows: In Chapter 2, we give the necessary
mathematical background required to follow this project. Thus, we will present some concepts,
notions and results related to labelled partially ordered sets, P -partitions and their generating
functions, and quasisymmetric functions. Chapter 3 constitutes the main part of this project.
There, we provide results on the P -partitions generating function for some types of posets by
considering the quasisymmetric power sum basis φ. Most importantly will be the expansion of the
(P,w)-partitions generating function of labelled posets (P,w) in this φ basis. In Chapter 4, we
draw the conclusions of our work, highlighting the main elements we introduced and proposing
further work on the present project.



2. Background

Here we introduce the necessary mathematical tools to present our results. More precisely,
we present concepts related to partially ordered sets, quasisymmetric functions and P-partition
generating functions.

2.1 Partially ordered sets (Posets)

The notion of poset is the formalization and generalization of the concept of ordering the elements
of a set. Posets play an important role in combinatorics as the study of many combinatorial
structures can be reduced to that of posets, which have a well-developed theory.

Definition 2.1.1. A poset is a set P equipped with a binary relation ≤P (‘the partial order’)
which is reflexive, transitive and antisymmetric. That is every x, y, z ∈ P satisfy the following:

• x ≤P x,

• if x ≤P y and y ≤P z then x ≤P z,

• if x ≤P y and y ≤P x then x = y.

From this definition, we can note that there can exist non-comparable elements inside a poset.
When all the elements of a poset are comparable, the set is said to be a ‘totally ordered set’ or
a ‘chain’, while if no two distinct elements of the poset are comparable, the poset is said to be
an ‘antichain’.

2.1.2 Examples.

(a). An edgeless graph. In fact this is an example of an antichain poset.

(b). P = {1, 2, 3, ... } with its usual order ≤. In fact this is an example of a totally ordered set.

(c). Let
−→
T = (V = (v1, v2, v3, v4, v5), E = {(v1, v3), (v1, v5), (v2, v3), (v2, v4), (v3, v4), (v3, v5)})

be a directed tree. Then its set of vertices together with the reachability order forms a
poset.

(d). Let A = {x, y, z} and consider its power set P(A). Then P(A) together with the contain-
ment ”⊆” order forms a poset.
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Posets can be graphically visualized by their Hasse diagram. A Hasse diagram of a poset P
consists of all the elements of P linked according to the cover relation and considering an upward
orientation. That is, if x ≤P y in P , then x appears in a lower position to y in the diagram and
a line segment is drawn between these two elements if and only if y covers x i.e., when there is
no z ∈ P such that x ≤P z ≤P y. The Hasse diagrams of the posets in Examples 2.1.2 can be
seen in Figure 2.1.

p3

©
p2

©
p1

©

(a)

3

2

1

(b)

v1

v5 v4

v2

v3

(c)

{x, y, z}

{x, y} {x, z} {y, z}

{z}{y}{x}

∅
(d)

Figure 2.1: Hasse diagrams of posets of Examples 2.1.2

Moreover, given a (finite) poset P one can associate a labelling. A labelling of P is a bijection
ω : P → {1, 2, ..., n} ; where n = |P |. A poset P with an associated labelling ω is called a
labelled poset and denoted by (P, ω). Given a labelled poset (P, ω) and x, z ∈ P , if y covers x
and ω(x) < ω(y), the relation x ≤P y is said to be weak while when ω(x) > ω(y) the relation is
said strict or strong. The weak and strict relations are usually represented in the Hasse diagram
respectively by a single and a double line. A labelled poset consisting only of weak relations is
said to be naturally labelled and will be denoted by just P . Graphically, we represent labelled
posets by their Hasse diagram in which each node is annotated by its labelling. Figure 2.2 below
is an example of a labelled poset with two weak relations and one strict relation.

1 3

4 2

Figure 2.2: An example of a labelled poset (P, ω).

Moreover, operations such as the disjoint union and some natural involutions can be performed
on posets [7]. If (P1, ω1) and (P2, ω2) are labelled posets, then their disjoint union (P, ω) is
defined by P = P1 tP2 and for any x ∈ P , ω|P1(x) = ω1(x) and ω|P2(x) = ω2(x) + |P1|. Thus,
P is the poset on the union of P1 and P2 such that x ≤P y if either x, y ∈ P1 and x ≤P1 y, or
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x, y ∈ P2 and x ≤P2 y. A poset is called connected if is not a disjoint union of two non empty
posets. The natural involutions on labelled posets (P, ω) that we will consider here are rotation
of 180◦ denoted by (P, ω)∗ = (P ∗, ω′) and the application that switches weak and strict edges
denoted by (P, ω) = (P, ω′); where ω′(x) = |P |+ 1−ω(x) and P ∗ is the poset P with the order
between its elements reversed; i.e., if x ≤P y then x ≥P ∗ y.

2.2 P -Partition Generating Functions

Definition 2.2.1. Let (P,w) be a labelled poset. A (P,w)-partition is a map f : P → P such
that for any x, y ∈ P :

• if x ≤P y, then f(x) ≤ f(y); that is, f is order-preserving,

• if x ≤P y and ω(x) > ω(y), then f(x) < f(y).

One can note that the definition of (P, ω)-partitions relies on the assignment of strict and weak
relations given by the labelling ω. Graphically, we represent (P, ω)-partitions of a poset (P, ω)
by adding f(x) next to the node representing x to the Hasse diagram of (P, ω). In Figure 2.3
below we give some (not all) of the (P, ω)-partitions of the labelled poset of Figure 2.2 in the
codomain {1, 2, 3, 4}.
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Figure 2.3: (P, ω)-partitions of the labelled poset (P, ω) of Figure 2.2.

(P, ω)-partitions are central to this project. Further informations on posets (labelled) and their
(P, ω)-partitions can be found in [11]. Knowing what (P, ω)-partitions are, we can now define
the main tool of interest of this work: the (P, ω)-partition generating function.
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Definition 2.2.2. Let (P, ω) be a labelled poset. The (P, ω)-partition generating function K(P,ω)

for (P, ω) is the formal power series defined by:

K(P,ω) = K(P,ω)(x1, x2, · · · ) =
∑

(P, ω)-partition f

x
|f−1(1)|
1 x

|f−1(2)|
2 · · · (2.2.1)

Example 2.2.3. Considering the labelled poset (P, ω) below,

3

21

we have K(P,ω)(x1, x2, x3) = 2x1x2x3 + x1x
2
2 + x1x

2
3 + x2x

2
3.

When (P, ω) is a naturally labelled poset, we will denote by KP its (P, ω)-partition generating
function as all natural labellings of P give the same generating function.

Considering the operations on posets we mentioned earlier, we have the following proposition
from[7].

Proposition 2.2.4. Let (P1, ω1) and (P2, ω2) be labelled posets and consider their disjoint union
(P, ω). Then, K(P,ω) = K(P1,ω1)K(P2,ω2),

Recall that our main goal consists of expanding K(P,ω) into the power sum φ basis of QSym.
Thus, quasisymmetric functions will be the object of the following section.

2.3 Symmetric and quasisymmetric Functions

Before giving an overview of symmetric and quasisymmetric functions, let us recall some def-
initions about integer compositions and partitions. In fact, to study a polynomial function, it
seems natural to consider the different bases of the associated polynomial ring. The algebra
of symmetric and quasisymmetric functions have several bases including those indexed respec-
tively by integer partitions and integer compositions which are of particular interest in algebraic
combinatorics. We will mainly focus on the bases of Qsym.

Let n be a positive integer.

1. A composition of n (denoted by α � n) is a sequence α = (α1, α2, · · · , αk) of strictly

positive integers which sum to n. That is, αi > 0 for all i and
k∑
i=1

αi = n. The elements
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αi are called parts. When the parts of α are in a weakly decreasing order, we say that α is
a partition of n and denote it by α ` n. For α � n, we will denote by `(α) the number of
parts of α and by α̃ the partition obtained from reordering the parts of α.

2. Let α and β be two compositions of n. Then, we say that β is a refinement of α or α is a
coarsening of β (denoted by α � β or β � α) if

α =
(
β1 + · · ·+ βi1 , βi1+1 + · · ·+ βi1+i2 , · · · , βi1+···+ik−1+1 + · · ·+ βi1+···+ik

)
.

In other words, α is obtained by adding consecutive parts of β together. In this case, we
denote by β(i) the composition consisting of the parts of β that combine to give αi.

As examples of compositions of 5 we can have (1, 2, 2) � (3, 2); (2, 2, 1) � (2, 1, 1, 1).

In addition, we should note that there is a natural bijection between compositions of n and subsets
of [n− 1] = {1, 2, · · ·n− 1, } given by:

• to any α = (α1, α2, · · · , αk) � n, we associate the subset {α1, α1 + α2, · · · , α1 + α2 + · · ·+ αk−1}
that we will denote by Set(α);

• and to any subset A = {a1, a2, · · · , ai} of [n− 1] with a1 < a2 < · · · < ai, we associate
the composition α = (a1, a2 − a1, · · · , ai − ai−1, n− ai). We will denote this composition
by comp(A). For instance, for α = (3, 1, 2, 4), Set(α) = {3, 4, 6} and for A = {2, 5, 1} ⊂
[6] , comp(A) = (1, 1, 3, 2).

2.3.1 Symmetric Functions. Let R be a commutative ring and x1, x2, x3, · · · be commuting
indeterminates.

A symmetric function f in the variables x1, x2, ... with coefficients in R is a formal power series
f(x) ∈ R[[x1, x2, ...]] of bounded degree such that for any set of positive integers {a1, a2, ..., ak},
the coefficient of xa1i1 x

a2
i2
... xakik in f is equal to the coefficient in f of xa1j1 x

a2
j2
...xakjk for any sets

{i1, i2, ..., ik} and {j1, j2, ..., jk} where the it’s (respectively the jt’s) are distinct. For instance,∑
i 6=j

x2
ixj is symmetric while

∑
i<j

x2
ixj is not.

The set of symmetric functions in R[[x1, x2, ...]] forms a graded ring that we will denote Sym.
In fact Sym =

⊕
n∈N Symn, where Symn is a subgroup of Sym which consists of homogeneous

functions of degree n in Sym. And f is said to be homogeneous of degree d if for any a ∈
R, f(aX) = adf(X).

Sym has some natural bases indexed by integer partitions including the monomial basis, the
complete homogeneous basis and the power sum basis. Let λ = (λ1, λ2, . . . , λk) be a partition.
The monomial basis basis of Sym is denoted by {mλ} where

mλ =
∑
α:α̃=λ

1≤i1<i2<...<ik

xα1
i1
xα2
i2
. . . xαk

ik
.
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The complete homogeneous basis {hλ} is given by

hλ = hλ1hλ2 . . . hλk with hλi =
∑
γ`λi

mγ.

The power sums basis is {pλ} given by

pλ = pλ1pλ2 . . . pλk with pλi =
∑
j

xλij .

Further information on these bases can be found in [12].

2.3.2 Quasisymmetric Functions. Quasisymmetric functions are generalizations of symmetric
functions and are an important interest in algebraic combinatorics.

Definition 2.3.3. A quasisymmetric function g(x) ∈ R[[x1, x2, x3, · · · ]] is a formal power series
of bounded degree such that for any set of positive integers {a1, a2, · · · , ak}, the coefficient of
xa1i1 x

a2
i2
... xakik in g is equal to the coefficient in g of xa1j1 x

a2
j2
· · ·xakjk whenever i1 < i2 < · · · < ik

and j1 < j2 · · · < jk.

The set of quasisymmetric functions QSym forms a graded ring. In fact QSym =
⊕

n∈N QSymn,
where QSymn is the set of g ∈ QSym which are homogeneous function of degree n.

As example, the formal power series given by∑
1≤i<j<k

(
x2
ixjxk + xix

2
jxk + xixjx

2
k

)
is both symmetric and quasisymmetric while∑

1≤i<j<k

x2
ixjxk

is quasisymmetric but not symmetric. Most importantly, the (P, ω)-partition generating function
of a labelled poset (P, ω) is a quasisymmetric function. In fact K(P,ω) ∈ Q[[x1, x2, x3, · · · ]].

Qsym has some natural bases including the fundamental basis and the analogues to the ones of
Sym (the monomial basis and the power sum basis).

i) The monomial and fundamental bases of QSym.

Let n be a positive integer and α = (α1, α2, · · · , αk) � n. The quasisymmetric monomial
function indexed by α is defined by:

Mα =
∑

1≤i1<i2<···<ik

xα1
i1
xα2
i2
· · ·xαk

ik
. (2.3.1)
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For instance, we have M(1,2,1) =
∑

i<j<k

xix
2
jxk. The monomial basis of QSym is then {Mα}

indexed by compositions α.

The quasisymmetric fundamental basis {Fα} indexed by compositions α � n is given by:

Fα =
∑

1≤i1≤i2≤···≤in
ij<ij+1 if j∈Set(α)

xi1xi2 · · ·xin . (2.3.2)

In term of the monomial basis, Fα =
∑
β�α

Mβ. This implies that Mα =
∑
β�α

(−1)`(β)−`(α)Fβ

by the Möbius inversion formula.Thus, as an example we can have:

F(2,1) =
∑

i1≤i2<i3

xi1xi2xi3

=
∑

i1<i2<i3

xi1xi2xi3 +
∑

i1=i2<i3

xi1xi2xi3

=
∑
i<j<k

xixjxk +
∑
i<j

x2
ixj

= M(1,1,1) +M(2,1)

As K(P,ω) is a quasisymmetric function, it should be possible to express it in the two
bases above. It is clear that in terms of the monomial basis, the coefficient of Mα for
any composition α = (α1, α2, · · · , αk) is the number of (P, ω)-partitions f such that
|f−1(1)| = α1, |f−1(2)| = α2, · · · , |f−1(k)| = αk. For the expansion of K(P,ω) in the
fundamental basis, we need the notions of linear extensions of a poset, descent set and
descent composition of a permutation.

A descent set of a permutation σ ∈ Sn is the set given by {i ∈ [n− 1] : σ(i) > σ(i+ 1)}
and it is denoted by Des(σ). The descent composition of σ (denoted by co(σ) is the
composition of n given by (d1, d2−d1, · · · , dk−dk−1, n−dk) with the di’s are elements of
Des(σ) such that d1 < d2 < · · · < dk. That is co(σ) is comp(Des(σ)). A linear extension
of a labelled poset (P, ω) is a permutation of ω(P ) that preserves the order in P . The set
of all linear extensions of (P, ω) is denoted by L(P, ω). Considering the poset of Figure
2.2, we have:

L(P, ω) = {(1, 3, 2, 4), (1, 3, 4, 2), (3, 1, 2, 4), (3, 1, 4, 2), (3, 2, 1, 4)} .

Theorem 2.3.4. ([12]) Let (P, ω) be a labelled poset. Then,

K(P,ω) =
∑

σ∈L(P,ω)

Fco(σ).

That is, the descent compositions of the elements of L(P, ω) determine K(P,ω). Considering
the case of the poset of Figure 2.2, we thus have K(P,ω) = F(2,2) +F(3,1) +F(1,3) +F(1,2,1) +
F(1,1,2). This theorem is very handy in determining the (P, ω)-partition generating function
of a poset (P, ω) since in general the number of linear extensions of (P, ω) is far less that
its number of (P, ω)-partitions as we can see from the poset of Figure 2.2 which has more
than fifteen (P, ω)-partitions and five linear extensions.
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Lemma 2.3.5. ([7]) Let (P, ω) be a labelled poset. Then,

(a) the descent sets of the linear extensions of (P, ω) are the complements of the descent
sets of the linear extensions of (P, ω);

(b) the descent compositions of the linear extensions of (P, ω)∗ are the reverses of the
descent compositions of the linear extensions of (P, ω).

ii) The power sums bases of QSym

Ballantine et al. [2] studied two types of power sums bases indexed by integer compositions;
the Type 1 basis denoted by Ψ = {Ψα} and the Type 2 basis denoted by Φ = {Φα}.
Type 1 power sums basis refines the power sums basis {pλ} of the ring of symmetric
functions defined in [12], chapter 7 page 297. Alexandersson and Sulzgruber [1] studied
in that basis the expansion of the generating function K(P,ω) for naturally labelled poset
(P, ω). Liu and Weselcouch [4] studied the expansion of K(P,ω) in that basis and the
irreducibility of K(P,ω) for naturally labelled posets.

The Type 2 power sums basis Φ is also a refinement to the symmetric power sums basis.
Its is given by the following expression:

Φα = zαφα = zα
∑
β�α

1

sp(α, β)
Mβ. (2.3.3)

Where
sp(α, β) =

∏
i

sp(α(i)) and sp(γ) = `(γ)!
∏
j

γj;

for α, β and γ compositions with α a refinement of β and

zα = 1m1m1!2m2m2! · · · kmkmk!;

with mi the number of occurrences of i in α. For instance, for α = (3, 2, 2) we have:

zα = 222!311! = 24,

Φ(3,2,2) = 2M(3,2,2) +M(3,4) +M(5,2) +
1

3
M(7).

In this project, we are interested in the unnormalized power sums basis {φα}. From 2.3.3, it
follows the monomial quasisymmetric basis can be expanded into the φ basis as follows:

Mβ =
∑
α�β

(−1)`(β)−`(α)

∏
i αi

`(β, α)
φα; (2.3.4)

where `(β, α) =
∏`(α)

i=1 `(β
(i)) for β a refinement of α. As mentioned, Φ is a refinement of the

symmetric power sum basis.
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Theorem 2.3.6. [2, Theorem 3.17 ]

pλ =
∑
α̃=λ

Φα;

where pλ is the power sum basis of Sym.

This overview on posets, their generating functions and quasisymmetric functions is all we need
for this project. For further informations on these subjects we refer the reader to [12, 7, 2].



3. K(P,ω) expansion in the φ-basis

In this chapter, beyond constructing the φ’s expansion of K(P,ω), we will first give some general
results.

3.1 Definitions and Notations

Let α = (α1, α2, . . . , αk) be a composition of n and β = (β1, β2, . . . , βq) a composition of m.
We denote by:

• α̃ the partition obtained by rearranging in a weakly decreasing order the parts of α;

• αr the reverse of α, i.e., αr = (αk, αk−1, . . . , α1);

• αc = comp(Set(α)c) the complementary of α;

• αt = (αc)r the transpose of α.

• α� β be the set of compositions of n+m that can be obtained by shuffling the parts of
α and β in such a way that for any i, αi appears before αi+1 and βi appears before βi+1.

• β ∨α (for n = m) the composition γ such that Set(γ) = Set(α)∪ Set(β). It is in fact the
coarsest composition such that γ � α and γ � β; that is the coarsest refinement of both
α and β. We will denote by β ∨ αi the resulting composition into which αi is refined. If
β � α then β ∨ αi = αi.

For instance, if α = (2, 3, 2) and β = (3, 4), then

αc = comp({2, 5}c) = comp({1, 3, 4, 6}) = (1, 2, 1, 2, 1); Set(α) ∪ Set(β) = {2, 5} ∪ {3}

so that
β ∨ α = (2, 1, 2, 2); β ∨ α1 = β ∨ α3 = (2) and β ∨ α2 = (1, 2).

From now on, we denote by L(P, ω) the coefficient of φn when K(P,ω) is expanded in the φ
basis and call it the leading coefficient of (P, ω). For naturally labelled posets, we will omit the
labelling ω and thus denote its partition generating function by KP and its leading coefficient by
L(P ).

13
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3.2 Preliminary results

Recall that the unnormalized power sums quasisymmetric basis of Type 2 is given by

φα =
∑
β�α

1

sp(α, β)
Mβ; (3.2.1)

with sp(α, β) =
∏

i sp(α
(i)) and sp(γ) = `(γ)!

∏
j γj.

Proposition 3.2.1. Let Cn be the naturally labelled chain poset. Then

KCn =
∑
α|=n

φα. (3.2.2)

Proof. As we have a naturally labelled chain, the set of Cn-partitions are in bijection with the
set of compositions of n. That is for each composition α = (α1, α2, . . . , αk) of n, there a unique
partition σ of Cn such that |σ−1(1)| = α1, |σ−1(2)| = α2, . . . , |σ−1(k)| = αk. Thus,We have:

KCn =
∑
α�n

Mα =
∑
λ`n

mλ = hn

=
∑
λ`n

pλ
zλ

by [12, Proposition 7.7.6]

=
∑
λ`n

∑
α̃=λ

φα by Theorem 2.3.6

=
∑
α�n

φα

Proposition 3.2.2. If

KP =
∑
α�n

cαφα

then one has:
KP ∗ =

∑
α�n

cαφαr (3.2.3)

and
KP̄ =

∑
α�n

(−1)n−`(α)cαφα. (3.2.4)

Proof. Let us first prove (3.2.3). Consider the involution R on quasi-symmetric functions defined
on the monomial basis by: R(Mα) = Mαr . Then from the definition of P ∗, we deduce that
KP ∗ = R(KP ). Moreover, using (3.2.1) and observing that sp(αr, βr) = sp(α, β), we get that
R(φα) = φαr . Indeed,

φαr =
∑
β<αr

1

sp(αr, β)
Mβ =

∑
βr<αr

1

sp(αr, βr)
Mβr =

∑
β<α

1

sp(α, β)
Mβr = R(φ),
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implying (3.2.3).

For (3.2.4), let us consider [7, Lemma 3.6] which states that if KP =
∑

α|=n dαFα then KP ∗ =∑
α|=n dαFαr and KP̄ =

∑
α|=n dαFαc . Recall the well-known involution ω on quasisymmetric

functions defined by:

ω :Qsym→ Qsym

Fα 7−→ Fαt .

Then, we have
KP̄ ∗ =

∑
α|=n

dαF(αc)r =
∑
α|=n

dαFαt = ω(KP ). (3.2.5)

Besides, from [2, Section 4], we have

ω(φα) = (−1)n−`(α)φαr .

Thus, for KP =
∑

α�n cαφα, we have by 3.2.5 that KP̄ ∗ =
∑

α|=n cαω(φα) =
∑

α|=n(−1)n−`(α)cαφαr

and by applying (3.2.3) we get (3.2.4).

Proposition 3.2.3. If (P, ω) is a disconnected poset, then L((P, ω)) = 0.

Proof. Suppose that the poset (P, ω) is of size n and is the disjoint union of two posets (P1, ω1)
with |P1| = n1 and (P2, ω2) with |P2| = n2: (P, ω) = (P1, ω1) t (P2, ω2). By [5, Proposition
4.6], we have that K(P,ω) = K(P1,ω1)K(P2,ω2) and [2, equation (23)] tells us that the compositions
appearing in the product of 2 φ functions φα φβ are in α� β, the shuffle of α and β. But (n)
does not appear in any α� β with α composition of n1 and β composition of n2 since n1 < n
and n2 < n. So φ(n) has coefficient 0 in K(P1,ω1)K(P2,ω2).

3.3 Expanding elements of the F -basis in the φ-basis

In this section, we will give the expression of Fβ into the φ-basis for any composition β. First
observe, any Fβ is the partition generating function of a labelled chain. In fact, we know that any
labelled chain has only one linear extension which is the labelling itself and by applying Theorem
2.3.4 it follows that the K(Cn,ω) expansion for some chain Cn with associated labelling ω in the
F -basis is just Fβ for some composition β such that β = co(ω). The following theorem gives the
φ expansion of any Fβ and thus, for any labelled chain.

Theorem 3.3.1. The coefficient of φα in the φ-expansion of Fβ = K(Cn,ω) is

`(α)∏
i=1

(−1)`(β∨αi)−1(
αi−1

`(β∨αi)−1

) .
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Equivalently,

Fβ =
∑
α�n

φα

`(α)∏
i=1

(−1)`(β∨αi)−1(
αi−1

`(β∨αi)−1

) (3.3.1)

or

Fβ =
∑
α�n

φα(−1)|Set(β)\Set(α)|
`(α)∏
i=1

1(
αi−1

`(β∨αi)−1

) . (3.3.2)

With this theorem, we fulfilled our goal of expanding K(P,ω) into the φ-basis. In fact, knowing
the expansion of each Fα into the φ-basis is sufficient to determine the full φ-expansion of any
K(P,ω) in the following way:

1. use Theorem 2.3.4 to expand K(P,ω) in the F -basis;

2. use Theorem 3.3.1 to determine the φ-expansion of each Fα appearing the in F -expansion
of K(P,ω).

Note also that without Theorem 3.3.1, we can still expand the K(P,ω) into the φ-basis by first
using the M expansion of the F -basis and then the φ expansion of the M -basis from [2]. But
this approach is cumbersome as it will include double summation (see equation 3.3.5) and hence
the importance of Theorem 3.3.1. Let’s illustrate this by the following example.

Example 3.3.2. Let n ≥ 3 and Yn denote the naturally labelled Y-shaped poset consisting of
a chain of n − 2 elements with two maximal elements adjoined to the top of the chain (see
Figure 3.1).

Thus, the set of linear extensions of Yn is just the possible labellings of
Yn; that is L(Yn) = {1, 2, . . . , n− 2, n− 1, n} , {1, 2, . . . , n, n− 1}.
Hence we have KYn = Fco({1,2,...,n−2,n−1,n}) + Fco({1,2,...,n−2,n,n−1}) =
F(n) + F(n−1,1) by Theorem 2.3.4. Without using Theorem 3.3.1, we
have

F(n) =
∑
β�(n)

Mβ =
∑
β�n

Mβ =
∑
β�n

∑
α�β

(−1)`(β)−`(α)

∏
i αi

`(β, α)
φα

and a priori, we cannot directly deduce the coefficient of the φα’s. But,
by Theorem 3.3.1, since (n) � α for all α � n, we have (n)∨αi = αi.
Thus, the coefficient of φα in the φ-expansion of Fn will be 1 for all
α � n. Now to find the expansion of F(n−1,1), we can can consider two
cases; the case for which α ∈ {γ � n : (n− 1, 1) � γ} = A and the
case for which α ∈ {γ � n} \A. In the former case, the coefficient of
φα is 1 for all α ∈ A and the elements in A are just compositions of
n− 1 to which we append 1 at the end. For simplicity, let us restrict
to the case n = 4.

n− 2 nodes

Figure 3.1: Yn poset

Thus, for α ∈ {(3, 1), (2, 1, 1), (1, 2, 1), (1, 1, 1, 1)} = A, the coefficient of φα in F(n−1,1) is 1.
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So we are just left with the case for which α ∈ {(4), (1, 3), (2, 2), (1, 1, 2)}. Thus, we get

F31 =
(−1)|Set(31)\Set(4)|(

4−1
`(31)−1

) φ4 + φ31 +
(−1)|Set(31)\Set(13)|(

3−1
`(21)−1

) φ13 +
(−1)|Set(31)\Set(22)|(

2−1
`(11)−1

) φ22

+ φ211 + φ121 +
(−1)|Set(31)\Set(112)|(

2−1
`(11)−1

) φ112 + φ1111

= − 1

3
φ4 + φ31 −

1

2
φ13 − φ22 + φ211 + φ121 − φ112 + φ1111.

Thus

KY4 =
2

3
φ4 + 2φ31 +

1

2
φ13 + 2φ211 + 2φ121 + 2φ1111.

Proof of Theorem 3.3.1. Using the expansion of Fβ in the M -basis and then the expansion of
Mγ in the φ basis from [2] we get

Fβ =
∑
γ4β

Mγ (3.3.3)

=
∑
γ4β

∑
α<γ

(−1)`(γ)−`(α)

∏`(α)
i αi

`(γ, α)
φα, (3.3.4)

where `(γ, α) denotes
∏`(α)

i=1 `(γ
(i)). Reversing the double sum gives

Fβ =
∑
α�n

φα(−1)`(α)

`(α)∏
i

αi

 ∑
γ4β∨α

(−1)`(γ)

`(γ, α)

 . (3.3.5)

Note that, if β ∨α = β′ ∨α for some β′, then the coefficient of φα in Fβ will be equal to that in
Fβ′ . For example, taking β′ = (n) and any β � n such that β � α, the coefficient of φα in Fβ
and in Fβ′ will be 1. Denote β ∨α by δ. Then comparing equation (3.3.1) and equation (3.3.5),
it only remains to prove that for all α and δ with δ 4 α, we have

(−1)`(α)

`(α)∏
i

αi

∑
γ4δ

(−1)`(γ)

`(γ, α)
=

`(α)∏
i=1

(−1)`(δ
(i))−1(

αi−1
`(δ(i))−1

) ,

where δ(i) refers to δ considered as a refinement of α or, in other words, δ(i) = β ∨ αi. But

`(α)∏
i=1

(−1)`(δ
(i))−1(

αi−1
`(δ(i))−1

) = (−1)`(α)

`(α)∏
i=1

(−1)`(δ
(i))(

αi−1
`(δ(i))−1

)
So, we just have to show, `(α)∏

i

αi

∑
γ4δ

(−1)`(γ)

`(γ, α)
=

`(α)∏
i=1

(−1)`(δ
(i))(

αi−1
`(δ(i))

) (3.3.6)
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Since, by definition, `(γ, α) is a product over the parts of α, we can rewrite the left-hand side of
equation (3.3.6) to get

`(α)∏
i

αi ∑
γ(i)4δ(i)

(−1)`(γ
(i))

`(γ(i), αi)

 =

`(α)∏
i=1

(−1)`(δ
(i))(

αi−1
`(δ(i))−1

) .
Since αi is just a composition of length 1, we have `(γ(i), αi) = `(γ(i)). So, using m in place of
αi, it suffices to show that for all δ � m, we have∑

γ4δ

(−1)`(γ)

`(γ)
=

(−1)`(δ)(
m
`(δ)

)
`(δ)

. (3.3.7)

Now, noting that the right-hand side only depends on `(δ) = l and the summand on the left-hand
side only depends on `(γ) = k and that there are

(
m−l
k−l

)
compositions of length k that refine δ,

the proof can be reduced to showing that

m∑
k=l

(−1)k

k

(
m− l
k − l

)
=

(−1)l(
m
l

)
l
,

and this constitutes our Lemma 3.3.3 below.

Lemma 3.3.3. For positive integers n and l with l ≤ n, we have

n∑
k=l

(−1)k

k

(
n− l
k − l

)
=

(−1)l(
n
l

)
l
.

Proof. Considering the left-hand side and the change of variable q = k − l, we have

n∑
k=l

(−1)k

k

(
n− l
k − l

)
=

n−l∑
q=0

(−1)q+l

q + l

(
n− l
q

)
. (3.3.8)

We also know that for x, y positive integers, the Beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
(x− 1)!(y − 1)!

(x+ y − 1)!
. (3.3.9)
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Rewriting 3.3.9 using the binomial coefficient and setting x = l, y = n− l + 1, we get

B(l, n− l + 1) =
(l − 1)!(n− l)!

n!
=

∫ 1

0

tl−1(1− t)n−ldt

=

∫ 1

0

n−l∑
q=0

(
n− l
q

)
(−1)qtq+l−1dt

=
n−l∑
q=0

(
n− l
q

)
(−1)q

[
tq+l

q + l

]1

0

=
n−l∑
q=0

(
n− l
q

)
(−1)q

q + l
(3.3.10)

Multiplying 3.3.10 by (−1)l, we have our proof:

n−l∑
q=0

(
n− l
q

)
(−1)q+l

q + l
=

(−1)l(l − 1)!(n− l)!
n!

=
(−1)l

l
(
n
l

) .

Corollary 3.3.4. For any composition β on n, the coefficient of φn in the expansion of Fβ (call
it leading coefficient of Fβ) is:

L(Fβ) =
(−1)`(β)−1(

n−1
`(β)−1

) .

Proposition 3.3.5. Let n ≥ 3. Then, the Leading coefficient of the Yn poset (i.e., the coefficient
of φn in the KYn) is:

L(Yn) =
n− 2

n− 1
.

Proof. By our example 3.3.2, we have KYn = Fn + F(n−1,1). Then the coefficient of φn will be
L(Fn)+L(F(n−1,1)) and by Corollary 3.3.4 we have L(Fn) = 1 and L(F(n−1,1)) = −1

n−1
. Therefore

L(Yn) = n−2
n−1

.

With corollary 3.3.4, we have a way of determining the coefficient of φn in any K(P,ω) by first
considering Theorem 2.3.4 which states that

K(P,ω) =
∑

π∈L(P,ω)

Fco(π)

and then applying corollary 3.3.4. Having that in mind, we have determined the following way
of getting the coefficient of any φα in the expansion of K(P,ω) that includes the (P, ω)-partitions
and the leadings coefficient of the subposets arising from them.
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Theorem 3.3.6. Let (P, ω) be a labelled poset. Suppose α is a composition of n = |P | with
`(α) ≥ 2. The coefficient of φα in the φ-expansion of K(P,ω) is

∑
f

`(α)∏
i=1

L(f−1(i)) (3.3.11)

where the sum is over all P -partitions of content α; f−1(i) denotes the labelled subposet of
(P, ω) consisting of all elements mapped by f to i.

In Theorem 3.3.6, f is any P -partition; i.e., not only the (P, ω)-partitions. Thus, the f ’s do
not have to satisfy the extra strictness conditions imposed by ω. However the labelled subposets
f−1(i)’s inherit strict and weak edges from (P, ω). This theorem is particularly helpful when
one is looking for the coefficient of φα for some α for which we have almost all the subposets
induced by the partitions of content α are disconnected or chains. For posets with few linear
extensions, Theorem 3.3.1 might be more advantageous if we want all the coefficients. For
instance, reconsidering the poset Y4 in example 3.1, we instantly see that the coefficient of φ(2,2)

in KY4 is 0 since subposets induced by the partitions of contain (2, 2) are not all connected. The
same, for the coefficient for φ(1,1,2).

Proof of Theorem 3.3.6. From Theorem 2.3.4, we have:

K(P,ω) =
∑

π∈L(P,ω)

Fco(π)

where co(π) denotes the composition determined by the descents of π. Applying Theorem 3.3.1,
we get

K(P,ω) =
∑

π∈L(P,ω)

∑
α�n

φα

`(α)∏
i=1

(−1)`(co(π)∨αi)−1(
αi−1

`(co(π)∨αi)−1

)
=
∑
α�n

φα
∑

π∈L(P,ω)

`(α)∏
i=1

(−1)`(co(π)∨αi)−1(
αi−1

`(co(π)∨αi)−1

) .

Thus the coefficient of φα in K(P,ω) is

∑
π∈L(P,ω)

`(α)∏
i=1

(−1)`(co(π)∨αi)−1(
αi−1

`(co(π)∨αi)−1

) .

And by Corollary 3.3.4, it becomes

∑
π∈L(P,ω)

`(α)∏
i=1

L(Fco(π)∨αi
). (3.3.12)
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Now let us directly apply Theorem 2.3.4 to the labelled subposet f−1(i) in the expression 3.3.11.
Denote by ωi the labelling ω restricted to f−1(i). A linear extension π(i) of the labelled poset
(f−1(i), ωi) will be then a permutation of the (P, ω)-labels of the elements of f−1(i), and we
can still define co(f−1(i), ωi) according to the descents of this permutation. That is

K(f−1(i),ωi) =
∑

π(i)∈L(f−1(i),ωi)

Fco(π(i));

so that
L(f−1(i)) =

∑
π(i)∈L(f−1(i),ωi)

L(Fco(π(i))).

Thus, we get ∑
f

`(α)∏
i=1

L(f−1(i)) =
∑
f

`(α)∏
i=1

∑
π(i)∈L(f−1(i),ωi)

L(Fco(π(i))).

The π(i)’s that appear in the second sum on the right-hand side can be concatenated to form a
single π ∈ L(P, ω). Conversely, any π ∈ L(P, ω) can be partitioned into `(α) subpermutations
π(i) according to the parts of α. For example, if α = (4, 2, 3) and π = (815423697), then
π(1) = (8154), π(2) = (23), and π(3) = (697). Moreover, f can be determined from π and α. In
this setup, we get that co(π(i)) is nothing more than co(π) ∨ αi. Thus we get

∑
f

`(α)∏
i=1

L(f−1(i)) =
∑

π∈L(P,ω)

`(α)∏
i=1

L(Fco(π)∨αi
),

as required.

Let us give one direct consequence of the theorem above. Let us define “tuft” to be the poset
Tn with n ≥ 3 elements which has a single minimal element covered by n− 1 maximal elements
(see Figure 3.3.7).

n-1 nodes

Figure 3.2: Tn poset

Then, we have the following relation.
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Proposition 3.3.7. The leading coefficient in the φ expansion of KTn is given by

L(Tn) = nB+(n− 1); (3.3.13)

where B+(n) denotes the Bernoulli numbers of the second kind. These are the Bernoulli numbers
that follow the convention that B+(1) = +1

2
(as opposed to −1

2
in the modern definition of the

Bernoulli numbers, denoted B−(n)).

Proof. Recall that L(Q) = 0 if Q is disconnected (Proposition 3.2.3), so the expression (3.3.11)
can equivalently be restricted to a sum of those f for which f−1(i) is connected for all i. In
particular, in the case of Tn, we can restrict to those Tn-partitions of content (k, 1n−k) with
1 ≤ k ≤ n. Here 1n−k is the standard notation for n − k copies of 1. Moreover, the minimal
element is always mapped to 1 and thus for any 1 ≤ k ≤ n we have

(
n−1
k−1

)
choices for elements

mapped to 1 and (n− k)! ways for mapping the rest of the elements. This implies that we have(
n−1
k−1

)
(n− k)! partitions of content (k, 1n−k) for any 1 ≤ k ≤ n. Thus, Theorem 3.3.6 gives us

KTn = L(Tn)φn +
n−1∑
k=1

(
n− 1

k − 1

)
(n− k)!L(Tk)φk,1n−k

which simplifies to

KTn =
n∑
k=1

(
n− 1

k − 1

)
(n− k)!L(Tk)φk,1n−k . (3.3.14)

Now consider the expansion of both sides of (3.3.14) in the monomial basis and, in particular,
let us extract the coefficient of Mn. We know that this coefficient in KTn is 1.

From equation 2.3.3, we get that the coefficient of Mn in φα is

1

`(α)!
∏

i αi
.

Thus the coefficient of Mn in φk,1n−k for 1 ≤ k ≤ n is

1

(n− k + 1)! k
.

So taking the coefficient of Mn on both sides of (3.3.14) yields
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1 =
n∑
k=1

(
n− 1

k − 1

)
(n− k)!

1

(n− k + 1)! k
L(Tk)

=
1

n
L(Tn) +

n−1∑
k=1

(
n− 1

k − 1

)
(n− k)!

1

(n− k + 1)! k
L(Tk)

Thus, L(Tn) = n−
n−1∑
k=1

(
n− 1

k − 1

)
(n− k)!

n

(n− k + 1)! k
L(Tk)

= n−
n−1∑
k=1

(
n

k

)
1

(n− k + 1)
L(Tk)

= n− 1

n+ 1

n−1∑
k=1

(
n+ 1

k

)
L(Tk) (3.3.15)

It remains to show (3.3.13). Manipulating equation (3.3.15), we get

L(Tn)

n
= 1− 1

n

n−1∑
k=1

(
n

k − 1

)
L(Tk)

k
. (3.3.16)

On the other hand, the sequence B+(m) is characterized by the following recursion:

B+(m) = 1−
m−1∑
j=0

(
m

j

)
B+(j)

m− j + 1
;

and by substituting m = n− 1 and j = k − 1, we get

B+(n− 1) = 1−
n−1∑
k=1

(
n− 1

k − 1

)
B+(k − 1)

n− k + 1

= 1− 1

n

n−1∑
k=1

(
n

k − 1

)
B+(k − 1). (3.3.17)

Comparing (3.3.16) and (3.3.17), together with the fact that L(T1) = B+(0) = 1, yields that

L(Tn)
n

= B+(n− 1) and hence (3.3.13).

In summary, we have defined two expansions of K(P,ω) in the φ-basis for labelled posets (P, ω)
which follow from Theorem 3.3.1 and Theorem 3.3.6. Indeed, from Theorem 3.3.1, we have

K(P,ω) =
∑

β∈co(L(P,ω))

∑
α�n

φα

`(α)∏
i=1

(−1)`(β∨αi)−1(
αi−1

`(β∨αi)−1

) . (3.3.18)
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From Theorem 3.3.6, we deduce that for any labelled poset (P, ω), the (P, ω)-partition generating
function in the φ-basis is given by:

K(P,ω) = L(P, ω)φn +
∑
α�n
α 6=(n)

φα
∑
f

`(α)∏
i=1

L(f−1(i)), (3.3.19)

where for each α, f runs over all P -partitions of content α.



4. Conclusion and Perpectives

The aim of this work, was to define an expansion of the (P, ω)-partition generating function
K(P,ω) for labelled posets (P, ω) in the power sum basis φ of quasisymmetric functions. To that
end, we have first defined the context in which this research project fits and given the motivation
behind it. Then, we presented the mathematical tools necessary for the construction of our
results. More precisely, we have talked about posets, their (P, ω)-partition generating function
and (quasi)symmetric functions.

In Chapter 3, which is the main part of this project, we presented our results. Therein, we
considered the recently studied power sum basis φ of the quasisymmetric functions and derived
the leading coefficient of some posets in the φ-basis. Most importantly was the construction
of two expansions of K(P,ω) in the φ-basis. Lastly, we proved that the leading coefficient for
“tuft” posets follows the Bernoulli numbers. Although we have some beautiful expressions of
the leading coefficient of some posets, we do not yet have a combinatorial interpretation for the
coefficients of φα in the expansion of K(P,ω). However, knowing that the P -partition generating
function does not distinguish posets in general and using the different expansions we defined here,
can we determine some new classes of posets P that can be distinguished from their P -partition
generating function?
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