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Abstract 

Financial markets have become an important component of people’s life. All sorts of media 

now provide us with a daily coverage on financial news from all markets around the world. At 

the same time, not only large institutions but also more and more small private investors are 

taking an active part in financial trading. In particular, the internet arrival has led to an 

unprecedented increase in small investors direct trading. Needless to say, the rapid expansion 

of financial markets calls upon products and systems designed to help investors to manage their 

financial risks. Banks have developed a lot of strategies to control risks induced by market 

fluctuations. Mathematics and statistics have emerged as the leading disciplines to address 

fundamental questions in finance as asset pricing model and hedging strategies. In this thesis 

some hedging strategies in different frameworks would be analyzed, indeed the author will 

assume the position of an issuer of options, i.e. the position of a bank. The bank is assumed to 

have the objective to reduce its risk as much as possible, that is, the bank is assumed to make 

money primarily on the price the bank charge for the transaction, and not on the return of the 

position it takes on the market when dealing with its clients. Thus the bank wants to hedge the 

short positions in the contracts. To this end, as said, different dynamic hedging strategies will 

be considered1. In this thesis, the hedging strategies are performed on a weekly basis; a set of 

Call options and with different strikes and maturities on the S&P 500 (SPX) index would be 

used to form an initial portfolio. The Hedging strategies are performed throughout 5 months, 

from 30 January 2015 to 16 June 2015. With this work the author especially aim to answer the 

following questions: 
 

“Which one out of the dynamic-hedging strategies is most efficient in reducing the risk of an 

options Portfolio on the S&P 500 Index? How things change by considering realistic features 

such as stochastic volatility, leverage effect, volatility clustering, volatility smiles and non-

normal distribution of returns? How much is reduced, in terms of error, the pricing and hedging 

considering more advanced features? Does the higher complexity “pays” in terms of reducing 

the errors?” 

 

The thesis has mainly two parts, in the first one the hedging strategies are implemented in a 

Black&Scholes framework, in the second part some of the Black&Scholes assumption are 

relaxed and the hedging strategies are performed in a widely used stochastic volatility model: 

                                                           
1 A Delta-hedging strategy, a Delta-Gamma hedging strategy and a strategy with Delta-Gamma-Vega will be 

considered in this work. 



the Heston model. In the second part, some issues appear: that of the accuracy of the 

Black&Scholes predicted changes in price, which is based on assumptions such as Ito Process, 

frictionless markets, constant volatility and distributional assumption. However in reality 

observed prices from financial markets are not normal distributed, trading in real markets is not 

done continuously, or even highly frequently, and trading of instruments is not cost free. All 

these observations are in contrast to the standard assumptions of pricing and hedging methods 

in classical option theories such as the famous Black&Scholes pricing formula, for that reason 

a stochastic volatility models is used. All contracts 

considered in the thesis are Vanilla option of 

European2 style. For a general understanding, the 

basic objects, ideas and results of the classical 

Black-Scholes framework will be presented in 

Chapter 2, and in the results, the BS model will be 

used as benchmark. Moreover the author will also 

use an extension of the Black&Scholes model 

allowing volatility to vary by means of a rolling method, considered as “hybrid-solution” 

between stochastic volatility models and fixed volatility models. As introduction for Chapter 3, 

the attention will be drawn to an historical event, the 1987 crash, which will lead to the 

assumption of stochastic volatility. In Chapter 3 the Heston model will be discussed. 

Furthermore, the semi-closed form solution for European options will be presented and the 

Heston parameters will be analyzed in greater details. The understanding of the parameter 

influence is important for accurate calibration of the model that in this work is performed using 

both a global stochastic optimizer and a local gradient optimizer in order to increase the trade-

off precision/computational time. Results and the methodology used for the empirical 

application are presented in Chapter 4. In particular for each framework, statistical and 

economic performances in terms of in-sample and out-of- sample pricing errors, P/L, of each 

strategy are calculated. Finally, the conclusions are given in Chapter 5, together with 

suggestions of further extension of the subjects. All the calculations were performed using the 

MATLAB® software R.2014a for Windows. The appendix contains most of the MATLAB® 

Codes used for the calculations throughout the thesis. 

 

                                                           
2 A European option can only be exercised on the last day. An American option can be exercised any time between 

its inception and the end date. A hybrid, the Bermudian Option can be exercised on a set number of days between 

inception and expiration. 

“ This thesis will proceed by first 
investigating and building a 
simple option pricing and 
hedging framework under 
Black&Scholes assumptions. 
Later those assumptions will be 
released and more realistic 
market conditions will be used.” 
 



 Chapter 1 

 

1.1 What is Hedging? 

 

When financial institutions decide to implement hedging 

strategies, they are protecting themselves against a negative 

event. This doesn't prevent a negative event from happening, 

but if it happens and the hedge is done properly, the impact 

of the event, in term of losses, is reduced. 

In a practical way hedging means strategically using instruments in the market to offset the risk 

of any adverse price movements; in other words banks hedge one investment by making 

another. For the buyers3, hedging techniques generally involve the use of financial instruments 

known as derivatives, the two most common of which are options and futures. With these 

instruments you can develop trading strategies where a loss in one investment is offset by a 

gain in a derivative. On the other hand for the sellers of options i.e. banks, hedging techniques 

usually involve the use of cash4 or in some cases others derivatives. 

 

1.2 Why Banks use hedging? 

 

Options constitute a substantial part of the Global equity 

derivatives market, which has an estimated value of $630 

trillion5. The utter size of the market is an incentive for 

considering the possibilities of hedging options, i.e. the issuers 

of the option-contracts needs to protect their position against 

excessive risk. But why banks have these large portfolios of 

short options? From which are they generated? Banks have 

become provider of options because there is such a demand of options asked from clients that 

use options in the most exotic ways. “Why there is such a demand of options?” The increasing 

demand in options in past years is the engine of a boost in offering and as a consequences the 

creation of huge portfolios of short options that have to be managed by banks. Factors that push 

                                                           
3 Buyers of options. 
4 Underlying asset. 
5 Value of December 2014. Source: Bank of international Settlements, Statistic release, April 2015. 

“Hedging is a technique 

not aimed in making 

money but in reducing 

potential losses.” 

“Companies attempt 

to hedge price changes 

because those 

fluctuations are 

marginal risks to the 

central business in 

which they operate.” 



buyers of options to increase their demand are the classic advantages that option trading offers 

such as: 

 

 Leverage: 

Options give the buyer the right to buy a number of shares of the underlying instrument from 

the option seller. The amount of shares (or futures contracts) to buy is determined by the number 

of option contracts, multiplied by the contract multiplier. The contract multiplier6 is different 

for most classes of options and is determined by each exchange. In the US, the contract size for 

options on shares is 100. This means that every 1 option contract gives buyer the right to buy 

100 shares from the option seller. In this thesis, since the author will consider the S&P 500 

index, the contract size would be 100. 

Example 1.1 if you buy 10 IBM option contracts, it means that you have the right to buy 1,000 IBM 

shares at expiration if the price is right.  

 

This also means that the price of the option is also multiplied by the contract multiplier.  

Example 1.2 say in the above you purchased 10 options contracts that were quoted in the 

marketplace for 15c, then you would actually pay the seller $150. If you go out and buy 5 

IBM share options for 15c that have a Strike Price of $25, then you will:  

 Pay the option seller $75 

 If you decide to exercise your right and buy the shares, you will have 

to buy 500 (5 x 100) (100 being the contract size) shares at the exercise 

price of $25, which will cost you $12,500.  

In this case, your initial investment of $75 has given you $12,500 exposure in the underlying 

security. Option trading is very attractive for the small investor as it gives him the opportunity 

to trade a very large exposure whilst only outlaying a small amount of capital. 

 

 Insurance: 

Another reason investors may use options is for portfolio insurance. Option contracts can 

give the risk averse investor a method to protect his downside risk in the event of a stock 

market crash. 

                                                           
6 Also called “contract size”. 



 Limited risk and unlimited profit potential 

Since options have an asymmetric payoff, buyers have a potential unlimited profit potential 

and a limited loss, indeed in case the option is not exercised the only loss for the buyer, 

whatever is the price of the underlying, is only the premium paid to the seller (the option 

price). 

From the other side the sellers, as consequences, have a potential unlimited loss and a 

limited profit; for this reason sellers after sold the option they can’t just sit down and wait 

the maturity and hope that the option will close out-the-money7, they need to offset a 

potential infinite risk. In order to offset this market risk, sellers use Hedging strategies. 

 

1.3 Different Hedging strategies 

 

In order to hedge a position, the banks could use different techniques. The choice could depend 

on the nature of the derivative used, or coming from a personal strategy. 

 

1.3.1 Naked position 

 

One strategy open to the financial institution is to do nothing. This is referred as naked position. 

It is a good strategy if the option at the maturity closes out-of-money. A naked position could 

lead to a significant loss if the option is exercised.  

 

1.3.2 Covered Position 

 

As an alternative to a naked position the financial institution can adopt a covered position. This 

involves to buy the quantity of shares considered in the contract. (Considering a Call option). 

In this case the strategy work well if the option is exercised but could lead to a significant loss 

if the option is not exercised. 

 

1.3.3 Stop loss strategy 

 

                                                           
7 An option is said in-the-money if it is exercisable, at-the-money if the strike is equal to the underlying and out-

of-money if is not exercisable. 



One interesting hedging procedure that is sometimes proposed involves a stop-loss strategy. To 

illustrate the basic idea, consider an institution that has written a call option with strike price K 

to buy one unit of a stock. The hedging procedure involves buying one unit of the stock as soon 

as its price rises above K and selling it as soon as its price is less than K.  

The objective is to hold a naked position whenever the stock is less than K and a covered 

position whenever the stock price is greater than K. The procedure is designed to ensure that at 

time T (time to maturity) the bank owns the stock if the option closes in the money and does 

not old own the stock if the option closes out of money. This strategy would work perfectly in 

absence of transaction costs and bid ask spread. 

 

1.3.4 Dynamic and static Hedging 

 

Most traders use more sophisticated hedging schemes than those mentioned so far.Dynamic 

Hedging involves adjusting a hedge as the underlying moves often several times a day. But why 

do we have dynamic and static hedging?” Most of the answer depends on the nature of the 

derivative, indeed traded instruments or positions can generally be broken down into two types: 

 

 linear  

 non-linear8  

 

The former includes spot positions, forward positions and futures. Their payoffs or market val-

ues are either linear or almost linear functions of their underlying. Non-linear instruments in-

clude vanilla options, exotic derivatives and bonds with embedded options. Their payoffs or 

market values are non-linear functions of their underlying asset. 

                                                           
8 A nonlinear derivative with respect to a parameter is one that presents a second derivative (or partial derivative 

with respect to that parameter) different from 0. 



Figure 1.a, 1.b, 1.c and 1.d illustrate linear and nonlinear derivative9 .Source: Nassim Taleb, Dynamic Hedging, 

1997, Wiley.    

 

 

 

Banks transact in both instruments with 

clients. They prefer to sell non-linear 

instruments, such as options, because these are 

more difficult for clients to evaluate, which 

means they can make larger earnings. 

After selling to multiple clients, banks are left 

holding large short positions. To hedge those 

positions, they would like to purchase 

offsetting long options, it makes little sense to 

buy them from other derivatives dealers or 

financial institutions, who are in the same boat with their own large short options positions. The 

solution is to dynamically hedge the short options positions. 

                                                           
9 In the appendix there is a test in order to recognize if a derivative is linear or nonlinear. 

“The best way to look at derivatives 

is to separate them into two broad 

categories: linear and nonlinear 

derivatives. A linear derivative is easy 

to hedge and lock in completely, 

whereas a nonlinear one will present 

serious instability and require the 

use of the dynamic hedging.” 

 
Source: Nassim Taleb, Dynamic Hedging, 1997 

Fig. 1.a Linearity. Fig. 1.b nonlinear derivative: Convex security. 

Fig. 1.c nonlinear derivative: Concave security. Fig. 1.d mixed nonlinear derivative. 



The general idea of dynamic hedging is to construct a 

portfolio consisting of the instrument that is to be 

hedged (i.e. short options), and the hedge (that could be 

the spot but also a combination of the same options), that 

is locally neutral with respect to one or several 

measures10. As measure, traders normally use the so-

called Greeks. The Greeks measures different 

dimension to the risk in an option position and the aim 

of a trader is to manage the Greeks so that all risks are 

acceptable. The Greeks are Delta, Gamma, Rho, Theta 

and Vega11; we could have different strategies coming from different combination of the 

Greeks. In this thesis a delta-neutral, delta-gamma-neutral, and delta-gamma-vega-neutral 

strategy for each model would be considered. As consequence this lead to the evaluation of 9 

strategies, since the author will consider the pure Black&Scholes model, the extension of the 

Black&Scholes model and the Heston model. The difference between the Black&Scholes and 

the Extended Black&Scholes is the calculation of the volatility, this would be better explained 

in Chapter 2, section 2.5. The strategies for the Dynamic Hedging are: 

 

 Black&Scholes model (Fixed volatility): 

o Delta Hedging 

o Delta-Gamma Hedging 

o Delta-Gamma-Vega Hedging 

 Extended Black&Scholes (Rolling window volatility): 

o Delta Hedging 

o Delta-Gamma Hedging 

o Delta-Gamma-Vega Hedging 

 Heston model (Stochastic volatility): 

o Delta Hedging 

o Delta-Gamma Hedging 

o Delta-Gamma-Vega Hedging 

 

 

                                                           
10 Locally neutral because we are talking about nonlinear function, so we need measures that linearize locally the 

function, for this the Greeks require the computation of derivatives. 
11 Vega is considered a Greek letter also if is not into the Greek Alphabet. 

“A Static hedge is a position 

that is taken when the 

contract is purchased, and 

which is maintained 

throughout the lifetime of 

the contract. On the 

contrary dynamic hedging 

requires dynamics 

adjustments.” 
 



Chapter 2 | Black&Scholes Framework 

 

 Introduction 

 

In the Black&Scholes framework we assume that the bank has a liquid market which is free of 

arbitrage, where the Stock, a risk free asset are traded, at its disposal. The bank may thus use 

any of these assets to hedge the options. 

A clear distinction is made between those contracts that are traded on the market, and those 

contracts that are not. However, in order for the bank to be able to hedge the options 

dynamically, it needs to calculate the movements of the price of the options throughout its 

lifetime, obtain a close form solution for the price, and then obtaining the Greeks; for this we 

need a whole framework where the first piece is to introduce the basis of option pricing, that 

are explained in subsection 2.4. In this part of the thesis the price of the options will be 

calculated using risk-neutral valuation. The motivation of using risk-neutral evaluation are 

explained in the Focus “Why using risk neutral evaluation” at the end of section 2.4. In 

subsection 2.1 the Vanilla options are introduced. Subsection 2.3 states how the assets that are 

traded in the market are priced. The Greeks are introduce in subsection 2.6. Limitations of this 

model are discussed in Section 2.8 as link for the introduction of stochastic volatility models 

discussed in Chapter 3. 

 

2.1 Vanilla options12 

 

As said in the introduction, the contracts considered in this thesis are Vanilla options. A vanilla 

option is a normal call or put option that has standardized terms and no special or unusual 

features. It is generally traded on an exchange, that is, the contract function Φ only depends on 

the price of the Stock at the day of expiration that is: 

 

𝛷 = 𝛷(𝑆(𝑇)) 

 

Which are denoted respectively by S and T. 

                                                           
12 Plain vanilla is an adjective describing the simplest version of something, without any optional extras, basic or 

ordinary. In analogy with the default ice cream flavor vanilla, which became widely and cheaply available with 

the development of artificial vanillin flavor. Some financial instruments like put options or call options are often 

described as plain vanilla options. The opposite of plain vanilla options are exotic options. 



 

2.1.1 Call option 

 

The holder of a Call option written on the Stock S (t), with the strike price K and the expiration 

date T, has an option13 to buy the Stock on the day of expiration to the fixed price K. The 

contract function Φ(S (T)) of a Call option is equal to: 

 

𝑀𝑎𝑥[𝑆(𝑇) − 𝐾, 0]+ 

 

The terminal payoff of a long Call option with a strike price x can be found in figure 2a. 

 

2.1.2 Put option 

 

The holder of a Put option written on the Stock S (t), with the strike price K and the expiration 

date T, has an option to sell the Stock on the day of expiration to the fixed price K. The contract 

function Φ(S (T)) of a Put option is equal to: 

 

𝑀𝑎𝑥[𝐾 − 𝑆(𝑇), 0]+ 

 

In figure 2b, the terminal payoff of a long Put option with a strike price x is on display. In this 

thesis we will consider a portfolio composed by Calls and Puts. 

 

 

                                                           
13 Not the obligation. 

Figure 2.a: Payoff of a long call option strike x Figure 2.b:  Payoff of a long put option strike x 



2.2 Moneyness of an Option 

 

Moneyness of an option indicates whether an option is worth exercising or not. Moneyness of 

an option at any given time depends on where the price of the underlying asset is at that point 

of time relative to the strike price. The following three terms are used to define the moneyness 

of an option. An option is ITM (in-the-money) if on exercising the option, it would produce a 

cash inflow for the buyer.  

Thus, call options are ITM at time t when the value of the price of the underlying exceeds the 

strike price, St > K. On the other hand, put options are ITM when the price of the underlying is 

lower than the strike price, St < K. An OTM (out-of-the-money) option is an opposite of an 

ITM option. A holder will not exercise the option when it is OTM. A call option is OTM when 

its strike price is greater than the price of the underlying and a put option is OTM when the 

price of the underlying is greater than the option's strike price. An ATM (at-the-money) is one 

in which the price of the underlying is equal to the strike price. It is at the stage where with any 

movement in the price of the underlying, the option will either become ITM or OTM. The 

moneyness for call and put options is defined by: 

 

𝑀𝑡 =
𝑆𝑡

𝐾
 

 

 

Moneyness Call Put 

< 0.91 Deep OTM Deep ITM 

0.91 – 0.97 OTM ITM 

0.97 – 1.00 ATM- ATM- 

1.00 – 1.03 ATM+ ATM+ 

1.03 – 1.09 ITM OTM 

>1.09 Deep ITM Deep OTM 

 

 

 

In this work, the author will consider a portfolio composed with different initial moneyness of 

options. Since the initial Underlying price is the same, it is sufficient to say that the author will 

consider a portfolio with different strikes. 

 

Table 1: Moneyness of Call and Put options. 



2.3 The prices of the contracts that are traded in the market 

 

The prices for the assets that are traded in the marked are given in this section. 

 

2.3.1 Risk free asset 

 

The price process of the risk free asset B (t) is given by: 

 

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡 

Which is shorthand for: 

𝐵(𝑡) = ∫ 𝑟𝐵(𝑠)𝑑𝑠
𝑡

0

 

Solving this equation gives: 

𝐵(𝑡) = 𝐵(0)𝑒𝑟𝑇 

2.3.2 Stock 

 

The price process of the Stock S (t) is assumed to follow the Geometric Brownian Motion: 

 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡
𝑄

 

 

Where the drift r and the volatility σ are constants, and where W (t) is a Wiener process, 

which has the following properties: 

 

 𝑊0 = 0. 

 The process W (t) has independent increments, if 𝑟 < 𝑠 ≤ 𝑡 < 𝑢  then 𝑊𝑢 − 𝑊𝑡 and 𝑊𝑠 −

𝑊𝑟 are independent stochastic variables. 

 For 𝑠 < 𝑡 the stochastic variable 𝑊𝑡 − 𝑊𝑠 has the Gaussian distribution 𝑁(0, √𝑡 − 𝑠) 

 𝑊 Has continuous trajectories. 

Without loss of generality, the drift of the Stock has been chosen to be equal to the risk free 

interest rate r; solving the stochastic differential equation (4) using Itô's Lemma gives: 

 

𝑆𝑡 = 𝑆0𝑒(𝑟−
1
2

𝜎2)𝑡+ 𝜎𝑊𝑡
𝑄

)
 

 

(1) 

(2) 

(3) 

(4) 

(5) 



2.4 Pricing the derivatives:  Black & Scholes formula derivation 

 

The prices of the options are calculated using risk-neutral valuation. For a European Call option, 

the potential cash-flows at time t as shown in figure 2.a. in subsection 2.1.1 occur if 𝑆𝑡 > 𝐾 

 Receive a stock worth St with probability Pr (𝑆𝑡 > 𝐾) 

 Pay K with probability Pr (𝑆𝑡 > 𝐾) 

 

So, the expected value of a European call option is: 

𝐸(𝐶𝑎𝑙𝑙 𝑝𝑎𝑦𝑜𝑓𝑓) = 𝑃𝑟(𝑆𝑡 > 𝐾) [𝐸(𝑆𝑡|𝑆𝑡 > 𝐾) − 𝐾] 

In order to find the price we have to discount back the expected value following the classical 

financial assumption that the price of an option is the discounted expected value of the payoff. 

𝑃𝑉0[𝐸(𝐶𝑎𝑙𝑙 𝑝𝑎𝑦𝑜𝑓𝑓)] = 𝑒−𝑟𝑇𝑃𝑟(𝑆𝑡 > 𝐾) [𝐸(𝑆𝑡|𝑆𝑡 > 𝐾) − 𝐾] 

For a European put option, the potential cash-flows at time t with occur if 𝑆𝑡 < 𝐾, so 

 Receive K with probability Pr(𝑆𝑡 < 𝐾) 

 Pay (buy a stock worth) St  with probability Pr (𝑆𝑡 < 𝐾) 

𝐸(𝑃𝑢𝑡 𝑝𝑎𝑦𝑜𝑓𝑓) = Pr(𝑆𝑡 < K) [K − E(𝑆𝑡|𝑆𝑡 < K)] 

𝑃𝑉0[(𝑃𝑢𝑡 𝑝𝑎𝑦𝑜𝑓𝑓)] = 𝑒−𝑟𝑇Pr(𝑆𝑡 < K) [K − E(𝑆𝑡|𝑆𝑡 < K) 

In order to develop the Black-Scholes formula, we need to know the following quantities: 

 Pr (𝑆𝑡 > 𝐾) 

 𝐸(𝑆𝑡|𝑆𝑡 > 𝐾) 

Applying Ito’s Lemma to the function 𝐿𝑛𝑆𝑡 where 𝑆𝑡 is driven by the diffusion in equation 

(4). Then 𝐿𝑛𝑆𝑡 follows the SDE: 

𝑑 𝑙𝑛𝑆𝑡 = (µ −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝑊𝑡 

Where µ = 𝑟 Integrating from 0 to t, we have 

∫ 𝑑 𝑙𝑛𝑆𝑢

𝑡

0

= ∫ (µ −
1

2
𝜎2) 𝑑𝑢 + ∫ 𝑑𝑊𝑢

𝑡

0

𝑡

0

 

So that 



ln 𝑆𝑡 − ln 𝑆0 = (µ −
1

2
𝜎2) 𝑡 +  𝜎𝑊𝑡 

Since we assume that 𝑊0 = 0. Hence the solution to the SDE is equation (5): 

𝑆𝑡 = 𝑆0𝑒(µ−
1
2

𝜎2)𝑡+ 𝜎𝑊𝑡)
 

Let A be normally distributed random variable for the stock return: 

𝑆𝑡 = 𝑆0𝑒𝐴𝑡 𝑤ℎ𝑒𝑟𝑒 𝐴~𝑁(µ, 𝜎2) 

It follows that: 

𝑆𝑡

𝑆0
~ 𝐿𝑁(𝑚 = ( µ −

1

2
𝜎2) 𝑡, 𝑣 =  𝜎√𝑡) 

 

These parameters are chosen such that E(
St

S0
) = 𝑒µ𝑡 where µ is the capital gains rate. We can 

see that this is true since E (
St

S0
) =  𝑒𝑚+

1

2
𝑣2

= 𝑒(µ−
1

2
𝜎2)𝑡+

1

2
𝜎2𝑡 = 𝑒µ𝑡 

For 𝑡 = 1 the volatility of the stock return equals to the volatility of the 𝑙𝑛 (
St

S0
). Otherwise, 

the volatility of 𝑙𝑛 (
St

S0
) must be adjusted for time so 𝑣 =  𝜎√𝑡) 

Pr(𝑆𝑡 < K) = Pr (
𝑆𝑡

𝑆0
<  

𝐾

𝑆0
) 

 

 = Pr (𝑙𝑛
𝑆𝑡

𝑆0
) < (𝑙𝑛

𝐾

𝑆0
) 

 

Since 𝑙𝑛
𝑆𝑡

𝑆0
~𝑁(𝑚, 𝑣2) then 

𝑙𝑛
𝑆𝑡
𝑆0

−𝑚

𝑣
= 𝑍~𝑁(0,1) where Z is the standard normal random 

variable. Therefore:  

Pr(𝑆𝑡 < K) = Pr (𝑍 <  
ln (

𝐾
𝑆0

) − 𝑚)

𝑣
) 

= Pr (𝑍 <  −𝑑2) 

= 𝑁(−𝑑2) 



 

Where 𝑑2 =
ln(

𝑆0
𝐾

)+𝑚

𝑣
=

ln(
𝑆0
𝐾

)+(µ−
1

2
𝜎2)𝑡

𝜎√𝑡
 

Since Pr(𝑆𝑡 < K) =  𝑁(−𝑑2) then 

Pr(𝑆𝑡 > K) =  𝑁(𝑑2) 

We found the first piece, now in order to complete the equation, as said above we need to find 

𝐸(𝑆𝑡|𝑆𝑡 > 𝐾) 

To find 𝐸(𝑆𝑡|𝑆𝑡 > 𝐾) we use the following formula: 

 

 𝐸(𝑆𝑡|𝑆𝑡 < 𝐾) =
𝑃𝐸(𝑆𝑡|𝑆𝑡 < 𝐾)

Pr(𝑆𝑡 < 𝐾)
 

Where PE is the partial expectation from 𝑆𝑡 = 0 to 𝑆𝑡 = 𝐾. Note that: 

𝑃𝐸 (
𝑆𝑡

𝑆0
|

𝑆𝑡

𝑆0
<

𝐾
𝑆0

) = 𝐸 (
𝑆𝑡

𝑆0
) 𝑁 (

ln (
𝑆0

𝐾 ) − 𝑚 − 𝑣2

𝑣
) 

We can calculate 𝑃𝐸 (𝑆𝑡|
𝑆𝑡

𝑆0
<

𝐾

𝑆0
) = 𝑆0 (𝑃𝐸 (

𝑆𝑡

𝑆0
|

𝑆𝑡

𝑆0
<

𝐾

𝑆0
)).  

This simplifies as follows: 

𝑃𝐸(𝑆𝑡|𝑆𝑡 < 𝐾) = 𝑃𝐸 (𝑆𝑡|
𝑆𝑡

𝑆0
<

𝐾
𝑆0

) 

= 𝑆0 (𝑃𝐸 (
𝑆𝑡

𝑆0
|

𝑆𝑡

𝑆0
<

𝐾
𝑆0

)) 

= 𝑆0 𝐸 (
𝑆𝑡

𝑆0
) 𝑁 (

ln (
𝑆0

𝐾 ) − 𝑚 − 𝑣2

𝑣
) 

= 𝑆0𝑒𝑚+
1
2

𝑣2

𝑁(
ln (

𝑆0

𝐾 ) − (µ −
1
2 𝜎2) 𝑡 − 𝜎2𝑡

𝜎√𝑡
 

= 𝑆0𝑒µ𝑡𝑁(
ln (

𝑆0

𝐾 ) − (µ +
1
2 𝜎2) 𝑡

𝜎√𝑡
 

= 𝑆0𝑒µ𝑡𝑁(−𝑑1) 

(6) 



Where 𝑑1 =
ln(

𝑆0
𝐾

)+(µ+
1

2
𝜎2)𝑡

𝜎√𝑡
 . Notice that 𝑑2 = 𝑑1 −  𝜎√𝑡 

Since 𝐸(𝑆𝑡) = 𝑃𝐸(𝑆𝑡|𝑆𝑡 > 𝐾) + 𝑃𝐸(𝑆𝑡|𝑆𝑡 < 𝐾) then: 

𝑃𝐸(𝑆𝑡|𝑆𝑡 > 𝐾) = 𝐸(𝑆𝑡) − 𝑃𝐸(𝑆𝑡|𝑆𝑡 < 𝐾) 

= 𝑆0𝑒µ𝑡 − 𝑆0𝑒µ𝑡𝑁(−𝑑1) 

= 𝑆0𝑒µ𝑡(1 − 𝑁(−𝑑1)) 

= 𝑆0𝑒µ𝑡𝑁(𝑑1) 

Which leads to the following formulas: 

𝐸(𝑆𝑡|𝑆𝑡 < 𝐾) =
𝑆0𝑒µ𝑡𝑁(−𝑑1)

𝑁(−𝑑2)
 

𝐸(𝑆𝑡|𝑆𝑡 > 𝐾) =
𝑆0𝑒µ𝑡𝑁(𝑑1)

𝑁(𝑑2)
 

Substituting in the formulas derived above, we find that for a European call option 

𝐸(𝐶𝑎𝑙𝑙 𝑝𝑎𝑦𝑜𝑓𝑓) = 𝑃𝑟(𝑆𝑡 > 𝐾) [𝐸(𝑆𝑡|𝑆𝑡 > 𝐾) − 𝐾] 

= 𝑁(𝑑2) (
𝑆0𝑒µ𝑡𝑁(𝑑1)

𝑁(𝑑2)
− 𝐾) 

= 𝑆0𝑒µ𝑡𝑁(𝑑1) − 𝐾𝑁(𝑑2) 

𝑃𝑉0[𝐸(𝐶𝑎𝑙𝑙 𝑝𝑎𝑦𝑜𝑓𝑓)] = 𝑒−𝑟𝑇[(𝑆0𝑒µ𝑡𝑁(𝑑1) − 𝐾𝑁(𝑑2)]  

By evaluating under a risk neutral methodology, so by putting µ = r we have: 

𝑒−𝑟𝑇[(𝑆0𝑒𝑟𝑡𝑁(𝑑1) − 𝐾𝑁(𝑑2)]  

That is equal to the Black-Scholes Formula for a European Call option: 

= 𝑆0𝑁(𝑑1) − 𝑒−𝑟𝑇𝐾𝑁(𝑑2)] 

Similarly, substituting in the formulas derived above, we find that, for a European Put option: 

 

𝐸(𝑃𝑢𝑡 𝑝𝑎𝑦𝑜𝑓𝑓) = Pr(𝑆𝑡 < K) [K − E(𝑆𝑡|𝑆𝑡 < K)] 

= 𝑁(−𝑑2) (𝐾 − 
𝑆0𝑒µ𝑡𝑁(−𝑑1)

𝑁(−𝑑2)
) 

= 𝐾𝑁(−𝑑2) − 𝑆0𝑒µ𝑡𝑁(−𝑑1) 

(7) 

(6 bis) 



𝑃𝑉0[(𝑃𝑢𝑡 𝑝𝑎𝑦𝑜𝑓𝑓)] = 𝑒−𝑟𝑇[𝐾𝑁(−𝑑2) − 𝑆0𝑒µ𝑡𝑁(−𝑑1)] 

By evaluating under a risk neutral methodology, so by putting µ = r we have: 

𝑒−𝑟𝑇[𝐾𝑁(−𝑑2) − 𝑆0𝑒𝑟𝑡𝑁(−𝑑1)] 

That is equal to the Black-Scholes formula for a European Put option: 

= 𝑒−𝑟𝑇𝐾𝑁(−𝑑2) − 𝑆0 𝑁(−𝑑1)] 

 

There are several ways to derive such a formula, we could also have used a replicating strategy 

argument to derive the formula, by using the replicating strategy argument in continuous time 

to derive the Black-Scholes partial differential equation. Another common method is the 

Martingale pricing, by using the Feynman-Kac formula. Martingale pricing theory states that 

deflated security prices are martingales. Then Ito's Lemma and Girsanov's Theorem imply: 

 

𝑑𝑌𝑡 = (µ − 𝑟)𝑌𝑡𝑑𝑡 + 𝜎𝑌𝑡𝑑𝑊𝑡 

             = (µ − 𝑟)𝑌𝑡𝑑𝑡 + 𝜎𝑌𝑡(𝑑𝑊𝑡
𝑄 − 𝜂𝑡𝑑𝑡) 

             = (µ − 𝑟 − 𝜎𝜂𝑡)𝑌𝑡𝑑𝑡 + 𝜎𝑌𝑡𝑑𝑊𝑡
𝑄

 

 

Where Q denotes a new probability measure and 𝑊𝑡
𝑄

 is a Q-Brownian motion. But we know 

from martingale pricing that if Q is an equivalent martingale measure then it must be the case 

that Yt is a martingale. This then implies that 𝜂𝑡 = (µ − 𝑟)/𝜎 for all t. It also implies that the 

dynamics of St satisfy 

𝑑𝑆𝑡 = µ𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

                        = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡
𝑄               

 

Using the new stochastic process for the stock price, we can derive the call price using 

martingale pricing. In particular, we have 

 

𝑂𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒 =  𝐸𝑡
𝑄

[𝑒𝑟(𝑇−𝑡)𝑃𝑎𝑦𝑜𝑓𝑓(𝑇)] 

 

Where the price of the Call option is: 

 

𝐶 =  𝐸𝑡
𝑄[𝑒𝑟(𝑇−𝑡)(𝑆𝑡 − 𝐾)] 

(8) 

(11) 

(9) 

(10) 



While the calculations are a little tedious, it is straightforward to solve (11) and obtain (7) as 

the solution, as before. 

 

Focus: Why using Risk neutral evaluation? 

Risk-neutral valuation is a valuable tool for the analysis of derivatives and is commonly used 

when pricing options. According to Hull, in a risk-neutral world all investors are indifferent 

to risk and only require the risk-free rate to invest. Investors require no compensation for risk 

and therefore the expected return can be substituted with the known risk free-rate. By using 

this principle, all the variables that enter models are without risk preference and the pricing 

of options becomes easier. This general principle in option pricing is known as risk-neutral 

valuation.  

The fascinating and surprising fact is that the solution is valid in a world with risk-averse 

investors as well. The argument is in a risk-averse world the expected growth rate in the stock 

price changes and the discount rate that must be used for any payoffs from the derivative 

changes. These two effects offset each other perfectly and the price is valid in the risk-neutral 

world as well as in the real world. According to Hull risk-free valuation is correct when the 

risk free rate is constant. 

 

 

2.4.1 Call option 

 

The price of the European Call option C (t, s) is calculated using Black-Scholes formula, which 

can is derived in section above, recalling from section (2.4): 

 

𝐶 = 𝑆0𝑁(𝑑1) − 𝑒−𝑟𝑇𝐾𝑁(𝑑2) 

 

Where N is the cumulative distribution function for the Gaussian distribution with zero mean 

and unit variance, and (d1) and (d2) defined in equations (6) and (6 bis): 

In order to pricing a Call option, the inputs required are underlying stock, strike price, risk free, 

volatility, time to maturity.14  

 

 

                                                           
14 The expected return of the underlying is irrelevant to the pricing of and option. 

(7) 



Example 2.1 imagine that a financial institution has sold for 300.000€ a European Call Option on 

100.000 shares of a non-dividend paying stock. We assume that the stock price is 49, the strike price 

is 50, the risk free interest rate is 5% per annum, the stock price volatility is 20% per annum, the time 

to maturity is 20 weeks (0,3846 years). With our notation this means that:  

 

S0 = 49 € K = 50 € r = 0, 05 σ = 0, 2 T = 0, 3846 

 

The B&S price of the option is about 240.000. 

 

2.4.2 Put option 

 

The price of the European Put option P (t, S) is calculated using Black-Scholes formula15, 

recalling equation (8) from section 2.4: 

 

𝑃 = 𝑒−𝑟𝑇𝐾𝑁(−𝑑2) − 𝑆0 𝑁(−𝑑1)] 

Where (d1) and (d2) is the same as above in equation (6) and (6 bis). 

In MATLAB®, the price of a Call and a Put option is calculated by the function “blsprice” 

providing the 5 input discussed above. In MATLAB®, the function appear as: 

 

[Call, Put] = blsprice (Price, Strike, Rate, Time, Volatility,[]) 

 

2.5 Volatility 

 

As said in section 2.4.1, for practical application of the Black-Scholes Theory, one needs to 

have numerical estimates of all the input parameters. The input data consists of the string S, K, 

r, T and σ. Out of these five parameters, S, r, T and K can be observed directly, which leaves 

the problem of obtaining an estimate of the volatility σ, that is the only input needed to calibrate 

the BS model. The volatility of a stock is a measure of the uncertainty about the returns provided 

by the stock. Stocks typically have a volatility between 15% and 60%. Two basic approaches 

for the estimation are discussed in the following sub-section, namely historical volatility or 

implied volatility. 

 

 

                                                           
15 Could be also evaluated by the Put-Call Parity. 

(8) 



2.5.1 Historical Volatility 

 

To value an European option, an obvious idea is to use historical data in order to estimate σ. 

Since, in real life, the volatility is not constant over time, one standard practice is to use 

historical data for a period of the same length as the time to maturity. This approach takes the 

standard deviation of the underlying's log-returns and times the time length. The log-return of 

the underlying asset is 

𝑅𝑡 = 𝑙𝑜𝑔
𝑆𝑡

𝑆𝑡−1
 

 

Using elementary statistical theory, an estimate of σ is given by: 

 

�̃�𝐻 = √
𝑉𝑎𝑟

𝛥𝑡
 

Where the sample variance Var is given by: 

 

𝑉𝑎𝑟 =
1

𝑛 − 1
∑(𝑅𝑡 − �̅�𝑛)2

𝑛

𝑡=1

 

 

With �̅�𝑛 =
1

𝑛
∑ 𝑅𝑡

𝑛
𝑡=1  being the sample mean 

An argument against the use of historical volatility is that in real life volatility is not constant, 

but changes over time. It should be an estimate of the volatility for the coming time period, 

but this approach only yields an estimate for the volatility over the past time period. 

 

2.5.2 Implied Volatility 

 

In this thesis it’s defined as the volatility, obtained when equating the option's market value to 

its Black&Scholes value, given the same strike price and time to maturity. It is extracted 

numerically due to the fact that the Black&Scholes formula cannot be solved for σ in terms of 

the other parameters. Given an observed European call option price 𝐶𝑀𝑎𝑟𝑘𝑒𝑡 (market price 

observable on internet) for a contract with strike K and expiration date T, the implied volatility 

σ𝑖𝑚𝑝𝑙𝑖𝑒𝑑 is defined to be the value of the volatility parameter that must go into the Black-Scholes 

formula, Equation (7) to match this price: 

 

(9) 

(10) 



𝐶𝐵𝑙𝑎𝑐𝑘&𝑆𝑐ℎ𝑜𝑙𝑒𝑠(𝑡, 𝑆, 𝐾, 𝑇, σ𝑖𝑚𝑝𝑙𝑖𝑒𝑑) = 𝐶𝑀𝑎𝑟𝑘𝑒𝑡 

 

Thus implied volatilities are embedded in option prices, which in turn reflect the future 

expectations of the market participants. Whereas historical volatilities are backward looking, 

implied volatilities are forward looking. Traders often quote the implied volatility of an option 

rather than its price. This is convenient because the implied volatility tends to be less variable 

than the option price. Note, that implied volatilities can be used to test the Black&Scholes 

model. If the model is correct (i.e. with a constant volatility) then, if one plots implied volatility 

as a function of the strike price, one should obtain a horizontal straight line. Contrary to this, it 

is often observed that options deep OTM or deep ITM are traded at higher implied volatilities 

than ATM options. But more on this would be explained in the limitations of the Black&Scholes 

at the end of this Chapter, in section (2.9). For the empirical part in MATLAB® concerning the 

calculation of the option value, the author will use the annual Historical Volatility of the 

underlying, i.e. Equation (9) to calibrate the Black&Scholes model and the Historical volatility 

calculated from 3-months rolling window for the Black&Scholes extension. 

  

2.6 The Greeks 

 

Having the close-form solution for the pricing formula in section (2.4), we are able to “derive” 

the Greeks, in order to proceed with the hedging strategies. The Greeks is the common name of 

the set of the derivatives of the price of the instrument, with respect to the Stock and the model 

parameters. The knowledge of the Greeks provides information about how sensitive the price 

is to changes in the Stock and the model parameters. 

 

2.6.1 Delta 

 

Delta means the sensitivity of a derivative price to the movement in the underlying asset. A 

delta is expressed as the first mathematical derivative of the product with respect to the 

underlying asset. It means that is the hedge ratio16 of the asset for an infinitely small move. The 

orthodox definition of delta is:  

 

𝛥 =
𝜕𝛱

𝜕𝑆
 

                                                           
16 Hedge ratio is defined as the number of shares that has to be bought in order to offset the risk. 

(11) 



 

Where Π is the derivative price Π(S,t) and S is the underlying asset. It is the derivative of the 

option price to the underlying. In plain English, it would correspond to changes in the option 

price from infinitely small changes in the underlying asset. Delta is closely related to the Black-

Scholes-Merton analysis. They showed that it is possible to set up a riskless portfolio consisting 

of a position in an option on a stock and a position in the stock expressed in terms of Delta, 

where the Black&Scholes portfolio is: 

 

 

 

- 1: option 

+Δ: shares of the stock 

 

 

 

 

  

 

 

Figure 3: As seen, since the call option follows a nonlinear structure a linear hedge could not possibly be a 

perfect hedge. Delta try to catch local linearity through derivative, since, as said in the in Chapter 1, Vanilla 

options are nonlinear products. Source: Dynamic Hedging, Nassim Taleb, Wiley, 1997 
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2.6.1.1 Delta of a European Option 

 

Considering the classic Black-Scholes-Merton formula, for a European Call option on a non-

dividend paying stock the delta (Δ) is the first derivative with respect to price, by taking the 

derivative with respect to S of equation (7): 

 

𝛥(𝐶𝑎𝑙𝑙) = 𝑁(𝑑1) 

 

Where d1 is defined in equation (6 bis). This formula gives the delta of a long position in one 

Call option18. For a European put option on a non-dividend-paying stock, delta is given by the 

derivative with respect to S of equation (8): 

 

𝛥(𝑃𝑢𝑡) = 𝑁(𝑑1) − 1 

                                                           
17 This means that when the stock price changes by a small amount, the option prices changes by about 60% of 

that amount. 
18 The delta of a short position in one call option is -N(d1). Using delta hedging for a short position in a European 

call option involves maintaining a long position of N(d1) for each option sold. Similarly, using delta hedging for a 

long position in a European call option involves maintaining a short position of - N(d1) shares for each option 

purchased. 

Example 2.2 Suppose that, in figure above, the delta of a call option on a stock is 0.617(it can be seen 

in point A, imagine Δ=0.6), the stock price is 100 and the option price is €10. Imagine an investor 

who has sold 20 call option contracts, that is, option to buy 2000 shares. The investor’s position could 

be hedged by buying 0.6*2000 = 1200 shares. The gain (loss) on the option position would then tend 

to be offset by the loss (gain) on the stock position. If the stock price goes up by €1 (producing a gain 

of 1200€ on the shares purchased), the option price will tend to go up by 0.6*1€=0.6€ (producing a 

loss of €1200 on the shares purchased), the option price will tend to go down by €0.6 (producing a 

gain of €1200 on the options written). In this example, the delta of the investor’s option position is 

0.6 * (-2000) = -1200. In other word, the investor loses 1200𝛥S on the short option position when the 

stock price increases by 𝛥S. The delta of the stock is 1, so that the long position in 1200 shares has a 

delta of +1200. The delta of the investor’s overall position is, therefore, zero. The delta of the stock 

position offsets the delta of the option position. It is important to realize that, because delta changes, 

the investor’s position remains delta hedged for only relatively short period of time. The hedge has 

to be adjusted (i.e. rebalancing). In our example, imagine that after 3 days the stock price might 

increase to €110, as indicated in the figure, an increase in the stock price leads to an increase in 

delta. Suppose that delta rises from 0.60 to 0.65. An extra 0.05 * 2000 = 100 shares would then have 

to be purchased to maintain the hedge, for this we will talk later about gamma and hedging error. 

(12) 

(13) 



In MATLAB® the delta is calculated using the function blsdelta: 

 
[CallDelta, PutDelta] = blsdelta(Price, Strike, Rate, Time, Volatility) 

 

Delta for long Put options is negative, which means that a long position in a put option should 

been hedged with a long position in the underlying stock, and a short position in a put option 

should be hedged with a short position in the underlying stock.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.1.2 Delta of a Portfolio 

 

For our purpose, the delta of a Portfolio is needed since the author is considering a hedging on 

option portfolio dependent on a single asset. In formula we have: 

 

𝛥𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 =
𝜕𝑃

𝜕𝑆
 

 

Where P is the value of the portfolio. The delta of the portfolio in this part of the thesis is 

calculated from the deltas of the individual options in the portfolio. If a portfolio consists of a 

quantity wi of option i (1< wi < n), the delta of the portfolio is given by:  

𝛥𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = ∑
 

𝑤𝑖𝛥𝑖

𝑛

𝑖=1

 
(15) 

Figure 4: Variation of delta with stock price for (left) a call option and (right) a put option on a non-dividend-

paying stock. 

(14) 



Where Δi is the delta of the ith option. The formula can be used to calculate the position in the 

underlying asset necessary to make the delta of the portfolio zero. When this position has been 

taken, the portfolio is referred to as being delta neutral.  

 

Example 2.3 Suppose a financial institution has the following three position in options on a stock: 

 A long position in 100,000 call options with strike price €55 and an expiration date in 3 

months. The delta of each option is 0.533 

 A short position in 200,000 call options with strike price €56 and an expiration date in 5 

months. The delta of each option is 0.468 

 A short position in 50,000 put options with strike price €56 and an expiration date in 2 

months. The delta of each option is -0.508 

The delta of the whole portfolio is 100.000 ∗ 0.533 − 200.000 ∗ 0.468 − 50.000 ∗ (−0.508) =

−14.900. This means that the portfolio can be made delta neutral by buying 14,900 shares. 

 

If a portfolio is delta-neutral, then the value of the portfolio remain constant when the price of 

the Stock changes. However, the value of the delta changes over time and as the price of the 

Stock changes. Thus the portfolio is only locally delta neutral. To ensure that the portfolio 

remains delta neutral over time, it needs to be re-balanced frequently over the lifetime of the 

instrument, i.e. hedged dynamically. The more often the portfolio is re-balanced, the less the 

value of the portfolio will change over the lifetime of the instrument (in the limit where the 

portfolio is continuously re-balanced, the value of the portfolio remains constant throughout the 

life-time of the instrument). However, in real life there are costs associated with re-balancing 

the portfolio. There is thus a trade-off between risk-reduction (re-balancing often) and return 

(re-balance less often), in this thesis, however no transaction costs are considered. 

 

2.6.2 Gamma 

 

The gamma (Γ) of an option on an underlying asset is the rate of change of the option’s delta 

with respect to the price of the underlying asset. Mathematically is the second mathematical 

derivative of the product with respect to the underlying asset: 

 

Γ =
𝜕2𝛱

𝜕𝑆2
 

(16) 



2.6.2.1 Gamma of a European option 

 

For a European call or put option on a non-dividend paying stick the gamma is given by:  

 

𝛤 =
𝑁′(𝑑1)

𝑆𝜎√𝑇
 

 

Where d1 is defined in equation (6 bis) and N’(x) is the probability density function for a 

standard normal distribution and is defined as: 

 

𝑁′(𝑥) =
1

√2𝜋
𝑒−𝑥2/2 

 

The gamma of a long position is always positive. In MATLAB® the gamma is calculated using 

the function blsgamma: 

Gamma = blsgamma (Price, Strike, Rate, Time, Volatility) 

Example 2.4 Consider a Call option on a non-dividend-paying stock where the stock price 

is 49€, the strike is 50€, r is 5%, T is 20 weeks and volatility is 20%. In this case the option 

gamma is 0.066. When the stock price changes by ΔS, the delta of the option changes by 

0.066ΔS. 

 

2.6.2.2 The gamma of a Portfolio 

 

The gamma (Γ) of a portfolio of options on an underlying asset is the rate of change of the 

portfolio’s delta with respect to the price of the underlying asset. Mathematically it is the second 

partial derivative of the portfolio with respect to asset price: 

 

𝛤𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 =
𝜕2𝑃

𝜕𝑆2
 

 

The calculation of the portfolio Gamma is done with the same criteria of the portfolio Delta.. If 

a portfolio consists of a quantity wi of option i (1< wi < n), the Gamma of the portfolio is given 

by:  

(19) 

(17) 

(18) 

(20) 



𝛤𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = ∑
 

𝑤𝑖𝛤𝑖

𝑛

𝑖=1

 

 

As shown in Figure (5), Gamma changes with time, when we consider a portfolio normally we 

have inside with different maturities, so a 10 days option is different from a 2 days option in 

term of gammas all else remaining equal. 

 

 

 

 

Figures above suggest there are important pitfalls for option 

replication and portfolio stabilization. Often operators hedge their 

gamma with an option trade that takes care of their immediate need 

but does not provide long-term stability in the position. If gamma is 

small, delta changes slowly, and adjustments to keep a portfolio delta 

“Gamma is a 

proxy for the 

rebalancing of 

the portfolio.” 

Figure 6: The relationship between Gamma, stock price and time to maturity. Source: Wilmott.com 

Figure 5: Gamma changes with time. All  have a 100 strike. Source: Wilmott.com 



neutral to be made only relatively infrequently. However, if the absolute value of gamma is 

large, delta is highly sensitive to the price of the underlying asset. It is then quite risky to leave 

a delta-neutral portfolio unchanged for any length of time. Gamma try to adjust the hedging 

error introduced by nonlinearity of the derivative.19 Figure (7) illustrates this point. 

 

 

 

 

 

 

2.6.2.3 Making a Portfolio Gamma Neutral 

 

A position in the underlying asset has zero gamma20 and 

cannot be used to change the gamma of a portfolio. 

What is required is a position in an instrument such as 

an option that is non-linearly dependent on the 

underlying asset. Suppose that a delta-neutral portfolio 

has a gamma equal to Γ, and a traded option has a 

gamma equal to ΓT. If the number of traded options 

added to the portfolio is wT, the gamma of the portfolio 

is wTΓT + Γ; Hence the position in the traded option 

necessary to make the portfolio gamma neutral is - Γ/ ΓT . Including the traded option is likely 

to change the delta of the portfolio, so the position in the underlying asset then has to be changed 

to maintain delta neutrality. As time passes, gamma neutrality can be maintained only if the 

                                                           
19 I.e. starting from a delta neutral portfolio, this adjustment in gamma meaning that another adjustment in delta 

has to be made. 
20 The second derivative of the underlying price is zero. 

“Delta neutrality provides 

protection against relatively 

small stock price moves 

between rebalancing. 

Gamma neutrality provides 

protection against larger 

movements in this stick 

price between hedge 

rebalancing.” 

Figure 7: When the stock price move to S to S’ delta hedging assumes that the option price moves from C to 

C’, when in reality it moves from C to C’’. The difference between C’ and C’’ leads to a hedging error. The 

size of the error depends on the curvature of the relationship between the option price and the stock price. 

Gamma measures this curvature. Source: Dynamic Hedging, Nassim Taleb, Wiley, 1997. 

 

 



position in the traded option is adjusted so that it is always equal to –Γ/ ΓT. Making a portfolio 

gamma neutral as well as delta-neutral can be regarded as a correction for the hedging error 

illustrated before. 

 

Example 2.5 Suppose that a portfolio is delta neutral and has a gamma of – 3.000. The delta and 

gamma of a particular traded call option are 0.62 and 1.50, respectively. The portfolio can be made 

gamma neutral by including in the portfolio a long position of 3000/1.5 = 2000 in the call option. 

However, the delta of the portfolio will the change from zero to 2000*0.62 = 1240. Therefore 1240 

units of the underlying asset must be sold from the portfolio to keep it both delta neutral and gamma 

neutral. 

 

2.6.3. Vega 

 

The Vega is the sensitivity of an option to the changes in the implied volatility for a maturity 

equal to its stopping time. The Vega of a European option of known maturity it is expressed as: 

 

Ѵ =  
∂Π

∂σ
 

 

Where σ is the implied volatility for the maturity matching that of the option, Π is the price of 

the derivative security. The best way to ascertain it numerically is by re-pricing the instrument 

at different levels of volatilities. 

 

2.6.3.1 The Vega of a European option 

 

The Vega for a European call or put option on a non-dividend paying stock is given by: 

 

Ѵ = 𝑆0√𝑇𝑁′(𝑑1) 

 

Where d1 is defined as in equation (6 bis). The formula for N’(x) is defined in equation (18). 

The Vega of a short position in a European option is always negative, this is explained in 

Example 2.6. Vega changes with time, as with gamma, when we consider a portfolio normally 

we have inside with different maturities, so a 10 days option is different from a 2 days option 

in term of gammas all else remaining equal. Figure (8) shows this: 

(21) 

(22) 



 

 

 

 

As with the gamma and the theta, it is easy to see that the Vega follows a bell shape, with the 

maximum reached when the option is at the money, same in the Figure (9) that consider also 

the passage of time to maturity, adding a third dimension. 

 

 

 

 

Figure 9: The relationship between Vega, underlying asset and time. Source: The Heston model and its 

application in Matlab, Wiley, 2013. 

Figure 8: The relationship between Vega and the underlying price and time, for a 10 days option (blue) 

and 2 days option (red). Source: Wilmott.com 



Example 2.6 Imagine the cash position of a derivatives dealer who sells an option and then dynami-

cally hedges it until expiration. The dealer originally prices the option at 25% volatility, but the ex-

hibit considers three volatility scenarios: 

 The stock experiences 20% volatility. 

 The stock experiences 25% volatility. 

 The stock experiences 30% volatility. 

 

A dealer sells an option priced at 25% volatility and then dynamically hedges the position until expi-

ration. This exhibit considers how the dealer’s cash balance evolves over time under three scenarios. 

Under all scenarios, we assume an initial cash balance of zero. When the option is sold, the dealer 

receives a premium, so the cash balance jumps. Next, the dealer dynamically hedges the short option, 

gradually losing cash as he does so. Under the first scenario, the underlying experiences 20% volatil-

ity. Dynamic hedging costs less than it would have had the underlying experienced the 25% volatility 

used to price the option. The dealer ends up with a profit. Under the second scenario, the underlying 

experiences 25% volatility. This is the volatility at which the option was priced, so the dealer breaks 

even on the transaction. Finally, under the third scenario, the underlying experiences 30% volatility. 

This is higher than anticipated, and the dealer ends up with a loss. At a higher volatility, the 

underlying will fluctuate more, the dealer need to adjust the delta hedge more frequently. He will lose 

money more rapidly dynamically hedging. The opposite would be true if the underlier’s volatility 

suddenly fell. You could readjust the delta hedge less frequently, and you would lose money more 

slowly dynamically hedging. When a dealer is dynamically hedging a short options position, he 

doesn’t care whether the underlying goes up or down. Because he is always delta hedged, he is neither 

long nor short the underlying. He does care whether the underlier’s volatility goes up or down. In a 

very real sense, he is short volatility. This is the same thing as having negative vega (or “short vega”), 

so the phrases negative vega, short vega and short volatility all mean the same thing. A dealer dy-

namically hedging a long options position is in the opposite situation. He benefits if volatility in-

creases, so he is long volatility. Synonyms would be long vega or positive vega. 

http://www.riskglossary.com/articles/vega.htm
http://riskencyclopedia.com/wp-content/uploads/2013/07/exhibit_dynamic_hedging_7_v1.png


 

In MATLAB® the gamma is calculated using the function blsvega: 

 

Vega = blsvega (Price, Strike, Rate, Time, Volatility) 

 

2.6.3.2. Vega of a Portfolio 

 

As for delta and gamma, we can express the Vega of a portfolio as:  

 

Ѵ =  
∂P

∂σ
 

 

So, for the same criteria, the Vega of the portfolio could be expressed as: 

Ѵ𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = ∑
 

𝑤𝑖Ѵ𝑖

𝑛

𝑖=1

 

 

 

2.6.3.3 Making a Portfolio Vega and Gamma Neutral 

 

If the absolute value of Vega is high, the portfolio’s value is 

very sensitive to small changes in volatility. If the absolute 

value of Vega is low, volatility changes have relatively little 

impact on the value of the portfolio. A position in the 

underlying asset has zero Vega. However, the Vega of a 

portfolio can be changed by adding a positon in a traded 

option. If Ѵ is the Vega of the portfolio and ѴT is the Vega 

of the traded option, a position of – Ѵ/ ѴT in the traded option 

makes the portfolio instantaneously Vega neutral. 

Unfortunately, a portfolio that is gamma neutral will not in general be Vega neutral, and vice 

versa. If a hedger requires a portfolio to be both gamma and Vega neutral at least two traded 

derivatives dependent on the underlying asset must usually be used.  

“The Vega of at-the-

money options is stable 

to an increase in 

volatility. Options that 

are away from the 

money are convex with 

respect to volatility for 

the owner and concave 

for the seller.” 

(23) 

(23 bis) 



 

 

It is important to notice that the number of Greeks that we want to be hedged has to be equal 

(at least) at the number of instruments in our portfolio. We saw that with a delta neutral 

portfolio, hedging with a delta-gamma strategy requires another instrument, and hedging for 

the same delta neutral portfolio, a gamma-vega strategy requires at least adding two 

instruments. We said also that is possible to construct hedging strategies with the underlying 

asset, or other options traded in the market, or even a mixed strategy. In this thesis, since the 

author wants to perform also a delta-gamma-vega strategy he cannot use only the underlying as 

explained before, he might use a mixed strategy (underlying and options) or trading only 

options. For the empirical part in MATLAB®, the author decides to construct and hedging all 

the strategies trading only options, precisely the same options sold at the beginning, leaving the 

hedging only a matter of  “adjusted quantities”. For mathematical reasons the minimum number 

of options (i.e. instruments) in the portfolio has always to be, at least, equal to the number of 

Greeks considered. 

 

Example 2.7 Consider a portfolio that is delta neutral, with a gamma of -5000 and a vega of -8000. 

The options shown in the table below can be traded. The portfolio can be made vega neutral by 

including a long position in 4000 of Option 1. This would increase delta to 2400 and require that 

2400 unit of the asset be sold to maintain delta neutrality. The gamma of the portfolio would change 

from -5000 to -3000. 

                        Delta        Gamma        Vega 

Portfolio            0             -5000          -8000 

Option 1           0.6               0.5               2.0 

Option 2           0.5              0.8                1.2 

 

To make the portfolio gamma and vega neutral, both option 1 and option 2 can be used. If w1 and 

w1are the quantities of option 1 and option that are added to the portfolio, we require that 

 

−5000 + 0.5𝑤1 + 0.8𝑤2 = 0 

−8000 + 2.0𝑤1 + 1.2𝑤2 = 0 

 

The solution to these equations is w1 = 400 and w2 =6000. The portfolio can therefore be made 

gamma and vega neutral by including 400 of option 1 and 6000 of option 2. The delta of the portfolio, 

after the addition of the positons in the two traded options, is 400*0.6+6000*0.5=3240. Hence 3240 

unit of the asset would have to be sold to maintain delta neutrality. 



2.7 Minor Greeks 

 

2.7.1 Rho 

 

The rho of a portfolio of options is the rate of change of the value of the product with respect 

to the interest rate:  

𝜌 =
𝜕𝛱

𝜕𝑟
 

 

It measures the sensitivity of the value of a portfolio to a change in the interest rate when all 

else remains the same.  

 

2.7.1.1 Rho of a European option 

 

For a European call option on a non-dividend paying stock 

 

𝜌(𝐶𝑎𝑙𝑙) = 𝐾𝑇𝑒−𝑟𝑇𝑁(𝑑2) 

 

Where d2 is defined in equation (6). For a European put option: 

 

𝜌(𝑃𝑢𝑡) = −𝐾𝑇𝑒−𝑟𝑇𝑁(−𝑑2) 

 

Example 2.8 Consider our usual example, a call option on a non-dividend paying stock where the 

stock price is €49, the strike price is €50, the risk free rate is 5%, the time to maturity is 20 weeks, 

and the volatility is 20%. In this case the option’s rho is: 

𝜌(𝐶𝑎𝑙𝑙) = 𝐾𝑇𝑒−𝑟𝑇𝑁(𝑑2) = 8.91 

This means that a 1% (0.01) increase in the risk-free rate (from 5% to 6%) increases the value of 

the option by approximately 0.01*8.91= 0.0891. 

 

2.7.2 Theta 

 

The Theta (Θ) of a portfolio of option is the rate of change 

of the value of the portfolio with respect to the passage of 

time with all else remaining the same. Theta is sometimes 

referred to as the time decay of the portfolio. The pricing 

“The theta is a loss in time 

value of an option 

portfolio that results from 

the passage of time.” 

(24) 

(25) 

(26) 



is straightforward: the trader can use the difference between the price of an option today and 

the same price on the next day, keeping everything else constant. One way to look at the 

representation of theta is that it goes hand in hand with gamma. The alpha (i.e. gamma per theta 

ratio) will be the same regardless of the number of days to expiration. Figure (10) shows the 

time decay for an at-the-money and an out-of-money option. Theta corresponds to the re-pricing 

of a portfolio with one day less to expiration. However, what if the volatility and other 

parameters for period t+1 were different than those of period t? Do we offsetting effects or not? 

 

 

 

 

 

 

 

 

 

Figure 10: The relationship between the option price and time, for an at-the-money option (above) and an 

out-of-money option (below) all else remaining equal. Source: Nassim Taleb, Dynamic Hedging, 1997. 



2.7.2.1 Theta of a European option 

 

For a European call option on a non-dividend-paying stock, it can be shown from the Black-

Scholes formula that:  

Θ(𝐶𝑎𝑙𝑙) = −
𝑆0𝑁′(𝑑1)𝜎

2√𝑇
− 𝑟𝐾𝑒−𝑟𝑇𝑁(𝑑2) 

 

Where d1 and d2 are defined as in equation (6) and (6 bis) and N’(x) defined in Equation (18). 

For a European put on the stock we have:  

 

Θ(𝑃𝑢𝑡) =
𝑆0𝑁′(𝑑1)𝜎

2√𝑇
+ 𝑟𝐾𝑒−𝑟𝑇𝑁(−𝑑2) 

 

Because N(-d2) = 1 – N(d2), the theta of a put exceeds the theta of the corresponding Call by 

rKe-rT. In the se formulas, theta is measured in years.21 

 

Example 2.9 Consider a call option on a non-dividend-paying stock where the stock price is 49€, the 

strike price is 50€, the risk free is 5%, the time to maturity is 20 weeks (=0.3046 years), and the 

volatility is 20%. In this case the option theta is: 

 

𝛩(𝐶𝑎𝑙𝑙) = −
𝑆0𝑁′(𝑑1)𝜎

2√𝑇
− 𝑟𝐾𝑒−𝑟𝑇𝑁(𝑑2) =  −4.31 

 

The theta is -4.31/365= -0.0118 per calendar day, or -4.31/252 = -0.0171 per trading day. 

 

Theta is usually negative for an option. This because, as time passes with all else remaining the 

same, the option tends to become less valuable. When the stock price is very low, the theta is 

close to zero. For an at-the-money call option, theta is large and negative. As the stock price 

becomes larger, theta tends to –rKe-rT. The variation of theta with stock price for a call option 

on a stock is shown in Figure (11). Theta is not the same type of hedge parameter as delta. There 

is uncertainty about future stock price, but there is no uncertainty about the passage of time. It 

does not make any sense to hedge against the passage of time. In spite of this, many traders 

                                                           
21 Usually when theta is quoted, time is measured in days, so that theta is the change in the portfolio value when 

1 day passes with all else remaining the same. We can measure theta either “per calendar day” or “per trading 

day”. To obtain the theta per calendar day, the formula for theta must be divided by 365; to obtain theta per 

trading day, it must be divided by 252. 

(27) 

(28) 



regard theta as a useful descriptive statistic for a portfolio. This is because in a delta-neutral 

portfolio theta is proxy for gamma.22  

 

 

 

 

Becoming clear the concept of option pricing and the Greeks, we have almost all the instruments 

to perform a Black&Scholes hedging. In the implementation, in MATLAB®, in order to make a 

Portfolio neutral among the various strategies, the author will use the function Hedgeopt, 

introduced at the end of Chapter 3. 

 

2.8 Limitation of Black-Scholes model 

 

The Black&Scholes model has set such an important foundation in financial engineering in the 

past years and has been really recognized by both academia and practitioners, but it is also well 

known and accepted that this model is not that accurate in capturing the features in the stock 

markets in reality. There are several major drawbacks of the Black&Scholes model, mainly 

because the idealized assumptions do rarely hold in the real world. First of all, the assumption 

of a normal distribution of log-returns is under critique. Combined factors of extreme events, 

fat tails, high peak and the volatility clustering effects make the assumption of non-Gaussian 

distribution more appropriate. Secondly, the volatility smile is simply a violation of the constant 

volatility assumption. The mentioned drawbacks will be discussed in greater detail in the 

following sub-sections. 

 

                                                           
22 In the appendix the relationship between Gamma, Delta and Theta is reported. 

Figure 11: The variation of Theta of a European Call with Stock price. Source: Nassim Taleb, Dynamic 

Hedging, 1997, Wiley. 



2.8.1 Shortcomings of Gaussian distribution 

 

Economists believed that prices in speculative markets, such as securities markets, behave very 

much like random walks, which is based on two classic assumptions that are already discussed 

in the previous sections: 

 

 Price changes are independent random variables 

 The changes conform to some probability distribution. 

 

In the study of financial time-series, it is a concept to describe the actual return distribution, 

where data or the variable turns to cluster around the mean. The two important parameters are 

the mean µ and the variance σ2. For a Gaussian distribution the probability density function is 

given by: 

𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒

(𝑥−µ)2

2𝜎2  

 

Some notable properties of the Gaussian distribution are the following: 

 Symmetry around its mean µ, therefore the skewness of the distribution is 0. 

 Both the mode and the median are the same as the mean µ. 

 The inflection points (points where the curve changes sign) of the curve occur one 

standard deviation away from the mean, i.e. at µ- σ and µ+ σ. 

 The kurtosis is equal to 3. 

 

Unfortunately, these properties are not suitable in capturing the probability of extreme events 

in the market. Taking for example the stock market crash of October 1987. Following the 

standard paradigm, the stock market returns are lognormally distributed with an annualized 

volatility of 20% (Volatility is usually believed to be between 15% and 60%).  

On October 19, 1987, the two month S&P 500 price fell 29 percent. Under the lognormal 

assumption and according to the calculation from the probability density function, the 

probability of this event is 10-160, which is virtually impossible. In the history of stock market 

this is not the only event with little probability that actually did happen. Besides the difficulty 

in dealing with historical extreme events, empirical research has shown that the actual return 

distributions in stock market have fatter tails and higher peak than the normal distribution. In 

Figure (12), the frequency distribution of SPX (SP500) daily log-returns over a 77-year period 

from 1928 to 2005 is plotted and compared with the normal distribution. Note the - 22,9% 



return on October 19, 1987 in Figure (13), which is not directly visible in Figure (12) but the x-

axis has been extended to the left to accommodate it.  

 

 

 

It is quite obvious that the distribution of log-returns of SPX is highly peaked23 and fat-tailed 

relative to the normal distribution.  

 

2.8.2 Clustering and Leverage effect 

 

A clustering effect is often observed in financial time series when stock returns are dependent. 

In other words, large changes in returns tend to be followed by large movements in returns. The 

same effect is seen on small changes in assets returns tend to be followed by small changes. 

This anomaly results in volatility clusters where volatility seem to group together at certain time 

periods. In the simple BS model the returns are often assumed to be independent and no 

correlation between the returns. To investigate this assumption one has to graph the correlation 

between returns and its lags. By analyzing this property it is easy to conclude that asset returns 

are not correlated. There seem to be no relationship between returns and its lags as the 

correlation fluctuate around zero and seem to appear randomly. As stated in by previous 

research24 the absolute value of returns or squared returns show another interesting property. It 

seems like the absolute returns do in fact show sign of autocorrelation indicating that returns 

                                                           
23 Kurtosis affects the height and width of the probability density function. The probability density function is 

symmetric, but is more or less “peaked” than the normal distribution. A positive kurtosis indicates a high peak, 

fatter tails and a thin midrange. A positive kurtosis can be interpreted that fewer observations are in the 

intermediate range and extreme observations occur more often.  
24 Cont, 2001. 

Figure 12: Frequency distribution of 77 years of SPX daily log-returns compared with the normal 

distribution. Source: The Volatility Surface. A Practioner's Guide. Wiley, 2006. 



are not independent. The absolute returns and its lags seem very dependent, (i.e. significant and 

slow decaying function of lags). It is this dependence that creates the volatility clustering. This 

indicates a time varying persistent volatility where today’s absolute returns are correlated with 

past absolute returns. One can observe this trend in Figure (13), where the log-returns of SPX 

over a 15-year period are plotted.  

 

 

 

 

This implies that actually the volatility of the log-returns is auto-correlated. In the model, this 

is a consequence of mean reversion of volatility, indeed we would see in Chapter 3 that the 

Heston dynamics for the volatility is expressed with a mean reverting process.  

By the way, volatilities have another effect on stocks expressed by a negative correlation, this 

negative correlation between stock's current prices and their future volatilities, called the 

leverage effect was first noted by Black in 197625, who also mentions: “I have believed for a 

long time that stock returns are related to volatility changes. When stocks go up, volatility seem 

to go down; and when stocks go down, volatilities seem to go up." This could also be explained 

from intuition. When the return of equity becomes negative, the reactions from the investors 

will be more volatile, thus the volatility will increase. Otherwise, when the return becomes 

positive, investors will gain more confidence in the speculative market; therefore the volatility 

in the near future would decrease. Therefore, this is also an implication that the constant 

volatility assumption is far away from the reality. On the contrary, we will see the Heston model 

dealing also with the leverage effect with the rho coefficient. 

                                                           
25 Black, R. Studies of Stock Price Volatility Changes. Proceedings of the 1976 Meetings of the American 

Association, Business and Economic Statistic Section, (1976), 177-181. 

Figure 13: SPX daily log-returns from December 31, 1984 to December 31, 2004. Note the - 22,9% return on 

October 19, 1987. Source: The Volatility Surface. A Practioner's Guide. Wiley, 2006. 



2.8.3 Volatility Smile and Volatility surface 

 

Recall the definition of the implied volatility from section (2.5.2) as the volatility of the 

underlying assets which, when substituted into the Black&Scholes formula, gives a theoretical 

price equal to the market price observed. If the assumption of constant volatility in the 

Black&Scholes model would hold in the market, the implied volatility of the underlying one 

could get given an underlying price with different maturities and strikes should be the same. 

But by considering the price of the Call as given (available on internet), solving the formula for 

the volatility we wouldn’t obtain a line but a curve; even though there are some jumps, rather 

than a straight line, which means that the volatility should not be a constant value. Indeed as 

seen in Figure (14), where one can observe a so-called volatility smile, proving that the implied 

volatility is a function of the strike price, this contradicts the Black&Scholes model 

assumptions. 

 

 

 

We have to mention that different underlying assets have different volatility smile graph as can 

be seen in Figure (15). For Equity and commodities derivatives, whose graph are respectively  

down and up sloping, we usually call it “volatility smirk/skew” instead of “volatility smile”; 

while for FX options, the graph is much more familiar with the term “smile‟ such as in Figure 

(14). Considering that in this thesis the author uses Equity options, usually they show a negative 

slope in their implied volatilities.  

Figure 14: Example of Volatility smile on FX options. Source: Wilmott.com 



 

 

 

 

The smirk is observed when implied volatility is a declining function of strike. As can be seen 

in Figure (16), for call options, ITM options, having a higher implied volatility, are the most 

expensive while the OTM are the cheapest relatively speaking.  

 

 

 

 

 

 

 

 

 

 

 

 

Therefore the OTM for put options are more expensive than ATM and ITM options26. The put-

call-parity ensures that the volatility smile/smirk is the same for both puts and calls27. There is 

an economic interpretation to why this is the case. ITM call options have higher implied 

volatilities because investors use options to leverage their position. Since deep ITM options 

                                                           
26 Important to keep in mind that ITM for calls is the same as OTM for puts when studying the volatility smile.   
27 Hull, 2011, p. 381. 

Figure 15: Volatility Smile and Volatility smirk for equity options. Source: Wilmott.com 

Figure 16: Higher implied volatility for ITM Call options and OTM Put options. Source: Wilmott.com 



fluctuate approximate the same as the index, investors can increase their return on investment 

by using the leverage incorporated in options. For put options deep OTM can be used as a 

protective insurance for a market turndown. Since deep OTM put options is a “cheap” 

insurance, investors use these options as downside protection and their implied volatilities 

increase. This “anomaly” is pronounced and is observed in almost every equity market.  The 

smirk is created when there is a negative correlation between the stock index returns and 

volatility, not surprisingly, when options data are used to estimate the parameters of the Heston 

model, the correlation will in most cases turn out to be negative. We might say also that the 

volatility smile/skew is also a function of time, adding a third dimension we create the volatility 

surface represented in Figure (17), noticing the negative slope and the effect of time that smooth 

the volatility surface. It is found that that longer dated maturities tend to have less skew effect28 

compared to shorter-dated options. This effect is referred to as the maturity bias. 

 

 

 

 

 

 

 

 

 

                                                           
28 Duque & Lopes, 2000. 

Figure 17: Example of Volatility surface on Equity options. Source: The Heston model and its application in 

Matlab, Wiley, 2013. 



Focus: Why is there a Skew in equity options? 

For stocks and stock indices the shape of the volatility surface is always changing. There is 

generally a skew, however, so that for any fixed maturity, T, the implied volatility decreases 

with the strike, K. It is most pronounced at shorter expirations. There are several explanations 

for the skew: 

 

 As said in previous sections, stocks do not follow GBM with a fixed volatility. 

Markets often jump and jumps to the downside tend to be larger and more frequent 

than jumps to the upside. 

 Risk aversion: as markets go down, fear sets in and volatility goes up. 

 Supply and demand. Investors like to protect their portfolio by purchasing out-of-the-

money puts. This is another form of risk aversion. 

 The total value of company assets, i.e. debt + equity, is a more natural candidate to 

follow GBM. If so, then equity volatility should increase as the equity value 

decreases. This is known as the explained leverage effect. 

 

Despite these limitations of idealistic assumptions, which 

are clearly not suitable to the real market, the 

Black&Scholes model is still widely used. The main reason 

is simply its easy analytical tractability, which results in 

simple formulas for most pricing problems. It is also quite 

accurate for ATM vanilla options, but one should be careful 

when using Black&Scholes prices for deep OTM/ITM 

options or exotic options; in these cases market prices can 

show huge deviations from the theoretical Black-Scholes prices. However, the content of the 

following Chapter will digress from the Black-Scholes world to stochastic volatility world. 

Indeed to overcome the Black&Scholes limits, in the literature, a lot of new models were 

introduced. These extensions can loosely be grouped into two main approaches: deterministic 

volatility models and stochastic volatility models. The former allow the volatility to depend 

uniquely from the price process, the latter volatility is described with another process adding a 

new source of randomness. An example of stochastic volatility model is the Heston model that 

would be used as stochastic volatility model for the empirical application and is explained in 

the next Chapter. 

 

“If Black-Scholes model 
were correct then we 
should have an implied 
volatility surface for each 
type of options. The 
volatility surface is a 
function of strike, K, and 
time-to-maturity, T” 



Chapter 3 | Stochastic volatility framework 

 

Introduction 

 

In the previous chapter, precisely in section (2.9) the Black&Scholes framework and its 

restrictions have been discussed. In this chapter some alternative option pricing models will be 

mentioned, before the presentation of the widely used Heston model. Since the introduction of 

the Black&Scholes model, several efforts 

have been made to construct alternative 

option pricing models that permit for non-

Gaussian return distributions as well as non-

constant volatility. 

The models of Hull and White (1987), Scott 

(1987), Wiggins (1987), Chensey and 

Scott (1989), and Stein and Stein (1991) are 

among the most significant stochastic volatility models that pre-date Steve Heston’s model. The 

Heston model was not the first stochastic volatility model to be introduced to the problem of 

pricing options, but it has stood out as the most important and now it is used as a benchmark 

against which many other stochastic volatility models are compared. 

To understand why stochastic-volatility models have become so important, we must go back 

over an event that shook financial markets: the aforementioned stock market crash of October 

1987 and its subsequent impact on mathematical models to price options. The aggravation of 

smiles and smirk in the implied volatility surface that resulted from the crash brought into 

question the ability of the Black-Scholes model to provide consisting prices in a new regime of 

volatility skews, and served to highlight the restrictive assumptions underlying the model. The 

most tenuous of these assumptions is that of continuously compounded stock returns being 

normally distributed with constant volatility. An abundance of empirical studies since the 1987 

crash have shown that an asset’s log-return distribution is non-Gaussian, it is characterized by 

heavy tails and high peaks. There is also empirical evidence and economic arguments that 

suggest that equity returns and implied volatility are negatively correlated (i.e. leverage effect). 

This departure from normality assumptions let the Black-Scholes-Merton model with many 

problems. In contrast, as shown in the following Sections, the Heston’s model can imply a 

number of different distributions. 

“Bakshi et al. gives the overall 
conclusion that the stochastic 

volatility feature is the most 
important. Other measurement, such 

as adding jumps and assumption of 
stochastic interest rate are not as 

significant as the assumption of 
stochastic volatility.” 



Furthermore, the Black&Scholes volatility surfaces generated by Heston's model look like 

empirical implied volatility surfaces. However, the development of more complex models 

however comes at the cost of increased intricacy. While the Black-Scholes model only have 

one unknown parameter, stochastic volatility models typically have between four and fifteen 

parameters that have to be estimated, by means of a Calibration. The calibration of such models 

is in general far more problematic than calibrating 

the model proposed by Black&Scholes29. The 

Heston’s parameters are able to include skewness 

and kurtosis, and produce a smile or skew in implied 

volatilities extracted from option prices generated by 

the model. Moreover, the Call price in the Heston 

model is evaluated in closed form, up to an integral 

that must be evaluated numerically; these are some 

reasons why the Heston model has become the most 

popular stochastic volatility model for pricing equity 

options. The Heston model is the first to exploit characteristic functions in option pricing, by 

recognizing that the terminal price density need not be known, only its characteristic function. 

The prices produced by the model are quite parameter sensitive, hence the calibration of the 

parameters is as drawback for the model itself. What remains unexamined however is the time 

consistency, or possibly inconsistency, of these models in terms of parameter variations over 

time. Large variations in daily parameter estimates would reduce the usefulness of these models 

as high-frequency recalibrations (i.e. daily/weekly). In this work, the author will perform the 

calibration every week, since all the hedging and pricing is performed weekly; for the 

calibration the author will use two type of algorithms to increase the trade-off precision and 

computer intensity. 

 

3.1 Heston’s Model dynamics 

 

The Heston is represented by the bivariate system of stochastic differential equations (SDEs) 

 

𝑑𝑆𝑡 = µ𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑆𝑡𝑑𝑊1,𝑡 

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡𝑑𝑊2,𝑡 

                                                           
29 The performance of stochastic volatility models, in terms of pricing and hedging performance, has been 

investigated in a large number of papers, see for example Bakshi, Cao and Chen 1997, Christofersen, Heston and 

Jacobs 2009 or Shoutens, Simons and Tistaert 2003. 

“In stochastic volatility models, 
skewness can be induced by 

allowing correlation between 
the processes driving the stock 

price and the process driving its 
volatility. Alternatively, 
skewness can arise by 

introducing jumps into the 
stochastic process driving the 

underlying asset price.” 

(39) 



Where 𝐸𝑃[𝑑𝑊1,𝑡, 𝑑𝑊2,𝑡] = 𝜌𝑑𝑡 

The first diffusion process is identical to the BS model30.The main contribution of this model 

is that the volatility is stochastic. This is achieved by adding another diffusion process that 

ensures random volatility. The Heston model converges to the BS model when is 𝑣𝑡constant31. 

There are some interesting features of this second equation. The first term is similar to the Cox, 

Ingersoll & Ross’ interest rate model, where the interest rates are mean reverting. Heston uses 

the same concept with mean reverting volatility due to the volatility clustering effect explained 

in section (2.9.2). The current variance 𝑣𝑡 has at 

some point converged to the long term volatility 

theta 𝜃. Even though the current variance is 

high/low today, it must be some underlying 

dynamic that pulls the volatility to a long run 

average. The parameter kappa (κ) is the mean 

reverting parameter and determines how fast the 

current variance converges to the long run mean. 

The second term is the volatility of volatility 

parameter 𝜎 and specifies the magnitude of the stochastic shock. It is multiplied by a different 

Wiener process which allows the volatility of the model to be stochastic. The two Wiener 

processes are correlated with a parameter Rho 𝜌, which ensures that volatility and the stock 

index returns are correlated. By looking at the Heston model dynamics and comparing the 

number of random sources with the number of the risky traded assets one we might say that the 

Heston model is an incomplete model, as explained in the focus “Complete and incomplete 

markets” at the end of this section. Therefore, as consequence, it is not possible to obtain a 

unique price for any contingent claim using only the underlying asset and a bank account, which 

is normally the case for complete models such as the BS model. The parameters of the model 

are:  

 

 µ the drift of the process for the stock 

 𝜅 > 0 the mean reversion speed for the variance 

 𝜃 > 0 the mean reversion level for the variance 

 𝜎 > 0 the volatility of the variance 

 𝑣0 > 0 the initial (time zero) level of the variance 

                                                           
30 The only difference is that variance is a square root process, this ensures that non-negative numbers can enter 

the process. 
31  Sigma needs to be approximate zero, as a value of zero will disrupt the calculations in the Heston model.    

“The assumption of mean 

reversion in volatility is 

consistent with the behavior 

observed in financial markets. If 

were not, markets would be 

characterized by a considerable 

amount of assets with volatility 

exploding or going near zero.” 



 𝜌 ∈ [−1,1] The correlation between the two Brownian motions; and λ the 

volatility risk parameter. The author define this parameter in the next section 

and explain why it has set this parameter to zero. 

 

Later in sub-section (3.2) it would be shown that these parameters affect the distribution of the 

terminal stock price allowing flexibility. The stock price and variance follow the processes in 

Equation (39) under the historical measure P, also called the physical measure. For pricing 

purposes, however, as for the Black&Scholes framework, we need the processes for (St, vt) 

under the risk-neutral measure Q, by applying the Martingale pricing. In the Heston model, this 

is done by modifying each SDE in Equation (40) separately by an application of Girsanov’s 

theorem. The risk-neutral process for the stock price is: 

 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑆𝑡𝑑�̃�1,𝑡 

�̃�1,𝑡 = (𝑊1,𝑡 +
µ − 𝑟

√𝑣𝑡

𝑡) 

 

It is sometimes convenient to express the price process in terms of the log price instead of the 

price itself. By an application of Ito’s lemma, the log price process is: 

 

𝑑𝑙𝑛𝑆𝑡 = (µ −
1

2
) 𝑑𝑡 + √𝑣𝑡𝑑𝑊1,𝑡 

 

The risk-neutral process for the log price is: 

 

𝑑𝑙𝑛𝑆𝑡 = (𝑟 −
1

2
) 𝑑𝑡 + √𝑣𝑡𝑑�̃�1,𝑡

32 

 

The risk-neutral process for the variance is obtained by introducing a function λ (St, vt, t) into 

the drift of dvt in Equation (40), as follows: 

 

𝑑𝑣𝑡 = [𝜅(𝜃 − 𝑣𝑡) − 𝜆(𝑆𝑡, 𝑣𝑡 , 𝑡)𝑑𝑡] + 𝜎√𝑣𝑡𝑑�̌�2,𝑡 

Where: 

�̌�2,𝑡 = (𝑊2,𝑡 +
𝜆(𝑆𝑡, 𝑣𝑡 , 𝑡)

𝜎√𝑣𝑡

𝑡) 

                                                           
32 If the stock pays a continuous dividend yield, q, then in the equations we must replace r by r-q. 

(40) 

(41) 



The function λ(S, v, t) is called the volatility risk premium. As explained in Heston (1993), 

Breeden’s (1979) consumption model yields a premium proportional to the variance, so that 

λ(S, v, t) = λvt, where λ is a constant. Substituting for λvt in Equation (41), the risk-neutral 

version of the variance process is: 

 

𝑑𝑣𝑡 = 𝜅∗(𝜃∗ − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡𝑑�̌�2,𝑡 

 

Where 𝜅∗ = 𝜅 + 𝜆  and 𝜃∗ = 𝜅𝜃/(𝜅 + 𝜆) are the risk-neutral parameters of the variance 

process. Note that, when 𝜆 = 0 , we have 𝜅∗ = 𝜅 and 𝜃∗ = 𝜃 so that these parameters under the 

physical and risk-neutral measures are the same. Throughout this thesis, the author set 𝜆 = 033. 

Indeed, λ is embedded in the risk-neutral parameters 𝜅∗ and 𝜃∗. Hence, when we estimate the 

risk-neutral parameters to price options we do not need to estimate λ34. To summarize, the risk-

neutral process is: 

 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑆𝑡𝑑�̌�1,𝑡 

𝑑𝑣𝑡 = 𝜅∗(𝜃∗ − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡𝑑�̌�2,𝑡 

 

The process for the variance has always to be positive, in order to ensure this the following 

condition mush therefore holds:  

2𝜅𝜃 > 𝜎2 

 

This condition ensures that stochastic shocks are not large enough to create negative variance 

as the mean reverting parameter κ and long term variance θ pulls the volatility back. This 

condition is known as the Feller condition. 

 

Focus: Complete and incomplete Markets 

 

Complete markets means that every derivative security is attainable or replicable (i.e 

hedgeable). In particular, this means that every security can be priced uniquely. It is worth 

mentioning that the Black-Scholes model is a complete model and so completeness follows 

from the fact that the EMM in Equation (9) is unique: the only possible choice for eta was 

𝜂𝑡 = (µ − 𝑟)/𝜎. In particular, this come by the fact that the first theorem of finance: a model 

                                                           
33 Since investors are always assumed to be risk neutral and the stochastic risk parameter is set to zero. 
34 Indeed in the calibration the author will use five parameters instead of six (Since 𝜆 = 0). 

(42) 



is arbitrage free if exists a unique martingale measure Q. If we assume that the model is 

arbitrage free, surely exists a measure Q. The second step is looking if this measure Q is 

unique. The second theorem of finance say that if we don’t assume a model to be arbitrage 

free, a model is complete if and only if the martingale measure Q in unique. In a complete 

market the price of derivatives is uniquely determined from arbitrage free, and every 

derivative is replicable with a portfolio of financial instruments. An example of complete and 

arbitrage free market is the Black&Scholes model. To state that, we call in some rules, that 

allow to recognize if a market satisfy the arbitrage principle and completeness. Denote by R 

the number of state variables and with M the number of underlying tradeable in the market: 

 

 The market is arbitrage free if M > R 

 The market is complete if M < R 

 The market is both arbitrage free and complete if M = R 

 

As Said the Black&Scholes market is both arbitrage free and complete, indeed we have that 

M = 1 e R = 1. In particular, In the Black-Scholes-Merton model, a contingent claim is 

dependent on one or more tradable assets. The randomness in the option value is solely due 

to the randomness of these assets.  Taking a look at the Heston model and comparing the 

number of random sources (two standard Brownian motions) with the number of the risky 

traded assets (only the underlying spot since volatility is not traded) one can easily see that 

the model is an incomplete model. Therefore, it is not possible to obtain an unique price for 

any contingent claim using only the underlying asset and a bank account. 

 

3.2 Effect of the Heston parameters 

 

3.2.1 Effect of Correlation parameter ρ  

 

Rho (ρ), which can be interpreted as the correlation between the log-returns and volatility of the 

asset, affects the tails of the return distribution. In particular, if ρ > 0, then volatility will move 

upwards as the asset price/return increases. This will enlarge the right tail and restrict the left 

tail of the distribution. On the other way, if rho < 0, then volatility will rise when the asset price 

(or return) decreases, thus enlarging the left tail and squeezing the right tail of the distribution. 

Figure (18) shows this effect for different values rho. As explained, since this work is 



considering Equity options, we will expect a negative rho, emphasizing the fact that equity 

returns and its related volatility are negatively correlated. 

 

 

 

The effect of changing the skewness of the distribution also impacts on the shape of the implied 

volatility surface. Hence, rho also affects this. Figures (19), (20) and (21) show the effect of 

varying rho. As said in the Chapter 2, Section (2.8.3) different underlying assets have different 

volatility smile graph, we have also said that the model can imply a variety of volatility smile 

and consequently different volatility surfaces and hence solve another shortcoming of the 

Black&Scholes model. 

 

Figure 18: Effect of correlation between Price and Volatility on the return density function. Source: The Heston 

model and its application in Matlab, Wiley, 2013. 

Figure 19: Implied volatility surface, ρ = 0.5, κ = 2, θ = 0.04, σ = 0.1, v0 = 0.04, r = 1%, S0 = 1, strikes: 0.8 – 

1.2, maturities: 0.5 - 3 years. Source Moodley, N. The Heston Model: A Practical Approach. Faculty of 

Science, University of the Witwatersrand, Johannesburg, South Africa, 2005. 



 

 

 

 

 

 

 

 

3.2.2 Effect of Volatility of Variance parameter σ 

 

The volatility of variance parameter σ controls the kurtosis of the distribution. When sigma is 

0 the volatility is deterministic and hence the log-returns will be normally distributed.  

Figure 20: Implied volatility surface, ρ = - 0.5, κ = 2, θ = 0.04, σ = 0.1, v0 = 0.04, r = 1%, S0 = 1, strikes: 0.8 

– 1.2, maturities: 0.5 - 3 years. Source Moodley, N. The Heston Model: A Practical Approach. Faculty of 

Science, University of the Witwatersrand, Johannesburg, South Africa, 2005. 

Figure 21: Implied volatility surface, ρ = 0, κ = 2, θ = 0.04, σ = 0.1, v0 = 0.04, r = 1%, S0 = 1, strikes: 0.8 – 

1.2, maturities: 0.5 - 3 years. Source Moodley, N. The Heston Model: A Practical Approach. Faculty of 

Science, University of the Witwatersrand, Johannesburg, South Africa, 2005. 



Increasing sigma will then increase the kurtosis only, creating heavy tails on both sides. Figure 

(22) shows the effect of varying sigma. 

 

 

 

 

Again, like the parameter rho, the effect of changing the kurtosis of the distribution impacts on 

the implied volatility. Figures (23), (24) and (25) show how sigma affects the curve of the 

smile/skew.  

 

 

Figure 22: Effect of Volatility of Variance on the return density function. Source: The Heston model and its 

application in Matlab, Wiley, 2013. 

Figure 23: Effect of  Volatility of Variance on the Implied Volatility with a negative rho. Source: The Heston 

model and its application in Matlab, Wiley, 2013 



Higher sigma makes the skew/smile more prominent. This makes sense relative to the leverage 

effect. Higher sigma means that the volatility is more volatile. This means that the market has 

a greater chance of extreme movements. So, writers of puts must charge more and those of 

calls, less, for a given strike. 

 

 

 

A high positive kurtosis increases the probability of extreme movements in both directions 

compared to the normal distribution assumed in Black&Scholes. When there is a higher 

probability of tail events, the option prices in that range are likely to increase (higher implied 

Figure 24: Effect of Volatility of Variance on the Implied Volatility with a zero rho. Source: The Heston model 

and its application in Matlab, Wiley, 2013 

Figure 25: Effect of Volatility of Variance on the Implied Volatility with a positive rho. Source: The Heston 

model and its application in Matlab, Wiley, 2013 



volatilities) and thereby create a volatility smile. In contrast, if σ ≈ 0 the smile effect disappears 

and the Heston model converges to the BS model. 

 

3.2.3 Effect of reversion parameter Kappa 

 

Kappa, the mean reversion parameter, can be 

interpreted as representing the degree of volatility 

clustering, it defines the how fast the variance 

process reverting to its long term mean, and it can be 

found in the real market. This is something that has 

been observed in the market as shown in Figure (14) 

in sub-section (2.9.2); large price variations are more 

likely to be followed by large price variations. The 

aforementioned features of this model enables it to 

produce a barrage of distributions. It provides a 

framework to price a variety of options that is closer 

to reality.  

In the following section, it is shown that the call price in the Heston model can be expressed as 

the sum of two terms that each contains an in-the money probability, but obtained under a 

separate measure.35 

 

3.3 The European Call Price 

 

3.3.1 Risk-neutralized approach with the Heston Model  

 

For stochastic volatility model, a risk-neutralized method, also called an Equivalent Martingale 

Measure (EMM) or Martingale pricing, is widely used in the pricing of financial derivatives. It 

is based on the Girsanov’s theorem of asset pricing. The basic way is to set up a new model that 

replaces the drift by the risk-free interest rate, as the author has done for the Black&Scholes 

framework in Chapter 2, Section (2.4), and transforms the drift in the volatility Equation. The 

Call price can be expressed by recalling Equation (10): 

 

                                                           
35 A result demonstrated by Bakshi and Madan, 2000. 

 

“The main advantage of the 

Heston model, however, is the 

closed-form solution for 

European Call options, making 

it more tractable and easier to 

implement than other 

stochastic volatility models.  In 

the next section, we derive the 

general valuation equation and 

apply it to the Heston model in 

order to obtain a pricing 

formula for European calls.” 



𝑂𝑝𝑡𝑖𝑜𝑛 𝑝𝑟𝑖𝑐𝑒 =  𝐸𝑡
𝑄[𝑒𝑟(𝑇−𝑡)𝑃𝑎𝑦𝑜𝑓𝑓(𝑇)] 

 

The Call price in the Heston model can be expressed in a manner which resembles the Call 

price in the Black-Scholes model. Authors sometimes refer to this characterization of the call 

price as “Black-Scholes–like” or “`a la Black-Scholes.” The time-t price of a European call on 

a non-dividend paying stock with spot price St, when the strike is K and the time to maturity is 

τ = T − t, is the discounted expected value of the payoff under the risk-neutral measure Q.  

 

𝐶 = 𝑒−𝑟𝑇𝐸𝑄[(𝑆𝑇 − 𝐾)]+ 

                                                = 𝑒−𝑟𝑇𝐸𝑄[(𝑆𝑇 − 𝐾)1𝑆𝑇>𝐾 

                                                = 𝑒−𝑟𝑇𝐸𝑄[𝑆𝑇1𝑆𝑇>𝐾] − 𝐾𝑒−𝑟𝑇𝐸𝑄[1𝑆𝑇>𝐾] 

             = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟𝑇𝑃2 

 

Where 1 is the indicator function. The price of a Put 

could be recovered by the Put-Call Parity36. The last 

line of is the “Black-Scholes–like” call price formula, 

with P1 replacing N (d1), and P2 replacing N (d2) in 

the Black- Scholes call price in this section. The 

quantities P1 and P2 each represent the probability of 

the call expiring in-the-money. When the 

characteristic functions are known, each in-the-money probability Pj for j=1, 2 can be recovered 

from the characteristic function via the Gil-Pelaez inversion theorem. In order to explain how 

to recover the distribution function the author need to define the notion of characteristic function 

and mention, at least, the framework of the Fourier transform and their link between the 

distribution function. 

 

3.4 Characteristic function, Fourier transform and other 

headaches 

 

We know that, in this type of framework, and also in reality, we don’t have a close form for the 

distribution function, but in order to perform Equation (43) for pricing the options, we need a 

way to recover the distribution. The calculation of the distribution function of random variables 

                                                           
36 The put-call parity describes the important relationship between European call and put options, which can be 

used to derive a closed-form expression for the price of a European put option. 

“The most difficult part is 

obtaining P1 and P2, by using 

not-build Matlab function: 

HestonP, HestonPIntegrand 

and Hestonf that are available 

in the appendix inside the 

HestonCallQuadl.m function” 

(43) 



is required. A very interesting fact is that even if the random variable of interest does not have 

an analytical expression, the characteristic function of this random variable always exists, and 

more, there is a one to one relationship between the probability density and a characteristic 

function. If the characteristic function is known in closed form, is tractable numerically, or 

given by empirical data, then we can compute the distribution function by using the Inversion 

theorem. Let’s define at first the characteristic function: 

 

𝜙𝑥(𝑢) = 𝐸[𝑒𝑖𝑢𝑥] 

 

of a real valued random variable x is defined for arbitrary real numbers 𝑢 as the expectation of 

the complex valued transformation 𝑒𝑖𝑢𝑥, where 𝑖 = √−1 is the imaginary unit. If 𝑓𝑥(𝑥) is the 

probability function (PDF) of the random variable then the integral. 

 

𝜙𝑥(𝑢) = 𝐸[𝑒𝑖𝑢𝑥] = ∫ 𝑒𝑖𝑢𝑥𝑓𝑥(𝑥)𝑑𝑥
∞

−∞

 

 

Defines the expected value and is by definition the Fourier transform of the density function 

𝑓𝑥(𝑥) denoted by ℱ[𝑓𝑥(𝑥)]  . At a given u 𝜙𝑥(𝑢), is a single random variable and for −∞ <

𝑢 < ∞ we have a stochastic process. If a characteristic function is absolutely integrable over 

the real line −∞ < 𝑢 < ∞ then it has an absolutely continuous probability distribution. This is 

said to be integrable in the Lebesgue sense and belongs to 𝐿1(𝑅). 

So, an essential property of characteristic functions is their one to one relationship with 

distribution functions, and this is fundamental for pricing purposes. Every random variable 

possesses a unique characteristic function and the characteristic function indeed characterizes 

the distribution uniquely37. The Inversion theorem is the Fundamental Theorem of the Theory 

of Characteristic Functions since it links the characteristic function back to its probability 

distribution via an inverse Fourier transform. The inversion algorithms are based on the 

following particular form of the Gil-Pelaez inversion integral for cumulative distribution 

function (𝐶𝐷𝐹) ∫ 𝑓𝑥(𝑥)
𝑋

−∞
𝑑𝑥 

𝐹𝑋(𝑋) = P(𝑋 ≤ 𝑥) =
1

2
−

1

2𝜋
 ∫

𝑒−𝑖𝑢𝑥𝜙𝑥(𝑢)

𝑖𝑢

∞

−∞

𝑑𝑢 

 

                                                           
37 Waller, 1995. 



We see that the recovered distribution function is expressed as an integral in terms of the 

characteristic function. Since we need to find the probability “In-the-money”, we use  𝐹𝑋
𝐶(𝑋) =

P(𝑋 > 𝑥) = 1 − 𝐹𝑋(𝑋) to obtain the complementary CDF (cCDF). Taking our variables in 

consideration and by applying some properties of the complex plane that are not discussed here, 

we can write the the probability of the call expiring in-the-money as:  

 

𝐹𝑋
𝐶(𝑋) = 𝑃𝑗 = Pr(𝑙𝑛𝑆𝑡 > 𝑙𝑛𝐾) =

1

2
+

1

𝜋
 ∫ 𝑅𝑒

∞

0

[
𝑒−𝑖𝜙𝑙𝑛𝐾𝑓𝑗(𝜙; 𝑥, 𝑣)

𝑖𝜙
] 𝑑𝜙 

 

Where 𝑓𝑗(𝜙; 𝑥, 𝑣) = 𝜙𝑥(𝑢). Heston (1993) postulates that the characteristic functions for the 

logarithm of the terminal stock price, xT = ln ST, are of the log linear form: 

 

𝑓𝑗(𝜙; 𝑥, 𝑣) = exp (𝐶𝑗(𝜏, 𝜙) + 𝐷𝑗(𝜏, 𝜙)𝑣𝑡 + 𝑖𝜙𝑥𝑖  

 

𝐷𝑗(𝜏, 𝜙) =
𝑏𝑗 − 𝜌𝜎𝑖𝜙 + 𝑑𝑗

𝜎2
(

1 − 𝑒𝑑𝑗𝜏

1 − 𝑔𝑗𝑒𝑑𝑗𝜏) 

𝐶𝑗(𝜏, 𝜙) = 𝑟𝑖𝜙𝜏 +
𝑎

𝜎2
[ (𝑏𝑗 − 𝜌𝜎𝑖𝜙 + 𝑑𝑗)𝜏 − 2𝑙𝑛 (

1 − 𝑔𝑗𝑒𝑑𝑗𝜏

1 − 𝑔𝑗
) 

 

𝑑𝑗 = √(𝜌𝜎𝑖𝜙 + 𝑏𝑗)2 − 𝜎2(2𝑢𝑗𝑖𝜙 − 𝜙2) 

 

𝑔𝑗 =
𝑏𝑗 − 𝜌𝜎𝑖𝜙 + 𝑑𝑗

𝑏𝑗 − 𝜌𝜎𝑖𝜙 − 𝑑𝑗
 

Where 

𝑢1 =
1

2
   𝑢2 = −

1

2
  𝑎 = 𝜅𝜃  𝑏1 = 𝜅 − 𝜌𝜎  𝑏2 = 𝜅 

 

Some authors refer to the Call price as being in ‘‘semi-closed’’ form because of the numerical 

integration required to obtain (P1) and (P2). It is important to notice that the Black&Scholes 

model also requires numerical integration, to obtain (d1) and (d2). The difference is that 

programming languages often have built-in routines for calculating the standard normal 

cumulative distribution function, whereas the Heston probabilities are not built-in and must be 

obtained using numerical integration. This integral cannot be evaluated exactly, but can be 

approximated with reasonable accuracy by using some numerical integration technique, such 

as Simpson’s rule or Gauss Lobatto integration, stuff explained in the next section. 

(44) 



3.5 Numerical Integration: Quadrature Rules 

 

In order to price the Call option, we need to solve Equation (43), as said the tricky part is the 

evaluation of the numerical integral, i.e. Equation (44). In order to solve the integral, two 

techniques are briefly discussed together with their implementation in MATLAB®. 

 

3.5.1 Adaptive Simpson’s Rule 

 

The MATLAB® function quad(@fun,a,b) uses an Adaptive Simpson’s Rule to numerically 

integrate a function (@fun) over [a,b]. It produces a result that has an error less than 10-6 or a 

user defined tolerance level which is prescribed by a fourth argument. 

 

3.5.2 Adaptive Gaussian Quadrature Rules 

 

The MATLAB® function quadl(@fun,a,b) implements an adaptive Gauss Lobatto 

quadrature rule on the function @fun over the interval [a; b]. It’s defined as the Gaussian 

quadrature. 

 

3.5.3 Solving the Heston Integral 

 

In order to evaluate (43) the author need to compute the integral in (44), recalling is: 

 

𝑃𝑗 = Pr(𝑙𝑛𝑆𝑡 > 𝑙𝑛𝐾) =
1

2
+

1

𝜋
 ∫ 𝑅𝑒

∞

0

[
𝑒−𝑖𝜙𝑙𝑛𝐾𝑓𝑗(𝜙; 𝑥, 𝑣)

𝑖𝜙
] 𝑑𝜙 

 

For j = 1, 2. This can be done in MATLAB® with the 

2 functions, quad(@fun a,b) and 

quadl(@fun,a,b) discussed above. A problem 

arises as Equation (44) is an improper integral and the 

argument b cannot be specified as ‘infinity’ i.e., 

quadl(@fun,a,b) evaluates only proper integrals. 

So, for sufficiently large b, the integral of (44) can be 

evaluated with the required accuracy. The author has chosen b = 100. MATLAB® code to price 

“Heston (1993) has mentioned 

that the integrand in equation 

(44) is a smooth function that 

decays rapidly and presents no 

difficulty. Thereby, the author 

chooses the set of integration 

between 0 and 100” 



a European Call option using Heston’s model via Adaptive Gauss Lobatto 

integration/Simpson’s Rule can be found in the appendix under the HestonCallQuadl.m 

function. As said, the Put option price could be recovered by the Put-Call parity:  

 

𝑃𝑢𝑡 = 𝐶𝑎𝑙𝑙 + 𝐾𝑒−𝑟𝑇 − 𝑆𝑡 

 

3.5.4 Comparison of Quadrature Rules 

 

The purpose of this sub-section is to undestrand which quadrature rule to use38.  MATLAB® 

defines the functions, quad and quadl, as low order and high order quadrature rules. One would 

therefore expect quadl to be superior. Some studies39 said that for extremely small tolerance 

levels quadl outperforms quad in: 

 

 Efficiency: as measured by the number of recursive steps required to compute an answer 

within a certain tolerance level. 

 Reliability: as measured by the extent to which the required tolerance is achieved. 

 

For large tolerance levels, quad is more efficient (faster) than quadl, but less reliable. Keeping 

in mind that we’re pricing options, it is require an extremely low tolerance level. Hence quadl 

would be better suited for our purposes, so in this thesis, the integrand in Equation (44) was 

calculated using the MATLAB® function quadl, embedded in the function HestonCallQuadl.m. 

 

3.5.5 Integration problems 

 

This sub-section highlights the problem that one’s might encounter in solving the integral and 

is done for completeness. In certain instances, the integrand for Pj 

 

𝑅𝑒 [
𝑒−𝑖𝜙𝑙𝑛𝐾𝑓𝑗(𝜙; 𝑥, 𝑣)

𝑖𝜙
] 

 

                                                           
38 For a complete discussion refer to Gander & Gautschi, 1998. 
39 Gander & Gautschi, 1998. 

(44bis) 



Is well-behaved in that it poses no 

difficulties in numerical integration. This 

corresponds to an integrand that does not 

oscillate much, that dampens quickly so that 

a large upper limit in the numerical 

integration is not required, and that does not 

contain portions that are excessively steep. 

In some instances, the integrand is well-behaved and the integration poses no numerical 

problems. In other cases, however, the integrand is not well-behaved so numerical integration 

can be problematic. In particular we might have 3 kinds of problems related to the integrand: 

 

 

 The first problem is that the integrand is not defined at the point φ = 0, even though the 

integration range is [0, ∞). This implies that the integration must begin at a very small 

point close to zero. In order to avoid inaccuracies due to the removal of the origin, the 

integrand must not be too steep there. 

 

 The second problem is that the integrand may contain discontinuities. To illustrate, 

Figure (26) plots two integrands for in the range φ ∈ (0, 10]. The first integrand has a 

maturity of τ = 3 years and σ = 0.75, and the second has τ = 1 year and σ = 0.09. Both 

integrands use κ = 10, θ = v0= 0.05, ρ = −0.9, r = 0, along with spot S0= 100 and strike 

K = 100. The first integrand (red line) is smooth and shows no particular numerical 

instability. The second integrand (black line), on the other hand, has discontinuities near 

the points φ = 1.7 and φ = 5, and it is steep near 1.740.  

 

                                                           
40 Simple modifications of the integrand are made by Albrecher et al. 2007 which is effective at eliminating these 

discontinuities but are not considered in this thesis. 

“It is well-known that the integrand 
for the call price can sometimes show 
high oscillation, can dampen very 
slowly along the integration axis, and 
can show discontinuities. All of these 
problems can introduce inaccuracies 
in numerical integration.” 
 



 

 

 Finally, the third problem that can arise is that of an integrand that oscillates wildly. In 

Figure (27), the first integrand has a maturity of τ = 1/52 years and uses σ = 0.175, θ = 

v0= 0.01, and a spot S0= 7. The second has τ = 1 year and uses σ = 0.09, θ = v0= 0.07, 

and a spot S0= 10. Both use ρ = −0.9, κ = 10, r = 0, and a strike of K = 10. The plots are 

over the integration range φ ∈ (0, 100]. The first integrand (black line) shows high 

oscillation, which is still not damped at φ = 100. This implies that the numerical integral 

needs to extend much further beyond φ = 100 to converge.  

 

Figure 26: Discontinuity in the Heston integral. Source: The Heston model and its application in Matlab, Wiley, 

2013. 

Figure 27: Oscillation in the Heston integral. Source: The Heston model and its application in Matlab, Wiley, 

2013. 



 

Moreover, the integrand is very steep near the origin, 

which requires a very fine grid for the numerical 

integral. The second integrand (red line) is well-behaved 

and would pose no numerical difficulties. Indeed, it does 

not oscillate, is not steep anywhere, and rapidly dampens 

to zero, starting at around φ = 10. High oscillation of the 

integrand is usually associated with short-maturity 

options. For a complete discussion on the Albrecher Formulation and the Little Heston trap take 

a look at “The Heston model and its applications in MATLAB®”. To illustrate in a whole graph, 

look at the plot. The integrand using the settings S = 7, K = 10, and r = q = 0, with parameter 

values κ = 10, θ= v0= 0.07, σ = 0.3, and ρ = −0.9. The plot uses the domain −50 < φ < 50 over 

maturities running from 1 week to 3 months. This plot appears in Figure (28). The integrand 

has a discontinuity at φ = 0, but this does not show up in the figure. The plot indicates an 

integrand that has a fair amount of oscillation, especially at short maturities, and that is steep 

near the origin.  

 

 

 

 

 

 

 

“The ‘‘Little Trap’’ 
formulation of Albrecher et 
al. (2007) can remedy many 

of the problems with the 
numerical integration that 

arise when the integrand is 
discontinuous.” 

 

Figure 28: Heston integrand and maturity. Source: The Heston model and its 

application in Matlab, Wiley, 2013. 



3.6 Advantages and Disadvantages of the Heston Model 

 

Both academia and practitioners have recognized the importance of the Heston Model, 

nevertheless, it is not a model without any drawbacks. A brief summary of its advantages and 

disadvantages will be presented in this section. 

Advantages of the Heston model: 

 

 Semi-closed form solution for European options and thus the model allows a fast 

calibration to given market data. 

 Unlike the Black-Scholes model, the price dynamics in the Heston model allows for 

non-lognormal probability distribution (high peak, fat tails). 

 The model fits the implied volatility surface of option prices in the market, when the 

maturity is not too small. 

 The volatility is mean reverting. 

 It takes into account leverage effect, and in addition, it permits the correlation between 

the asset and the volatility to be changed. 

 

Disadvantages of the Heston model: 

 

 Hard to find proper parameters to calibrate the stochastic model. 

 The prices produced by the Heston model are sensitive to the parameters, so the fitness 

of the model depends on the calibration41. In other words, the price to pay for more 

realistic models is the increased complexity of model calibration. 

 It cannot capture the skew at short maturity as the one given by the market42. 

 

Some drawbacks concerns the importance of calibration in the Heston model. Often, the 

estimation method for the parameters becomes as crucial as the model itself. 

Let’s introduce it in the next Section. 

 

 

 

 

                                                           
41 Mikhailov & Nogel, 2003. 
42 Mikhailov & Nogel, 2003. 



3.7 Calibration 

 

3.7.1 Why we need calibration? 

 

So far we have assumed that the Heston’s parameters are 

given, but it is necessary to specify that in order to pricing 

the options we need to know the parameters that describe 

the underlying and the volatility dynamics. So in order to 

solve a direct problem i.e. pricing the derivatives, we 

need the inverse of the solution of the problem i.e. the 

calibration of the parameters. 

In other words, the pricing problem concerns the evaluation of option price given the model 

parameters, the calibration is interested in the parameters 

estimation. For both problems, is necessary assume a 

robust model that represent the evolution of the 

underlying. In this thesis, calibration is an optimization 

problem, since we want to estimate the parameters that 

minimize the distance between two variables, one 

expressed by the market, the other one by the model. 

 

3.7.2 The Calibration problem 

 

The calibration problem has a slight simplification when we price options under a Martingale 

pricing. The evaluation under an EMM effectively reduces the number of estimated parameters 

from six to five as explained in Chapter 2, by setting 0 for the parameter that concerns lamba 

(λ). The following Equation must, therefore, hold: 

 

 

𝑂𝑝𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒𝑃(𝜅, 𝜃, 𝜎, 𝑉0, 𝜌, 𝜆) = 𝑂𝑝𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒𝑄(𝜅∗, 𝜃∗, 𝜎, 𝑉0, 𝜌, 0) 

“The aim of calibration is 

to find the parameters of 

the model under the 

measure Q that better 

approximate real prices 

observed under the 

measure P” 

“Once a model has been 
chosen for its realistic 

features, one has to 
calibrate it. This calibration 
must be robust and stable 

and should not be too 
computer intensive.” 



The five parameters, needed to be estimated in the Heston model. The change for each 

parameter will bring a huge impact for the correctness, as said in the drawbacks for the Heston 

model in the previous section, so the estimation of parameters becomes very important. A 

variety of methods can be chosen. For instance, one can observe the real market data, and use 

statistic tool to fit data in the Heston model43, but recently studies have shown that the implied 

parameters (i.e. those parameters that produce the correct vanilla option prices) and their time-

series estimate counterparts are different44, so one cannot just use empirical estimates for the 

parameters.  

Monte Carlo simulation is another famous method to 

do the calibration, by means of a simulation45. What 

the author selected is another common used method, 

in a way that is called an inverse problem (or the loss 

function approach). The most popular approach to 

solving this inverse problem is to minimize the error 

or discrepancy using a loss function. 

 

3.7.3 The Choice of Loss Function 

 

This method uses the error between quoted market prices and model prices, or between market 

and model implied volatilities. The parameter estimates are those values which minimize the 

value of the loss function, so that the model prices or implied volatilities are as close as possible 

to their market counterparts. A constrained minimization algorithm must be used in this regard 

so that the constraints on the parameters: 

 

𝜅 > 0,    𝜌 ∈ [−1, +1],     𝜎 > 0,     𝜃 > 0,       𝑉0 > 0 

 

Are respected. To this basis set of constraints, we need to add another one in order to ensure 

that the process for the variance is positive, as explained in section (3.4) we need the feller 

condition to be satisfied: 

2𝜅𝜃 > 𝜎2 

 

Throughout this chapter, the Heston parameters are represented as the vector: 

                                                           
43 See Ait-Sahila, Kimmel, 2005. 
44 See Bakshi, Cao & Chen 1997. 
45 See Alexander V.H, 2010. 

“The most popular way to 
estimate the parameters of 

the Heston model is with loss 
functions. This method uses 

the error between quoted 
market prices and model 

prices, or between market and 
model implied volatilities.” 



𝛺 = (𝜎, 𝜌, 𝜃, 𝜅, 𝑉0) 

 

And their corresponding estimates, as �̃�. 

There are many possible ways to define a loss function, but they usually fall into one of two 

categories: loss function based on prices, and those based on implied volatilities. 

Suppose we have a set of NT maturities τi (t = 1, . . . , NT) and a set of NK strikes Kk (k = 1, . . . , 

NK). For each maturity-strike combination (τt,Kk), for the Call option, we have a market price 

𝐶𝑡𝑘 and a corresponding model price 𝐶𝑡𝑘(�̌�) generated by the Heston model. Attached to each 

option is an optional weight 𝑤𝑡𝑘.  

 

3.7.3.1 Loss function based on prices 

 

The first category of loss functions are those that minimize the error between quoted and model 

prices. The error is usually defined as the squared difference between the quoted and model 

prices, or the absolute value of the difference; relative errors can also be used. For example, 

parameter estimates obtained using the mean error sum of squares (MSE) loss function are 

obtained by minimizing:  

𝑀𝑆𝐸 =
1

𝑁
∑ 𝑤𝑡𝑘

𝑁

𝑡,𝑘

(𝐶𝑡𝑘 − 𝐶𝑡𝑘(�̌�))2 

 

With respect to �̃�, where N is the number of quotes. The relative mean error sum of Squares 

(RMSE) parameter estimates are obtained with the loss function: 

 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ 𝑤𝑖

𝑁

𝑡,𝑘

(
𝐶𝑡𝑘 − 𝐶𝑡𝑘(�̌�)

𝐶𝑡𝑘
)2  

 

One well-known disadvantage of the MSE loss function is that short maturity, deep out-of-the 

money options with very little value contribute little to the sum in (45). Hence, the optimization 

will tend to fit long maturity, in-the-money options well, at the detriment of the other options. 

One remedy is to use in-the-money options only, so that, in (45), Call options are used for 

strikes less than the spot price, and Put options are used for strikes greater than the spot price. 

The other remedy is to use the RMSE loss function in (46). The problem with RMSE, however, 

is that the opposite effect occurs. Indeed, because of the presence of Ctk in the denominator, 

options with low market value will over-contribute to the sum in (46). The over and under-

(45) 

(46) 



contribution, however, can be mitigated by assigning weights wtk to the individual terms in the 

objective function, although the choice of the weights is usually subjective and it is discussed 

later in sub-section (3.8.4).  

 

3.7.3.2 Loss function based on Volatilities 

 

The second category of loss functions are those that 

minimize the error between quoted and model implied 

volatilities. Again, the error is usually defined as the 

squared difference, absolute difference, or relative 

difference, between quoted and model implied 

volatilities. This category of loss function is sensible, 

since options are often quoted in terms of implied 

volatility, and since the fit of model is often assessed by 

comparing quoted and model implied volatilities. Hence, for example, the implied volatility 

mean error sum of squares (IVMSE) parameter estimates are based on the loss function: 

 

𝐼𝑉𝑀𝑆𝐸 =
1

𝑁
∑ 𝑤𝑡𝑘

𝑁

𝑡,𝑘

(𝐼𝑉𝑡𝑘 − 𝐼𝑉𝑡𝑘(�̌�))2 

 

Where 𝐼𝑉𝑡𝑘 and 𝐼𝑉𝑡𝑘(�̃�) are the quoted and model implied volatilities, respectively. The main 

disadvantage of Equation (47) is that it is numerically intensive. The most popular approach to 

solving this inverse problem is to minimize the error or discrepancy between model prices and 

market prices, and is the loss function that the author will use in this thesis (i.e. MSE, Equation 

(45)). 

 

 

This usually turns out to be a non-linear least-squares optimization problem. More specifically, 

the squared differences between vanilla option market prices and that of the model are 

minimized over the parameter space, i.e., evaluating: 

 

𝑚𝑖𝑛�̌� 𝑆(𝜃) = 𝑚𝑖𝑛�̌� ∑
1

𝑁
𝑤𝑖[𝐶𝑖

�̌�(𝐾𝑖

𝑁

𝑖=1

, 𝑇𝑖) − 𝐶𝑖
𝑀(𝐾𝑖, 𝑇𝑖)]2  

 

(47) 

(48) 

“Therefore, by calibrating 

these parameters values, 

we seek to obtain an 

evolution for the 

underlying asset that is 

consistent with the 

current prices of plain 

vanilla options.” 

 



Where Ω is the vector of the five parameters values, 𝐶𝑖
𝛺(𝐾𝑖𝑇𝑖) 

and 𝐶𝑖
𝑀(𝐾𝑖, 𝑇𝑖) are the ith option prices from the model and 

market, respectively, with strike Ki and maturity Ti. N is the 

number of options used for calibration, and the wi’s are weights. 

The question now arises as to what market prices to use in this 

calibration process, as for any given option there is an ask price 

and a bid price. This might seem an issue but it actually permits 

flexibility in the calibration. The author will use the mid-price of 

the option but accept a parameter set, given that: 

 

∑
1

𝑁
𝑤𝑖[𝐶𝑖

𝛺(𝐾𝑖

𝑁

𝑖=1

, 𝑇𝑖) − 𝐶𝑖
𝑀(𝐾𝑖, 𝑇𝑖)]2| ≤ ∑

1

𝑁
𝑤𝑖[𝐶𝑖

𝛺(𝑏𝑖𝑑𝑖 − 𝑎𝑠𝑘𝑖)2

𝑁

𝑖=1

 

 

Where bidi and aski are the bid/ask prices of the ith option. We do not “order” the model to 

match the mid-prices precisely, but fall, at least on average, within the bid-offer spread. We 

should bear in mind that the modeling process should produce the required estimates within a 

certain tolerance level. Accuracy beyond this could be spurious46. The minimization mentioned 

above is not as trivial as it would seem. In general, the loss function S(Ω) is neither convex nor 

does it have any particular structure. This poses some complications: 

 

 Finding the minimum of S(Ω) is not as simple as finding those parameter values that 

make the gradient of S(Ω) zero. This means that a gradient based optimization method, 

sometimes will prove to be futile47. 

 Hence, finding a global minimum is difficult and depends on the optimization method 

used. 

 Unique solutions to (48) need not necessarily exist, in which case only local minima can 

be found. This has some implications regarding the stationarity of parameter values 

which are important in these types of models. This is discussed later. 

 

                                                           
46 The same procedure is applied for the Put option, but is not reported. 
47 For this reason the author will use two approaches, a Gradient based optimization and a Global stochastic 

optimization. 

“The author want to 

minimize the error 

difference between 

the Heston model 

prices, and real 

market price, which 

can be easily found 

from Internet.” 

(48bis) 



The last two points make this an ill-posed problem. Figure (29) plots S(Ω) as a function of rho 

and sigma.  The graph presents a graphical idea of the nature of S(Ω) as a function of two of its 

parameters, It is easy to see that gradient based optimizers will struggle to find a global 

minimum. Notice, also, the number of points that are non-differentiable. This poses a further 

problem for gradient based optimizers. It is important to remember that S(Ω) is 5-dimensional 

and as such could be even nastier in its ‘true’ form. 

 

 

 

Further complications arise from the solution, that it does not depends on data and could 

generate instability in the research of the minimum. We could say that the problem could 

present a lot of local minima, if they exist. 

 

3.7.4 The choice of Weights 

 

Earlier research48 has shown that the choice of weighting wi has a large influence on the error 

functional, and therefore on the parameter estimates. Two common methods are to either use 

the bid-ask spread of the options or to choose weights according to the number of options within 

different maturity categories. Using:  

 

𝑤𝑖 =
1

𝑏𝑖𝑑𝑖 − 𝑎𝑠𝑘𝑖
 

                                                           
48 Mikhailov and Nögel, 2003. 

Figure 29: A generic representation of S(Ω)  .Source: Moodley N., The Heston Model: A Practical Approach. 

Bachelor of Science Honours, Programme in Advanced Mathematics of Finance, University of Witwatersrand 

(2005). 

(49) 



 

The bid price represents the highest price a buyer is willing to pay for a security, while the ask 

price is the lowest offered price a seller is willing to receive for the security. Bid-ask prices are 

therefore “quotes” that buyer and seller are willing to do a deal, however these recorded prices 

are not the actual transaction price of the security and may not seem a good proxy for the market 

price. Nonetheless, the true market price has to be in the bid-ask spread as no one are willing 

to sell below the bid price or buy higher than the ask price. On the other hand, “last price” 

represents the last transaction price recorded before the market close. The advantage is that the 

recorded price represents a fair value of the option at the time of the transaction. However, the 

time of the last transaction may differ from the “true” market price, especially if the security is 

not traded actively. Since the recorded price is not time-stamped, it can be affected by a non-

synchronous bias. This means that the option price may not be recorded at the same time as the 

index and therefore be a poor proxy for the true market price. Consequently, by using last price 

the bid-ask quote may be included in the data set either way. According to previous studies49, 

by using the mid-price rather than last price reduces noise in the cross-sectional estimation of 

the volatility function. 

If the bid-ask spread is large, there is a great uncertainty about the true price of the option and 

we assign it less weight on the sum of (48). Since bid and ask prices may be hard to come by, 

this method is sometimes difficult to use. An alternative approach is to choose weights so that 

on each day all maturities have the same influence on the objective function. Moreover, the 

same weight is assigned to all points of the same maturity. This leads to the weights: 

 

𝑤𝑖 =
1

𝑛𝑚𝑎𝑡𝑛𝑠𝑡𝑟
𝑖

 

 

Where 𝑛𝑚𝑎𝑡denotes the number of maturities, and 𝑛𝑠𝑡𝑟
𝑖  denotes the number of strikes with the 

same maturity as observation “i”. In this thesis, as weights, the author will use the inverse of 

the bid ask spread, i.e. Equation (49). 

 

3.7.5 The Levenberg-Marquardt algorithm 

 

Defined the function that has to be used, an algorithm is needed in order to find the minima of 

this function. They exists methods that allow to find local minima in a multidimensional 

                                                           
49 Dumas et al., (1998). 



framework, but it won’t be complete because the algorithm does not guarantee a global 

minimum, since it is considered a gradient optimizer. The most used algorithm for this kind of 

problems is Levenberg-Marquardt. The calibration aim is to reach the best approximation of 

market prices, asking the exact calibration would imply that the market obeys the model, and 

this is an unrealistic assumption. The Levenberg-Marquardt algorithm is iterative, and it needs 

a starting point, that it would affect the solution in presence of some local minima. As 

mentioned earlier, most commonly proposed loss functions are non-convex and may exhibit 

several local (and perhaps global) minima, making standard optimization techniques 

unqualified. The author will solve the optimization problem using MATLAB® algorithm 

lsqnonlin, which is a local based optimizer. On one hand, as said, we risk getting stuck in a 

local minima. 

 

3.7.6 Regularization 

 

In addition to the objective function that is minimized a regularization term is added. 

Regularization can be necessary for two reasons: most commonly proposed error functional 

may have several global minima50 and thus the regularization term is needed to get a unique 

minimum. This method is discussed briefly for completeness51. Regularization involves adding 

a penalty function, p(Ω), to (3.1) such that: 

 

∑
1

𝑁
𝑤𝑖[𝐶𝑖

𝛺(𝐾𝑖

𝑁

𝑖=1

, 𝑇𝑖) − 𝐶𝑖
𝑀(𝐾𝑖, 𝑇𝑖)]2 + 𝑎𝑝(𝛺) 

 

Is convex. The “a” here, is called the regularization parameter.  An approach suggested52 is 

using ap(Ω) = || Ω - Ω0||
2, where Ω0  is an initial estimate of the parameters. This method is 

therefore dependent on the choice of the initial parameters. It is, in a sense, a local minimum 

optimizer. Equation (50) can be minimized in MATLAB® using the function lsqnonlin. 

 

3.7.7 MATLAB® lsqnonlin 

 

MATLAB® least-squares, non-linear optimizer is the function: 

                                                           
50 Cont and Hamida 2005. 
51 For a detailed discussion refer to Chiarella, Craddock & El-Hassan 2000. 
52 Mikhailov & Nogel, 2003. 

(50) 



Ω =lsqnonlin (fun, x0, lb, ub) 

 

It minimizes the vector-valued function, fun, that in our 

case is the MSE function, i.e Equation (50), using the 

vector of initial parameter values, x0, where the lower 

and upper bounds of the parameters are specified in 

vectors lb and ub, respectively and Ω are the vector of 

the parameters as output. The results produced by 

lsqnonlin are dependent on the choice of x0, the 

initial estimate. This is, as said, not a global optimizer, 

but rather, a local one. We have no way of knowing 

whether the solution is a global/local minimum. The appendix contains the code on using 

lsqnonlin for calibration.  By using only lsqnonlin the author might encounter the problem 

explained in the previous section, getting struck in a global minima.  

 

 

 

To mitigate this problem, we could follow two approaches: take precautions to acquire 

appropriate results in estimating the model parameters, or using a stochastic global optimizer. 

The author chooses the latter approach, for this he will introduce and use another algorithm, the 

Simulated Annealing, that is more precise but also more time consuming. 

 

3.7.8 Simulated Annealing (SA)  

 

The algorithm works in the following way: 

“We must also apply good 
judgment when selecting 

starting values. For example, 
volatility and price are 

usually negatively correlated, 
so we may specify for the 

starting value for the 
correlation to lie in (−1, 0) 

instead of (-1, 1).” 

Figure 30: Local al global minima, for each local minima we have a set of 5 parameters that try to minimize 

the objective function. Source: Pricing and Hedging of an option portfolio in presence of stochastic volatility, 

David Laguardia, 2015. 



 First the objective function is evaluated at the user-specified initial parameter estimates. 

 Next a random set of parameters is generated based on point 1 above. 

 If the value of the objective function is less than that of point 1, then we ‘accept’ the 

parameter set from point 2, else, the parameter set is accepted with 

probability exp {−
𝜕𝑓

𝑇𝑘
} , where 𝜕𝑓 is the difference between the objective functions 

using the parameter sets in points 1 and 2, and 𝑇𝑘 is the temperature 10 parameter at 

iteration k, specified by the algorithm. 

 This process is iterated, with the temperature parameter decreased at each iteration, until 

a termination condition is met (usually a specified value of the temperature parameter). 

 

The above algorithm not only ‘accepts’ parameter sets that 

decrease the objective function, but also that which 

increases it, consequently this ensures that the algorithm 

does not get stuck in a local minimum such as the 

lsqnonlin algorithm. SA requires only the value of the 

objective function for a given set of parameters. It does not 

require the form of this objective function. This, in a sense, makes the function a ‘black-box’ 

to the optimizer. Constraints are encapsulated within the ‘black-box’. This means that the 

objective function should be able to tell the optimizer whether a set of parameters lies within 

the required parameter space (in our case, whether 2𝜅𝜃 > 𝜎2), hence limits the search to a 

feasible space. Parameters that are determined by the model (eg. the temperature parameter) 

are collectively known as the annealing scheme. The annealing scheme broadly determines the 

efficiency and accuracy of the algorithm. For example, it determines the degree of ‘uphill’ 

movement and the rate of decrease of temperature, which in turn affects how long the algorithm 

runs for. It is therefore obvious that the annealing scheme be optimally specified. Such a 

specification isn’t obvious since parameters like temperature don’t have an explicit/implicit 

mathematical relationship with the objective function. This sort of specification has therefore 

become an art form. To reduce the subjective nature of the aforementioned specification, 

adaptive methods of Simulated Annealing have been developed. The most famous and widely 

used of these is Adpative Simulated Annealing.53 

 

                                                           
53 For a better explanation of SA algorithm look at The Heston Model: A Practical Approach with Matlab Code 

Nimalin Moodley, 2005. 

“It helps to imagine the 
objective function that we 

want to minimize, as a 
geographical terrain. We 
want to find the deepest 

valley of this terrain.” 
 



3.7.9 The SA algorithm in MATLAB®: Adaptive Simulated 

Annealing (ASA) 

 

ASA was developed by the theoretical physicist Lester Ingber.54 ASA is similar to SA except 

that it uses statistical measures of the algorithm’s current performance to modify its control 

parameters i.e. the annealing scheme. A proof is provided by that Ingber shows that ASA is a 

global optimizer. He also provides arguments for ASA’s computational effeciency and 

accuracy. 

ASA can be implemented in MATLAB® by downloading the function asamin.m, written by 

Shinichi Sakata. Instruction how to use and install asamin can be found in the Appendix. 

The author reported only the instructions for installing on Windows, since the calculations are 

performed on a Windows Operating system, for other platform such as Linux or Unix the author 

suggest to take a look at Moins 2002. Asamin is a MATLAB® gateway function to ASA. This 

means that asamin uses the actual C++ code of Ingeber’s ASA through MATLAB®. The 

MATLAB® code for calibrating the model using ASA for one step, can be found in the appendix. 

The ASA algorithm is particularly useful when poor starting values are available, such in our 

case. This is because, even with poor values, the algorithm will converge to the global optimum, 

albeit at the requirement of many iterations. On the downside, as said, ASA techniques are 

generally much more time-consuming than for example gradient based optimizers. Therefore, 

as explained in the following sections, the author will make use of both alternatives. In 

MATLAB® the asamin function appear like this: 

 

[Ω, S(Ω),…]= asamin('minimize',@fun,x0,lb,ub,xtype,par1,par2..) 

 

where Ω is the output vector of parameters that minimize the function @fun (That in our case 

should be the HestonCostFunc.m, the MATLAB® form of Equation (50)); S(Ω) is the value of 

the objective fuction with the parameters Ω; X0 is the initial vector of parameters, lb and ub are 

respectively the lower and the upper bound of the parameters, xtype is an option for setting real 

or imaginary parameters, and par1, par2… are the parameters subject to the xtype command. 

 

 

 

                                                           
54 The C++ code is open-source and available from www.ingber.com. 



3.7.10 Parameters stability 

 

One’s might asking if the parameters are time-varying or not. How much are they stable during 

time and how good they represent the reality also few days after the calibration data. An 

experiment to validate the stability of parameters is grabbing the data days after the calibration 

and the data of the option in interest (i.e. Out-of-Sample performances). As expected for days 

near the calibration data, the parameters represent in a good way the price evolution A lot of 

studies, such as the aforementioned Mikhailov & Nogel 2003 said that the parameters aren’t 

stationary, and hence the model has to be calibrated each step. In this work, the author follows 

the spirit of Mikhailov & Nogel, and, as he will present in the following sub-section, he will 

calibrate the model each step. Thus, he will assume that the parameters variations over time 

exists. Indeed in the results it’ll be shown that the parameters varies over time. 

 

3.7.11 Trade-off between algorithms: lsqnonlin or asamin? 

 

The trade-off between precision and time consuming is clear, and this lead to an obvious 

question, that is, which method do we use? There isn’t a straight answer to this. The choice of 

method should be dependent on the amount of information available related to parameter values 

and the state of the market. If a global minimum was obtained yesterday by using ASA, and the 

market conditions are quite normal then lsqnonlin can quite safely be used. The author 

expects that today’s parameters are in a small neighborhood around yesterday one’s. If there 

has been a crash or dramatic market movement then such an expectation is unreal. In this case 

ASA would have to be used. So, there should be a marriage of the different methods to create 

efficiency and not sacrifice accuracy. Since the author doesn’t have reliable starting values, the 

best solution is that he will use the ASA algorithm for the first date to get reliable results. After 

that he will solve the optimization problem using MATLAB® algorithm lsqnonlin. On one 

hand, after the first calibration, he risks getting stuck in a local minima. On the other hand, 

unless the market has changed dramatically he does not expect the parameters to change very 

much. In periods when the stock price fluctuates heavily he will again use the ASA algorithm 

to obtain reliable parameter estimates. Both the MATLAB® codes needed to calibrate the Heston 

model for one step, are included in the Appendix. 

 

 

 



 

3.8 Heston Greeks 

 

Having the prices of European Calls and Puts in the Heston model in semi-closed form, it is 

now possible to differentiate the call or put price and obtain expressions for the Greeks in closed 

form also. Recalling that the call price, from Equation55 (43): 

 

𝐶 = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟𝑇𝑃2  

 

Where, the in-the-money probability are 𝑃𝑗, recalling Equation (44): 

 

𝑃𝑗 =
1

2
+

1

𝜋
 ∫ 𝑅𝑒

∞

0

[
𝑒−𝑖𝜙𝑙𝑛𝐾𝑓𝑗(𝜙; 𝑥, 𝑣)

𝑖𝜙
] 𝑑𝜙 

 

Hence, the sensitivity of calls and puts to a parameter or input y usually involves first- and 

second-order derivatives of the in-the-money probabilities Pj: 

 

𝜕𝑃𝑗

𝜕𝑦
=

1

𝜋
 ∫ 𝑅𝑒

∞

0

[
𝜕𝑓𝑗

𝜕𝑦
∗

𝑒−𝑖𝜙𝑙𝑛𝐾

𝑖𝜙
] 𝑑𝜙,         

𝜕2𝑃𝑗

𝜕𝑦2
=

1

𝜋
 ∫ 𝑅𝑒

∞

0

[
𝜕2𝑓𝑗

𝜕𝑦2
∗

𝑒−𝑖𝜙𝑙𝑛𝐾

𝑖𝜙
] 𝑑𝜙 

 

In the following subsections, the author use Equation (50) to derive analytic expressions for 

most of the popular first- and second-order Greeks. 

 

3.8.1 Delta, Gamma, and Vega derivation in the Heston model 

 

Delta, gamma, rho and theta are obtained by differentiating Equation (43) and applying (50) 

when required. Vega is more arbitrary, since there are several parameters that affect the 

volatility smile in the Heston model. The delta for the Call is given by, respectively: 

 

𝐷𝑒𝑙𝑡𝑎 (𝐶𝑎𝑙𝑙) =  
𝜕𝐶

𝜕𝑆
= 𝑃1 

 

                                                           
55 The Put is obtained by Call-Put parity formula. 

(50) 



Gamma is found by differentiating delta. By definition, it is the same for Calls and Puts. Using 

𝜕𝑓𝑗 𝜕𝑆 = 𝑖𝜙𝑓𝑗 𝑆𝑡⁄⁄  in Equation (50) to obtain 𝜕𝑃1 𝜕𝑆⁄ , gamma is expressed as: 

 

𝐺𝑎𝑚𝑚𝑎(𝐶𝑎𝑙𝑙, 𝑃𝑢𝑡) =
𝜕2𝐶

𝜕𝑆2
=

𝜕𝑃1

𝜕𝑆
=

1

𝜋𝑆𝑡
∫ 𝑅𝑒

∞

0

[𝑒−𝑖𝜙𝑙𝑛𝐾𝑓𝑗(𝜙; 𝑥, 𝑣)]𝑑𝜙 

 

Vega is defined as the derivative of the Call price with respect to the implied volatility. In the 

Black&Scholes model, the implied volatility is represented by the volatility parameter σBS, so 

Vega for the call is readily obtained as ∂CBS/∂σBS, where CBS is the Black-Scholes call price. 

Recalling from Section (3.2) that in the Heston model, however, the shape of the implied 

volatility surface is determined by the parameters driving the process for the variance, namely 

the mean reversion speed κ, the mean reversion level θ, the initial level of the variance v0, and 

the correlation ρ. Since v0 and θ are responsible for the initial and long-term level of the 

variance, some studies56 recommends basing Vega on those two parameters. Both parameters 

represent variance, so to create measures of sensitivity to volatility; we defines two Vegas, one 

based on 𝜈 = √𝑣0 and the other based on 𝜔 = √𝜃. The Vegas for the call are, therefore, the 

derivatives: 

 

𝑉𝑒𝑔𝑎1 =
𝜕𝐶

𝜕𝜈
=

𝜕𝐶

𝜕𝑣0
2√𝑣0,                  𝑉𝑒𝑔𝑎2 =

𝜕𝐶

𝜕𝜔
=

𝜕𝐶

𝜕𝜃
2√𝜃  

 

The first Vega is 

𝑉𝑒𝑔𝑎1 = 𝑆𝑡  
𝜕𝑃1

𝜕𝑣0
2√𝑣0 − 𝐾𝑒−𝑟𝑇

𝜕𝑃2

𝜕𝑣0
2√𝑣0  (11.10) 

Where 

𝜕𝑃𝑗

𝜕𝑣0
=

1

𝜋
 ∫ 𝑅𝑒

∞

0

[
𝑒−𝑖𝜙𝑙𝑛𝐾 𝑓𝑗(𝜙; 𝑥, 𝑣) 𝐷𝑗(𝜏, 𝜙)

𝑖𝜙
] 𝑑𝜙 

 

The second Vega is 

𝑉𝑒𝑔𝑎2 = 𝑆𝑡  
𝜕𝑃1

𝜕𝜃
2√𝜃 − 𝐾𝑒−𝑟𝑇

𝜕𝑃2

𝜕𝜃
2√𝜃 

Where  

𝜕𝑃𝑗

𝜕𝜃
=

1

𝜋
 ∫ 𝑅𝑒

∞

0

[
𝑒−𝑖𝜙𝑙𝑛𝐾 𝑓𝑗(𝜙; 𝑥, 𝑣) 

𝜕𝐶𝑗

𝜕𝜃
⁄

𝑖𝜙
] 𝑑𝜙 

                                                           
56 Zhu, 2010. 



And 

𝜕𝐶𝑗

𝜕𝜃
=

𝜅

𝜎2
[ (𝑏𝑗 − 𝜌𝜎𝑖𝜙 + 𝑑𝑗)𝜏 − 2𝑙𝑛 (

1 − 𝑔𝑗𝑒𝑑𝑗𝜏

1 − 𝑔𝑗
)]  

 

By examination of Equation (43), it is easy to verify that Vega1 and Vega2 for the put are the 

same as those for the call. However in this thesis, for the Delta-Gamma-Vega strategy only 

Vega1 is considered for the Hedging purposes. Rho and theta are not discussed since the author 

won’t use them. 

 

3.8.2 Approximation of Heston Greeks in MATLAB® 

 

In the previous section, the derivation and analytic expressions for the Greeks from the Heston 

Call price has be done. However due to the complexity of the formula, the author chose to use 

finite differences to approximate the derivatives. Applying finite differences to find the Greeks 

and other option sensitivities also. When this approach is used to calculate Greeks, however, 

the computation time is increased because the option price must be calculated more than once, 

multiple times in the case of the second-order Greeks. For the first-order Greeks, the sensitivity 

of the option price to a parameter or variable can be approximated with first-order central 

differences.  

 

3.8.2.1 First order Greeks: approximation with first-order central 

differences 

 

Approximation with first-order central differences include the Greeks Delta and Vega. 

Delta for the Heston Call C(S, v, t) is approximated as: 

 

𝐷𝑒𝑙𝑡𝑎(𝐶𝑎𝑙𝑙) = 𝛥𝐶𝑎𝑙𝑙𝐻𝑒𝑠𝑡𝑜𝑛 =
𝜕𝐶

𝜕𝑆
≈

𝐶(𝑆 + 𝑑𝑆, 𝑣, 𝑡) − 𝐶(𝑆 − 𝑑𝑆, 𝑣, 𝑡)

2𝑑𝑆
 

 

 

In order to approximate the delta, in MATLAB® the author will use the functions 

HestonCallDelta.m available in the appendix, based on finite difference in Equation (51) that 

is based on Equation (13). As another example, to approximate the first Vega the author 

approximate the derivative with respect to v0 by a central difference. 

 

(51) 



𝑉𝑒𝑔𝑎1(𝐶𝑎𝑙𝑙, 𝑃𝑢𝑡) = 𝑉1|𝐻𝑒𝑠𝑡𝑜𝑛 =
𝜕𝐶

𝜕𝜈
≈

𝐶(𝑆, 𝑣, 𝑡; 𝑣0 + 𝑑𝑣) − 𝐶(𝑆, 𝑣, 𝑡; 𝑣0 − 𝑑𝑣)

2𝑑𝑣
 

 

The MATLAB® form of Equation (52) is the function HestonVega1.m, can be found in the 

appendix. 

 

3.8.2.2 Second order Greeks: approximation with second-order central 

differences 

 

For the second-order Greeks, such as gamma (Γ), the second order central differences for a 

single variable could be used. Hence, for example, gamma is approximated as: 

 

𝐺𝑎𝑚𝑚𝑎(𝐶𝑎𝑙𝑙, 𝑃𝑢𝑡) = 𝛤𝐻𝑒𝑠𝑡𝑜𝑛 =
𝜕2𝐶

𝜕𝑆2
≈

𝐶(𝑆 + 𝑑𝑆, 𝑣, 𝑡) − 2𝐶(𝑆, 𝑣, 𝑡) − 𝐶(𝑆 − 𝑑𝑆, 𝑣, 𝑡)

(𝑑𝑆)2
 

 

In order to approximate the Gamma in Equation (53), in MATLAB® the author will use the 

function HestonGamma.m obtainable in the appendix. It is informative to present visual 

illustrations of the Greeks. Figure (29) presents a plot of gamma from the Heston model.  

The mesh with black squares represents gamma with ρ = −0.9 and the smooth-colored surface, 

gamma with ρ = 0.9. In section (3.2), it was shown that the correlation parameter introduces 

skewness in the terminal stock price density, with negative correlation leading to a negative 

skew, and positive correlation, to a positive skew. This effect is introduced in the Heston Greeks 

also, and the skewed patterns are discernible also by looking at Figure (31). 

(52) 

(53) 

Figure 31: Gamma from Heston model. Source: The Heston model and its application in Matlab, Wiley, 2013. 



Having the Greeks the author might proceed, by calculating the Greek of the portfolio57 with 

the Equation (15), (20) and (23 bis) explained in Chapter 2, and using the MATLAB® function 

Hedgeopt, such as in the Black&Scholes framework, in order to calculate the desired hedging 

strategy. The Hedgeopt function in MATLAB®, appear like this: 

 

[PortSens, [], PortHolds] = hedgeopt (Sensitivities, Price, 

CurrentHolds, [], [], [], TargetSens, []) 

 

The input to be provided, for a basic hedging are a matrix/vector of Sensitivities, depending on 

the number of the Greeks that one wants to be hedged. A vector of Prices, are the prices of the 

options; the Current Holdings of the options that the seller have in his portfolio, and the Target 

Sensitivities that one should achieve. In this work, the author wants a full hedging, so he’ll 

provide a vector of zeros for that variable. To perform the hedgeopt function one should have 

the previous inputs. A generic example of the variable needed is shown in Figure (32)58: 

 

 

Where the sensitivities matrix (in this exmple 3 sensitivities, as consequence the desired 

hedging would be a Delta-Gamma-Vega) are calculated by Equations (51), (52) and (53). The 

Price vector is observable in the market.  It is important to notice that Figure (32) is only for a 

generic step, the table rows represents the Number of options in the portfolio. Since the author 

needs to perform dynamic hedging, he needs to calculate this for each step in time, he’ll use 3-

d matrices, where the third dimension is time; a double loop in MATLAB® is needed to perform 

this kind of problems. This is done for both models (i.e. Heston and BS). As output the most 

important are the PortHolds, a vector of quantities that will ensure the hedging59. 

                                                           
57 Following the same approach in the Black&Scholes model in Chapter 2. 
58 In this case the hedgeopt function calculates the Greeks of the portfolio, since the single Greeks and quantities 

of each options are provided. Hedgeopt for the portfolio Greeks, use the approach of the author. 
59 That in this thesis would be an array with dimension (NumberofOptions, 1, NumberofStepsintime). 

Figure 32: Generic representation of inputs needed for using the Hedgeopt function. Source: Financial 

Derivatives Toolbox™ 5, Mathworks, 2015. 

User’s Guide 



Chapter 4 | Methodology and Results 

 

4.1 Data description 

 

The initial data set consists of 24 Call options60 on the S&P 500 Index during the time period 

from January 2014 to  June 2015. For all options the author extracts information about maturity, 

strike price, current index level, Bid and Ask price. In order to calibrate the models, the author 

applies some traditional filter rules on the option data. For the options chosen sample, only a 

selective number of strike prices are recorded. Extremely high or low values are omitted. By 

doing so, all the options chosen are around at-the-money (moneyness range from 0.9 to 1.20). 

The reason is that very deep in-the-money or vert out-of-the-money option prices are 

deterministic and do not follow the pricing model. Furthermore, options with a volume of less 

than 10 contracts or with no open interest are considered as irrelevant. Moreover, options with 

an expiration date lower than 10 days have been excluded. Options with an expiration date 

longer than 2 year are rejected since they are less sensitive to volatility. Finally, options with a 

very large bid-ask spread are excluded. All in all the set of the options consists of contracts with 

19 different strikes (ranging from 1705 to 2300) and 7 different maturities where, on the first 

date, the option maturities range from 2 months to 1.5 years; Table (1 bis) reports the selected 

options for this thesis. The information is collected from Thomson Reuters Datastream 5.1. 

Datastream is one of the world’s largest databases for financial and economic information.  

It collects data from a number of other information providers and contains more than two 

million financial instruments, securities and indicators for over 175 countries in 60 markets61. 

In order to recover the desired options, the author at first, downloaded the dead list of call 

options on the SPX, by searching “LOPTSPXDC62” in the Datastream Navigator in the static 

request menu in Excel.  

Then, he recovered each Mnemonics and downloaded each option contract time series by means 

of a Time-series request. 

 

 

 

 

                                                           
60 The contract size of this options is 100. 
61 www.datastream.com. 
62 Stand for List of options on the SPX, Dead Calls 



Name Strike Quantity Bid Ask Volume Time to maturity Und. 

CALL SPX MAR15 1705 1705 -10 344,4 346,1 >10 50 SPX 

CALL SPX MAR15 1715 1715 -11 334,4 336,1 >10 50 SPX 

CALL SPX MAR15 1845 1845 -15 204,5 206,2 >10 50 SPX 

CALL SPX MAR15 1870 1870 -4 179,5 181,1 >10 69 SPX 

CALL SPX MAR15 2000 2000 -7 52,9 54,2 >10 257 SPX 

CALL SPX MAR15 2100 2100 -13 1 1,3 >10 257 SPX 

CALL SPX APR15 2000 2000 -19 69,2 71,4 >10 83 SPX 

CALL SPX APR15 2020 2020 -21 54,7 56,8 >10 82 SPX 

CALL SPX APR15 2070 2070 -4 24,3 26,1 >10 82 SPX 

CALL SPX APR15 2075 2075 -7 21,9 23,3 >10 83 SPX 

CALL SPX APR15 2250 2250 -19 0,2 0,25 >10 83 SPX 

CALL SPX MAY15 1900 1900 -11 160,2 164 >10 82 SPX 

CALL SPX MAY15 2000 2000 -6 80,8 83,3 >10 82 SPX 

CALL SPX MAY15 2050 2050 -7 47,6 49,8 >10 82 SPX 

CALL SPX MAY15 2100 2100 -8 21,9 24 >10 82 SPX 

CALL SPX MAY15 2150 2150 -12 6,9 8 >10 82 SPX 

CALL SPX MAY50 2200 2200 -13 1,45 2,2 >10 82 SPX 

CALL SPX JUN15 1850 1850 -15 212,6 214,6 >10 374 SPX 

CALL SPX JUN15 1900 1900 -10 169,5 172 >10 374 SPX 

CALL SPX JUN15 1975 1975 -8 110,9 112,7 >10 374 SPX 

CALL SPX JUN15 2100 2100 -18 33,4 34,9 >10 374 SPX 

CALL SPX JUN15 2175 2175 -12 8,9 9,7 >10 367 SPX 

CALL SPX JUN15 2200 2200 -5 4,8 5,6 >10 374 SPX 

CALL SPX JUN15 2300 2300 -6 0,25 0,35 >10 374 SPX 

 

 

4.2 Approximate other variables 

 

In this analysis, as explained in Chapter 3 the author assumes the mid-price is the best 

representative for the true market price which is the average of the bid and ask price63. To 

calculate model prices in practice is clear that the Call price is not only a function of the 

parameters (Ω), but also of the strike price K, the time to maturity T, the risk-free interest rate 

r64.The strike price and the time to maturity is uniquely specified by the contract in question, 

only the risk-free interest rate has to be determined. According to Hull65 it is natural to assume 

                                                           
63 Following Dumas et al., 1998. 
64 No dividends are used in this work. 
65 Hull, 2011. 

Table 1bis: Option selected for the initial portfolio. 



Treasury bills and Treasury bonds as the correct benchmark for risk free rates. In contrast, 

traders regard the LIBOR interbank rate as their opportunity cost of capital and usually use 

LIBOR rates as short-term risk-free rates. The author follows the same procedure as 

practitioners and use the interbank rate as the risk-free rate. Since results are in dollar the author 

choose the U.S. LIBOR as interest rate. In theory, one should match the maturity of the risk 

free rate with the remaining days to expiration for options. However, to approximate this, the 

author chooses to interpolate the maturity from the 1-3-6-12 months LIBOR with using the 

Cubic Hermite spline interpolation. In MATLAB® this is done using the interp1 function: 

 

K = interp1(x, y, z,'pchip') 

Where: 

x = vector available deadlines for the yield curve; y = observed rate for the available deadlines; 

z = scalar/vector for deadlines where interpolation is needed; k = scalar/vector of interpolated 

risk-rate.; ‘pchip’ = option that specify the calculation method. 

 

4.3 Calibration specifics for the Black&Scholes model and the 

Extended Black&Scholes 

 

The only parameter to be taken care of in order to calibrate the Black&Scholes model is the 

volatility. As said in sub-section (2.5.2) the author will use 1 year historical volatility calculated 

from the underlying returns, Equation (9) with annualized adjustment is used. The one year 

historical volatility is 0,1158 (Calculated from 30 January 2014 to 30 January 2015). Figure (32 

bis) is a check that the result is right. For the Extended Black&Scholes the author will use 3-

months rolling window volatility. Every step in time, the time-window is the same; this allows 

volatility “to adjust” to more nearest levels and in some way volatility is no more a fixed value, 

a raw form of varying volatility. As you can see in Figure 1, volatility tends to average near 

15% (the average that many models and academics use for stock market volatility). Although 

most periods generally fall within a band of 10% to 20% volatility. 

 

 

 



 

 

 

4.4 Calibration specifics for the Heston model 

 

The importance of good calibration is vital to get robust results for a complex model like 

Heston. The following rules were used in the calibration process:  

 

1. Using the asamin algorithm, explained in sub-section (3.7.9) for the first date for the 5 

parameters. Since the following lsqnonlin calibrations are fast, the author decides not 

to fix initial parameters (such as other studies66) to facilitate the complexity of the 

optimization problem.  

2. Use the lsqnonlin algorithm, explained in sub-section (3.7.7) from the second to the 

last time-step. 

3. Max iterations of 20.000 for the lsqnonlin algorithm. 

4. Used previous time-step calculated parameters as an initial guess the next time-step. 

5. When the result clearly indicated a wrongly specified parameter set the calibration that 

day was recalibrated with a new initial guess provided by asamin.  

                                                           
66 Buehler, 2008 fixed kappa and sigma. Concerning kappa, different values of kappa does not alter the pricing 

performances significantly (kappa=0.01 and kappa=5 are almost the same). Concerning V0, Buehler proxy it from 

the 2 months ATM implied volatility. 

Figure 32 bis: 12-months rolling standard deviation for the S&P 500 Index. Source: Crestmont Research. 



6. Since the hedging is considered on a weekly basis, and as a consequence the whole time-

frame of the thesis is weekly, each step in calibration and pricing, is considered also 

weekly. 

 

4.5 Calibration, Results and Benchmark of parameters for Heston 

model 

 

The parameter estimates from the step one and two estimations are shown in Table (2): 

The author calibrates the model with the asamin algorithm for the first date, and then using 

the vector of parameters found as initial parameter for feeding the lsqnonlin algorithm for 

the second step. From step 2° to step n (i.e. the final step), lsqnonlin was used: 

 

Time Algorithm κ θ σ ρ ν0 S(Ω) Computation  Date 

Step 

1 
asamin 6,10 0,0268 0,56 -0,87 0,13 34,55 108 minutes 13/01/2016 

Step 

2 
lsqnonlin 6,09 0,0267 0,5672 -0,78 0,13 33,67 21 seconds 13/01/2016 

 

 

 

Where “Computation” is the running time of the calibration process67. The reason that asamin 

runs longer is because it searches the entire parameter space for a global minimum, unlike 

lsqnonlin which settles down quite quickly into a local minimum. Figures (33)  

 

                                                           
67 The Computation time is measured by the “tic” function in Matlab in seconds. 

Figure 33: Generic example of minimization of the objective function (i.e. MSE) using lsqnonlin (left) and 

ASA (right) Source: Fast Calibration in the Heston Model, Stefan Gerhold, 2012. 

Table 2: Estimated parameters for the Call options in the Heston model in different steps with 

different algorithms. 



illustrates this point. Notice that lsqnonlin drops down very quickly to a local minimum 

whereas asamin keeps on searching for other minima and hence oscillates. As explained in 

sub-section (3.8.3.2), for the Lsqnonlin, author will require that the difference between model 

and market prices falls on average within the observed bid-ask spreads. Therefore, he will 

consider the following set of acceptable solutions. Table (3) reports the pricing for the second 

time-step to proof Equation (48 bis): 

 

Option Name 
Market price 

(Mid price) 

Price 

(Heston) 
Difference (abs) 

Within Bid – Ask 

spread? 

CALL SPX MAR15 1705 351 351,81 0,23% Yes 

CALL SPX MAR15 1715 341,35 342,073 0,21% Yes 

CALL SPX MAR15 1845 216 217,21 0,36% Yes 

CALL SPX MAR15 1870 192,25 190,99 0,65% No 

CALL SPX MAR15 2000 79,25 78,41 1,05% Yes 

CALL SPX MAR15 2100 17,6 18,24 3,67% Yes 

CALL SPX APR15 2000 91,65 91,84 0,21% Yes 

CALL SPX APR15 2020 77,21 77,36 0,22% Yes 

CALL SPX APR15 2070 45,01 45,29 0,65% Yes 

CALL SPX APR15 2075 42,25 42,50 0,61% Yes 

CALL SPX APR15 2250 0,975 0,8297 14% Yes 

CALL SPX MAY15 1900 180 180,50 0,28% Yes 

CALL SPX MAY15 2000 101,32 100,89 0,40% Yes 

CALL SPX MAY15 2050 67,65 67,51 0,2% Yes 

CALL SPX MAY15 2100 39,80 39,91 0,3% Yes 

CALL SPX MAY15 2150 19,45 19,77 1,65% Yes 

CALL SPX MAY50 2200 7,65 7,17 6,20% Yes 

CALL SPX JUN15 1850 229,75 230,02 0,12% Yes 

CALL SPX JUN15 1900 188,05 187,55 0,26% Yes 

CALL SPX JUN15 1975 129,95 128 1,03% No 

CALL SPX JUN15 2100 51,25 51,67 0,83% Yes 

CALL SPX JUN15 2175 21,15 21,89 3,53% Yes 

CALL SPX JUN15 2200 14,75 15,12 2,5% Yes 

CALL SPX JUN15 2300 2,7 2,19 18,84% Yes 

 

 

As the Table (3) shows, the calibrated Heston model provides a good match for most traded 

options. 22 out of 24 options have a predicted value that falls within the observed bid-ask 

spread. In addition, when evaluated in terms of our acceptance criterion, the model’s average 

distance from the mid-market price is roughly 2%, which is lower than the average deviation in 

Table 3: The model predicted values and its comparison with the market prices 

for Call options for the second step where lsqnonlin was used. 



the bid-ask spreads. Concerning lsqnonlin, the so called Feller condition states that if then 

the variance will never become negative. In order to incorporate this condition in our calibration 

the author forms a new variable 𝐹 = 2𝜃𝜅 − 𝜎2. We can then force F to be positive in the 

optimization routine. Hence a positive bound for F was set, a transformation according to 𝜅 =

(𝐹 + 𝜎2)/2𝜃 can then be sent to the pricer, and after the parameters are obtained, 𝜅 is 

reconstructed from F. This can be seen in the calibration code (in the variable “Solution”) in the 

appendix when the lsqnonlin calibration is performed. 

 

4.6 Stationarity of the Heston parameters 

 

Table (4) is a summary of the different parameter estimates throughout the period and it seems 

that the Heston model does not have stationary parameters. For some parameters the standard 

deviation is larger than the parameter itself. This was also evident in the article by Kim & Kim 

(2004). The non-stationarity of the parameters clearly indicates that the market changes and the 

model have to absorb new information by changing its parameters. This is the contrary of what 

the theory suggests: the model parameters should be slow moving and change little throughout 

time. Other articles such as Kim & Kim (2004) found evidence that parameters have large 

standard deviations. They argue that stability of the interdependence between the parameters is 

far more important than focusing on the standard deviations. 

 

κ θ σ ρ ν0 

3,8210 

(3,9004) 

0,0547 

(0,061) 

0,3855 

(0,1516) 

-0,9312 

(0,0667) 

0,01523 

(0,0075) 

 

 

Fortunately in this case the index doesn’t move a lot during our sample and making the model 

parameters less volatile. By prohibiting the parameters to adjust can negatively bias the results. 

The instability of parameters suggests that out-of-sample pricing can be somewhat mispriced 

since the parameters are unstable. Moving on to the validity of the parameters, several 

interesting characteristics can be observed: 

 The spot volatilities (i.e. 0,3855) lie in the range of 28-39 %, which is in line such as 

previous workes than for example Christoffersen, Heston and Jacobs (2009). 

 The correlation between return and volatility is negative for all loss functions, which 

indicates that the Heston model is able to generate the observed smirk shape in volatility 

skew.  

Table 4: Mean and standard deviation (in parenthesis) of the parameter estimates for the Heston model for 

the Call options. 



 The estimated long-run mean of the stochastic variance process (i.e. 0,2338),  is also in 

accordance with earlier studies, with an average long-run mean volatility in the interval 

22-29 % (note that the long-run mean volatility is defined as √𝜃). 

 The mean reversion parameter κ, the values vary between 1 and 6,30. These values 

coincide with the estimates obtained by Christoffersen, Heston and Jacobs (2009) as 

well as with Bakshi, Cao and Zen (1997). 

All-in-all, the parameter estimates of the Heston model are in line with the expectations as well 

as the results of earlier empirical studies68. In the next section, the author will presents the 

results of in-sample and out-of-sample pricing errors. 

 

4.7 Statistical and empirical Performances 

 
Do option pricing models which incorporate the volatility smile perform better than BS 

empirically using option prices from the S&P 500 Index? 

 

 

A variety of statistic measures can be selected to check the accuracy of the Heston model. In 

this thesis, the author and employ 2 yardsticks69 to compare empirical performances of the 

option pricing models: In-sample and Out-of-sample pricing errors.  

According to the authors, in-sample and out-of-sample errors reflect a model’s static 

performance. To evaluate the pricing errors to compare the performances of the models, the 

author will use70:  

 

𝑀𝑃𝐸 = ∑
1

𝑛

𝑛

𝑖=1
 (

𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑀𝑎𝑟𝑘𝑒𝑡

𝐶𝑀𝑎𝑟𝑘𝑒𝑡
) 

𝑀𝐴𝑃𝐸 = ∑
1

𝑛

𝑛

𝑖=1
 ⎸ (

𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑀𝑎𝑟𝑘𝑒𝑡

𝐶𝑀𝑎𝑟𝑘𝑒𝑡
)  ⎸  

𝑀𝐴𝐸 = ∑
1

𝑛

𝑛

𝑖=1
 ⎸(𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑀𝑎𝑟𝑘𝑒𝑡) ⎸  

𝑀𝑆𝐸 = ∑
1

𝑛

𝑛

𝑖=1
 (𝐶𝑀𝑜𝑑𝑒𝑙 − 𝐶𝑀𝑎𝑟𝑘𝑒𝑡)2  

                                                           
68 A t-Sahalia & Kimmel, 2005, Gatheral, 2006 and Bakshi et al., 1997. 
69 Following the approach of Bakshi, Cao & Chen, 1997. 
70 The measurements of Kim & Kim, 2004. 



 

Where Model stands for both Heston and 

Black&Scholes. 𝐶𝑀𝑜𝑑𝑒𝑙 Is the call price estimated 

by the model and 𝐶𝑀𝑎𝑟𝑘𝑒𝑡 is the observed market 

price of the option. To measure the magnitude of 

the pricing errors, the author uses mean absolute 

errors (MAE) and mean absolute percentage errors 

(MAPE). Mean percentage errors (MPE) indicate the direction of the pricing errors while mean 

squared errors, (MSE) measures the volatility of errors. This analysis will be based on these 4 

measurements, although the author will mainly deal with MAPE and MPE because the relative 

comparison and direction of pricing error is important above all else.  

 

4.7.1 In-sample performance 

 

The in-sample performance of each model is evaluated by comparing market prices with model 

prices computed by the estimated parameters of the current time. As mentioned earlier, the 

weekly re-estimation of parameters is admittedly potentially inconsistent with constant or slow-

changing parameters used to compute option prices. On the other hand, such estimation is useful 

for indicating market outlook on a daily basis. Table (5) reports the In-sample performance71: 

 

 BS model BS extended Heston Model 

MPE -0,15% 0,097% 0,05% 

MAPE 0,30% 0,317% 0,08% 

MAE 4,3789 4,178 1,0696 

MSE 40,09 32,69 2,5265 

 

 

Table (5) reports the pricing error for the three models. Overall, the Heston model outperforms 

the Black&Scholes and the Extended BS model since the MAPE for the Black&Scholes model 

is 0,3% while for the Heston model is 0,08%. The Extended BS performed similar to the 

benchmark. Looking at the MPE, notice that the BS model underprices options, since the author 

has considered both OTM and ITM money, this is a sign of the volatility smile; for this reason 

the author sorts prices considering Moneyness and Time to maturity. Table (6) sorts the pricing 

errors according to days to maturity using intervals of less than 20 days (short maturity), 

                                                           
71 MPE and MAPE have been multiplied by 10.000. 

 

Table 5: In-Sample pricing errors for Call options. 

“The relative price error is 
measured as the difference 

between market price and model 
price divided by market price. 

Hence a negative value means the 
model underestimate the price.” 

 



between 20 and 40 days (medium maturity) and above 40 days (long maturity). When sorting 

errors for maturity (and moneyness later) the lack of observations may be distorted for certain 

maturity or moneyness categories. BS and Heston have larger pricing errors for short maturities 

compared to medium and long term maturities in terms of MAPE. This confirms the maturity 

bias which has been explained theoretically in Chapter 3, where the volatility smile is less 

prominent for longer expiration dates. 

 

 

Maturity 20 < T  

 BS model BS extended Heston Model 

MPE 0,11% 0,24% 0,18% 

MAPE 1,43% 0,42% 0,29% 

MAE 1,9507 1,6433 1,1272 

MSE 4,8726 4,8890 2,5308 

 

Maturity 20 < T < 40 

 BS model BS extended  Heston Model 

MPE -0,17% 0,46% 0,24% 

MAPE 1,06% 0,95% 0,34% 

MAE 3,7293 3,34 1,1917 

MSE 22,794 18,7371 3,0017 

 

Maturity 40 > T  

 BS model BS extended Heston Model 

MPE -1,19% 0,34%  0,10% 

MAPE 0,75% 1,69% 0,25% 

MAE 6,6509 7,4216 0,9580 

MSE 75,11 80,53 2,2406 

 

 

 

To see the degree of moneyness biased errors for in-sample pricing, Table (7) sorts the pricing 

errors for moneyness. The intervals of moneyness categories expands from: 

 

 Less than 0.90: deep OTM,  DOTM 

 0.90 - 0.97: OTM 

 0.97 - 1.00, ATM - 

 1.00 - 1.03, ATM 
+  

 1.03 - 1.10: ITM 

 Above 1.10: deep ITM, DIT 

Table 6: Table reports in-sample pricing errors sorted by days to maturity for the Call options. T represents 

the remaining trading days to expiration of the option. 



Deep Out of Money: DOTM 

 BS model BS extended Heston Model 

MPE -0,66% 16,3% 0,54% 

MAPE 3,22% 16,4% 0,89% 

MAE 0,9745 2,87 0,2738 

MSE 2,2384 17,95 0,1099 

 

Out of Money: OTM 

 BS model BS extended Heston Model 

MPE 0,45% 27% 0,38% 

MAPE 9,25% 28% 0,29% 

MAE 3,83 6,17 0,7851 

MSE 21,7 58,46 1,04 

 

At the Money: ATM 

 BS model BS extended Heston Model 

MPE 4% 1,51% 0,45% 

MAPE 4,8% 4,2% 0,05% 

MAE 4,94 4,261 1,10 

MSE 46,71 29,35 2,72 

 

In the Money: ITM 

 BS model BS extended Heston Model 

MPE -6,1% -3,05% 0,22% 

MAPE 7,11% 3,38% 0,93% 

MAE 7,75 4,011 0,99 

MSE 36,02 37,04 1,61 

 

Deep Out of Money: DITM 

 BS model BS extended Heston Model 

MPE -0,31% -0,03% 0,66% 

MAPE 0,42% 0,92% 0,36% 

MAE 3,24 2,507 1,78 

MSE 20,87 11,217 4,88 

 

 

 

 

 

 

Table 7: Table reports in-sample pricing errors sorted by moneyness for the Call options.  



Table (7) reports the pricing error of both Black-Scholes model and Heston model for each 

moneyness category. Also in this case, the Heston model outperforms the Black&Scholes 

model since for each moneyness class by looking at the MAPE. 

Notice that the magnitude of improvement is notable, this can be noted by the MSE. The Heston 

model performs best on at-the-money options with a smallest MAPE. Besides, looking at the 

MPE, author found that the Black&Scholes model tends to undervalue the deep out-of-the-

money options, in-the-money options and deep in-the-money options. This result supports the 

existence of volatility smile under the Black-Scholes model. On the contrary, the Heston model 

is liable to overvalue the deep out-of-the-money options, out-of-the-money options and also the 

in-the-money options, deep in-the-money options. It suggests that the Heston model does not 

generates a sneer smile respect to the BS model and that the parameters are able to capture it. 

To see the degree of moneyness biased errors for in-sample pricing, Table (8), for completeness, 

sorts the pricing errors for both maturity and moneyness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Time Short Maturity T < 20 Medium Maturity 20 < T < 40 Long Maturity T > 40 

Moneyness DOTM OTM ATM ITM DITM DOTM OTM ATM ITM DITM DOTM OTM ATM ITM DITM 

MPE 

BS -5,49% 2,26% -0,02% -0,01% 0,01% 15,33% 1,14% -0,11% -0,15% -0,02% -0,68% 0,05% 0,23% -0,24% -0,11% 

BS extended -10,7% 1,89% 0,053% -0,005% 0,01% 20,84% 2,99% 0,08% -0,07% 0,01% 3,88% 0,74% 0,03% -0,13% -0,06% 

Heston 6,38% 0,72% 0,02% 0,01% 0,01% -2,72% 0,14% 0,01% 0,95% 0,04% -0,17% 0,03% 0,01% 0,00% 0,02% 

MAPE 

BS 7,85% 2,36% 0,07% 0,06% 0,01% 16,57% 1,27% 0,14% 0,16% 0,03% 0,83% 0,20% 0,23% 0,16% 0,11% 

BS extended 10,74% 1,97% 0,12% 0,048% 0,01% 20,84% 2,99% 0,15% 0,08% 0,03% 3,88% 0,7% 0,15% 0,13% 0,07% 

Heston 27,53% 0,82% 0,04% 0,04% 0,01% 5,65% 0,17% 0,03% 0,04% 0,04% 0,19% 0,04% 0,03% 0,02% 0,02% 

MAE 

BS 0,0589 1,4461 2,1501 1,6164 1,5637 0,4224 4,4845 4,4439 4,3492 2,3559 1,4925 4,4391 8,04 12,8989 6,1574 

BS extended 0,0537 1,1379 2,4010 1,3376 1,5890 0,4428 5,1933 3,7691 2,473 2,4909 4,34 8,899 6,02 6,665 3,809 

Heston 0,2065 0,5009 1,2896 1,1207 1,5477 0,144 0,5968 0,8223 0,9485 2,671 0,3434 0,9822 1,1535 0,9357 1,25 

MSE 

BS 0,0042 4,8899 7,2559 3,7504 3,6553 0,2651 24,2971 30,311 32,7429 8,7341 3,877 26,9068 98,7982 200,5654 53,8192 

BS extended 0,0043 3,3794 8,623 3,1382 3,7611 0,3560 31,80 21,65 15,714 9,766 27,94 95,17 50,70 71,80 23,10 

Heston 0,1842 0,4532 3,2129 2,5379 3,678 0,0273 0,9454 1,1333 1,27 9,4245 0,1554 2,9125 3,4355 1,2414 2,1494 

 

 Table 8: Table reports in-sample pricing errors for Call options sorted by days to maturity and moneyness. 



4.7.2 Out-of-sample performance 

 

The analysis also evaluates model’s parameter stability over time by analyzing the out-of-

sample valuation errors for the next week.  

To conduct the 1 time-step ahead (i.e. week) out-of-sample analysis, the author for the Heston 

model uses the estimated structural parameters from the previous time to price the options for 

the current time. For the BS extension the author uses the previous level of rolling volatility. 

The pricing errors of the models are then compared to the benchmark BS, that remains 

unaltered, since the only parameters needed for the calibration (i.e. volatility) is fixed.  

If the results show that a model is not able to outperform the benchmark, the author will 

conclude that the model is not appropriate to forecast option prices 1 time-step ahead. 

Then, the author follows the same procedure for 3 week ahead out-of-sample pricing where the 

estimated parameters are used to forecast 3 time-step ahead72.  

 

4.7.2.1 One week ahead results 

 

For the Heston model, the pricing errors worsen when shifting from in-sample pricing to 1 time-

step ahead out-of-sample pricing. Looking at both Table (5) and (9), MAPE increases for the 

Heston model as expected. The MAPE pass from 0,08% to 0,21%. The BS MAPE remains 

roughly unchanged (0,30% vs 0,32%). The Heston model performs still better respect to BS, 

but as explained in Chapter 3, in the Heston model drawbacks, is high-sensitive to its 

parameters. 

 

 BS model BS extended  Heston Model 

MPE -0,11% 0,15% 0,12% 

MAPE 0,32% 0,34% 0,21% 

MAE 3,9570 4,1670 2,5365 

MSE 30,1787 31,95 11,05 

 

 

 

The Table below, sorts the errors according to maturity for 1 time-step ahead pricing errors. 

 

 

                                                           
72 To further check the robustness of the models one can assess if the model parameters are stable through longer 

time periods and their ability to predict option prices. 

 

Table 9: 1 day Out-of-Sample pricing errors for Call options. 



Maturity 20 > T  

 BS model BS extended Heston Model 

MPE 0,11% 0,27% 0,13% 

MAPE 0,43% 0,45% 0,46% 

MAE 1,6507 1,7539 1,7701 

MSE 4,8726 5,5585 5,6397 

 

Maturity 20 < T < 40 

 BS model BS extended Heston Model 

MPE -0,05% 0,74% 0,47% 

MAPE 1,07% 1,08% 0,78% 

MAE 3,50 3,5187 2,55 

MSE 18,4578 20,73 11,5736 

 
Maturity 40 < T 

 BS model BS extended Heston Model 

MPE -1,1% 0,64% 0,62% 

MAPE 1,83% 1,96% 0,94% 

MAE 6,0648 6,493 3,1218 

MSE 57,93 60,223 14,9360 

 

 

 

For short maturity, all BS model actually outperform Heston. However, for both medium and 

long term categories, Heston outperforms the BS model in terms of MAPE. Table (11) sorts 

pricing error across maturities. The extended BS performed very similar to the benchmark in 

terms of MAPE, but it does not undervalue options. The author decide to not report DOTM for 

distorting results due to not enough data. Notice that the BS model for the OTM options 

performs better than the Heston. For the remaining moneyness we might conclude that the 

Heston model also with the previous parameters outperforms the BS model, and most 

important, as always the Heston model does not underprice ITM and DITM options by looking 

the MPE. 

 

Out of Money: OTM 

 BS model BS extended Heston Model 

MPE 3,7% 23% 4,8% 

MAPE 4,7% 23% 8,5% 

MAE 2,5606 5,871 1,5397 

MSE 10,92 56,38 5,7742 

 

At the Money: ATM 

 BS model BS extended Heston Model 

MPE -3,1% 2,5% 1,8% 

MAPE 5,4% 4,62% 3,6% 

Table 10: Table reports 1 day ahead out-of-sample pricing errors for Call options sorted by days to maturity. 

T represents the remaining trading days to expiration of the option. 



MAE 4,500 4,3079 3,5023 

MSE 35,06 29,075 17,96 

 

In the Money: ITM 

 BS model BS extended Heston Model 

MPE -4,2% -2,3% 0,7% 

MAPE 4,5% 2,8% 2,2% 

MAE 5,958 3,119 2,4415 

MSE 58,15 21,8429 9,7441 

 

Deep Out of Money: DITM 

 BS model BS extended Heston Model 

MPE -0,37% -0,02% 0,7% 

MAPE 1,2% 1,0% 0,9% 

MAE 3,4518 2,637 2,3966 

MSE 22,57 12,505 8,480 

 

 

 

 

Table (12) reports the pricing errors sorted by maturity and moneyness. Across all of the 

maturity categories, the pricing errors decreases for the Heston model as the maturity increases. 

This indicates the models suffer from a maturity bias. The fact that MAPE decreases across 

moneyness confirms a moneyness bias.  

Table 11: Table reports 1 day out-sample pricing errors sorted by monenyness for the Call options.  



 

Time Short Maturity T < 20 Medium Maturity 20 < T < 40 Long Maturity 40 < T 

Moneyness DOTM OTM ATM ITM DITM DOTM OTM ATM ITM DITM DOTM OTM ATM ITM DITM 

MPE 

BS - 1,36% -0,017% -0,30% -0,013% - 0,26% -0,061% -0,014% 0,02% - 0,082% -0,20% 0,20% -0,10% 

Extended BS - 1,31% 0,067% -0,001% 0,014% - 2,22% 0,13% -0,039% 0,02% - 0,68% 0,07% -0,12% -0,06% 

Heston - 1,52% 0,008% 0,005% 0,012% - 0,33% 0,072% 0,028% 0,04% - 0,14% 0,09% 0,03% 0,03% 

MAPE 

BS - 1,39% 0,12% 0,072% 0,014% - 0,26% 0,21% 0,15% 0,044% - 0,12% 0,23% 0,20% 0,11% 

Extended BS - 1,38% 0,13% 0,039% 0,015% - 2,22% 0,18% 0,052% 0,040% - 0,68% 0,17% 0,12% 0,07% 

Heston - 1,73% 0,15% 0,089% 0,055% - 1,22% 0,13% 0,085% 0,012% - 0,24% 0,13% 0,72% 0,05% 

MAE 

BS - 1,014 2,0549 2,014 1,5892 - 2,535 4,458 4,087 2,92 - 3,34 6,64 10,51 6,228 

Extended BS - 0,986 2,695 1,332 1,635 - 4,72 4,202 1,322 2,778 - 8,771 5,773 5,555 3,863 

Heston - 0,6381 2,6587 1,6947 1,7296 - 0,786 3,389 2,336 2,947 - 2,314 4,323 3,13 2,79 

MSE 

BS - 2,4647 7,48 6,116 3,7491 - 11,34 26,35 23,40 11,95 - 14,96 66,95 125,32 54,71 

Extended BS - 3,00 10,60 3,039 3,8966 - 31,63 27,71 2,84 11,04 - 34,24 45,99 47,52 25,44 

Heston - 0,8571 10,42 5,0986 4,5510 - 2,08 18,31 8,80 11,59 - 9,84 24,06 14,23 10,93 

 

 

 

 

 

 

Table 12: Table reports 1 day out-of-sample pricing errors for Call options, sorted by days to maturity and moneyness. 



The author then, performed the 3 weeks ahead Out-of-Sample pricing errors. One interesting 

result is that the out-of-sample pricing error 3 weeks ahead are mostly in favor of the BS model 

respect to the Heston model. The author does not report them, but he concludes that three weeks 

are sufficient to change a lot the Heston parameters, and, as theory said in section (3.6), the 

Heston model is high-dependent from parameters and calibration. We might conclude by saying 

that Stochastic volatility models performs better in terms of pricing on the S&P 500 for the 

sample considered if a lot of computational power is available and used in order to allow the 

model to adapt to the different market situations. Flexible parameters in time allow to a better 

fit in reality. On the other hand the BS model gives us very close results comparing to the 

previous works, this could be possible in a low and stable-volatility market, where the volatility 

for the sample considered remains stable at the origin levels. In a high-sensitive volatility 

market, the BS model surely would have performed worse by underpricing a lot both OTM and 

ITM options. 

 

4.8 Economic results 

 

The scope of this section, is to answer the main question of this work: 

 

“Which one out of the dynamic-hedging strategies is most efficient in reducing the risk of an 

options Portfolio? How things change by considering advanced features such as stochastic 

volatility, contingency constraints, leverage effect and non-normal distribution of returns?” 

 

After used for each strategy and each step in time the function hedgeopt the author has a 

disposition the quantity that allow the portfolio to be neutral to the considered Greeks. Having 

a disposition those quantities and the market prices, the author calculated the portfolio value 

for each time and for each strategy. Then, he could derive the P/L for the 9 strategies73 are 

reported in Table (15): 

 

 Delta Delta-Gamma Delta-Gamma-Vega 

BS -5278,73 $ -4203,28 $ -5202,11 $ 

Extended BS -6146,05 $ -3819,51 $ -3082,95 $ 

Heston -8902,11 $ -5743,62 $ 530,83 $ 

 

 

                                                           
73 The price to calculate the P/L was chosen accordingly between the bid or ask, depends on the transaction. 

Table 15: P/L of the nine hedging strategies. 



Numbers are mostly negative, indeed the author has chosen a period where the index was up-

trending, starting with a short calls portfolio is a normal result. He has chosen this period to 

highlight losses if a naked position was implemented. 

In order to calculate the P/L it was sufficient to see the variation of the portfolio in time, since 

the hedging is performed in a self-financing way (i.e. no other funds are requested) and every 

time that an option is near to expiration (i.e. previous time-step before expiration) the author 

performed the hedge adding a constraint with zero quantity for the “near-expiration” option. 

Constraints in the hedgeopt function are available in the input “Conset”: 

 

[PortSens, [], PortHolds] = hedgeopt (Sensitivities, Price, 

CurrentHolds, [], [], [], TargetSens, Conset) 

 

For example the author, having in expiration 6 options in the portfolio, imposed a zero quantity 

for these options. The other might vary between the Lowerbound and Upperbound. +/- 180 was 

chosen to be a reasonable range. 

 

What happened if no Hedging strategy was implemented, but considering a naked position on 

the portfolio, so by leaving unaltered the quantity sold at the begin of the portfolio? 

 The portfolio would have incurred in a loss of – 714’735 $

LowerBounds = [0 0 0 0 0 0 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 -180 

-180 -180 -180 -180 -180 -180 -180]; 

UpperBounds = [0 0 0 0 0 0 180 180 180 180 180 180 180 180 180 180 180 180 180 

180 180 180 180 180]; 

ConSet = portcons('AssetLims', LowerBounds, UpperBounds); 



 

Chapter 5 | Conclusion and Extension 

 

5.1 Conclusions 

 

The author finds that none of the models presented can fully approximate the market in terms 

of pricing, but stochastic volatility models such as the Heston model can however improve the 

pricing errors significantly, and as consequence the Hedging performances in some cases. 

Calibrating models is essential to obtain good results. In this thesis the author has used 

MATLAB® to estimate parameters and the author is positive that the parameter set obtained 

from the calibration is reasonable, indeed this is a results in very low pricing errors; moreover 

the parameters set are in line with the previous literature. The Heston model may to some extent 

be calibrated slightly better without the time constraint, using always a stochastic global 

optimizer, but this is of minor importance. 

In spite of model theory, the parameters have large standard deviations making them flexible 

and adaptable to new market conditions. This seems to be a major concern since models that 

have large standard deviations in parameters seem to perform better74. All of the parameters 

seem to incorporate the volatility smile and leverage effect which gives confidence in the 

results. As a last note, one should not spend infinite time for the perfect calibration when the 

model by itself is imperfect. It is just as vital to understand the assumptions behind the models 

and how the different parameters affect the output. 

The thesis concludes that models that are able to incorporate the volatility as a stochastic 

variable improve the ability of pricing from the options on the S&P 500 Index, a familiar result 

in the academia. 

 

5.2 Extensions 

 

The author presents some extension that could be used to improve results: 

 

 Use a Bates model for pricing short-dated options: It is known in the literature, that the 

Heston model only has a limited ability of generating extreme skews for short 

maturities, therefore the model error related to this will be large. The Bates model is an 

                                                           
74 Kim & Kim, 2004. 



extension of the Heston model, adding jumps following a compound Poisson process in 

the stock dynamics. But a Bates model, as drawback requires a higher level of 

complexity, the parameters to be estimated pass from 5 to 8. An interesting fact could 

be evaluate a dynamic hedging strategies also for the Bates model, and see by the 

statistical performance if outperforms the Heston model in terms of pricing errors. 

 

 Correlation of parameters: From the calibration point of view, there may be a set of 

parameters in the high vol-vol, high speed of mean reverting regime which gives a 

compatible fit to a set of parameters in the lower vol-vol, lower mean reverting regime. 

This feature is sometimes characterized by the phenomenon that ‘parameters that are 

highly correlated’. As extension one could develop a partial “resampling scheme” which 

groups the highly correlated parameters together in order to improve the convergence 

to a global optimum. 

 

 Use different mid-price for calibration: Most studies refer to the daily closing price (or 

mid-point of the bid-ask spread, as used in this thesis) as reflecting the value of the 

underlying asset on a daily basis. However, recent studies argued that the use of daily 

closing prices increase the noise level, which tends to overprice options. One therefore 

could use the volume weighted average price (VWAP) since VWAP has been shown to 

be statistically more efficient. 

 

 Weighted measure of volatility: when volatilities change, the implied volatility of short-

dated options tend to change by more than the implied volatility of long-dated options. 

The vega of the portfolio is therefore often calculated by changing the volatilities of 

long-dated option by less than that of short-dated options.  

 

 

 

 

 

 

 

 

 

 



Appendix 

 

A test of local linearity of a derivative security (that is a function of the underlying asset) 

between prices S1 and S2 with 0 < λ < 1, will satisfy the following equality: 

 

𝑉(𝜆𝑆1 + (1 − 𝜆)𝑆2) = 𝜆𝑉(𝑆1) + (1 − 𝜆)𝑉(𝑆2) 

 

It will be convex between S1 and S2 if: 

 

𝑉(𝜆𝑆1 + (1 − 𝜆)𝑆2) ≤  𝜆𝑉(𝑆1) + (1 − 𝜆)𝑉(𝑆2) 

 

It will be concave if: 

𝑉(𝜆𝑆1 + (1 − 𝜆)𝑆2) ≥  𝜆𝑉(𝑆1) + (1 − 𝜆)𝑉(𝑆2) 

 

Relationship between delta, theta, and gamma. 

 

The value of a portfolio Π on a derivative must satisfy this differential equation: 

 

𝜕Π

𝜕𝑡
+ 𝑟𝑆

𝜕Π

𝜕𝑆
+

1

2
𝜎2𝑆2

𝜕2𝛱

𝜕𝑆2
= 𝑟𝛱 

Since: 

𝛩 =
𝜕Π

𝜕𝑡
         𝛥 =

𝜕Π

𝜕𝑆
          𝛤 =

𝜕2𝛱

𝜕𝑆2
 

It follows that: 

𝛩 + 𝑟𝑆𝛥 +
1

2
𝜎2𝑆2𝛤 =  𝑟𝛱 

 

For a delta neutral portfolio: 

𝛩 +
1

2
𝜎2𝑆2𝛤 =  𝑟𝛱 

 

This shows that, when Θ is large and positive, gamma of a portfolio tends to be large and 

negative, and vice versa. This show the relationship between ΔΠ and ΔS. When gamma is 

positive, theta tends be negative. The portfolio declines in value if there is no change in S, but 

increases in value if there is a large positive or negative change in S. When gamma is negative, 



theta tends to be positive and the reverse is true; the portfolio increases in value if there is no 

change in S but decreases in value if there is a large positive or negative change in S. As the 

absolute value of gamma increases the sensitivity of the value of the portfolio to S increases. 

This is consistent with the way and explain why theta can to some extend be regarded as proxy 

for gamma in a delta-neutral portfolio. 

 

MATLAB® CODES 

 

European Call using Numerical Integration 

 

The function Call = HestonCallQuadl(kappa,theta,sigma,rho,v0,r,T,s0,K) calculates the value 

of a European call, equation () with a specific set of parameters. It calls 

HestonP(kappa,theta,sigma, rho,v0,r,T,s0,K,type), where type = 1,2, which evaluates (44), 

either using an adaptive Gauss Lobatto rule or adaptive Simpson’s Rule.  

This, in turn, calls HestonPIntegrand(phi,kappa,theta,sigma,rho,v0,r,T,s0,K,type), which 

evaluates the integrand of (). This, in turn calls Hestf(phi,kappa,theta, 

sigma,rho,v0,r,T,s0,type), which evaluates the ‘f’ function in the integrand of (44). 

 

function call = HestonCallQuadl(kappa,theta,sigma,rho,v0,r,T,s0,K) 
warning off; 
call = s0*HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,1) - ... 
K*exp(-r*T)*HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,2); 
function ret = HestonP(kappa,theta,sigma,rho,v0,r,T,s0,K,type) 
ret = 0.5 + 1/pi*quadl(@HestonPIntegrand,0,100,[],[],kappa, ... 
theta,sigma,rho,v0,r,T,s0,K,type); 
function ret = HestonPIntegrand(phi,kappa,theta,sigma,rho, ... 
v0,r,T,s0,K,type) 
ret = real(exp(-i*phi*log(K)).*Hestf(phi,kappa,theta,sigma, ... 
rho,v0,r,T,s0,type)./(i*phi)); 
function f = Hestf(phi,kappa,theta,sigma,rho,v0,r,T,s0,type); 
if type == 1 
u = 0.5; 
b = kappa - rho*sigma; 
else 
u = -0.5; 
b = kappa; 

end 

a = kappa*theta; x = log(s0); 

d = sqrt((rho*sigma*phi.*i-b).^2-sigma^2*(2*u*phi.*i-phi.^2)); 

g = (b-rho*sigma*phi*i + d)./(b-rho*sigma*phi*i - d); 

C = r*phi.*i*T + a/sigma^2.*((b- rho*sigma*phi*i + d)*T - ... 

2*log((1-g.*exp(d*T))./(1-g))); 

D = (b-rho*sigma*phi*i + d)./sigma^2.*((1-exp(d*T))./ ... 

(1-g.*exp(d*T))); 

f = exp(C + D*v0 + i*phi*x); 

 

 



Calibrating Heston Model using lsqnonlin 

 

The following contains the MATLAB® code for calibrating the Heston model, for one step in 

time, using MATLAB® lsqnonlin. The script file HestonLsCalibration.m initiates the 

calibration process. It creates a handle on the function HestonDifferences.m that calculates the 

differences between the model and market prices within lsqnonlin. The ‘load 

OptionData.xlsx’75 line imports the strikes, maturities, market prices, bid and offers, etc., of the 

options and underlying from the pre-built excel file. The first parameter of input that MATLAB® 

sends into HestonDifference is the feller condition. It is done here in this way because it is 

easier to encapsulate the constraint 2κθ - σ2> 0. Reasonable bounds on the parameters were 

chosen relative to this. 

 

clear; 
NoOfIterations = 0; 
[data,text]=xlsread('OptionData.xlsx'); 
%OptionData = format [r-q,T,S0,K,Option Value,bid,offer] 
Size = size(data); 
NoOfOptions = Size(1); 
OptionData=data; 
%input sequence in initial vectors [2*kappa*theta - sigma^2,... 
% theta,sigma,rho,v0] 
x0 = [6.5482 0.0731 2.3012 -0.4176 0.1838]; 
lb = [0 0 0 -1 0]; 
ub = [20 1 5 0 1]; 
options = optimset('MaxFunEvals',20000); 
%sets the max no. of iteration to 20000 so that termination 
%doesn't take place early. 
tic; 
Calibration = lsqnonlin(@HestonDifferences,x0,lb,ub); 
toc; 
Solution = [(Calibration(1)+Calibration(3)^2)/(2*Calibration(2)), 

Calibration(2:5)]; 
 

 

function ret = HestonCallDifferences(input) 
NoOfIterations = NoOfIterations + 1; 
%counts the no of iterations run to calibrate model 
for i = 1:NoOfOptions 
PriceDifference(i) = (OptionData(i,5)-HestonCallQuadl( ... 
(input(1)+input(3)^2)/(2*input(2)),input(2), ... 
input(3),input(4),input(5), ... 
OptionData(i,1),OptionData(i,2),OptionData(i,3), ... 
OptionData(i,4)))/sqrt((abs(OptionData(i,6)- ... 
OptionData(i,7)))); 
%input matrix = [kappa theta sigma rho v0] 
end 
ret = PriceDifference'; 

 

 

                                                           
75 An example of the composition of OptionData.xlsx is presented at the end of this sub-section 



As mentioned before, the file OptionData is an Excel file containing the market data for 

calibration for a specific step in time. For illustrative purposes, OptionData.xlsx contains the 

following information, and it is used as input with the following order: 

 

 

Asamin Installation Instructions for Windows 

 

The installation procedure for Windows is as follows: 

 

 Ensure that there is a C compiler installed on the PC that will be implementing the ASA 

routine. The author performed the calculations with Visual studio 2010 for Windows. 

Available compiler for Matlab versions are available on mathworks.com 

 Download the ASA packages from http://www.ingber.com 

 Download the ASAMIN packages from http://ssakata.sdf.org/software/ and place them 

in their own directory. 



 Place the ASA _les asa.c, asa.h and asa user.h in the same directory in which the 

ASAMIN packages were placed. 

 Open the MATLAB® console and change the \current folder" to the directory containing 

the ASAMIN and relevant ASA _les. 

 In the MATLAB® command window, type: 

 

mex asamin.c asa.c -DUSER_ACCEPTANCE_TEST#TRUE -DUSER_ASA_OUT#TRUE 

-DDBL_MIN#2.2250738585072014e-308. 

 

MATLAB® will then create a MEX file, allowing the user to interface with the C language ASA 

code via MATLAB. Importantly, the pathname for the directory containing the ASAMIN, 

relevant ASA and MEX files must be incorporated into every script that calls the asamin 

function. This can be done through the use of the addpath command in MATLAB®. 

 

Calibrating Heston Model using ASA 

 

The scheme that controls the ‘acceptance’ of new solutions is so simple that the cost of 

implementing asamin is purely dependent on the computational efficiency of evaluating the 

objective function. In our case, calculation of the objective function for a given set of 

parameters entails the evaluation of a large number of options. This makes asamin very 

computationally demanding and time consuming. The following script, CalibrationASAmin, 

calibrates the model using asamin. It uses the function HestonCostFunc.m. This code reported 

in only for one step in time.  

 

clear; 
[data,text]=xlsread('OptionData.xlsx'); 
%OptionData = [r-q,T,S0,K,Option Value,bid,offer] 
OptionData=data; 
Size = size(data); 
NoOfOptions = Size(1); 
%input sequence in initial vectors [kappa,theta,sigma,rho,v0] 
x0 = [4 0.05 0.30 -0.90 0.15]; 
lb = [0 0 0 -1 0]; 
ub = [10 1 5 0 1]; 
asamin('set','test_in_cost_func',0) 
tic; 
[fstar, xstar, grad, hessian, state] = asamin('minimize',... 
'HestonCostFunc',x0',lb',ub',-1*ones(5,1)); 
toc; 
 

 



function [cost , flag] = HestonCostFunc(input) 
%input matrix = [kappa theta sigma rho v0] 
NoOfIterations = NoOfIterations + 1; 
if (2*input(1)*input(2)<=input(3)^2) %test for constraint 
flag = 0; %flag = 0 if contraint is violated, else = 1 
cost = 0 
else 
for i = 1:NoOfOptions 
PriceDifference(i) = (OptionData(i,5)-HestonCallQuadl(... 
input(1),input(2),input(3),input(4),input(5), ... 
OptionData(i,1),OptionData(i,2),OptionData(i,3),... 
OptionData(i,4)))/sqrt((abs(OptionData(i,6)- ... 
OptionData(i,7)))); 
end 
cost = sum(PriceDifference.^2) 
ObjectiveFunc(NoOfIterations) = cost; %stores the path of 
flag = 1; %the optimizer 
end 

 

Greeks in Heston  

Delta of the call option: Function HestonCallDelta.m 

function ret =HestonCallDelta(kappa,theta,sigma,rho,v0,r,T,s0,K) 
epsD = abs(s0)*eps^(1/6); 
ret=(HestonCallQuad(kappa,theta,sigma,rho,v0,r,T,s0+epsD,K)... 
    -HestonCallQuad(kappa,theta,sigma,rho,v0,r,T,s0-epsD,K))/(2*epsD); 
if ret>1 
    ret=1; 
end 
if ret<0 
    ret=0; 
end 
end 

 

Gamma: Function HestonGamma.m 

function ret =Hestondelta(kappa,theta,sigma,rho,v0,r,T,s0,K) 
epsD = abs(s0)*eps^(1/6); 
a= HestonCallQuad(kappa,theta,sigma,rho,v0,r,T,s0+epsD,K); 
b= HestonCallQuad(kappa,theta,sigma,rho,v0,r,T,s0-epsD,K); 
c= HestonCallQuad(kappa,theta,sigma,rho,v0,r,T,s0,K); 
ret=(a-2*c+b)/(epsD^2); 

if ret>1 
    ret=1; 
end 
if ret<0 
    ret=0; 
end 
end 

 

Vega: Function HestonVega1.m 

function ret =HestonVega1(kappa,theta,sigma,rho,v0,r,T,s0,K) 
epsD = abs(v0)*eps^(1/6); 
a=HestonCallQuad(kappa,theta,sigma,rho,v0+epsD,r,T,s0,K); 
b=HestonCallQuad(kappa,theta,sigma,rho,v0-epsD,r,T,s0,K); 
ret=((a-b)/(2*epsD)*2*sqrt(v0); 
end 
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