
University of Padova
Department of Mathematics “Tullio Levi-Civita”

Master degree in Computer Science

Some decidability questions in abstract program semantics

Supervisor

Prof. Paolo Baldan

Co. Supervisor

Prof. Francesco Ranzato

Candidate

Luca Zaninotto

Academic Year 2023-2024

Abstract

This thesis explores program verification trough abstract interpretation in the context of com-
putability theory. Abstract Interpretation is a program analysis technique, based on approximating
the semantics of programs over so-called abstract domains, usually represented as complete lat-
tices, whose elements represent program properties. These approximations rely on some abstract
operators, which usually include fixpoint iterations. Traditionally, to ensure convergence of such
iterations, and therefore the termination of the analyzer, the literature relied on two important
operators: the widening and the narrowing operators, first defined in [CC77]: the first one to com-
pute an upper bound on some chain in the complete lattice, and the second one to recover some
additional information from the program and refine the upper bound provided by the widening.
This approach brings however a loss of precision: the inferred invariant is not the one provided by
the abstract semantics, but an overapproximation of it. The thesis argues that for non relational
abstract domains better results can be obtained. In particular, for the interval domain, where
each variable is associated with an interval of integers the abstract semantics is computed in an
exact way. Instead, for the non-relational collecting domain where each variable is mapped to a
(possibly non-convex) subset of Z over which it can vary, we just show that it is possible to decide
the termination of the abstract interpreter and, when this is the case, exactly compute the abstract
semantics.

iii

Contents

Introduction 1

1 Background 5
1.1 Recursion theory . 5
1.2 Order theory . 6
1.3 Abstract Interpretation . 7

1.3.1 General concepts . 7
1.3.2 Fixpoint approximations . 11

2 Framework 13
2.1 The Imp language . 13
2.2 Semantics . 13

2.2.1 Syntactic sugar . 17
2.2.2 Small step semantics . 17

2.3 Transition system . 18
2.4 Functions in Imp . 22
2.5 Deciding invariant finiteness . 25

3 Abstract domains 31
3.1 Abstract inductive semantics . 31
3.2 Non relational collecting . 35

3.2.1 Properties . 37
3.3 Interval domain . 39

3.3.1 Variable-wise lifting . 40
3.3.2 Properties . 42

4 Program bounds and analysis termination 43
4.1 Program bounds . 44
4.2 Bounding interval analysis . 45
4.3 Computing interval semantics . 51
4.4 Bounded non-relational collecting semantics . 57
4.5 Computing non-relational collecting semantics . 59

5 Conclusions 67

A Additional proofs 69
A.1 Lemma 4.7 proof . 69
A.2 Lemma 4.18 proof . 74
A.3 Lemma 4.20 proof . 79

v

Introduction

Because of its widespread adoption software has become a crucial aspect of everyone’s life for all
sorts of tasks, from the more mundane ones – like sending text messages or view online content – to
the most crucial ones. Banking, aviation, space industry, car controls are only a small example of
important everyday tasks that software runs in the modern era. Such tasks demand requirements
of safety and reliability which are difficult to pair with the growing complexity and size of con-
temporary software. Errors can be expensive both in monetary and in human lives terms, hence
preventing them becomes more and more valuable as well as detecting them early.

Notable examples of such bugs are Meltdown and Spectre [Lip+18; Koc+19]. Those vulnerabil-
ities exploited an hardware related bug in floating-point division to access data outside the bounds
imposed to a program by the operating system, resulting in the theft of arbitrary data, meaning a
malicious actor could access – for example – passwords stored locally or data of other customers
in a cloud environment. Another notable example is the first internet worm, which allowed the
deployer to run arbitrary code on a significant portion of the computers on the internet at the
time [Spa89; See89; Orm03; Eis+89]. The last example is set on 4 June 1996, when the Ariane 501
satellite launch failed catastrophically 40 seconds after initiation of the flight sequence, incurring a
direct cost of approximately 370 million US dollars [Dow97]. To assess the causes of the incident,
the automated analysis of the Ariane code [Lac+98] was done using a static analyzer based on
Abstract Interpretation [Le 97].

Software verification is therefore a crucial task, which cannot be accomplished using testing
practices alone: testing in fact can be used to show the presence of bugs (if a test fails the bug
occur), but they do not offer any mathematical guarantee of their absence. The latter can be
obtained trough formal methods, i.e., by mathematical proving the correctness of a program with
respect to some specification.

Formal methods. Despite the progress done to bring the usefulness of formal methods to ev-
eryone (e.g. with [OHe19; Dis+19] or with the Grand Challenge of software verification [JOW06;
HM08; Woo06]) their use is still restricted to specific niches of developers. This is due to some
problems with the technique itself. Firstly, the problem is intrinsic in the theory of computation.
Consider the following program in a pseudo-C language

1 int* p = NULL;
2 arbitrary_function ();
3 *p = 0;

If control reaches Line 3 the program will crash (as we are trying to access address 0x0). Hence
we have to prove that arbitrary_function() does not halt. Unfortunately Turing [Tur21] shows
that this problem is undecidable. Moreover, Rice’s Theorem [Ric53] expands on this stating that
all non-trivial semantics properties of programs are undecidable. The consequence is that we
cannot have an universal verifier, i.e., a verification tool that proves or disproves the correctness of
every program with respect to some specification. However we do not need to solve such a general
problem. We as humans tend to use patterns and structures, even to write our logic. The outcome
is that we work with just a small subset of all possible programs, and therefore to work in practice
our analyzers have to trace the correctness of just that small subset of programs.

1

2 INTRODUCTION

Moreover the result of our analysis does not have to be the most precise description of the
outcome of the program we are analyzing. We need a tool that can state that our program satisfies
a property (an invariant) which is sound to the real property of the program, i.e., a property which
is less precise than the real one. Notable example of such analyzers are well known and available
today on the internet. For example Astreè [Cou+05] and Mopsa [MOM23] are two sound analyzers
of C and python code, which can infer program properties and catch bugs ahead of time. They
both use a technique called abstract interpretation which (roughly) involves interpreting a given
program by mapping variables to an abstract representation of some properties we are interested
in.

Abstract interpretation. Since universal program verification is a fundamentally undecidable
problem, the best we can do is to consider non-universal verification, at the cost of getting non-
conclusive answers. In this work we focus on one of the major technique for software analysis
that can be used to implement a sound verifier: abstract interpretation. To best introduce the
technique we start from an example. Consider the following fragment of pseudo-C code:

1 int x = 0;
2 for(int i = 0; i < 5; i++){
3 int val = rand();
4 if (val > 0.5) x += 2;
5 else x -= 2;
6 }
7 printf("%d", x);

Code 1: Incrementing or decrementing randomly

Each execution of the snippet could result in a different value of x being printed on screen.
From a mathematical point of view, before entering the loop the value of x is fixed, it can only be 0.
Abstracting the execution means abstracting the values the variables can assume. For this example
variables can assume interval values, e.g., x ∈ [0, 0] at the beginning of the interval. Assuming
rand() returns a float value in [0, 1], at each iteration either x is incremented or decremented by
2. Hence, after the first iteration x ∈ [−2,+2], after the second x ∈ [−4,+4], and so on. The loop
could carry on forever, however, because of the for guard i < 5 we reach a stall at x ∈ [−10,+10].
Therefore at the end of the loop, what our analysis can infer is that x ∈ [−10,+10].

The analysis is sound: the most precise property of the value of x would be being in the set
S = {−10,−8,−6,−4,−2, 0,+2,+4,+6,+8,+10}, as for each iteration the value of x can incre-
ment or decrement by 2, and our result [−10,+10] is a superset of S.

Abstract interpretation, introduced by Radhia and Patrick Cousot in [CC77; CC79] is therefore a
framework that generalizes this idea by providing tools to compute efficiently general abstractions.
As a result, a sound verifier can be obtained by comparing the resulting abstraction with the
program specification: if the latter satisfies the former then also the program does and therefore
it is correct, otherwise noting can be said about the program, as the abstraction is an over-
approximation.

With the example we already introduced the idea of the framework of abstract interpretation:

• We start from a concrete semantics, describing the meaning of program commands in a
computational domain;

• We define an abstract domain, which models some properties of interest of the concrete
computation and leaves out the details (in our example, the interval domain);

• We induce an abstract semantics, based on the concrete semantics and our abstract domain,
which allows to abstractly execute our program on the abstract domain in order to compute
the program properties modeled by the abstract domain;

• The result of our abstract execution is the final property of the program.

INTRODUCTION 3

Generally the abstract execution of our program (i.e. the abstract interpretation) involves fixpoint
computations on algebraic structures called lattices. Lattices are sets equipped with a notion of
order between elements, while fixpoint computations usually involve computing a minimal element
in a chain of lattice elements such that the computation does not proceed further. In other words,
at which point the guard of a loop is not satisfied anymore and which guarantees can we infer
for the program after the loop? As an example, consider the snipped of Code 1. We argued that
our computation of the abstract value of the variable x could start from [0, 0] and proceed with
[−2,+2], [−4,+4], . . . In this case we find a fixpoint with [−10,+10], since the guard of the loop is
not respected anymore (because of the variable i) and therefore “executing” the loop again would
result in the same initial value [−10,+10], hence a fixpoint is reached.

However this is not always the case. Consider instead the following snippet
1 int x = 0;
2 while(true) {
3 x += 1;
4 }

Code 2: Program with a divergent loop

Obviously the concrete computation does not halt, but looking at the chain of iterands for our
program for the variable x we could infer the chain

[0, 0], [+1,+1], . . . , [+k,+k], . . . (†)

and therefore (intuitively) at the end of the loop we might want to say that our variable has a
value in the range [0,+∞], which is sound to the real property of non-termination (i.e., x ∈ ∅, x
has no final value). The procedure we used to infer that the variable x diverges, i.e., its invariant
at the end of the loop is [0,+∞], comes from intuition, and is not an automatic procedure. What
a machine could do in fact is exploring the chain we are building in (†) element by element, and
if at some point of the chain an element is repeated it can infer a fixpoint. What happens with
this naive method is that whenever an infinite ascending (or descenging) chain is involved the
termination of the analysis is not guaranteed.

To infer properties while dealing with infinite chains the standard approach is to use widening
operators (from [CC92], usually denoted as ▽) to infer the divergence of a variable after some
round of increments. Such technique however, while still providing a sound analysis and ensuring
termination, limits a lot the precision of the analysis itself. For example, we could widen our
analysis after the second step with a naive widening [0, 0]▽[+1,+1] = [0,+∞] and infer that our
variable after the end of the loop has a value between 0 and +∞ while ensuring that our analysis
halts in a finite time. It might happen however that the widening loses more information than
needed to ensure termination. Consider in fact the following snippet

1 int x = 0;
2 while(x < 10) {
3 x += 1;
4 }

Code 3: Program with a convergent loop

The initial steps of the analysis would still be x ∈ [0, 0] and x ∈ [1, 1], which widen become again
[0, 0]▽[1, 1] = [0,+∞], which again is a sound analysis but is very imprecise. Simply by looking
at the program we can infer that the cycle converges and at the end of the loop x ∈ [0, 10]. To
recover simple information as this from the program [CC92] also introduce a narrowing operator,
denoted as △ . This combination however still has some limitation, as it is heavely relying on
the information directly embedded in the program. This opens a question, which is the general
problem faced in the thesis:

Problem. Is it possible to have a precise analysis of abstract properties, while ensuring the
termination of the analyzer?

The thesis starts by formalising some expected results about the undecidability of the collecting
semantics for a simple imperative, Turing complete language. The language include a minimal

4 INTRODUCTION

set of constructs that make it Turing powerful: linear assignements, interval based guards, non-
deterministic choice (which jointly with guards allows us to encode conditionals) and a fixpoint
operation (which can be used to encode while loops). Roughly speaking, what is shown is that
precise invariants cannot be computed. Actually, it is not even possible to decide the finiteness of
invariants, as the halting problem, which is notoriously undecidable, reduces to the finiteness of
program invariants.

We try to provide some answers to the question above, by focusing on so-called non-relational
abstract semantics, i.e., abstract semantics which disregard the depedencies between the different
variables in a program and provide, for each single variable, an abstraction of the set of possible
values. It must be observed that if in the abstract domain of interest all ascending chains are finite,
the problem trivialises as all fixpoint computations will converge in a finite amount of steps. Thus
they can be conducted in a precise way, without the need of any additional theory. The thesis
will start by focusing on the domain of intervals, where as observed above one can have infinite
ascending chaings and thus the computation of the exact abstract semantics is a challenging task.
Actually, in principle, one might even think that this is not possible because, in absence of a
result proving the converse, establishing whether the abstract analyser terminates (which reduces
to establish whetehr ordinary fixpoint iteration trough Kleene iteration does terminate) might be
undecidable.

Actually, some results showing that, under some restrictions, interval analysis can be computed
exactly were already available. In [SW05] the autors identify a class of interval equations for which
the least solution can be computed precisely in polynomial time and the result is later generalised
in [Gaw+09] which provides an algorithm that also deals with the arbitrary multiplication of
intervals.

In this thesis we take a radically different approach. We show that a preliminary analysis of the
program allows one to identify some bounds such that, intuitively, when variables are beyond the
bounds the behaviour of the program stabilises. This is the basic tool which allows us to determine
whether fixpoint computations will diverge, thus providing a way of estalishing the exact result of
the computation. Technically, this is obtained by restricting the abstract domain to intervals which
are bounded or infinite. Then we prove that the interval semantics computed over this subdomain
coincide with the semantics computed on the full domain. This, together with the fact that the
bounded domain has no infinite ascending chain allows us to conclude.

The generality of the approach suggests the possibilty of extending the result to other non-
relational semantics. We then focus on what we call the non-relational collecting semantics, the
most precise non-relational semantics, which maps each variable to a set of possible values, forget-
ting only the relation between variables. The fact that invariants are no longer convex sets, makes
the problem sensibly more difficult. We do not succeed in showing that the abstract semantics is
computable, but we manage to prove a partial result which, intuitively, says that the termination of
the abstract interpreter is decidable or, equivalently, that all inviariants generated during the anal-
ysis of the program are finite. In case the program has a single while loop, this corresponds exactly
to the finiteness of the invariants. This partial results makes us confident about the possibility of
proving that also the non-relational collecting semantics is computable in an exact way.

Outline The following document consists of 5 chapters. Chapter 1 provides the necessary back-
ground and fixes the necessary notation that will later be used in the following chapters: from
recursion and order theory to talk about program termination and undecidability to abstract in-
terpretation to prove some properties of our analysis. Chapter 2 introduces the framework of the
thesis: the Imp language and its constraints, its concrete semantics and its properties: namely
undecidability of some properties of programs written in the language. Chapter 3 proves the prop-
erties of interval and non-relational collecting analysis on the Imp language, while Chapter 4 proves
that, similarly to previous work, it is possible to bound the domains we previously introduced to
remove infinite ascending chains, hence ensuring analysis termination. Finally Chapter 5 presents
the thesis results and proposes a direction for future work on the topic.

CHAPTER 1

Background

The following chapter aims to provide context, notation and the important external references for
the work that will follow on. We start with Section 1.1 where we introduce some notation and
the important aspect of recursion theory needed to understand the following chapters. Later, in
Section 1.2 we explore order theory and set the notation that we will use in the rest of the thesis to
talk about this topic. Finally Section 1.3 introduces the notation and concepts we need to properly
talk about abstract interpretation in later chapters.

1.1 Recursion theory

This first section aims to provide background and terminology for the parts in recursion theory that
will follow. More in detail, we will take some notation from [Cut80] and introduce some notation
based on the same book. We start with functions: total and partial functions are essential to
recursion theory:

Definition 1.1 (Total and partial functions). Let X,Y be two sets. We denote by

X → Y

the set of all total functions from X to Y . And by

X ↪→ Y

the set of all partial functions from X to Y .

Partial functions are actually functions from a subset S ⊆ X which is called the natural domain
of f .

Definition 1.2 (Domain of partial functions). Let f : X ↪→ Y . We write f(x) ↓ to indicate that
f is defined on x, and f(x) ↑ to indicate that f is undefined on x. The domain of f is

dom(f) = {x ∈ X | f(x) ↓}

We then need (mostly in Section 2.4) to talk about partial recursive functions and their prop-
erties. We therefore define partial recursive and total recursive functions as follows:

Notation 1.3 (partial and total recursive functions). By Nk r
↪−→ N we denote the set of partial

recursive functions on natural numbers, while by N r−→ N we denote the set of partial recursive
functions on natural numbers.

We also need to talk about decidable properties and decidable sets. We therefore introduce the
notion of recursive and recursively enumerable sets.

5

6 CHAPTER 1. BACKGROUND

Definition 1.4 (Recursively enumerable and recursive sets). A set A ⊆ Nk is recursively enumer-
able (r.e. or semi-decidable) if A = dom(f) for some f ∈ Nk r

↪−→ N.
A set A ⊆ N is a recursive set if both A and its complement A = N \A are semi-decidable, i.e.,

there exists some f ∈ N r−→ N s.t.
f = λn.(n ∈ A)?1 : 0

1.2 Order theory

Within Theoretical Computer Science, especially in the field of semantics, partial orders hold sig-
nificant importance. They are extensively employed in Abstract Interpretation, as highlighted
in [Min18], serving different levels of the theory to model core notions. These notions include the
idea of approximation, where certain analysis results may be less precise than others, creating a
partial order where some results are incomparable. Moreover, partial orders are fundamental in con-
veying the concept of soundness: an analysis is deemed sound if its result is an over-approximation
of the actual behavior. These mathematical notions, essential for discussions surrounding the
Abstract Interpretation formalism, primarily involve order and lattice theory.

Definition 1.5 (Partiall ordered set). Let X be a non-empty set, ⊑⊆ X × X be a reflexive,
anti-symmetric and transitive relation on that set, i.e., ∀x, y, z ∈ X:

1. x ⊑ x (reflexivity)

2. x ⊑ y ∧ y ⊑ x =⇒ x = y (antisymmetry)

3. x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z (transitivity)

Then the tuple ⟨X,⊑⟩ is a partially ordered set (POSet).

Definition 1.6 (Least upper bound). Let ⟨X,⊑⟩ be a POSet and let Z ⊆ X. We say that z ∈ Z
is an upper bound of Z if ∀z ∈ Z z ⊑ z. It is the least upper bound of Z if ∀z′ upper bounds of Z,
z ⊑ z′.

Definition 1.7 (Greatest lower bound). Let ⟨X,⊑⟩ be a POSet and let Z ⊆ X. We say that
z ∈ Z is a lower bound of Z if ∀z ∈ Z z ⊑ z. It is the greatest lower bound of Z if ∀z′ upper
bounds of Z, z′ ⊑ z.

Usually then we are talking about least and greatest lower bound the host set is often implicit,
and we therefore simply write lub(Z) and glb(Z). In abstract interpretation we often rely on special
kinds of POSets, where the existence of the greatest lower bound and the least upper bound is
ensured for each subset of the original POSet. These sets are called complete lattices

Definition 1.8 (Complete lattice). A POSet ⟨X,⊑⟩ is called a complete lattice if

∀Y ⊆ X ∃ ∪ Y ∧ ∃ ∩ Y

Complete lattices are a subset of the class of chain complete partial ordered sets. These kinds
of partial orders are defined using the concept of chains:

Definition 1.9 (Chain). Let ⟨D,⊑⟩ be a partially ordered set. Then Y ⊆ D is a chain if for any
y1, y2 ∈ Y it holds that

y1 ⊑ y2 ∨ y2 ⊑ y1

Definition 1.10 (CCPOs). A chain complete partially ordered set (ccpo) is a poset ⟨D,⊑⟩ such
that every chain of D has a least upper bound.

The last building block we will use in the following chapters is the Kleene-Knaster-Tarski
theorem. This theorem is a fundamental result in order theory and provides a powerful tool for
analyzing and establishing the existence of fixed points in complete lattices. To state it we need
to first link functions and order theory with some definitions

1.3. ABSTRACT INTERPRETATION 7

Definition 1.11 (Monotone functions). Let ⟨D,⊑⟩ and ⟨D′,⊑′⟩ be complete lattices. The total
function f : D → D′ is monotone if

d1 ⊑ d2 =⇒ f(d1) ⊑′ f(d2)

Monotonicity however does not preserve upper bounds, just orders. In particular if we take a
chain Y ⊆ D of some ccpo ⟨D,⊆⟩ and some monotone function f : D → D, in general ⊔{f(d) | d ∈
Y } ⊑ f(⊔Y), but not ⊔{f(d) | d ∈ Y } = f(⊔Y). Therefore we introduce the concept of continuity,
functions that preserve both order and upper bounds

Definition 1.12 (Continuous functions). Let ⟨X,⊑⟩ and ⟨X ′,⊑′⟩ be ccpos. The total function
f : D → D′ is continuous if

• f is monotone;

• ⊔′{f(d) | d ∈ D} = f(⊔X)

Continuous functions over ccpos are important for the Kleene fixed-point theorem, usually
attributed to Tarski from [Tar55], which is also called Kleene iteration. It gives us an iteration
strategy to find the least fixpoint of a function over a ccpo, provided that the function is continuous.

Theorem 1.13 (Kleene fixed-point). Let f : D → D be a continuous function over a chain
complete partial order ⟨D,⊑⟩ with the lest element ⊥. Then

lfp(f) =
⨆︂
{fn(⊥) | n ∈ N}

where

• f0 = id

• fn+1 = f ◦ fn ∀n ∈ N

is the least fix point of f .

1.3 Abstract Interpretation

Abstract interpretation is among the most well known methods of static analysis of programs. First
introduced by Patrick and Radhia Cousot in [CC77; CC79], it consists in a sound-by-construction
method to infer program properties given a model of their behavior. The general idea is that we
can approximate the semantics of a program with monotonic functions over ordered sets (usually
complete lattices). To do so we usually first introduce Abstract Domains that capture some essential
aspects of program execution while ignoring the details of the computation, which would make the
analysis computationally infeasible. This analysis however carries the issue of completeness, which
is closely related to the issue of choosing the best abstract domain to decide program correctness
without raising false alarms. Achieving completeness in analysis is often desirable, but it can lead
to the problem of undecidability. This means that even though we strive for the most accurate
analysis of a program, such as through its interpreter, we can’t guarantee that the process will
always terminate. The technique per-se is a concept which is around since the ’70s, hence an
extensive amount of literature has been produced. For a brief history of the technique, see [GR22].

The main source of this chapter comes from the notes on abstract interpretation in [Min18].

1.3.1 General concepts
Abstract interpretation heavily relies on order theory, which we introduced in Section 1.2, and
builds on top of it. The core idea is that we use an abstract domain as an approximation of the
concrete domain, in such a way that abstract computations are sound with respect to the concrete
ones. The minimal structure that we will require both in the abstract and the concrete domains
is a partial order that models the amount of information each instruction carries with respect to
the program execution. Thus, the concrete domain is a partially ordered set ⟨C,⩽⟩ (e.g. integers
powersets) and the abstract domain is another partially ordered set ⟨A,⊑⟩ (e.g. intervals). The
minimal amount of connection between these two worlds is a concretization functions

8 CHAPTER 1. BACKGROUND

A C

α

γ

Figure 1.1: Galois connection between an abstract domain A and a concrete domain C

Definition 1.14 (Concretization). A concretization function γ : ⟨A,⊑⟩ → ⟨C,⩽⟩ is a monotonic
function from an abstract partially ordered set ⟨A,⊑⟩ to a concrete partially ordered set ⟨C,⩽⟩

Trough concretization we have a first notion of soundness

Definition 1.15 (Soundness). Given an abstract domain A and a concrete domain C, we call
a ∈ A a sound abstraction of c ∈ C iff c ⩽ γ(a).

While monotonic concretizations are sufficient to reason about soundness, more structure is
useful to design a sound and accurate analyzer. The standard abstract interpretation framework
from [CC77] also assumes the existence of some monotonic abstraction function α : ⟨C,⩽⟩ → ⟨A,⊑⟩,
such that ⟨α,C,A, γ⟩ forms a Galois connection:

Definition 1.16 (Galois connection). Given two partially ordered sets ⟨C,⩽⟩, ⟨A,⊑⟩, the tuple
⟨α,C,A, γ⟩ is a Galois connection if

• A,C are complete lattices;

• α : ⟨C,⩽⟩ → ⟨A,⊑⟩ and γ : ⟨A,⊑⟩ → ⟨C,⩽⟩ are monotonic;

• for all a ∈ A, c ∈ C,
c ⩽ γ(a) ⇐⇒ α(c) ⊑ a. (1.1)

We denote ⟨α,C,A, γ⟩ as ⟨C,⩽⟩ −−−→←−−−α
γ
⟨A,⊑⟩.

Usually though we use an alternative characterization of Galois Connections:

Theorem 1.17. ⟨C,⩽⟩ −−−→←−−−α
γ
⟨A,⊑⟩ is a Galois connection iff the function pair ⟨α, γ⟩ satisfies all

the following properties:

(1) α, γ are monotonic;

(2) ∀c ∈ C c ⩽ γ(α(c)) i.e., γ ◦ α is extensive;

(3) ∀a ∈ A α(γ(a)) ⊑ a, i.e., α ◦ γ is reductive.

Proof. Assume that ⟨α, γ⟩ satisfies (1.1), then we want to prove that the properties of Theorem 1.17
hold.

(1) Applying (1.1) with a ≜ α(c) we get

c ⩽ γ(α(c)) (1.2)

i.e., γ ◦ α is extensive, which is our first thesis.

(2) Applying (1.1) with c ≜ γ(a) we get

α(γ(a)) ⊑ a (1.3)

i.e., α ◦ γ is reductive, which is our second thesis.

(3) By (1) ∀c, c′ ∈ C it holds that c ⩽ c′ =⇒ c ⩽ γ(α(c′)). Hence, we can apply again (1.1)
with a ≜ α(c′) and get that α(c) ⊑ α(c′), i.e., α is monotonic.

1.3. ABSTRACT INTERPRETATION 9

(4) By (2) ∀a, a′ ∈ C it holds that a ⊑ a′ =⇒ α(γ(a)) ⊑ a. Hence, we can apply (1.1) with
c ≜ γ(a) and get that γ(a) ⩽ γ(a′), i.e., γ is monotonic.

Assume conversely that the four properties hold. Then we want to prove that (1.1) holds.

(=⇒) First assume that c ⩽ γ(a). Then α(c) ⊑ α(γ(a)) by monotonicity of α and α(γ(a)) ⊑ a
by reductivity, hence α(c) ⊑ a.

(⇐) Likewise, assume that α(c) ⊑ a. Then γ(α(c)) ⩽ γ(a) by monotonicity of γ and c ⩽ γ(α(c))
by extensivity, hence c ⩽ γ(a).

Galois connections carry with them some well known properties, that are useful to state best
correct approximations (bca) and to prove the soundness by construction of the analyzer:

Theorem 1.18 (Galois connection properties). Given a Galois connection ⟨C,⩽⟩ −−−→←−−−α
γ
⟨A,⊑⟩ we

have:

1. γ ◦ α ◦ γ = γ and α ◦ γ ◦ α = α;

2. α ◦ γ and γ ◦ α are idempotent;

3. ∀c ∈ C α(c) = ⊓{a | c ⩽ γ(a)};

4. ∀a ∈ A γ(a) = ∨{c | α(c) ⊑ a};

5. α maps concrete lubs to abstract lubs:

∀X ⊆ C ∃ ∨X =⇒ α(∨X) = ⊔{α(x) | x ∈ X}

6. γ maps abstract glbs to concrete glbs:

∀X ⊆ A ∃ ⊓X =⇒ γ(⊓X) = ∧{γ(x) | x ∈ X}

Theorem 1.18 states two important properties of Galois connections: soundness and optimality.
Recall that c ⩽ γ(a) means by Definition 1.15 that a is a sound approximation of c. Then, given
c ∈ C recall that c ⩽ γ(α(c)), which means that α(c) is a sound abstraction of c. Finally, Property 3
states that α(c) is the best (i.e., smallest) sound abstraction of c, i.e., the optimal abstraction.

Additionally, from the theorem we can derive the following corollary:

Corollary 1.19 (Best abstraction). If we have a Galois connection ⟨α,C,A, γ⟩, then ∀c ∈ C,α(c)
is the best abstraction of c, i.e., the smallest abstract element which is a sound abstraction of c.

In general we saw that for a Galois connection γ◦α is idempotent, and generally not the identity
function, as abstracting looses precision. Concretizing however, should not loose precision, so we
could expect α ◦ γ to be the identity function. When this is the case, we have a Galois insertion:

Definition 1.20 (Galois Insertion). A Galois connection ⟨C,⩽⟩ −−−→←−−−α
γ
⟨A,⊑⟩ is a Galois insertion

if one of the following, equivalent properties hold:

1. α is surjective: ∀a ∈ A ∃c ∈ C | α(c) = a;

2. γ is injective: ∀a, a′ ∈ A γ(a) = γ(a′) =⇒ a = a′;

3. α ◦ γ is the identity function.

We denote Galois insertions as ⟨C,⩽⟩ −−−→−→←−−−−
α

γ
⟨A,⊑⟩.

Next, we can show that given a Galois connection and by doing a point-wise lifting of the values
in the concrete and abstract domain, we get another Galois connection. This will later be useful
in Chapter 3 to lift proofs from a domain to its point-wise lifting.

10 CHAPTER 1. BACKGROUND

Theorem 1.21. Given a Galois connection ⟨C,⩽⟩ −−−→←−−−α
γ
⟨A,⊑⟩ we can derive a new Galois

connection with the point wise lifting, i.e. ⟨S → C,
.
⩽⟩ −−−→←−−−

α̇

.
γ
⟨S → A,

.
⊑⟩ where

f
.
⩽ f ′ ≜ ∀s ∈ S f(s) ⩽ f ′(s)

f
.
⊑ f ′ ≜ ∀s ∈ S f(s) ⊑ f ′(s)
.
α(f) ≜ λs ∈ S.α(f(s))
.
γ(f) ≜ λs ∈ S.γ(f(s))

and S is an arbitrary set.

Proof.

α̇(c)
.
⊑ a ⇐⇒ ∀x ∈ S α(c)(x) ⊑ a(x) by definition

⇐⇒ ∀x ∈ S c(x) ⩽ a(x) by (1.1)

⇐⇒ c
.
⩽ γ̇(a) by definition

from this, we can derive the following

Theorem 1.22. if ⟨C,⩽⟩ −−−→−→←−−−−
α

γ
⟨A,⊑⟩ is a Galois insertion, then its point-wise lifting is again

a Galois insertion:
⟨S → C,

.
⩽⟩ −−−→−→←−−−−

α̇

γ̇
⟨S → A,

.
⊑⟩

Proof. By Th. 1.21 it holds that ⟨S → C,
.
⩽⟩ −−−→←−−−

α̇

γ̇
⟨S → A,

.
⊑⟩. What we have to prove is that

α̇ ◦ γ̇ = id knowing that α ◦ γ = id.

(α̇ ◦ γ̇)(f) = α̇(λs ∈ S.γ(f(s))) by definition
= λs ∈ S.(α ◦ γ)(f(s)) by definition
= λs ∈ S.id(f(s)) by hypothesis
= f by definition

hence α̇ ◦ γ̇ = id, which means ⟨S → C,
.
⩽⟩ −−−→−→←−−−−

α̇

γ̇
⟨S → A,

.
⊑⟩.

In this context we also need a way of ensuring abstract operations are sound (and occasionally)
exact. Even by only using the concretization map and no Galois connection, the notion of sound
and exact abstraction carries naturally from domain elements to domain operators:

Definition 1.23 (Sound and exact operator abstraction). Let γ : ⟨A ⊑⟩ → ⟨C,⩽⟩ be a concretiza-
tion map from an abstract domain ⟨A,⊑⟩ to a concrete domain ⟨C,⩽⟩, f : C → C be a concrete
operator and g : A→ A an abstract operator.

1. g is a sound abstraction of f if ∀a ∈ A f(γ(a)) ⩽ γ(g(a));

2. g is an exact abstraction of f if f ◦ γ = γ ◦ g.

Notice that an exact abstraction is always sound. Another remarkable thing of Galois connec-
tions, is that along with this notion we can introduce the notion of Best correct approximation:

Definition 1.24 (Best correct approximation (bca)). Given a Galois connection ⟨α,C,A, γ⟩ and
a concrete operator f : C → C, the best abstraction of f is given by α ◦ f ◦ γ.

1.3. ABSTRACT INTERPRETATION 11

It is imperative to prioritize the modular and composable nature of our abstractions. As elab-
orated in subsequent chapters, the semantics of a program typically emerge from the composition
of atomic semantic functions drawn from a finite library representing fundamental language opera-
tions. This framework lends itself well to a modular abstraction scheme, where abstract operators
are designed exclusively for this foundational set of operations. By adhering to the same princi-
ples governing concrete semantics, these abstract operators can be composed effectively. This is
facilitated by the inherent composability and accuracy of sound abstractions:

Theorem 1.25 (Operator composition). Let f, f ′ : C → C be concrete operators and g, g′A→ A
abstract operators. The following properties hold:

(1) if g, g′ are sound abstractions of f and f ′ respectively and f is monotonic, then g ◦ g′ is a
sound abstraction of f ◦ f ′;

(2) if g, g′ are exact abstractions of f and f ′ respectively then g ◦ g′ is an exact abstraction of
f ◦ f ′.

Proof. We proceed to prove the two properties in order:

(1) g′ is a sound abstraction of f ′, hence

∀a ∈ A (f ′ ◦ γ)(a) ⩽ (γ ◦ g′)(a)
(f ◦ f ′ ◦ γ)(a) ⩽ (f ◦ γ ◦ g′)(a) by monotonicity of f
(f ◦ f ′ ◦ γ)(a) ⩽ (f ◦ γ ◦ g′)(a) ⩽ (γ ◦ g ◦ g′)(a) by monotonicity of g

(2) since both f ◦ γ = γ ◦ g and f ′ ◦ γ = γ ◦ g′ it holds that

f ◦ f ′ ◦ γ = f ◦ γ ◦ g′ = γ ◦ g ◦ g′

1.3.2 Fixpoint approximations
Critical parts of program semantics are defined trough the idea of least fixpoints lfpf of some
monotonic function or continuous operator f : C → C over the concrete domain ⟨C,⩽⟩. In order
to abstract the computation of lfpf in the abstract domain ⟨A,⊑⟩ the natural idea is to start
with a sound abstraction g : A→ A of f . Then there are many ways of approximate the fixpoint
computation trough the use of g. We mention two, in order to see what its main problems are.

Kleene fixpoint. A first idea is to mimic the fixpoint computation with g instead of f . For
instance by relying on the constructive definition of lfpf as the limit of an iteration sequence
from Kleene’s Theorem 1.13:

lfp(f) = ⊔{f i(⊥) | i ∈ N} ⊑ ⊔{gi(⊥) | i ∈ N} = lfp(g)

Tarski fixpoint. Tarski fixpoint is instead based on the Tarski characterization of the fixpoint:

lfp(f) = ⊓{x ∈ C | f(x) ⊑ x} (1.4)

i.e., the least fixpoint of a monotonic function f over a complete lattice f is the greatest lower
bound of the post-fixpoints. The observation is that any abstract post-fixpoint of a sound
abstract represents, trough γ, a concrete fixpoint (by Theorem 1.18). The theorem however
does not state how to compute a post-fixpoint of g in the abstract, but is nonetheless useful
as it allows us to provide a sound answer (a post-fixpoint) even with abstract fixpoints are
difficult to compute (as for infinite ascending chains) or non-existent at all.

As mentioned before, in order to solve the convergence problem in abstract domains in [CC77]
the authors proposed to use Tarski’s characterization to provide post fixpoint of infinite ascending
chains, introducing a binary operator: the widening operator ▽.

12 CHAPTER 1. BACKGROUND

Definition 1.26 (Widening operator). A binary operator ▽ : A×X → A is a widening operator
in an abstract domain ⟨A,⊑⟩ if

1. it computes upper bounds:

∀x, y ∈ A x ⊑ x▽y ∧ y ⊑ x▽y;

2. it enforces convergence: for any sequence {yi}i∈N in A, the sequence {zi}i∈N computed as

z0 ≜ y0

zi+1 ≜ zi △ yi+1

stabilizes in finite time: ∃k ⩾ 0 | xk+1 = xk.

With the widening operator we enforce the termination of a sound abstract analyzer for the
computation of upper bounds:

Theorem 1.27. Let f be a monotonic operator in a complete concrete lattice and g a sound
abstraction of f . Then the following iteration

x0 ≜ ⊥
xi+1 ≜ xi▽g(xi)

converges in finite time, and its limit x is a sound abstraction of the least fixpoint lfp(f), i.e.,
lfp(f) ⩽ γ(x).

Proof. Convergence is ensured by Property 2 of Definition 1.26, while the soundness is because of
Equation (1.4) given that, when encountering a stable value xi+1 = xi, then f(xi) ⊑ xi▽f(xi) =
xi+1, i.e., xi is an abstract post-fixpoint.

Where the first point states that △ refines its left argument while bringing a sound approxi-
mation, and the second point enforces termination.

CHAPTER 2

Framework

In order to talk about program properties we need a language to express such programs. We define
the Imp language, made of regular commands and based on Kozen’s Kleene algebra with tests,
described in [Koz97].

2.1 The Imp language

We denote by Z the set of integers with the usual order, extended with the least and greatest
elements −∞ and +∞, s.t. −∞ ⩽ z ⩽ +∞ for all z ∈ Z. We also extend addition and subtraction
by letting, for all z ∈ Z it holds that +∞ + z = +∞− z = +∞ and −∞ + z = −∞ + z = −∞.
We focus on the following non-deterministic language.

Exp ∋ e ::= x ∈ I | x := k | x := y+ k

Imps ∋ D ::= e | D+ D | D;D
Imp ∋ C ::= D | C+ C | C;C | C∗ | fix(C)

where x, y ∈ Var a finite set of variables of interest, i.e., the variables appearing in the considered
program, I ∈ I an interval (as defined in Definition 3.13), a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ⩽ b and
k ∈ Z is any finite integer constant.

2.2 Semantics

In order to talk about program properties in our language, we first need to define its semantics. In
the following section we introduce both a collecting semantics in order to reason about program
invariants and a small step semantics, in order to reason about program execution.

Definition 2.1 (Semantics of Basic Expressions). Let environments be the maps from the set of
variables to their numerical value: Env ≜ (Var → Z) ∪ {⊥}. For basic expressions e ∈ Exp the
concrete semantics L·M : Exp→ Env→ Env is inductively defined by:

LeM⊥ ≜ ⊥

Lx ∈ IMρ ≜

{︄
ρ ρ(x) ∈ I

⊥ otherwise

Lx := kMρ ≜ ρ[x ↦→ k]

Lx := y+ kMρ ≜ ρ[x ↦→ ρ(y) + k]

13

14 CHAPTER 2. FRAMEWORK

The next building block is the concrete collecting semantics for the language, it associates each
program in Imp to a function which, given a set of initial environments X “collects” the set of final
states produced by executing the program from X.

Definition 2.2 (Concrete collecting semantics). Let C ≜ ⟨℘(Env),⊆⟩ be a complete lattice called
concrete collecting domain. The concrete collecting semantics for Imp is given by the total function
⟨·⟩ : Imp→ C → C which maps each program C ∈ Imp to a total function over the complete lattice
C, inductively defined as follows: given X ∈ C

⟨e⟩X ≜ {LeMρ | ρ ∈ X, LeMρ ̸= ⊥}
⟨C1 + C2⟩X ≜ ⟨C1⟩X ∪ ⟨C2⟩X
⟨C1;C2⟩X ≜ ⟨C2⟩(⟨C1⟩X)

⟨C∗⟩X ≜
⋃︂
i∈N
⟨C⟩iX

⟨fix(C)⟩X ≜ lfp(λY ∈ ℘(Env).(X ∪ ⟨C⟩Y))

We observe that the semantics we described is additive:

Observation 2.3 (Additivity). Given C ∈ Imp, X,Y ∈ C,

⟨C⟩(X ∪ Y) = ⟨C⟩X ∪ ⟨C⟩Y

Proof. We will prove it by induction on the program C. Let’s first explore the base cases.

Case (e). Therefore

⟨e⟩(X ∪ Y) = {LeMρ | ρ ∈ X ∪ Y, LeMρ ̸= ⊥}
= {LeMρ | ρ ∈ X ∨ ρ ∈ Y, LeMρ ̸= ⊥}
= {LeMρ | ρ ∈ X, LeMρ ̸= ⊥} ∪ {LeMρ | ρ ∈ Y, LeMρ ̸= ⊥}
= ⟨e⟩X ∪ ⟨e⟩Y

Next we can explore the inductive cases.

Case (C1 + C2). Therefore

⟨C1 + C2⟩(X ∪ Y) = ⟨C1⟩(X ∪ Y) ∪ ⟨C2⟩(X ∪ Y) by definition
= ⟨C1⟩X ∪ ⟨C1⟩Y ∪ ⟨C2⟩X ∪ ⟨C2⟩Y by inductive hypothesis
= ⟨C1 + C2⟩X ∪ ⟨C1 + C2⟩Y

Case (C1;C2). Therefore

⟨C1;C2⟩(X ∪ Y) = ⟨C2⟩(⟨C1⟩(X ∪ Y)) by definition
= ⟨C2⟩(⟨C1⟩X ∪ ⟨C1⟩Y) by inductive hypothesis
= ⟨C2⟩(⟨C1⟩X) ∪ ⟨C2⟩(⟨C1⟩Y) by inductive hypothesis

Case (C∗). Therefore
⟨C∗⟩(X ∪ Y) =

⋃︂
i∈N
⟨C⟩i(X ∪ Y)

in order to use the inductive hypothesis we have to show that

∀i ∈ N ⟨C⟩i(X ∪ Y) = ⟨C⟩iX ∪ ⟨C⟩iY

to do that, we work again by induction on i:

2.2. SEMANTICS 15

• the base case is i = 0 then X ∪ Y = X ∪ Y .

• For the inductive case we need to show that i =⇒ i+ 1:

⟨C⟩i+1 (X ∪ Y) = ⟨C⟩
(︁
⟨C⟩i (X ∪ Y)

)︁
= ⟨C⟩

(︁
⟨C⟩iX ∪ ⟨C⟩iY

)︁
by induction hypothesis on i

= ⟨C⟩
(︁
⟨C⟩iX

)︁
∪ ⟨C⟩

(︁
⟨C⟩iY

)︁
by induction hypothesis on C

= ⟨C⟩i+1X ∪ ⟨C⟩i+1Y

Therefore we can use the inductive hypothesis internally and say

⟨C∗⟩ (X ∪ Y) =
⋃︂
i∈N
⟨C⟩i (X ∪ Y)

=
⋃︂
i∈N

(︁
⟨C⟩iX ∪ ⟨C⟩iY

)︁
for the later statement

=

(︄⋃︂
i∈N
⟨C⟩iX

)︄
∪

(︄⋃︂
i∈N
⟨C⟩iY

)︄
= ⟨C∗⟩X ∪ ⟨C∗⟩Y

We can also observe that a program induces a monotone function in the concrete domain C:

Lemma 2.4. Given a program C ∈ Imp, the semantic function ⟨C⟩ : C → C is monotone.

Proof. We can prove this by induction on the program C ∈ Imp. Let X,Y ∈ C, X ⊆ Y . We want
to prove that ⟨C⟩X ⊆ ⟨C⟩Y .

Case (e). In this case

⟨e⟩X = {LeMρ | ρ ∈ X, LeMρ ̸= ⊥}
⟨e⟩Y = {LeMρ | ρ ∈ Y, LeMρ ̸= ⊥}

X ⊆ Y therefore ρ ∈ X =⇒ ρ ∈ Y which also means that ρ′ ∈ ⟨e⟩X =⇒ ρ′ ∈ ⟨e⟩Y , therefore
⟨e⟩X ⊆ ⟨e⟩Y

Case (C1 + C2). In this case we need to show that ⟨C1 + C2⟩X ⊆ ⟨C1 + C2⟩Y

⟨C1 + C2⟩X = ⟨C1⟩X ∪ ⟨C2⟩X
⟨C1 + C2⟩Y = ⟨C1⟩Y ∪ ⟨C2⟩Y

by inductive hypothesis both ⟨C1⟩X ⊆ ⟨C1⟩Y and ⟨C2⟩X ⊆ ⟨C2⟩Y and therefore ⟨C1 + C2⟩X ⊆
⟨C1 + C2⟩Y .

Case (C1;C2). Therefore we need to show that ⟨C1;C2⟩X ⊆ ⟨C1;C2⟩Y

⟨C1;C2⟩X = ⟨C2⟩(⟨C1⟩X)

⟨C1;C2⟩Y = ⟨C2⟩(⟨C1⟩Y)

By induction hypothesis ⟨C1⟩X ⊆ ⟨C1⟩Y , and by induction hypothesis again ⟨C2⟩(⟨C1⟩X) ⊆
⟨C2⟩(⟨C1⟩Y) which means ⟨C1;C2⟩X ⊆ ⟨C1;C2⟩Y .

Case (C∗). Therefore we need to show that ⟨C∗⟩X ⊆ ⟨C∗⟩Y .

⟨C∗⟩X =
⋃︂
i∈N
⟨C⟩iX

⟨C∗⟩Y =
⋃︂
i∈N
⟨C⟩iY

16 CHAPTER 2. FRAMEWORK

what we need to prove is that

∀j ∈ N
j⋃︂

i=0

⟨C⟩iX ⊆
j⋃︂

i=0

⟨C⟩iY

we can do this by induction on j:

• j = 0 therefore X ⊆ Y which is true by hypothesis.

• Now we need to work on the inductive case j =⇒ j + 1. Notice that it holds that
k+1⋃︂
i=0

⟨C⟩iX = X ∪
k+1⋃︂
i=1

⟨C⟩iX by definition

= X ∪ ⟨C⟩

(︄
k⋃︂

i=0

⟨C⟩iX

)︄
by additivity

and also for Y
k+1⋃︂
i=0

⟨C⟩iY = Y ∪ ⟨C⟩

(︄
k⋃︂

i=0

⟨C⟩iY

)︄
Also notice that

(i) X ⊆ Y by hypothesis;

(ii)
⋃︁k

i=0⟨C⟩iX ⊆
⋃︁k

i=0⟨C⟩iY by inductive hypothesis;

(iii) ⟨C⟩
(︂⋃︁k

i=0⟨C⟩iX
)︂
⊆ ⟨C⟩

(︂⋃︁k
i=0⟨C⟩iY

)︂
by additivity.

Therefore
k+1⋃︂
i=0

⟨C⟩iX = X ∪ ⟨C⟩

(︄
k⋃︂

i=0

⟨C⟩iX

)︄
⊆ Y ∪ ⟨C⟩

(︄
k⋃︂

i=0

⟨C⟩iY

)︄
=

k+1⋃︂
i=0

⟨C⟩iY

Proposition 2.5. Kleene star (C∗) and the fixpoint (fix(C)) share the same concrete semantics:

⟨C∗⟩ = ⟨fix(C)⟩

Proof. To start, let X ∈ C, f = λY ∈ C. (X ∪ ⟨C⟩Y) and recall that f0X = X and fn+1X =
X ∪ ⟨C⟩ (fnX).

⟨fix(C)⟩X = lfp(f) =
⋃︂
{fn ⊥ | n ∈ N} by fixpoint theorem (1.13)

=
⋃︂
i∈N

(︁
X ∪ ⟨C⟩iX

)︁
by definition

=
⋃︂
i∈N
⟨C⟩iX

= ⟨C∗⟩X

This will not be the case for the abstract semantics (cf. Example 3.25), where the Kleene star
can be more precise than the fixpoint semantics, but harder to compute and, as such, less suited
for analysis. For the concrete semantics, however, since they are the same in the next proofs we
only explore the case C∗ since it captures also fix(C). Since for a given program C and a set of
initial states X ∈ C the collecting semantics ⟨C⟩X expresses properties that hold at the end of the
execution of C we will in the following chapters usually refer to ⟨C⟩X as program invariant.

Notation 2.6 (Singleton shorthand). Sometimes we need to consider the semantics over the
singleton set {ρ}. In these cases we will write ⟨C⟩ρ instead of ⟨C⟩{ρ}.

2.2. SEMANTICS 17

2.2.1 Syntactic sugar

We define some syntactic sugar for the language. In the next chapters we will often use the syntactic
sugar instead of its real equivalent for the sake of simplicity.

x ∈ [a, b] = x ∈ I with I = [a, b]

x ⩽ k = x ∈ [−∞, k]

x > k = x ∈ [k + 1,+∞]

true = x ∈ ⊤
false = x ∈ ⊥

x ∈ I1 ∨ x ∈ I2 = (x ∈ I1) + (x ∈ I2)

x ∈ I1 ∧ x ∈ I2 = (x ∈ I1); (x ∈ I2)

if b then C1 else C2 = (b;C1) + (¬b;C2)

while b do C = fix(b;C);¬b
x++ = x := x+ 1

2.2.2 Small step semantics

Now that we have defined the collecting semantics to express program properties, we need the
small step semantics to talk about program execution. We start by defining program states:
State ≜ Imp × Env tuples of programs and program environments. With states we can define our
small step semantics:

Definition 2.7 (Small step semantics). The small step transition relation for the language Imp
→: State× (State ∪ Env) is defined by the following rules:

LeMρ ̸= ⊥
⟨e, ρ⟩ → LeMρ

expr

⟨C1 + C2, ρ⟩ → ⟨C1, ρ⟩
sum1 ⟨C1 + C2, ρ⟩ → ⟨C2, ρ⟩

sum2

⟨C1, ρ⟩ → ⟨C′
1, ρ

′⟩
⟨C1;C2, ρ⟩ → ⟨C′

1;C2, ρ
′⟩

comp1
⟨C1, ρ⟩ → ρ′

⟨C1;C2, ρ⟩ → ⟨C2, ρ
′⟩

comp2

⟨C∗, ρ⟩ → ⟨C;C∗, ρ⟩ star ⟨C∗, ρ⟩ → ρ
starfix

In the following chapters we will usually use the following notation to talk about program execution:

• →+ is the transitive closure of the relation →;

• →∗ is the reflexive and transitive closure of the relation →.

With the following lemma we introduce a link between the small step semantics and the concrete
collecting semantics: the invariant of a program is the collection of all the environments the program
halts on when executing.

Lemma 2.8. For any C ∈ Imp, X ∈ ℘(Env)

⟨C⟩X = {ρ′ ∈ Env | ρ ∈ X, ⟨C, ρ⟩ →∗ ρ′}

where →∗ is the reflexive and transitive closure of the → relation.

18 CHAPTER 2. FRAMEWORK

Proof. by induction on C:

Case (e). In this case it holds that ⟨e⟩X = {LeMρ | ρ ∈ X ∧ LeMρ ̸= ⊥}, ∀ρ ∈ X.⟨e, ρ⟩ → LeMρ if
LeMρ ̸= ⊥, and because of the expr rule

⟨e⟩X = {LeMρ | ρ ∈ X ∧ LeMρ ̸= ⊥} = {ρ′ ∈ Env | ρ ∈ X⟨e, ρ⟩ → ρ′}

Case (C1 + C2). In this case ⟨C1 + C2⟩X = ⟨C1⟩X ∪ ⟨C2⟩X, ∀ρ ∈ X.⟨C1 + C2, ρ⟩ → ⟨C1, ρ⟩ ∨ ⟨C1 +
C2, ρ⟩ → ⟨C2, ρ⟩ respectively according to rules sum1 and sum2. By inductive hypothesis

⟨C1⟩X = {ρ′ ∈ Env | ρ ∈ X, ⟨C1, ρ⟩ →∗ ρ′} ⟨C2⟩X = {ρ′ ∈ Env | ρ ∈ X, ⟨C2, ρ⟩ →∗ ρ′}

Therefore

⟨C1 + C2⟩X = ⟨C1⟩X ∪ ⟨C2⟩X (by definition)
= {ρ′ ∈ Env | ρ ∈ X.⟨C1, ρ⟩ →∗ ρ′} ∪ {ρ′ ∈ Env | ρ ∈ X, ⟨C2, ρ⟩ →∗ ρ′} (by ind. hp)
= {ρ′ ∈ Env | ρ ∈ X.⟨C1, ρ⟩ →∗ ρ′ ∨ ⟨C2, ρ⟩ →∗ ρ′}
= {ρ′ ∈ Env | ρ ∈ X.⟨C1 + C2, ρ⟩ →∗ ρ′}

Case (C1;C2). In this case ⟨C1;C2⟩X = ⟨C2⟩(⟨C1⟩X). By inductive hp ⟨C1⟩X = {ρ′ ∈ Env | ρ ∈
X, ⟨C1, ρ⟩ →∗ ρ′} = Y , by inductive hp again ⟨C2⟩Y = {ρ′ ∈ Env | ρ ∈ Y, ⟨C2, ρ⟩ →∗ ρ′}. Therefore

⟨C1;C2⟩X = ⟨C2⟩(⟨C1⟩X) (by definition)
= {ρ′ ∈ Env | ρ′′ ∈ {ρ′′′ | ρ ∈ X, ⟨C1, ρ⟩ →∗ ρ′′′}, ⟨C2, ρ

′′⟩ →∗ ρ′} (by ind. hp)
= {ρ′ ∈ Env | ρ ∈ X.⟨C1, ρ⟩ →∗ ρ′′ ∧ ⟨C2, ρ

′′⟩ →∗ ρ′} (by composition lemma)
= {ρ′ ∈ Env | ρ ∈ X.⟨C1;C2, ρ⟩ →∗ ρ′}

Case (C∗). Then, in this case ⟨C∗⟩X = ∪i∈N⟨C⟩iX

⟨C∗⟩X =
⋃︂
i∈N
⟨C⟩iX

=
⋃︂
i∈N
{ρ′ ∈ Env | ρ ∈ X.⟨Ci, ρ⟩ →∗ ρ′} by inductive hypothesis

= {ρ′ ∈ Env | ρ ∈ X. ∨i∈N ⟨Ci, ρ⟩ →∗ ρ′}
= {ρ′ ∈ Env | ρ ∈ X.⟨C∗, ρ⟩ →∗ ρ′}

Note that ⟨C⟩X = ∅ ⇐⇒ ∄ρ′ ∈ Env, ρ ∈ X | ⟨C, ρ⟩ →∗ ρ′, in other words the collecting
semantics of some program C starting from some states X ∈ C is empty iff the program never
halts on some state ρ′. Another observation is that due to non-determinism a program can halt
on multiple final states, or have one branch of execution that halts on some final state, while the
other never halts on any final state. Non-determinism implies that there are two different types of
termination, intuitively a program can always halt or partially halt. We will better explore this
concept in the next chapter.

2.3 Transition system

With the set of states State, the set of environments Env and the small step operational semantics
→ we define a transition system, this will be useful to define universal and partial termination and
to reason about program properties in the next chapters.

2.3. TRANSITION SYSTEM 19

Definition 2.9 (Transition system). The transition system for the language Imp is

TS ≜ ⟨State ∪ Env,Env,→⟩

where

• State ∪ Env is the set of configurations in the system;

• Env is the set of terminal states;

• → is the small step semantics defined in Definition 2.7, which describes the transition relations
in the system.

With the concept of derivation sequences we can define what we mean for partial and universal
termination.

Definition 2.10 (Partial termination). Let C ∈ Imp, ρ ∈ Env. We say C partially halts on ρ when
there is at least one derivation sequence of finite length in the transition system starting with ⟨C, ρ⟩
and ending in some state ρ′:

⟨C, ρ⟩ ↓ ⇐⇒ ∃k ∈ N | ⟨C, ρ⟩ →k ρ′.

Dually
⟨C, ρ⟩ ⇈⇐⇒ ¬ ⟨C, ρ⟩ ↓

a program always loops if there is no finite derivation sequence in its transition system that leads
to a final environment.

Definition 2.11 (Universal termination). Let C ∈ Imp, ρ ∈ Env. We sayC partially loops on ρ
when there is at least one derivation sequence of infinite length in the transition system starting
from ⟨C, ρ⟩:

⟨C, ρ⟩ ↑ ⇐⇒ ∀k ∈ N ⟨C, ρ⟩ →k ⟨C′, ρ′⟩ for some C′ ∈ Imp, ρ′ ∈ Env.

Dually
⟨C, ρ⟩ ⇊⇐⇒ ¬ ⟨C, ρ⟩ ↑

a program universally halts on ρ iff there is no infinite derivation sequence starting from ⟨C, ρ⟩ in
the transition systems.

Example 2.14 shows a program that partially halts, while Example 2.13 shows a program that
always loops. Notice that the absence of infinite derivation sequences implies that TS(⟨C, ρ⟩) is
finite. Example 2.14 shows a program that partially loops, while example 2.12 shows a program
that universally halts.

Example 2.12. Consider the program
x := 0;

it universally halts, since ∀ρ ∈ Env, ρ ̸= ⊥

⟨x := 0, ρ⟩ → ρ[x ↦→ 0]

according to the expr rule in definition 2.7. Therefore ⟨(x := 0), ρ⟩ ⇊ ∀ρ ∈ Env \ {⊥}.

Example 2.13. Consider the program P

(x ⩾ 0; x++)∗; x < 0

The program never halts on ∀ρ ∈ Env s.t. ρ(x) ⩾ 0. In fact in these cases it builds the transition
system in figure 2.1, where the infinite derivation sequence

⟨(x ⩾ 0; x++)∗;x < 0, ρ⟩ →∗ ⟨(x ⩾ 0; x++)∗;x < 0, ρ[x ↦→ ρ(x) + 1]⟩ →∗ . . .

· · · →∗ ⟨(x ⩾ 0; x++)∗;x < 0, ρ[x ↦→ ρ(x) + k]⟩ →∗ . . .

is always present.

20 CHAPTER 2. FRAMEWORK

⟨(x ⩾ 0; x++)∗; x < 0, ρ⟩ ⟨x < 0, ρ⟩ ̸→

⟨x ⩾; 0x++; (x ⩾ 0; x++)∗; x < 0, ρ⟩

⟨(x ⩾ 0; x++)∗; x < 0, ρ[x ↦→ ρ(x) + 1]⟩ ⟨x < 0, ρ[x ↦→ ρ(x) + 1]⟩ ̸→

⟨(x ⩾ 0; x++)∗; x < 0, ρ[x ↦→ ρ(x) + k]⟩ ⟨x < 0, ρ[x ↦→ ρ(x) + k]⟩ ̸→

∗
∗

Figure 2.1: Transition system of (x ⩾ 0; x++)∗; x < 0

Example 2.14. Consider the program
(x++)∗

it partially halts (⟨(x++)∗, ρ⟩ ↓), as according to the transition rule starfix ∃ρ ∈ Env s.t.

ρ ̸= ⊥
⟨(x++)∗, ρ⟩ → ρ

starfix

But it also partially loops (⟨(x++)∗, ρ⟩ ↑). In fact we can build the infinite derivation sequence

⟨(x++)∗, ρ[x ↦→ 0]⟩ →∗ ⟨(x++)∗, ρ[x ↦→ 1]⟩ →∗ ⟨(x++)∗, ρ[x ↦→ 2]⟩ →∗ . . .

Other useful lemmas in the system are the composition and decomposition lemma.

Lemma 2.15 (Decomposition lemma). If ⟨C1;C2, ρ⟩ →k ρ′′, then there exists a state ρ′ and a
natural number k1, k2 s.t. ⟨C1, ρ⟩ →k1 ρ′ and ⟨C2, ρ

′⟩ →k2 ρ′′, where k1 + k2 = k

Proof. The proof is on induction on k ∈ N, i.e., by induction on the length of the derivation
sequence.

Case (k = 0). Then
⟨C1;C2, ρ⟩ →0 ρ′′

holds vacuously since ⟨C1;C2, ρ⟩ and ρ′′ are different.

Case (k =⇒ k + 1). Then
⟨C1;C2, ρ⟩ →k+1 ρ′′

can be written as
⟨C1;C2, ρ⟩ → γ →k ρ′′

for some configuration γ. Now two cases apply, depending on the use of either comp1 or comp2

rules.

Case [comp1]. Then γ = ⟨C′
1;C2, ρ

′⟩ and ⟨C1;C2, ρ⟩ → ⟨C′
1;C2, ρ

′⟩ because ⟨C1, ρ⟩ → ⟨C′
1, ρ

′⟩.
Therefore we have

⟨C′
1;C2, ρ

′⟩ →k ρ′′

Here we can use the induction hypothesis since the derivation sequence is shorter than the one we
started with. Hence ∃ρ′′ ′ ∈ Env and natural numbers k1, k2 s.t.

⟨C′
1; ρ

′⟩ →k1 ρ′′ ′ ∧ ⟨C2, ρ
′′ ′⟩ →k2 ρ′′

where k1 + k2 = k. Hence it holds that

⟨C1, ρ⟩ →k1+1 ρ′′ ′

and since (k1 + 1) + k2 = k + 1 it holds that

⟨C1;C2, ρ⟩ →k+1 ρ′′

2.3. TRANSITION SYSTEM 21

which is our thesis.

Case [comp2]. In this case γ = ⟨C2, ρ
′⟩ because ⟨C1, ρ⟩ → ρ′ and it holds that

⟨C1;C2, ρ⟩ → ⟨C2, ρ
′⟩ →k ρ′′

Hence our thesis follows by using the inductive hypothesis on ⟨C2, ρ
′⟩ and by choosing k1 = 1, k2 = k.

From the latter theorem follows its corollary, which abstracts the value of k.

Corollary 2.16. If ⟨C1;C2, ρ⟩ →∗ ρ′′ then ∃ρ′ s.t. ⟨C1, ρ⟩ →∗ ρ′ and ⟨C2, ρ
′⟩ →∗ ρ′′.

The second lemma states a similar but inverted property:

Lemma 2.17 (Composition lemma). If ⟨C1, ρ⟩ →k ρ′ then ⟨C1;C2, ρ⟩ →k ⟨C2, ρ
′⟩

Proof. The proof works again by induction on the length k of the derivation sequence:

Case (k = 0). In this case the statement vacuously holds as ⟨C1, ρ⟩ and ρ′ are different.

Case (k =⇒ k+1). In this case we have to prove that if ⟨C1, ρ⟩ →k+1 ρ′ then ⟨C1;C2, ρ⟩ →k+1 ρ′.
To start we can notice that ⟨C1, ρ⟩ →k+1 ρ′ means that we have 2 cases:

(1) either k = 0, hence ⟨C1, ρ⟩ → ρ′. But in this case we can use [comp2] and deduce that

⟨C1, ρ⟩ → ρ′

⟨C1;C2, ρ⟩ → ⟨C2, ρ
′⟩

(2) Or k > 0, which means
⟨C1, ρ⟩ → ⟨C′

1, ρ
′′⟩ →k ρ′. (2.1)

In this case we can use [comp1] and notice that

⟨C1, ρ⟩ → ⟨C′
1, ρ

′′⟩
⟨C1;C2, ρ⟩ → ⟨C′

1;C2, ρ
′′⟩

Now, by induction on k in (2.1) we know that ⟨C′
1;C2, ρ

′′⟩ →k ρ′, hence

⟨C1;C2, ρ⟩ → ⟨C′
1;C2, ρ

′′⟩ →k ρ′

which is our thesis.

Corollary 2.18. If ⟨C1, ρ⟩ →∗ ρ′ then ⟨C1;C2, ρ⟩ →∗ ⟨C2, ρ
′⟩.

In order to better talk about the intermediate states in the execution of a program we also
introduce the notion of reducts:

Definition 2.19 (Reducts). Let Imp∗ denotes the set whose elements are statements in Imp. The
reduction function red : Imp→ Imp∗ is recursively defined by the following clauses:

red(e) ≜ {e}
red(C1 + C2) ≜ {C1 + C2} ∪ red(C1) ∪ red(C2)

red(C1;C2) ≜ (red(C1);C2) ∪ red(C2)

red(C∗) ≜ {C∗} ∪ (red(C);C∗)

Where we overload the symbol ; with the operator ; : Imp∗ × Imp→ Imp∗ defined by

∅;C ≜ ∅

{C1, . . . ,Ck};C ≜ {C1;C, . . . ,Ck;C}

Notice that the set of reduction of any finite program C ∈ Imp is finite.

22 CHAPTER 2. FRAMEWORK

2.4 Functions in Imp

Last section defined the language we are working with (the Imp language), its semantics and
its transition system. Building upon those elements, we now present the first properties of the
language. More in detail, in the following section we argue that the set of functions is at least a
superset of the partially recursive functions described in [Cut80]. This way we can derive some
properties from well known computability results, without proving them from scratch. We can
do this by encoding partial recursive functions into Imp programs. We therefore start by better
describing what we mean by partially recursive functions:

Definition 2.20 (Partially recursive functions). The class Nk r
↪−→ N of partially recursive functions

is the least class of functions on the natural numbers which contains

(a) the zero function:

z : Nk → N
(x1, . . . , xk) ↦→ 0

(b) the successor function

s : N→ N
x1 ↦→ x1 + 1

(c) the projection function

Uk
i : Nk → N

(x1, . . . , xk) ↦→ xi

and is closed under

(1) composition: given a function f : Nk r
↪−→ N and functions g1, . . . , gk : Nn r

↪−→ N the composition
h : Nn r

↪−→ N is defined by

h(x⃗) =

{︄
f(g1(x⃗), . . . , gk(x⃗)) if g1(x⃗) ↓, . . . , gk(x⃗) ↓ and f(g1(x⃗), . . . , gk(x⃗)) ↓
↑ otherwise

(2) primitive recursion: given f : Nk r
↪−→ N and g : Nk+2 r

↪−→ N we define h : Nk+1 r
↪−→ N by

primitive recursion by {︄
h(x⃗, 0) = f(x⃗)

h(x⃗, y + 1) = g(x⃗, y, h(x⃗, y))

(3) minimalization: given f : Nk+1 r
↪−→ N, h : Nk r

↪−→ N defined trough unbounded minimalization
is

h(x⃗) = µy.f(x⃗, y) =

⎧⎪⎨⎪⎩least z s.t.

{︄
f(x⃗, z) = 0

f(x⃗, z) ↓ f(x⃗, z′) ̸= 0 ∀z < z′

↑ otherwise

We also need to define what it means providing (a1, . . . , ak) as input for an Imp program. We do
this by special input states and variables: we can consider initial states ρ = [x1 ↦→ a1, . . . , xk ↦→ ak]
where each special variable xk maps to its initial value ak, this way we can encode partial functions
input into initial states for a program C. Observe that since we are interested in finite programs,
it makes sense to consider only finite collections of free variables.

We also need to define what we mean by program output.

2.4. FUNCTIONS IN IMP 23

Notation 2.21 (Program output). Let Env ∋ ρ = [x1 ↦→ a1, . . . , xn ↦→ an]. We say

⟨C, ρ⟩ ⇊ b ⇐⇒ ∀ρ′ | ⟨C, ρ⟩ →∗ ρ′ ρ′(y) = b

⟨C, ρ⟩ ↓ b ⇐⇒ ∃ρ′ | ⟨C, ρ⟩ →∗ ρ′ ρ′(y) = b

C universally (partially) halts on b whenever for every (for some) final state ρ ρ(y) = b. In other
words we are using the special variable y as an output register.

Definition 2.22 (Imp computability). Let f : Nk → N be a function. We say that f is Imp
computable if

∃C ∈ Imp | ∀(a1, . . . , ak) ∈ Nk ∧ b ∈ N

⟨C, ρ⟩ ⇊ b ⇐⇒ (a1, . . . , ak) ∈ dom(f) ∧ f(a1, . . . , ak) = b

with ρ = [x1 ↦→ a1, . . . , xk ↦→ ak].

We argue that the class of function computed by Imp is the same as the set of partially recursive
functions N r

↪−→ N (as defined in [Cut80]). To do that we have to prove that the class of functions
computed by the Imp language is a rich , i.e.

Definition 2.23 (Rich class). A class of functions A is said to be rich if it includes (a),(b) and
(c) and it is closed under (1), (2) and (3) from Definition 2.20.

Lemma 2.24 (Imp functions richness). The class of Imp-computable function is rich.

Proof. We proceed by proving that Imp has each and every one of the basic functions (zero,
successor, projection).

• The zero function:

z : Nk → N
(x1, . . . , xk) ↦→ 0

is Imp-computable:
z(a1, . . . , ak) ≜ y := 0

• The successor function

s : N→ N
x1 ↦→ x1 + 1

is Imp-computable:
s(a1) ≜ y := x1 + 1

• The projection function

Uk
i : Nk → N

(x1, . . . , xk) ↦→ xi

is Imp-computable:
Uk
i (a1, . . . , ak) ≜ y := xi + 0

We then prove that it is closed under composition, primitive recursion and unbounded mini-
malization.

Lemma 2.25. let f : Nk → N, g1, . . . , gk : Nn → N and consider the composition

h : Nk → N
x⃗ ↦→ f(g1(x⃗), . . . , gk(x⃗))

h is Imp-computable.

24 CHAPTER 2. FRAMEWORK

Proof. Since by hp f, gn∀n ∈ [1, k] are computable, we consider their programs F,Gn∀n ∈ [1, k].
Now consider the program

G1(x⃗);
y1 := y + 0;
G2(x⃗);
y2 := y + 0;
. . .;
Gk(x⃗);
yk := y + 0;
F (y1, y2, . . . , yk);

Which is exactly h. Therefore Imp is closed under generalized composition.

Lemma 2.26. Given f : Nk → N and g : Nk+2 → N Imp computable, we argue that h : Nk+1 → N{︄
h(x⃗, 0) = f(x⃗)

h(x⃗, y + 1) = g(x⃗, y, h(x⃗, y))

defined trough primitive recursion is Imp-computable.

Proof. We want a program to compute h : Nk+1 → N. By hypothesis we have programs F,G to
compute respectively f : Nk → N and g : Nk+2 → N. Consider the program H(x⃗, xk+1):

s := 0;
F (x⃗);
(xk+1 ̸∈ [0, 0];G(x⃗, s, y); s := s+ 1;xk+1 := xk+1 − 1)∗;
xk+1 ∈ [0, 0];

which computes exactly h. Therefore Imp is closed under primitive recursion.

Lemma 2.27. Let f : Nk+1 → N be a Imp-computable function. Then the function h : Nk → N
defined trough unbounded minimalization

h(x⃗) = µy.f(x⃗, y) =

⎧⎪⎨⎪⎩least z s.t.

{︄
f(x⃗, z) = 0

f(x⃗, z) ↓ f(x⃗, z′) ̸= 0 ∀z < z′

↑ otherwise
(2.2)

is Imp-computable.

Proof. Let F be the program for the computable function f with arity k + 1, x⃗ = (x1, x2, . . . , xk)
. Consider the program H(x⃗)

z := 0;
F (x⃗, z);
(y ̸∈ [0, 0]; z := z + 1;F (x⃗, z))∗;
y ∈ [0, 0];
y := z + 0;

Which outputs the least z s.t. F (x⃗, z) ↓ 0, and loops forever otherwise. Imp is therefore closed
under bounded minimalization.

Since has the zero function, the successor function, the projections function and is closed un-
der composition, primitive recursion and unbounded minimalization, the class of Imp-computable
functions is rich.

2.5. DECIDING INVARIANT FINITENESS 25

Since it is rich and N r
↪−→ N is the least class of rich functions, N r

↪−→ N ⊆ Impf holds. Therefore
we can say

f ∈ Nk r
↪−→ N =⇒ ∃C ∈ Imp | ⟨C, ρ⟩ ⇊ b ⇐⇒ f(a1, . . . , ak) ↓ b

with ρ = [x1 ↦→ a1, . . . , xk ↦→ ak].
The final step is to recall the Rice theorem from [Ric53] and the definition of saturated sets:

Definition 2.28 (Saturated set). A ⊆ N is saturated (or extensional) is for all x, y ∈ N

x ∈ A ∧ φx = φy =⇒ y ∈ A

In other words a set is saturated if it contains all the numbers that encode for programs that
compute functions with some properties. Rice’s theorem links extensional sets and decidability:

Theorem 2.29 (Rice’s theorem). Let A ⊆ N, A ̸= ∅, A ̸= N be a saturated set. Then A is not
recursive.

Meaning that deciding weather a program is in some saturated set, i.e., the program has some
extensional property, is impossible. From this we get a couple of facts that derive from well known
computability results:

Corollary 2.30. ⟨C, ρ⟩ ⇈ (i.e., ⟨C⟩ρ = ∅) is undecidable.

Proof. The set of functions f ∈ Nk r
↪−→ N s.t. f(x) ↑ ∀x ∈ Nk is not trivial and saturated, therefore

it is not recursive by Rice’s theorem [Ric53].

Corollary 2.31. ⟨C, ρ⟩ ⇊ is undecidable.

Proof. The set of functions f ∈ Nk r
↪−→ N s.t. f(x) ↓ ∀x ∈ Nk is not trivial and saturated, therefore

it is not recursive by Rice’s theorem [Ric53].

2.5 Deciding invariant finiteness

In this section we argue that even the finiteness of the semantics of some program on some initial
states is undecidable. We show that if we were able to establish whether ⟨C⟩X is finite for some
program C ∈ Imp and some initial states X ∈ C, we could decide whether ⟨C, ρ⟩ ⇊ for all ρ ∈ X,
which instead is known to be undecidable. The first step is showing that if we have a program
where the ∗ operator does not appear, then the program can only produce a finite amount of finite
derivation sequences.

Lemma 2.32. If D ∈ Imps, and X ∈ ℘(Env) is finite, then

(i). ⟨D⟩X is finite;

(ii). ∀ρ ∈ X ⟨D, ρ⟩ ⇊

(iii). |TS(⟨D, ρ⟩)| <∞ for all ρ ∈ X.

where by TS(⟨D, ρ⟩) we mean the set of all derivation sequences starting from ⟨D, ρ⟩ in the
transition system.

Proof. By induction on the program D:

Case (D = e). Let’s prove each point in order.

(i). ⟨e⟩X = {LeMρ | ρ ∈ X, LeMρ ̸= ⊥}, which is finite, since X is finite;

(ii). by expr rule ∀ρ ∈ X either ⟨e, ρ⟩ → LeMρ or ⟨e, ρ⟩ ̸→. In both cases there are no infinite
derivation sequences, and therefore TS(⟨e, ρ⟩) ⇊;

26 CHAPTER 2. FRAMEWORK

(iii). Notice that ∀ρ ∈ X either by the expr rule ⟨e, ρ⟩ → LeMρ or ⟨e, ρ⟩ ̸→ therefore

|TS(⟨e, ρ⟩)| ⩽ |X| <∞

Case (D = D1 + D2). In this case consider

(i). ⟨D1 + D2⟩X = ⟨D1⟩X ∪ ⟨D2⟩X. By inductive hypothesis, both ⟨D1⟩X, ⟨D2⟩X are finite,
as they are sub expressions of D. Since the union of finite sets is finite, ⟨D1 + D2⟩X is
finite;

(ii). by inductive hypothesis again ∀ρ ∈ X ⟨D1, ρ⟩ ⇊ and ⟨D2, ρ⟩ ⇊. By sum1 rule ⟨D1 +
D2, ρ⟩ → ⟨D1, ρ⟩ and by sum2 ⟨D1 + D2, ρ⟩ → ⟨D2, ρ⟩. Therefore ⟨D1 + D2⟩ρ ⇊.

(iii). For the latter argument, since both ⟨D1⟩ρ and ⟨D2⟩ρ are finite and composed of finite
derivation sequences |TS(⟨D1 + D2, ρ⟩)| <∞.

Case (D = D1;D2). We can notice the following:

(i). ⟨D1;D2⟩X = ⟨D2⟩(⟨D1⟩X). By inductive hypothesis ⟨D1⟩X = Y . By inductive hypothesis
again ⟨D2⟩Y is finite;

(ii). by inductive hypothesis both ∀ρ ∈ X ⟨D1, ρ⟩ ⇊ and ∀ρ′ ∈ Y ⟨D2, ρ
′⟩ ⇊, therefore by

composition lemma ⟨D1;D2, ρ⟩ ⇊
(iii). by inductive hypothesis both |TS(⟨D1, ρ⟩)| < ∞ and |TS(⟨D2, ρ

′⟩)| < ∞ ∀ρ ∈ X, ρ′ ∈
⟨D1⟩X. For all derivation sequences starting from ⟨D1, ρ⟩ where

⟨D1, ρ⟩ →∗ ρ′

with ρ′ ∈ ⟨D1⟩X we can apply the composition lemma and state that

⟨D1;D2, ρ⟩ →∗ ⟨D2, ρ
′⟩ ∀ρ ∈ X

from there we can notice that since |⟨D2, ρ
′⟩| <∞ then |⟨D1;D2, ρ

′⟩| <∞

In order to prove that finiteness is undecidable we need the following Lemma:

Lemma 2.33. Let D ∈ Imps and ρ ∈ Env. If

⟨D⟩k+1ρ ⊆
k⋃︂

i=0

⟨D⟩iρ for some k ∈ N (2.3)

then

∀j ∈ N ⟨D⟩k+1+jρ ⊆
k⋃︂

i=0

⟨D⟩iρ (2.4)

and therefore ⟨D∗⟩ρ ⊆ ∪ki=0⟨D⟩iρ

Proof. We can show (2.4) by induction on j:

Case (j = 0). In this case we want to show that ⟨D⟩k+1ρ ⊆ ∪ki=0⟨D⟩iρ, which is true by hy-
pothesis (2.3);

Case (j =⇒ j + 1). In this case we know that

k⋃︂
i=0

⟨D⟩iρ =

k+1⋃︂
i=0

⟨D⟩iρ since by (2.3) ⟨D⟩k+1ρ ⊆ ∪ki=0⟨D⟩iρ

= ρ ∪
k+1⋃︂
i=1

⟨D⟩iρ

= ρ ∪ ⟨D⟩

(︄
k⋃︂

i=0

⟨D⟩iρ

)︄
by additivity of ⟨D⟩

2.5. DECIDING INVARIANT FINITENESS 27

By inductive hypothesis

⟨D⟩k+1+jρ ⊆
k⋃︂

i=0

⟨D⟩iρ

so, by monotonicity of ⟨D⟩

⟨D⟩
(︁
⟨D⟩k+1+jρ

)︁
⊆ ⟨D⟩

(︄
k⋃︂

i=0

⟨D⟩iρ

)︄

and therefore

⟨D⟩(k+1)+(j+1)ρ ⊆

(︄
k+1⋃︂
i=1

⟨D⟩iρ

)︄
⊆ ρ ∪

(︄
k+1⋃︂
i=1

⟨D⟩iρ

)︄
=

k+1⋃︂
i=0

⟨D⟩iρ =

k⋃︂
i=0

⟨D⟩iρ

We also need to recall König’s Lemma from [Kön26]:

Lemma 2.34 (König’s Lemma). Let T be a rooted tree with an infinite number of nodes, each
with a finite number of children. Then T has a branch of infinite length.

With Lemma 2.33 and Lemma 2.34 we can prove the following.

Lemma 2.35. Given D ∈ Imps, and ρ ∈ Env, the predicate "⟨D∗⟩ρ is finite" is undecidable.

Proof. We work by contradiction, showing that if we know whether ⟨C⟩ρ is finite or infinite we can
decide ⟨C, ρ⟩ ⇊.

• Suppose that ⟨D∗⟩ρ is infinite, then we can observe that because Lemma 2.33

∀k ∈ N ⟨D⟩k+1ρ ⊈
k⋃︂

i=0

⟨D⟩iρ (2.5)

Otherwise ⟨D∗⟩ρ ⊆
⋃︁

i∈N⟨D⟩iρ and we would contradict the hypothesis of ⟨D∗⟩ρ being infinite.
Therefore ∀k ∈ N ⟨D⟩k+1ρ ̸⊆

⋃︁k
i=0⟨D⟩iρ, otherwise ⟨D∗⟩ρ ⊆

⋃︁k
i=0⟨D⟩ρ which is impossible

since the right term is a finite quantity. With this observation we build the tree ⟨Env,→D⟩,
where →D⊆ Env × Env and ρ′ →D ρ′′ if ⟨D, ρ′⟩ →∗ ρ′′. We define by the following rule the
levels of the tree:

Y0 = {ρ}

Yk+1 =
(︁
⟨D⟩k+1ρ

)︁
\

(︄
k⋃︂

i=0

⟨D⟩ρ

)︄

Where Y0 is the singleton set containing the root ρ and the k-th level is made of the envi-
ronments in the Yk set. Figure 2.2 shows a tree of →D relations and visualizes the levels Yk.
We can therefore make the following observations:

(i) The tree is rooted in ρ ∈ Y0. In fact ∀ρ′ ∈ Y1 ρ →D ρ′ by definition and ∀ρ′′′ ∈
Yk+1∃ρ′′ ∈ Yk | ρ′′ →D ρ′′′;

(ii) since ∀k ∈ N ⟨D⟩k+1ρ ̸⊆ ∪ki=0⟨D⟩iρ by (2.5), each level Yk is non empty. Each level is
also finite because of Lemma 2.32.(i). Therefore there is an infinite quantity of levels,
where each node has a finite quantity of children.

28 CHAPTER 2. FRAMEWORK

ρ

. . .ρ′ ρ′′

. . .ρ′′′

...
...

Y1

Y2

Yk

Figure 2.2: Example of →D relations between elements of Env.

what is left to do is show that there is a derivation sequence from ⟨D∗, ρ⟩ of infinite length.
We can do this by using König’s Lemma 2.34 and deduce that there exists an infinite deriva-
tion sequence from ρ of →D relations

ρ→D ρ′ →D ρ′′ →D . . .

Where each element belongs to a different level Yk, and therefore is different from every other
environment appearing in the sequence. Observe that for all ρ′, ρ′′ ∈ Env s.t. ρ′ →D ρ′′ since
⟨D, ρ′⟩ →∗ ρ′′ we can apply Corollary 2.18 of Lemma 2.17 and derive that ⟨D;D∗, ρ′⟩ →∗

⟨D∗, ρ′′⟩ and because of the star rule ⟨D∗, ρ′⟩ → ⟨D;D∗, ρ′⟩. We can therefore say that

⟨D∗, ρ′⟩ →∗ ⟨D∗, ρ′′⟩

Therefore, there exists an infinite derivation sequence

⟨D∗, ρ⟩ →∗ ⟨D∗, ρ′⟩ →∗ ⟨D∗, ρ′′⟩ →∗ . . .

which means ⟨D∗, ρ⟩ ↑ and therefore ⟨D∗, ρ⟩ ⇊ is false.

• if instead ⟨D∗⟩ρ is finite, then we can reduce total termination to the presence of some cycle
in one of the derivation sequences starting from ⟨D∗, ρ⟩. The statement we want to prove is
the following:

if ⟨D∗⟩ρ is finite, then ⟨D∗, ρ⟩ ⇊⇐⇒ no derivation sequence starting from ⟨D∗, ρ⟩ has cycles

(=⇒) In this case we want to prove that if ⟨D∗⟩ is finite and ⟨D, ρ⟩ ⇊ then there are no cycles
in any derivation sequence starting from ⟨D, ρ⟩. To do so we work by contradiction.
Suppose there is some derivation sequence starting from ⟨D∗, ρ⟩ with some cycle

⟨D∗, ρ⟩ →∗ ⟨D∗, ρ′⟩ →+ ⟨D∗, ρ′⟩ →∗ ρ′′

with ρ′′ ̸= ρ, ρ′, then we can notice that also the infinite derivation sequence

⟨D∗, ρ⟩ →∗ ⟨D∗, ρ′⟩ →+ ⟨D∗, ρ′⟩ →+ ⟨D∗, ρ′⟩ →+ . . .

is part of the transition system for ⟨D, ρ⟩, and therefore ⟨D∗, ρ⟩ ⇊ is false which is
absurd.

(⇐) In this case we want to prove that if ⟨D∗⟩ρ is finite and there are no cycles in any
derivation sequence starting from ⟨D, ρ⟩ then ⟨D, ρ⟩ ⇊. We work again by contradiction.
Suppose that we have an infinite derivation sequence starting from ⟨D∗, ρ⟩. It must be
that ∀i, j ∈ N i ̸= j, ρi ̸= ρj with ρ0 = ρ, otherwise there would be a cycle, which would
contradict the hypothesis. Therefore the derivation sequence has the shape

⟨D∗, ρ⟩ →∗ ⟨D∗, ρ1⟩ →∗ ⟨D∗, ρ2⟩ →∗ ⟨D∗, ρ3⟩ →∗ . . .

We can notice that for all ρ′ ∈ {ρ, ρ1, . . . } and for the starfix rule, ⟨D∗, ρ′⟩ → ρ′ and
therefore ρ′ ∈ ⟨D∗⟩ρ. This would mean that ⟨D∗⟩ρ is infinite, which is absurd.

2.5. DECIDING INVARIANT FINITENESS 29

To conclude we can observe that there is a finite amount of reachable states from ⟨D∗, ρ⟩.
Where by reachable we mean that there exists some derivation sequence ending up in that
state.

We can notice that starting from any state ⟨D∗, ρ′⟩ with ρ′ ∈ ⟨D∗⟩ρ we have 2 possibilities:

– we either apply the starfixrule, resulting in a finite derivation sequence

⟨D∗, ρ′⟩ → ρ′

and therefore in a finite number of reached states;

– or we apply the star rule
⟨D∗, ρ′⟩ → ⟨D;D∗, ρ′⟩

by lemma 2.32 we know that ⟨D, ρ′⟩ ⇊ and |TS(⟨D, ρ′⟩)| <∞, therefore there is a finite
number of environments ρ′′ s.t. ⟨D, ρ′⟩ →∗ ρ′′. For each one of them we can use the
composition lemma and observe that

⟨D;D∗, ρ′⟩ →∗ ⟨D∗, ρ′′⟩

Ending up in a state ⟨D∗, ρ′′⟩ where we can apply the same reasoning

Therefore starting from any state ⟨D∗, ρ′⟩ with ρ′ ∈ ⟨D∗⟩ρ (in particular ρ), we either termi-
nate our derivation sequence or we end up in some state ⟨D∗, ρ′⟩ again, with ρ′ ∈ ⟨D∗⟩ρ. Since
there is a finite amount of states ρ′ ∈ ⟨D∗⟩ρ, the number of reachable states from ⟨D∗, ρ⟩ is
finite.

CHAPTER 3

Abstract domains

In the following chapters we present two domains that will play a relevant role in the sequel: the
interval domain and the non-relational collecting domain. The two domains are in the class of
non-relational domains, meaning that they do not represent the relation between variables. We
are interested in these two domains as the properties that we will discuss in Chapter 4 will apply
to these domains, with some restrictions that we will discuss later. In Section 3.3 we will talk
about the interval domain, with its characterization and the domain properties in Section 3.3.2.
Later, in Section 3.2 we will talk about the non-relational collecting abstraction by also showing
some properties of the abstraction in Section 3.2.1.

3.1 Abstract inductive semantics

In order to talk about analysis over some abstract domain A, we preliminarly introduce the defi-
nition of abstract semantics provided an abstract domain.

Definition 3.1 (Abstract inductive semantic). Given a domain A and an abstract semantics
((·))A : Exp → A → A for basic expressions, the abstract inductive semantics over A is defined as
the strict (i.e., preserving ⊥) extension of the following function J·KA : Imp→ A→ A. For all η ∈ A

JeKAη ≜ ((e))Aη

JC1 + C2KAη ≜ JC1KAη ⊔ JC2KAη

JC1;C2KAη ≜ JC2KA
(︁
JC1KAη

)︁
JC∗KAη ≜

⨆︁
i∈N
(︁
JCKA

)︁i
(η)

Jfix(C)KAη ≜ lfp(λµ.(η ⊔ JCKAµ))

From this definition we can observe that soundness is preserved from the base cases, i.e., if we
have two domains A and A♯ s.t. A −−−→←−−−α

γ
A♯ according to some abstraction and concretization maps

α and γ then the analysis over A♯ is sound w.r.t. the analysis performed over A, provided that the
base cases are sound.

Theorem 3.2 (Abstraction soundness). Let C ∈ Imp and ⟨A,⊑⟩, ⟨A♯,⊑♯⟩ be two domains equipped
with their partial order s.t. A −−−→←−−−α

γ
A♯ for some abstraction and concretization maps α, γ such that

∀e ∈ Exp (((e))A ◦ γ)η♯ ⊑ (γ ◦ ((e))A
♯

)η♯

i.e., the analysis over the base cases are sound. Then for all η♯ ∈ A♯:

(JCKA ◦ γ) η♯ ⊑ (γ ◦ JCKA
♯

) η♯

i.e., the abstract analysis over A♯ is sound w.r.t. the analysis over A.

31

32 CHAPTER 3. ABSTRACT DOMAINS

Proof. The proof will proceed again by induction on C.

Case (e). In this case by hypothesis it holds that

(JeKA ◦ γ)η♯ = (((e))A ◦ γ)η♯ ⊑ (γ ◦ ((e))A
♯

)η♯ = (γ ◦ JeKA
♯

)η♯

Which is exactly our thesis.

Case (C1 + C2). In this case by inductive hypothesis we know that both the following hold:(︁
JC1KA ◦ γ

)︁
η♯ ⊑

(︂
γ ◦ JC1KA

♯
)︂
η♯ (3.1)(︁

JC2KA ◦ γ
)︁
η♯ ⊑

(︂
γ ◦ JC2KA

♯
)︂
η♯ (3.2)

and JC1 + C2KA
♯

η♯ = JC1KA
♯

η♯ ⊔ JC2KA
♯

η♯. What we have to prove is that(︁
JC1 + C2KA ◦ γ

)︁
η♯ ⊑

(︂
γ ◦ JC1 + C2KA

♯
)︂
η♯

or, equivalently

JC1 + C2KA
(︁
γη♯
)︁
⊑ γ

(︂
JC1 + C2KA

♯

η♯
)︂

JC1KA
(︁
γη♯
)︁
⊔ JC2KA

(︁
γη♯
)︁
⊑ γ

(︂
JC1KA

♯

η♯ ⊔ JC2KA
♯

η♯
)︂

Now we can notice that by Property 4 of Galois connections

γ
(︂
JC1KA

♯

η♯ ⊔ JC2KA
♯

η♯
)︂
=
⨆︂{︂

ρ ∈ A | α(ρ) ⊑ JC1KA
♯

η♯ ⊔ JC2KA
♯

η♯
}︂

(3.3)

Now (︁
α ◦ JC1KA ◦ γ

)︁
η♯ ⊑

(︂
α ◦ γ ◦ JC1KA

♯
)︂
η♯ by monotonicity of α in (3.1)

⊑
(︂
JC1KA

♯
)︂
η♯ by reductivity of α

and the same applies for (3.2). Hence because of (3.3) we can observe that

JC1KA
(︁
γη♯
)︁
⊔ JC2KA

(︁
γη♯
)︁
⊑
⨆︂{︂

ρ ∈ A | α(ρ) ⊑ JC1KA
♯

η♯ ⊔ JC2KA
♯

η♯
}︂

= γ
(︂
JC1KA

♯

η♯ ⊔ JC2KA
♯

η♯
)︂

which is our thesis.

Case (C1;C2). In this case we have to prove that(︁
JC1;C2KA ◦ γ

)︁
η♯ ⊑

(︂
γ ◦ JC1;C2KA

♯
)︂
η♯

or equivalently (︁
JC2KA ◦ JC1KA ◦ γ

)︁
η♯ ⊑

(︂
γ ◦ JC2KA

♯

◦ JC1KA
♯
)︂
η♯

Now we can notice that by inductive hypothesis JC1KA
♯

and JC2KA
♯

are sound abstractions
of respectively JC1KA and JC2KA, hence we have the hypothesis to apply Theorem 1.25 and
deduce that (︁

JC2KA ◦ JC1KA ◦ γ
)︁
η♯ ⊑

(︂
γ ◦ JC2KA

♯

◦ JC1KA
♯
)︂
η♯

which is our thesis.

3.1. ABSTRACT INDUCTIVE SEMANTICS 33

Case (fix(C)). In this case we have to prove that(︁
Jfix(C)KA ◦ γ

)︁
η♯ ⊑

(︂
γ ◦ Jfix(C)KA

♯
)︂
η♯

we know by definition and Fixpoint Theorem 1.13 that(︂
γ ◦ Jfix(C)KA

♯
)︂
η♯ = γ(lfp(λµ.η♯ ⊔ JCKA

♯

µ)) = γ
(︂⨆︂{︂(︂

λµ.η♯ ⊔ JCKA
♯

µ
)︂n
⊥♯ | n ∈ N

}︂)︂
(︁
Jfix(C)KA ◦ γ

)︁
η♯ = lfp(λµ.γ(η♯) ⊔ JCKAµ) =

⨆︂{︂(︁
λµ.γ(η♯) ⊔ JCKAµ

)︁n⊥ | n ∈ N
}︂

We can now prove by induction on n that the two are in a ⊑ relation. We do this by first
proving that for all k ∈ N

fk⊥ ⊑ γ
(︂
(f ♯)

k⊥♯
)︂

by induction on k.

Case (n = 0). In this case

γ

(︃(︂
λµ.η♯ ⊔ JCKA

♯

µ
)︂0
⊥♯

)︃
= γ(⊥♯)

(︁
λµ.γ(η♯) ⊔ JCKAµ

)︁0⊥ = ⊥

hence ⊥ ⊑ γ(⊥♯) and our thesis holds.

Case (n =⇒ n+ 1). Let’s call f ♯ = λµ.η♯ ⊔ JCKA
♯

µ and f = λµ.γ(η♯) ⊔ JCKAµ. First we can
observe that

fn+1⊥ = f(fn⊥) = γ
(︁
η♯
)︁
⊔ JCKA(fn⊥)

f ♯n+1⊥♯ = f ♯(f ♯n⊥) = η♯ ⊔ JCKA
♯

(f ♯n⊥♯)

From this we can observe that

γ
(︂
f ♯(f ♯n⊥♯)

)︂
= γ

(︂
η♯ ⊔ JCKA

♯

(f ♯n⊥♯)
)︂

=
⨆︂{︂

c ∈ A | α(c) ⊑ η♯ ⊔ JCKA
♯

(f ♯n⊥♯)
}︂

by Property 4 of Galois connections.

⊒ γ(η♯) ⊔ γ
(︂
JCKA

♯

(f ♯n⊥♯)
)︂

by (α ◦ γ) reductivity

⊒ γ(η♯) ⊔ JCKAγ(f ♯n⊥♯) by induction on C

⊒ γ(η♯) ⊔ JCKA(fn⊥) by induction on n and monotonicity of J·KA

which is our thesis.

Hence fn⊥ ⊑ γ(f ♯n⊥♯), for all n ∈ N, therefore(︁
Jfix(C)KA ◦ γ

)︁
η♯ =

⨆︂{︂(︁
λµ.γ(η♯) ⊔ JCKAµ

)︁n⊥ | n ∈ N
}︂

⊑ γ
(︂⨆︂{︂(︂

λµ.η♯ ⊔ JCKA
♯

µ
)︂n
⊥♯ | n ∈ N

}︂)︂
=
(︂
γ ◦ Jfix(C)KA

♯
)︂
η♯

Which is our thesis.

We can also observe that best correct approximations (from Definition 1.24) induce sound
semantics:

34 CHAPTER 3. ABSTRACT DOMAINS

Corollary 3.3 (bca induces soundness). Let ⟨A,⊑⟩, ⟨A♯,⊑♯⟩ be two abstract domains equipped
with their respective orders s.t. A −−−→←−−−α

γ
A♯. If for base expressions ((·))A

♯

: Exp → A♯ → A♯ is
defined as

((e))A
♯

η♯ ≜ α
(︂
((e))Aγ

(︁
η♯
)︁)︂

Then (︁
JCKA ◦ γ

)︁
η♯ ⊑

(︂
γ ◦ JCKA

♯
)︂
η♯

i.e., the abstract inductive semantics over A♯ is sound w.r.t. the abstract inductive semantics over
A.

Proof. The proof follows from Theorem 3.2, where we have to prove that for base cases the two
semantics are sound. In this case we know that ((e))A

♯

η♯ = α(((e))Aγ(η♯)) and we have to prove
that

(((e))A ◦ γ)η♯ ⊑ (γ ◦ ((e))A
♯

)η♯

equivalently, we can substitute and notice that we can prove that

((e))A(γ(η♯)) ⊑ γ(α(((e))Aγ(η♯))).

Here we can call ρ = ((e))A(γ(η♯)) and notice that by extensivity ∀ρ ∈ A

ρ ⊑ (γ ◦ α)ρ

((e))A(γ(η♯)) ⊑ (γ ◦ α)
(︂
((e))A(γ(η♯))

)︂
which is our thesis.

Lemma 3.4 (fix(C) is syntactic sugar). For all η ∈ A, Jfix(C)KAη = J(true+ C)∗KAη.

Proof. First, let

f = λµ.(η ⊔ µ ⊔ JCKAµ)

g = λµ.(µ ⊔ JCKAµ)

Let us first show by induction that

∀i ⩾ 0 f i+1(⊥) = gi(η) (3.4)

Case (i = 0). f(⊥) = η ⊔ ⊥ ⊔ JCKA⊥ = η = g0(η).

Case (i+ 1).

gi+1(η) = g(gi(η))

= g(f i+1(⊥)) By induction on i

= f i+1(⊥) ⊔ JCKAf i+1(⊥)
= η ⊔ f i+1(⊥) ⊔ JCKAf i+1(⊥) Since η ⊑ f(⊥)
= f(f i+1(⊥))
= f i+2(⊥)

Let us also show that:
lfp(g) = lfp(f) (3.5)

Observe that lfp(g) = g(lfp(g)) = η ⊔ JCKA(lfp(g)), so we have that:

η ⊔ lfp(g) ⊔ JCKA(lfp(g)) ⊑ lfp(g)

3.2. NON RELATIONAL COLLECTING 35

As a consequence, lfp(f) ⊑ lfp(g) holds. The reverse inequality follows because, for all µ,

g(µ) = η ⊔ JCKAµ ⊑ η ⊔ µ ⊔ JCKAµ = f(µ)

Then, we have that:

Jfix(C)KAη = lfp
(︁
λµ.

(︁
η ⊔ JCKAµ

)︁)︁
= lfp

(︁
λµ.

(︁
η ⊔ µ ⊔ JCKAµ

)︁)︁
By (3.5)

=
⨆︂
i∈N

f i⊥ By Knaster-Tarski Theorem

= ⊥ ⊔
⨆︂
i∈N

f i+1⊥

=
⨆︂
i∈N

giη By (3.4)

= J(true+ C)∗KAη

3.2 Non relational collecting

We now introduce the non-relational collecting domain. Conceptually, this domain associates each
variable with a subset of Z. The processes of abstraction and concretization, from and to the
powerset of environments ℘(Env), involve environments where variables take values within their
respective mappings in the abstract domain.

We preliminarly define the sum of a constant to a subset of Z, the result will be another subset
of Z where all values have been increased by some k ∈ Z.

Definition 3.5 (Set addition and subtraction). For a nonempty set S ∈ ℘(Z) and c ∈ N define
S ± c ≜ {x± c | x ∈ S} (recall that ±∞+ c = ±∞− c = ±∞).

We can therefore proceed by introducing the variable-wise lifting of the domain ℘(Z), building
the abstract domain C:

Definition 3.6 (Abstract Non relational collecting domain). Let ℘∗(Z) = ℘(Z)\{∅}. The abstract
domain C for program analysis is the variable-wise lifting of ℘(Z):

C ≜ (Var → ℘∗(Z)) ∪ {⊥}

In this domain, we define again abstraction and concretization maps, building a Galois connec-
tion with the concrete domain

Definition 3.7. We define the concretization map of abstract environments η ∈ C, i.e., γ : C→ ℘(Env)
as follows

γ(⊥) ≜ ∅

γ(η) ≜ {ρ ∈ Env | ∀x ∈ Var ρ(x) ∈ ηx}

and the abstraction map of sets of concrete environments X ∈ ℘(Env), i.e., α : ℘(Env)→ C as

α(∅) ≜ ⊥
α(X) ≜ λx . {ρ(x) | ρ ∈ X}

We can again define a notion of order for elements of C based on the concretization map. Let
η, ϑ ∈ C, then

η
.
⊆ ϑ iff γ(η) ⊆ γ(ϑ)

36 CHAPTER 3. ABSTRACT DOMAINS

Notice that because of the definition of the concretization map

η
.
⊆ ϑ ⇐⇒ ∀x ∈ Var η(x)

.
⊆ ϑ(x)

we can notice that ⟨C,
.
⊆⟩ is a complete lattice, as for every two elements η, ϑ ∈ C there exists both

η
.
∪ ϑ and η

.
∩ ϑ by characterizing least upper bounds and greatest lower bounds as the lifting of ⊔

and ⊓ operations. Let again η, ϑ ∈ C, then

η
.
∩ ϑ = σ if σ(x) = η(x) ∩ ϑ(x) ∀x ∈ Var

η
.
∪ ϑ = σ if σ(x) = η(x) ∪ ϑ(x) ∀x ∈ Var

Again With these premises we can now define base operations on the non-relational collecting
abstraction:

Definition 3.8 (Base expressions on non-relational collecting). Let η ∈ C and γ from Defini-
tion 3.14. The base expressions semantics ((·))C : Exp→ C→ C is recursively defined as

((x ∈ I))
C
η ≜

{︄
η[x ↦→ ηx ∩ γ(I)] if ηx ∩ γ(I) ̸= ∅
⊥ otherwise

((x := k))
C
η ≜ η[x ↦→ {k}]

((x := y+ k))
C
η ≜ η[x ↦→ ηy+ k]

With these base operations, J·KC is defined accordingly to Definition 3.1.
Thanks to α and γ maps of Definition 3.7 there is a Galois connection between the concrete

domain C and the abstract domain C.

Lemma 3.9 (C abstracts C). Let α, γ be the abstraction and concretization maps from Defini-
tion 3.7, then ⟨α, C,C, γ⟩ is a Galois connection.

Proof. We use the characterization of Theorem 1.17, which means proving

(i) α, γ are monotonic;

(ii) γ ◦ α is extensive;

(iii) α ◦ γ is reductive.

Lets start by proving (i). Let η, ϑ ∈ C s.t. η
.
⊆ ϑ. This means that ∀x ∈ Var ηx ⊆ ϑx

and therefore a ∈ ηx =⇒ a ∈ ϑx. By definition of γ this means that γ(η) ⊆ γ(ϑ). Let now
R,S ∈ ℘(Env) s.t. ρ ⊆ σ, which means that ρ ∈ R =⇒ ρ ∈ S. By definition of α it follows that
η ∈ α(R) =⇒ η ∈ α(S) which means exactly α(R)

.
⊆ α(S) which is our thesis.

Let us now show (ii). What we want to prove is that ∀R ∈ ℘(Env) it holds that R ⊆ γ(α(R)).
If R = ∅ =⇒ α(∅) = ⊥ and therefore γ(⊥) = ∅ and therefore the statement holds. Otherwise
R ̸= ∅ =⇒ α(R) = λx.{ρ(x) | ρ ∈ R} = η. Now, γ(η) = {ρ ∈ Env | ∀x ∈ Var ρ(x) ∈ ηx}, this
means that σ ∈ R =⇒ σ ∈ γ(α(R)), which is our thesis R ⊆ γ(α(R)).

We are left to show (iii). Let η ∈ C, we have 2 cases. Either η = ⊥, which means α(γ(⊥)) =
α(∅) = ⊥

.
⊆ ⊥, hence the statement holds. Otherwise γ(η) = {ρ ∈ Env | ∀x ∈ Var ρx ∈ ηx} = R

and α(R) = λx.{ρx | ρ ∈ R} = η, hence α(γ(η)) = η, which implies our thesis α ◦ γ is reductive,
and therefore ⟨α, C,C, γ⟩ is a Galois connection.

Notice that in particular α◦γ = id, and therefore there is a Galois insertion ⟨C,⊆⟩ −−−→−→←−−−−
α

γ
⟨C,

.
⊆⟩

between the concrete domain C and the abstract domain C.
Moreover the abstract semantics ⟨⟨·⟩⟩ is sound w.r.t. the concrete semantics ⟨·⟩:

Lemma 3.10 (Non-relational collecting soundess). Let C ∈ Imp, η ∈ C

⟨C⟩γ(η) ⊆ γ(⟨⟨C⟩⟩η)

i.e., Non-relational collecting inductive abstract semantics is sound w.r.t. concrete semantics.

3.2. NON RELATIONAL COLLECTING 37

Proof. Since there is a Galois connection between abstract inductive semantics (notice that ⟨·⟩ =
J·KC), We just need to show that the two semantics are sound on base operations.

Case (x ∈ I). In this case we need to show that

⟨x ∈ I⟩γ(η) ⊆ γ(⟨⟨x ∈ I⟩⟩η)

recall that

⟨x ∈ I⟩γ(η) = {Lx ∈ IMρ | ρ ∈ γ(η) Lx ∈ IMρ ̸= ⊥}
γ(⟨⟨x ∈ I⟩⟩η) = γ(η[x ↦→ ηx ∩ γİ(I)])

to conclude notice that

γ(η[x ↦→ ηx ∩ γİ(I)]) = {ρ ∈ Env | ∀x ∈ Var ρx ∈ ηx}
⊇ {Lx ∈ IMρ | ρ ∈ γ(η) Lx ∈ IMρ ̸= ⊥}

which is our thesis.

Case (x := k). In this case we have to prove that

⟨x := k⟩γ(η) ⊆ γ(⟨⟨x := k⟩⟩η)

to do so just notice that

⟨x := k⟩γ(η) = {ρ[x ↦→ k] | ρ ∈ γ(η)}
⊆ {ρ ∈ Env | ∀y ∈ Var ρy ∈ η[x ↦→ {k}]y}
= γ(η[x ↦→ {k}])

which is our thesis.

Case (x := y+ k). In this case similarly to the latter case we can just notice that

⟨x := y+ k⟩γ(η) = {ρ[x ↦→ ρy+ k] | ρ ∈ γ(η)}
⊆ {ρ ∈ Env | ∀w ∈ Var ρw ∈ η[x ↦→ ηy+ k]w}
= γ(η[x ↦→ y+ k])

Since we are sound on the base cases, by Theorem 3.2

⟨C⟩γ(η) ⊆ γ(⟨⟨C⟩⟩η)

3.2.1 Properties

The non-relational collecting semantics is similar to the interval semantics we defined in Section 3.3,
in the sense that both of them do not model relation between variables. Differing from interval
analysis however, non-relational collecting semantics grains back additivity, which we lost with
interval semantics. With additivity we can infer that fix(C) and C∗ have the same semantics (with
Proposition 3.12).

Let’s denote as ⟨⟨·⟩⟩ the abstract semantics over C, i.e., ⟨⟨·⟩⟩ = J·KC.

Lemma 3.11 (Additivity). Let η, ϑ ∈ C, C ∈ Imp then

⟨⟨C⟩⟩
(︂
η

.
∪ ϑ
)︂
= (⟨⟨C⟩⟩η)

.
∪ (⟨⟨C⟩⟩ϑ)

38 CHAPTER 3. ABSTRACT DOMAINS

Proof. We can work by induction on C:

Case (x ∈ S). Then

⟨⟨x ∈ S⟩⟩(η
.
∪ ϑ) = (η

.
∪ ϑ)[x ↦→ (η

.
∪ ϑ)x ∩ S]

= (η
.
∪ ϑ)[x ↦→ (ηx ∩ S) ∪ (ϑx ∩ S)]

= (η[x ↦→ (ηx ∩ S)])
.
∪ (ϑ[x ↦→ ϑx ∩ S])

= ⟨⟨x ∈ S⟩⟩η
.
∪ ⟨⟨x ∈ S⟩⟩ϑ

Case (x := k). Then

⟨⟨x := k⟩⟩(η
.
∪ ϑ) = (η

.
∪ ϑ)[x ↦→ {k}]

= (η[x ↦→ {k}])
.
∪ (ϑ[x ↦→ {k}])

= ⟨⟨x := k⟩⟩η
.
∪ ⟨⟨x := k⟩⟩ϑ

Case (x := y+ k). Then

⟨⟨x := y+ k⟩⟩(η
.
∪ ϑ) = (η

.
∪ ϑ)[x ↦→ y+ k]

= (η[x ↦→ y+ k])
.
∪ (ϑ ↦→ y+ k)

⟨⟨x := y+ k⟩⟩η
.
∪ ⟨⟨x := y+ k⟩⟩ϑ

Case (C1 + C2). Then

⟨⟨C1 + C2⟩⟩(η
.
∪ σ) = ⟨⟨C1⟩⟩(η

.
∪ σ)

.
∪ ⟨⟨C2⟩⟩(η

.
∪ σ) by definition

= ⟨⟨C1⟩⟩η
.
∪ ⟨⟨∪1⟩⟩ϑ

.
∪ ⟨⟨C2⟩⟩η

.
∪ ⟨⟨∪2⟩⟩ϑ by inductive hypothesis

= ⟨⟨C1 + C2⟩⟩η
.
∪ ⟨⟨C1 + C2⟩⟩ϑ

Case (C1;C2). Then

⟨⟨C1;C2⟩⟩(η
.
∪ σ) = ⟨⟨C2⟩⟩(⟨⟨C1⟩⟩(η

.
∪ ϑ))

= ⟨⟨C2⟩⟩
(︂
⟨⟨C1⟩⟩η

.
∪ ⟨⟨∪1⟩⟩ϑ

)︂
by inductive hypothesis

= ⟨⟨C2⟩⟩(⟨⟨C1⟩⟩η)
.
∪ ⟨⟨C2⟩⟩(⟨⟨C1⟩⟩ϑ) by inductive hypothesis

Case (C∗). Then
⟨⟨C∗⟩⟩(η

.
∪ ϑ) =

.⋃︁
i∈N⟨⟨C⟩⟩

i
(η

.
∪ ϑ)

What we have to show now is that ∀i ∈ N ⟨⟨C⟩⟩i(η
.
∪ ϑ) = ⟨⟨C⟩⟩iη

.
∪ ⟨⟨C⟩⟩iϑ. We can show this by

induction on i:

Case (i = 0). Then
⟨⟨C⟩⟩0(η

.
∪ ϑ) = η

.
∪ ϑ = ⟨⟨C⟩⟩0η

.
∪ ⟨⟨C⟩⟩0ϑ

and the statement holds.

Case (i =⇒ i+ 1). Notice that

⟨⟨C⟩⟩i+1
(η

.
∪ ϑ) = ⟨⟨C⟩⟩

(︂
⟨⟨C⟩⟩i(η

.
∪ ϑ)

)︂
= ⟨⟨C⟩⟩(⟨⟨C⟩⟩iη

.
∪ ⟨⟨C⟩⟩iϑ) by inductive hypothesis

= ⟨⟨C⟩⟩i+1
η

.
∪ ⟨⟨C⟩⟩i+1

ϑ by additivity

3.3. INTERVAL DOMAIN 39

Therefore

⟨⟨C∗⟩⟩(η
.
∪ ϑ) =

.⋃︁
i∈N⟨⟨C⟩⟩

i
(η

.
∪ ϑ)

=
.⋃︁
i∈N⟨⟨C⟩⟩

i
(η

.
∪ ϑ)

=
.⋃︁
i∈N⟨⟨C⟩⟩

i
η

.
∪ ⟨⟨C⟩⟩iϑ

=
(︂ .⋃︁

i∈N⟨⟨C⟩⟩
i
η
)︂ .
∪
(︂ .⋃︁

i∈N⟨⟨C⟩⟩
i
ϑ
)︂

= ⟨⟨C∗⟩⟩η
.
∪ ⟨⟨C∗⟩⟩ϑ

Proposition 3.12. fix(C) and C∗ semantics coincide:

⟨⟨fix(C)⟩⟩ = ⟨⟨C∗⟩⟩

Proof. Let f = λµ.(η
.
∪ ⟨⟨C⟩⟩µ)

⟨⟨fix(C)⟩⟩η = lfp(f)

=
.⋃︁
i∈N{fn⊥ | n ∈ N} by fixpoint Theorem 1.13

=
.⋃︁
i∈N⟨⟨C⟩⟩

i
η

= ⟨⟨C∗⟩⟩η

3.3 Interval domain

Interval analysis are among the most well known standard abstract domains in abstract interpre-
tation. They are generally studied as simple non-relational domains, as intervals are not able to
capture the relation between variables occurring in the program. The following chapter aims at
proving that interval analysis is decidable without a widening operator, i.e., despite the presence
of infinite ascending chains the exact value of the analysis can be computed.

We first define what the set of intervals I is and its abstraction and concretization map to the
powerset of integers.

Definition 3.13 (Integer intervals). We call

I ≜ {[a, b] | a ∈ Z ∪ {−∞} ∧ b ∈ Z ∪ {+∞} ∧ a ⩽ b} ∪ {⊥}

the set of integer intervals. In the rest of the thesis we will write ⊤ instead of [−∞,+∞]

In order to later do the variable-wise lifting of the intervals domain and relate it to the concrete
environment C we need to define concretization and abstraction maps for the intervals domain

Definition 3.14. We define the concretization map γ : I→ ℘(Z) as

γ([a, b]) ≜ {x ∈ Z | a ⩽ x ⩽ b}
γ(⊥) ≜ ∅

And the abstraction map α : ℘(Z)→ I as

α(S) ≜

{︄
⊥ if S = ∅
[inf(S), sup(S)] otherwise

The next step is to define some order on I. For this purpose we define a partial order ⊑ based
on the concretization map.

40 CHAPTER 3. ABSTRACT DOMAINS

Definition 3.15 (Partial order on I). Let I, J ∈ I. Then

I ⊑ J ⇐⇒ γ(I) ⊆ γ(J)

Observe that ⟨I,⊑⟩ is a complete lattice. We next characterize least upper bound and greatest
lower bound on the domain I. Let [a, b], [c, d] ∈ I

[a, b] ⊔ [c, d] ≜ [min(a, c),max(b, d)]

[a, b] ⊓ [c, d] ≜

{︄
[max(a, c),min(b, d)] if min(b, d) < max(a, c)

⊥ otherwise

The generalization to infinite sets is obtained in the obvious way, by replacing min and max with
inf and sup. The next building block is the definition of some more operations on intervals, namely
the addition and subtraction of an integer constant:

Definition 3.16 (Interval addition and subtraction). For a nonempty interval [a, b] ∈ I and c ∈ N
define [a, b]± c ≜ [a± c, b± c] (recall that conventionally ±∞+ c = ±∞− c = ±∞).

Notice that γ and α maps are concretization and abstraction maps to and from ℘(Z). We can
therefore notice that there is a Galois connection between ℘(Z) and I.

Lemma 3.17 (I abstracts ℘(Z)). Let α, γ be abstraction and concretization maps from Defini-
tion 3.14. Then ⟨α, ℘(Z), I, γ⟩ is a Galois connection.

Proof. We once again rely on the characterization of Galois connections given by Theorem 1.17:

(i) α and γ are monotonic: let ι, κ ∈ İ s.t. ι ⊑ κ =⇒ γ(ι) ⊆ γ(κ) while if we let R,S ∈ C s.t.
R ⊆ S =⇒ α(R) ⊑ α(S)

(ii) γ ◦ α is extensive. Notice that ∀R ∈ C it holds that R ⊑ {x ∈ Z | inf(R) ⩽ x ⩽ sup(R)} =
γ(α(R)), which is our thesis.

(iii) α ◦ γ is reductive. Notice that ∀ι ∈ İ it holds that α(γ(ι)) = ι, which implies that it is
reductive.

Therefore ⟨α, ℘(Z), I, γ⟩ is a Galois connection.

Moreover, since γ ◦ α = id we can deduce that ⟨℘(Z),
.
⊆⟩ −−−→−→←−−−−

α

γ
⟨I,⊑⟩ is a Galois insertion

3.3.1 Variable-wise lifting
We can therefore proceed to introduce the variable-wise lifting of the I domain, building the abstract
domain İ.

Definition 3.18 (Abstract integer domain). Let I∗ ≜ I\{⊥}. The abstract domain İ for program
analysis is the variable-wise lifting of I:

İ ≜ (Var → I∗) ∪ {⊥}

In this domain, we define again abstraction and concretization maps, building a Galois connec-
tion with the concrete domain. We do so by overloading the α and γ functions, to refer also to the
abstraction and concretization of abstract environments.

Definition 3.19 (Concretization and abstraction). We define the concretization map
.
γ : İ → C

and the abstraction map
.
α : C→ İ as the point wise lifting of γ, α from Definition 3.14:

.
γ(η) ≜ λx.γ(ηx)
.
α(ρ) ≜ λx.α(ρx)

for all η ∈ İ, ρ ∈ C.

3.3. INTERVAL DOMAIN 41

We can again define a notion of order for elements of İ based on the concretization map. We
do by overloading the ⊑ notation. Let η, ϑ ∈ İ, then

η ⊑ ϑ iff
.
γ(η)

.
⊆ .

γ(ϑ)

Notice that because of
.
γ definition

η ⊑ ϑ ⇐⇒ ∀x ∈ Var η(x) ⊑ ϑ(x)

i.e., two abstract environments are ordered if every variable’s interval of the first environment is
contained in the interval of the second abstract environment. Also, the least upper bounds and
greatest lower bounds are obtained by lifting the ⊔ and ⊓ operations, i.e., let η, ϑ ∈ İ, then

η ⊓ ϑ = σ if σ(x) = η(x) ⊓ ϑ(x) ∀x ∈ Var

η ⊔ ϑ = σ if σ(x) = η(x) ⊔ ϑ(x) ∀x ∈ Var

Again we can notice that ⟨İ,⊑⟩ is a complete lattice, as for every two elements η, ϑ ∈ İ there
exists both η ⊔ ϑ and η ⊓ ϑ. With these premises we can define our abstract inductive semantics
on intervals, by defining the base operations ((·))İ : Exp→ İ→ İ

Definition 3.20 (Base expressions on intervals). Let η ∈ İ then the base expressions semantics
((·))İ : Exp→ İ→ İ is recursively defined as

((x ∈ I))
İ
η ≜

{︄
η[x ↦→ ηx ⊓ I] if ηx ⊓ I ̸= ⊥
⊥ otherwise

((x := k))
İ
η ≜ η[x ↦→ [k, k]]

((x := y+ k))
İ
η ≜ η[x ↦→ ηy+ k]

With these base operations, J·Kİ is defined accordingly to Definition 3.1. The next point is to
prove that the interval semantics J·Kİ is sound w.r.t. the concrete semantics ⟨·⟩.

Observation 3.21. An alternative characterization of ((·))İ views it as the b.c.a. of base expressions
on C:

((e))İ =
.
α ◦ ((e))C ◦ .

γ

Lemma 3.22 (İ abstracts C). Let
.
α,

.
γ be the abstraction and concretization maps of Defini-

tion 3.19, then ⟨ .α, C, İ, .
γ⟩ is a Galois connection.

Proof. By Lemma 3.17 ⟨℘(Z),⊆⟩ −−−→−→←−−−−
α

γ
⟨I,⊑⟩ and by Theorem 1.22 ⟨C,

.
⊆⟩ −−−→−→←−−−−

.
α

.
γ
⟨İ,⊑⟩

By latter Lemma and Observation 3.21 we can deduce the following

Lemma 3.23 (intervals domain abstracts non-relational collecting semantics).

⟨⟨C⟩⟩ .γ(η)
.
⊆ .

γ(JCKİη)

Proof. This follows from the fact that base expressions on intervals are characterized by the best
correct approximation of base expressions on C and from Corollary 3.3 b.c.a. induces soundness.

Observation 3.24. Analysis on the intervals domain is sound to the concrete semantics. For all
η ∈ İ

⟨C⟩γ(.
γ(η)) ⊆ γ(⟨⟨C⟩⟩ .γ(η)) ⊆ γ(

.
γ(JCKİη))

Proof. The second inequality γ(⟨⟨C⟩⟩ .γ(η)) ⊆ γ(
.
γ(JCKİη)) comes from Lemma 3.23 and monotonicity

of γ, while the first one is from Lemma 3.10

42 CHAPTER 3. ABSTRACT DOMAINS

3.3.2 Properties
We can immediately see how in the abstract interval domain, the semantics of the Kleene star and
the fixpoint operator is not the same. This intuitively happens because the Kleene star is the least
upper bound of a chain of intervals, while the fix operator keeps iterating over least upper bounds.

Example 3.25. In the case exposed in Code 3.1, for instance, the following program P represents
the difference between the Kleene Star and the Fix operator:

1 while x < 8 do
2 /* P1: */
3 if x = 2
4 x := x+6;
5 endif;
6 x := x-3;
7 if x <= 0
8 x:=0;
9 endif;

10 done;
11

Code 3.1: Program P denoting fix(C) and C∗ difference

starting with the finite interval [3, 4] we get the following loop invariants depending on the way we
model the overall program P:

JP1
∗Kİ = ⊔{[3, 4], [0, 1], [0, 0], [0, 0], . . .} = [0, 4]

Jfix(P1)Kİ = ⊔{⊥, [3, 4], [0, 4], [0, 5], [0, 5], . . .} = [0, 5]

Both invariants are correct, because they over-approximate the most precise concrete invariant
{0, 1, 3, 4}, however the Kleene invariant is strictly more precise than the Fix one.

Moreover notice that we lose the additivity property, which was instead part of the analysis in
C. Consider in fact the following example

Example 3.26. Let η = [x ↦→ [1, 1]], ϑ = [x ↦→ [3, 3]] and the program x ∈ [2,+∞]. We will show
that

Jx ∈ [2,+∞]Kİ(η ⊔ ϑ) ̸= Jx ∈ [2,+∞]Kİη ⊔ Jx ∈ [2,+∞]Kİϑ

Notice in fact that

Jx ∈ [2,+∞]Kİ(η ⊔ ϑ) = Jx ∈ [2,+∞]Kİ([x ↦→ [1, 3]])

= [x ↦→ [2, 3]]

while

Jx ∈ [2,+∞]Kİη = ⊥

Jx ∈ [2,+∞]Kİϑ = ϑ

and therefore ⊥ ⊔ ϑ = ϑ ̸= [x ↦→ [2, 3]], which was our thesis.

CHAPTER 4

Program bounds and analysis
termination

In the last chapter we defined two abstract domains: the interval domain and the non-relational
collecting domain. Both are non-relational domains, in the sense that they do not model the
relation between variables, but only their possible individual values. Trough the abstract inductive
semantics of Definition 3.1 we defined a simple abstract interpreter for the Imp language, provided
base expressions and an abstract domain A. In Chapter 2 we proved that the Imp language is
Turing-complete and therefore by Rice’s theorem all non-trivial semantic properties of programs
written in such language are not decidable. Exact invariants fall into this category, as they tie the
initial state of a machine and a program to the output the program would return.

With this context, we can formalize the problem we will solve:

Problem 4.1 (Exact analysis computation). Given a program C ∈ Imp and an abstract domain
A, for all η ∈ A, compute

JCKAη

In this chapter we argue that for the language Imp the abstract semantics is computable for
the domain İ, while for the domain C we will show that a further abstraction can be computed
exactly. We will also show that the further abstraction coincides with the analysis over C when the
analysis terminates. Indeed, our proof shows that we can decide the termination of the analyser.

Observe that the exact computation of the abstract invariant provides, already for our simple
language, a precision which is not obtainable with (basic) widening and narrowing. In the example
in Code 4.1 if we consider the abstract domain İ, the semantics maps x and y to [0, 2] and [6, 8]
respectively, while widening/narrowing to [0,+∞] and [6,+∞].

1 x:=0;
2 y:=0;
3 while (x<=5) do
4 if (y=0) then
5 y=y+1;
6 endif;
7 if (x=0) then
8 x:=y+7;
9 endif;

10 done;

Code 4.1: Code sample where analysis of fix(C) is less precise than C∗

Of course, for the collecting semantics this is not the case. Already computing a finite up-
per bound for loop invariants when they are finite is impossible as this would allow to decide
termination, as we have seen in Section 2.5.

43

44 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

The main idea, based on previous research is to bound the domain A. Each program is associated
to a bound, an ideal value above which for each variable we can safely assume that the program
diverges. First, given a program, we associate the program with a lower bound and an upper bound.
The rough idea is that, whenever a variable is beyond its bound, the behavior of the program with
respect to that variable becomes stable.

4.1 Program bounds

We need to define the max and min function for intervals.

Definition 4.2. (max and min on intervals) Let Z ≜ Z∪{−∞,+∞}, then max : I→ Z is defined
as

max(⊥) ≜ −∞
max([a, b]) ≜ b

while the min function min : I→ Z is defined as follows

min(⊥) ≜ +∞
min([a, b]) ≜ a

Notice in particular that since ⊤ = [−∞,+∞], max(⊤) = +∞,min(⊤) = −∞.

Definition 4.3 (Program bound). The upper bound associated with a command C ∈ Imp is an
integer number, denoted (C)b ∈ N, defined inductively as follows:

(x ∈ I)
b ≜

⎧⎪⎨⎪⎩
|max(I)| if max(I) ∈ Z
|min(I)| if max(I) = +∞∧min(S) ∈ Z
0 otherwise

(x := k)
b ≜ |k|

(x := y+ k)
b ≜ |k|

(C1 + C2)
b ≜ (C1)

b
+ (C2)

b

(C1;C2)
b ≜ (C1)

b
+ (C2)

b

(fix(C))b ≜ (|vars(C)|+ 1)(C)b

while the lower bound associated with a command C ∈ Imp is again an integer number, denoted
(C)b ∈ N, defined inductively as follows:

(x ∈ I)b ≜

⎧⎪⎨⎪⎩
|min(I)| if min(I) ∈ Z
|max(I)| if min(I) = −∞∧max(I) ∈ Z
0 otherwise

(x := k)b ≜ |k|
(x := y+ k)b ≜ |k|

(C1 + C2)b ≜ (C1)b + (C2)b

(C1;C2)b ≜ (C1)b + (C2)b

(fix(C))b ≜ (|vars(C)|+ 1)(C)b

where vars(C) denotes the set of variables occurring in C.

We can notice that the two definitions of the bound (C)b and (C)b coincide, except for the
filtering instruction x ∈ S.

4.2. BOUNDING INTERVAL ANALYSIS 45

4.2 Bounding interval analysis

The following section aims at proving that by bounding the interval domain to a subdomain with
no infinite ascending chains, i.e., where every chain converges in finite time, we can still compute
the most precise interval representation for each variable in our program. To do so, we first prove
an easy graph-theoretic property which will later be helpful. Consider a finite directed and edge-
weighted graph ⟨X,→⟩ where → ⊆X × Z×X and x→h x′ denotes that (x, h, x′) ∈ →. Consider
a finite path in ⟨X,→⟩

p = x0 →h0 x1 →h1 x2 →h2 . . .→hℓ−1
xℓ

where:

(i). ℓ ⩾ 1

(ii). the carrier size of p is s(p) ≜ |{x0, ..., xℓ}|

(iii). the weight of p is w(p) ≜ Σℓ−1
k=0hk

(iv). the length of p is |p| ≜ ℓ

(v). given indices 0 ⩽ i < j ⩽ ℓ, pi,j denotes the subpath of p given by xi →hi
xi+1 →i+1

· · · →hj−1
xj whose length is j − i; pi,j is a cycle if xi = xj .

Lemma 4.4 (Positive cycles in weighted directed graphs). Let p be a finite path

p = x0 →h0
x1 →h1

x2 →h2
· · · →hℓ−1

xℓ

with m ≜ max{|hj | | j ∈ {0, . . . , ℓ− 1}} ∈ N and w(p) > (|X| − 1)m. Then, p has a subpath which
is a cycle having a strictly positive weight.

Proof. First note that w(p) = Σℓ−1
k=0hk > (|X| − 1)m implies that |p| = ℓ ⩾ |X|. Then, we show

our claim by induction on |p| = ℓ ⩾ |X|.
(|p| = |X|): Since the path p includes exactly |X|+1 = ℓ+1 nodes, there exist indices 0 ⩽ i < j ⩽ ℓ
such that xi = xj , i.e., pi,j is a subpath of p which is a cycle. Moreover, since this cycle pi,j includes
at least one edge, we have that

w(pi,j) = w(p)− (Σi−1
k=0hk +Σℓ−1

k=jhk) > as w(p) > (|X| − 1)m

(|X| − 1)m− (Σi−1
k=0hk +Σℓ−1

k=jhk) ⩾ as Σi−1
k=0hk +Σℓ−1

k=jhk ⩽ (ℓ− 1)m

(|X| − 1)m− (ℓ− 1)m = [as ℓ = |X|]
(|X| − 1)m− (|X| − 1)m = 0

so that w(pi,j) > 0 holds.

(|p| > |X|): Since the path p includes at least |X| + 2 nodes, as in the base case, we have that p
has a subpath which is a cycle. Then, we consider a cycle pi,j in p, for some indices 0 ⩽ i < j ⩽ ℓ,
which is maximal, i.e., such that if pi′,j′ is a cycle in p, for some 0 ⩽ i′ < j′ ⩽ ℓ, then pi,j is not a
proper subpath of pi′,j′ .
If w(pi,j) > 0 then we are done. Otherwise we have that w(pi,j) ⩽ 0 and we consider the path p′

obtained from p by stripping off the cycle pi,j , i.e.,

p′ ≡
p′
0,i⏟ ⏞⏞ ⏟

x0 →h0
x1 →h1

· · · →hi−1
xi =

p′
j+1,ℓ⏟ ⏞⏞ ⏟

xj →hj+1
. . .→hℓ−1

xℓ

Since |p′| < |p| and w(p′) = w(p) − w(pi,j) ⩾ w(p) > (|X| − 1)m, we can apply the inductive
hypothesis on p′. We therefore derive that p′ has a subpath q which is a cycle having strictly
positive weight. This cycle q is either entirely in p′0,i or in p′j+1,ℓ, otherwise q would include the
cycle pi,j thus contradicting the maximality of pi,j . Hence, q is a cycle in the original path p having
a strictly positive weight.

46 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

We will now prove a fundamental property of analysis over the lattice of intervals: if a variable in
a program does not diverge, then the increment of that variable is bounded by the constants in the
program. This property will later be useful to restrict the domain of intervals (which incorporates
infinite ascending and descending chains) to one of its subsets that does not contain such chains.

Notation 4.5. For the following proof and whenever we will refer to the abstract semantics over
intervals we will use the notation J·K to refer to J·Kİ.

Lemma 4.6. Let C ∈ Imp. For all η ∈ İ and y ∈ Var , if max(JCKηy) ̸= +∞ and max(JCKηy) >
(C)b then there exist a variable z ∈ Var and an integer h ∈ Z such that |h| ⩽ (C)b and the following
two properties hold:

(i) max(JCKηy) = max(ηz) + h;

(ii) for all η′ ∈ İ, if η′ ⊒ η then max(JCKη′y) ⩾ max(η′z) + h.

Proof. We preliminarly observe that we can safely assume η ̸= ⊥. In fact, if η = ⊥ then JCK⊥ = ⊥
and thus max(JCKηy) = −∞ ⩽ (C)b, against the hypothesis max(JCKηy) > (C)b. Moreover, when
quantifying over η′ such that η′ ⊒ η in (ii), if max(JCKη′y) = +∞ holds, then max(JCKη′y) ⩾
max(η′z) + h trivially holds, hence we will sometimes silently omit this case.

Case (x ∈ I). Take η ∈ İ and assume +∞ ≠ max(Jx ∈ IKηy) > (x ∈ I)
b. Clearly Jx ∈ IKη ̸=

⊥, otherwise we would get the contradiction max(Jx ∈ IKηy) = −∞ ⩽ (x ∈ I)
b.

We distinguish two cases:

• If y ̸= x, then for all η′ ∈ İ such that η ⊑ η′ it holds

⊥ ≠ Jx ∈ IKη′ = η′[x ↦→ ηx ⊓ I]

and thus
max(Jx ∈ IKη′y) = max(η′y) = max(η′y) + 0

hence the thesis follows with z = y and h = 0.

• If y = x then
max(Jx ∈ IKηy) = max(ηx ⊓ I)

Note that it cannot be max(I) ∈ Z. Otherwise, by Definition 4.3, max(ηx ⊓ I) ⩽ sup(I) =

(x ∈ I)
b, violating the assumption max(Jx ∈ IKηy) > (x ∈ I)

b. Hence, max(I) = +∞
must hold and therefore max(ηx ⊓ I) = max(η(x)) = max(η(x)) + 0. It is immediate to
check that the same holds for all η′ ⊒ η, i.e.,

max(ηx ⊓ I) = max(η′x) + 0

and thus the thesis follows with z = y = x and h = 0.

Case (x := k). Take η ∈ İ and assume max(Jx := kKηy) > (x := k)
b
= |k|.

Observe that it cannot be x = y. In fact, since Jx := kKη = η[x ↦→ [k, k]], we would have
Jx := kKηy = αI({k}) = [k, k] and thus

max(Jx := kKηy) = k ⩽ (x := k)
b

violating the assumption. Therefore, it must be y ̸= x. Now, for all η′ ⊒ η, we have
Jx := kKη′y = η′y and thus

max(Jx := kKη′y) = max(η′y) = max(η′y) + 0,

hence the thesis holds with h = 0 ⩽ (x := k)
b and z = y.

4.2. BOUNDING INTERVAL ANALYSIS 47

Case (x := w+ k). Take η ∈ İ and assume max(Jx := w+ kKηy) > (x := w+ k)
b
= |k|. Recall

that Jx := w+ kKη = η[x ↦→ ηw+ k].

We distinguish two cases:

• If y ̸= x, then for all η′ ⊒ η, we have Jx := w+ kKη′y = η′y and thus

max(Jx := w+ kKη′y) = max(η′y)

hence the thesis follows with h = 0 ⩽ (x := w+ k)
b and z = y.

• If x = y then for all η′ ⊒ η, we have Jx := w+ kKη′y = η′w+ k and thus

max(Jx := w+ kKη′y) = max(η′w) + k

hence, the thesis follows with h = k (recall that k ⩽ |k| = (x := w+ k)
b) and z = w.

Case (C1 + C2). Take η ∈ İ and assume max(JC1 + C2Kη) > (C1 + C2)
b
= (C1)

b
+ (C2)

b.
Recall that JC1 + C2Kη = JC1Kη⊔ JC2Kη. Hence, since max(JC1 + C2Kηy) ̸= +∞, we have that
max(JC1Kηy) ̸=∞ ≠ max(JC2Kηy). Moreover

max(JC1 + C2Kηy) = max(JC1Kηy ⊔ JC2Kηy)
= max{max(JC1Kηy),max(JC2Kηy)}

Thus max(JC1 + C2Kηy) = max(JCiKηy) for some i ∈ {1, 2}. We can assume, without loss of
generality, that the maximum is realized by the first component, i.e., max(JC1 + C2Kηy) =

max(JC1Kηy) > (C1 + C2)
b. Hence we can use the inductive hypothesis on C1 and state that

there exists h ∈ Z with |h| ⩽ (C1)
b and z ∈ Var such that max(JC1Kηy) = max(ηz) + h and

for all η′ ∈ İ, η ⊑ η′,
max(JC1Kη′y) ⩾ max(η′z) + h

Therefore
max(JC1 + C2Kηy) = max(JC1Kηy) = max(ηz) + h

and and for all η′ ∈ İ, η ⊑ η′,

max(JC1 + C2Kη′y) = max{max(JC1Kη′y),max(JC2Kη′y)}
⩾ max(JC1Kη′y)
⩾ max(η′z) + h

with |h| ⩽ (C1)
b ⩽ (C1 + C2)

b, as desired.

Case (C1;C2). Take η ∈ İ and assume max(JC1;C2Kηy) > (C1;C2)
b
= (C1)

b
+ (C2)

b. Recall
that JC1;C2Kη = JC2K(JC1Kη). If we define

JC1Kη = η1

since max(JC2Kη1y) ̸= ∞ and max(JC2Kη1y) > (C1;C2)
b ⩾ (C2)

b, by inductive hypothesis on
C2, there are |h2| ⩽ (C2)

b and w ∈ Var such that max(JC2Kη1y) = max(η1w) + h2 and for all
η′1 ∈ İ with η1 ⊑ η′1

max(JC2Kη′1y) ⩾ max(η′1w) + h2 (4.1)

Now observe that max(JC1Kηw) = max(η1w) > (C1)
b. Otherwise, if it were max(η1w) ⩽ (C1)

b

we would have

max(JC2Kη1y) = max(η1w) + h2 ⩽ (C1)
b
+ (C2)

b
= (C1;C2)

b,

48 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

violating the hypotheses. Moreover, max(JC1Kηw) ̸= +∞, otherwise we would have max(JC2Kη1y) =
max(η1w) + h2 = +∞, contradicting the hypotheses. Therefore we can apply the induc-
tive hypothesis also to C1 and deduce that there are |h1| ⩽ (C1)

b and w′ ∈ Var such that
max(JC1Kηw) = max(ηw′) + h1 and for all η′ ∈ İ with η ⊑ η′

max(JC1Kη′w) ⩾ max(η′w′) + h1 (4.2)

Summing up:

max(JC1;C2Kηy) = max(JC2K(JC1Kη)y)
= max(JC2Kη1y)
= max(η1w) + h2

= max(JC1Kηw) + h2

= max(ηw′) + h1 + h2.

Now, for all η′ ∈ İ with η ⊑ η′ we have that:

max(JC1;C2Kη′y) =
max(JC2K(JC1Kη′)y) ⩾
max(JC1Kη′w) + h2 ⩾ by (4.1), since η1 = JC1Kη ⊑ JC1Kη′ and monotonicity

(max(η′w′) + h1) + h2 by (4.2)

Thus, the thesis holds with h = h1 + h2, as |h| = |h1 + h2| ⩽ |h1| + |h2| ⩽ (C1)
b
+ (C2)

b
=

(C1;C2)
b, as needed.

Case (fix(C)). Let η ∈ İ such that max(Jfix(C)Kηy) ̸= +∞. Recall that Jfix(C)Kη = lfp (λµ.(JCKµ ⊔ η)).
Observe that the least fixpoint of λµ.(JCKµ ⊔ η) coincides with the least fixpoint of λµ.(JCKµ ⊔ µ) =
λµ.JC+ trueKµ above η. Hence, if

η0 ≜ η

for all i ∈ N ηi+1 ≜ JCKηi ⊔ ηi = JC+ trueKηi ⊒ ηi

then we define an increasing chain {ηi}i∈N ⊆ İ such that

Jfix(C)Kη =
⨆︁

i∈N ηi.

Since max(Jfix(C)K)ηy ̸= +∞, we have that for all i ∈ N, max(ηiy) ̸= +∞. Moreover,
⨆︁

i∈N ηi
on y is finitely reached in the chain {ηi}i∈N, i.e., there exists m ∈ N such that for all i ⩾ m+1

max(Jfix(C)Kηy) = max(ηiy).

The inductive hypothesis holds for C and true, hence for C + true, therefore for all x ∈ Var
and j ∈ {0, 1, . . . ,m}, if max(ηj+1x) > (C+ true)b = (C)b then there exist z ∈ Var and h ∈ Z
such that |h| ⩽ (C)b and

(a) +∞ ≠ max(ηj+1x) = max(ηjz) + h,

(b) ∀η′ ⊒ ηj .max(JC+ trueKη′x) ⩾ max(η′z) + h.

To shortly denote that the two conditions (a) and (b) hold, we write

(z, j)→h (x, j + 1)

Now, assume that for some variable y ∈ Var

max(Jfix(C)Kηy) = max(ηm+1y) > (fix(C))b = (n+ 1)(C)b

4.2. BOUNDING INTERVAL ANALYSIS 49

where n = |vars(C)|. We want to show that the thesis holds, i.e., that there exist z ∈ Var and
h ∈ Z with |h| ⩽ (fix(C))b such that:

max(Jfix(C)Kηy) = max(ηz) + h (4.3)

and for all η′ ⊒ η,
max(Jfix(C)Kη′y) ⩾ max(η′z) + h (4.4)

Let us consider (4.3). We first observe that we can define a path

σ ≜ (y0, 0)→h0
(y1, 1)→h1

. . .→hm
(ym+1,m+ 1) (4.5)

such that ym+1 = y and for all j ∈ {0, . . . ,m + 1}, yj ∈ Var and max(ηjyj) > (C)b. In
fact, if, by contradiction, this were not the case, there would exist an index i ∈ {0, . . . ,m}
(as max(ηm+1ym+1) > (C)b already holds) such that max(ηiyi) ⩽ (C)b, while for all j ∈
{i+ 1, . . . ,m+ 1}, max(ηjyj) > (C)b. Thus, in such a case, we consider the nonempty path:

π ≜ (yi, i)→hi
(yi+1, i+ 1)→hi+1

. . .→hm
(ym+1,m+ 1) (4.6)

and we have that:

Σm
j=ihj =

Σm
j=i max(ηj+1yj+1)−max(ηjyj) =

max(ηm+1ym+1)−max(ηiyi) =

max(ηm+1y)−max(ηiyi) >

(n+ 1)(C)b − (C)b = n(C)b

with |hj | ⩽ (C)b for j ∈ {i, . . . ,m}. Hence we can apply Lemma 4.4 to the projection πp of
the nodes of this path π to the variable component to deduce that πp has a subpath which is
a cycle with a strictly positive weight. More precisely, there exist i ⩽ k1 < k2 ⩽ m + 1 such
that yk1

= yk2
and h = Σk2−1

j=k1
hj > 0. If we denote w = yk1

= yk2
, then we have that

max(ηk2w) = hk2−1 +max(ηk2−1w)

= hk2−1 + hk2−2 +max(ηk2−2w)

= Σk2−1
j=k1

hj +max(ηk1
w)

= h+max(ηk1
w)

Thus,
max(JC+ trueKk2−k1ηk1

w) = max(ηk1
w) + h

Observe that for all η′ ⊒ ηk1

max
(︂
JC+ trueKk2−k1η′w

)︂
⩾ max(η′w) + h (4.7)

Let us show Property (4.7) by induction on ℓ = k2 − k1 ⩾ 1.

Case (ℓ = 1). Notice that by (b) used to build π in (4.6) it holds that ∀η′ ⊒ ηk1 ⊒ η

max (JC+ trueKη′w) ⩾ max(η′w) + h

hence the thesis holds.

Case (ℓ =⇒ ℓ+ 1). Recall that

(JC+ trueK)ℓ+1
η′ = (JC+ trueK)

(︂(︂
(JC+ trueK)ℓ

)︂
η′
)︂

50 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

and by inductive hypothesis max
(︂
(JC+ trueK)ℓη′w

)︂
⩾ max (η′w) + h. Recall that for

all η′′ ∈ İ JC+ trueKη′′ = η′′ ⊔ JCKη′′. Hence we can notice that max(JC+ trueKη′′)x ⩾
max(η′′)x for all x ∈ Var . Therefore

max
(︂
JC+ trueK

(︂
(JC+ trueK)ℓη′

)︂
w
)︂
⩾ max

(︂
(JC+ trueK)ℓη′w

)︂
⩾ max(η′w) + h

which is our thesis for Property (4.7).

Then, an inductive argument allows us to show that for all r ∈ N:

max(JC+ trueKr(k2−k1)ηk1w) ⩾ max(ηk1w) + rh (4.8)

In fact, for r = 0 the claim trivially holds. Assuming the validity for r ⩾ 0 then we have that

max(JC+ trueK(r+1)(k2−k1)ηk1
w) =

max(JC+ trueKk2−k1(JC+ trueKr(k2−k1)ηk1
)w) ⩾ by (4.7) as ηk1

⊑ JC+ trueKr(k2−k1)ηk1

max(JC+ trueKr(k2−k1)ηk1
w) + h ⩾ by inductive hypothesis

max(ηk1
w) + rh+ h ⩾ max(ηk1

w) + (r + 1)h

However, this would contradict the hypothesis max(Jfix(C)Kηy) ̸= ∞. In fact the inequal-
ity (4.8) would imply

Jfix(C)Kηw =
⨆︂
i∈N

JC+ trueKiηw =

=
⨆︂
i∈N

JC+ trueKiηk1
w

=
⨆︂
r∈N

JC+ trueKr(k2−k1)ηk1
w

= +∞

Now, from (4.5) we deduce that for all η′ ⊒ ηk1
, for j ∈ {k1, . . . ,m}, if we let µk1

= η′ and
µj+1 = JC+ trueKµj , by the choice of the subsequence, since k1 ⩾ i, we have that

max(µj+1yj+1) ⩾ max(µj+1yj) + hj

and thus

JC+ trueKm−k1+1
η′y = µm+1ym+1 ⩾ max(yk1) + Σm

i=k1
hi = max(η′w) + Σm

i=k1
hi

Since η′ = Jfix(C)Kη ⊒ ηk1
we conclude

max (Jfix(C)Kηy) = max
(︂
JC+ trueKm−k1+1Jfix(C)Kηw

)︂
= max (Jfix(C)Kηw) + Σi=k1

mhi

⩾ +∞+Σm
i=k1

hi = +∞

contradicting the assumption.

Therefore, the path σ of (4.5) must exist, and consequently

max(Jfix(C)Kηy) = max(ηm+1y) = max(ηy0) + Σm
i=0hi

and Σm
i=0hi ⩽ (fix(C))b = (n + 1)(C)b, otherwise we could use the same argument above for

inferring the contradiction max(Jfix(C)Kηy) = +∞.

4.3. COMPUTING INTERVAL SEMANTICS 51

Let us now show (4.4). Given η′ ⊒ η from (4.5) we deduce that for all j ∈ {0, . . . ,m}, if we
let µ0 = η′ and µj+1 = JC+ trueKµj , we have that

max(µj+1yj+1) ⩾ max(µj+1yj) + hj .

Therefore, since Jfix(C)Kη′ ⊒ µm+1 (observe that the convergence of Jfix(C)Kη′ could be at an
index greater than m+ 1), we conclude that:

max(Jfix(C)Kη′y) ⩾ max(µm+1y) = max(µm+1ym+1) ⩾ max(η′y0) + Σm
i=0hi

as desired.

We can now notice that this proof also works for the min value of each variable’s interval. I.e.,
the following property also holds:

Lemma 4.7. Let C ∈ Imp.
For all η ∈ İ and y ∈ Var , if min(JCKηy) ̸= −∞ and min(JCKηy) < −(C)b then there exist a
variable z ∈ Var and an integer h ∈ Z s.t. |h| ⩽ (C)b s.t. the following two properties hold:

(i) min(JCKηy) = min(ηz) + h;

(ii) for all η′ ∈ İ, if η′ ⊒ η then min(JCKη′y) ⩽ min(η′z) + h.

Proof. The full proof is available at Appendix A.1, as Lemma A.2. Intuitively the proof works
by considering the integers Z with the reverse ordering < and a new bound, (C)b, computed by
considering the reverse ordering.

4.3 Computing interval semantics

Lemma 4.6 and Lemma 4.7 provide us an useful insight to compute the abstract interval semantics
of Imp programs. Combined, they state that each variable in a program can increment (or decre-
ment) by a maximal value which depends on the initial state η and the constants that appear in the
program itself: the bound (C)b. In this section we use this idea to compute the interval semantics
in another abstract domain, which does not contain infinite ascending or descending chains, and
therefore using the simple Kleene iteration to compute least fixpoints ensures termination.

To start we define bounded abstract interval domains:

Definition 4.8 (Bounded interval). We define İ
u

ℓ ≜ (VarC → Iuℓ) ∪ {⊥} where

Iuℓ ≜ {[a, b] | a, b ∈ Z ∧ ℓ ⩽ a ⩽ b ⩽ u}
∪ {[a,+∞] | a ∈ Z ∧ a ⩾ ℓ}
∪ {[−∞, b] | b ∈ Z ∧ b ⩽ u}

We visualize the Hasse diagram of the bounded integer domain in Figure 4.1 and notice that
by definition there are no infinite ascending chains. Now we can notice that given ℓ, u ∈ Z we
can build a Galois Connection (Definition 1.16) between the interval domain İ and the bounded
interval domain İ

u

ℓ playing here the role of concrete and abstract domain respectively. To do so
we first need to define a concretization and abstraction maps.

Definition 4.9. Given ℓ, u ∈ Z we define a concretization map γℓ,u : Iuℓ → I as the function

∀a ∈ İ
u

ℓ γℓ,u(a) = a

52 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

⊤

[ℓ,+∞] [−∞, u]

[ℓ, u][ℓ+ 1,+∞] [−∞, u − 1]

[ℓ+ 1, u]. . . [ℓ, u − 1] . . .

[ℓ+ 1, u − 1][ℓ+ 2, u] [ℓ, u − 2].

...
...

. . .

⊥

Figure 4.1: Iuℓ Hasse diagram

i.e., γℓ,u = id. While we define an abstraction map αℓ,u : I→ Iuℓ in the following way

αℓ,u(⊥) = ⊥

αℓ,u([a, b]) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[a, b] if a ⩾ ℓ ∧ b ⩽ u

[−∞, b] if a < ℓ ∧ b ⩽ u

[a,+∞] if a ⩾ ℓ ∧ b > u

[−∞,+∞] otherwise

Next, we prove that given ℓ, u ∈ Z we in fact have a Galois Connection:

Lemma 4.10. Given ℓ, u ∈ Z s.t. ℓ ⩽ u

⟨I,⊑⟩ −−−−→←−−−−
αℓ,u

id ⟨Iuℓ ,⊑⟩

i.e., ⟨αℓ,u , I, Iuℓ , id⟩ is a Galois Connection.

Proof. We want to prove that id and αℓ,u satisfy the property as in Theorem 1.17:

(1) αℓ,u , id are monotonic;

(2) id ◦ αℓ,u is extensive, i.e., ∀ι ∈ I it holds that ι ⊑ id(αℓ,u(ι));

(3) αℓ,u ◦ id is reductive, i.e., ∀ιb ∈ Iuℓ it holds that αℓ,u(id(ιb)) ⊑ ιb.

Let us show (1). The functionid is monotone since ∀ι, κ ∈ Iuℓ it holds that ι ⊑ κ =⇒ ι ⊑ κ. For
αℓ,u we have to prove that for all ι, κ ∈ I it holds that ι ⊑ κ =⇒ αℓ,u(ι) ⊑ αℓ,u(κ). Now notice
that ι ⊑ κ means that min(ι) ⩾ min(κ) and max(ι) ⩽ max(κ). Hence, by Definition 4.9 of αℓ,u it
holds that αℓ,u(ι) ⊑ αℓ,u(κ), which is our thesis.

Let us now show (2). We have to prove that ∀ι ∈ I it holds that ι ⊑ γ(αℓ,u(ι)). By hypothesis
γ = id, hence we just have to prove that ι ⊑ αℓ,u(ι). Based on the definition of αℓ,u from
Definition 4.9 both the following hold:

min(αℓ,u(ι)) ⩽ min(ι)

max(αℓ,u(ι)) ⩾ max(ι)

Hence it holds that
ι ⊑ αℓ,u(ι) (4.9)

4.3. COMPUTING INTERVAL SEMANTICS 53

We can finally prove (3): αℓ,u ◦ γ is reductive, i.e., ∀ιb ∈ Iuℓ , αℓ,u(id(ιb)) ⊑ ιb. Notice that ∀ιb ∈ Iuℓ
it holds that

αℓ,u(ιb) = ιb (4.10)

hence it holds that αℓ,u(ιb) ⊑ ιb

Notice that because of Equation (4.10) holds we know that αℓ,u ◦ γℓ,u = id, hence we not only
have a Galois Connection but a Galois insertion (Definition 1.20):

⟨I,⊑⟩ −−−−→−→←−−−−−
αℓ,u

id ⟨Iuℓ ,⊑⟩ (4.11)

because of the latter observation and since İ, İ
u

ℓ are the point(variable)-wise lifting of I, Iuℓ
respectively, by Theorem 1.22 it holds that

⟨İ,⊑⟩ −−−−→−→←−−−−−
.
αℓ,u

.
γℓ,u

⟨İuℓ ,⊑⟩ (4.12)

where
.
αℓ,u(η) = λx.αℓ,u(ηx) and

.
γℓ,u = id. We can therefore define our analysis in İ

u

ℓ by means of
best correct approximations over İ

u

ℓ .

Notation 4.11. For the following definition and whenever we will need to talk about the abstract
semantics over the interval domain bounded over some constants ℓ, u ∈ Z we will write J·Kuℓ to refer
to J·Kİ

u
ℓ .

Definition 4.12 (Bounded interval analysis). Let ρ ∈ İ
u

ℓ for some ℓ, u ∈ Z s.t. ℓ ⩽ u and C ∈ Imp.
We define ((e))İ

u
ℓ ρ as the best correct approximation of base expressions over İ:

((e))İ
u
ℓ ≜

.
αℓ,u ◦ ((e))İ ◦

.
γℓ,u

where e ∈ Exp.

Notice that for basic expressions we are using the best correct approximation
.
αℓ,u ◦ JeK ◦ id, which

allows us to prove the soundness of the analysis over İ
u

ℓ w.r.t. the analysis over İ:

Lemma 4.13. For all ℓ, u ∈ Z s.t. ℓ ⩽ u, ρ ∈ İ
u

ℓ

JCKρ ⊑ JCKuℓ ρ

i.e., with İ
u

ℓ we have an over-approximation of İ.

Proof. The theorem follows from the fact that there is a Galois connection

İ −−−−→←−−−−
.
αℓ,u

id İ
u

ℓ

between İ and İ
u

ℓ for all ℓ, u ∈ Z | ℓ ⩽ u and the fact that base expressions are defined with the
best correct approximation. Hence by Corollary 3.3 follows that for all C ∈ Imp, ρ ∈ İ

u

ℓ

(JCK ◦ id) ρ ⊑ (id ◦ JCKuℓ) ρ

hence our thesis.

Now we define a new bound, it will be useful later in Theorem 4.17.

54 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

Definition 4.14. Let C ∈ Imp. Then (·)b+ : Imp→ N is the updated bound, recursively defined as
follows:

(e)b+ ≜ (e)b

(C1 + C2)
b
+ ≜ (C1)

b
+ + (C2)

b
+

(C1;C2)
b
+ ≜ (C1)

b
+ + (C2)

b
+

(fix(C))b+ ≜ (n+ 2)(C)b+

where n = vars(C). Similarly, (·)+b : Imp→ N is the updated lower bound of commands, recursively
defined as follows:

(e)+b ≜ (e)b

(C1 + C2)
+
b ≜ (C1)

+
b + (C2)

+
b

(C1;C2)
+
b ≜ (C1)

+
b + (C2)

+
b

(fix(C))+b ≜ (n+ 2)(C)+b

Notice that the updated bounds differ to bounds of Definition 4.3 only in the case of the fix(C)
command. With this consideration we can now proceed to prove that the analysis on our bounded
lattice İC,ρ produces the same result as the analysis on İ. We preliminarly define min and max
values of an environment. Intuitively they are the min and max values that variables can assume
without diverging.

Definition 4.15 (min and max). Given a command C, the corresponding finite set of variables
VarC ≜ vars(C), and an interval environment ρ : VarC → I, we define both the min and the max
value of an interval environment:

max(ρ) ≜ max { max{max(ρ(x)) | x ∈ VarC ∧max(ρ(x)) ̸= +∞} , 0 }
min(ρ) ≜ min { min{min(ρ(x)) | x ∈ VarC ∧min(ρ(x)) ̸= −∞} , 0 }

Notice that it holds that max(ρ) ⩾ 0 and min(ρ) ⩽ 0. This will later be useful for the base cases
of Lemma 4.6 and Lemma 4.18. Now, when computing JCKρ on such ρ having a finite domain,
we can restrict to an interval domain bounded by some constant k ∈ N: Thanks to the latter
definition, we can now also define the notion of domain bounded by initial state and program.

Definition 4.16. Let C ∈ Imp and ρ ∈ İ. Then the bounded interval domain İC,ρ is a bounded
interval domain İ

u

ℓ where

ℓ = min(ρ)− (C)+b

u = max(ρ) + (C)b+

Theorem 4.17. Let C ∈ Imp be a command. Then, for all finitely supported ρ : Var → I and
ℓ, u ∈ Z s.t. İC,ρ ⊑ İ

u

ℓ , i.e., ℓ ⩽ min(ρ)− (C)+b and u ⩾ max(ρ) + (C)b+

JCKρ = JCKuℓ ρ (4.13)

i.e., the abstract semantics JCKρ computed in İ and the one computed in İ
u

ℓ coincide.

Proof. Notice that because of Lemma 4.13 the statement JCKρ ⊑ JCKuℓ ρ already holds. Therefore
what we are left to prove is that

JCKρ ⊒ JCKuℓ ρ

The proof will proceed by induction on the command C ∈ Imp.

4.3. COMPUTING INTERVAL SEMANTICS 55

Case (x ∈ S). In this case we want to prove that Jx ∈ SKρ ⊒ Jx ∈ SKuℓ ρ. Recall that we
are considering ℓ ⩽ min(ρ)− (x ∈ S)

+
b = min(ρ)− (x ∈ S)b and u ⩾ max(ρ) + (x ∈ S)

b
+ =

max(ρ) + (x ∈ S)
b. Notice that either ρx ⊓ S = ⊥, which implies that Jx ∈ SKρ = ⊥, and

therefore αℓ,u(Jx ∈ SK)ρ = αℓ,u(⊥) = ⊥ and therefore ⊥ ⊒ ⊥ holds, or ρx ⊓ S = [a, b] ̸= ⊥,
but in this case Jx ∈ SKρ = ρ[x ↦→ ρx ⊓ S] and we can observe that both the following hold:

min(ρ)− (x ∈ S)b ⩽ min(ρ) ⩽ min(ρx ⊓ S)

max(ρx ⊓ S) ⩽ max(ρ) ⩽ max(ρ) + (x ∈ S)
b

hence
Jx ∈ SKρ = ρ[x ↦→ ρx ⊓ S] =

.
αℓ,u (Jx ∈ SKρ) = Jx ∈ SKuℓ ρ

which is our thesis.

Case (x := k). In this case we have to prove that Jx := kKρ ⊒ Jx := kKuℓ ρ. Recall that we are
considering ℓ ⩽ min(ρ)− (x := k)

+
b = min(ρ)− (x := k)b and u ⩾ max(ρ) + (x := k)

b
+. We

can notice similarly to the previous case, that because of the values of ℓ and u it holds that

Jx := kKρ = ρ[x ↦→ [k, k]] =
.
αℓ,u (Jx := kKρ) = Jx := kKuℓ ρ

hence our thesis holds.

Case (x := y+ k). In this case we have to prove that Jx := y+ kKρ ⊒ Jx := y+ kKuℓ ρ. Recall
that we are considering ℓ ⩽ min(ρ)− (x := y+ k)

+
b and u ⩾ max(ρ) + (x := y+ k)

b
+. Notice

also that (x := y+ k)
+
b = k = (x := y+ k)

b
+ and since Jx := y+ kKρ = ρ[x ↦→ ρy + k] we can

notice that for each variable w ∈ Var it holds that

min(ρ)− k ⩽ min (ρ[x ↦→ ρy+ k]w)

max(ρ) + k ⩾ max (ρ[x ↦→ ρy+ k]w)

hence
Jx := y+ kKuℓ ρ =

.
αℓ,u (ρ[x ↦→ ρy+ k]) = ρ[x ↦→ ρy+ k] = Jx := y+ kKρ

which is our thesis

Case (C1 + C2). In this case we have to prove that JC1 + C2Kρ ⊒ JC1 + C2K
u
ℓ ρ. Recall that

we are considering ℓ ⩽ min(ρ) − (C1 + C2)
+
b and u ⩾ max(ρ) + (C1 + C2)

b
+. By inductive

hypothesis it holds that
JC1Kρ = JC1K

u
ℓ ρ

for all ℓ ⩽ min(ρ) − (C1)
+
b and u ⩾ max(ρ) + (C1)

b
+. Again by inductive hypothesis it holds

that
JC2Kρ = JC2K

u
ℓ ρ

for all ℓ ⩽ min(ρ)− (C2)
+
b and u ⩾ max(ρ) + (C2)

b
+. In particular, both hold for

ℓ ⩽ min(ρ)− (C1)
+
b − (C2)

+
b = min(ρ)− (C1 + C2)

+
b

u ⩾ max(ρ) + (C1)
b
+ + (C2)

b
+ = max(ρ) + (C1 + C2)

b
+

i.e., our initial choice of ℓ, u. We can conclude by closure over ⊔

JC1 + C2Kρ = JC1Kρ ⊔ JC2Kρ = JC1K
u
ℓ ρ ⊔ JC2K

u
ℓ ρ = JC1 + C2K

u
ℓ ρ

which is our thesis.

56 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

Case (C1;C2). In this case we have to prove that JC1;C2Kρ ⊒ JC1;C2K
u
ℓ ρ for all ℓ ⩽ min(ρ)− (C1;C2)

+
b

and u ⩾ max(C) + (C1;C2)
b
+. Recall that JC1;C2Kρ = (JC2K ◦ JC1K)ρ. By inductive hypothesis

it holds that

JC1Kρ = JC1K
u
ℓ ρ ∀ℓ ⩽ min(ρ)− (C1)

+
b ∧ u ⩾ max(ρ) + (C1)

b
+ (4.14)

JC2Kρ′ = JC2K
k4

k3
ρ′ ∀k3 ⩽ min(ρ′)− (C2)

+
b ∧ k4 ⩾ max(ρ′) + (C2)

b
+ (4.15)

where ρ′ = JC1Kρ. In particular notice that both (4.14) and (4.15) hold for all n,m s.t.

m ⩽ min(ρ)− (C1)
+
b − (C2)

+
b

n ⩾ max(ρ) + (C1)
b
+ + (C2)

b
+

Hence
JC1;C2Kρ = (JC2K ◦ JC1K) ρ = (JC2K

n
m ◦ JC1K

n
m) ρ = JC1;C2K

n
mρ

which is our thesis.

Case (fix(C)). What we want to prove in this case is that Jfix(C)Kρ ⊒ Jfix(C)Kuℓ ρ for all ℓ ⩽

min(ρ)− (fix(C))+b and u ⩾ max(ρ)+(fix(C))b+. Recall that by Lemma 3.4 Jfix(C)K is syntactic
sugar for J(C+ true)∗K, therefore

Jfix(C)Kρ = J(C+ true)∗Kρ =
⨆︁

i∈N (JC+ trueK)iρ (4.16)

Jfix(C)Kuℓ ρ = J(C+ true)∗Kuℓ ρ =
⨆︁

i∈N (JC+ trueKuℓ)
i
ρ (4.17)

By latter equation we want to prove that for every i ∈ N it holds that

Jfix(C)Kρ ⊒ (JC+ trueKuℓ)
i
ρ (4.18)

Case (i = 0). In this case we can observe that our thesis

Jfix(C)Kρ ⊒ (Jfix(C)Kuℓ)
0
ρ = id(ρ) = ρ

holds by (4.16).
Case (i =⇒ i+ 1). In this case we can first notice that

JC+ trueK(Jfix(C)Kρ) = JCK(Jfix(C)Kρ) ⊔ (Jfix(C)Kρ) by definition of C+ true

= JCK(lfp(λµ.ρ ⊔ JCKµ)) ⊔ (Jfix(C)Kρ) (4.19)

by definition of λµ.ρ ⊔ JCKµ it holds that lfp (λµ.ρ ⊔ JCKµ) ⊒ ρ, hence

JCK(lfp(λµ.ρ ⊔ JCKµ)) = ρ ⊔ JCK(lfp(λµ.ρ ⊔ JCKµ))
= lfp(λµ.ρ ⊔ JCKµ)
= Jfix(C)Kρ (4.20)

therefore in (4.19)

JCK(lfp(λµ.ρ ⊔ JCKµ)) ⊔ (Jfix(C)Kρ) = Jfix(C)Kρ ⊔ Jfix(C)Kρ by (4.20)
= Jfix(C)Kρ.

We can now continue. By calling Jfix(C)Kρ = β we have to prove that

JC+ trueKβ ⊒ JC+ trueKuℓ β. (4.21)

for all ℓ ⩽ min(ρ)− (fix(C))+b and u ⩾ max(ρ) + (fix(C))b+. In other words what we want
to prove is that for every y ∈ VarC both

max(JC+ trueKβy) ⩽ u

min(JC+ trueKβy) ⩾ ℓ

4.4. BOUNDED NON-RELATIONAL COLLECTING SEMANTICS 57

To start notice that max(βy) ⩽ max(ρ) + (fix(C))b by Lemma 4.6. Hence by Defini-
tion 4.15 max(β) ⩽ max(ρ) + (fix(C))b, and by calling n = vars(C) we can notice the
following:

max(JC+ trueKβ) ⩽ max(β) + (C)b by Lemma 4.6

⩽ max(ρ) + (fix(C))b + (C)b

= max(ρ) + (n+ 2)(C)b

⩽ max(ρ) + (n+ 2)(C)b+

= max(ρ) + (fix(C))b+ = u

A similar procedure can be applied on the minimum to observe that

min(JC+ trueKβ) ⩾ min(ρ)− (C)+b = ℓ

Hence we can conclude by observing that

β = JC+ trueKβ ⊒ JC+ trueKuℓ β by (4.21)

⊒ JC+ trueKuℓ (JC+ trueKuℓ)
i
ρ by induction on i

= (JC+ trueKuℓ)
i+1

ρ

Therefore for all i ∈ N Jfix(C)Kρ ⊒ (JC+ trueKuℓ)
i
ρ. By this we can deduce that

β = Jfix(C)Kρ ⊒
⨆︂
i∈N

(JC+ trueKuℓ)
i
ρ = Jfix(C)Kuℓ ρ

which is our thesis.

Our last theorem proved that by bounding the interval domain according to the constants that
appear in a program and its initial state we can ensure termination of the analysis while achieving
the most precise abstract invariant for the program, effectively solving Problem 4.1. The result is
analogous to the findings of [Gaw+09], but we achieve it by bounding the abstract domain. Notice
that we achieved such result only by looking at maximal and minimal values of the analysis w.r.t.
the considered program C and the initial environment η ∈ İ. By this observation one might think
that the same result would be possible to achieve for the non-relational collecting semantics ⟨⟨·⟩⟩.
While our guess is that such thing should be possible, in the next section we will provide some
examples that show that by using a simple Kleene iteration technique it is not possible to infer
the most precise abstract invariant in C, it is only possible to infer the termination of the abstract
interpreter ⟨⟨·⟩⟩.

4.4 Bounded non-relational collecting semantics

In this section on non-relational collecting semantics, we demonstrate that while it is not possible
to compute the most precise invariant for any given program in Imp, it is feasible to compute a
more abstract semantics. This abstract semantics provides valuable insights into the termination
behavior of the non-relational collecting analyzer. Specifically, we show that the two abstract
semantics align when the abstract analyzer for the non-relational collecting semantics terminates.

For an easier reading, we will refer to J·KC with the same notation we used in Section 3.2.1:
⟨⟨·⟩⟩ = J·KC.

Lemma 4.18. Let C ∈ Imp. For all η ∈ C and y ∈ Var , if max(⟨⟨C⟩⟩ηy) ̸= +∞ and max(⟨⟨C⟩⟩ηy) >
(C)b then there exist a variable z ∈ Var and an integer h ∈ Z such that |h| ⩽ (C)b and the following
two properties hold:

58 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

(i) max(⟨⟨C⟩⟩ηy) = max(ηz) + h;

(ii) for all η′ ∈ C, if η′
.
⊇ η then max(⟨⟨C⟩⟩η′y) ⩾ max(η′z) + h.

Proof. The proof is left in Appendix A.2, since it is analogous to the proof of Lemma 4.6.

Remark 4.19. The key point is that in the base case (x ∈ I), we can draw similar conclusions
as we did for intervals. This is because the filtering occurs on an interval I ∈ İ rather than on an
arbitrary decidable set. It is important to note that if we were to allow a generic decidable set in a
guard, the result would not hold. Specifically, let S ∈ ℘(Z) be a decidable set and consider y = x;
under these conditions, we observe that

max(⟨⟨x ∈ S⟩⟩ηy) = max(η[x ↦→ ηx ∩ S]x) = max(ηx ∩ S) (4.22)

Since S is generally non-convex what happens is that from ηx∩ S ̸= ∅ and max(S) = +∞ we can
only deduce

max(ηx ∩ S) ⩽ max(ηx) (4.23)

and not equality, providing a potential counterexample to the Lemma. For example consider the
program (x ∈ P) where P is the set of even numbers and an initial environment η ≜ [x ↦→ D ∪ {2}],
where D is the set of odd numbers. Then

⟨⟨x ∈ P⟩⟩ηx = {2}

and max(⟨⟨x ∈ P⟩⟩ηx) = 2, while (⟨⟨x ∈ P⟩⟩)b = 0.

Hence both max(⟨⟨x ∈ P⟩⟩ηx) ̸= +∞ and max(⟨⟨x ∈ P⟩⟩ηx) > (⟨⟨x ∈ P⟩⟩)b hold. The lemma would
state that ∃w ∈ Var and h ∈ Z | |h| ⩽ (x ∈ P)b s.t.

(i) max(⟨⟨x ∈ P⟩⟩ηx) = max(ηw) + h

(ii) ∀η′ ⊒ η max(⟨⟨x ∈ P⟩⟩η′y) ⩾ max(η′w) + h

Here we can observe that the hypothesis would hold:

max(⟨⟨x ∈ P⟩⟩ηx) = 2 ̸= +∞

max(⟨⟨x ∈ P⟩⟩ηx) > (x ∈ P)b = 0 By (·)b definition

but (i) does not hold, in fact max(ηx) = 0 since ηx = D ∪ {2} and therefore

max(⟨⟨x ∈ P⟩⟩ηx) = 2 ̸= 0 = max(ηx) + (x ∈ P)b

With intervals the theorem instead holds, the rough idea is that the intersection between an
interval and a generic subset of Z S preserves the maximal element of S whenever the interval is
open on the right, and preserves the minimal element when it is open on the left, otherwise the
preconditions for the lemma do not hold. This is not the case for generic subsets of Z in the guard
as we showed with this remark.

The same applies for the increment on the lower bound, in a similar fashion as for the intervals:

Lemma 4.20. Let C ∈ Imp. For all η ∈ C and y ∈ Var , if min(⟨⟨C⟩⟩ηy) ̸= −∞ and min(⟨⟨C⟩⟩ηy) <
−(C)b then there exist a variable z ∈ Var and an integer h ∈ Z such that |h| ⩽ (C)b and the
following two properties hold:

(i) min(⟨⟨C⟩⟩ηy) = min(ηz) + h;

(ii) for all η′ ∈ C, if η′
.
⊇ η then min(⟨⟨C⟩⟩η′y) ⩽ min(η′z) + h.

The proof is again left in Appendix A.3 as Lemma A.4.

4.5. COMPUTING NON-RELATIONAL COLLECTING SEMANTICS 59

4.5 Computing non-relational collecting semantics

In this section, we demonstrate the ability to compute a further abstraction of non-relational
collecting semantics to infer the termination of non-relational collecting analysis. We illustrate
that merely bounding individual variables, as done with intervals, is insufficient. Intuitively, we
can no longer deduce that when one variable diverges, it does not impact the behavior of other
variables. To start, we rely on Definition 4.15 of min and max values of an abstract environment
ρ to bound the non relational collecting domain C in this way:

Definition 4.21 (Bounded non-relational collecting domain). We define Cu
ℓ ≜ VarC → ℘∗(Z)uℓ

where
℘∗(Z)uℓ = {S ⊆ Z | S ̸= ∅ ∧ ∀x ∈ S ℓ ⩽ x ⩽ u} ∪ {⊤}

Notice that differently from what happened in the case of intervals, for the domain C we have no
appropriate way of representing an unbounded element: unbounded intervals could be represented
with elements with the shape [a,+∞], [−∞, b] with a, b ∈ Z. For arbitrary subsets of Z we have
instead to rely on a single ⊤ element.

A first observation we can make is that by definition there are no infinite ascending nor descending
chains, as every chain is bounded by above by some u ∈ Z and below by some ℓ ∈ Z. Moreover,
there is a Galois connection between this abstract domain and its unbounded counterpart ℘(Z).
First let’s define the concretization and abstraction maps

Definition 4.22. Let ℓ, u ∈ Z s.t. ℓ ⩽ u. We define a concretization map γ∗
ℓ,u : ℘∗(Z)uℓ → ℘∗(Z)

as the identity function
γ∗
ℓ,u = id

similarly we define an abstraction map α∗
ℓ,u : ℘∗(Z)→ ℘∗(Z)uℓ in the following way

α∗
ℓ,u(S) =

{︄
S if inf(S) ⩾ ℓ ∧ sup(S) ⩽ u

⊤ otherwise

Lemma 4.23. Given ℓ, u ∈ Z s.t. ℓ ⩽ u.

⟨℘∗(Z),⊆⟩ −−−−→←−−−−
α∗

ℓ,u

γ∗
ℓ,u

⟨℘∗(Z)uℓ ,⊆⟩

i.e., ⟨α∗
ℓ,u , ℘

∗(Z), ℘∗(Z)uℓ , γ∗
ℓ,u⟩ is a Galois connection.

Proof. The proof consists in showing that γ∗
ℓ,u and α∗

ℓ,u satisfy the properties of Theorem 1.18:

(1) α∗
ℓ,u , id are monotonic;

(2) id ◦ α∗
ℓ,u is extensive, i.e., σ ⊆ α∗

ℓ,u(σ) for all σ ∈ ℘∗(Z);

(3) α∗
ℓ,u ◦ γ∗ is reductive, i.e., α∗

ℓ,u(σb) ⊆ σb for all σb ∈ ℘∗(Z)uℓ .

To start let’s prove (1). Of course id is monotone by definition. For α∗
ℓ,u we have to prove that

given any σ, τ ∈ ℘∗(Z) s.t. σ ⊆ τ it holds that α∗
ℓ,u(σ) ⊆ α∗

ℓ,u(τ). Notice that since σ ⊆ τ it
holds that max(σ) ⩽ max(τ) and min(σ) ⩾ min(τ), which means by Definition 4.22 α∗

ℓ,uσ ⊆ α∗
ℓ,uτ ,

which is our thesis.

Both (2) and (3) follow from Definition 4.22. For (2) for all σ ∈ ℘∗(Z) either α∗
ℓ,u(σ) = σ or

α∗
ℓ,u(σ) = ⊤, hence in both cases σ ⊆ α∗

ℓ,u(σ) holds. For (3), for all σb ∈ ℘∗(Z)uℓ it holds that
max(σb) ⩽ u and min(σb) ⩾ ℓ, hence

α∗
ℓ,u(σb) = σb (4.24)

and therefore α∗
ℓ,u(σb) ⊆ σb holds. Moreover, (4.24) means that for all σb ∈ ℘∗(Z)uℓ that α∗

ℓ,u ◦ id =
id, which means by Definition 1.20 that we formed a Galois insertion:

⟨℘∗(Z),⊆⟩ −−−−→−→←−−−−−
α∗

ℓ,u

γ∗
ℓ,u

⟨℘∗(Z)uℓ ,⊆⟩

60 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

Notice that since C and Cu
ℓ are respectively the point-wise lifting of ℘∗(Z) and ℘∗(Z)uℓ there is

also a Galois insertion between them:

⟨C,
.
⊆⟩ −−−−→−→←−−−−−

αℓ,u

γℓ,u

⟨Cu
ℓ ,

.
⊆⟩

Where αℓ,u(η) = λx.α∗
ℓ,u(ηx) and γℓ,u = id. Since we have a Galois connection between the non

relational collecting domain C and its bounded version Cu
ℓ we can define an abstract inductive

semantics which is sound by construction:

Definition 4.24 (Bounded non-relational collecting semantics). Let ℓ, u ∈ Z s.t. ℓ ⩽ u. We define
basic expressions over the bounded non relational collecting semantics ((·))C

u
ℓ : Exp→ Cu

ℓ → Cu
ℓ as

((e))C
u
ℓ ≜ αℓ,u ◦ ((e))C

i.e. the best correct abstraction.

Lemma 4.25 (Bounded non-relational collecting is sound). Let ℓ, u ∈ Z s.t. ℓ ⩽ u. For all η♯ ∈ Cu
ℓ

it holds that
(⟨⟨C⟩⟩ ◦ id) η♯

.
⊆ (id ◦ ⟨⟨C⟩⟩uℓ) η

♯

i.e., ⟨⟨·⟩⟩uℓ is sound w.r.t. ⟨⟨·⟩⟩.

Proof. The proof follows from the fact that ⟨⟨·⟩⟩uℓ is defined as the bca on basic expressions over C
and there is a Galois connection

⟨C,
.
⊆⟩ −−−−→−→←−−−−−

αℓ,u

γℓ,u

⟨Cu
ℓ ,

.
⊆⟩

Hence by Lemma 3.3 our thesis

(⟨⟨C⟩⟩ ◦ id) η♯
.
⊆ (id ◦ ⟨⟨C⟩⟩uℓ) η

♯

holds.

By using ℓ, u properly, we can introduce a notion of order between bounded non relational
collecting domain. More in detail, given a, b, c, d ∈ Z s.t. a ⩽ b and c ⩽ d. Then ≼ is a relation
order s.t.

Cb
a ≼ Cd

c ⇐⇒ a ⩽ c ∧ d ⩽ b

We bounded our analysis the same way we did with interval analysis in Definition 4.8. This
initial solution however has a problem. Consider the following code snippet:

1 /* Pa */
2 x := 0
3 y := 0
4 /* Pb */
5 while (x < 1)
6 x := x + 1
7 y := y + 2
8 /* Pc */
9 if (y = 1)

10 x := 2

Code 4.2: Snippet where bounded analysis diverges from the unbounded counterpart

This example highlights the main problem of just considering the bounds for each variable.
When a variable exceeds the program bound and reaches ⊤ this implies a loss of information, which
leads to a difference between the non-relational collecting semantics and its bounded counterpart,
even when the first one stays inside the bounds.

To highlight the problem let’s compute the exact semantics ⟨⟨P⟩⟩, to better address the problem,
consider P = Pa;Pb;Pc and an initial environment [x ↦→ ⊤, y ↦→ ⊤] = η.

⟨⟨Pa⟩⟩η infers the invariant ηa = [x ↦→ {0}, y ↦→ {0}]. This is our starting point.

4.5. COMPUTING NON-RELATIONAL COLLECTING SEMANTICS 61

⟨⟨Pb⟩⟩ηa infers the invariant ηb = [x ↦→ {0, 1}, y ↦→ P ∩ N]. The analysis filters for all elements
greater than 1 for the variable x, while variable y grows indefinitely, each time increasing by
2, which means that it can assume any positive even number, hence P ∩ N.

⟨⟨Pc⟩⟩ηb infers the final result
ηc = [x ↦→ {0, 1}, y ↦→ P ∩ N]

The guard y = 1 in the if statement filters for P∩N∩ {1} = ∅ and therefore the variable x

is never assigned to 2, leaving the result unchanged.

Let’s consider instead an hypothetical analysis over Cu
ℓ , with ℓ, u chosen accordingly to the

program.

⟨⟨Pb⟩⟩uℓ ηa infers η′b = [x ↦→ {0, 1}, y ↦→ ⊤], since at some point y will exceed the bound, hence the
iteration will widen to ⊤.

⟨⟨Pc⟩⟩uℓ η′b now has to filer again for the guard y = 1, but in this case ⊤∩{1} = {1}, hence the final
invariant becomes

η′c = [x ↦→ {0, 1, 2}, y ↦→ ⊤]

hence η′c ̸= ηc, which means that ⟨⟨·⟩⟩uℓ and ⟨⟨·⟩⟩ diverge even when some variable in ⟨⟨·⟩⟩ stays inside
the program bounds.

We hypothesize that it is feasible to deduce the exact infinite invariant, given that all the
necessary information for its generation is syntactically accessible. Prior research on this topic,
such as the work of [Lef+24], primarily addresses Presburger arithmetic, which is beyond the scope
of this thesis.

For this reason our approach consists in smashing the ⊤ element of our analysis. Remember
that the original problem we want to solve (roughly) is the non-termination of the analysis,

Definition 4.26 (Smashed ⊤ non realtional collecting). Let

℘(Z)uℓ ≜ {S ⊆ Z | S ̸= ∅ ∧ ∀x ∈ S ℓ ⩽ x ⩽ u}.

We define Cu

ℓ as
Cu

ℓ ≜ (Var → ℘(Z)uℓ) ∪ {⊥,⊤}

we can build a Galois connection with Cu
ℓ for some fixed ℓ, u ∈ Z:

Definition 4.27. Let ℓ, u ∈ Z s.t. ℓ ⩽ u, η ∈ Cu
ℓ and η ∈ Cu

ℓ . Then the abstraction map
αℓ,u : Cu

ℓ → Cu

ℓ is defined as

αℓ,u(η) =

{︄
⊤ if ∃x ∈ Var s.t. ηx = ⊤
η otherwise

while concretization map γℓ,u : Cu

ℓ → Cu
ℓ is defined as

γℓ,u(⊤) = λx ∈ Var .⊤
γℓ,u(η) = η

We can now define base expressions based on the bca with the bounded non relational collecting
semantics:

Definition 4.28. Let e ∈ Exp. The semantics of base expressions over Cu

ℓ is defined as

((e))C
u
ℓ (⊤) ≜⊤

((e))C
u
ℓ (η) ≜

(︂
αℓ,u ◦ ((e))C

u
ℓ

)︂
η

62 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

Notice that this is not the b.c.a. on the basic expressions: the ⊤ element is preserved. This is
proved in Lemma 4.29.

Once again, J·KC
u
ℓ is defined accordingly to the abstract inductive semantics of Definition 3.1.

Notice that contrary to latter definition of Cu
ℓ in this case we have a smashed top element. The

idea is that whenever a variable diverges we infer that the whole precise analysis diverges, in order
to solve Problem 4.1 and decide analysis termination. For simplicity, from now on we will refer to
J·KC

u
ℓ as ⟨⟨·⟩⟩

u

ℓ .
We preliminarly prove a simple but useful property of ⟨⟨·⟩⟩

u

ℓ : it preserves the ⊤ element.

Lemma 4.29 (⟨⟨·⟩⟩
u

ℓ preserves ⊤). Let ℓ, u ∈ Z s.t. ℓ ⩽ u and C ∈ Imp

⟨⟨C⟩⟩
u

ℓ⊤ = ⊤

Proof. We proceed by induction on the program C to prove that

⟨⟨C⟩⟩
u

ℓ⊤ = ⊤

Case (e). In the case of base expressions e ∈ Exp the Lemma follows from the definition of
base expressions over the top element.

⟨⟨e⟩⟩
u

ℓ⊤ = ((e))C
u
ℓ (⊤)

= ⊤ by Definition 4.28

Case (C1 + C2). In this case

⟨⟨C1 + C2⟩⟩
u

ℓ⊤ = ⟨⟨C1⟩⟩
u

ℓ⊤
.
∪ ⟨⟨C2⟩⟩

u

ℓ⊤

= ⊤
.
∪ ⊤ By inductive hypothesis

= ⊤

Case (C1;C2). In this case

⟨⟨C1;C2⟩⟩
u

ℓ⊤ = ⟨⟨C2⟩⟩
u

ℓ

(︂
⟨⟨C1⟩⟩

u

ℓ⊤
)︂

= ⟨⟨C2⟩⟩
u

ℓ⊤ By induction on C1

= ⊤ By induction on C2

Case (fix(C)). In this case

⟨⟨fix(C)⟩⟩
u

ℓ⊤ = lfp
(︂
λµ.⊤

.
∪ ⟨⟨C⟩⟩

u

ℓ µ
)︂ .
⊇ ⊤ By definition of lfp

= ⊤ By definition of ⊤

Theorem 4.30. Let C ∈ Imp be a program. Then, for all finitely supported η ∈ Cu

ℓ and ℓ, u ∈ Z
s.t. CC,η ≼ Cu

ℓ , i.e., ℓ ⩽ min(η)− (C)+b and u ⩾ max(η) + (C)b+ then

⟨⟨C⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨C⟩⟩η = ⟨⟨C⟩⟩
u

ℓ η

i.e., if the analysis over Cu

ℓ does not diverge, then the analysis over C converges to the same result.

Proof. The proof will proceed by induction on the program C, covering first the base cases of Exp
expressions and then the inductive cases of Imp. Notice that because of Lemma 4.25

⟨⟨C⟩⟩γℓ,u(η)
.
⊆ JCKC

u
ℓ γℓ,u(η)

.
⊆ γℓ,u(⟨⟨C⟩⟩

u

ℓ η)

4.5. COMPUTING NON-RELATIONAL COLLECTING SEMANTICS 63

already holds for every ℓ, u ∈ Z s.t. ℓ ⩽ u and η ∈ Cu

ℓ , hence what we have to prove for every case
is that

⟨⟨C⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨C⟩⟩η
.
⊇ ⟨⟨C⟩⟩

u

ℓ η

First notice that it cannot be η = ⊤, otherwise by Lemma 4.29 ⟨⟨C⟩⟩
u

ℓ⊤ = ⊤ and therefore the
hypothesis ⟨⟨C⟩⟩

u

ℓ⊤ ̸= ⊤ is not respected. Furthermore, notice that ⟨⟨C⟩⟩
u

ℓ η ̸= ⊤ implies that
γℓ,u(⟨⟨C⟩⟩

u

ℓ η) = ⟨⟨C⟩⟩
u

ℓ η, due to the definition of γℓ,u .

Case (e). In this case we have to prove that

⟨⟨e⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨e⟩⟩γℓ,u(η) = γℓ,u(⟨⟨e⟩⟩
u

ℓ η)

First, if η = ⊥ we can notice that

(αℓu ◦ αℓ,u ◦ ⟨⟨e⟩⟩)⊥ = ⊥ = ⟨⟨e⟩⟩γℓ,u(⊥)

which is our thesis.

The last case is when ⊤ ≠ η ̸= ⊥ and therefore for all x ∈ Var ηx ∈ ℘(Z)uℓ . In this case by
Lemma 4.18 and Lemma 4.20 for all y ∈ Var both

max(⟨⟨e⟩⟩γℓ,u(η)y) ⩽ max(γℓ,u(η)) + (e)b ⩽ max(γℓ,u(η)) + (e)b+ = u

min(⟨⟨e⟩⟩γℓ,u(η)y) ⩾ min(γℓ,u(η))− (e)b ⩾ min(γℓ,u(η))− (e)+b = ℓ

hence by definition of αℓ,u and αℓ,u

(αℓ,u ◦ αℓ,u)
(︁
⟨⟨e⟩⟩γℓ,u(η)

)︁
= ⟨⟨e⟩⟩γℓ,u(η)

which is our thesis.

Case (C1 + C2). In this case we have to prove that

⟨⟨C1 + C2⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨C1 + C2⟩⟩η = ⟨⟨C1 + C2⟩⟩
u

ℓ η

with ℓ ⩽ min(η) − (C1 + C2)
+
b and u ⩾ max(η) + (C1 + C2)

b
+. First we can notice that

since ⟨⟨C1 + C2⟩⟩
u

ℓ ηx = ⟨⟨C1⟩⟩
u

ℓ ηx ∪ ⟨⟨C2⟩⟩
u

ℓ ηx our hypothesis ⟨⟨C1 + C2⟩⟩
u

ℓ ηx ̸= ⊤ implies both
⟨⟨C1⟩⟩

u

ℓ ηx ̸= ⊤ and ⟨⟨C2⟩⟩
u

ℓ ηx ̸= ⊤. Hence by choice of ℓ and u we can use the inductive hy-
pothesis and state that

⟨⟨C1⟩⟩ηx = ⟨⟨C1⟩⟩
u

ℓ ηx

⟨⟨C2⟩⟩ηx = ⟨⟨C2⟩⟩
u

ℓ ηx

and by closure over ∪

⟨⟨C1 + C2⟩⟩ηx = ⟨⟨C1⟩⟩ηx ∪ ⟨⟨C2⟩⟩ηx = ⟨⟨C1⟩⟩
u

ℓ ηx ∪ ⟨⟨C2⟩⟩
u

ℓ ηx = ⟨⟨C1 + C2⟩⟩
u

ℓ ηx

which is our thesis.

Case (C1;C2). In this case we have to prove that

⟨⟨C1;C2⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨C1;C2⟩⟩η = ⟨⟨C1;C2⟩⟩
u

ℓ η

for all ℓ ⩽ min(η)− (C1;C2)
+
b and u ⩾ max(η) + (C1;C2)

b
+. First let’s recall that

⟨⟨C1;C2⟩⟩
u

ℓ η = ⟨⟨C2⟩⟩
u

ℓ

(︂
⟨⟨C1⟩⟩

u

ℓ η
)︂

and we are under the hypothesis ⟨⟨C1;C2⟩⟩
u

ℓ η ̸= ⊤, which means that ⟨⟨C2⟩⟩
u

ℓ η ̸= ⊤ ≠ ⟨⟨C2⟩⟩
u

ℓ η
′

where η′ = ⟨⟨C1⟩⟩
u

ℓ η, otherwise by Lemma 4.29 we would contradict the hypothesis ⟨⟨C1 + C2⟩⟩
u

ℓ η ̸=

64 CHAPTER 4. PROGRAM BOUNDS AND ANALYSIS TERMINATION

⊤. Then, by inductive hypothesis ⟨⟨C1⟩⟩η = ⟨⟨C1⟩⟩
u

ℓ η for all ℓ ⩽ min(η) − (C1)
+
b and u ⩾

max(η) + (C2)
b
+. We can now call η′ = ⟨⟨C1⟩⟩

u

ℓ η and by inductive hypothesis again:

⟨⟨C2⟩⟩
u

ℓ η
′ ̸= ⊤ =⇒ ⟨⟨C2⟩⟩η′ = ⟨⟨C2⟩⟩

u

ℓ η
′

for all ℓ ⩽ min(η′) − (C2)
+
b and u ⩾ max(η′) + (C)b+. Notice that min(η′) ⩾ min(η) − (C1)

+
b

and max(η′) ⩽ max(η) + (C1)
b
+ and therefore we can chose ℓ ⩽ min(η) − (C1)

+
b − (C2)

+
b and

u ⩾ max(η) + (C1)
b
+ + (C2)

b
+. Since both inductive hypothesis hold, then following holds

⟨⟨C1;C2⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨C1;C2⟩⟩η = ⟨⟨C1;C2⟩⟩
u

ℓ η

which is our thesis.

Case (fix(C)). In this case we want to prove that

⟨⟨fix(C)⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨fix(C)⟩⟩η = ⟨⟨fix(C)⟩⟩
u

ℓ η

for all ℓ ⩾ min(η) − (fix(C))+b and u ⩽ max(η) + (fix(C))b+. Recall that by Lemma 4.25 it
always holds that

⟨⟨fix(C)⟩⟩η
.
⊆ ⟨⟨fix(C)⟩⟩

u

ℓ η

We have therefore to prove that

⟨⟨fix(C)⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨fix(C)⟩⟩η
.
⊇ ⟨⟨fix(C)⟩⟩

u

ℓ η (4.25)

for all ℓ ⩽ min(η) − (fix(C))+b and u ⩾ max(η) + (fix(C))b+. To start notice that according to
Lemma 3.4 ⟨⟨fix(C)⟩⟩η = ⟨⟨(C+ true)∗⟩⟩η, hence we can alternatively prove that

⟨⟨fix(C)⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨fix(C)⟩⟩η
.
⊇
⋃︂
i∈N

(︂
⟨⟨C+ true⟩⟩

u

ℓ

)︂i
η

which implies Equation 4.25. To start we will initially prove that for every i ∈ N it holds that

⟨⟨fix(C)⟩⟩η ̸= ⊤ =⇒ ⟨⟨fix(C)⟩⟩η
.
⊇
(︂
⟨⟨C+ true⟩⟩

u

ℓ

)︂i
η

to then prove the first one by closure over ∪. We will prove it by induction on i:

Case (i = 0). In this case we have to prove that

⟨⟨fix(C)⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨fix(C)⟩⟩η
.
⊇ η

We can notice that by definition of ⟨⟨fix(C)⟩⟩ the thesis holds.
Case (i =⇒ i+ 1). In this case we have to prove that

⟨⟨fix(C)⟩⟩η ̸= ⊤ =⇒ ⟨⟨fix(C)⟩⟩η ⊇
(︂
⟨⟨C⟩⟩

u

ℓ + true
)︂i+1

η

First we can notice that

⟨⟨C+ true⟩⟩(⟨⟨fix(C)⟩⟩η) = ⟨⟨C⟩⟩(⟨⟨fix(C)⟩⟩η) ∪ ⟨⟨fix(C)⟩⟩η
= ⟨⟨C⟩⟩(lfp(λµ.η ∪ ⟨⟨C⟩⟩µ)) ∪ ⟨⟨fix(C)⟩⟩η
= η ∪ ⟨⟨C⟩⟩(lfp(λµ.η ∪ ⟨⟨C⟩⟩µ)) ∪ ⟨⟨fix(C)⟩⟩η since η ⊆ lfp(λµ.η ∪ ⟨⟨C⟩⟩µ)
= (λµ.η ∪ ⟨⟨C⟩⟩µ)(lfp(λµ.η ∪ ⟨⟨C⟩⟩µ)) ∪ ⟨⟨fix(C)⟩⟩η
= (lfp(λµ.η ∪ ⟨⟨C⟩⟩µ)) ∪ ⟨⟨fix(C)⟩⟩η by def. of lfp
= ⟨⟨fix(C)⟩⟩η ∪ ⟨⟨fix(C)⟩⟩η
= ⟨⟨fix(C)⟩⟩η

4.5. COMPUTING NON-RELATIONAL COLLECTING SEMANTICS 65

Now we can preliminarly observe that by calling β = ⟨⟨fix(C)⟩⟩η

⟨⟨C+ true⟩⟩β ⊇ ⟨⟨C+ true⟩⟩
u

ℓ β (4.26)

In fact, for all x ∈ Var

max(⟨⟨C+ true⟩⟩βx) ⩽ max(β) + (C+ true)b = max(β) + (C)b

⩽ max(η) + (fix(C))b + (C)b by Lemma 4.18

⩽ max(η) + (n+ 2)(C)b

⩽ max(η) + (n+ 2)(C)b+

⩽ max(η) + (fix(C))b+ = u

similarly for the min value

min(⟨⟨C+ true⟩⟩βx) ⩾ min(η)− (fix(C))+b = ℓ

hence

β = ⟨⟨C+ true⟩⟩β ⊇ ⟨⟨C+ true⟩⟩
u

ℓ β by (4.26)

⊇ ⟨⟨C+ true⟩⟩
u

ℓ

(︂
⟨⟨C+ true⟩⟩

u

ℓ

)︂i
η by induction on i

=
(︂
⟨⟨C+ true⟩⟩

u

ℓ

)︂i+1

η

Hence our thesis, for all i ∈ N

⟨⟨fix(C)⟩⟩
u

ℓ η⊤ =⇒ ⟨⟨fix(C)⟩⟩η ⊇
(︂
⟨⟨C+ true⟩⟩

u

ℓ

)︂i
η

holds. We can now conclude by noticing that our original thesis

⟨⟨fix(C)⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨fix(C)⟩⟩η ⊇
⋃︂
i∈N

(︂
⟨⟨C+ true⟩⟩

u

ℓ

)︂i
η = ⟨⟨fix(C)⟩⟩

u

ℓ η

also holds.

The latter theorem is a result similar to the result for the interval domain with Theorem 4.17.
In its essence it states that when doing static analysis with abstract interpretation using the non
relational collecting domain C for some program C ∈ Imp and an initial environment η ∈ C we can
consider a bounded version of the domain Cu

ℓ with ℓ = min(η)−(C)+b and u = max(η)+(C)b+ (hence
computed accordingly to C and η). Such domain has no infinite ascending or descending chains,
hence the Kleene iteration method is guaranteed to halt in finite time. The result however is not
as precise as the bounded version of the interval analysis: while for intervals we could compute the
exact invariant, for the non-relational collecting domain this is the case only when the bounded
semantics is not ⊤. Intuitively this happens when all invariants inferred in the computation are
finite, i.e., if the analysis over C halts in finite time. To put it differently, we can decide weather
the analysis over C halts in finite time or not.

CHAPTER 5

Conclusions

In this study, we investigated some decidability questions in the setting of abstract interpretation,
the most prevalent framework for developing static analysis tools. The general question concerned
the possibility of effectively computing the abstract semantics. The question is non trivial when the
abstract domain can have infinite ascending chains and thus the fixpoint computations can diverge.
We focused on a simple imperative language Imp, offering a set of constructs sufficient to make
it Turing complete. We defined its concrete denotational semantics in its concrete domain C and
small step semantics. We first showed that, as expected, all non-trivial properties of the collecting
semantics are undecidable due to Rice’s Theorem. We then built the abstraction chain in Figure 5.1.
First we abstracted program execution using the non-relational collecting semantics C, the finest
non-relational domain. Subsequently, we defined and established the fundamental properties of the
intervals domain İ, a well-known domain in abstract interpretation literature. We proved that in
the aforementioned abstract domains, variables are constrained to increase up to a limit denoted
as (C)b, which is dependent on the program C. We therefore introduced the bounded interval
domain İ

u

ℓ : such domain does not contain infinite ascending and descending chains, and therefore
fixpoints are computable in finite time. We then proved that given a program and an initial
environment C ∈ Imp, η ∈ İ and by crafting appropriate bounds for İ

u

ℓ , namely ℓ = min(η)− (C)+b
and u = max(η) + (C)b+, we not only could compute JCKİ

u
ℓ η but also show that

JCKİ
u
ℓ η = JCKİη

This means that we were able to compute exact interval analysis in finite time. Then we tries to
adopt the same technique to the non-relational collecting semantics. Indeed one can introduce a
bounded version Cu

ℓ of C where a ⊤ element is used for variables that exceed the bounds. However
in this way we loose too much information to infer equality with the non-relational collecting
semantics. Therefore we introduced Cu

ℓ , bounded non-relational collecting with a smashed top
element. With this analysis we could infer equality up to the top element, meaning that if the
bounded analysis with smashed top resulted in something different than ⊤ then its result was the
same as the non-relational collecting, i.e.,

⟨⟨C⟩⟩
u

ℓ η ̸= ⊤ =⇒ ⟨⟨C⟩⟩η = ⟨⟨C⟩⟩
u

ℓ η

Intuitively, this implies that we can decide the termination of non-relational collecting analysis. The
bounded version with the smashed ⊤ element, only infers this ⊤ element if, during the analysis,
a variable exceeds the predefined bounds and follows an infinite sequence. Consequently, the
original non-relational collecting analysis does not terminate under these conditions using the
Kleene iteration. While if something other than ⊤ is inferred, it means that it is the most precise
invariant.

67

68 CHAPTER 5. CONCLUSIONS

C

C

İ Cu
ℓ

İ
u

ℓ Cu

ℓ

decidable

unknown

undecidable

α γ

.
α .

γ α∗
ℓ,u

γ∗
ℓ,u

.
αℓ,u

.
γℓ,u αℓ,u γℓ,u

Figure 5.1: Abstractions chain we build throughout Chapter 3

Future work. Throughout the development of this thesis, we encountered various obstacles,
which we present here as potential extensions and directions for future research. Addressing all of
these issues was beyond the scope of this thesis due to time constraints.

The first and most prominent question is whether it is possible to precisely compute the non-
relational collecting semantics. Our hypothesis is that it is indeed feasible, as suggested by the
work of [Lef+24]. Their research builds on Presburger arithmetic from [Pre29], which, although
beyond the scope of this thesis, presents interesting results, particularly its decidability.

A second follow up question might involve the extension of the language to support non-linear
expressions. Our hypothesis in this case is that invariants might become undecidable, as we are
able to write diophantine equations. Take for example the following code snippet

1 x⃗ := null_vec_size(n); /* where n is the number of
2 variables in the diofrantine
3 equation */
4 while (true) do
5 (xi++) + (xi --)
6 z = P(x⃗) /* Where P(x⃗) is a diofantine equation */

Code 5.1: Program with diofantine equations

If the non-relational collecting semantics were decidable in a language that permitted non-linear
equations, we could determine the solution of any Diophantine equation by deciding whether
0 ∈ ⟨⟨Pd⟩⟩. However, this is known to be an undecidable problem, as demonstrated in [Mat70].

Finally, future work can be focused on the application to real-world scenarios. Aforementioned
tools such as Astreé [Cou+05] and MOPSA [MOM23] use the traditional widening technique,
which, while sound, does not infer the most precise invariant in the domain of intervals. In
contrast, we have demonstrated that it is possible to achieve more precise invariants while ensuring
the termination of the analyzer using the domain of intervals.

APPENDIX A

Additional proofs

A.1 Lemma 4.7 proof

We preliminarly observe that we can also prove a dual property of the Lemma 4.4:

Lemma A.1 (Negative cycles in weighted directed graphs). Let p be a finite path

p = x0 →h0
x1 →h1

x2 →h2
· · · →hℓ−1

xℓ

with m ≜ max{|hj | | j ∈ {0, . . . , ℓ − 1}} ∈ N and w(p) < −(|X| − 1)m. Then, p has a subpath
which is a cycle having a strictly negative weight.

Proof. First note that w(p) = Σℓ−1
k=0hk < −m(|X| − 1) implies that |p| = ℓ ⩾ |X|. Then, we show

our claim by induction on |p| = ℓ ⩾ |X|.
Case (|p| = |X|). Since the path p includes exactly |X| + 1 = ℓ + 1 nodes, there exist indices
0 ⩽ i < j ⩽ ℓ such that xi = xj , i.e., pi,j is a subpath of p which is a cycle. Moreover, since this
cycle pi,j includes at least one edge, we have that

w(pi,j) = w(p)− (Σi−1
k=0hk +Σℓ−1

k=jhk) < as w(p) < −m(|X| − 1)

−m (|X| − 1)− (Σi−1
k=0hk +Σℓ−1

k=jhk) ⩽ as Σi−1
k=0hk +Σℓ−1

k=jhk ⩾ −m(ℓ− 1)

−m(|X| − 1)− (−m(ℓ− 1)) = as ℓ = |X|
−m(|X| − 1) +m(|X| − 1) = 0

so that w(pi,j) < 0 holds.

(|p| > |X|): Since the path p includes at least |X| + 2 nodes, as in the base case, we have that p
has a subpath which is a cycle. Then, we consider a cycle pi,j in p, for some indices 0 ⩽ i < j ⩽ ℓ,
which is maximal, i.e., such that if pi′,j′ is a cycle in p, for some 0 ⩽ i′ < j′ ⩽ ℓ, then pi,j is not a
proper subpath of pi′,j′ .

If w(pi,j) < 0 then we are done. Otherwise we have that w(pi,j) ⩾ 0 and we consider the path p′

obtained from p by stripping off the cycle pi,j , i.e.,

p′ ≡
p′
0,i⏟ ⏞⏞ ⏟

x0 →h0
x1 →h1

· · · →hi−1
xi =

p′
j+1,ℓ⏟ ⏞⏞ ⏟

xj →hj+1
. . .→hℓ−1

xℓ

Since |p′| < |p| and w(p′) = w(p) − w(pi,j) ⩽ w(p) < −m(|X| − 1), we can apply the inductive
hypothesis on p′. We therefore derive that p′ has a subpath q which is a cycle having strictly
positive weight. This cycle q is either entirely in p′0,i or in p′j+1,ℓ, otherwise q would include the
cycle pi,j thus contradicting the maximality of pi,j . Hence, q is a cycle in the original path p having
a strictly negative weight.

69

70 APPENDIX A. ADDITIONAL PROOFS

For the following proof consider the min : I→ Z function, inductively defined as follows:

min(⊥) = +∞
min([a, b]) = a

and recall the Lemma 4.7 statement:

Lemma A.2. Let C ∈ Imp.
For all η ∈ İ and y ∈ Var , if min(JCKηy) ̸= −∞ and min(JCKηy) < −(C)b then there exist a
variable z ∈ Var and an integer h ∈ Z s.t. |h| ⩽ (C)b s.t. the following two properties hold:

(i) min(JCKηy) = min(ηz) + h;

(ii) for all η′ ∈ İ, if η′ ⊒ η then min(JCKη′y) ⩽ min(η′z) + h.

Proof. The proof is by structural induction on the command C ∈ Imp. We preliminarly observe that
we can safely assume η ̸= ⊥. In fact, if η = ⊥ then JCK⊥ = ⊥ and thus min(JCKηy) = +∞ ⩾ (C)b,
against the hypothesis min(JCKηy) < −(C)b. Moreover, when quantifying over η′ such that η′ ⊒ η
in (i), if min(JCKη′y) = −∞ holds, then min(JCKη′y) ⩽ min(η′z) + h trivially holds, hence we will
sometimes silently omit to consider this case.

Case (x ∈ I)
Take η ∈ İ and assume −∞ ≠ min(Jx ∈ IKηy) < −(x ∈ I)b. Clearly Jx ∈ IKη ̸= ⊥, otherwise we
would get the contradiction min(Jx ∈ IKηy) = +∞ ⩾ (x ∈ I)b. We distinguish two cases:

• If y ̸= x, then for all η′ ∈ İ such that η ⊑ η′ it holds

⊥ ≠ Jx ∈ IKη′ = η′[x ↦→ ηx ⊓ I]

and thus
min(Jx ∈ IKη′y) = min(η′y) = min(η′y) + 0

hence the thesis follows with z = y and h = 0.

• If y = x then η(x) ∈ I and
min(Jx ∈ IKηy) = min(ηx ⊓ I)

Note that it cannot be min(I) ∈ Z. Otherwise, by Definition 4.3, min(ηx ⊓ I) ⩾ min(I) =
(x ∈ I)b, violating the assumption min(Jx ∈ IKηy) < −(x ∈ I)b. Hence, min(S) = −∞ must
hold and therefore min(ηx ⊓ I) = min(η(x)) = min(η(x)) + 0. It is immediate to check that
the same holds for all η′ ⊒ η, i.e.,

min(η′x ⊓ I) = min(η′x) + 0

and thus the thesis follows with z = y = x and h = 0.

Case (x := k) Take η ∈ İ and assume min(Jx := kKηy) < −(x := k)b = |k|.
Observe that it cannot be x = y. In fact, since Jx := kKη = η[x ↦→ αI({k})], we would have

Jx := kKηy = [k, k] and thus

min(Jx := kKηy) = k ⩾ |k| = (x := k)b

violating the assumption. Therefore, it must be y ̸= x. Now, for all η′ ⊒ η, we have Jx := kKη′y =
η′y and thus

min(Jx := kKη′y) = min(η′y) = min(η′y) + 0,

hence the thesis holds with h = 0 ⩽ |k| = (x := k)b and z = y.

Case (x := w + k) Take η ∈ İ and assume min(Jx := w+ kKηy) < −(x := w+ k)b = −|k|. Recall
that Jx := w+ kKη = η[x ↦→ ηw+ k].

We distinguish two cases:

A.1. LEMMA 4.7 PROOF 71

• If y ̸= x, then for all η′ ⊒ η, we have Jx := w+ kKη′y = η′y and thus

min(Jx := w+ kKη′y) = min(η′y) + 0

hence the thesis follows with h = 0 ⩽ (x := w+ k)b and z = y.

• If x = y then for all η′ ⊒ η, we have Jx := w+ kKη′y = η′w+ k and thus

min(Jx := w+ kKη′y) = min(η′w) + k

hence, the thesis follows with h = k (recall that k ⩽ |k| = (x := w+ k)b) and z = w.

Case (C1 + C2) Take η ∈ İ and assume min(JC1 + C2Kη) < −(C1 + C2)b = −(C1)b − (C2)b.
Recall that JC1 + C2Kη = JC1Kη ⊔ JC2Kη. Hence, since min(JC1 + C2Kηy) ̸= −∞, we have that
min(JC1Kηy) ̸= −∞ ≠ min(JC2Kηy). Moreover

min(JC1 + C2Kηy) = min(JC1Kηy ⊔ JC2Kηy)
= min{min(JC1Kηy),min(JC2Kηy)}

Thus min(JC1 + C2Kηy) = min(JCiKηy) for some i ∈ {1, 2}. We can assume, without loss
of generality, that the maximum is realized by the first component, i.e., min(JC1 + C2Kηy) =
min(JC1Kηy) < −(C1 + C2)b. Hence we can use the inductive hypothesis on C1 and state that
there exists h ∈ Z with |h| ⩽ (C1)b and z ∈ Var such that min(JC1Kηy) = min(ηz) + h and for all
η′ ∈ İ, η ⊑ η′,

min(JC1Kη′y) ⩽ min(η′z) + h

Therefore
min(JC1 + C2Kηy) = min(JC1Kηy) = min(ηz) + h

and and for all η′ ∈ İ, η ⊑ η′,

min(JC1 + C2Kη′y) = min{min(JC1Kη′y),min(JC2Kη′y)}
⩽ min(JC1Kη′y)
⩽ min(η′z) + h

with |h| ⩽ (C1)b ⩽ (C1 + C2)b, as desired.

Case (C1;C2) Take η ∈ İ and assume min(JC1;C2Kηy) < −(C1;C2)b = −(C1)b − (C2)b.
Recall that JC1;C2Kη = JC2K(JC1Kη). If we define

JC1Kη = η1

since min(JC2Kη1y) ̸= −∞ and min(JC2Kη1y) < −(C1;C2)b ⩽ (C2)b, by inductive hypothesis on
C2, there are |h2| ⩽ (C2)b and w ∈ Var such that min(JC2Kη1y) = min(η1w) + h2 and for all η′1 ∈ İ
with η1 ⊑ η′1

min(JC2Kη′1y) ⩽ min(η′1w) + h2 (A.1)

Now observe that min(JC1Kηw) = min(η1w) < −(C1)b. Otherwise, if it were min(η1w) ⩾ −(C1)b
we would have

min(JC2Kη1y) = min(η1w) + h2 ⩾ −(C1)b − (C2)b = −(C1;C2)b,

violating the hypotheses. Moreover, min(JC1Kηw) ̸= −∞, otherwise we would have min(JC2Kη1y) =
min(η1w)+h2 = −∞, contradicting the hypotheses. Therefore we can apply the inductive hypoth-
esis also to C1 and deduce that there are |h1| ⩽ (C1)b and w′ ∈ Var such that min(JC1Kηw) =

min(ηw′) + h1 and for all η′ ∈ İ with η ⊑ η′

min(JC1Kη′w) ⩽ min(η′w′) + h1 (A.2)

72 APPENDIX A. ADDITIONAL PROOFS

Now, for all η′ ∈ İ with η ⊑ η′ we have that:

min(JC1;C2Kηy) = min(JC2K(JC1Kη)y)
= min(JC2Kη1y)
= min(η1w) + h2

= min(JC1Kηw) + h2

= min(ηw′) + h1 + h2

and

min(JC1;C2Kη′y) =
min(JC2K(JC1Kη′)y) ⩽
min(JC1Kη′w) + h2 ⩽ by (A.1), since η1 = JC1Kη ⊑ JC1Kη′

(min(η′w′) + h1) + h2 by (A.2)

Thus, the thesis holds with h = h1 + h2, as |h| = |h1 + h2| ⩽ |h1| + |h2| ⩽ (C1)b + (C2)b =
(C1;C2)b, as needed.

Case (fix(C)) Let η ∈ İ such that min(Jfix(C)Kηy) ̸= −∞. Recall that Jfix(C)Kη = lfpλµ.(JCKµ ⊔ η).
Observe that the least fixpoint of λµ.(JCKµ⊔η) coincides with the least fixpoint of λµ.(JCKµ⊔µ) =
λµ.JC+ trueKµ above η. Hence, if

• η0 ≜ η,

• for all i ∈ N, ηi+1 ≜ JCKηi ⊔ ηi = JC+ trueKηi ⊒ ηi,

then we define an increasing chain {ηi}i∈N ⊆ İ such that

Jfix(C)Kη =
⨆︁

i∈N ηi.

Since min(Jfix(C)K)ηy ̸= −∞, we have that for all i ∈ N, min(ηiy) ̸= −∞. Moreover,
⨆︁

i∈N ηi on y

is finitely reached in the chain {ηi}i∈N, i.e., there exists m ∈ N such that for all i ⩾ m+ 1

Jfix(C)Kηy = ηiy.

The inductive hypothesis holds for C and true, hence for C+ true, therefore for all x ∈ Var and
j ∈ {0, 1, . . . ,m}, if min(ηj+1x) < −(C+ true)b = −(C)b then there exist z ∈ Var and h ∈ Z such
that |h| ⩽ (C)b and

(a) −∞ ≠ min(ηj+1x) = min(ηjz) + h,

(b) ∀η′ ⊒ ηj .min(JC+ trueKη′x) ⩽ min(η′z) + h.

To shortly denote that the two conditions (a) and (b) hold, we write

(z, j)→h (x, j + 1)

Now, assume that for some variable y ∈ Var

min(Jfix(C)Kηy) = min(ηm+1y) < −(fix(C))b = −(n+ 1)(C)b

where n = |vars(C)|. We want to show that the thesis holds, i.e., that there exist z ∈ Var and
h ∈ Z with |h| ⩽ (fix(C))b such that:

min(Jfix(C)Kηy) = min(ηz) + h (A.3)

and for all η′ ⊒ η,
min(Jfix(C)Kη′y) ⩽ min(η′z) + h (A.4)

A.1. LEMMA 4.7 PROOF 73

Let us consider (i). We first observe that we can define a path

σ ≜ (y0, 0)→h0
(y1, 1)→h1

. . .→hm
(ym+1,m+ 1) (A.5)

such that ym+1 = y and for all j ∈ {0, . . . ,m + 1}, yj ∈ Var and min(ηjyj) < −(C)b. In fact, if,
by contradiction, this is not the case, there would exist an index i ∈ {0, . . . ,m} (as

min(ηm+1ym+1) < −(C)b

already holds) such that min(ηiyi) ⩾ −(C)b, while for all j ∈ {i+1, . . . ,m+1}, min(ηjyj) < −(C)b.
Thus, in such a case, we consider the nonempty path:

π ≜ (yi, i)→hi (yi+1, i+ 1)→hi+1 . . .→hm (ym+1,m+ 1)

and we have that:

Σm
j=ihj =

Σm
j=i min(ηj+1yj+1)−min(ηjyj) =

min(ηm+1ym+1)−min(ηiyi) =

min(ηm+1y)−min(ηiyi) <

− (n+ 1)(C)b + (C)b = −n(C)b

with |hj | ⩽ (C)b for j ∈ {i, . . . ,m}. Hence we can apply Lemma A.1 to the projection πp of the
nodes of this path π to the variable component to deduce that πp has a subpath which is a cycle
with a strictly negative weight. More precisely, there exist i ⩽ k1 < k2 ⩽ m+1 such that yk1 = yk2

and h = Σk2−1
j=k1

hj < 0. If we denote w = yk1 = yk2 , then we have that

min(ηk2
w) = hk2−1 +min(ηk2−1w)

= hk2−1 + hk2−2 +min(ηk2−2w)

= Σk2−1
j=k1

hj +min(ηk1w)

= min(ηk1
w) + h recall h = Σk2−1

j=k1
hj < 0

Thus,

min(JC+ trueKk2−k1ηk1
w) = min(ηk1

w) + h

Observe that for all η′ ⊒ ηk1

min(JC+ trueKk2−k1η′w) ⩽ min(η′w) + h (A.6)

This property (A.6) can be shown by induction on k2 − k1 ⩾ 1.
Then, an inductive argument allows us to show that for all r ∈ N:

min(JC+ trueKr(k2−k1)ηk1w) ⩽ min(ηk1w) + rh (A.7)

In fact, for r = 0 the claim trivially holds. Assuming the validity for r ⩾ 0 then we have that

min(JC+ trueK(r+1)(k2−k1)ηk1w) =

min(JC+ trueKk2−k1(JC+ trueKr(k2−k1)ηk1)w) ⩽ by (A.6) as ηk1 ⊑ JC+ trueKr(k2−k1)ηk1

min(JC+ trueKr(k2−k1)ηk1
w) + h ⩽ by inductive hypothesis

min(ηk1
w) + rh+ h ⩽ min(ηk1

w) + (r + 1)h

74 APPENDIX A. ADDITIONAL PROOFS

However, This would contradict the hypothesis Jfix(C)Kηy ̸= −∞. In fact the inequality (A.7)
would imply

min (Jfix(C)Kηw) = min

(︄⨆︂
i∈N

JC+ trueKiηw

)︄

= min

(︄⨆︂
i∈N

JC+ trueKiηk1w

)︄

= min

(︄⨆︂
r∈N

JC+ trueKr(k2−k1)ηk1w

)︄
= −∞

Now, from (A.5) we deduce that for all η′ ⊒ ηk1
, for j ∈ {k1, . . . ,m}, if we let µk1

= η′ and
µj+1 = JC+ trueKµj , we have that min(µj+1yj+1) ⩽ min(µj+1yj) + hj and thus

JC+ trueKm−k1+1
η′y = µm+1ym+1 ⩽ min(yk1) + Σm

i=k1
hi = min(η′w) + Σm

i=k1
hi

Since η′ = Jfix(C)Kη ⊒ ηk1 we conclude

min(Jfix(C)Kηy) = min
(︂
JC+ trueKm−k1+1Jfix(C)Kηy

)︂
⩽ −∞+Σm

i=k1
hi = −∞

contradicting the assumption. Therefore, the path σ of (A.5) must exist, and consequently

min(Jfix(C)Kηy) = min(ηm+1y) = min(ηy0) + Σm
i=0hi

and |Σm
i=0hi| ⩽ (fix(C))b = (n + 1)(C)b, otherwise we could use the same argument above for

inferring the contradiction min(Jfix(C)Kηy) = −∞.

Let us now show (ii). Given η′ ⊒ η from (A.5) we deduce that for all j ∈ {0, . . . ,m}, if we let
µ0 = η′ and µj+1 = JC+ trueKµj , we have that

min(µj+1yj+1) ⩽ min(µj+1yj) + hj .

Therefore, since Jfix(C)Kη′ ⊒ µm+1 (observe that the convergence of Jfix(C)Kη′ could be at an index
greater than m+ 1), we conclude that:

min(Jfix(C)Kη′y) ⩽ min(µm+1y) = min(µm+1ym+1) ⩽ min(η′y0) + Σm
i=0hi

as desired.

A.2 Lemma 4.18 proof

Lemma A.3. Let C ∈ Imp. For all η ∈ C and y ∈ Var , if max(⟨⟨C⟩⟩ηy) ̸= +∞ and max(⟨⟨C⟩⟩ηy) >
(C)b then there exist a variable z ∈ Var and an integer h ∈ Z such that |h| ⩽ (C)b and the following
two properties hold:

(i) max(⟨⟨C⟩⟩ηy) = max(ηz) + h;

(ii) for all η′ ∈ C, if η′
.
⊇ η then max(⟨⟨C⟩⟩η′y) ⩾ max(η′z) + h.

Proof. The proof is by structural induction on the command C ∈ Imp. We preliminarly observe that
we can safely assume η ̸= ⊥. In fact, if η = ⊥ then ⟨⟨C⟩⟩⊥ = ⊥ and thus max(⟨⟨C⟩⟩ηy) = −∞ ⩽ (C)b,
against the hypothesis max(⟨⟨C⟩⟩ηy) > (C)b. Moreover, when quantifying over η′ such that η′

.
⊇ η

in (ii), if max(⟨⟨C⟩⟩η′y) = +∞ holds, then max(⟨⟨C⟩⟩η′y) ⩾ max(η′z) + h trivially holds, hence we
will sometimes silently omit to consider this case.

A.2. LEMMA 4.18 PROOF 75

Case (x ∈ I). Take η ∈ C and assume +∞ ̸= max(⟨⟨x ∈ I⟩⟩ηy) > (x ∈ I)
b. Recall that I ∈ I.

Clearly ⟨⟨x ∈ I⟩⟩η ̸= ⊥, otherwise we would get the contradiction max(⟨⟨x ∈ I⟩⟩ηy) = −∞ ⩽
(x ∈ I)

b. We distinguish two cases:

• If y ̸= x, then for all η′ ∈ C such that η
.
⊆ η′ it holds

⊥ ≠ ⟨⟨x ∈ I⟩⟩η′ = η′[x ↦→ η′x
.
∩ γI(I)]

and thus
max(⟨⟨x ∈ I⟩⟩η′y) = max(η′y) = max(η′y) + 0

hence the thesis follows with z = y and h = 0.
• If y = x then

max(⟨⟨x ∈ I⟩⟩ηy) = max(ηx
.
∩ γI(I))

Note that it cannot be max(I) ∈ Z. Otherwise, by Definition 4.3, max(ηx
.
∩ γI(I)) ⩽

max(I) = (x ∈ I)
b, violating the assumption max(⟨⟨x ∈ I⟩⟩ηy) > (x ∈ I)

b. Hence,
max(I) = +∞ must hold and therefore max(ηx

.
∩ γI(I)) = max(η(x)) = max(η(x)) + 0.

It is immediate to check that the same holds for all η′
.
⊇ η, i.e.,

max(η′x
.
∩ γI(I)) = max(η′x) + 0

and thus the thesis follows with z = y = x and h = 0.

Case (x := k). Take η ∈ C and assume max(⟨⟨x := k⟩⟩ηy) > (x := k)
b
= |k|.

Observe that it cannot be x = y. In fact, since ⟨⟨x := k⟩⟩η = η[x ↦→ {k}], we would have
⟨⟨x := k⟩⟩ηy = {k} and thus

max(⟨⟨x := k⟩⟩ηy) = k ⩽ (x := k)
b

violating the assumption. Therefore, it must be y ̸= x. Now, for all η′
.
⊇ η, we have

⟨⟨x := k⟩⟩η′y = η′y and thus

max(⟨⟨x := k⟩⟩η′y) = max(η′y) = max(η′y) + 0,

hence the thesis holds with h = 0 ⩽ (x := k)
b and z = y.

Case (x := w+ k). Take η ∈ C and assume max(⟨⟨x := w+ k⟩⟩ηy) > (x := w+ k)
b
= |k|. Recall

that ⟨⟨x := w+ k⟩⟩η = η[x ↦→ ηw+ k].
We distinguish two cases:

• If y ̸= x, then for all η′
.
⊇ η, we have ⟨⟨x := w+ k⟩⟩η′y = η′y and thus

max(⟨⟨x := w+ k⟩⟩η′y) = max(η′y)

hence the thesis follows with h = 0 ⩽ (x := w+ k)
b and z = y.

• If x = y then for all η′
.
⊇ η, we have ⟨⟨x := w+ k⟩⟩η′y = η′w+ k and thus

max(⟨⟨x := w+ k⟩⟩η′y) = max(η′w) + k

hence, the thesis follows with h = k (recall that k ⩽ |k| = (x := w+ k)
b) and z = w.

Case (C1 + C2). Take η ∈ C and assume max(⟨⟨C1 + C2⟩⟩η) > (C1 + C2)
b
= (C1)

b
+ (C2)

b.
Recall that ⟨⟨C1 + C2⟩⟩η = ⟨⟨C1⟩⟩η

.
∪ ⟨⟨C2⟩⟩η. Hence, since max(⟨⟨C1 + C2⟩⟩ηy) ̸= +∞, we have

that max(⟨⟨C1⟩⟩ηy) ̸= +∞ ≠ max(⟨⟨C2⟩⟩ηy). Moreover

max(⟨⟨C1 + C2⟩⟩ηy) = max(⟨⟨C1⟩⟩ηy
.
∪ ⟨⟨C2⟩⟩ηy)

= max{max(⟨⟨C1⟩⟩ηy),max(⟨⟨C2⟩⟩ηy)}

76 APPENDIX A. ADDITIONAL PROOFS

Thus max(⟨⟨C1 + C2⟩⟩ηy) = max(⟨⟨Ci⟩⟩ηy) for some i ∈ {1, 2}. We can assume, without loss
of generality, that the maximum is realized by the first component, i.e., max(⟨⟨C1 +C2⟩⟩ηy) =
max(⟨⟨C1⟩⟩ηy) > (C1 + C2)

b. Hence we can use the inductive hypothesis on C1 and state that
there exists h ∈ Z with |h| ⩽ (C1)

b and z ∈ Var such that max(⟨⟨C1⟩⟩ηy) = max(ηz) + h and
for all η′ ∈ C, η

.
⊆ η′,

max(⟨⟨C1⟩⟩η′y) ⩾ max(η′z) + h

Therefore
max(⟨⟨C1 + C2⟩⟩ηy) = max(⟨⟨C1⟩⟩ηy) = max(ηz) + h

and and for all η′ ∈ C, η
.
⊆ η′,

max(⟨⟨C1 + C2⟩⟩η′y) = max{max(⟨⟨C1⟩⟩η′y),max(⟨⟨C2⟩⟩η′y)}
⩾ max(⟨⟨C1⟩⟩η′y)
⩾ max(η′z) + h

with |h| ⩽ (C1)
b ⩽ (C1 + C2)

b, as desired.

Case (C1;C2). Take η ∈ C and assume max(⟨⟨C1;C2⟩⟩ηy) > (C1;C2)
b
= (C1)

b
+ (C2)

b. Recall
that ⟨⟨C1;C2⟩⟩η = ⟨⟨C2⟩⟩(⟨⟨C1⟩⟩η). If we define

⟨⟨C1⟩⟩η = η1

since max(⟨⟨C2⟩⟩η1y) ̸= +∞ and max(⟨⟨C2⟩⟩η1y) > (C1;C2)
b ⩾ (C2)

b, by inductive hypothesis
on C2, there are |h2| ⩽ (C2)

b and w ∈ Var such that max(⟨⟨C2⟩⟩η1y) = max(η1w) + h2 and for
all η′1 ∈ C with η1

.
⊆ η′1

max(⟨⟨C2⟩⟩η′1y) ⩾ max(η′1w) + h2 (A.8)

Now observe that max(⟨⟨C1⟩⟩ηw) = max(η1w) > (C1)
b. Otherwise, if it were max(η1w) ⩽ (C1)

b

we would have

max(⟨⟨C2⟩⟩η1y) = max(η1w) + h2 ⩽ (C1)
b
+ (C2)

b
= (C1;C2)

b,

violating the hypotheses. Moreover, max(⟨⟨C1⟩⟩ηw) ̸= +∞, otherwise we would have max(⟨⟨C2⟩⟩η1y) =
max(η1w) + h2 = +∞, contradicting the hypotheses. Therefore we can apply the induc-
tive hypothesis also to C1 and deduce that there are |h1| ⩽ (C1)

b and w′ ∈ Var such that
max(⟨⟨C1⟩⟩ηw) = max(ηw′) + h1 and for all η′ ∈ C with η

.
⊆ η′

max(⟨⟨C1⟩⟩η′w) ⩾ max(η′w′) + h1 (A.9)

Summing up:

max(⟨⟨C1;C2⟩⟩ηy) = max(⟨⟨C2⟩⟩(⟨⟨C1⟩⟩η)y)
= max(⟨⟨C2⟩⟩η1y)
= max(η1w) + h2

= max(⟨⟨C1⟩⟩ηw) + h2

= max(ηw′) + h1 + h2.

Now, for all η′ ∈ C with η
.
⊆ η′ we have that:

max(⟨⟨C1;C2⟩⟩η′y) =
max(⟨⟨C2⟩⟩(⟨⟨C1⟩⟩η′)y) ⩾

max(⟨⟨C1⟩⟩η′w) + h2 ⩾ by (A.8), since η1 = ⟨⟨C1⟩⟩η
.
⊆ ⟨⟨C1⟩⟩η′ and monotonicity

(max(η′w′) + h1) + h2 by (A.9)

Thus, the thesis holds with h = h1 + h2, as |h| = |h1 + h2| ⩽ |h1| + |h2| ⩽ (C1)
b
+ (C2)

b
=

(C1;C2)
b, as needed.

A.2. LEMMA 4.18 PROOF 77

Case (fix(C)). Let η ∈ C such that max(⟨⟨fix(C)⟩⟩ηy) ̸= +∞. Recall that ⟨⟨fix(C)⟩⟩η = lfp
(︂
λµ.(⟨⟨C⟩⟩µ

.
∪ η)

)︂
.

Observe that the least fixpoint of λµ.(⟨⟨C⟩⟩µ
.
∪η) coincides with the least fixpoint of λµ.(⟨⟨C⟩⟩µ

.
∪

µ) = λµ.⟨⟨C+ true⟩⟩µ above η. Hence, if

η0 ≜ η

for all i ∈ N ηi+1 ≜ ⟨⟨C⟩⟩ηi
.
∪ ηi = ⟨⟨C+ true⟩⟩ηi

.
⊇ ηi

then we define an increasing chain {ηi}i∈N ⊆ C such that

⟨⟨fix(C)⟩⟩η =
.⋃︁
i∈Nηi.

Since max(⟨⟨fix(C)⟩⟩)ηy ̸= +∞, we have that for all i ∈ N, max(ηiy) ̸= +∞. Moreover,
.⋃︁
i∈Nηi

on y is finitely reached in the chain {ηi}i∈N, i.e., there exists m ∈ N such that for all i ⩾ m+1

max(⟨⟨fix(C)⟩⟩ηy) = max(ηiy).

The inductive hypothesis holds for C and true, hence for C + true, therefore for all x ∈ Var
and j ∈ {0, 1, . . . ,m}, if max(ηj+1x) > (C+ true)b = (C)b then there exist z ∈ Var and h ∈ Z
such that |h| ⩽ (C)b and

(a) +∞ ≠ max(ηj+1x) = max(ηjz) + h,

(b) ∀η′
.
⊇ ηj .max(⟨⟨C+ true⟩⟩η′x) ⩾ max(η′z) + h.

To shortly denote that the two conditions (a) and (b) hold, we write

(z, j)→h (x, j + 1)

Now, assume that for some variable y ∈ Var

max(⟨⟨fix(C)⟩⟩ηy) = max(ηm+1y) > (fix(C))b = (n+ 1)(C)b

where n = |vars(C)|. We want to show that the thesis holds, i.e., that there exist z ∈ Var and
h ∈ Z with |h| ⩽ (fix(C))b such that:

max(⟨⟨fix(C)⟩⟩ηy) = max(ηz) + h (A.10)

and for all η′
.
⊇ η,

max(⟨⟨fix(C)⟩⟩η′y) ⩾ max(η′z) + h (A.11)

Let us consider (A.10). We first observe that we can define a path

σ ≜ (y0, 0)→h0 (y1, 1)→h1 . . .→hm (ym+1,m+ 1) (A.12)

such that ym+1 = y and for all j ∈ {0, . . . ,m + 1}, yj ∈ Var and max(ηjyj) > (C)b. In
fact, if, by contradiction, this were not the case, there would exist an index i ∈ {0, . . . ,m}
(as max(ηm+1ym+1) > (C)b already holds) such that max(ηiyi) ⩽ (C)b, while for all j ∈
{i+ 1, . . . ,m+ 1}, max(ηjyj) > (C)b. Thus, in such a case, we consider the nonempty path:

π ≜ (yi, i)→hi (yi+1, i+ 1)→hi+1 . . .→hm (ym+1,m+ 1) (A.13)

and we have that:

Σm
j=ihj =

Σm
j=i max(ηj+1yj+1)−max(ηjyj) =

max(ηm+1ym+1)−max(ηiyi) =

max(ηm+1y)−max(ηiyi) >

(n+ 1)(C)b − (C)b = n(C)b

78 APPENDIX A. ADDITIONAL PROOFS

with |hj | ⩽ (C)b for j ∈ {i, . . . ,m}. Hence we can apply Lemma 4.4 to the projection πp of
the nodes of this path π to the variable component to deduce that πp has a subpath which is
a cycle with a strictly positive weight. More precisely, there exist i ⩽ k1 < k2 ⩽ m + 1 such
that yk1 = yk2 and h = Σk2−1

j=k1
hj > 0. If we denote w = yk1 = yk2 , then we have that

max(ηk2w) = hk2−1 +max(ηk2−1w)

= hk2−1 + hk2−2 +max(ηk2−2w)

= Σk2−1
j=k1

hj +max(ηk1
w)

= h+max(ηk1
w)

Thus,
max(⟨⟨C+ true⟩⟩k2−k1ηk1

w) = max(ηk1
w) + h

Observe that for all η′
.
⊇ ηk1

max
(︂
⟨⟨C+ true⟩⟩k2−k1η′w

)︂
⩾ max(η′w) + h (A.14)

Let us show that Equation (A.14) holds. We do so by induction on ℓ = k2 − k1 ⩾ 1.

Case (ℓ = 1). Notice that by (b) used to build π in (A.13) it holds that ∀η′
.
⊇ ηk1

.
⊇ η

max (⟨⟨C+ true⟩⟩η′w) ⩾ max(η′w) + h

hence the thesis holds.
Case (ℓ⇒ ℓ+ 1). Recall that

(⟨⟨C+ true⟩⟩)ℓ+1
η′ = (⟨⟨C+ true⟩⟩)

(︂(︂
(⟨⟨C+ true⟩⟩)ℓ

)︂
η′
)︂

and by inductive hypothesis max
(︂
(⟨⟨C+ true⟩⟩)ℓη′w

)︂
⩾ max (η′w)+h. Recall that for all

η′′ ∈ C we know that ⟨⟨C+ true⟩⟩η′′ = η′′
.
∪ ⟨⟨C⟩⟩η′′. Hence we can notice that max(⟨⟨C+

true⟩⟩η′′x) ⩾ max(η′′x) for all x ∈ Var . Therefore

max
(︂
⟨⟨C+ true⟩⟩

(︂
(⟨⟨C+ true⟩⟩)ℓη′

)︂
w
)︂
⩾ max

(︂
(⟨⟨C+ true⟩⟩)ℓη′w

)︂
⩾ max(η′w) + h

which is our thesis for Property (A.14).

Then, an inductive argument allows us to show that for all r ∈ N:

max(⟨⟨C+ true⟩⟩r(k2−k1)ηk1
w) ⩾ max(ηk1

w) + rh (A.15)

In fact, for r = 0 the claim trivially holds. Assuming the validity for r ⩾ 0 then we have that

max(⟨⟨C+ true⟩⟩(r+1)(k2−k1)ηk1
w) =

max(⟨⟨C+ true⟩⟩k2−k1(⟨⟨C+ true⟩⟩r(k2−k1)ηk1
)w) ⩾ by (A.14) as ηk1

.
⊆ ⟨⟨C+ true⟩⟩r(k2−k1)ηk1

max(⟨⟨C+ true⟩⟩r(k2−k1)ηk1
w) + h ⩾ by inductive hypothesis

max(ηk1
w) + rh+ h ⩾ max(ηk1

w) + (r + 1)h

However, this would contradict the hypothesis ⟨⟨fix(C)⟩⟩ηy ̸=∞. In fact the Inequality (A.15)
would imply

⟨⟨fix(C)⟩⟩ηw =

.⋃︂
i∈N
⟨⟨C+ true⟩⟩iηw =

=

.⋃︂
i∈N
⟨⟨C+ true⟩⟩iηk1

w

=

.⋃︂
r∈N
⟨⟨C+ true⟩⟩r(k2−k1)ηk1w

= +∞

A.3. LEMMA 4.20 PROOF 79

Now, from (A.12) we deduce that for all η′
.
⊇ ηk1

, for j ∈ {k1, . . . ,m}, if we let µk1
= η′ and

µj+1 = ⟨⟨C+ true⟩⟩µj , by the choice of the subsequence, since k1 ⩾ i, we have that

max(µj+1yj+1) ⩾ max(µj+1yj) + hj

and thus

⟨⟨C+ true⟩⟩m−k1+1
η′y = µm+1ym+1 ⩾ max(yk1

) + Σm
i=k1

hi = max(η′w) + Σm
i=k1

hi

Since η′ = ⟨⟨fix(C)⟩⟩η
.
⊇ ηk1 we conclude

max (⟨⟨fix(C)⟩⟩ηy) = max
(︂
⟨⟨C+ true⟩⟩m−k1+1⟨⟨fix(C)⟩⟩ηw

)︂
= max (⟨⟨fix(C)⟩⟩ηw) + Σi=k1

mhi

⩾ +∞+Σm
i=k1

hi = +∞

contradicting the assumption.

Therefore, the path σ of (A.12) must exist, and consequently

max(⟨⟨fix(C)⟩⟩ηy) = max(ηm+1y) = max(ηy0) + Σm
i=0hi

and Σm
i=0hi ⩽ (fix(C))b = (n + 1)(C)b, otherwise we could use the same argument above for

inferring the contradiction max(⟨⟨fix(C)⟩⟩ηy) = +∞.

Let us now show (A.11). Given η′
.
⊇ η from (A.12) we deduce that for all j ∈ {0, . . . ,m}, if

we let µ0 = η′ and µj+1 = ⟨⟨C+ true⟩⟩µj , we have that

max(µj+1yj+1) ⩾ max(µj+1yj) + hj .

Therefore, since ⟨⟨fix(C)⟩⟩η′
.
⊇ µm+1 (observe that the convergence of ⟨⟨fix(C)⟩⟩η′ could be at

an index greater than m+ 1), we conclude that:

max(⟨⟨fix(C)⟩⟩η′y) ⩾ max(µm+1y) = max(µm+1ym+1) ⩾ max(η′y0) + Σm
i=0hi

as desired.

A.3 Lemma 4.20 proof

Lemma A.4. Let C ∈ Imp.
For all η ∈ C and y ∈ Var , if min(⟨⟨C⟩⟩ηy) ̸= −∞ and min(⟨⟨C⟩⟩ηy) < −(C)b then there exist a
variable z ∈ Var and an integer h ∈ Z s.t. |h| ⩽ (C)b s.t. the following two properties hold:

(i) min(⟨⟨C⟩⟩ηy) = min(ηz) + h;

(ii) for all η′ ∈ C, if η′
.
⊇ η then min(⟨⟨C⟩⟩η′y) ⩽ min(η′z) + h.

Proof. The proof is by structural induction on the command C ∈ Imp. We preliminarly observe that
we can safely assume η ̸= ⊥. In fact, if η = ⊥ then ⟨⟨C⟩⟩⊥ = ⊥ and thus min(⟨⟨C⟩⟩ηy) = +∞ ⩾ (C)b,
against the hypothesis min(⟨⟨C⟩⟩ηy) < −(C)b. Moreover, when quantifying over η′ such that η′

.
⊇ η

in (i), if min(⟨⟨C⟩⟩η′y) = −∞ holds, then min(⟨⟨C⟩⟩η′y) ⩽ min(η′z)+h trivially holds, hence we will
sometimes silently omit to consider this case.

Case (x ∈ I)
Take η ∈ C and assume −∞ ≠ min(⟨⟨x ∈ I⟩⟩ηy) < −(x ∈ I)b. Clearly ⟨⟨x ∈ I⟩⟩η ̸= ⊥, otherwise we
would get the contradiction min(⟨⟨x ∈ I⟩⟩ηy) = +∞ ⩾ (x ∈ I)b. We distinguish two cases:

80 APPENDIX A. ADDITIONAL PROOFS

• If y ̸= x, then for all η′ ∈ C such that η
.
⊆ η′ it holds

⊥ ≠ ⟨⟨x ∈ I⟩⟩η′ = η′[x ↦→ ηx
.
∩ γİ(I)]

and thus
min(⟨⟨x ∈ I⟩⟩η′y) = min(η′y) = min(η′y) + 0

hence the thesis follows with z = y and h = 0.

• If y = x then η(x) ∈ I and

min(⟨⟨x ∈ I⟩⟩ηy) = min(αI(γI(ηx) ∩ γI(S)))

Note that it cannot be min(S) ∈ Z. Otherwise, by Definition 4.3, min(ηx
.
∩ γİ(I)) ⩾ min(I) =

(x ∈ I)b, violating the assumption min(⟨⟨x ∈ I⟩⟩ηy) < −(x ∈ I)b. Hence, min(S) = −∞ must
hold and therefore min(ηx

.
∩ γİ(I)) = min(η(x)) = min(η(x)) + 0. It is immediate to check

that the same holds for all η′
.
⊇ η, i.e.,

min(η′x
.
∩ γİ(I)) = min(η′x) + 0

and thus the thesis follows with z = y = x and h = 0.

Case (x := k) Take η ∈ C and assume min(⟨⟨x := k⟩⟩ηy) < −(x := k)b = |k|.
Observe that it cannot be x = y. In fact, since ⟨⟨x := k⟩⟩η = η[x ↦→ {k}]

min(⟨⟨x := k⟩⟩ηy) = k ⩾ |k| = (x := k)b

violating the assumption. Therefore, it must be y ̸= x. Now, for all η′
.
⊇ η, we have ⟨⟨x := k⟩⟩η′y =

η′y and thus

min(⟨⟨x := k⟩⟩η′y) = min(η′y) = min(η′y) + 0,

hence the thesis holds with h = 0 ⩽ |k| = (x := k)b and z = y.

Case (x := w+ k) Take η ∈ C and assume min(⟨⟨x := w+ k⟩⟩ηy) < −(x := w+ k)b = −|k|. Recall
that ⟨⟨x := w+ k⟩⟩η = η[x ↦→ ηw+ k].

We distinguish two cases:

• If y ̸= x, then for all η′
.
⊇ η, we have ⟨⟨x := w+ k⟩⟩η′y = η′y and thus

min(⟨⟨x := w+ k⟩⟩η′y) = min(η′y) + 0

hence the thesis follows with h = 0 ⩽ (x := w+ k)b and z = y.

• If x = y then for all η′
.
⊇ η, we have ⟨⟨x := w+ k⟩⟩η′y = η′w+ k and thus

min(⟨⟨x := w+ k⟩⟩η′y) = min(η′w) + k

hence, the thesis follows with h = k (recall that k ⩽ |k| = (x := w+ k)b) and z = w.

Case (C1 + C2) Take η ∈ C and assume min(⟨⟨C1 + C2⟩⟩η) < −(C1 + C2)b = −(C1)b − (C2)b.
Recall that ⟨⟨C1 + C2⟩⟩η = ⟨⟨C1⟩⟩η

.
∪ ⟨⟨C2⟩⟩η. Hence, since min(⟨⟨C1 + C2⟩⟩ηy) ̸= −∞, we have that

min(⟨⟨C1⟩⟩ηy) ̸= −∞ ≠ min(⟨⟨C2⟩⟩ηy). Moreover

min(⟨⟨C1 + C2⟩⟩ηy) = min(⟨⟨C1⟩⟩ηy
.
∪ ⟨⟨C2⟩⟩ηy)

= min{min(⟨⟨C1⟩⟩ηy),min(⟨⟨C2⟩⟩ηy)}

Thus min(⟨⟨C1 + C2⟩⟩ηy) = min(⟨⟨Ci⟩⟩ηy) for some i ∈ {1, 2}. We can assume, without loss
of generality, that the maximum is realized by the first component, i.e., min(⟨⟨C1 + C2⟩⟩ηy) =
min(⟨⟨C1⟩⟩ηy) < −(C1 + C2)b. Hence we can use the inductive hypothesis on C1 and state that

A.3. LEMMA 4.20 PROOF 81

there exists h ∈ Z with |h| ⩽ (C1)b and z ∈ Var such that min(⟨⟨C1⟩⟩ηy) = min(ηz) + h and for all
η′ ∈ C, η

.
⊆ η′,

min(⟨⟨C1⟩⟩η′y) ⩽ min(η′z) + h

Therefore
min(⟨⟨C1 + C2⟩⟩ηy) = min(⟨⟨C1⟩⟩ηy) = min(ηz) + h

and and for all η′ ∈ C, η
.
⊆ η′,

min(⟨⟨C1 + C2⟩⟩η′y) = min{min(⟨⟨C1⟩⟩η′y),min(⟨⟨C2⟩⟩η′y)}
⩽ min(⟨⟨C1⟩⟩η′y)
⩽ min(η′z) + h

with |h| ⩽ (C1)b ⩽ (C1 + C2)b, as desired.

Case (C1;C2) Take η ∈ C and assume min(⟨⟨C1;C2⟩⟩ηy) < −(C1;C2)b = −(C1)b − (C2)b.
Recall that ⟨⟨C1;C2⟩⟩η = ⟨⟨C2⟩⟩(⟨⟨C1⟩⟩η). If we define

⟨⟨C1⟩⟩η = η1

since min(⟨⟨C2⟩⟩η1y) ̸= −∞ and min(⟨⟨C2⟩⟩η1y) < −(C1;C2)b ⩽ (C2)b, by inductive hypothesis on
C2, there are |h2| ⩽ (C2)b and w ∈ Var such that min(⟨⟨C2⟩⟩η1y) = min(η1w)+h2 and for all η′1 ∈ C
with η1

.
⊆ η′1

min(⟨⟨C2⟩⟩η′1y) ⩽ min(η′1w) + h2 (A.16)

Now observe that min(⟨⟨C1⟩⟩ηw) = min(η1w) < −(C1)b. Otherwise, if it were min(η1w) ⩾ −(C1)b
we would have

min(⟨⟨C2⟩⟩η1y) = min(η1w) + h2 ⩾ −(C1)b − (C2)b = −(C1;C2)b,

violating the hypotheses. Moreover, min(⟨⟨C1⟩⟩ηw) ̸= −∞, otherwise we would have min(⟨⟨C2⟩⟩η1y) =
min(η1w)+h2 = −∞, contradicting the hypotheses. Therefore we can apply the inductive hypoth-
esis also to C1 and deduce that there are |h1| ⩽ (C1)b and w′ ∈ Var such that min(⟨⟨C1⟩⟩ηw) =

min(ηw′) + h1 and for all η′ ∈ C with η
.
⊆ η′

min(⟨⟨C1⟩⟩η′w) ⩽ min(η′w′) + h1 (A.17)

Now, for all η′ ∈ C with η
.
⊆ η′ we have that:

min(⟨⟨C1;C2⟩⟩ηy) = min(⟨⟨C2⟩⟩(⟨⟨C1⟩⟩η)y)
= min(⟨⟨C2⟩⟩η1y)
= min(η1w) + h2

= min(⟨⟨C1⟩⟩ηw) + h2

= min(ηw′) + h1 + h2

and

min(⟨⟨C1;C2⟩⟩η′y) =
min(⟨⟨C2⟩⟩(⟨⟨C1⟩⟩η′)y) ⩽

min(⟨⟨C1⟩⟩η′w) + h2 ⩽ by (A.16), since η1 = ⟨⟨C1⟩⟩η
.
⊆ ⟨⟨C1⟩⟩η′

(min(η′w′) + h1) + h2 by (A.17)

Thus, the thesis holds with h = h1 + h2, as |h| = |h1 + h2| ⩽ |h1| + |h2| ⩽ (C1)b + (C2)b =
(C1;C2)b, as needed.

Case (fix(C)) Let η ∈ C such that min(⟨⟨fix(C)⟩⟩ηy) ̸= −∞. Recall that ⟨⟨fix(C)⟩⟩η = lfpλµ.(⟨⟨C⟩⟩µ
.
∪ η).

Observe that the least fixpoint of λµ.(⟨⟨C⟩⟩µ
.
∪η) coincides with the least fixpoint of λµ.(⟨⟨C⟩⟩µ

.
∪µ) =

λµ.⟨⟨C+ true⟩⟩µ above η. Hence, if

82 APPENDIX A. ADDITIONAL PROOFS

• η0 ≜ η,

• for all i ∈ N, ηi+1 ≜ ⟨⟨C⟩⟩ηi
.
∪ ηi = ⟨⟨C+ true⟩⟩ηi

.
⊇ ηi,

then we define an increasing chain {ηi}i∈N ⊆ C such that

⟨⟨fix(C)⟩⟩η =
⨆︁

i∈N ηi.

Since min(⟨⟨fix(C)⟩⟩)ηy ̸= −∞, we have that for all i ∈ N, min(ηiy) ̸= −∞. Moreover,
⨆︁

i∈N ηi on
y is finitely reached in the chain {ηi}i∈N, i.e., there exists m ∈ N such that for all i ⩾ m+ 1

⟨⟨fix(C)⟩⟩ηy = ηiy.

The inductive hypothesis holds for C and true, hence for C+ true, therefore for all x ∈ Var and
j ∈ {0, 1, . . . ,m}, if min(ηj+1x) < −(C+ true)b = −(C)b then there exist z ∈ Var and h ∈ Z such
that |h| ⩽ (C)b and

(a) −∞ ≠ min(ηj+1x) = min(ηjz) + h,

(b) ∀η′
.
⊇ ηj .min(⟨⟨C+ true⟩⟩η′x) ⩽ min(η′z) + h.

To shortly denote that the two conditions (a) and (b) hold, we write

(z, j)→h (x, j + 1)

Now, assume that for some variable y ∈ Var

min(⟨⟨fix(C)⟩⟩ηy) = min(ηm+1y) < −(fix(C))b = −(n+ 1)(C)b

where n = |vars(C)|. We want to show that the thesis holds, i.e., that there exist z ∈ Var and
h ∈ Z with |h| ⩽ (fix(C))b such that:

min(⟨⟨fix(C)⟩⟩ηy) = min(ηz) + h (A.18)

and for all η′
.
⊇ η,

min(⟨⟨fix(C)⟩⟩η′y) ⩽ min(η′z) + h (A.19)

Let us consider (i). We first observe that we can define a path

σ ≜ (y0, 0)→h0 (y1, 1)→h1 . . .→hm (ym+1,m+ 1) (A.20)

such that ym+1 = y and for all j ∈ {0, . . . ,m + 1}, yj ∈ Var and min(ηjyj) < −(C)b. In fact, if,
by contradiction, this is not the case, there would exist an index i ∈ {0, . . . ,m} (as

min(ηm+1ym+1) < −(C)b

already holds) such that min(ηiyi) ⩾ −(C)b, while for all j ∈ {i+1, . . . ,m+1}, min(ηjyj) < −(C)b.
Thus, in such a case, we consider the nonempty path:

π ≜ (yi, i)→hi
(yi+1, i+ 1)→hi+1

. . .→hm
(ym+1,m+ 1)

and we have that:

Σm
j=ihj =

Σm
j=i min(ηj+1yj+1)−min(ηjyj) =

min(ηm+1ym+1)−min(ηiyi) =

min(ηm+1y)−min(ηiyi) <

− (n+ 1)(C)b + (C)b = −n(C)b

A.3. LEMMA 4.20 PROOF 83

with |hj | ⩽ (C)b for j ∈ {i, . . . ,m}. Hence we can apply Lemma A.1 to the projection πp of the
nodes of this path π to the variable component to deduce that πp has a subpath which is a cycle
with a strictly negative weight. More precisely, there exist i ⩽ k1 < k2 ⩽ m+1 such that yk1

= yk2

and h = Σk2−1
j=k1

hj < 0. If we denote w = yk1 = yk2 , then we have that

min(ηk2
w) = hk2−1 +min(ηk2−1w)

= hk2−1 + hk2−2 +min(ηk2−2w)

= Σk2−1
j=k1

hj +min(ηk1w)

= min(ηk1w) + h recall h = Σk2−1
j=k1

hj < 0

Thus,
min(⟨⟨C+ true⟩⟩k2−k1ηk1w) = min(ηk1w) + h

Observe that for all η′
.
⊇ ηk1

min(⟨⟨C+ true⟩⟩k2−k1η′w) ⩽ min(η′w) + h (A.21)

This property (A.21) can be shown by induction on k2 − k1 ⩾ 1.
Then, an inductive argument allows us to show that for all r ∈ N:

min(⟨⟨C+ true⟩⟩r(k2−k1)ηk1
w) ⩽ min(ηk1

w) + rh (A.22)

In fact, for r = 0 the claim trivially holds. Assuming the validity for r ⩾ 0 then we have that

min(⟨⟨C+ true⟩⟩(r+1)(k2−k1)ηk1
w) =

min(⟨⟨C+ true⟩⟩k2−k1(⟨⟨C+ true⟩⟩r(k2−k1)ηk1
)w) ⩽ by (A.21) as ηk1

.
⊆ ⟨⟨C+ true⟩⟩r(k2−k1)ηk1

min(⟨⟨C+ true⟩⟩r(k2−k1)ηk1
w) + h ⩽ by inductive hypothesis

min(ηk1
w) + rh+ h ⩽ min(ηk1

w) + (r + 1)h

However, This would contradict the hypothesis min(⟨⟨fix(C)⟩⟩ηy) ̸= −∞. In fact the inequality
(A.22) would imply

min (⟨⟨fix(C)⟩⟩ηw) = min

(︄⨆︂
i∈N
⟨⟨C+ true⟩⟩iηw

)︄

= min

(︄⨆︂
i∈N
⟨⟨C+ true⟩⟩iηk1

w

)︄

= min

(︄⨆︂
r∈N
⟨⟨C+ true⟩⟩r(k2−k1)ηk1

w

)︄
= −∞

Now, from (A.20) we deduce that for all η′
.
⊇ ηk1

, for j ∈ {k1, . . . ,m}, if we let µk1
= η′ and

µj+1 = ⟨⟨C+ true⟩⟩µj , we have that min(µj+1yj+1) ⩽ min(µj+1yj) + hj and thus

⟨⟨C+ true⟩⟩m−k1+1
η′y = µm+1ym+1 ⩽ min(yk1) + Σm

i=k1
hi = min(η′w) + Σm

i=k1
hi

Since η′ = ⟨⟨fix(C)⟩⟩η
.
⊇ ηk1 we conclude

min(⟨⟨fix(C)⟩⟩ηy) = min
(︂
⟨⟨C+ true⟩⟩m−k1+1⟨⟨fix(C)⟩⟩ηy

)︂
⩽ −∞+Σm

i=k1
hi = −∞

contradicting the assumption. Therefore, the path σ of (A.20) must exist, and consequently

min(⟨⟨fix(C)⟩⟩ηy) = min(ηm+1y) = min(ηy0) + Σm
i=0hi

84 APPENDIX A. ADDITIONAL PROOFS

and |Σm
i=0hi| ⩽ (fix(C))b = (n + 1)(C)b, otherwise we could use the same argument above for

inferring the contradiction min(⟨⟨fix(C)⟩⟩ηy) = −∞.

Let us now show (ii). Given η′
.
⊇ η from (A.20) we deduce that for all j ∈ {0, . . . ,m}, if we let

µ0 = η′ and µj+1 = ⟨⟨C+ true⟩⟩µj , we have that

min(µj+1yj+1) ⩽ min(µj+1yj) + hj .

Therefore, since ⟨⟨fix(C)⟩⟩η′
.
⊇ µm+1 (observe that the convergence of ⟨⟨fix(C)⟩⟩η′ could be at an

index greater than m+ 1), we conclude that:

min(⟨⟨fix(C)⟩⟩η′y) ⩽ min(µm+1y) = min(µm+1ym+1) ⩽ min(η′y0) + Σm
i=0hi

as desired.

Bibliography

[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints”. In:
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. POPL ’77. Los Angeles, California: Association for Computing
Machinery, 1977, pp. 238–252. isbn: 9781450373500. doi: 10.1145/512950.512973.
url: https://doi.org/10.1145/512950.512973 (cit. on pp. iii, 2, 7, 8, 11).

[CC79] Patrick Cousot and Radhia Cousot. “Systematic Design of Program Analysis Frame-
works”. In: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. POPL ’79. San Antonio, Texas: Association for Computing
Machinery, 1979, pp. 269–282. isbn: 9781450373579. doi: 10.1145/567752.567778.
url: https://doi.org/10.1145/567752.567778 (cit. on pp. 2, 7).

[CC92] Patrick Cousot and Radhia Cousot. “Comparing the Galois connection and widening/-
narrowing approaches to abstract interpretation”. In: Programming Language Imple-
mentation and Logic Programming. Ed. by Maurice Bruynooghe and Martin Wirsing.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 269–295. isbn: 978-3-540-
47297-1 (cit. on p. 3).

[Cou+05] Patrick Cousot et al. “The ASTREÉ Analyzer”. In: Programming Languages and Sys-
tems. Ed. by Mooly Sagiv. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 21–
30. isbn: 978-3-540-31987-0 (cit. on pp. 2, 68).

[Cut80] Nigel Cutland. Computability: An introduction to recursive function theory. Cambridge
university press, 1980 (cit. on pp. 5, 22, 23).

[Dis+19] Dino Distefano et al. “Scaling static analyses at Facebook”. In: Commun. ACM 62.8
(July 2019), pp. 62–70. issn: 0001-0782. doi: 10.1145/3338112. url: https://doi.
org/10.1145/3338112 (cit. on p. 1).

[Dow97] Mark Dowson. “The Ariane 5 software failure”. In: SIGSOFT Softw. Eng. Notes 22.2
(Mar. 1997), p. 84. issn: 0163-5948. doi: 10.1145/251880.251992. url: https:
//doi.org/10.1145/251880.251992 (cit. on p. 1).

[Eis+89] T. Eisenberg et al. “The Cornell commission: on Morris and the worm”. In: Commun.
ACM 32.6 (June 1989), pp. 706–709. issn: 0001-0782. doi: 10.1145/63526.63530.
url: https://doi.org/10.1145/63526.63530 (cit. on p. 1).

[Gaw+09] Thomas Gawlitza et al. Polynomial Precise Interval Analysis Revisited. Ed. by Susanne
Albers, Helmut Alt, and Stefan Näher. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 422–437. isbn: 978-3-642-03456-5. doi: 10.1007/978-3-642-03456-5_28.
url: https://doi.org/10.1007/978-3-642-03456-5_28 (cit. on pp. 4, 57).

[GR22] Roberto Giacobazzi and Francesco Ranzato. “History of Abstract Interpretation”. In:
IEEE Annals of the History of Computing 44.2 (2022), pp. 33–43. doi: 10.1109/MAHC.
2021.3133136 (cit. on p. 7).

85

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3338112
https://doi.org/10.1145/251880.251992
https://doi.org/10.1145/251880.251992
https://doi.org/10.1145/251880.251992
https://doi.org/10.1145/63526.63530
https://doi.org/10.1145/63526.63530
https://doi.org/10.1007/978-3-642-03456-5_28
https://doi.org/10.1007/978-3-642-03456-5_28
https://doi.org/10.1109/MAHC.2021.3133136
https://doi.org/10.1109/MAHC.2021.3133136

86 BIBLIOGRAPHY

[HM08] Tony Hoare and Jay Misra. “Verified Software: Theories, Tools, Experiments Vision
of a Grand Challenge Project”. In: Verified Software: Theories, Tools, Experiments:
First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10-
13, 2005, Revised Selected Papers and Discussions. Ed. by Bertrand Meyer and Jim
Woodcock. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–18. isbn: 978-
3-540-69149-5. doi: 10.1007/978-3-540-69149-5_1. url: https://doi.org/10.
1007/978-3-540-69149-5_1 (cit. on p. 1).

[JOW06] C. Jones, P. O’Hearn, and J. Woodcock. “Verified software: a grand challenge”. In:
Computer 39.4 (2006), pp. 93–95. doi: 10.1109/MC.2006.145 (cit. on p. 1).

[Koc+19] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: 40th IEEE
Symposium on Security and Privacy. 2019 (cit. on p. 1).

[Kön26] Dénes König. “Sur les correspondances multivoques des ensembles”. In: Fundamenta
Mathematicae 8 (1926), pp. 114–134. doi: 10.4064/fm-8-1-114-134 (cit. on p. 27).

[Koz97] Dexter Kozen. “Kleene Algebra with Tests”. In: ACM Trans. Program. Lang. Syst.
19.3 (May 1997), pp. 427–443. issn: 0164-0925. doi: 10.1145/256167.256195. url:
https://doi.org/10.1145/256167.256195 (cit. on p. 13).

[Lac+98] Ph. Lacan et al. “ARIANE 5 - The Software Reliability Verification Process”. In:
DASIA 98 - Data Systems in Aerospace. Ed. by B. Kaldeich-Schürmann. Vol. 422.
ESA Special Publication. July 1998, p. 201 (cit. on p. 1).

[Le 97] G. Le Lann. “An analysis of the Ariane 5 flight 501 failure-a system engineering per-
spective”. In: Proceedings International Conference and Workshop on Engineering of
Computer-Based Systems. 1997, pp. 339–346. doi: 10.1109/ECBS.1997.581900 (cit.
on p. 1).

[Lef+24] Engel Lefaucheux et al. “Porous invariants for linear systems”. In: Formal Methods in
System Design (Feb. 2024). issn: 1572-8102. doi: 10.1007/s10703-024-00444-3.
url: https://doi.org/10.1007/s10703-024-00444-3 (cit. on pp. 61, 68).

[Lip+18] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: 27th
USENIX Security Symposium (USENIX Security 18). 2018 (cit. on p. 1).

[Mat70] Yu. V. Matiyasevich. “Enumerable sets are diophantine”. English. In: Sov. Math., Dokl.
11 (1970), pp. 354–358. issn: 0197-6788 (cit. on p. 68).

[Min18] Antonie Miné. Static Inference of Numeric Invariants by Abstract Interpretation. Uni-
versité Pierre et Marie Curie, Paris, France, 2018 (cit. on pp. 6, 7).

[MOM23] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. “Mopsa-C: Modular Do-
mains and Relational Abstract Interpretation for C Programs (Competition Contribu-
tion)”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
Sriram Sankaranarayanan and Natasha Sharygina. Cham: Springer Nature Switzer-
land, 2023, pp. 565–570. isbn: 978-3-031-30820-8 (cit. on pp. 2, 68).

[OHe19] Peter W. O’Hearn. “Incorrectness logic”. In: Proc. ACM Program. Lang. 4.POPL (Dec.
2019). doi: 10.1145/3371078. url: https://doi.org/10.1145/3371078 (cit. on
p. 1).

[Orm03] H. Orman. “The Morris worm: a fifteen-year perspective”. In: IEEE Security & Privacy
1.5 (2003), pp. 35–43. doi: 10.1109/MSECP.2003.1236233 (cit. on p. 1).

[Pre29] M. Presburger. “Uber die Vollstandigkeiteines gewissen Systems der Arithmetik ganzer
Zahlen, in welchen die Addition als einzige Operation hervortritt”. In: Comptes-Rendus
du ler Congres des Mathematiciens des Pays Slavs (1929). url: https://cir.nii.
ac.jp/crid/1571698599431503232 (cit. on p. 68).

[Ric53] Henry Gordon Rice. “Classes of recursively enumerable sets and their decision prob-
lems”. In: Transactions of the American Mathematical society 74.2 (1953), pp. 358–366
(cit. on pp. 1, 25).

https://doi.org/10.1007/978-3-540-69149-5_1
https://doi.org/10.1007/978-3-540-69149-5_1
https://doi.org/10.1007/978-3-540-69149-5_1
https://doi.org/10.1109/MC.2006.145
https://doi.org/10.4064/fm-8-1-114-134
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1109/ECBS.1997.581900
https://doi.org/10.1007/s10703-024-00444-3
https://doi.org/10.1007/s10703-024-00444-3
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.1109/MSECP.2003.1236233
https://cir.nii.ac.jp/crid/1571698599431503232
https://cir.nii.ac.jp/crid/1571698599431503232

BIBLIOGRAPHY 87

[See89] Donn Seeley. “A Tour of the Worm”. In: Proceedings of 1989 Winter USENIX Confer-
ence, Usenix Association, San Diego, CA, February. 1989 (cit. on p. 1).

[Spa89] Eugene H. Spafford. “The internet worm program: an analysis”. In: SIGCOMM Com-
put. Commun. Rev. 19.1 (Jan. 1989), pp. 17–57. issn: 0146-4833. doi: 10.1145/66093.
66095. url: https://doi.org/10.1145/66093.66095 (cit. on p. 1).

[SW05] Zhendong Su and David Wagner. “A class of polynomially solvable range constraints for
interval analysis without widenings”. In: Theoretical Computer Science 345.1 (2005).
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2004),
pp. 122–138. issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.2005.07.035.
url: https://www.sciencedirect.com/science/article/pii/S0304397505003889
(cit. on p. 4).

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applications.” In: (1955)
(cit. on p. 7).

[Tur21] Alan Mathison Turing. “On Computable Numbers, with an Application to the Entschei-
dungsproblem (1936)”. In: Ideas That Created the Future: Classic Papers of Computer
Science. The MIT Press, Feb. 2021. isbn: 9780262363174. doi: 10.7551/mitpress/
12274.003.0008. eprint: https://direct.mit.edu/book/chapter-pdf/2248314/
9780262363174_c000500.pdf. url: https://doi.org/10.7551/mitpress/12274.
003.0008 (cit. on p. 1).

[Woo06] J. Woodcock. “First Steps in the Verified Software Grand Challenge”. In: Computer
39.10 (2006), pp. 57–64. doi: 10.1109/MC.2006.340 (cit. on p. 1).

https://doi.org/10.1145/66093.66095
https://doi.org/10.1145/66093.66095
https://doi.org/10.1145/66093.66095
https://doi.org/https://doi.org/10.1016/j.tcs.2005.07.035
https://www.sciencedirect.com/science/article/pii/S0304397505003889
https://doi.org/10.7551/mitpress/12274.003.0008
https://doi.org/10.7551/mitpress/12274.003.0008
https://direct.mit.edu/book/chapter-pdf/2248314/9780262363174_c000500.pdf
https://direct.mit.edu/book/chapter-pdf/2248314/9780262363174_c000500.pdf
https://doi.org/10.7551/mitpress/12274.003.0008
https://doi.org/10.7551/mitpress/12274.003.0008
https://doi.org/10.1109/MC.2006.340

Acknowledgments

Ringrazio in primo luogo i miei relatori, Prof. Paolo Baldan e Prof. Francesco Ranzato. Senza di
loro e i loro preziosi consigli e la loro supervisione questa tesi non sarebbe mai venuta alla luce.

In secondo luogo ringrazio la mia famiglia e in particolar modo i miei genitori. Il loro sostegno
incondizionato e la fiducia datami durante tutti questi anni sono l’unica cosa che mi ha permesso
di continuare con il mio percorso.

Infine ringrazio gli amici incontrati durante questi cinque anni a Padova. Senza l’appoggio
dei collegiali, dei compagni di corso e dei compagni di casagialla questo lavoro non sarebbe stato
possibile.

Luca Zaninotto

89

	Abstract
	Introduction
	1 Background
	1.1 Recursion theory
	1.2 Order theory
	1.3 Abstract Interpretation
	1.3.1 General concepts
	1.3.2 Fixpoint approximations

	2 Framework
	2.1 The Imp language
	2.2 Semantics
	2.2.1 Syntactic sugar
	2.2.2 Small step semantics

	2.3 Transition system
	2.4 Functions in Imp
	2.5 Deciding invariant finiteness

	3 Abstract domains
	3.1 Abstract inductive semantics
	3.2 Non relational collecting
	3.2.1 Properties

	3.3 Interval domain
	3.3.1 Variable-wise lifting
	3.3.2 Properties

	4 Program bounds and analysis termination
	4.1 Program bounds
	4.2 Bounding interval analysis
	4.3 Computing interval semantics
	4.4 Bounded non-relational collecting semantics
	4.5 Computing non-relational collecting semantics

	5 Conclusions
	A Additional proofs
	A.1 Lemma 4.7 proof
	A.2 Lemma 4.18 proof
	A.3 Lemma 4.20 proof

	Bibliography

