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Abstract

In this thesis we discuss the existence and stability properties for positive nonlinear systems
on Rn. In general, a positive system is a system whose evolution remains in the positive
orthant for all future time, given a positive initial condition. We consider in particular sys-
tems suitable to describe cooperative dynamics, that is, in which the trajectory’s evolution
is monotone in the forward time direction, often encountered in biology, economics and
engineering sciences.

The most general class of systems we consider is associated to sub-homogeneous vector
fields, which includes as a special case concave vector fields. Conditions on the existence
and uniqueness of an equilibrium point in the interior of the positive orthant are given. Under
the conditions for existence of a fixed point, the stability properties of the system are char-
acterized and an estimate of the domain of attraction is made. A comparison with the class
of so-called standard interference functions, available in the wireless network power control
literature, is made. In particular, we examine similarities and differences with interference
functions in which convergence is achieved through a contractivity property. The scala-
bility property of standard interference functions is equivalent to strict sub-homogeneity,
therefore, as a special case of the main theorems, conditions for the convergence of many
distributed power control laws are given.

In general we consider the case in which the Jacobian matrix of the systems’ vector
field is irreducible, that is the associated influence digraph is strongly connected. When
irreducibility does not hold, our main theorems are still valid given that the system is dis-
tributed and each isolated subsystem with no incoming edges satisfies the same conditions
given by the theorems for irreducible systems. Finally, we give some simple examples and
simulations proving the concreteness of our results.
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Chapter 1

Introduction

1.1 Introduction

A system is said to be positive if the evolution of the trajectory from any nonnegative ini-
tial condition is nonnegative for all future time, in other words Rn + is positively invariant.
Examples of intrinsic positive systems can be found for example in biology, ecology and
communication. In biology, the states of the biological model typically represent concentra-
tions of chemical species, while in ecology they represent populations. In communication,
and specifically in wireless networks theory, the states represent the power needed for trans-
mission ([12, 14, 30]).

Our attention will be on cooperative systems, that is, systems for which the trajectory’s
evolution is monotone in the forward time direction.
The main result in this thesis is to give conditions for the existence and uniqueness of a
fixed-point for the class of monotone concave vector fields and, more generally, monotone
sub-homogeneous vector fields. Conditions can be given that guarantee convergence to the
origin (similar to the diagonal dominance of [5]), as well as convergence to a strictly positive
equilibrium point. The latter conditions are much more general than those available in the
literature for nonlinear positive systems [9]. For the vector fields considered in this work
such conditions are global (in Rn

+). These results are derived using the Perron-Frobenius
theory for nonnegative matrices. In particular, we show that the conditions we obtain can
be rephrased in terms of the spectral radius of the Jacobian of the system at different points
of the positive orthant. Both weakly and strongly connected influence digraphs cases asso-
ciated to the Jacobian matrix of the vector fields are also considered, which correspond to
reducible and irreducible associated networks, respectively.

In this thesis, the focus is on a particular class of nonlinear positive systems. This class
is mainly motivated by distributed power control laws for wireless networks, such as in [14],
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but it is applicable to more general problems. A well accepted framework in literature for
studying power control problems was proposed in [30]. It is called standard interference
functions framework, and it includes linear and several important nonlinear power control
laws. Interference here refers to the effect of a number of end-user devices (e.g. mobile
phones) that are trying to transmit together and therefore force each of them to use a certain
amount of power in the transmission, in order to overcome their mutual interference. For
each device, the aim is to create a closed-loop system which is positive (the state being a
power it cannot become negative), and has a positive equilibrium point.
One of the main results in this manuscript shows how the scalability property of standard
interference functions, which is equivalent to strict sub-homogeneity, together with some
other conditions demonstrated later, guarantees the existence of a unique fixed point and
its asymptotic stability. Various extensions of the basic framework have been proposed
in the literature, the most prominent being those by [3, 28] and [12]. In particular, the
contractive interference functions introduced in [12] guarantee existence and uniqueness of
a fixed point along with convergence. In the thesis, the class of contractive interference
functions is characterized in terms of spectral radius. It will be shown that this class implies
that the spectral radius in each point of the state space must be less than 1. The properties of
contractive interference functions can therefore be obtained a special case from the results
demonstrated in this thesis.

1.2 Preliminaries

Throughout this paper let R be the field of real numbers, Rn be the space of column vectors
of size n with real elements and Rn×n be the space of n× n matrices with real entries. For
x ∈ Rn and i = 1, . . . ,n, xi denotes the ith coordinate of x. Similarly if A ∈ Rn×n then ai j

or [A]i j denotes the element in position (i, j); Λ(A) denotes the spectrum of A and ρ(A)
denotes its spectral radius, i.e.

ρ(A) = max{|λ |,λ ∈ Λ(A)} (1.1)

its spectral abscissa as
µ(A) = max{Re(λ ),λ ∈ Λ(A)} . (1.2)

The positive orthant of Rn is defined as Rn
+ , {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n}. The interior of

Rn
+ is defined as int

(
Rn
+

)
, {x ∈ Rn : xi > 0, 1 ≤ i ≤ n}. The boundary of Rn

+ is defined as
bd
(
Rn
+

)
, Rn

+\int (Rn).
For vectors x,y ∈ Rn we write x ≥ y if xi ≥ yi for i = {1, . . . ,n}; x > y if xi > yi for i =
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{1, . . . ,n}; Analogously we say a matrix A ∈ Rn×n to be non-negative (positive) if ai j ≥ 0
(ai j > 0) for all couples (i, j). Furthermore 1T , (1, . . . ,1).

Definition 1.2.1. A function f : Rn → Rn is said to be non-decreasing if

x ≤ y ⇒ f (x)≤ f (y) (1.3)

for all x,y ∈ Rn. It is said to be increasing if

x ≤ y ⇒ f (x)≤ f (y) and x < y ⇒ f (x)< f (y) (1.4)

for all x,y ∈ Rn.

Proposition 1.2.1. If f : Rn → Rn is a non-decreasing (or increasing) function then the
Jacobian matrix of f is non-negative, i.e.,

∂ f
∂x

(x)≥ 0, ∀x ∈ Rn (1.5)

Proof. Proof is straightforward and will be omitted. �

1.2.1 Concave vector fields

In this paper we focus mainly on concave vector fields, thus we need the following defini-
tions and results found in Boyd and Vandenberghe [6].

Definition 1.2.2. Let D be a convex subset of Rn. A vector field f : D → Rn is said to be
convex if

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y) (1.6)

for all x,y ∈ D and for α ∈ [0,1]. It is said to be strictly convex if the inequality in (1.6)
holds strictly for α ∈ (0,1) and x ̸= y.
A vector field f is said to be concave if - f is convex, i.e.

f (αx+(1−α)y)≥ α f (x)+(1−α) f (y) (1.7)

for all x,y ∈ D and for α ∈ [0,1]. It is said to be strictly concave if the inequality in (1.7)
holds strictly for α ∈ (0,1) and x ̸= y.
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A characterization of concave vector fields can be given looking at their Jacobian matrix.
The condition means that the tangent plane in any point must always stay on top of the
function.

Proposition 1.2.2. A differentiable vector field f : D → Rn is concave if and only if

f (y)≤ f (x)+
∂ f
∂x

(x)(y− x) (1.8)

for all x,y ∈ D . Strictly concave if the inequality holds strictly for all x ̸= y.

Remark. The affine function of y given by f (x) + ∂ f
∂x (x)(y − x) is the first-order Taylor

approximation of f near x. The interpretation of the inequality (1.8) is as follows: for a
concave vector field, the first-order Taylor approximation is an over-estimator of the vector
field f in D . Conversely, if the first-order Taylor approximation of a function is always an
over-estimator of the vector field f in D , then the function is concave.

Definition 1.2.3. Let D be a convex subset of Rn. A vector field f : D → Rn is said to be
subhomogeneous of degree τ > 0 if

f (αx)≥ α
τ f (x) (1.9)

for all x ∈ D and for α ∈ [0,1]. It is called strictly subhomogeneous if inequality holds
strictly for α ∈ (0,1).

Let us show the relationship between concave vector fields and subhomogeneous vector
fields.

Proposition 1.2.3. Let D be a convex subset of Rn, with 0 ∈D . Let f : D →Rn be a vector
field such that f (0)≥ 0. If f is concave then f is subhomogeneous of degree 1.

Proof. Since f is concave the following holds

f (αx+(1−α)y)≥ α f (x)+(1−α) f (y) (1.10)

for all x,y ∈ D and for α ∈ [0,1]. By choosing y = 0 we have

f (αx)≥ α f (x)+(1−α) f (0) (1.11)

since (1−α) f (0) ≥ 0 we obtain f (αx) ≥ α f (x) which is exactly the definition in (1.9)
with τ = 1. �
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It can be easily seen from Proposition 1.2.3 that strict concavity of f and f (0) ≥ 0
implies strict subhomogeneity of degree 1. The following lemma can be found in [5]:

Lemma 1.2.1. The vector field f : D → Rn is subhomogeneous of degree τ > 0 if and only
if

∂ f
∂x

(x)x ≤ τ f (x), ∀x ≥ 0 (1.12)

Strictly subhomogeneous if the inequality holds strictly for all x > 0.

Proof. We first note that f is subhomogeneous of degree τ if and only if for any x ≥ 0, the
mapping

λ → λ
−τ f (λx)

is non-increasing for all λ > 0.
Let x ≥ 0 be given. If f is subhomogeneous then for any µ ≥ λ we have

f (λx) = f
(

λ

µ
µx
)
≥
(

λ

µ

)τ

f (µx) (1.13)

which implies
λ
−τ f (λx)≥ µ

−τ f (µx) (1.14)

Thus, λ−τ f (λx) is a non-decreasing function with respect to λ for all λ > 0.
Differentiating with respect to λ , we see that f is subhomogeneous if and only if for all
λ > 0

d
dλ

(λ−τ f (λx))≤ 0 ⇔−τλ
−τ−1 f (λx)+λ

−τ ∂ f
∂x

(λx)x ≤ 0

Rearranging this last inequality, we see that f is subhomogeneous if and only if

∂ f
∂x

(λx)λx ≤ τ f (λx) ∀x ≥ 0, ∀λ > 0

This last statement is equivalent to

∂ f
∂x

(x)x ≤ τ f (x) ∀x ≥ 0 (1.15)

This concludes the proof for the subhomogeneous case. With slight changes, this same
proof holds for the case of strict subhomogeneity. �
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1.2.2 Non-negative matrices

We will now give some standard definitions and results for non-negative matrices from
Berman and Plemmons [2], Fornasini [13].

Definition 1.2.4. Let A ∈ Rn×n be a non-negative matrix. A is irreducible if for every i, j ∈
{1, . . . ,n} there exists an exponent k such that

[Ak]i j > 0.

Definition 1.2.5. Let A ∈ Rn×n be a non-negative matrix. We can define its influence graph
as a directed graph with n vertices x1, . . .xn such that there exists a weighted edge from x j

to xh whenever ah j ̸= 0 with weight ah j.

The influence graph is strongly connected if there exists a directed path between node xr

and node xs for all r,s ∈ {1, . . . ,n},r ̸= s. It is weakly connected if there exists an undirected
path between node xr and node xs for all r,s ∈ {1, . . . ,n},r ̸= s
We can now give the following characterization of irreducibility.

Proposition 1.2.4. Let A ∈ Rn×n be a non-negative matrix. A is irreducible if and only if
any of the following conditions hold

1. (definition) for all couple (i, j) their exists an exponent k such that [Ak]i j > 0

2. the influence graph of A is strongly connected

3. there do not exist any permutation matrix Π such that

Π
T AΠ =

(
A11 0
A21 A22

)

where A11 and A22 are two non-empty square matrices.

The following, known as Perron-Frobenius theorem, also holds. Some of the proofs in
the next chapters heavily relies on this.

Theorem 1.2.1 (Perron-Frobenius Theorem). If A ∈ Rn×n is an irreducible non-negative
matrix then

1. there exists a real number λ0 > 0 and a vector v0 > 0 such that Av0 = λ0v0

2. for every other λ ∈ Λ(A) it follows |λ | ≤ λ0, i.e ρ(A) = λ0.
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3. if Ā ≥ A and Ā ̸= A, then λ̄0 > λ0

Remark. Condition 3 states that it is sufficient to have at least one different element to have
a larger Perron-Frobenius eigenvalue, i.e. āi j ≥ ai j and ∃ āi j > ai j implies λ̄0 > λ0.

Definition 1.2.6. A real n× n matrix A is Metzler if and only if ai j ≥ 0, ∀i ̸= j, i.e. its
off-diagonal entries are non-negative.

For irreducible Metzler matrices first point of Theorem 1.2.1 also holds. The proof can
be found in Horn [15].
A Metzler matrix A is irreducible if and only if for every non-empty proper subset K of
N := {1, . . . ,n}, there exists an i ∈ K, j ∈ N\K such that ai j ̸= 0. A reducible non-negative
matrix can be transformed into its normal form.

Proposition 1.2.5 (Reducible normal form). Let A ∈Rn×n be a reducible non-negative ma-
trix. Then there exists a permutation matrix Π that transforms A into its normal form, i.e.

Ā = Π
T AΠ =



Ā1,1

0 Ā2,2
... . . .

. . .

0 0 . . . Āh,h

0

⋆ ⋆ . . . ⋆

⋆ ⋆ . . . ⋆

⋆ ⋆ . . .
...

⋆ ⋆ . . . ⋆

Āh+1,h+1

⋆ Āh+2,h+2
... . . .

. . .

⋆ ⋆ . . . Ākk


(1.16)

where every square block Āi,i, i = 1, . . . ,k is either an irreducible matrix or a 1× 1 zero
matrix. Furthermore if h < k on every line from the (h+1)th forward at least one of the off-
diagonal matrices ⋆ has a positive element. The blocks Āi,i, i = 1, . . . ,h are called isolated
blocks.

Proof. For proof see Fornasini [13]. �

1.3 Stability and Cooperativity

In this paper we are interested in studying the stability properties of an equilibrium point.
We now give some other basic definitions. Given a system

ẋ = f (x), x(0) = x0 (1.17)
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The forward solution with initial condition x0 ∈ Rn at t = 0 is denoted as x(t,x0) and is
defined on the maximal forward interval of existence [0, tmax(x0)), for us tmax(x0) = ∞. A
set Ω ⊂ Rn is called forward invariant if and only if for all x0 ∈ Ω, x(t,x0) ∈ Ω for all
t ∈ [0, tmax(x0)).
A point x∗ is said to be an equilibrium point of (1.17) if it has the property that whenever the
state of the system starts at x∗ it will remain at x∗ for all future time. That is x(t,x∗) = x∗,
for all t ≥ 0.
As already stated we are interested in positive systems and we are interested in finding
the conditions that guarantees its positiveness.. The system (1.17) is to be positive if
x(t,x0) ∈ Rn

+ for all x0 ∈ Rn
+ and for all t ≥ 0, i.e. Rn

+ is forward invariant. As shown
in De Leenherr [10] and assuming the uniqueness of solutions of the system, the following
property is a necessary and sufficient condition for positivity of the system:

xi = 0 ⇒ fi(x)≥ 0, ∀x ∈ bd(Rn
+) (1.18)

In the remainder of this paper we focus on cooperative systems.

Definition 1.3.1 (Cooperativity). System (1.17) is said to be cooperative in D ⊂ Rn if the
differentiable vector field f : Rn → Rn is such that the Jacobian matrix ∂ f

∂x (x) is Metzler for
all x ∈ D .

Definition 1.3.2 (Monotonicity). The system in (1.17) is said to be monotone if for all
x0,y0 ∈ Rn

+ we have
x0 ≤ y0 ⇒ x(t,x0)≤ x(t,y0) for all t ≥ 0

The following condition is an easy way to verify the monotonicity of a system (see Kamke
[16]).

Definition 1.3.3 (Kamke Condition). The vector field f : D →Rn defined on an open subset
D of Rn is said to be of type K or satisfy Kamke Condition, if for each i, fi(a) ≤ fi(b) for
any two points a and b in D satisfying a ≤ b and ai = bi.

The following Proposition shows the relationship between a vector field satisfying the
Kamke Condition and monotonicity.

Proposition 1.3.1. Let f be type K in an open subset D of Rn. The system (1.17) is monotone.

Proof. Proof can be found in Smith [24], Proposition 3.1.1. �

In Smith [24] it is shown that cooperative systems are monotone. A subset D of Rn is
said to be convex if αx+(1−α)y ∈ D for all α ∈ [0,1] and x,y ∈ D . Let f : D → Rn be
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cooperative.
Then the fundamental theorem of calculus implies that f is of type K in D . In fact, if a ≤
and ai = bi then

fi(b)− fi(a) =
1∫

0

∑
i̸= j

∂ fi

∂x j
(a+ r(b−a))(b j −a j)dr ≥ 0 (1.19)

which is greater than or equal to zero because from the definition of cooperativity of f , the
Jacobian matrix is Metzler for all r ∈ [0,1].

Using some of the previous results, we can relate the monotonicity of the system to the
non-decreasing property of its vector field.

Proposition 1.3.2. Let f : Rn → Rn be a differentiable vector field. If f is non-decreasing
then system (1.17) is monotone.

Proof. Since f is non-decreasing Proposition 1.2.1 holds, yielding

∂ f
∂x

(x)≥ 0, ∀x ∈ Rn (1.20)

therefore Metzler. This implies that system (1.17) is cooperative, thus monotone. This
concludes the proof. �

An important property of monotone systems that we will use in the next chapters to
prove the convergence of the system to an equilibrium point is the following lemma (see
Bokharaie [4]):

Lemma 1.3.1. Let D be an open subset of Rn and let f : D → Rn be a cooperative vector
field. Assume there exists a vector w such that f (w) < 0 ( f (w) > 0). Then the trajec-
tory x(t,w) of system (1.17) is decreasing (increasing) for t ≥ 0. In the case of f (w) ≤ 0
( f (w)≥ 0) the trajectory will be non-increasing (non-decreasing).

Proof. Proof can be found in Smith [24], Proposition 3.2.1. �

We now give some other fundamental definitions:

Definition 1.3.4. An equilibrium point x∗ ∈ Rn of system (1.17) is

• stable if, for each ε > 0, there exists δ = δ (ε)> 0 such that

∥x0 − x∗∥< δ ⇒∥x(t,x0)− x∗∥< ε, ∀t ≥ 0



10 Introduction

• unstable if not stable

• asymptotically stable if it is stable and ∃δ > 0 such that the following holds for x0 ∈
Rn

∥x0 − x∗∥< δ ⇒ lim
t→∞

x(t,x0) = x∗

Definition 1.3.5. Let x∗ be an equilibrium point. The set

A(x∗) = {x0 ∈ Rn : x(t,x0)→ x∗ as t → ∞}

is called domain of attraction of x∗.



Chapter 2

Equilibria and Asymptotic stability

2.1 Stability analysis of equilibrium

Let us consider an n-dimensional nonlinear continuous-time dynamical system. For our
future purposes we will focus on a particular class of system, as the one given in Su et al.
[26]

dxi(t)
dt

= δi (−xi(t)+ fi(x(t)) , i = 1, . . . ,n x(0) = x0 (2.1)

where xi(t) ∈ R+ is the ith system state at time t, fi : Rn
+ → R+ is a continuous function of

x and δi is a positive constant called degradation rate. By defining ∆ = diag{δ1,δ2, . . . ,δn}
the problem stated in 2.1 can be rewritten as

ẋ(t) = ∆(−x(t)+ f (x(t))) , x(0) = x0 (2.2)

where x = (x1,x2, . . . ,xn)
T is a vector in Rn

+ and f = ( f1, f2, . . . , fn)
T is a vector field.

We want to find the conditions under which system (2.2) admits a unique positive equilib-
rium point. Given the structure of (2.2), these corresponds to the conditions on f such that
f admits a unique positive fixed point, i.e.,

∃! x∗ ∈ int(Rn
+), such that f (x∗) = x∗ (2.3)

The following theorem gives us a sufficient condition for the existence of such positive fixed
point. Different fixed point theorem can be found in literature [17, 23] but here we focus on
Tarski’s fixed point theorem.
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Theorem 2.1.1 (Tarski fixed point theorem). Given D ⊂ Rn
+ open and convex subset. As-

sume f : D → D is a non-decreasing vector field such that

i. ∃ a ∈ D , a > 0 such that f (a)> a

ii. ∃ b ∈ D , b > a such that f (b)< b

Then ∃ x∗ ∈ D , such that f (x∗) = x∗.

Proof. For proof see Tarski [29]. �

Under some assumptions on f we will now show that f has a unique fixed point provid-
ing it satisfies the condition of Theorem 2.1.1. The following result is from Kennan [18],
proof is reported for completeness.

Theorem 2.1.2. Suppose f = ( f1, f2, . . . , fn) be a vector field from Rn
+ to Rn

+ such that

i. f is increasing

ii. f is strictly concave, i.e., fi strictly concave for i = 1, . . . ,n

iii. f (0)≥ 0

iv. ∃ a ∈ Rn
+, a > 0 such that f (a)> a

v. ∃ b ∈ Rn
+, b > a such that f (b)< b

Then there exists a unique positive vector x∗ ∈ int(Rn
+), such that f(x∗) = x∗

Proof. The existence part has already been shown since conditions iv and v are the condi-
tions for existence from Tarski’s Theorem in 2.1.1.
To show uniqueness, suppose x> 0 is any fixed point of f . Let g :Rn

+ →Rn : x 7→−x+ f (x).
Note that the strict concavity of f implies that g is strictly concave.
Suppose y > 0 and g(y)≥ 0. Let

α = min
{

x j

y j
, j = 1, . . . ,n

}
=

xr

yr

Then α > 0 because x > 0 and y > 0. If a ≥ 1 the y ≤ x. Otherwise let w = αy, with
g(w) > 0 because g is strictly concave, and g(y) ≥ 0. Then w ≤ x and wr = xr, so gr(x)−
gr(w) = fr(x)− fr(w)≥ 0 because f is increasing. But this implies 0 = gr(x)≥ gr(w)> 0,
a contradiction. Thus y > 0 and g(y)≥ 0 implies y ≤ x.
Now if y > 0 is a fixed point of f then, since g(x) = 0, the same argument with the roles of
x and y reversed gives x ≤ y, so y = x. �
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We now give some conditions for the existence of a and b as stated in the previous
theorems if the function f is increasing and strictly concave. The next proposition will show
that a function which is non-decreasing and strictly concave must be increasing.

Proposition 2.1.1. Let f = ( f1, f2, . . . , fn) be a vector field from Rn
+ to Rn

+. If f is strictly
concave and non-decreasing then f is increasing.

Proof. Suppose f is not increasing, i.e, ∃ x,y ∈ Rn
+ such that

x < y ⇒ fk(x) = fk(y)

for some k ∈ {1, . . . ,n}. From the strict concavity of f the following inequality holds

fk (αx+(1−α)y)> α fk(x)+(1−α) fk(y), ∀α ∈ (0,1)

if z , αx+(1−α)y and since fk(x) = fk(y) the inequality becomes

fk(z)> fk(y) (2.4)

to conclude we need to observe that z < y. Since x < y, i.e. αx < αy for all positive α , we
obtain

z = αx+(1−α)y < αy+(1−α)y ⇒ z < y

putting together this last inequality and the one in (2.4) we obtain a contradiction. �

Before stating and demonstrating the main results of this section, we need the next
lemma. Note that the irreducibility of the Jacobian matrix of f means, from Proposition
1.2.4, that the influence graph of ∂ f

∂x (x) is strongly connected, or equivalently from Propo-
sition 1.16 h = k = 1, i.e. there is only one isolated subsystem which is equivalent to the
whole system.

Lemma 2.1.1. Let f = ( f1, f2, . . . , fn) be a vector field from Rn
+ to Rn

+, strictly concave,
increasing and f (0) = 0. Let the Jacobian matrix ∂ f

∂x (x) ≥ 0 be irreducible ∀x ∈ int
(
Rn
+

)
.

If ∃ b > 0,b ∈ int
(
Rn
+

)
such that f (b)≤ b then ρ

(
∂ f
∂x (b)

)
< 1.

Proof. The lemma states that if f (b)≤ b then

ρ

(
∂ f
∂x

(b)
)
< 1.
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By contradiction let us assume that ρ

(
∂ f
∂x (b)

)
≥ 1. Then by strict concavity of f the fol-

lowing holds

f (0)< f (b)+
∂ f
∂x

(b)(0−b)

from f (0) = 0 and f (b)≤ b it follows immediately that

0 < b− ∂ f
∂x

(b)b. (2.5)

Now, let wT
0 be the left Perron-Frobenius positive eigenvector vector corresponding to ρ

(
∂ f
∂x (b)

)
.

By multiplying both sides of (2.5) by wT
0 we have

0 < wT
0 b−wT

0
∂ f
∂x

(b)b

from wT
0

∂ f
∂x (b)b = ρ

(
∂ f
∂x (b)

)
wT

0 b and by taking to the left side the second term

ρ

(
∂ f
∂x

(b)
)

wT
0 b < wT

0 b

which is clearly a contradiction if ρ

(
∂ f
∂x (b)

)
≥ 1. �

Corollary 2.1.1.1. Let f = ( f1, f2, . . . , fn) be a vector field from Rn
+ to Rn

+, strictly concave,
increasing and f (0) = 0. Let the Jacobian matrix ∂ f

∂x (x) ≥ 0 be irreducible ∀x ∈ int
(
Rn
+

)
.

If ∃ x∗ > 0, x∗ ∈ int
(
Rn
+

)
such that f (x∗) = x∗ then ρ

(
∂ f
∂x (x

∗)
)
< 1.

Proof. It is an immediate consequence of Lemma 2.1.1 �

Remark. This last corollary states that the spectral radius of the Jacobian of f calculated
in positive fixed point x∗ for f must be such that ρ

(
∂ f
∂x (x

∗)
)
< 1.

Proposition 2.1.2. Let f = ( f1, f2, . . . , fn) be a vector field from Rn
+ to Rn

+, strictly concave,
increasing and f (0) = 0. Let the Jacobian matrix ∂ f

∂x (x) ≥ 0 be irreducible ∀x ∈ int
(
Rn
+

)
.

Let g : Rn
+ →Rn : x 7→ −x+ f (x). If ∃ b > 0,b ∈Rn

+ such that g(b)≤ 0 then g is decreasing
for all x > b.

Proof. If g(b)≤ 0 then f (b)≤ b. From the preceding lemma 2.1.1 we have that

ρ

(
∂ f
∂x

(b)
)
< 1
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If wT
0 is the Perron-Frobenius left eigenvector of ∂ f

∂x (b) corresponding to ρ

(
∂ f
∂x (b)

)
then it

is also the left eigenvector of ∂g
∂x (b) corresponding to −ε , with ε > 0 a real positive scalar

(see equations 2.20 and 2.21 for proof), i.e.,

wT
0

(
∂g
∂x

(b)
)
=−εwT

0 .

We would like to show that g is decreasing for all x > b. We assume there exists a vector x
with x ≥ b, x ̸= b and such that g(x)≥ g(b). From strict concavity of g

g(x)< g(b)+
∂g
∂x

(b)(x−b).

Multiplying both sides by wT
0 we get

wT
0 g(x)< wT

0 g(b)+wT
0

∂g
∂x

(b)(x−b)

observing that wT
0

∂g
∂x (b)=−εwT

0 and taking everything to the left hand side of the inequality,
it becomes

wT
0 (g(x)−g(b)+ ε(x−b))< 0

since wT
0 is strictly positive, the inequality becomes

gi(x)−gi(b)+ ε(xi −bi)< 0

for some i ∈ {1, . . . ,n}, which is

gi(x)< gi(b)− ε(xi −bi)

since x−b ≥ 0 the inequality yields

gi(x)< gi(b).

This last inequality shows that there is at least one element such that gi(x)< gi(b). But we
must show that gi(x)< gi(b) for all i = 1, . . . ,n.
By contradiction let us suppose that there exists k ∈ {1, . . . ,n} such that

gk(x)≥ gk(b) (2.6)

now gk is strictly concave because it is a positive linear combination of concave functions,
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where by assumptions fk is strictly concave. This means that the upper contour set Sα =

{x ∈ Rn
+ : gk(x)≥ α} is convex for all α ∈ R.

By choosing α = gk(b)+ ε , such that ε > 0 and α < gk(x), it is clear that b /∈ Sα while
x ∈ Sα .
Let us define z̄ as z̄ = λ̄x+(1− λ̄ )b, where λ̄ is the smallest real number in (0,1) such that
g(z̄)∈ Sα . If α ≤ 0 then 0∈ Sα . Then from the strict concavity of gk the convex combination
of 0 and z̄ should lie in Sα . But g(λ z̄)< α for λ → 1−. This shows that Sα has holes, i.e it
is not convex. The case where α > 0 is analogous. This means that g(x)< 0.
By applying the same reasoning to any z > x we can conclude that g(z)< g(x), and thus that
g is decreasing for all x ≥ b. �

Corollary 2.1.2.1. Let f = ( f1, f2, . . . , fn) be a vector field from Rn
+ to Rn

+, strictly concave
and increasing. If ∃b ∈ R+ such that f (b)< b then f (b̄)< b̄ ∀b̄ > b.

Proof. Immediate consequence of Proposition 2.1.2. �

Lemma 2.1.2. Let f = ( f1, f2, . . . , fn) be a vector field from Rn
+ to Rn

+, strictly subhomo-
geneous of degree 0 < τ ≤ 1 and such that f (x) ≥ 0 ∀x ∈ Rn

+. Let the Jacobian matrix
∂ f
∂x (x) ≥ 0 be irreducible ∀x ∈ int

(
Rn
+

)
. If ∃ b > 0,b ∈ int

(
Rn
+

)
such that f (b) ≤ b then

ρ

(
∂ f
∂x (b)

)
< 1.

Proof. The lemma states that if f (b)≤ b then

ρ

(
∂ f
∂x

(b)
)
< 1.

By contradiction let us assume that ρ

(
∂ f
∂x (b)

)
≥ 1. Then by strict subhomogeneity of f

Lemma (1.2.1) holds
∂ f
∂x

(b)b < τ f (b)

since τ ≤ 1 and f (b)≤ b it follows immediately that

∂ f
∂x

(b)b < b (2.7)

Now, let wT
0 be the left Perron-Frobenius positive eigenvector vector corresponding to ρ

(
∂ f
∂x (b)

)
.

By multiplying both sides of (2.5) by wT
0 we have

0 < wT
0 b−wT

0
∂ f
∂x

(b)b
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from wT
0

∂ f
∂x (b)b = ρ

(
∂ f
∂x (b)

)
wT

0 b and by taking to the left side the second term

ρ

(
∂ f
∂x

(b)
)

wT
0 b < wT

0 b

which is clearly a contradiction if ρ

(
∂ f
∂x (b)

)
≥ 1. �

Corollary 2.1.2.2. Let f = ( f1, f2, . . . , fn) be a vector field from Rn
+ to Rn

+ strictly subho-
mogeneous of degree 0 < τ ≤ 1 and such that f (x) ≥ 0 ∀x ∈ Rn

+. Let the Jacobian matrix
∂ f
∂x (x)≥ 0 be irreducible ∀x ∈ int

(
Rn
+

)
. If ∃ x∗ > 0, x∗ ∈ int

(
Rn
+

)
such that f (x∗) = x∗ then

ρ

(
∂ f
∂x (x

∗)
)
< 1.

Proof. It is an immediate consequence of Lemma 2.1.2 �

2.2 Existence of equilibrium and asymptotic stability

When dealing with strictly concave and increasing functions we can find some conditions
that guarantee the existence of a fixed point.

Theorem 2.2.1 (Spectral radius conditions). Consider system (2.2). Let f : Rn
+ → Rn

+ be a
differentiable strictly concave, increasing and such that f (0) = 0. Let ∂ f

∂x (x) ≥ 0 ∀x ∈ Rn
+

be irreducible for all x ∈ Rn
+. Then

1. ρ

(
∂ f
∂x (0)

)
= λ0 > 1 if and only if ∃ a ∈ Rn

+, a > 0 such that f (a)> a

2. ∃ x̄ ∈ Rn
+ such that ρ

(
∂ f
∂x (x̄)

)
= ζ0 < 1 if and only if ∃ b ∈ Rn

+, b > a such that
f (b)< b

Proof of 1. Suppose ρ

(
∂ f
∂x (0)

)
= λ0 ≤ 1 and there exists a ∈Rn

+, a > 0 such that f (a)> a.

We should find a contradiction. Let wT
0 > 0 be the left eigenvector of ∂ f

∂x (0) corresponding
to λ0 (see Fornasini [13]). Let g : Rn

+ → Rn be defined as g(x) = f (x)− x. From the strict
concavity of g and since f (a)> a ⇒ g(a)> 0, the following relation holds

g(a)< g(0)+
(

∂g
∂x

(0)
)

a =

(
−I +

(
∂ f
∂x

(0)
))

a (2.8)

multiplying both sides by wT
0 the inequality becomes

wT
0 g(a)<−wT

0 a+wT
0

(
∂ f
∂x

(0)
)

a =−wT
0 a+λ0wT

0 a (2.9)
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taking everything to the left side we obtain

wT
0 (g(a)+a−λ0a)< 0 (2.10)

since wT
0 > 0 and defining ε as ε , 1−λ0 ≥ 0 implies that there exists i ∈ {1, . . . ,n} such

that
gi(a)+(1−λ0)ai < 0 ⇒ gi(a)<−εai ≤ 0 (2.11)

this is a contradiction since our hypothesis implies ai > 0 and gi(a)> 0 for all i.
Now suppose ρ

(
∂ f
∂x (0)

)
= λ0 > 1 and we want to show that there exists a ∈Rn

+, a > 0 such
that f (a)> a.
From Taylor’s theorem [8] and from C1 assumptions for f we have that for every i = 1, . . . ,n
the following holds

fi(x) = fi(x0)+∇ fi(x0)(x− x0)+hi(x− x0) (2.12)

and hi : Rn → R is such that

lim
x→x0

hi(x− x0)

∥x− x0∥
= 0 (2.13)

which by joining all equations yields

f (x) = f (x0)+
∂ f
∂x

(x0)(x− x0)+h(x− x0). (2.14)

Let v0 > 0 be such that ∂ f
∂x (0)v0 = ρ

(
∂ f
∂x (0)

)
v0, i.e. v0 is the positive eigenvector corre-

sponding to the Perron-Frobenius eigenvalue ρ

(
∂ f
∂x (0)

)
= λ0 > 1.

From Taylor’s approximation in (2.14) and by choosing x0 ≡ 0 and x = a, we have

f (a) = f (0)+
∂ f
∂x

(0)a+h(a). (2.15)

Since we are interested in finding a vector a > 0 such that f (a)> a, let us choose a = γv0,
γ > 0. The vector a is clearly a positive vector and 1

γ
h(a)→ 0 for γ → 0. With these choices

the last equation becomes

f (a) = ρ

(
∂ f
∂x

(0)
)

a+h(a) = λ0a+h(a) (2.16)
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by rewriting λ0 as λ0 = 1+ ε , ε > 0, the equation is then

f (a) = a+ εa+h(a). (2.17)

By recalling that a = γv0, it is

f (a) = a+ γ

(
εv0 +

1
γ

h(a)
)

(2.18)

and since 1
γ
h(a)→ 0 for γ → 0 we can make εv0 +(1/γ̂)h(a)> 0 for an appropriate small

γ̂ ̸= 0. The final equation is then

f (a) = a+ γ̂ (something positive)> a, (2.19)

this completes the proof of this first part. �

Proof of 2. Suppose there ∃ x̄ ∈Rn
+ such that ρ

(
∂ f
∂x (x̄)

)
= ζ0 < 1. We first show that there

exists b ∈ Rn
+, b > a such that f (b) < b. If we define g : Rn

+ → Rn as g(x) = f (x)− x the
following relation holds

f (b)< b ⇔ g(b)< 0

we assume there exists i∈ {1, . . . ,n} such that gi(x̄)≥ 0 otherwise we would have concluded
since g(x̄)< 0 ⇒ f (x̄)< x̄. From the definition of spectral radius we have that

ζ0 = max
{
|λ |,λ ∈ Λ

(
∂ f
∂x

(x̄)
)}

but since ∂ f
∂x (x̄) ≥ 0 and also irreducible, from Perron-Frobenius Theorem 1.2.1 we have

that ζ0 ∈ Λ

(
∂ f
∂x (x̄)

)
, i.e. ζ0 ∈ R+. With the given definition of g its Jacobian matrix in x̄

results to be
∂g
∂x

(x̄) =−I +
∂ f
∂x

(x̄)

and we can easily derive its eigenvalue with the maximum real part

−ε , max
{

Re(λ ),λ ∈ Λ

(
∂g
∂x (x̄)

)}
= max

{
Re(λ ),λ ∈ Λ

(
−I + ∂ f

∂x (x̄)
)}

=−1+max
{

Re(λ ),λ ∈ Λ

(
∂ f
∂x (x̄)

)}
=−1+ζ0

(2.20)

and of course ε > 0 since ζ0 < 1. The hypothesis that the Jacobian matrix of f is irreducible
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implies that ζ0 is the Perron-Frobenius eigenvalue of ∂ f
∂x (x̄) and thus the related eigenvector

v is positive, i.e v∈Rn
+,v> 0. We now note that the same positive vector v is the eigenvector

corresponding to the eigenvalue −ε for the Jacobian matrix of g. This is clearly shown by
the following equation.(

∂g
∂x

(x̄)
)

v =

(
−I +

∂ f
∂x

(x̄)
)

v =−v+
∂ f
∂x

(x̄)v = (−1+ζ0)v =−εv. (2.21)

This part of the proof is concluded if we show that there exists a b such that g(b) < 0. Let
us define b as

b = x̄+ γv γ ∈ R+,γ > 0 (2.22)

since v > 0 and γ is positive it is clear that b > x̄. The vector field g is strictly concave
since it is a positive linear combination of concave functions, with f strictly concave. Then
∀x,y ∈ Rn

+,x ̸= y the following holds

g(y)< g(x)+
∂g
∂x

(x)(y− x)

then choosing y ≡ b and x ≡ x̄ the relations becomes

g(b)< g(x̄)+
∂g
∂x

(x̄)(b− x̄) (2.23)

from definition (2.22), b− x̄ = γv together with (2.21) the previous relation becomes

g(b)< g(x̄)− εγv (2.24)

by choosing an opportune γ the right hand side can be made negative. For example

γ ,
1
ε

maxi {gi(x̄), i = 1, . . . ,n}
min j

{
v j, j = 1, . . . ,n

} (2.25)

implies

g(b)< g(x̄)− maxi {gi(x̄), i = 1, . . . ,n}
min j

{
v j, j = 1, . . . ,n

} v ≤ g(x̄)−maxi {gi(x̄), i = 1, . . . ,n}

 1
...
1

≤ 0

(2.26)
since

(
vi/min j

{
v j, j = 1, . . . ,n

})
≥ 1,∀i. The proof is concluded since

g(b)< 0 ⇒ f(b)< b (2.27)
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To conclude that b > a, we recall from the proof of part 1 that a can be chosen arbitrarily
small and proportional to the Perron-Frobenius eigenvector in 0.

To show the necessity part, assume that ∃ a ∈ Rn
+, a > 0 such that f (a) > a and there

∃ b ∈ Rn
+, b > a such that f (b) < b. We also assume that @ x̄ > 0 such that ρ

(
∂ f
∂x (x̄)

)
=

ζ0 < 1, i.e ρ

(
∂ f
∂x (x)

)
≥ 1, ∀x ∈ Rn

+. Define b̄ as

b̄ = a+ γv γ ∈ R+,γ > 0

where v is the Perron-Frobenius eigenvector of ∂ f
∂x (x), thus positive and γ is an opportune

positive real constant such that b̄ > b. From Proposition 2.1.2 f (b)< b implies that

f (b̄)< b̄

then ∀x,y ∈ Rn
+,x ̸= y the following relation holds since f is strictly concave

f (y)< f (x)+
∂ f
∂x

(x)(y− x)

choosing y ≡ a and x ≡ b̄ the relations becomes

f (a)< f (b̄)− ∂ f
∂x

(b̄)(b̄−a) (2.28)

since ρ

(
∂ f
∂x (b̄)

)
≥ 1 by assumption and b̄−a = γv the next equation holds

∂ f
∂x

(b̄)(b̄−a) = γ
∂ f
∂x

(b̄)v = γρ

(
∂ f
∂x

(b̄))
)

v = ρ

(
∂ f
∂x

(b̄))
)
(b̄−a)

since ρ

(
∂ f
∂x (b̄)

)
≥ 1 is the Perron-Frobenius eigenvalue. The inequality in (2.28) becomes

f (a)< f (b̄)−ρ

(
∂ f
∂x

(b̄)
)
(b̄−a)< f (b̄)− (b̄−a) (2.29)

from f (b̄)− b̄ < 0 we obtain

f (a)<
(

f (b̄)− b̄
)
+a < a (2.30)

which is a contradiction. �
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Theorem 2.2.2. Consider system (2.2). Let f : Rn
+ → Rn

+ be a differentiable strictly con-
cave, increasing and such that f (0) = 0. Let ∂ f

∂x (x) ≥ 0 ∀x ∈ Rn
+ be irreducible for all

x ∈ Rn
+. Then

1. if ρ

(
∂ f
∂x (0)

)
= σ0 < 1 then the origin of system (2.2) is asymptotically stable and the

domain of attraction A(0) includes Rn
+, i.e. Rn

+ ⊂ A(0).

2. if ρ

(
∂ f
∂x (0)

)
= λ0 > 1 and there ∃x̄ ∈ Rn

+ such that ρ

(
∂ f
∂x (x̄)

)
= ζ0 < 1 then the

system (2.2) admits a unique positive equilibrium point x∗ which is asymptotically
stable and its domain of attraction is such that Rn

+\{0} ⊂ A(x∗).

Proof of 1. From the Perron-Frobenius theorem and from the irreducibility of the Jacobian
matrix of f in zero, there exists a positive vector wT

0 such that wT
0 is the left eigenvector

corresponding to the eigenvalue σ0 of ∂ f
∂x (0).

For the system (2.2), the diagonal matrix ∆ is positive definite which implies that ∆−1 is
positive definite. Then let V : Rn

+ → R+ be a Lyapunov’s function (see Khalil and Grizzle
[19]) such that

V =
1
2

xT (
∆
−1w0wT

0 ∆
−1)x (2.31)

where the matrix
(
∆−1w0wT

0 ∆−1) is clearly symmetric and strictly positive because wT
0 > 0

and δi > 0 for i = 1, . . . ,n. This implies that V is strictly positive ∀ x ∈ Rn
+\{0}. From the

differentiability of V , we have

V̇ = xT ∆−1w0wT
0 ∆−1ẋ

= xT ∆−1w0wT
0 (−x+ f (x))

(2.32)

Now from strict concavity of f , for every x,y ∈ Rn
+,x ̸= y the following holds

f (x)< f (y)+
∂ f
∂x

(y)(x− y)

with y = 0 it is

f (x)<
∂ f
∂x

(0)x

by multiplying both sides by wT
0 we obtain

wT
0 f (x)< ρ

(
∂ f
∂x

(0)
)

wT
0 x = σ0wT

0 x
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the assumption σ0 < 1 yields the diagonal dominance condition

wT
0 f (x)< wT

0 x. (2.33)

Going back to the Lyapunov’s function in (2.32) we have that

V̇ =−xT ∆−1w0wT
0 x+ xT ∆−1w0wT

0 f (x)
= xT ∆−1w0

(
−wT

0 x+wT
0 f (x)

)
from condition (2.33) it is clear that −wT

0 x+wT
0 f (x) < 0. This implies V̇ < 0 for all x ∈

Rn
+\{0} since xT ∆−1w0 > 0. The proof holds globally since V is radially unbounded, which

implies that x = 0 is globally asymptotically stable.
�

Proof of 2. From condition 2, Theorem 2.2.1 holds. So there exists a unique positive fixed
point, i.e.

∃! x∗ ∈ int(Rn
+), such that f (x∗) = x∗.

With the following change of variable y = x− x∗ and recalling that x ∈ Rn
+ we have that

ẏ = ẋ
y ≥−x∗

And the fixed point x = x∗ is now equivalent to y = 0. By choosing a Lyapunov function as
follows

V =
1
2

yT
∆
−1y

and by defining g as g : Rn
+ → Rn : x 7→ −x+ f (x), we obtain

V̇ = yT ∆−1ẏ
= yT (−(y+ x∗)+ f (y+ x∗))
= yT g(y+ x∗)

=
n
∑

i=1
yigi(y+ x∗)

note that gi(y+ x∗)≡ gi(x). We have two cases to analyse.

a. If −x∗ ≤ y ≤ 0 and ∃k such that yk < 0, we have g(x) ≥ 0 and gk(x) > 0. In fact
from proposition 2.1.2, g is strictly decreasing beyond a point x where gi(x)< 0, that
is gi(x̄)< 0 ∀x̄ ≥ x. Since a positive fixed point exists beyond x, it follows that is it can
not be gk(x) ≤ 0 , or, more directly, from Proposition 2.1.2 we have that if y < 0 then
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g(x)> 0.
From strict concavity of gk, we already know that gk(x∗) = 0. So from yk < 0, which
implies x ̸= x∗, if gk(x) = 0 we can conclude that gk is not strictly concave. So must be
gk(x)> 0. This implies that yigi(x)≤ 0 ∀i, and in particular ykgk(x)< 0.

b. Analogously, if y ≥ 0 and ∃k such that yk > 0, we have gi(x) ≤ 0 while gk(x) < 0. Or
again, from Proposition 2.1.2 if y > 0 then g(x)< 0.

Before concluding we should observe that the two sets Ω1 = {x ≤ x∗} and Ω2 = {x ≥ x∗}
are invariant. In fact under our assumptions on f , system (2.2) is cooperative, therefore
monotone (see Bokharaie [4], Smith [24]), that is

x0 ≤ y0 ⇒ x(t,x0)≤ x(t,y0). (2.34)

This implies that on Ω1 we have

x0 ≤ x∗ ⇒ x(t,x0)≤ x(t,x∗) = x∗ (2.35)

and for Ω2,
x∗ ≤ x0 ⇒ x∗ = x(t,x∗)≤ x(t,x0), ∀t ≥ 0. (2.36)

Putting together these conditions, we can say that there always exists a strict negative term
in the summation of V̇ while the other terms are less or equal to zero. We can thus conclude
that

V̇ < 0 ∀y ≥−x∗ ,y ̸= x∗

or equivalently
V̇ < 0 ∀x ∈ Rn

+\{0}

whenever x0 ∈ Ω1 ∪Ω2.
We are left with the case in which x0 /∈ Ω1 ∪Ω2, i.e., x0 has some elements xi ≥ x∗i and
others x j < x∗j . In this case there exists two positive real constants α < 1 ,β > 1 such that
αx0 ∈ Ω1 and βx0 ∈ Ω2, it follows immediately

αx0 ≤ x0 ≤ βx0 ⇒ x(t,αx0)≤ x(t,x0)≤ x(t,βx0), ∀t ≥ 0.

We already know that x(t,αx0)→ x∗ and x(t,βx0)→ x∗ then it must be

x(t,x0)→ x∗.

The proof holds globally since V is radially unbounded, this implies that x∗ is globally
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asymptotically stable. �

2.2.1 System with different degradation rate

If we formulate the problem in 2.1 differently as

dxi(t)
dt

=−δixi(t)+hi(x(t)), i = 1, . . . ,n x(0) = x0 (2.37)

where xi(t) ∈ R+ is the ith state at time t, hi : Rn
+ → R+ is the function modelling the influ-

ence of all other states to state i and δi a positive degradation rate. By defining ∆ = diag{δ1, . . . ,δn}
the problem stated in 2.37 can be rewritten as

ẋ(t) =−∆x(t)+h(x(t)), x(0) = x0 (2.38)

where x = (x1,x2, . . . ,xn)
T and h = (h1,h2, . . . ,hn)

T are two vectors in Rn
+. We can make it

resemble the form of 2.2, i.e,

ẋ(t) = ∆
(
−x(t)+∆

−1h(x(t))
)
, x(0) = x0. (2.39)

By defining f as f = ∆−1h(x(t)), we can apply Theorem 2.2.2 as is.
We would like to translate the condition

ρ

(
∂ f
∂x

(0)
)
> 1 (2.40)

and

ρ

(
∂ f
∂x

(x̄)
)
< 1 for some x̄ ∈ Rn

+ (2.41)

directly to the function h.
Firstly, let us find the equivalent of condition (2.40) for the vector field h. Let v0 be the
Perron-Frobenius right eigenvector corresponding to the eigenvalue ρ

(
∂ f
∂x (0)

)
and wT

0 be

the Perron-Frobenius left eigenvector corresponding to the eigenvalue ρ

(
∂h
∂x (0)

)
, i.e.

∂ f
∂x

(0)v0 = ρ

(
∂ f
∂x

(0)
)

v0,

wT
0

∂h
∂x

(0) = wT
0 ρ

(
∂h
∂x

(0)
)
.

(2.42)
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Since the Jacobian matrix of f is irreducible ∀x∈Rn
+, ρ

(
∂ f
∂x (0)

)
and ρ

(
∂ f
∂x (x̄)

)
are positive

real eigenvalues with positive Perron-Frobenius eigenvectors v0 > 0 and w0 > 0.
From the definition of f the following equivalences holds:

∂ f
∂x

(0) = ∆
−1 ∂h

∂x
(0) ⇒ ∂ f

∂x
(0)v0 = ∆

−1 ∂h
∂x

(0)v0 ⇒ ρ

(
∂ f
∂x

(0)
)

v0 = ∆
−1 ∂h

∂x
(0)v0

finally yielding

∆ρ

(
∂ f
∂x

(0)
)

v0 =
∂h
∂x

(0)v0. (2.43)

Multiplying both sides of (2.43) by wT
0 we obtain

ρ

(
∂ f
∂x

(0)
)

wT
0 ∆v0 = wT

0
∂h
∂x

(0)v0

which by the assumptions in (2.42) yields

ρ

(
∂ f
∂x

(0)
)

wT
0 ∆v0 = ρ

(
∂h
∂x

(0)
)

wT
0 v0

from v0 > 0, wT
0 > 0 we have wT

0 v0 > 0 and wT
0 ∆v0 > 0. Therefore

ρ

(
∂ f
∂x

(0)
)
= ρ

(
∂h
∂x

(0)
)

wT
0 v0

wT
0 ∆v0

. (2.44)

Condition (2.40) is then equivalent to

ρ

(
∂h
∂x

(0)
)
>

wT
0 ∆v0

wT
0 v0

. (2.45)

Analogously condition (2.41) is equivalent to

ρ

(
∂h
∂x

(x̄)
)
<

w̄T
0 ∆v̄0

w̄T
0 v̄0

, (2.46)

where w̄T
0 and v̄0 are respectively the left and right Perron-Frobenius eigenvectors corre-

sponding to the eigenvalues ρ

(
∂h
∂x (x̄)

)
and ρ

(
∂ f
∂x (x̄)

)
.

The new conditions in (2.45) and (2.46) are difficult to satisfy because the four eigenvectors
depends on the Jacobian matrix of f and h. We would like to find other conditions that do
not have the kind of intrinsic dependences. To do so, let us consider the term wT

0 ∆v0
wT

0 v0
, which
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expanded yields
wT

0 ∆v0

wT
0 v0

=
1

wT
0 v0

n

∑
i=1

δiw0,iv0,i (2.47)

multiplying the right side by δmax/δmax we obtain

wT
0 ∆v0

wT
0 v0

=
δmax

wT
0 v0

n

∑
i=1

δi

δmax
w0,iv0,i (2.48)

clearly δi
δmax

≤ 1 for i = 1, . . . ,n since δmax is the maximum degradation rate. Thus equation
(2.48) can then be bounded as follows:

wT
0 ∆v0

wT
0 v0

=
δmax

wT
0 v0

n

∑
i=1

δi

δmax
w0,iv0,i ≤

δmax

wT
0 v0

n

∑
i=1

w0,iv0,i =
δmax

wT
0 v0

wT
0 v0 (2.49)

which finally yields
wT

0 ∆v0

wT
0 v0

≤ δmax. (2.50)

Therefore the following condition

ρ

(
∂h
∂x

(0)
)
> δmax (2.51)

is a sufficient to guarantee

ρ

(
∂h
∂x

(0)
)
>

wT
0 ∆v0

wT
0 v0

as stated in (2.45).
Analogously, for the second condition (2.41) let us consider the term w̄T

0 ∆v̄0
w̄T

0 v̄0
, which ex-

panded yields
w̄T

0 ∆v̄0

w̄T
0 v̄0

=
1

w̄T
0 v̄0

n

∑
i=1

δiw̄0,iv̄0,i (2.52)

multiplying the right side by δmin/δmin we obtain

w̄T
0 ∆v̄0

w̄T
0 v̄0

=
δmin

w̄T
0 v̄0

n

∑
i=1

δi

δmin
w̄0,iv̄0,i (2.53)

clearly δi
δmin

≥ 1 for i = 1, . . . ,n since δmin is the minimum degradation rate. Thus equation
(2.53) is then
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w̄T
0 ∆v̄0

w̄T
0 v̄0

=
δmin

w̄T
0 v̄0

n

∑
i=1

δi

δmin
w̄0,iv̄0,i ≥

δmin

w̄T
0 v̄0

n

∑
i=1

w̄0,iv̄0,i =
δmin

w̄T
0 v̄0

w̄T
0 v̄0 (2.54)

which finally yields
wT

0 ∆v0

wT
0 v0

≥ δmin. (2.55)

This means that the following condition

ρ

(
∂h
∂x

(x̄)
)
< δmin (2.56)

is a sufficient to guarantee

ρ

(
∂h
∂x

(x̄)
)
<

w̄T
0 ∆v̄0

w̄T
0 v̄0

as stated in (2.46).

Putting together condition (2.51) and condition (2.56), Theorem 2.2.2 can then be re-
stated as

Theorem 2.2.3. Consider system (2.39). Let h : Rn
+ → Rn

+ be a C1 strictly concave, in-
creasing and such that h(0) = 0. Let ∂ f

∂x (x) ≥ 0 ∀x ∈ Rn
+ be irreducible for all x ∈ Rn

+.
Then

1. if ρ

(
∂h
∂x (0)

)
= σ0 < δmin then the origin of system (2.39) is asymptotically stable and

the domain of attraction A(0) includes Rn
+, i.e. Rn

+ ⊂ A(0).

2. if ρ

(
∂h
∂x (0)

)
= λ0 > δmax and there ∃x̄∈Rn

+ such that ρ

(
∂h
∂x (x̄)

)
= ζ0 < δmin then the

system (2.39) admits a unique positive equilibrium point x∗ which is asymptotically
stable and its domain of attraction is such that Rn

+\{0} ⊂ A(x∗).

Proof. See proof of Theorem 2.2.2. �

2.2.2 Stability on the interior of Rn
+

From theorem 2.2.3 we observe that the domain of attraction A(x∗) of the positive fixed
point contains Rn

+\{0}. The reason is because we have assumed the vector field f to be
increasing, strictly concave and irreducibility of ∂ f

∂x (x) for every x ∈ Rn
+. We would like to

know what happens if these conditions are satisfied only in the interior of Rn
+.



2.2 Existence of equilibrium and asymptotic stability 29

Example 2.2.1. Let us consider the following example in R4
+.

ẋ1 =−δ1x1 + 4
√

x2x3x4

ẋ2 =−δ2x2 + 4
√

x1x3x4

ẋ3 =−δ3x3 + 4
√

x1x2x4

ẋ4 =−δ4x4 + 4
√

x1x2x3

(2.57)

whenever x0 ∈ bd
(
R4
+

)
and x0 has at least two zero element then x(t,x0) → 0. Thus for

this example the domain of attraction A(x∗) of the positive fixed point do no longer contain
Rn
+\{0}, as stated in theorem 2.2.3, and now contains only int(Rn

+). The reasons are: i)
f is not strictly concave and increasing on the border and ii) the Jacobian of f is not well
defined.

We would now like to characterize the points at the border x0 ∈ bd
(
Rn
+

)
such that

x(t,x0) → x∗, where x∗ is the positive fixed point of equilibrium (a similar condition can
be found in De Leenheer and Aeyels [9]). Under the condition that fi does not depend on xi

∀i, we can give the following lemma.

Lemma 2.2.1. Consider system (2.39). Let f : Rn
+ → Rn

+ be a C1 strictly concave, in-
creasing ∀x ∈ int(Rn

+) and such that f (0) = 0. Let ∂ f
∂x (x) ≥ 0 ∀x ∈ Rn

+ be irreducible for
all x ∈ Rn

+. Let x∗ be the positive equilibrium under condition (2) of Theorem 2.2.3. Let
x0 ∈ bd

(
Rn
+

)
be the initial condition. If f (x0) is such that

1. f (x0) has at least (n−1) non-zero elements then x(t,x0)→ x∗

2. f (x0) has at least (n−2) zero elements then convergence of x(t,x0) to x∗ can not be
guaranteed.

Proof of 1. Suppose for simplicity that fi(x0) ̸= 0 ∀i = {2, . . . ,n} and f1(x0) = 0. Notice
that every equation is of the form

ẋi =−δixi + fi(x).

So, if xi = 0 then ẋi > 0 ∀i = {2, . . . ,n} i.e. xi can be assumed to be positive. The explicit
equation for x1 is

ẋ1 =−δ1x1 + f1(x2, . . . ,xn)

so x1 becomes positive. This means that the solution x(t,x0) is now in the interior of Rn
+ �
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Proof of 2. Suppose for simplicity that fi(x0) ̸= 0 ∀i = {3, . . . ,n} and f1(x0) = f2(x0) = 0.
We also assume x1 = x2 = 0. 

ẋ1 =−δ1x1 +(x2)
1
k f1(x)

ẋ2 =−δ2x2 +(x1)
1
k f2(x)

ẋ3 =−δ3x3 + f3(x)
...

ẋn =−δnxn + fn(x)

(2.58)

with an appropriate choice of k such that (x2)
1
k f1(x) and (x1)

1
k f2(x) are strictly concave. In

this particular example if the initial condition x0 = (x1,x2, . . . ,xn) is such that x1 = x2 = 0
then x1 = x2 = 0 for all future time. Hence the evolution cannot approach x∗. �

Remark. Assume f to be C1, strictly concave and increasing ∀x ∈Rn
+. If in addition ∂ f

∂x (x)
is irreducible for all x ∈ Rn

+ then condition 1 of previous lemma can be weakened. In fact
if x0 ∈ bd

(
Rn
+

)
such that f (x0) has at least one non-zero element convergence to x∗ is

guaranteed. The proof is implicitly included in the proof of Theorem 2.2.2

2.3 Comparison with Contractive Interference Functions

When dealing with non-negative systems one of the application field is power control in
wireless network, see Charalambous [7], Feyzmahdavian et al. [11, 12], Möller and Jönsson
[22], Sung and Leung [28], Yates [30]. In Yates [30] the definition of standard interference
functions was given.

Definition 2.3.1. A function I : Rn
+ → Rn

+ is called a standard interference function if for
all p ∈ Rn

+ the following properties are satisfied:

i Positivity: I(p)> 0.

ii Monotonicity: if p ≥ p̄, then I(p)≥ I(p̄)

iii Scalability: For all α > 1, αI(p)> I(α p)

In wireless networks, the positivity property of an interference function is justified by the
presence of a non-zero background noise. The scalability property implies that if p j ≥ I j(p)
then α p j ≥αI j(p)> I j(α p) for α > 1. That is, if user j has an acceptable connection under
power vector p, then user j will have a more than acceptable connection when all powers
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are scaled up uniformly.
Not all interference functions can be analysed under this framework. For example, to
achieve maximum throughput in wireless networks transmission power should be increased
when the interference is low, and the information transmission rate should be adjusted ac-
cordingly. This approach is called opportunistic power control (see Leung and Sung [21],
[27]). In [27] generalized interference functions where introduced

Definition 2.3.2. A function I : Rn
+ → Rn

+ is called a two-sided scalable interference func-
tion if for all p ∈ Rn

+, the following properties are satisfied:

i Positivity: I(p)> 0.

ii Two-sided scalability: For all α > 1,

1
α

p ≤ p̄ ≤ α p ⇒ 1
α

I(p)< I(p̄)< αI(p)

It is also shown that standard interference functions are also two-sided scalable.
For our purposes let us consider system (2.1), with f ≡ I. In Feyzmahdavian et al. [11]
it is shown that if a two-sided scalable function has a fixed point then the system (2.1) is
asymptotically stable.

Theorem 2.3.1 (Nominal Power Control Algorithm). If a two-sided scalable interference
function I : Rn

+ →Rn
+ as a fixed point p∗ > 0, then the continuous-time power control algo-

rithm (2.1) is asymptotically stable for any initial condition p0 > 0, and any proportionality
constant δi.

However, two-sided scalable interference functions do not guarantee the existence of a
positive fixed point and this has to be investigated separately. In [12] a modification of stan-
dard interference functions which guarantees the existence of a fixed point was introduced.

Definition 2.3.3. A function I : Rn
+ →Rn

+ is said to be c-contractive interference function if
for all p ∈ Rn

+, the following properties are satisfied:

i Positivity: I(p)> 0.

ii Monotonicity: if p ≥ p̄, then I(p)≥ I(p̄)

iii Contractivity: There exists a constant c ∈ [0,1), and a vector v > 0 such that for all
ε > 0

I(p+ εv)≤ I(p)+ cεv (2.59)
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Contractive interference functions define contraction mappings in the weighted norm l∞,
which implies that I(p) = p always admits a unique solution in int(Rn

+).

Proposition 2.3.1. If a function I : Rn
+ → Rn

+ is a c-contractive interference function, then
it has a unique fixed point p∗ ∈ int(Rn

+) and

∥I(p)− I(p̄)∥v
∞ ≤ c∥p− p̄∥v

∞

In Feyzmahdavian et al. [11] a characterization of the rate of convergence is given:

Theorem 2.3.2 (Nominal Power Control Algorithm). If an interference function I : Rn
+ →

Rn
+ is c-contractive, then the continuous-time power control algorithm (2.1) is exponentially

stable for any initial condition p0 > 0, and any proportionality constant δi. In particular,
the solution p(t) of (2.1) satisfies

∥p(t)− p∗∥v
∞ ≤ ∥p0 − p∗∥v

∞e−δmin(1−c)t , t ≥ 0.

In Feyzmahdavian et al. [12] it is shown that many practical interference functions and
all the examples in Yates [30] are c-contractive.

Now we would like to derive the spectral properties of a c-contractive function.

Proposition 2.3.2. Let I :Rn
+ →Rn

+ be c-contractive interference function. Consider system

(2.1). If I is differentiable at p then ρ

(
∂ I
∂ p(p)

)
< 1

Proof. From the monotonicity condition of c-contractive interference functions, i.e.

p ≥ p̄ ⇒ Ik(p)≥ Ik(p̄), for all k = 1, . . . ,n

we have that the following holds

∇Ik(p)≥ 0 ∀k ⇒ ∂ I
∂ p

(p) =

 ∇I1(p)
...

∇In(p)

≥ 0. (2.60)

Furthermore, from the contractivity condition given by (2.59), ε > 0 can be chosen arbitrar-
ily. In particular we can make the following choice

ε = γ
1
∥v∥

.



2.3 Comparison with Contractive Interference Functions 33

Then the inequality in (2.59) holds for every component of I and for every γ > 0, i.e.

Ik(p+ εv)≤ Ik(p)+ cεvk

with our choice of ε it becomes

Ik

(
p+ γ

v
∥v∥

)
≤ Ik(p)+ cγ

vk

∥v∥

rearranging the inequality and defining u := v/∥v∥ as a unit vector (note that u > 0 since
v > 0 by assumptions) we have

Ik(p+ γu)− Ik(p)
γ

≤ cuk

from the differentiability of Ik in p and taking the limit for γ → 0 we obtain the following
(Dal Passo et al. [8])

lim
γ→0

Ik(p+ γu)− Ik(p)
γ

= ∇Ik(p) ·u,

which is the directional derivative along u. The contractivity condition is then

∇Ik(p) ·u ≤ cuk

the previous inequality holds for all k = 1, . . . ,n so it yields(
∂ I
∂ p

(p)
)

u ≤ cu. (2.61)

Since the Jacobian matrix is non-negative ∀p ∈ Rn
+ this implies that

ρ

(
∂ I
∂ p

(p)
)
≥ 0

and there exists a non-zero eigenvector w0 ∈ Rn
+, w0 ̸= 0 such that

wT
0

(
∂ I
∂ p

(p)
)
= ρ

(
∂ I
∂ p

(p)
)

wT
0 ,

so from this last equation together with the inequality in (2.61) we have

ρ

(
∂ I
∂ p

(p)
)

wT
0 u ≤ cwT

0 u (2.62)
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since u > 0 and wT
0 ≥ 0,w0 ̸= 0 we have that wT

0 u is a real positive value. Furthermore c is
a positive constant less that 1. The inequality is then

ρ

(
∂ I
∂ p

(p)
)
< 1 (2.63)

this concludes the proof. �

From this last proposition we can conclude that:

i. if f is a c-contractive function then there exists a and b such that f (a) > a, f (b) < b
and b > a. This guarantees the existence of a positive fixed point from Theorem 2.1.1.

ii. if f is a strictly concave function such that con f (0)≥ 0, ρ

(
∂ f
∂x (0)

)
> 1 and ρ

(
∂ f
∂x (x̄)

)
< 1

for some x̄ ∈ int(Rn
+) then from Theorem 2.2.1 there exists a positive fixed point in

int(Rn
+). However f is not c-contractive since in a neighbourhood of 0, ρ

(
∂ f
∂x (x)

)
≥ 1.

For example the function f (x) =
√

x+5 ∈ R+ is strictly concave and from Theorem
2.2.1 admits a unique positive fixed point but f is not c-contractive since f ′(0+)→+∞

and this violates the condition of Proposition 2.3.2.

Although condition ii seems to state that c-contractive functions are less general than
strictly concave function with ρ

(
∂ f
∂x (0)

)
> 1, the next example shows that c-contractive

does not imply concavity, i.e., they are different classes of functions.

Example 2.3.1. The following example ([12]) represents a non-concave c-contractive func-
tion.

I(p) =


p2 +

1
100

, 0 ≤ p ≤ 1
4

0.5p− 1
16

+
1

100
, p >

1
4

(2.64)

Proposition 2.3.3. Let I : Rn
+ → Rn

+ be a differentiable increasing function such that ∀p ∈
Rn
+. If the following holds ∀p ∈ Rn

+

1. I(p)> 0

2. ρ

(
∂ I
∂ p(p)

)
≤ ζ0 < 1

3. ∂ I
∂ p(p) is irreducible

Then I is c-contractive with c = ζ0 +
1−ζ0

2 .
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Proof. From Taylor’s approximation

I(p+ εv) = I(p)+
∂ I
∂ p

(p)εv+h(εv).

Now let v = γv0 with γ > 0 and v0 is the right Perron-Frobenius eigenvector of ∂ I
∂ p(p) cor-

responding to the eigenvalue ρ

(
∂ I
∂ p(p)

)
. The last equation becomes

I(p+ εv) = I(p)+ ερ

(
∂ I
∂ p

(p)
)

γv0 +h(εγv0) . (2.65)

Now I is c-contractive if for some c ∈ [0,1) we have

I(p+ εv)≤ I(p)+ cεv (2.66)

Now, from (2.65) we can guarantee the Contractive condition if

ερ

(
∂ I
∂ p

(p)
)

γv0 +h(εγv0)≤
(

ζ0 +
1−ζ0

2

)
εγv0, (2.67)

we define c as
c := ζ0 +

1−ζ0

2
. (2.68)

Clearly 1 > c > ζ0. Inequality (2.67) is then

γ

((
c−ρ

(
∂ I
∂ p

(p)
))

εv0 +
h(εγv0)

γ

)
≥ 0. (2.69)

By assumptions on ρ

(
∂ I
∂ p(p)

)
we have that c−ρ

(
∂ I
∂ p(p)

)
> 0 is a positive scalar for all

p ∈ Rn
+. From Taylor’s approximation h → 0 if γ → 0, inequality (2.69) can be satisfied

only if v0 > 0, that is ∂ I
∂ p(p) is irreducible.

In conclusion, under conditions ρ

(
∂ I
∂ p(p)

)
≤ ζ0 < 1 and ∂ I

∂ p(p) irreducible for all p ∈ Rn
+,

I is contractive, i.e.
I(p+ εv)≤ I(p)+ cεv (2.70)

with v = γv0, for an appropriate γ > 0 and c defined as is (2.68). �
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2.4 Extension of results to subhomogeneous vector fields

The following theorem widen the class of c-contractive functions to the case where there
might exists some point such that ρ

(
∂ f
∂x (x)

)
> 1.

Proposition 2.4.1. Consider system (2.2). Let f : Rn
+ → Rn

+ be a differentiable increasing
vector field and such that f (0) ≥ 0. Let ∂ f

∂x (x) ≥ 0 ∀x ∈ Rn
+ be irreducible for all x ∈ Rn

+.
Then

1. if f (0)> 0 or ρ

(
∂ f
∂x (0)

)
= λ0 > 1 ⇒ ∃ a ∈ Rn

+, a > 0 such that f (a)> a

2. if ∃ x0 ∈Rn
+ such that ρ

(
∂ f
∂x (x0)

)
= ζ0 < 1 and ρ

(
∂ f
∂x (x)

)
≤ ζ0 ∀x> x0 ⇒ ∃ b∈Rn

+,
b > a such that f (b)< b, and a > 0 is such that f (a)> a.

Proof of 1. If f (0) = f0 > 0 from the assumption for f to be increasing, then f (x)> f0 for
all x > 0. For example if a = f0

2 > 0 clearly f (a)> f0 > a.

The existence of a such that f (a) > a in the case ρ

(
∂ f
∂x (0)

)
= λ0 > 1 has already been

shown in the proof of part 1 of Theorem 2.2.1, the proof is based on Taylor’s approximation
and the hypothesis of concavity is not used. �

Proof of 2. Now suppose there exists x̄ ∈Rn
+ such that ρ

(
∂ f
∂x (x̄)

)
= ζ0 < 1 and there exists

a ∈ Rn
+, a > 0 such that f (a)> a. Let g : Rn

+ → Rn be defined as g(x) = f (x)− x.
From Taylor’s theorem and from differentiability assumptions for f , g is differentiable and
for every i = 1, . . . ,n, the following holds

gi(x) = gi(x0)+∇gi(x0)(x− x0)+hi(x− x0), (2.71)

where hi : Rn → R is such that

lim
x→x0

hi(x− x0)

∥x− x0∥
= 0 (2.72)

which by joining all equations yields

g(x) = g(x0)+
∂g
∂x

(x0)(x− x0)+h(x− x0). (2.73)

This second part of the theorem states that there exists b > a such that f (b) < b, that is
g(b)< 0.
Let us define x1 ∈ Rn

+, x1 > x0 as

x1 = x0 + γ0v0, γ0 > 0
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where v0 > 0 is the positive Perron-Frobenius eigenvalue of the Jacobian matrix of f corre-
sponding to the eigenvalue ζ0, i.e., ∂ f

∂x (x0)v0 = ρ

(
∂ f
∂x (x0)

)
v0. Equivalently, that is

∂g
∂x

(x0)v0 = (−1+ζ0)v0 =−ε0v0

where ε0 > 0 since ζ0 < 1. Now, from Taylor’s approximation and with the given choice of
x1, the following holds

g(x1) = g(x0)+
∂g
∂x

(x0)(x1 − x0)+h0(x1 − x0),

which yields
g(x1)−g(x0) =−ε0γ0v0 +h0(x1 − x0) (2.74)

and since 1
γ0

h0(x1 − x0)→ 0 for γ0 → 0 we can make −ε0γ0v0 + h(x1 − x0) < 0 for an ap-
propriate small γ0 ≡ γ̂0 > 0. This means that g(x1)< g(x0).
Furthermore, if g(x0)− ε0γ0v0 +h0(x1 − x0)< 0 we are done since the proof will be con-
cluded choosing b ≡ x1 otherwise we iterate the procedure defining x2 > x1 as

x2 = x1 + γ1v1, γ1 > 0

where v1 > 0 is the positive Perron-Frobenius eigenvalue of the Jacobian matrix of f corre-
sponding to the eigenvalue ρ

(
∂ f
∂x (x1)

)
≤ ζ0 by assumption. This yields a similar expression

to (2.74)
g(x2)−g(x1) =−ε1γ̂1v1 +h1(x2 − x1)

and in general,
g(xi+1)−g(xi) =−εiγ̂ivi +hi(xi+1 − xi) (2.75)

it is easy to show that ε0 ≤ εi. Now, let us assume we have iterated the equations till the Nth

order. The following holds

g(xN)−g(x0) =
N−1

∑
i=0

−εiγ̂ivi +hi(xi+1 − xi)< 0. (2.76)

We want to show that xN do not converge for N →+∞. In fact from
x1 = x0 + γ̂0v0

...

xN = xN−1 + γ̂N−1vN−1

(2.77)
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if xN → x̄ for N →+∞ we can always choose XM as

xM = x̄+ γ̂NvN > x̄

since g(xN) ≃ g(x̄), the new sequence converges to xM > x̄. This means that it is possible
to choose a sequence of xi such that it does not converge for N → ∞, thus we can assume
xi →+∞ if N →+∞ ∀i = 1, . . . ,n. Therefore, from

xN − x0 =
N−1

∑
i=0

γ̂ivi

for N big enough each component of the vector tends to a big number, i.e. from

g(xN)−g(x0) =
N−1

∑
i=0

−εiγ̂ivi +hi(xi+1 − xi)< 0 (2.78)

and for big N, the sum
N−1
∑

i=0
−εiγ̂ivi if less than −g(x0)−

N−1
∑

i=0
hi(xi+1 − xi), hence g(xN)< 0.

This concludes the proof since b can be chosen equal to XN . �

Remark. Under the conditions of this proposition the existence of a positive fixed point is
guaranteed (see Theorem 2.1.1). However the fixed point might not be unique since for all
x < x0 the function can grow its spectral radius pass one and then again lower it.

Under the assumptions of Proposition 2.4.1, the next theorem adds a sufficient condition
to guarantee the uniqueness of the positive fixed point. As already shown in Proposition
1.2.3 the class of subhomogeneous vector field includes (but it is strictly larger than) the
class of concave vector fields (Krause [20]).

Theorem 2.4.1. Consider system (2.2). Let f : Rn
+ → Rn

+ be a differentiable increasing
vector field and such that f (0) ≥ 0. Let ∂ f

∂x (x) ≥ 0 ∀x ∈ Rn
+ be irreducible for all x ∈ Rn

+.
Then

1. if f (0)> 0 or ρ

(
∂ f
∂x (0)

)
= λ0 > 1 ⇒ ∃ a ∈ Rn

+, a > 0 such that f (a)> a

2. if ∃ x0 ∈Rn
+ such that ρ

(
∂ f
∂x (x0)

)
= ζ0 < 1 and ρ

(
∂ f
∂x (x)

)
≤ ζ0 ∀x> x0 ⇒ ∃ b∈Rn

+,
b > a such that f (b)< b, and a > 0 is such that f (a)> a

Then there exists a positive fixed point. If, in addition, f is strictly subhomogeneous of
degree 0 < τ ≤ 1 then the fixed point is unique.
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Proof. The existence has already been shown. Let us show the uniqueness part, which is
essentially the same as in 2.1.2 with just a little variation.
From the definition of subhomogeneous (1.9), f is strictly subhomogeneous of degree τ > 0
if

f (αx)> α
τ f (x) (2.79)

for all x ∈ int(Rn
+) and for all α ∈ (0,1). Let g : Rn

+ → Rn : x 7→ −x+ f (x).
If f is strictly subhomogeneous of degree τ ≤ 1 so is g. To show this note that the function

h(x) =−x, x ≥ 0 (2.80)

is subhomogeneous of degree τ ≤ 1. In fact from definition, h is subhomogeneous of degree
τ > 0 if

h(αx)≥ α
τh(x), ∀α ∈ [0,1] (2.81)

where h(αx) =−αx and ατh(x) =−ατx. Which imposing the inequality in (2.81) yields

−αx ≥−α
τx ⇒ αx ≤ α

τx

since α ∈ [0,1] and x ≥ 0 this is satisfied for all τ ∈ (0,1].
From the following relationship we can see that g is subhomogeneous of degree τ ≤ 1.

g(αx)=−αx+ f (αx)
(2.80)︷︸︸︷
= h(αx)+ f (αx)

(2.81)︷︸︸︷
≥ α

τh(x)+ f (x)
(2.79)︷︸︸︷
> α

τh(x)+α
τ f (x)=α

τg(x)

therefore g(αx)> ατg(x) for all α ∈ (0,1) given τ ≤ 1 is the degree of f .
Now, to show uniqueness of the fixed point, suppose x > 0 is any fixed point of f . Suppose
y > 0 and g(y)≥ 0. Let

α = min
{

x j

y j
, j = 1, . . . ,n

}
=

xr

yr
.

Then α > 0 because x > 0 and y > 0. If a ≥ 1 the y ≤ x. Otherwise let w = αy. Since g
is strictly subhomogeneous and g(y) ≥ 0 we have that g(αy) > ατg(y) for 0 < α < 1 this
imply g(w) > 0. Then w ≤ x and wr = xr, so gr(x)− gr(w) = fr(x)− fr(w) ≥ 0 because
f is increasing. But this implies 0 = gr(x) ≥ gr(w) > 0, a contradiction. Thus y > 0 and
g(y)≥ 0 implies y ≤ x.
Now if y > 0 is a fixed point of f then, since g(x) = 0, the same argument with the roles of
x and y reversed gives x ≤ y, so y = x. �
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We would like to weaken the monotonicity property for f while still guaranteeing the
existence of a unique positive fixed point. Recalling definition (1.2) of spectral abscissa1 we
now give the following:

Theorem 2.4.2. Consider system (2.2). Let f : Rn
+ → Rn

+ be a differentiable, strictly sub-
homogeneous vector field of degree 0 < τ ≤ 1 and such that f (0)≥ 0. Let ∂ f

∂x (x) be Metzler
and irreducible for all x ∈ Rn

+. If the following conditions hold

1. if f (0)> 0 or µ

(
∂ f
∂x (0)

)
= λ0 > 1 ⇒ ∃ a ∈ Rn

+, a > 0 such that f (a)> a

2. if ∃ x0 ∈Rn
+ such that µ

(
∂ f
∂x (x0)

)
= ζ0 < 1 and µ

(
∂ f
∂x (x)

)
≤ ζ0 ∀x> x0 ⇒ ∃ b∈Rn

+,
b > a such that f (b)< b, and a > 0 is such that f (a)> a

3. if f is increasing in Ω = {x ∈ Rn
+ : 0 ≤ x ≤ b̂}, and b̂ is a point such that f (b̂)< b̂

Then there exists a unique positive fixed point in int(Rn
+).

Proof. We will show the uniqueness, adapted from (Bokharaie et al. [5]), since existence is
implied by the previous Theorem 2.4.1. System (2.2) can be written as

ẋ(t) = g(x) (2.82)

where g is defined as usual and ∆ has been ignored. To show the uniqueness of the fixed
point, an equilibria for ẋ(t) = g(x), we need the assumption of Jacobian matrix to be Metzler
and irreducible for all x ∈ Rn

+.
By contradiction let us suppose that there are two distinct equilibria p ∈ Ω, q ∈ int(Rn

+)\Ω.
The Jacobian matrix evaluated at each point g(b) ≤ 0, b > 0 is Hurwitz, in fact strict sub-
homogeneity of g yields (Lemma 1.2.1)

∂g
∂x

(x)x < τg(x), ∀x > 0 (2.83)

evaluated in b yields
∂g
∂x

(x)x

∣∣∣∣∣
x=b

< τg(b)≤ 0 (2.84)

multiplying both sides by wT
b , which is the positive eigenvector corresponding to the eigen-

value with the maximum real part µ

(
∂g
∂x (b)

)
, we obtain

µ

(
∂g
∂x

(b)
)

wT
b b < 0 (2.85)

1For the sake of simplicity, µ(A) = max{Re(λ ),λ ∈ Λ(A)}
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thus µ

(
∂g
∂x (b)

)
< 0 since wT

b b > 0. In particular, this means that the Jacobian matrix eval-
uated in p and q is Hurwitz. From the irreducibility of g and since it is Metzler, there exists
two positive eigenvectors vp,vq > 0 corresponding to the maximal real part eigenvalues

µ

(
∂g
∂x (p)

)
< 0 and µ

(
∂g
∂x (q)

)
< 0, that is,

∂g
∂x

(p)vp = µ

(
∂g
∂x

(p)
)

vp < 0,

∂g
∂x

(q)vq = µ

(
∂g
∂x

(q)
)

vq < 0.

We can assume that
max

i

qi

pi
> 1 ∀i = 1, . . . ,n

Since g is differentiable, it follows from Taylor’s theorem that
g(p+ γvp) = g(p)+ γ

∂g
∂x

(p)vp +hp(γvp)

g(q− γvq) = g(q)− γ
∂g
∂x

(q)vq +hq(γvq)

(2.86)

where hp,q → 0 as γ → 0+ and g(p) = g(q) = 0. Therefore, there exists an appropriate small
γ̂ such that g(p+ γ̂vp)> 0 and g(q− γ̂vq) < 0. Define v = p+ γ̂vp, w = q− γ̂vq. Defining
ξ as

ξ := max
i

wi

vi
=

wr

vr
.

Note that with an appropriate γ̂ > 0 we can ensure ξ > 1. From this choices the following
holds:

i. ξ v ≥ w and ξ vr = wr

ii. g(ξ v)≤ ξ τg(v)

As g is cooperative it satisfies Kamke condition2 (see [16]), it follows from (i) that gr(ξ v)≥
gr(w)> 0. On the other hand, it follows from (ii) that gr(ξ v)≤ gr(w)< 0.
This is a contradiction, which shows that there can only be one equilibrium in int(Rn

+). �

2.4.1 Proof of convergence

Theorem 2.4.3. Consider system (2.2). Under assumptions of Theorem 2.4.1 or Theorem
2.4.2 there exists a unique x∗ ∈ int(Rn

+) such that x(t,x0)→ x∗ for all x0 ∈ Rn
+\{0}.

2if for each i, fi(a)≤ fi(b) for any two points a and b in and open subset satisfying a ≤ b and ai = bi



42 Equilibria and Asymptotic stability

Proof. We will give proof for Theorem 2.4.2 only, Theorem 2.4.1 is a sub case.
From strict subhomogeneity of f of degree 0 < τ ≤ 1, without loss of generality we can
assume τ = 1

f (λx)< λ
τ f (x)≤ λ f (x), ∀λ > 1

f (αx)> α
τ f (x)≥ α f (x), 0 < α < 1

(2.87)

subtracting −λx from both sides of the first of (2.87) and −αx from both sides of the second
we obtain

−λx+ f (λx)<−λx+λ f (x), ∀λ > 1

−αx+ f (αx)>−αx+α f (x), 0 < α < 1

which are equivalent to
g(λx)< λg(x), ∀λ > 1,

g(αx)> αg(x), 0 < α < 1.

From g(x∗) = 0 and µ =
(

∂g
∂x (x

∗)
)
< 0, i.e. ∂g

∂x (x
∗) is Hurwitz in x∗ (see proof of Theorem

2.4.2), we can find b > x∗ such that g(b)< 0 and a < x∗ such that g(a)> 0. From Taylor’s
approximation it can be for example b = x∗+ γv0, a = x∗− γv0 for an appropriate small γ .
From strict subhomogeneity and since g(b)< 0 and g(a)> 0 the following two holds

g(λb)< λg(b)< 0, ∀λ > 1

g(αa)> αg(a)> 0, ∀α ∈ (0,1).
(2.88)

Now, if ∂g
∂x (x) is cooperative and irreducible ∀x > 0, from Smith [24] we can conclude that

if g(x) < 0 then x(t,x) is strictly decreasing and tends to x∗, analogously if g(x) > 0 x(t,x)
is strictly increasing and tends to x∗ since x∗ is the unique equilibrium point, formally

g(x)< 0 ⇒ x(t,x)→ x∗ and ẋ(t,x)< 0 ∀t > 0,

g(x)> 0 ⇒ x(t,x)→ x∗ and ẋ(t,x)> 0 ∀t > 0.

Now ∀x0 ∈ int(Rn
+) and x0 ̸= x∗, we have two possible cases (which can hold simultane-

ously):

1. if there exists i such that x0i ≥ x∗i then there exist λ̄ > 1 such that λ̄b > x0, and
necessarily g(λ̄b)< 0 as shown in the first of (2.88).

2. if there exists j such that x0 j < x∗j then there exist ᾱ < 1 such that ᾱa < x0, and
necessarily g(ᾱa)> 0 as shown in the second of (2.88).
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That is ∀x0 ∈ int(Rn
+), there exists ᾱ < 1 and γ̄ > such that

ᾱa ≤ x0 ≤ γ̄b (2.89)

which implies, from cooperativity and irreducibility

x(t, ᾱb)< x(t,x0)< x(t, γ̄b) (2.90)

thus x(t,x0)→ x∗ since x(t, ᾱb)→ x∗ and x(t, γ̄b)→ x∗.
The same proof can be done using a Lyapunov’s functions. Let us choose the following
Lyapunov’s function

V (x) =
1
2
∥x− x∗∥2. (2.91)

Clearly V (x) = 0 if and only if x = x∗. Let x(t,x0) be the evolution of the solution with
initial condition x0 and t ≥ 0.

V̇
(
x(t, λ̄b)

)
=
(
x(t, λ̄b)− x∗

)T
ẋ(t, λ̄b). (2.92)

The sets Ω+ := {x ∈ int(Rn
+) : x ≥ x∗} and Ω− := {x ∈ int(Rn

+) : x ≤ x∗} are two invariant
sets. In fact under our assumptions on f , system (2.2) is cooperative, therefore monotone
(see [4, 24]), that is

x0 ≤ y0 ⇒ x(t,x0)≤ x(t,y0),

that is for Ω−,
x0 ≤ x∗ ⇒ x(t,x0)≤ x(t,x∗) = x∗

and for Ω+,
x∗ ≤ x0 ⇒ x∗ = x(t,x∗)≤ x(t,x0).

For our purposes this means x(t, λ̄b)− x∗ ∈ Ω+ ∀t ≥ 0, therefore x(t, λ̄b)− x∗ ≥ 0 ∀t ≥ 0.
Since g(λ̄b)< 0 it follows from (2.4.1) that ẋ(t, λ̄b)< 0 and from x∗ < λ̄b ⇒ x∗ < x(t, λ̄b)
we have

V̇ (x(t, λ̄b))< 0, ∀t > 0. (2.93)

This means that V (x(t, λ̄b))→ 0, in other words x(t, λ̄b)→ x∗ if t → ∞.
Analogously,

V̇ (x(t, ᾱa)) = (x(t, ᾱa)− x∗)T ẋ(t, ᾱa). (2.94)

Since g(ᾱa)> 0 it follows from (2.4.1) that ẋ(t, ᾱb)> 0 and from ᾱa < x∗ ⇒ x(t, ᾱb)< x∗
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we have
V̇ (x(t, ᾱb))< 0, ∀t > 0. (2.95)

Therefore x(t, ᾱb)→ x∗.
This concludes the proof since (2.93) and (2.94) implies that ∀x0 ∈ int(Rn

+), x(t,x0) →
x∗. �

We will now give a sample function that satisfies all assumptions of the previous theo-
rems.

Example 2.4.1. Consider the function in one variable

f (x) = αxe−
x
β (2.96)

this function is strictly subhomogeneous of degree τ = 1. In fact

f (ηx) = αηxe−
ηx
β

for 0 < η < 1 and x > 0 the term e−
ηx
β is decreasing, thus

f (ηx) = αηxe−
ηx
β > αηxe−

x
β = η f (x)

in other words, f is strictly subhomogeneous of degree τ = 1.
The next condition to be satisfied is on its spectral abscissa. Some calculation yields

α = µ

(
∂ f
∂x

(0)
)

and

0 = µ

(
∂ f
∂x

(β )

)
choosing α > 1 and since f is decreasing ∀x > β , i.e. f ′(x)< 0 conditions on the spectral
abscissa are satisfied.
Imposing

∂ f
∂x

(x) = αe−
x
β − α

β
xe−

x
β ≥ 0

we obtain x ≤ β . Now, the fixed point f (x∗) = x∗ is

x∗ = β logα

thus if x∗ < β there exists b > 0 such that f is increasing in Ω = {x ∈R+ : 0 ≤ x ≤ b}. This
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happens for α < e. Choosing α = e− 0.1 and β = 3 we obtain the the function depicted
in figure 2.1a, which is clearly neither concave nor monotone. The evolution of the solution
converges to x∗ whenever x0 > 0.
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Figure 2.1 Subhomogeneous example

Now let us consider a bi-dimensional case:
ẋ1 =−x1 +αx1e−

x1
β +

x2

1+ x2

ẋ2 =−x2 +αx2e−
x2
β +

x1

1+ x1

(2.97)

for x ≥ 0 the vector field f

f (x) =

αx1e−
x1
β +

x2

1+ x2

αx2e−
x2
β +

x1

1+ x1

 (2.98)

is strictly subhomogeneous of degree τ = 1 since xi
1+xi

is strictly subhomogeneous.
Its Jacobian matrix

∂ f
∂x

(x) =

αe−
x1
β − α

β
x1e−

x1
β 1

(1+x2)2

1
(1+x1)2 αe−

x2
β − α

β
x2e−

x2
β

 (2.99)

which is clearly Metzler and irreducible for all x ≥ 0 and µ

(
∂ f
∂x (x)

)
→ 0 for x1,2 → +∞.

The trajectory of the solutions of system (2.97) to fixed point in the interior of Rn
+ whenever
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x ̸= 0. This is shown in figure 2.1b.



Chapter 3

Applications to Distributed systems

3.1 Distributed system dynamics

We consider a directed graph, the influence graph, associated to the vector field of a system
where the nodes represents the states’ variables. We only consider pairwise interactions in
which the state of a node propagates to its neighbours following the direction of the edges.
The incoming influences at a node obey the principle of linear superposition of the effects.
In addition, the network includes first order degradation terms on the diagonal, depending
on the degradation rate constants, denoted δi, i = 1, . . . ,n (see Altafini [1]). Letting xi ∈ Rn

+

be the state of the ith node, the system can be written as

ẋi =−δixi + fi(x) =−δixi + ∑
j∈Ni

fi j(x j), i = 1, . . . ,n (3.1)

where Ni is the set of incoming neighbours of node i, and fi j(x j) is the influence exerted
by the jth node on the ith node. We assume that a node j exerts the same form of influence
on all its neighbours, up to a scaling constant which corresponds to the weight of the edge
connecting j with i. If A = [ai j] ≥ 0 is the weighted adjacency matrix of the network, and
ϕ j(x j) is the functional form of the interaction from node j to all its neighbours, then we
can write

fi j(x j) = ai jϕ j(x j) (3.2)

By defining fi(x) as fi(x) = ∑
j∈Ni

fi j(x j) the system has the same structure considered in the

previous section. To apply the main theorems of that sections we need f = ( f1, . . . , fn)
T to

be monotone, strictly concave and with irreducible Jacobian. This implies ϕi(xi) monotone
strictly concave and ϕi(0) = 0 ∀i.
Explicating the weight of the interaction also in the adjacency matrix A, the dynamics of
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(3.1) can be represented in matrix form as

ẋ =−∆x+Aϕ(x) (3.3)

where ϕ(x) = [ϕ1(x1), . . . ,ϕn(xn)]
T . Since

∂

∂x
Aϕ(x) = A


∂ϕ1(x1)

∂x1
0 . . . 0

0 ∂ϕ2(x2)
∂x2

. . . 0

0 0 . . . 0
0 0 . . . ∂ϕn(xn)

∂xn

 . (3.4)

Then if A is irreducible we can apply Theorem 2.2.3 of previous section. For distributed
systems we would like to investigate what happens if A is reducible.

3.1.1 Reducible Adjacency matrix

If A is reducible, from Proposition 1.2.5 there exists a permutation matrix that transforms A
into its normal form (1.16)

Ā = Π
T AΠ =



Ā1,1

0 Ā2,2
... . . .

. . .

0 0 . . . Āh,h

0

⋆ ⋆ . . . ⋆

⋆ ⋆ . . . ⋆

⋆ ⋆ . . .
...

⋆ ⋆ . . . ⋆

Āh+1,h+1

⋆ Āh+2,h+2
... . . .

. . .

⋆ ⋆ . . . Ākk


. (3.5)

The next theorem shows that to guarantee the existence and convergence to a positive fixed
point it is necessary to guarantee existence and convergence to a positive fixed point for all
isolated systems while the other systems should not be unstable.

Theorem 3.1.1. Consider the distributed system (3.3). Let us assume A ∈ Rn×n
+ to be re-

ducible. Let Σi be the subsystems for i= 1, . . . ,k. Let Ni contain the indexes of ith subsystem,
i.e j ∈ Ni if x j ∈ Rn

+ is part of subsystem Σi. We also assume that the isolated subsystems
{Σ1, . . . ,Σh} satisfies the conditions of Theorem 2.4.2 for existence of a positive fixed point.
Under these assumptions, let x∗

Σ1, . . .x
∗
Σh be the positive fixed point for each isolated subsys-

tem. Let x0 = (xT
Σ1,0, . . . ,x

T
Σh,0,x

T
Σh+1,0, . . .x

T
Σk,0)

T ∈ Rn
+ be the initial condition. The whole
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system (3.3) converges to a positive fixed point x̄ ∈ int(Rn
+) if and only if

1. xΣ1(t,xΣi,0)→ x∗
Σi for i = 1, . . . ,h

2. subsystems h+1, . . . ,h+n are asymptotically stable.

Before seeing the proof we would like to make a little observation.

Remark. Theorem 3.1.1 means that if all subsystems are stable we can guarantee conver-
gence to the interior of Rn

+ for the whole network if we manage to guarantee convergence of
the isolated subsystems to a positive equilibrium point, even if all non-isolated subsystems
have the origin as the unique equilibrium point.

Proof. The first part is easy and will be omitted.
Now suppose conditions 1 and 2 holds. We want to show that the whole network converges
to a positive fixed point x̄ ∈ int(Rn

+). Let us assume for simplicity that A is already in its
normal form. We proceed iteratively starting from subsystem Σh+1. The states’ xΣh+1 of
subsystem Σh+1 is such that

ẋΣh+1 =−∆h+1xΣh+1 + Āh+1,h+1ϕΣh+1(x)+b (3.6)

where b has some positive elements and has the same dimension of xΣh+1 . This can be seen
by looking at the normal form of A which states that there is at least one positive element in
some block to the left of Āh+1,h+1 indicated by ⋆. Since from condition 1 the first subsystems
converge to the positive states, and their dynamics is isolated, we can focus on the dynamics
when this convergence has happened. In this limit, the influence of the first subsystems on
the h+1 one, modelled by b, can be assumed as a constant.
Let us take a permutation Π which splits b into bT = (b1,b2) such that b1 > 0 and b2 = 0.
Applying the same transformation to the subsystem Σh+1 we obtain xT

Σh+1
= (x,y) such that

{
ẋ =−∆xx+ fx(x,y)+b1

ẏ =−∆xy+ fy(x,y).
(3.7)

Even if the initial condition xΣh+1,0 of this subsystem was zero the x component becomes
positive, because of the presence of b1, while some component of y, for example yk for
some k, becomes positive because some y is influenced by at least one positive xi. From the
irreducibility of Āh+1,h+1 we have that the whole state xΣh+1 becomes positive at some t > 0.
This means that the state can not have zero components.
Since adding positive constant does not change the increasing and strict subhomogeneity
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property of a function, if we prove the existence of a positive fixed point for Σh+1 then
convergence is guaranteed for such system (see previous Theorem 2.2.3). We distinguish
two cases:

1. Σh+1 had a positive fixed point: Existence of a new positive fixed point is guaranteed
by Tarski’s Theorem 2.1.1, Theorem 2.2.1 and 2.4.2 since adding b does not change
the spectral radius property of the subsystem’s Jacobian matrix. We can thus conclude
the existence of a1,a2 ∈R|Σh+1|, a2 > a1 such that fh+1(a1)> ∆h+1a1 and fh+1(a2)<

∆h+1a2, with f T
h+1 = ( f T

x +bT , f T
y ).

2. 0 was the only equilibrium point for Σh+1: we have already proven that 0 is no longer
an equilibrium point for this subsystem. If 0 was the only equilibrium point for Σh+1

that means that ρ

(
∂ fh+1
∂xh+1

(x)
)
< δmin for all x. This guarantee the existence of a2 such

that fh+1(a2)< ∆h+1a2.
If we manage to prove the existence of a1 > 0 such that fh+1(a1) > ∆h+1a1 then the
proof is completed. With system (3.7) in mind, and since fx(x,y)+b1 is positive there
exists a x̄ > 0 such that fx(x̄,y)+b1 > ∆h+1x̄ for all y ≥ 0. With x̄ fixed and since the
subsystem is irreducible there exists an index j such that

ẏ j =−δ jy j + f x
y j(x̄)+ f y

y j(y) (3.8)

where f x
y j and f x

y j are sum functions only of x̄ and y. Then f x
y j(x̄) is positive. This

implies the existence of ȳ j such that fy j(x̄,y1, . . . , ȳ j, . . . ,ym) > δ jy j. As stated, ir-
reducibility implies that the same argumentations holds for all y components. This
implies that a1 = (x̄, ȳ) is such that fh+1(a1)> ∆a1.

This completes the proof for Σh+1. So Σh+1 always converges to a positive fixed point. By
iterating this proof for h+2,h+3, . . . ,k we conclude the proof that the whole systems (3.3)
tends to x̄ ∈ int(Rn

+). �
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3.2 Case studies

3.2.1 Irreducible example

The example here analysed is from Sompolinsky et al. [25]. The model consists of n lo-
calized continuous variables ("neurons") {Si(t)}, i = 1, . . . ,n, where −1 ≤ Si ≤ 1. Asso-
ciated to each neuron, a local field hi, −∞ < hi < +∞, is defined through the relation-
ship Si(t) = φ(hi(t)) where φ(x) is nonlinear gain function which defines the input (hi)-
output(Si) characteristics of the neurons. In the biological context, hi may be related to the
membrane potential of the nerve cell and Si to its electrical activity. The function φ(x) is
assumed to have a sigmoid shape φ(±∞) = ±1, φ(−x) = −φ(x). For our purposes we
will think of the system as positive. The dynamics of the network is given by n coupled
first-order differential equations ("circuit" equations)

ḣi =−hi +
n

∑
j=1

Ji jS j =−hi +
n

∑
j=1

Ji jφ(h j). (3.9)

Here Ji j is the synaptic efficacy which couples the output of the jth neuron to the input of
the ith neuron, and Jii = 0. For the sake of clarity let us start with an example in R2.
For n = 2 neurons, the system (2.2) with an hyperbolic tangent function, which is a sigmoid,
becomes

ẋ =−x+ Jϕ(x) =−x+ J

[
tanh(x1)

tanh(x2)

]
(3.10)

cooperativity of the system means J ≥ 0. Assuming for example

J =

[
0 δ1

δ2 0

]

which is irreducible and δ1,2 > 0. From ∂ϕ

∂x (0) = I, the spectral radius of the Jacobian matrix
of Jϕ(x) in 0 depends only on δ1 and δ2. This yields{

ẋ1 =−x1 +δ2tanh(x2)

ẋ2 =−x2 +δ1tanh(x1)

The nullclines of this systems are given by{
x1,null = δ2tanh(x2)

x2,null = δ1tanh(x1)
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(a) Origin is GAS when δ1δ2 = 0.8 < 1
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(b) Positive point is GAS when δ1δ2 = 3 > 1

Figure 3.1 2D irreducible example: Solution’s trajectory and nullclines.

From Theorem 2.2.1 and Theorem 2.2.2 we can say that if ρ (J) > 1 then there exists a
unique positive fixed point which is asymptotically stable in Rn

+\{0}, while the origin be-
comes unstable. If ρ (J) < 1 the origin is the only equilibrium point and it is globally
asymptotically stable. From ρ (J) =

√
δ1δ2, we have a bifurcation at δ1δ2 = 1 (see figure

3.1).
When δ1δ2 < 1 the x1-nullcline and the x2-nullcline intersect only in one equilibrium. If

δ1δ2 > 1 the x1-nullcline and the x2-nullcline intersect in 3 equilibria: x̄0 = 0, x̄1 ∈ R2
+ and

x̄2 ∈ R2
−. This property holds for arbitrarily large n.

Case n = 500

Let us consider the case where n = 500. From (3.9) we chose an irreducible and non-
negative matrix J. As has been discussed in the previous sections the origin of the system
passes from globally asymptotically stable to unstable whenever the spectral radius of J
passes 1, this behaviour is depicted in figure 3.4. The trajectory’s evolution are depicted in
figure 3.2 if the initial condition x0 is in the interior of Rn

+, in figure 3.3 if x0 ∈ bd
(
Rn
+

)
.
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Figure 3.4 Irreducible neural network simulation in R500: Bifurcation at ρ(J) = 1.
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3.2.2 Power Control in Wireless Networks

The power level chosen by transmitter i is denoted by pi, vi denotes the variance of thermal
noise at the receiver i. The interference power at the ith node, Ii, includes the interference
from all the transmitter in the network and the thermal noise, and is defined in [14] in other
to model the continuous-time power dynamics:

d pi(t)
dt

= ki

(
−pi(t)+ γi

(
∑

j ̸=i, j∈T

g ji

gii
p j(t)+

vi

gii

))
(3.11)

where T denotes the set of transmitters, ki ∈ R+, ki > 0 is the proportionality constant, g ji

denotes the channel gain on the link between transmitter j and receiver i and γi denotes the
desired Signal-to-Interference-plus-Noise-Ratio. It is assumed that each transmitter i has
knowledge of the interference at its receiver only,

Ii(p(t)) = ∑
j ̸=i, j∈T

g ji

gii
p j(t)+

vi

gii
. (3.12)

Defining G = [gi j] as the gain matrix, the whole equation can be written as

ṗ(t) = K
(
−p(t)+ΓĜp(t)+η

)
(3.13)

where
K = diag{ki}
Γ = diag{γi}
η = diag(G)−1

1

Ĝ = diag(G)−1(GT −diag(G))

(3.14)

therefore the interference function is

I(p(t)) = KΓĜp(t)+Kη (3.15)

Thus equation (3.11) is similar to the system (2.2). Now I(p) = Ap+ b is strictly subho-
mogeneous of degree 1 if b > 0 thus conditions of Theorem 2.4.1 and Theorem 2.4.2 are
satisfied if G is irreducible and ρ(G) < 1. Therefore under ρ(G) < 1 and irreducibility of
G there exists a unique p∗ ∈ int(Rn

+) such that x(t, p0)→ x∗ for all p0 ∈ Rn
+\{0}.
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3.2.3 Reducible example

Let us consider the following reducible example in R14:

A =



0 0.4 0 0 0 0 0 0 0 0 0 0 0 0
0.4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.45 0 0 0 0 0 0 0 0 0 0
0 0 0.45 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0.25 0 0 0 0 0 0
0 0 0 5 0 0.25 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.25 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 0 0 0.4 0 0 0
0 0 0 0 0 0 0 0 0.4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 5 0 0.25 0
0 0 0 0 0 0 0 0 0 0 0 0.25 0 0
0 0 0 0 0 0 0 0 0 0 0 0 5 0



.

As we can observe, the sub-matrices Ai,i for i = 1, . . . ,7 are irreducible or 1× 1 zero ma-
trices. If we choose ϕi(xi) =

xi
1+xi

, i = 1, . . . ,7 then the spectral radius at the origin, i.e.

ρ

(
∂

∂xAϕ(0)
)

of each subsystems are as reported in table 3.1.

Table 3.1 Degradation rate and spectral radius of each subsystem

Subsystem
Properties

Degradation rate δ Spectral radius ρ

A1,1 0.1 0.4
A2,2 0.1 0.45
A3,3 0.5 0
A4,4 0.5 0.25
A5,5 0.5 0.4
A6,6 0.5 0.25
A7,7 0.5 0

From table 3.1, since the isolated systems Σ1 and Σ2 has degradation rate δi = 0.1 for
i ∈ Σ1 ∪Σ2 then they converge to a positive fixed point.

The non-isolated systems Σ3, Σ4, Σ5, Σ6 and Σ7 has δi = 0.5 for i ∈
7⋃

i=3
Σi then they converge
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to the origin, which is the only equilibrium point. The conditions of Theorem 3.1.1 are
satisfied thus the whole interconnected system converges to a positive fixed point if x0 is for
example x0 = (1,0,1,0,0,0,0,0,0,0,0,0,0,0)T

Figure 3.5 Reducible network simulation

From Figure 3.5 we can see that the network converges to a positive fixed point x̄ ∈R14.
In fact the smallest component of x̄, which is x̄11, is greater than zero.





Chapter 4

Conclusions

In this thesis we have analysed and fully characterized the stability properties of positive
nonlinear systems with degradation terms and in which the trajectory’s evolution is mono-
tone.
First of all we stated and proved all necessary results for the case of concave system dy-
namics, leading to a main self-contained theorem that guarantees existence and uniqueness
of an equilibrium point in the interior of Rn

+. These results were later extended to reducible
systems. Furthermore, we made a comparison to standard interference function and used
the scalability property, i.e. subhomogeneity, to extend our studies. This led to a more gen-
eral theorem that has as a sub case the theorem for systems with concave dynamics. In fact,
concavity implies subhomogeneity of degree 1.
A very import result demonstrated both for concave and subhomogeneous vector field is the
lemma that states that the spectral radius of the Jacobian matrix of f calculated in the pos-
itive equilibrium point must be less that one. This implies that the spectral abscissa of the
Jacobian matrix of the whole system calculated in this point is less than zero, thus Hurwitz.
For a generic nonlinear systems it is a sufficient condition to guarantee local asymptotic
stability in a neighbourhood but, under the assumptions of our main theorems, asymptotic
stability in the entire interior of Rn

+ is guaranteed.

4.1 Further developments

The class of subhomogeneous vector fields considered in this manuscript can be broaden.
For example the degradation term can be merged into the vector field f , i.e. ignored,
and then some conditions on the system’s vector field from our main theorems should be
changed. One possible approach could be finding some sufficient conditions so that sub-
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homogeneous vector field of degree 1 satisfies Schauder’s theorem, thus guaranteeing the
existence of a fixed point. Under assumptions of cooperativity uniqueness and convergence
will still be guaranteed.
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Appendix A

Simulation framework

Simulation R500

Figure A.1 Simulink model for simulation of case R500
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spectral radius conditions, 17
Standard interference functions, 30
subhomogeneity, unique fixed point, 38, 40
subhomogeneous, 3
subhomogeneous vector field, 3
system, cooperative, 7
system, monotone, 7

two-sided scalable interference function, 31
type K, 7
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