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Abstract

The aim of this thesis is to develop optimization techniques for financial portfolios, in order
to exploit information regarding causal relationships between considered financial variables,
described throughdirected acyclic graphs (DAGs) encoding the causal structure underlying the
data. More precisely we consider: (i) a budget B; (ii) a set ofNA investible financial assets; (iii)
a set ofNF non-investible financial factors, causally determining the evolution of the returns for
the considered financial assets. The objective of this thesis is to investigate the utility of causal
information in asset allocation tasks by theorizing and testing different models for portfolio
optimization. Thesemodels should bemore resistant to sudden shocks to themarket structure
and should loose less in terms of performancewhen the system is subjected to an unpredictable
shock.

This work is divided into three main chapters: In chapter 2 some theoretical background
material about portfolio optimization, DAGs and causality is introduced; in chapter 3 are in-
troduced portfolio optimization models based on Markovitz’s framework and afterwards are
theorized and explained a series of differentmethods for asset allocation based on graph cluster-
ing techniques; In chapter 4 all the models presented in the previous chapter are tested against
a randomly sampled dataset based on the causal structure of the system, both in the static and
intervened cases (where a sudden event changed the causal structure), in order to assess their
performances before and after a shock occurred and the results obtained are discussed.

Results showed the utility of causal information and causal graph structure in asset alloca-
tion tasks and causal models proposed proved to be more stable than benchmark ones in case
of soft and hard interventions on the system. Future research can be conducted to improve
further the methods proposed and to better exploit causal information and graph clustering
techniques.

iii



iv



Acknowledgments

This thesis was made possible thanks to Centai Institute S.p.a., where I spent my internship
working onmy thesis while supervised byDott. Bonchi Francesco, Dott. De FrancisciMorales
Gianmarco and PhD student D’Acunto Gabriele.
Here I found an inspiring working environment, where I was followed closely during the def-
inition and the realization of my project by a team of competent and passionate researchers,
who guided me into the research world.

In particular I want to thank Dott. Bonchi Francesco, for giving me the opportunity to work
in such a state-of-the-art environment and for his willingness to followme alongmy internship.

Also, I want to thank Dott. De Francisci Morales Gianmarco and D’Acunto Gabriele for daily
following me in my internship work and for guiding me, with ideas and suggestions, in the re-
alization of my project.

Finally, I want to thank Professor Roverato Alberto for guiding me in the writing of this thesis
with precision and willingness and for accepting my project and my ideas with interest.

v



vi



Contents

Abstract iii

Acknowledgments iii

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1

2 Theoretical IntroductiontoPortfoliooptimizationandcausalDAGs 3
2.1 Portfolio optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Quadratic Programming . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Mean-Variance optimization . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Risk-balanced portfolios . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Graph theory notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 DAGs and Bayesian Networks . . . . . . . . . . . . . . . . . . . . 8
2.2.3 TheMarkov Property . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 d-separation, d-faithfulness and sufficiency . . . . . . . . . . . . . . 11
2.2.5 The problem with causal interpretation of DAGs . . . . . . . . . . 12

2.3 Causality notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Presentation of different theoretical models 17
3.1 Sampling data from a theoretical distribution . . . . . . . . . . . . . . . . . 18

3.1.1 Manual definition of the SCM . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Random generation of the SCM . . . . . . . . . . . . . . . . . . . 20
3.1.3 Sampling the data . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Mean-variance optimization exploiting causal structure of the data . . . . . . 21
3.2.1 exploitation of causal structure . . . . . . . . . . . . . . . . . . . . 23

3.3 Iterative spectral clustering methods . . . . . . . . . . . . . . . . . . . . . . 26

vii



3.3.1 Graph Signal Processing and the study of Graph Fourier Transforma-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Repeated Portfolio cuts for undirected graphs . . . . . . . . . . . . 28
3.3.3 Repeated portfolio cuts for directed graphs . . . . . . . . . . . . . . 30
3.3.4 Estimating the graph directed Laplacian . . . . . . . . . . . . . . . 32

3.4 Graph Fourier Basis through Lovász extension of cut size set function . . . . 34
3.4.1 Sub-modular set functions and cut size Lovász extension . . . . . . . 34
3.4.2 k-way clustering algorithm . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Budget allocation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Model results and statistical analysis 39
4.1 Datasets and metrics used for model testing . . . . . . . . . . . . . . . . . . 40

4.1.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Model testing on unseen data . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Sharpe ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Maximum drawdown . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 interventions on sampled datasets . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Final considerations on the results obtained . . . . . . . . . . . . . 56

5 Conclusion 59

References 61

viii



Listing of figures

3.1 representation of the heat-maps for the two different matrices in a system of
24 assets and 12 factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Graphical representation of the Frobenious norm difference for an increasing
number of data points in a system with 24 assets and 12 factors . . . . . . . . 25

4.1 graphical representation of the sampled daily returns for assetsA1, ...,A18 and
factors F1, ..., F9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 graphical representation of the cumulative returns for some of the assets of
the network (in this case A1, ...,A9) . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Daily cumulative returns of Markovitz’s mean-variance model and Gramma-
trix model over two different networks with low (a) and high (b) number of
nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Sharpe ratio trend over 1000 repeated trials for mean-variance models . . . . 45
4.5 Daily cumulative returns of the Undirected, standard directed and bibliomet-

ric directed cut methods with both allocation methods . . . . . . . . . . . . 46
4.6 Sharpe ratio trend over 1000 repeated trials for 2-way clustering algorithms . . 47
4.7 Daily cumulative returns plot (a) and Sharpe ratio trend (b) for Directed

Laplacian and Lovász extension cuts models . . . . . . . . . . . . . . . . . 48
4.8 Sharpe ratio trend over 1000 repeated trials for all the 10 models . . . . . . . 49
4.9 Sharpe ratio mean values for the 10 models . . . . . . . . . . . . . . . . . . 49
4.10 Volatility Trend over 1000 trials for all the 10 models . . . . . . . . . . . . . 50
4.11 Volatility mean values for the 10 models . . . . . . . . . . . . . . . . . . . . 50
4.12 Maximum drawdown Trend over 1000 trials for all the 10 models . . . . . . . 51
4.13 Maximum drawdownmean values for the 10 models . . . . . . . . . . . . . 51
4.14 Sharpe ratio mean values obtained in a static environment (red) and after the

action of soft (green) and hard (blue) interventions . . . . . . . . . . . . . . 53
4.15 Sharpe ratio variances obtained in a static environment (red) and after the ac-

tion of soft (green) and hard (blue) interventions . . . . . . . . . . . . . . . 53
4.16 Sharpe ratio mean values percentage change in soft (red) and hard (blue) in-

tervention cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.17 Volatility mean values obtained in a static environment (red) and after the ac-

tion of soft (green) and hard (blue) interventions . . . . . . . . . . . . . . . 54
4.18 Volatility variances obtained in a static environment (red) and after the action

of soft (green) and hard (blue) interventions . . . . . . . . . . . . . . . . . 55

ix



4.19 Volatility mean values percentage change in soft (red) and hard (blue) inter-
vention cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.20 Maximumdrawdownmean values obtained in a static environment (red) and
after the action of soft (green) and hard (blue) interventions . . . . . . . . . 56

4.21 Maximum drawdown mean values percentage change in soft (red) and hard
(blue) intervention cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



Listing of tables

4.1 Sharpe ratio statistics for Mean-variance and Grammodels . . . . . . . . . . 45
4.2 Sharpe ratio statistics for 2-way clustering methods . . . . . . . . . . . . . . 45
4.3 Sharpe ratio statistics for directed Laplacian and Lovász extension methods . . 46
4.4 Volatility statistics (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Volatility statistics (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Maximum drawdown statistics (1) . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Maximum drawdown statistics (2) . . . . . . . . . . . . . . . . . . . . . . 52

xi



xii



Listing of acronyms

DAG . . . . . . . . . . Directed Acyclic Graph

QP . . . . . . . . . . . . Quadratic Programming

BN . . . . . . . . . . . . Bayesian Network

SCM . . . . . . . . . . Structured Causal Model

GFT . . . . . . . . . . . Graph Fourier Transformation

MDD . . . . . . . . . . MaximumDrawdown

xiii



xiv



1
Introduction

In the last few years, global economy has been shaken to the foundations by a number of unex-
pected andunpredictable events that impacted greatly on thefinancialworld as awhole. Things
such as a global pandemic and the Ukrainian armed conflict hit hard on both big investment
funds and small single investors, that were relying on classical financial tools (unable to deal
with such extreme cases) to optimize their investments in the form of assets portfolios. For this
reason, during my internship at Centai Institute S.p.a., we decided to research a way to build a
novelmethod for asset allocation tasks in order to produceportfoliosmore stable tounexpected
and sudden changes to the global market structure.

The scope of this work was to propose a novel approach to asset allocation problems, in or-
der to overcome the instability issues of classical portfolio optimization techniques with the
exploitation of two important mathematical concepts: the concept of causality and its repre-
sentation through the use ofDirected Acyclic Graphs (DAGs). The basic idea behind this study
is the fact that methods currently used to tackle these problems are relying just on correlation
measures between investible assetsA, completely discarding information about the causal struc-
ture of the financial universe; if we could correctly analyze this structure it could be possible to
better predict failures to specific market nodes thanks to the knowledge of their causes, result-
ing in more stable portfolio allocations. Therefore, the main focus of the research work was
on understanding whether the analysis of the causal structure underlying financial data could
bring any advantage to asset allocation tasks, in order to make them more reliable in times of
high market distress.
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This thesis aims to present ideas andmodels elaborated to tackle this problem and is divided
into three main parts: In chapter 2 some background material about portfolio optimization,
graph theory and the mathematical concept of causality is presented, in order to introduce
the main theoretical reference to this work. In chapter 3, all the models exploited during this
research work are presented in their theoretical form and finally, in chapter 4, the previously
presented models are tested against a sampled dataset, simulating their behaviour in situations
of stability and under sudden shocks to the market structure.

It is important to remember that this study does not have the claim to produce the best
possible method for asset allocation tasks, but it aims to demonstrate that the knowledge of
the causal structure underlying the data could be a precious tool to evaluate and produce well
balanced and stable financial portfolios that could absorb the effect of sudden changes to the
market structure better than traditionalmethods. Also, wewill not cover the problemof causal
inference and we will assume the causal graph underlying the data as already known.
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2
Theoretical Introduction to Portfolio

optimization and causal DAGs

As already stated in the introduction, the main idea of this paper is to exploit the notion of
causality in Directed Acyclic Graphs (DAGs) to improve the stability of financial portfolios
during times of financial distress such as a global pandemic or a drastic fall of the market. To
better understand the ideas behind the model proposed in this work we first have to look at
some background material that will explain at least in part the theoretical basis behind this
thesis. Wewill first introduce some notes on basic portfolio optimization techniques in section
2.1, then we will move on to introduce graphical representations and some basics of graph
theory in section 2.2 and lastly wewill introduce the concept of causalitywith itsmathematical
formalism in section 2.3.

2.1 Portfolio optimization

It is decades that the problem on how to optimize a financial portfolio rises questions among
economists andmathematicians, since an easy and efficient way to tackle this task would result
in a drastic change in how we invest our money and in the type of risk we incur when doing
so. Basically, we are looking for an instrument, in the form of a mathematical equation or an
algorithm, that tells us how to invest and how to be a better investor, limiting the risks while

3



maximizing the return, using the limited amount of historical data on stock prices that we have
at disposal. In other words we want to exploit historical data to decide where to spend our
money and in what financial assets to invest.
The question that we are posing is this: we have a budget B and a set of N financial assets

to invest in (those can be stocks, bonds, real estate investments etc.) how do we divide the
total budget B in order to maximize the expected return and reducing at the same time the
risk of failure? This is the question that Henry Markovitz, an American economist, tried to
address with its work in 1952when he introduced theMean-Variance framework for portfolio
optimization, giving birth to the portfolio allocation practice in finance.
In the same period of time, Markovitz was also working on algorithms to solve quadratic pro-
gramming problems and exploited its research on this field in order to generate the best possible
allocation strategy for anN-assets financial portfolio.
Mean-Variance optimization is still utilized up to these days, for a various number of reasons,
first of all the fact that is based on quadratic programming (QP), thing that results in a problem
that is easily manageable and solvable; also, in commerce there is a various number of tools that
help to solve QP problems in a very straightforward and fast way.
To better understand how the mean-variance optimization works, some basics quadratic pro-
gramming theory will be introduced first.

2.1.1 Quadratic Programming

The simplestway to describe aQuadratic Programming problem is as an optimization problem
with quadratic objective function and linear inequality constraints of the type Sx ≤ T.

x∗ = argmin
x

( 1
2
xTQx− xTR

)
.

s.t. Sx ≤ T
(2.1)

where x andR areN× 1 vectors andQ is aN×Nmatrix [1]. This formulation allows to set up
also equality constraints (Ax = B) or box constraints (x− ≤ x ≤ x+) alongside the inequality
ones in the form 

Ax = B

Cx = D

x− ≤ x ≤ x+
(2.2)
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that can be translated into linear inequality ones with this system of equations.
−A
A
C
−In
In

 x ≤


−B
B
D
−x−

x+

 . (2.3)

IfQ is a symmetric positive definite matrix the solution exists since the function f(x) is convex
[1].

2.1.2 Mean-Variance optimization

In his work, as previously said, Markovitz defined precisely what does portfolio selectionmeans
[1]:

”The investor does (or should) consider expected return a desirable thing and vari-
ance of return an undesirable thing”.

Given this quote,Markovitz defined the best portfolio allocation as the one thatmaximizes the
expected return for a given level of risk andminimizes at the same time the risk for a desired level
of expected return [1]. We considerN assets andweneed to find the vectorw = (w1,w2, ....wN)

of the weights of the portfolio that defines what percentage of budget should allocated to each
asset considered. It is also needed to fully invest the portfolio, meaning that the sum over all
the weights w1, ...wN should be equal to one

n∑
i=1

xi = 1Tnx = 1 (2.4)

and we define R = (R1,R2, ....RN), representing the vector of asset returns, where Ri is the
return of asset i and the return of the whole portfolio is given by

R(x) =
n∑
i=1

xiRi = xTR. (2.5)

Theobjective of this asset allocationproblem is, as already said, tomaximize the expected return
while minimizing the risk (represented by the volatility of the portfolio), so we need to define

5



the portfolio’s expected return

μ(x) = E
[
R(x)

]
= xTμ (2.6)

and the portfolio variance is equal to

σ2(x) = E
[(
R(x)− μ(x)

)(
R(x)− μ(x)

)T]
= xTΣx (2.7)

where Σ = E
[
(R − μ)(R − μ)T

]
is covariance matrix of expected returns and μ = E

[
R
]
is

the vector of expected returns [1].
Returning onMarkovitz’s work, the idea is to solve a problem that:

1. maximizes the expected return of the portfolio under a volatility constraint

max μ(x) s.t. σ(x) ≤ σ∗ (2.8)

2. minimizes the volatility under an expected return constraint

min σ(x) s.t. μ(x) ≥ μ∗. (2.9)

The reduction of these two sub-problems into a single one is needed, since we have to extract
just a single weight vector w to tell us how to allocate the budget B, and for this reason a new
formulation is needed, one that enables us to maximize the expected return and minimize the
volatility at the same time. What Markovitz proposed in his paper was a problem of the form

U(x) = xTμ− φ
2
xTΣx (2.10)

where the parameter φ is called risk aversion parameter and represents the tendency of the in-
vestor to avoid high risk investments [1]. Since we are better at solving minimization problems
than maximization ones, instead of maximizing U(x) is preferred to minimize−U(x). In this
wayMarkovitz’s problem (2.10) can bi viewed as a Quadratic programming problem:

x∗(γ) = argmin
x

( 1
2
xTΣx− γxTμ

)
s.t. 1Tnx = 1

(2.11)

where γ = φ− 1.

6



We are effectively considering aQP problemwhereQ = Σ,R = γμ,A = 1Tn and B = 1. In this
way we have a standard and tractable problem for witch it is easy to set up bonds on weights,
inequality between asset classes etc [1].

From this point, since the original problem was reduced to a QP problem, we can exploit
methods such as the interior pointsmethod or any form of gradient projectionmethod used com-
monly to solve QP problems. These methods are widely available and are integrated in the ma-
jority ofmathematical software and inmost of themathematical programming languages such
as Python, MATLAB and R.

2.1.3 Risk-balanced portfolios

Markovitz Portfolios, as seen in section 2.1.2, work on quadratic programming in order tomax-
imize the expected return while minimizing the overall risk of the full invested portfolio. This
allocation technique is fast and provides good results, but is too sensitive even to the smallest
change in asset values, and so it is normally regarded as a risky technique when considering to
invest in assets with high volatility. Risk-Parity allocated portfolios, another family of portfolio
allocation techniques, tries to solve this issue focusing more on estimating and balancing risk
rather thanmaximizing return. The idea is to construct awell diversified portfolios by distribut-
ing the overall risk equally across different clusters of assets in a graph-structured portfolio. We
will later see this type of allocation strategies whenwewill work onminimumportfolio cuts and
graph spectral clustering techniques.

2.2 Graph theory notes

In many nowadays problems involving multivariate modeling, even the simplest tasks can be-
come extremely costly in term of computational time, due to the huge number of variables
considered in real-world scenarios. For this reason Graph theory is widely used to treat prob-
lems such as optimization ones. A graph is a powerful tool that can encode information about
variables in order to formalize the probabilistic and causal structures underlying the data at our
disposal, facilitating computations and utilizing information thatwould not be considered just
using raw data. In the next paragraphs will be introduced basic notions and concept regarding
graph theory, later to be used to model our data in order to give them a causal interpretation.
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2.2.1 Basic definitions

We can define a Graph G =
{
X, E

}
as a collection of nodes X =

{
X1, ....XN

}
and edges E ⊂

N × N ([2][3]). In this case, each node Xi with i = 1, ....,N (where N is the number of
nodes in the graph) represents a different financial asset to be invested in, whereas each edge
that connects two nodes (and it is denoted as a pair (i, j) ∈ E , where (i, j) represents the edge
connecting nodes i and j) represents a particular relation between the two assets considered.
Any two nodes connected by an edge are considered adjacent. Edges can be directed, for which
we write (i → j) or (j → i) to indicate the direction or undirected, for which we don’t define
a direction, and we write (i− j) [2].
There is an undirected path from i to k if exists a sequence of distinct nodesXi....Xk connected
to each other regardless the type of connection they have (directed or undirected).
There is instead a directed path if in the path from Xi to Xk the direction of the arrowheads is
consistent (always pointing in the same direction).
A cycle occurs when there exists a path from a node Xi to itself of the type

(
Xi....Xk,Xi) and it

can be directed or undirected, depending on the type of edges in the path.
We can talk about a full connectivitywhen there is a connection between every pair of nodes in
the graph, so when

(
Xi,Xj

)
∈ E ∀ Xi,Xj ∈ XwithX the set of all nodes in the graph.

2.2.2 DAGs and Bayesian Networks

When a graphG has just direct edges and it doesn’t show any cycle we can talk about aDirected
Acyclic Graph (DAG). In a DAG we can define a parent Xi of the node Xj if (i, j) ∈ E but
(j, i) /∈ E (if there is a direct connection from Xi to Xj) and in this case Xj is called child node
to Xi. If there is a path from Xi to Xj, Xj is called a descendant of Xi and Xi is called an ancestor
for Xj. If no paths are present between two nodes, one is simply called a non-descendant of the
other node and vice versa [2].

Defined what are the relationships between particular nodes in a directed acyclic graph, we
can briefly describe some interesting structures that can be systematically encountered when
dealing with graphs. In a DAGwe have a v-structurewhen two non-adjacent nodes are parents
of the same child node, called in this case a collider(

Xj → C← Xi
)
. (2.12)

Also, the exact opposite of a collider canbedefinedwhen it exists a node that is a parent for other

8



twonon-adjacent nodes (with no connection between them), we call this node a confounder [3].

(
Xj ← H→ Xi

)
. (2.13)

To transpose graph information in a more mathematically tractable representation we can use
the matrix associated with the DAG that for simplicity will be called weight matrix. What
was called a weight matrix is a structure that encodes the connections of a graph in a matricial
form, where each row vector represents a variableXi and each value of that vector represent the
interaction of node iwith other nodes; interaction can be positive or negative, whereas a value
of 0means that there are no interaction between nodeXi andXj with j = 1, .., i− 1, i+ 1, ...N.
In other words, each value (i, j) of the weight matrix defines if there is a parental relationship
between Xi and Xj.
For example, if we consider this simple system of equations representing a direct graph

X1 = 2X2 + 3X3

X2 = 3X3 + 2

X3 = 2X1 + 1

(2.14)

we can write its weight matrix as  0 2 3
0 0 3
2 0 0

 . (2.15)

Once defined how the graph is represented, in order to give a real world meaning to this
kind of structure we need to associate a probability distribution to each one of the nodes in
the graph. We can so define a Bayesian Network structure as a DAGwhere the nodes represent
random variables Xi....XN and where each variable is conditionally independent from all its
non-descendants given the set of its parents [2], so basically we can define a joint probability
distribution for the Bayesian Network as

P
(
X
)
=

d∏
i=1

P
(
Xi|pai

)
(2.16)

where with pai we indicate the set of the parents of node i [3].
Furthermore, we can say thatP

(
X
)
, as the joint probability distribution of the graph, factorizes

over G and we can more correctly define a Bayesian Network as the couple (G,P) where P
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factorizes over G.

2.2.3 TheMarkov Property

Markov property is a property that helps to understand the relation between graphs and prob-
ability distributions and it is normally assumed as true when dealing with graphical models,
especially in the field of causal inference. The exact definition of Markov property is given
below:

Given a DAG G and a joint distribution PX, this distribution is said to satisfy:

1. the global Markov property if

A ⊥⊥G B | C⇒ A ⊥⊥ B | C (2.17)

for all the disjoint vertex sets A, B, C (where symbol⊥⊥G denotes d-separation,
defined below)

2. the localMarkov property if each variable is independent of its non-descendants
given its parents

3. theMarkov factorization property with respect to DAG G if

p(x) = p(x1, ..., xd) =
d∏
i=1

p(xi|paGi ) (2.18)

with p(x) density of distribution P(X) and paGi as the parents of node i in
graph G [4].

Basically, as introduced before when talking about Bayesian Networks, one can
predict the value of a specific node Xj just looking at the variables that are not
conditionally independent from it. This helps to reduce the complexity of the
computations, especially in large networks, and can be formalized with the con-
cept ofMarkov blanket.

TheMarkov Blanket of a nodeXj in a DAG G = {X, E} [4] is the smallest setM
such that

Y ⊥⊥ V\({Y} ∪M) given M (2.19)

that basically means that information about node Xj cannot be extracted from
nodes outside of its Markov blanketM.

10



2.2.4 d-separation, d-faithfulness and sufficiency

Strictly related to the previously defined Markov Property lies the notion of d-
separation. In aDAGG we can define that a path between nodes i and j is blocked
by a set S whenever there is a node k such that k ∈ S in one of these three cases
[3]:

i→ k→ j
i← k← j
i← k→ j

(2.20)

or such that k and no descendants of k are in S and

i→ k← j. (2.21)

The definition of d-separation implies that if i and j are d-separated by node k,
if we observe the state of k, evidence propagation between i and j (or j and i) is
blocked and so it’s possible to say that d-separation implies conditional Indepen-
dence.

Next, we can report here the definition of d-faithfulness:

A distribution is d-faithful to a DAGG if no conditional independence
relations other than the ones entailed by theMarkov property are present
[5].

Basically this translates into the fact that all the conditional independence rela-
tions are exclusively the ones represented in the DAG.

Lastly we can talk about another assumption usually considered when handling
Bayesian Networks i.e. sufficiency assumption [3].

This assumption is related to DAGs derived from observational data, where it is
important to be sure to have collected enough data to define a correct representa-
tion of the graph structure. Sufficiency of the graph is assumed when there are
no unobserved confounders that can lead to a wrong interpretation of the sys-
tem, given that the absence of a confounder could be confused with non existing
edges between nodes that normally would have been d-separated, giving birth to
a wrong joint probability distribution for the BN.
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2.2.5 Theproblemwithcausal interpretationofDAGs

To complete this introduction to graph theory we want to talk briefly about the
interpretation of a DAG such as a structure representing real world data. This
might seem an obvious thing, but the existence of direct links inDAGs not always
reflect the presence of a cause-effect relationship between two variables i and j
[2]. A direct link between these two variables could in fact indicate a cause-effect
relation between parent and children, but it could also just signal the presence of
a strong correlation, in the case for example of a hidden unobserved node that
works as a confounder, and for this reason when building a Bayesian Network it
is good practice to know exactly the cause-effect relationships present in the data.
From now on, themodels we will work onwill be considered as DAGs respecting
the previously introduced sufficiency assumption, meaning that no hidden con-
founders are present and, having imposed the underlying cause-effect structure
of the data,our DAGs will represent causal relations between nodes.

2.3 Causality notes

As stated in the introduction of this work, the fundamental idea of this thesis is
to exploit the knowledge of the causal structure behind financial data in order to
improve the efficiency of portfolio allocation strategies. To tackle this problem
we have to introduce formally the concept of Causality. The study of causality
is simply the study of cause-effect relations between mathematical entities in the
form of random variables. The first thing we need to know when dealing with
causality is that a causal structure, that defines the cause-effect relations between
variables, entails not just a probability distribution, but also other things, such as
an interventional distribution and counterfactual reasoning. This makes causal
reasoning much more complete and powerful than probabilistic reasoning, since
we are considering a richer and more complex model underlying the data, that
allows the study the effect of interventions andothermodification to the structure
of the model considered.
Basically there are more information to use and this could lead to a greater com-
prehension of the phenomena we are trying to explain using causal models.

2.3.1 Structural CausalModels

In the previous paragraph we briefly introduced what is causal reasoning, why it
is worth considering it and why it can be good in certain situations, but now we
try to introduce formally a way to represent it mathematically.
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Wewill start from a basic definition of a Structural CausalModel:

A Structural Causal Model (SCM) C := (S,PN) consists of a collec-
tion S of n (structural) assignments of the type

Xi := fi(pai,Ni) i = 1, ...., n (2.22)

where pai ⊆ C{X1, ...,Xn}\{Xi} are the parents of Xi; and a joint dis-
tribution PN = PN1 , ...,PNn over the noise variables, which we require
to be jointly independent, for which PN is a product distribution. The
graph G of an SCM is obtained by creating one vertex for each Xi and
drawing directed edges from each parent pai to Xi. We also assume this
graph to be acyclic. We sometimes call the elements of pai not only par-
ents, but also direct causes of Xi, and we call Xi a direct effect of each of
its direct causes [4].

In practice, an SCMresults as a systemof equations, where each node is expressed
in function of its direct causes (its parents) and a noise factorNi (usually as aGaus-
sian white noise, but the distribution can change), exactly as the representation
of a Bayesian network defined in section 2.2.2. With this parallelism, we can find
the joint distribution that the SCM C defines over its variables and we call it the
entailed probability distribution PC

X of the SCM [4].

With this knowledge on howwe can define cause-effect relations among variables
of our system, we now can exploit theorems, definitions and properties of ele-
ments of graph theory to work on causal systems for which we know the SCM
and its entailed distribution PC

X.

Finally, we can assume we are working in a state ofminimality of the SCMwhen
we are sure that the representation we chose for themodel is the simplest possible.

2.3.2 Interventions

Previously we saw how a SCM entails a probabilistic distribution, but as we al-
ready said at the beginning of paragraph 2.3, we have much more than that in a
causal model. Interventions are mathematical tools that we can use to study how
the system behaves when an external agent acts on a previously well determined
system [4]. In practice, to intervene on a variable in a system means to directly
change its value or distribution, with no effect of parent or ancestor nodes. So,
for example, if in a graph we change the distribution of the node Xi to a Bayesian
one with p = 0.5 (basically a coin flip), this random variable will no longer have
any parental direct causal effect, it will depend only on the coin flip.
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In this way we effectively changed the causal structure of the graph, since direct
edges representing a parental relationship with Xi are no longer present and basi-
cally Xi became a source node (or an isolated one it it has no children too).

Using the formalism defined before, we consider an SCM C := (S,PN) and its
entailed distribution PC

X. At this point we can replace previously defined assign-
ments to

Xi := f̃
(
pai˜ ,Ni˜

)
(2.23)

andwefind thenewentaileddistribution thatwe call the interventiondistribution;
we denote it as

PC̃
X = P

C;do
(
Xi:=f̃(pai˜ ,Ni˜ )

)
X . (2.24)

Here we utilize a particular operator, called the ”do()” operator [6]. It is used to
represent the effect of an external modification, on one or more assignments, to
the system as a whole and it differs very much from a normal observation from
where we can define a conditional probability. In conditional probability in fact,
we ask what is the probability of observing a particular value for a certain random
variable given that we know another variable assumed a particular value (P(A |
B = 0)). In this case we observe a realization of variable B and we conserve the
underlying causal structure intact. Instead, if we use the do() operator we obtain
P(A | do(B = 0))where we are basically saying that the value of B was forced to
0 and the causal structure of the model was actively changed into a new one, the
intervention distribution.

There are mainly two different types of interventions possible on a DAG [4]:

1. hard interventions: interventions that completely change the structure of
the graph, for which pai˜ ̸= pai, for example assigning a constant value to
a specific node, deleting all the parental relationships of the original graph
for node i (this in particular is a so called atomic intervention of the type
do(Xi := kwith k constant)

2. soft interventions: also called imperfect interventions, where no modifica-
tions aremade to direct causal interactions between variables and pai˜ = pai
(we can obtain an intervention such as this one by changing for example the
noise distribution of a specific variable).

Finally, it is possible to define that exists a total causal effect of the variable Xj on
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Xi if and only if

X ̸⊥⊥ Y in PC;do(X:=NX̃)
X (2.25)

withNX̃ a random variable of any type [4].
In practice we are looking at the effect of the intervention on other variables that
could be effected. If this happens, it means that Xj has a causal effect on that
specific variable for which there is a direct parental link fromXj. Obviously there
cannot be a total causal effect of Xj on Xi if there is no direct path between the
two variables, but sometimes even a direct path is not a sufficient condition for
the existence of a total causal effect. The study of Total causal effects is crucial in
causal discovery tasks, sincewe can infer thepresenceof direct links fromavariable
to another just by studying the total causal effect obtained after an intervention
on the system.

2.3.3 Counterfactuals

At the beginning of section 2.3 we assessed how interventions and observations
of the same systems are a radically different thing. Now we try to formalize this
thing in the form of counterfactuals. Counterfactual reasoning can be reduced
to a specific way of asking ”what would have happened if I would have done that
instead of this?”. We are combining observations of the model and the analysis
of the intervention distribution in which all the environment features remain un-
changed except for the variablewe are considering in the counterfactual statement.
Basically we are asking ”what would have been the resulting distribution if i would
have done a specific type of intervention on the system?”.
Formally we can define a counterfactual SCMby changing the structure of its en-
tailed probability distribution using the do() operator to perform an intervention
on it

CX=x :=
(
S,PC|X=x

X

)
. (2.26)

Combined with interventions, counterfactuals SCMs are one of the main tools
for causal structure discovery tasks.
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3
Presentation of different theoretical

models

In chapter 2 were introduced the theoretical basis to understand the models that
were used to work on asset allocation tasks while trying to exploit the causal struc-
ture of the data at our disposal. As already stated in the introduction paragraph,
we will just work on the task of asset allocation, completely skipping the problem
of causal discovery and causal inference of the graph, assuming to already know
the complete structure of the SCM C and of its entailed probability distribution
PC
X. Knowing this, it is possible to make a few assumptions on the data structure

we are going to work on:

• the causal structure of the data respects the Markov property in section
2.2.3, which essentially means that each node only depends from its par-
ents.

• the SCM C respect the structural minimality condition

• we can assume the sufficiency of themodel, that is we take as granted the fact
that there are no hidden confounders

Also, since we are dealing with a regular structure, it is natural to assume valid
all the properties introduced in chapter 2 about DAGs, Bayesian Networks and
SCMs.

In this chapter we will only introduce the models theoretically, we will test them
and report the results obtained in chapter 4.
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3.1 Sampling data from a theoretical distri-
bution

Before describing the models, it is important to define what type of data we are
going to work on and how the sampling of these data took place. As already said
in the introduction to this chapter, we will not focus on the problem of causal
inference and both the structure and the coefficients of the weight matrix of the
causal graph defined by the SCM Cwill be assumed as already known.
The Universe we are trying to model consists of Na investible assets A1, ...,ANa ,
with no direct interaction between them (direct connections between assets are
not permitted), andNf non-investible factors F1, ..., FNf that work as parents for
the assetsA and that can interact between each other (direct connections between
factors are permitted). From this point, two separate routes were used to generate
the structural causal model:

1. Amanual generation, where variables were defined one by one
2. A random generation starting from the weight matrix of the causal DAG

3.1.1 Manual definition of the SCM

Following this path, we proceed to define all the variables, starting from random
noises as normal distributions with mean μ and variance σ2

Z1, ...,ZNa+Nf ∼ N
(
μ, σ2

)
(3.1)

then defining theNf factors (where ai,j ∈ R and ai,j ̸= 0 ⇐⇒ j ∈ pai)

F1 = a1,2F2 + a1,3F3 + · · ·+ a1,NfFNf + ZF1

...
FNf = aNf,1F1 + aNf,2F2 + · · ·+ aNf,Nf−1FNf−1 + ZFNf

(3.2)

and finally theNa assets (where bi,j ∈ R and bi,j ̸= 0 ⇐⇒ j ∈ pai)

A1 = b1,1F1 + b1,2F2 + · · ·+ b1,NfFNf + ZA1

...
ANa = bNa,1F1 + bNa,2F2 + · · ·+ bNa,NfFNf + ZANa

.

(3.3)
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In manually defining this structure we need to consider what is called the causal
ordering of the SCM, that is an internal ordering where the variable at i − th
position can only be causally influenced by variables in position {1, 2, ..., i − 1}.
This will pose some boundaries on how to build the weight matrix for the causal
DAG related to the newly defined SCM, that must be a permutation of a strictly
upper/lower triangular matrix depending on the type of ordering considered (di-
rected or inverse).
From now on the causal ordering considered will be inverse, in other words we
will construct theweightmatrixwith in first position the last element in the causal
ordering proceeding till the last row, representing the first element in the causal
ordering, not being influenced by any other node.

Knowing this, it is possible to define a matrix C as the weigh matrix of the causal
graph associated to the SCM, where the firstNa rows and columns represent or-
dered assetsA and the rest of the rows and columns represent ordered factorsF (all
factors are higher in the causal ordering with respect to assets and for this reason
appear in the last positions of thematrix). Each element of row i = 1, ...,Na+Nf
represent theparental interactionofnode iwithnode j = 1, ..., i−1, i+1, ...,Na+
Nf with element in position (i, j) being different from 0 if and only if j ∈ pai.
Given how we defined matrix Cwe can view it as a block matrix

C =

[
∅ B
∅ A

]
(3.4)

with B of dimensionNa ×Nf (parental interaction of factors with assets)

B =


b11 b12 · · · b1Nf

b21 b22 · · · b2Nf
...

... . . . ...
bNa1 bNa2 · · · bNaNf

 (3.5)

and A of dimensionNf ×Nf (parental interactions of factors with other factors)

A =


0 a12 · · · a1Nf

0 0 · · · a2Nf
...

... . . . ...
0 0 · · · 0

 (3.6)

with the first block being 0 due to the fact that no interactions are possible be-
tween assets.
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3.1.2 Random generation of the SCM

Another method implemented tries to randomly generate both connections and
parameters of the causal graph, following the directives given in paragraph 3.1.1.

To do this, we first randomly generate the elements of an empty matrix C (of di-
mensions (Na+Nf)×(Na+Nf)) using as chosen distribution a randomnormal
∼ N

(
μ, σ2). Once this is done, we select random elements of this matrix to elim-

inate with the aid of a binomial distribution with p = 1
2 , so basically we choose

what elements to keep with (Na + Nf) × (Na + Nf) coin flips. We define a ma-
trix Bwith each element∈ {0, 1} and we filter matrix C performing a point-wise
multiplication with binomial matrix B. Finally, with the aid of the linear algebra
package of numpy, filtered matrix C is converted into an upper triangular matrix
(since there is an inverse causal ordering) and its first block of dimensionsNa×Na
is set to 0 in order to impose no interactions between different assets. Noise terms
are defined exactly as before, one for each assignment, both for assets and factors
alike.

Now that we introduced these two different methods, it is possible to go on with
the actual sampling of data points from the newly created SCM.

3.1.3 Sampling the data

In both of the previously defined paths for generating a sample SCM the final
data structure obtained was the weight matrix C of the causal graph entailed by
the SCM.Our goal is to generate a dataset withNa+Nf columns, where each col-
umn represents a different asset or factor and contains a time-series of the returns
for that specific node given a determined period of time T expressed as days in a
variable number of trading years (each trading year has exactly 252 trading days).

Starting from the matricial representation of the SCMwe can write

X = CX+ Z (3.7)

whereX is a matrix withNa +Nf columns and T rows, C is the weight matrix of
the SCMC andZ is amatrix of dimensionT×(Na+Nf) (exactly asX) accounting
for the daily error terms for each one of the variables.
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From this formulation we can write

IX− CX = Z(
I− C

)
X = Z
X = (I− C)−1Z
X = MZ

(3.8)

where M = (I − C)−1 and matrix (I − C) it is surely invertible since C it is
strictly upper triangular by construction. KnowingmatrixC fromprevious SCM
definition we can immediately defineM and just the sampling of Z is needed in
order to find datasetX of daily returns.

Normally, when talking about financial assets (mainly stocks)we are in possession
of the Adjusted Closing Price from which it is possible to derive the daily return
considering the percentage change respect to the previous day’s closing price

RAi =
Adj.CloseAi(t)− Adj.CloseAi(t− 1)

Adj.CloseAi(t− 1)
(3.9)

but sincewe are allocating portfoliomodel’s based on returns it is better and easier
to directly sample these values, since it is possible to take as a general assumption
the fact that daily returns usually follow a normal distributionN

(
μ, σ2

)
, where

μ → 0. For this reason, matrix Z of random noises was sampled as a normal
distributionN

(
μ, 1

)
with a variance of 1 in order not to have excessively volatile

assets to work on and μ→ 0 in order to simulate real-world stock returns.

Finally, with a simplematricialmultiplicationbetweenM andZ it is easy to obtain
the desired matrixX.

3.2 Mean-varianceoptimizationexploitingcausal
structure of the data

Aswe introduced in section 2.1.2, mean-variance (orMean-Risk) optimized port-
folios arewidely used in finance since their advent in the initial work ofMarkovitz,
given that their formulation is easy to solve thanks to it being in a quadratic form,
thing that enables a solution search through one of themany algorithms and tools
to optimize QP problems.

Considered that it is so commonlyused evennowadays,wedecided to takeMarkovitz’s
portfolio as one of the baselines to test our models against, in order to see if the
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actual knowledge of the causal structure underlying the data really gives an edge
over standard and well established method such as Markovitz’s one.

To do this, we decided to exploit a Python package called Riskfolio-Lib, con-
sisting in a wide variety of tools to perform asset allocation tasks such as the op-
timization of a Markovitz’s mean variance portfolio. This tool is based on the
classicalmodel formulation described in equations (2.10) and (2.11), deriving the
sample mean μ and sample covariance matrix Σ from historical data of the time
series provided (the one that was sampled in paragraph 3.1.3). In this case, the
optimal portfolio is calculated on the base of the general problem

optimize
w

F(w)

s.t. Aw ≤ B.
φ(w) ≤ c

(3.10)

where F(w) is an objective function chosen by the user, Aw ≤ B are the usual
linear constraints and φ(w) ≤ c is a linear constraint on a convex risk measure
φ(w), also defined by the user [7]. We chose to utilize Sharpe ratio as the objective
function F(w) and the standard deviation as risk measure φ(w).

Sharpe ratio is a function used to calculate the risk adjusted return ratio from a
portfolio returns series and its definition is reported below:

Sharpe(X) =
E(X)− rf
φ(X)

(3.11)

where X is the vector of portfolio returns (based on portfolio allocation w), rf is
the so called risk free rate (usually is 0) and φ(X) is the chosen risk measure (in
this case the standard deviation calculated on portfolio returns X).

Optimizing the objective function F(w) in this case means maximizing the ex-
pected return of the portfolio (E(X)), while minimizing the standard deviation
of portfolio returns (in the form of the risk measure φ(X)) with a risk constraint
φ(w) ≤ c.

In this base model, two are the main constraints imposed:

1. Theportfolio is fully invested (
∑Na

i=1 wi = 1),meaning that all of the budget
B at our disposal is allocated onto the different assets considered

2. The portfolio is long-only (wi ≥ 0 ∀i = 1, ...,Na), meaning that there is
no possibility of short selling (all weight values must be greater than 0)
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Given all this, we obtain a vector wopt = {w1,w2, ...,wNa}, where each wi repre-
sents the percentage of budget to be allocated on asset Ai.
As we can see, this type of portfolio does not consider at all the presence of fi-
nancial factors F1, ..., FNf and the causal relations presents in the original DAG
are discarded in favour of correlation measures between given assets. This means
that we obtain a result based only on the values of variance-covariance matrix Σ,
that can be hard to estimate correctly when in presence of large portfolios (with
a big number of assetsNa) and with a short time window to work on, thing that
happens very frequently in real-world trading scenarios, since each trading year
has only a limited amount of days (252) and it is not possible to gain a reasonable
amount of points just considering a normal amount of years.
Also, in this way there is a great loss of information, since discarding both direc-
tion andweight of all the edges in the graph could bemisleading and could lead to
the elimination of possible connections between assets, not visible in a correlation
environment, but important in extreme situations, leading to a portfolio that is
stable in a static scenario (such as the one just considered), but very unstablewhen
considering unexpected events.

3.2.1 exploitation of causal structure

As stated before, the classical mean-variance portfolio optimization does not con-
sider any type of information other than correlationmeasures in the form of vari-
ances and covariances contained inΣ and obtained through the study of historical
data. The first way considered to inject information about the causal structure in
an asset allocation task, was to directly work onto the same mean-variance opti-
mization problem, while modifying the parameters considered.
To understand this we have to go back to equation (3.8), where matrix M was
obtained

X = MZ with M = (I− C)−1. (3.12)

Previously, we defined Z as the matrix of error terms, where each error term is
distributed as a Gaussian white noise with

Z1, ...,ZNa+Nf = N
(
μ, σ2

)
(3.13)

with μ→ 0 and σ2 = 1.
Thismeans thatZ is distributed as amultivariate normalN

(
μ,Σ

)
whereμ is equal

to the sum of all the single noise factor’s means
∑N

i=1 μi and Σ = I. With this
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assumptions it is possible to look back at equation (3.12) and notice that, sincewe
consider a static structure for the graphG,M is a constant term and, thanks to the
properties of normal distributions, it is possible to say thatX is still a multivariate
normal distribution

X ∼ N
(
μX,M

TIM
)
= N

(
μX,M

TM
)

(3.14)

whereMTM happens to be the Grammatrix of the vectorial space where the vec-
tors x1, x2, ..., xT are the rows of the matrix X. Gram matrix is symmetric and
positive semidefinite by construction and thus it is possible to use it in a vast vari-
ety of optimization problems.

Until now we have considered an undirected problem where the main focus was
on correctly estimating the variance-covariancematrixΣ from the sampleddataset
in order to use it for allocating the best portfolio possible, but looking back at
equation (3.14) we can see how Σ happens to be simply an estimator for gram
matrixG.

(a) Covariance matrix heat‐map (b) gram matrix heat‐map

Figure 3.1: representation of the heat‐maps for the two different matrices in a system of 24 assets and 12 factors

In fact, as we can see from the plots in figure 3.1, the graphical representation for
the twomatricesΣ andG it is nearly identicalwhen there is an adequate amount of
points to calculate variances and covariances, and this assumption can be demon-
strated by computing and visualizing the evolution of the Frobenious Norm for
the two matrices under exam [8].

Frobenious Norm for an m × n matrix M is the square root of the sum of the
square value of its elements

∥M∥F =

√√√√ m∑
i=1

m∑
j=1

m2
ij (3.15)
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Figure 3.2: Graphical representation of the Frobenious norm difference for an increasing number of data points in a system
with 24 assets and 12 factors

and in figure 3.2 it is represented the difference between the Frobenious norm
calculate for matrices Σ and G with an increasing number of data points. It is
easy to see how the difference tends to 0 when the time-window T increases and
for this reason it is safe to assume that Σ is a good estimator of G when there are
enough data points to work on.

This means that knowing the causal structure underneath the data should give us
an edge even in the classical mean-variance portfolio optimization and it is possi-
ble to just reproduce the same optimization process that took place at the begin-
ning of paragraph 2.1.2, with minor changes:

1. Since matrix G is known from the distribution, it is possible to exchange
it for Σ in the mean-variance problem (there’s no need to estimate G from
historical data if the causal structure is already known)

2. Additional constraints of the typeAx = B are needed to eliminate any type
of investment on financial factors (the full universe of A + F is considered
in gram matrix G, but only assets are investible elements, so it is necessary
to impose any possible allocation of factors to 0)

with these adjustments the models should have an edge over the classical version
using Σ, at least in scenarios with high values of Na and low values of T, where
the estimation of covariances can result problematic.
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3.3 Iterative spectral clustering methods

So far, we worked on methods of mean-variance optimization, where the focus
was onmaximizing the expected returnE(X)while at the same time reducing the
overall risk of the portfolio, expressed as the weighted volatility of the assets.

These methods could maybe produce decent portfolios in a static scenario, but
tend to fail when subject to stronger market fluctuations and, since our goal is to
exploit causal information to develop an allocation technique that produce more
stable portfolios, maybe a complete change of paradigm should occur, to find a
method that produces more balanced and diversified allocations.

Also, in the previous methods, to exploit the causal information contained in
the data, we just considered the structure of the matrix C in order to derive the
Gramian G used to perform mean-variance optimization. This obviously could
lead to an advance over standard methods in a situation of short time windows
andverywideportfolios, butmaybeworkingdirectly on theDAGstructure could
lead to an even greater exploitationof causal informationunderneath the available
data.

For this reason, the primary focus of the work was shifted fromMarkovitz’s the-
oryontoRisk-Parity allocation techniques, where, as introduced inparagraph2.1.3,
the idea is to build the most diversified portfolio possible, allocating the budget
on different assets in order to equally divide the portfolio risk. This in theory
should produce portfolios where there are no riskier options and thus this allo-
cation technique should be stabler where mean-variance would fail (for example
with the failure of a low volatility stock).

Following this path, the best way to exploit the causal DAG structure in order to
produce a risk-parity allocated portfolio was to work on Graph clustering meth-
ods. The idea is to cluster the causal graph to produce different sub-graphs with
elements strongly connected among each other, and to allocate onto these clus-
ters the budget B in a balanced way, to arrive to an optimal situation where diver-
sification in the portfolio reaches its maximum. To do this, a variety of spectral
clusteringmethods were considered, trying to exploit the properties of theGraph
Fourier Transformation.
In these next paragraphs, we will present different methods to perform spectral
clustering of both directed and undirected graphs, namely:

1. portfolio clustering through repeated portfolio cuts

2. direct evaluation of the directed graph Laplacian for portfolio cuts
3. studyof a convex relaxationof theminimumcutproblem indirected graphs
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Finally, we will introduce the different allocation techniques we considered to
equally divide the budget B among the different clusters obtained with methods
(1), (2) and (3).

3.3.1 Graph Signal Processing and the study ofGraph
Fourier Transformations

Before beginning to explain the models proposed, it is needed to briefly present
what exactly is spectral clustering and how graph Fourier Transformation (GFT)
is built.

We can start by saying that spectral clustering it is obviously a branch of graph
clustering methods, used to detect communities of nodes based on their mutual
connections and edges. To do so, spectral clustering methods study signals f on
the system in frequency domain, by exploiting both eigenvectors and eigenvalues
of the graph Laplacian matrix L.

Each possible signal on the graph is defined as a mapping f : V → N, where V
is the set of all vertices of a graph G(V, E). Basically f is a function that converts
frequencies on each vertex of the graph into real numbers f(i) and each signal f
can be projected onto the eigenvectors of the graph Laplacian L, for this reason
the study of the Laplacian eigenvectors via GFT is an important step in under-
standing how to cluster the graph G.

We can now define the GFT as a transformation that eigendecomposes matrix L
into its eigenvalues and eigenvectors, where eigenvalues represents frequencies on
the graph, whether eigenvectors work as an orthonormal basis for theGFT, called
the Fourier basis.

GF [f](λl) = f̂(λl) =< f, ul >=
N∑
i=1

f(i)ul(i) (3.16)

where λl and ul are respectively the l− th eigenvector and eigenvalue of the graph
Laplacian.

The study of frequency domain usually shows the clustering behavior of the net-
work, but this formulation normally works for undirected graphs, when instead
our goal is to present clustering methods for DAGs. Therefore, we need to find
ways to calculate eigenvectors and eigenvalues for directed graphs in order to ex-
ploit spectral clustering principles even in this case.
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3.3.2 Repeated Portfolio cuts for undirected graphs

The first and easiest way to divide a graph in a sequence of sub-graphs with strong
internal connections is to exploit theminimum cut clusteringmethod that tries to
iteratively cut the graph into smaller partitions on the base of theminimum cut
algorithm. We first consider a version of the algorithm suited only for undirected
graphs, later to beused as another baseline for other clusteringmethods exploiting
the directed nature of the causal graph.

Since we are in an undirected universe we can consider a graph G = {V, E}with
N vertices (representing factors and assets in our financial environment) and a
weight matrixW can be defined, where each element of the matrix describes the
connection between asset i and asset j

Wij =
|σij|√
σiiσjj

= |ρij| (3.17)

where σij is the correlation between assets i and j, whether σii and σjj are the respec-
tive variances of assets i and j [9]. Basically, we are defining the weight matrix of
an undirected graph structure based solely on the correlations between sampled
data for the different factors and assets. The resultingmatrixW is symmetric, this
means that it perfectly represent an undirected graph (where all connections are
symmetric) and thatW = WT.

Having defined this undirected graph structure, we cannow try to cluster it trying
to minimize what is defined as the cut size function of the graph [9]:

Cut(V1,V2) =
∑
i∈V1

∑
j∈V2

Wij. (3.18)

This function defines a cut on the graph, i.e. the removal of a certain amount of
edges that divides graph G into two distinct sub-graphsV1 andV2; each cut is the
sum of all the weighted edges that it eliminates (Wij, meaning that its minimiza-
tion would also minimize the number and the importance of the deleted edges,
bringing us to the two best possible partitions for graph G.

However, this minimization process could frequently lead to a situation of iso-
lated nodes, thing that could impact negatively the budget allocation to be per-
formed later on, and for this reasonwe opted to utilize a normalized version of the
cut size function that adds a term in order to guarantee that the two sub-graphs
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V1 andV2 are as large as possible:

CutN(V1,V2) =
( 1
N1

+
1
N2

)∑
i∈V1

∑
j∈V2

Wij (3.19)

whereN1 andN2 are the number of nodes in sub-graphs V1 and V2 respectively;
in this way the minimization problem adds a term that reaches its minimum for
N1 = N2 =

N
2 meaning that we are enforcing the two subsets to be as similar as

possible in term of dimension [9].

Minimum cut and minimum normalized cut are NP-hard problems, meaning
that their exact numerical solution becomes unfeasible with standard methods
when N grows too much, since the number of possible cuts in a graph with N
nodes is equal to 2(N−1) − 1 that becomes incredibly large just with N > 100,
situation that usually occurs in real-world scenarios.

Though, we know that there exists an approximate solution for the minimum
normalize cut in the frequency domain [9], given by

CutN(V1,V2) =
xTLx
xTx

(3.20)

where L is the graph’s Lagrangian and x is an indicator vector defined as

x(n) =

{
1
N1
, forn ∈ V1,

− 1
N2
, forn ∈ V2,

. (3.21)

Given this, the minimization of equation (3.20) can also be written as

min
x

xTLx s.t. xTx = 1 (3.22)

and can be solved with the eigendecomposition Lx = λkx of Lagrangian L into
its eigenvectorsX and its eigenvalues λk.

Sincewe are in anundirected situation, finding the graphLaplacian is pretty straight-
forward, since it can be derived from the symmetric weight matrixW and the so
calledDegree matrix D ∈ RN×N, diagonal with elements defined as

Dii =
N∑
n=1

Win (3.23)
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where element i of the diagonal is the sum of all the connections of node i with
all other nodes in the network.
From this, we can define the Laplacian matrix for an undirected graph as

L = D−W. (3.24)

Once the graph Laplacian is defined, it is possible to proceed with its eigendecom-
position, finding its eigenvectors u1, ..., ul, that we consider to find the best pos-
sible solution for equation (3.20) through (3.22), where we can see that optimal
values for indicator vector x are exactly the eigenvectors u of the graph Laplacian.
Skipping the obvious basic solution in the form of the first constant eigenvector
u1 (that has all elements equal, not being able to define any partition), we can find
Xopt in the form of the second eigenvector u2, also called Fielder eigenvector [9].
Knowing that indicator vector x has the form expressed in equation (3.21), it is
possible to define the two optimal partition on the base of the sign function of
xopt = u2 obtaining a straightforward way to allocate each vertex in its best sub-
graph:

sign(x(n)) =

{
1, for n ∈ V1,

−1, for n ∈ V2,
. (3.25)

Once obtained the two partitionsV1 andV2 we simply choose the bigger one and
we restart the whole process, continuing to cut the biggest sub-graph in the set
until the desired number of cuts c is reached and c − 1 sub-graphs are obtained.
The whole process can be reported in algorithms (3.1) and (3.3).

3.3.3 Repeated portfolio cuts for directed graphs

What we did until now was to find balanced partition in a graph based on just
correlationmeasures, used to define the weight matrixW for the fully connected
undirected graph used to describe the data.
This approach has the same problems encountered when dealing with standard
mean-variance optimization, i.e. the method only considers a graph made of as-
sets, without the presence of financial factors, the fact that we rely solely on corre-
lations measures to find the different partitions and, following this, the fact that
we obtain a fully connected undirected graph, encoding even the smallest covari-
ance values into edges that don’t reflect real connections between assets.
To deal with these critical issues the best thing to do would be to find a way to
work on sparser matrices, with a better encoding of the real causal connections
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Algorithm 3.1 Single portfolio cut
input: weight matrixW
output: V1andV2subsets of input graph
ObtainD fromW
D,W→ L = D−W
eigendecomposition of L
xopt ← u2
for node i in original graph
if xopt[i] > 0

Node i ∈ V1
else

Node i ∈ V2
end if

end for

Algorithm 3.2 Repeated portfolio cuts
input: W (weight matrix) and c (number of cuts)
output: V1,V2, ...,Vc+1 sub-graphs
create empty list
list gets G
for i in c

Check for the biggest sub-graph in list
FindWbiggest
V1,V2← SinglePortfolioCut(Wbiggest)
list addV1,V2
list remove G

end for
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between assets and factors, but the method presented in the previous paragraph
3.3.2 is designed to work on symmetric matrices (such as undirected versionW)
in order to find the graph Laplacian L with the formula L = D −W, whereas
weightmatrixC of the causal graph is asymmetric due to direct connections being
asymmetric in nature.
For this reason, we decided towork onways to symmetrize directedweightmatrix
C, in order to exploit algorithms (3.1) and (3.2) for directed graph clustering tasks.
The first type of symmetrization considered is of the typeC+ CT [10][11], that
produces a symmetric weightmatrixCsym for a new undirected graph. In this case
the number of edges is maintained, and the directionality information contained
in the edges of the original DAG is encoded in the new weights of the graph ob-
tained.
However, this type of matrix symmetrization could not account well for another
important features normally used to cluster directed graphs, i.e. the number and
the identity of in and out edges of a node. In fact, to cluster directed networks,
we should consider not just the direct connections between two nodes i and j, but
also if these nodes have one or more common parents or children.
For this reason we moved onto a different type of matrix symmetrization that
would also account for the in and out edges of each node of the network. Authors
Satuluri and Parthasarathy [11] considered two different matrices:

1. A = CCT called bibliographic coupling matrix, trying to capture similar
outgoing edges from each pair of nodes

2. B = CTC called co-citation strength matrix, capturing similar incoming
edges for each pair of nodes.

Combining these two matrices we obtain

Cbib = A+ B = CCT + CTC (3.26)

called Bibliometric Symmetrization. In this way, with the application of previous
algorithms we should be able to obtain clusters based on the causal structure of
the graph instead on just pure correlation measures as before.

3.3.4 Estimating the graph directed Laplacian

In the previous clustering methods, we worked on a symmetrized undirected rep-
resentation of the DAG encoding the cause-effect relations of the system under
analysis. The two symmetrizationmethods try to encode causal information into
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undirected graphs, to exploit the fact that in symmetric networks it is extremely
easy to derive the graph Laplacian (and as a consequence its eigenvalues and eigen-
vectors with whom to perform the clustering algorithms).

This time, instead of working on weight matrixC, we will propose a formulation
to derive what it’s called theDirected Graph Laplacian Ld [10][12].

The formulation for a directed version of the graph Laplacian was initially pro-
posed by Chung [12] where he defined Ld as

Ld = I− Π 1
2PΠ− 1

2 +Π− 1
2PTΠ 1

2

2
. (3.27)

MatrixP is the so called transitionmatrix and is defined on the base of the weight
matrix C and the outgoing connections of each node in the graph. Its elements
can be calculated as

Pij =
Cij

Kout
i
. (3.28)

MatrixΠ instead, is the diagonal matrix representing the stationary distribution
of a random walk performed on the DAG under analysis

Π = diag(π1, ..., πn) (3.29)

where πi element of the diagonal is the probability to find the random walk on
node i after a time t, with t→∞.

The importantpoint about this formulation is that it respects the so calledCheeger
inequality [12]

2h(G) ≥ λ ≥ h2(G)
2Δ(G)

(3.30)

where Δ(G) is the maximum number of connections that any node can have in
graph G, λ is the spectral gap of the Lagrangian (the distance between its two
biggest eigenvalues) and h(G) is the so called Cheeger constant defined as

h(G) := min
{ |∂A|
|A|

s.t. A ∈ V, 0 < |A| ≤ 1
2
|V|

}
(3.31)

withV the set of all vectors in G,A as a subset ofV and |∂A| as a set of edges in E
going from a node in A to a node outside A (inV\A).
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Basically, Cheeger constant can be seen as a measure of the clustering behavior of
the network under analysis and the fact that formulation (3.27) respects inequal-
ity (3.30) means that it is suited for a clustering analysis of the graph.

Knowing this, we can integrate the calculation of Ld in algorithm (3.2) in order
to iteratively find a good set of partitions for graph G.

3.4 Graph Fourier Basis through Lovász ex-
tension of cut size set function

Until now, the different methods considered for graph clustering worked on try-
ing to find the graph Laplacian (directed or undirected) in order to exploit a con-
vex relaxation of the graph cut size function (3.20) to find the best division of
vertices into the different clusters V1 and V2. From here, these methods used an
iterative approach, by searching at every iteration for the biggest sub-graph in the
set, dividing it into two smaller partitions and continuing the process until the
desired number of cuts was reached.

This approach has obviously its advantages, since it is easy to solve, relatively fast
and it’s easily implemented in any context, but working on a different sub-graph
each time couldbe away tomiss on important information about cause-effect rela-
tions between elements in different sub-graphs, even if causal information should
be stored in the directed version of the graph Laplacian Ld or in the symmetrized
version of the weight matrices.

In this section we want to propose a method for graph clustering that aims to
extract a Graph Fourier Basis from a convex extension of the cut size function
(3.18), in order to use it to perform a k-way clustering of the graph G, separating
it in k partitions without cutting the graph in an iterative manner.

3.4.1 Sub-modular set functions and cut size Lovász
extension

Let us recall the cut size function that was introduced in section 3.3.2:

cut(S, S̄) :=
∑

i∈S,j∈S̄

wij (3.32)

where wij is the edge connecting vector iwith vector j.
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We know that equation (3.32) is a set function, i.e. a function that has as domain
a family of subsets of a given super-set (in this case 2V , the set of all the possible
subsets of vertices in G). Also, it is known that cut size function is a so called
sub-modular set function, whose definition is given below [13]

A set function F : 2V → R is sub-modular if and only if, ∀A,B ⊆ V ,
it satisfies the following inequality:

F(A) + F(B) ≥ F(A ∪ B) + F(A ∩ B). (3.33)

With this knowledge, we can introduce the so called Lováz extension of a generic
set function [13]:

Let F : 2V → R be a set function with F(∅) = 0. Let x ∈ RN be
ordered in increasing order such that x1 ≤ x2 ≤ · · · ≤ xN. Define
C0 ≜ V and Ci ≜ {j ∈ V : xj > xi for i > 0. Then, the Lovász
extension f : RN → R of F, evaluated at x, is given by:

f(x) =
N∑
i=1

xi(F(Ci−1)− F(Ci))

=
N−1∑
i=1

F(Ci)(xi+1 − xi) + x1F(V).
(3.34)

Now, a very important property of every sub-modular function is the fact that its
Lovász extension is a convex function (thus very easy to optimize) and we know
that the optimization of a set function F(S) in its domain it’s equivalent to the
optimization of its Lovász extension on an hypercube [0, 1]N [13]. Formally

min
S⊆V

F(S) = min
X∈[0,1]N

f(x). (3.35)

Basically, to find the set ∫ thatminimizes set function F(∫) it is equal tominimize
f(x) on an hypercube with dimensionN.
In [13], the Lovasz extension of cut size function for a directed graphwas defined
as theGraph directed variation (GDV) of graph signals

f(x) =
N∑

i,j=1

wji[xi − xj]+ := GDV(x) (3.36)

where [y]+ := max{0, y}.
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Given this definition of the Lovász extension of the cut size function, we canmin-
imize the graph directed variation defined before in order to obtain the set ofN
orthonormal vectors of the Graph Fourier basisX := (x1, x2, ..., xN) ∈ RN×N of
the system with this minimization problem:

min
X∈RN×N

GDV(X) :=
N∑
k=1

GDV(xk)

s.t. XTX = I, x1 = b1

(3.37)

where the two constraints are posed in order to assure that the basis is orthonor-
mal and to avoid the trivial null solution. This, even if the Lovász extension is
defined convex for a sub-modular function, it is still a non-convex problem due
to the constraints we posed to grant orthogonality.

Thus, a proper method is required to solve this problem and to obtain the graph
Fourier basis needed for the clustering task. Among all the possible choices, we
decided to adopt the Splitting Orthogonality Constraints method, also called SOC
method, an algorithm based on the alternating method of multipliers (ADMM)
that aims to solve the problem of non-convexity of the constraints by iteratively
splitting them with the aid of an auxiliary variable P [13].

The convergence of this method has still to bemathematically demonstrated, but
it has shown good results in practical situations and it deals directly with themain
problem of equation (3.37), i.e. the non-convex orthogonality constraints.

3.4.2 k-way clustering algorithm

As we introduced at the beginning of section 3.4, the idea is to produce a k-way
clustering algorithm, in order not to work on separated sub-graphs, but to pro-
duce k partitions directly from the original graph G.
Now, we know that matrix X of orthonormal vectors obtained with equation
(3.37) can be considered as the graph Fourier basis of the network. Columns of
X can be then viewed as eigenvectors of the graph Laplacian, with their associated
eigenvalues, representing frequencies in the spectral domain we are working on.

We can then consider each row i of matrix X as a vertex in the graph G and each
element of this row can be viewed as a feature associating the i-th vertex with each
one of the eigenvalues related to the N eigenvectors of the graph Laplacian; re-
membering that each eigenvalue λ1, ..., λN represent a frequency in the frequency
domain, we can account for the first k features for each vertex in order to obtain
k clusters in the network, exploiting the k-means clustering algorithm [14].
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Thus, to produce k clusters in the graph we just need to look at the first k eigen-
values of the graph Laplacian, in this case obtained with the minimization of the
Lovász extension of the cut size function.
The entire procedure is reported in algorithm (3.3).

Algorithm 3.3 k-way directed graph clustering
use SOC optimization to deriveXmatrix of eigenvectors
find the first k eigenvectors u1, ..., uk
define features for the different verticesV1, ...,VK based on u1, ..., uk
use K-MEANS clustering to obtain k subsets

3.5 Budget allocation schemes

Finally, it is possible to talk about budget allocation schemes for spectral cluster-
ing methods. Till now, the only result obtained by the different clustering meth-
ods was to separate the original causal graph into small clusters supposedly based
on causal relations between contained assets and factors, but to obtain a proper
allocation vectorw, it is needed a defined rule to divide the budget B among the k
clusters obtained. To do this, we decided to tackle the problem in two different
ways [9]:

1. Allocation 1 Wi =
1

2K1 , whereKi is the number of cuts needed to obtain
subgraph Gi. Basically at each iteration of the clustering algorithm we keep
track of the number of cuts used to reach that specific situation and later we
use that information to allocate the right amount of budget onto i-th asset;
this means that clusters that are very different from the rest of the graph are
splitted earlier and will receive a greater percentage of budget respect to the
ones that are close together. This method is the more articulate of the two
and it tries to create a particular hierarchy among the sub-graphs in order to
correctly allocate the budget B.

2. Allocation 2 Wi =
1

K+1 , where K is the total number of cuts performed
to obtain K + 1 sub-graphs Gi. This is a simpler method, more suited for
cases where there is not a true hierarchy among sub-graphs, such as in the
k-way clustering based on the Lovász extension of the cut size, where all the
clusters are obtained at the same time using aK-means clustering algorithm.

Once obtained the designed weightWi for each subgraph, we just need to divide
this percentage of budget equally among all the members of the cluster, finally
obtaining an allocation vectorw = w1,w2, .....,wNa+Nf .
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Since the graph consists of both investible assets and non investible factors, there
is the necessity to re-allocate the percentage of budget of factors F onto different
assetsA; to do this we decided to split the budget of a specific factor among all the
assets present in its cluster. In the rare case of a cluster presenting only factors it is
needed to split the budget between all the assets with whom a specific factor has
connectionwith, in order to respect the necessity to have a fully invested portfolio
(
∑Na

i=1 wi = 1).
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4
Model results and statistical analysis

Up to this point, we worked on a theoretical definition of the different models,
trying to exploit information derived from the causal structure underlying the
available data, now the focus will be on the analysis of the models presented in
chapter 3, conducting out-of-sample tests on randomly generated datasets in or-
der to see their performance on new and unseen data. Also, we will try to test
the same models on new datasets obtained from different intervention distribu-
tions, constructed on the basis of the original SCM C, performing one or more
hard/soft interventions on the system under analysis.

Behind this idea there is the will to test if the models proposed can have some
advantages over the benchmark ones in situations where a sudden modification
of the market occurs, modification modeled with the aid of interventions on the
static system.

This chapter will be divided into three sections: In the first one, the dataset used
for calculating asset allocation vectors wwill be introduced together with the dif-
ferent metrics considered for the analysis of the performance on the sample data
of the models, while in the second part we will effectively test the models to as-
sess their performance on the static system they were trained on. Finally, in the
third section, intervention distributions will be introduced and the models will
be tested on newly sampled datasets based on different types of interventions per-
formed on the original SCM, in order to see if any advantage over the benchmark
can be found when in presence of unexpected and sudden changes.
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4.1 Datasetsandmetricsusedformodeltest-
ing

In paragraph 3.1.3we introduced themethodologies used for randomly sampling
the data points representing asset returns, used in the presentedmodels to obtain
asset allocation vectors w. These data were sampled on the basis of an weight ma-
trix of the causal DAG derived from the SCM, graph that in this specific case was
composed ofN = 27 nodes, divided intoNa = 18 investible assetsA andNf = 9
non-investible factors F.
The size of the graph and the exact composition of assets and factors was deter-
mined randomly, with the only constraint of having the number of assets at least
double the number of factors, in order to avoid as much as possible the situation
of finding clusters in graphG with only or mostly factors, causing the problem of
having to divide the allocated budget into different subsets, mining the ability of
the model to correctly diversify the investments. Also, such a number of nodes
was chosen to ease the computations and speed up the process of model-testing,
while still giving access to graph-clustering possibilities.
After determining the values forNa andNf, the total length of the time series to
sample was defined. We decided to sample it in terms of number of trading years,
so a number of trading days equal to a multiple of 252 was sampled. A total of
2520pointswere sampled from thedistribution, later tobedivided into twoparts,
with 252×8 = 2016 points for the training set and the remaining 252×2 points
for the testing set.
Also, as we already introduced in paragraph 3.1.3, since the idea is to directly
sample the daily returns for each asset, it is possible to assume each noise factor
Zi, .....,ZNa+Nf to be distributed as a random normal N ∼

(
μ, σ2

)
with μ = 0

and σ2 = 1.
Given this it is possible to extract from matrices C and Z a number T of samples
representing a simulationof realworld asset returns, with a time-wise distribution
visible in figure 4.1 and 4.2, representing the instantaneous daily returns and the
cumulative returns of random assets of the system under analysis.
After the definition of the dataset it is now possible to introduce the different
metrics later to be used to estimate the results of the various models.

4.1.1 Metrics

After defining on what data the models will be tested on, we need to define what
are themetrics that will be considered in order to evaluate the performance of the
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Figure 4.1: graphical representation of the sampled daily returns for assetsA1, ...,A18 and factors F1, ..., F9

Figure 4.2: graphical representation of the cumulative returns for some of the assets of the network (in this caseA1, ...,A9)

obtained portfolios, with the aim to detect any difference that could confirm the
better performance of a model over the others.

To do this, three metrics were considered:

1. Sharpe Ratio This metric was already introduced earlier in chapter 3 with
equation (3.11), but it will be recalled here with a slightly different form:

Sharpe Ratio =
E[RX]− Rf

StdDev(RX)
(4.1)

where E[RX] is the expected return of the portfolio under analysis, Rf is
called the risk free rate andStdDev(RX) is the standarddeviationof the port-
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folio returns. Thismetric is pretty straightforward, since it is directly related
to themaximization of the expected return with at the same time the reduc-
tion of the risk associated to the portfolio (represented by the standard de-
viation). Basically, Sharpe ratio defines when an investment has a positive
risk/reward ratio, and values of this metric over 1 are considered desirable
in financial analysis, since it indicates that a particular investment correctly
balances its volatility with a good level of expected return.
Alone, this metric is not enough to define the goodness of a specific portfo-
lio, since it just returns an indication of the relation between these two val-
ues, but this only explains howmuch excess return the investor gets for any
unit of risk considered, not how risky or how rewarding a specific set of in-
vestments is overall. In practice, two very different portfolio could have the
same exact Sharpe ratio, one with high volatility and high expected return
and one with both values really low, and the only Sharpe analysis wouldn’t
be able to provide enough information to choose between the two models.

2. VolatilityThis is simply the standard deviation of the portfolio under anal-
ysis. Normally, the daily standard deviation is considered and then is multi-
plied by

√
T, with T as the length of the testing period considered, in order

to scale the volatility to the entire time window. This metric can give us an
idea on how risky is a specific asset or on what type of portfolio we are in-
vesting on (a risky one or a safer one). Volatility and Sharpe ratio combined
can return an interesting overview on the constructed portfolio in terms of
risk and reward obtained.

3. Maximum Drawdown MDD is a measure of the riskiness of the portfo-
lio allocation and it is calculated considering the maximum observed loss
from a peak to a trough of a portfolio in a time window T, it represents the
downside risk of the portfolio in a specific time window:

MDD =
Trough value− Peak Value

Peak value
. (4.2)

With the analysis of the volatility of a portfolio it is possible to see how risky
it is a certain investment, but standard deviation can be negative or positive,
and a risky asset can also provide the investor with big returns, whether the
measure of maximum drawdown only indicate what is the biggest loss that
can occur. It is calculated considering the peaks and the troughs of the cu-
mulative returns of the portfolio under analysis.

This will be the metrics later to be used to evaluate the performances of the dif-
ferent asset allocation techniques, both in presence or in absence of interventions
on the original dataset.
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4.2 Model testing on unseen data

In this paragraph we will test the models presented in chapter 3 on a small subset
of testing data obtained during the sampling phase, equal to two trading years and
withT = 252×2 points. This should display how the different portfolios works
in a static environment, where the causal ordering and the parental relations be-
tween assets and factors are considered as constant and where each asset or factor
has approximately the same normal distribution.

In order to obtain significant results, a total of n = 1000 repeated trials will be
considered, in which all the different models will be trained and tested against
the same train and test sets. More precisely, at each iteration a new dataset with
252× 10 elements is created and divided into training and test set; each portfolio
is then optimized on the new training data and tested against the new test set.

Finally each one of the previously introduced metrics is calculated for each differ-
ent portfolio and it is stored inside a newdataframe. At the end of then iterations,
the statistical distribution of the different metrics is considered in order to make
confrontations between all the models under analysis.

It is necessary to state that since all of the models will be tested against data sam-
pled on the base of very general assumption (similar distribution of returns for
example), our main interest is to consider the results in relative terms, without
looking too much at the absolute values obtained for Sharpe ratio, volatility and
maximum drawdown, that could change drastically when tested in a real world
scenario.

4.2.1 Sharpe ratio

The first metric we will consider in order to evaluate the different models after
n = 1000 trials is the Sharpe ratio; this will give an indication about what port-
folio is more suited to balance the maximization of the expected return with the
minimization of the portfolio volatility.

But first it is interesting to look at some single trial results. In figures 4.3a and
4.3b are represented some single trials obtained with Mean-variance Markovitz’s
portfolio and of its realization exploiting the GrammatrixG.

These are the cumulative returns obtainedmultiplying the allocation vector of the
two portfolioswith the daily returns of the sampled assetsA in order to obtain the
daily return for each one of the two models; the two single trials were obtained
by training and testing the models against the dataset introduced previously in
paragraph 4.1, with 27 total nodes (fig. 4.3a) and against a new sampled dataset
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(a) 27 total nodes

(b) 450 total nodes

Figure 4.3: Daily cumulative returns of Markovitz’s mean‐variance model and Gram matrix model over two different
networks with low (a) and high (b) number of nodes

with 450 total nodes (fig. 4.3b). It is easy to see that, as predicted, the two port-
folios obtain the same cumulative returns when the system is composed of a low
number of assets, while with greater dimensions (such as 450) the two methods
have clear discrepancies given by the increasing difficulty to correctly calculate the
covariance matrix Σ.

Given this, in figure 4.4 we present the Sharpe ratio trend for the mean-variance
and the Grammatrix models, calculated over the 1000 trials described above.

In this case, since the network has only a total of 27 nodes (fig. 4.3a), as expected
the two profiles obtained are almost identical.

We can look instead at the results obtained considering the repeated cutsmethods,
employed both in undirected and directed forms and with both the symmetriza-
tions considered (standard and bibliometric) for the direct case; for these three
portfolios both methods for budget allocation described in section 3.5 were ex-
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Figure 4.4: Sharpe ratio trend over 1000 repeated trials for mean‐variance models

Mean-Variance Gram
Mean 0.470913 0.0.471578
σ2 0.502969 0.501897

Table 4.1: Sharpe ratio statistics for Mean‐variance and Gram models

ploited, callingAllocation 1 the pseudo hierarchicalmethodWi =
1

2K1 (fig. 4.5a)
and withAllocation 2 the equal allocation methodWi =

1
K+1 (fig. 4.5b).

From figure 4.6 we can take a look at the Sharpe ratio trend for the three different
methods with both allocation schemes considered; Also looking at the results re-
ported in table 4.2, it is easy to see how practically all the versions of the cut size
method obtain slightly better results than the standardmean-variance in terms of
mean value of Sharpe ratio after repeated trials, with practically the same value of
variance.

Cut1 Cut2 D.Cut 1 D.Cut 2 B.Cut 1 B.Cut 2
Mean 0.493988 0.496226 0.491990 0.490848 0.490855 0.488683
σ2 0.499332 0.499188 0.499803 0.498675 0.499727 0.498157

Table 4.2: Sharpe ratio statistics for 2‐way clustering methods

Finally we can take a look at the results in terms of cumulative returns and Sharpe
ratio for the Lovász extension cutmethod and the directed Laplacian cutmethod
in figures 4.7a and 4.7b. Also in this case no clear differences can be noted in the
static case, where k-way Lovász extension algorithms seems to have a slight edge
in terms of Sharpe ratio performances over the other 2-way clustering methods,
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(a) Allocation 1

(b) Allocation 2

Figure 4.5: Daily cumulative returns of the Undirected, standard directed and bibliometric directed cut methods with both
allocation methods

but in such a static case all the differences are minimal and still the overall shape
is almost the same.

Directed Laplacian cut Lovász extension cut
Mean 0.499410 0.483163
σ2 0.500032 0.493228

Table 4.3: Sharpe ratio statistics for directed Laplacian and Lovász extension methods

We can then summarize all the results in terms of Sharpe ratio in figures 4.8 and
4.9, where it is possible to see the different trends, the mean values and the vari-
ances of the Sharpe ratio for different portfolios allocations.
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Figure 4.6: Sharpe ratio trend over 1000 repeated trials for 2‐way clustering algorithms

4.2.2 Volatility

Just analyzing the Sharpe ratio is not enough to assess the robustness of the dif-
ferent portfolios and for this reason it is needed to consider other two metrics
introduced in section 4.1.1, namely Volatility andMaximum drawdown.

As you can see in figure 4.10, while in terms of Sharpe ratio the values were very
similar for all the different models, in this case it is possible to notice immediately
some clear differences between the portfolios under analysis.

It is clearly visible the different shapes of the volatility trends for three macro-
groups of models:

• Mean-variance models, as you can see from tables 4.4 and 4.5 and figure
4.11, have a lower volatility mean value respect to other models, but at the
same time have a flatter distribution, providing the highest encountered
value in terms of variance.

• Models based on undirected cuts and on the Lovász extension have higher
values in terms of volatility mean values, but their distribution is more reg-
ular and with a lower variance.

• Models based on directed cuts (with both standard and bibliometric sym-
metrizations) and directed Laplacian instead, while obtaining similar values
to other clusteringmethods in terms of volatility mean values, have the best
results in term of volatility variance, with very peaked distributions (as you
can see in fig. 4.10)
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(a) Daily cumulative returns

(b) Sharpe ratio trend

Figure 4.7: Daily cumulative returns plot (a) and Sharpe ratio trend (b) for Directed Laplacian and Lovász extension cuts
models

Mean-Variance Gram Directed Laplacian Lovász
Mean 28.02 27.97 37.09 35.90
σ2 59.72 58.87 1.37 8.04

Table 4.4: Volatility statistics (1)

Cut1 Cut2 D.Cut 1 D.Cut 2 B.Cut 1 B.Cut 2
Mean 36.20 36.30 36.27 37.24 37.95 35.81
σ2 7.49 5.73 1.30 1.37 1.40 1.26

Table 4.5: Volatility statistics (2)

4.2.3 Maximum drawdown

Next, it’s possible to analyze in the same way the maximum drawdown metric,
in order to better understand what is the maximum drop in returns that it is ex-
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Figure 4.8: Sharpe ratio trend over 1000 repeated trials for all the 10 models

Figure 4.9: Sharpe ratio mean values for the 10 models

pected from each one of the portfolios under analysis. To better understand the
real mean and variance values for this metric it was necessary to proceed first with
the removal of some extreme outliers, points that showed a distorted trend for this
metric in some of the portfolios considered. In this regard, mean-variancemodels
were the models suffering more for the presence of strong outliers and as a conse-
quence they received the greatest improvement from this removal procedure, so
it will be necessary to analyze the results onMMD statistics considering this fact.

To remove the outliers in a consistent way among all the different models we first
extracted Q1 and Q3 quartiles, found the IQR = Q3 − Q1 and determined the
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Figure 4.10: Volatility Trend over 1000 trials for all the 10 models

Figure 4.11: Volatility mean values for the 10 models

lowest range asQ1 − 1.5× IQR.

Therefore, in figure 4.12 it is visible the trend in terms of maximum drawdown
for the different models under analysis.

Also from figure 4.13 it is easy to see how, after the process of outlier removal,
mean-variance models are the best models in terms of MDD, considering both
mean values and variance ones. Among all the other clustering methods instead,
standard directed clustering with the first allocation method and bibliometric di-
rected cut with the second allocation schema seem to be the better ones, while
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Figure 4.12: Maximum drawdown Trend over 1000 trials for all the 10 models

Figure 4.13: Maximum drawdown mean values for the 10 models

remaining away from the performance of benchmark mean-variance model.
Finally, we report in tables 4.6 and 4.7 the results in term of means and variances
of the MDD for the different portfolios.

Mean-Variance Gram Directed Laplacian Lovász
Mean -1.90 -1.93 -3.30 -3.52
σ2 0.74 0.82 -3.52 -3.30

Table 4.6: Maximum drawdown statistics (1)
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Cut1 Cut2 D.Cut 1 D.Cut 2 B.Cut 1 B.Cut 2
Mean -3.31 -3.30 -3.17 -3.60 -3.96 -3.12
σ2 3.52 3.46 2.92 4.42 5.26 2.83

Table 4.7: Maximum drawdown statistics (2)

4.3 interventions on sampled datasets

Testing themodels on a static-environment dataset is surely a goodway of describ-
ing how each portfolio performs in a scenario where no sudden changes occur to
the market, but to have a deeper understanding of the true performance of a cer-
tainmodel in a real-world scenario situation it is needed to perform interventions
on the original distribution in order to simulate one ormore shocks to the system.

To do this, two type of interventions were considered:

1. hard interventions on the system, where parental relations between assets
and factors were changed drastically by deleting edges or adding them to
connect previously disconnected nodes.

2. Soft interventions, whereparental relations remainedunchanged, butwhere
noise distributionof certain assetswere changed fromnormal ones toLaplace
distributions.

Therefore, at each iteration where all the models were trained and tested against
a regular dataset based on the causal DAG weight matrix C, other two datasets
(with 252× 2 points as the original test set) were sampled on the base of soft and
hard interventions preformed on core nodes of the system under analysis, in this
case on nodes with few connections with the whole system, that should be the
main target in terms of investment of mean-variance portfolios.

In terms of Sharpe ratio values, it is possible to see how soft interventions on the
system impacted harder on portfolios performances than hard interventions, es-
pecially in models such asMarkovitz’s one and its causal counterpart. Looking at
image 4.14 it is easy to notice that the best models in terms of Sharpe ratio perfor-
mance are still clustering methods such as standard directed cut (with allocation
1) and bibliometric directed cuts (with both allocation schemes), but the most
interesting thing is that interventions (both soft and hard ones) had a way harder
impact on benchmarkMarkovitz’s portfolio respect to allocations obtained with
clustering methods exploiting the causal structure of the data.

Looking at image 4.16, representing the relative percentage change in terms of
Sharpe ratio performance between intervened systems and not intervened ones, it
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Figure 4.14: Sharpe ratio mean values obtained in a static environment (red) and after the action of soft (green) and hard
(blue) interventions

Figure 4.15: Sharpe ratio variances obtained in a static environment (red) and after the action of soft (green) and hard (blue)
interventions

is easy to notice that bibliometric directed cutsmethodwas practically unchanged
in termsof Sharpe ratio valueswhenconsidering the soft interventions case,where
mean-variance models suffered from a huge drop in performances in this partic-
ular case. Other methods suffered more from soft interventions, but undirected
cuts methods performed better than standard directed cuts, directed Laplacian
model and Lovász extension model in terms of percentage Sharpe ratio loss.

When dealing with hard interventions instead, the percentage loss of all the port-
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folios is almost the same. Surely mean-variance models still show the worst per-
formances in terms of Sharpe ratio, but clustering methods are not as stable as in
the soft interventions case when dealing with radical modification to the causal
structure of the data.

In terms of Sharpe ratio variance, no important variations can be noticed from
figure 4.15, just some slight bigger increases in the case of hard interventions for
some graph clustering methods.

Figure 4.16: Sharpe ratio mean values percentage change in soft (red) and hard (blue) intervention cases

Figure 4.17: Volatility mean values obtained in a static environment (red) and after the action of soft (green) and hard (blue)
interventions
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Figure 4.18: Volatility variances obtained in a static environment (red) and after the action of soft (green) and hard (blue)
interventions

Going on to analyze the volatility under intervention conditions (figures 4.17 and
4.18) we can notice how basically all the clustering methods maintained the same
mean and variance values for this metric both in the soft and hard intervention
cases, with the exception of mean-variance portfolios, that in the soft intervened
case saw a noticeable decrease in volatility variance, while at the same time increas-
ing its mean value by a considerable margin.

This results clearer when looking at the volatility means percentage changes (fig
4.19), where the increase for mean-variance models is the only one that is worth
considering.

Finally, figure 4.20 shows values for MDD’s means in the three tested cases and
figure 4.21 presents its percentage change in case of interventions on the system.

As saw in section 4.2.3, due to the removal of strong outliers, mean-variance port-
folios obtain the best values in terms of mean MDD values in both the soft and
hard interventions cases. The interesting thing is that the percentage change in
performances for these models seems higher than other ones.

If considering just the soft interventions case, both bibliometric directed cut al-
location methods and Lovász extension model outperform mean-variance ones
when dealing with percentage changes in the case of soft interventions. In the
hard intervention case, benchmark mean-variance model appears as the portfolio
that looses the most in percentage, together with the first allocation method for
bibliometric directed cut. Still, portfolios obtainedwithLovász extension cut and
with the second allocation for the bibliometric directed cut remain quite station-

55



Figure 4.19: Volatility mean values percentage change in soft (red) and hard (blue) intervention cases

Figure 4.20: Maximum drawdown mean values obtained in a static environment (red) and after the action of soft (green)
and hard (blue) interventions

ary in terms of percentage change, while undirected and standard directed cuts
with allocation 2 even decrease their mean value of MDD by a small margin.

4.3.1 Final considerations on the results obtained

After analyzing the obtained results also in presence of hard and soft interven-
tions, it is finally possible to draw some conclusion on the adequacy of the pre-
sented models to deal with asset allocation tasks.
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Figure 4.21: Maximum drawdown mean values percentage change in soft (red) and hard (blue) intervention cases

First, none of the models outperformed the other ones in all the circumstances
and on all the metrics considered, but some showed overall good results and par-
ticularly good behavior in some intervention situations.

In terms of Sharpe ratio performances, in the static case all the models performed
somewhat the same, with slight lower values for mean-variance ones. At the same
time, in case of interventions on the system, some portfolios (such asMarkovitz’s
andGrammatrix one) showed drastic percentage decrease inmean performances,
where bibliometric directed cut method (with both allocation schemes consid-
ered) resulted as nearly untouched by soft intervention distributions.

From a volatility point of view, mean-variance models showed a strange behavior,
obtaining the lowest values among all the portfolios while at the same time having
themost flat distribution of them all, with high σ2 values. Since Sharpe ratio deals
with themaximization of expected returns while minimizing volatility, this could
mean that mean-variance portfolios have serious problem in guaranteeing stable
expected returns. Graph clusteringmethods instead, showed amore peaked trend
for volatility values and as a consequence their expected return should be more
stable as well.

Lastly, MDD values are the harder ones to correctly read, since outliers removal
procedure impacted more onmean-variance models, showing the most swinging
nature among all the portfolios and suffering more from the presence of extreme
points.

Still, in these conditionsmean-varianceportfolios showeda goodbehavior in terms
of MDDmean values, while, when dealing with percentage changes in interven-
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tion conditions, are outperformed by other models, in particular Lov́asz exten-
sion cut and bibliometric directed cutmethods, having amore stable nature both
in hard and soft interventions cases.
It is not possible to elect anoverall bestmodel, but surely bibliometric directed cut
portfolios showed to be the most stable in all of the metrics considered, while at
the same timemaintaining good Sharpe ratio and volatility values, guaranteeing a
more stable portfolio thanmean-variance ones, with however some flaws in terms
of MDD. Also, it outperformed benchmark undirected cut methods, probably
due to its symmetrization being able to account for edge direction and accounting
for the presence of non-investible financial factors F.
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5
Conclusion

After analyzing all themodels presented in chapter 3, inboth static and intervened
conditions and considering metrics highlighting their performance under differ-
ent points of view, it is finally possible to draw some conclusions on the utility of
causal information in asset allocation tasks.

As already stated at the end of chapter 4, it is not possible to elect an overall best
model, since all the different portfolios produced had their pros and their cons:
mean-variance models, for example, were the worst performing models in terms
of Sharpe ratio and had the worst values in volatility variance, but were better
in terms of maximum drawdown. On the other side, outliers removal procedure
favouredmore thesemodels since theyhad awayhighernumberof extremepoints
shifting a lot this metric’s value. In the end, it is not possible to affirm with cer-
tainty that mean-variance models are worse than graph clustering ones, but it is
surely possible to say that working on graph-structured data brought some im-
portant modifications that changed drastically portfolio’s compositions, increas-
ing their performance in some important aspects such as volatility and expected
return stability.

However, the most important thing noticeable from tests performed under in-
tervention conditions is the fact that, among graph clustering methods, there is a
clear difference in stability between undirectedmethods and directed ones, where
certain directed methods (such as bibliometric directed cut) showed to be more
shock-resistant than undirected ones (not considering the causal structure under-
lying the data). It seems that causal information really played a role in making
directed clustering methods more stable in situations where a sudden modifica-
tion to the system occurs.
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Also, in real-world scenarios, where a greater number of assets is considered, com-
putational complexity is an issue to account for and directed methods, consider-
ing sparser weight matrices, could be less time-consuming than undirected ones
in producing the optimized allocation vectorw.
To continue this work it should be necessary to focus more on the improvement
of methods that showed good results in previous tests (such as bibliometric di-
rected cut and Lovász extension cut) with a further analysis on the optimal num-
ber of clusters needed and on different ways to allocate the budget B onto various
clusters, and of course a more intense focus should be posed on the problem of
inference of the causal structure, thing that if not done correctly could ruin the
improvements obtained with these methods.
Ultimately, it is safe to say that causal information can have amajor impact in asset
allocation tasks, at least when considering portfolio’s stability in times of global
market instability.
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