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Abstract

Biomedical data management is increasingly complex due to the variety of stor-
age systems and evolving data models. This heterogeneity presents obstacles to
data integration and querying, crucial for advancing biomedical research and
healthcare. The project will involve designing a system architecture that sup-
ports the integration of heterogeneous data stores under a unified federated
system. The system will also utilize principles from the Ontology-Based Data
Access (OBDA) paradigm to facilitate semantic querying capabilities. By devel-
oping a federated data analytics system for genomics data, this thesis will con-
tribute to reducing the complexities involved in biomedical data management.
The system will enable more effective data integration and querying processes,
thereby supporting faster and more accurate genomics research. The comple-
tion of this project will result in a prototype of a federated data analytics system
capable of handling the specific needs of genomics data.





Sommario

La gestione dei dati biomedici è sempre più complessa a causa della varietà dei
sistemi di archiviazione e dei modelli di dati in evoluzione. Questa eterogeneità
presenta ostacoli all’integrazione e alla consultazione dei dati, cruciali per il
progresso della ricerca biomedica e dell’assistenza sanitaria. Il progetto com-
porterà la progettazione di un’architettura di sistema che supporti l’integrazione
di archivi di dati eterogenei sotto un sistema federato unificato. Il sistema uti-
lizzerà anche i principi del paradigma dell’Accesso ai Dati Basato su Ontologie
(OBDA) per facilitare le capacità di consultazione semantica. Sviluppando un
sistema federato di analisi dei dati per i dati genomici, questa tesi contribuirà
a ridurre le complessità coinvolte nella gestione dei dati biomedici. Il sistema
permetterà processi di integrazione e consultazione dei dati più efficaci, sup-
portando così una ricerca genomica più rapida e accurata. Il completamento di
questo progetto porterà alla realizzazione di un prototipo di un sistema federato
di analisi dei dati capace di gestire le esigenze specifiche dei dati genomici.
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1
Introduction

1.1 STATE OF THE ART

In recent years, the increasing complexity of biomedical data has posed
significant challenges to researchers and clinicians. The rapid evolution of data
storage systems and the diversity of data models have contributed to these
challenges, creating a heterogeneous landscape that is difficult to navigate.
This complexity is particularly pronounced in the field of genomics, where
the integration and analysis of diverse datasets are crucial for advancing
our understanding of genetic diseases and developing personalized medical
treatments. The advent of big data analytics has led to new possibilities
for handling large volumes of complex biomedical data. However, the vast
diversity of data sources (e.g., relational databases, hierarchical storage systems
and graph-based models) necessitates the development of sophisticated data
integration frameworks. These frameworks must not only accommodate the
different data models but also enable seamless querying and analysis across
these models. The need for such frameworks is especially crucial in genomics,
where the ability to integrate and analyze data from multiple sources can
significantly accelerate research and improve clinical outcomes. The focus of
this thesis is on the design and implementation of a federated data analytics
system specifically tailored for the integration of clinical and genomics data.
This system is designed to address the challenges associated with integrating
heterogeneous data sources, enabling researchers to perform complex queries
across multiple datasets without the need for extensive data preprocessing
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or manual data integration. By leveraging the principles of OBDA, the pro-
posed system eases semantic querying capabilities, allowing users to extract
meaningful insights from the data more efficiently. OBDA is a powerful
paradigm for data integration, particularly in environments characterized by
data heterogeneity. Although research activities on OBDA started more than
20 years ago, it is still nowadays a subject of discussion in the academic field
as well as in the industry, having periodically novel papers discussing both
new frameworks or their improvements and their employment in industrial
scenarios. OBDA allows for the seamless integration of relational databases
into an ontology framework, enabling users to perform semantic queries that
transcend the limitations of traditional data retrieval methods. The use of
ontologies in OBDA provides a shared vocabulary and a formalized structure
for representing knowledge within a specific domain, which is particularly
beneficial in the field of genomics where data is often complex and highly
interconnected. The system developed in this thesis builds upon the OBDA
paradigm by integrating it into a federated data architecture. This architecture
is designed to support the integration of multiple heterogeneous data sources,
including relational databases, NoSQL systems, and cloud storage solutions.
By creating a unified federated system, the architecture allows for real-time
data retrieval and integration, eliminating the need for data deduplication and
ensuring that researchers have access to the most current data available. A
key component of this system is the use of a specialized ontology that models
the intricate relationships between genomic data and clinical information.
The ontology serves as the backbone of the system, enabling the semantic
integration of data from diverse sources and facilitating complex queries that
would be difficult or impossible to perform using traditional data retrieval
methods. The ontology’s design is informed by the specific requirements of
clinical and genomics research, with a focus on ensuring interoperability and
scalability as new data sources and data types are introduced. The federated
architecture proposed in this thesis also incorporates advanced data federation
techniques, which are essential for managing the diversity of data sources in
genomics. Data federation allows for the creation of a virtual data access layer
that abstracts the underlying technical details of each data source, enabling
researchers to query data using standard languages like SQL without needing
to know where the data is physically stored or in what format. This approach
not only simplifies the data retrieval process but also minimizes the risks
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CHAPTER 1. INTRODUCTION

associated with data movement and duplication. Furthermore, the system
is designed with scalability in mind, allowing it to accommodate new data
sources as they become available. The system’s architecture is flexible enough
to integrate these new data sources seamlessly, ensuring that researchers can
always work with the most comprehensive dataset possible. Another critical
aspect of the system is its focus on privacy and data security. Given the
sensitive nature of clinical and genomic data, especially when data is strictly
related to patients’ personal information, the system aims to adhere to modern
data protection regulations. This is to ensure that while data is integrated
and analyzed, it remains protected and secure, ensuring patient privacy and
maintaining the trust of the institutions and individuals who provide the data.
The thesis also explores the practical application of the proposed system within
the context of the HEteRogeneous sEmantic Data Integration for the guT-brAin
inteRplaY (HEREDITARY) project, a European Union funded initiative focused
on integrating multimodal data to advance the understanding of brain diseases.
The HEREDITARY project represents a real-world application of the federated
data analytics system, demonstrating its potential to facilitate complex analyses
and drive new insights in biomedical research. Finally, an extensive bench-
marking phase will evaluate the performances of the proposed architecture
considering both its strengths as a Database Management System (DBMS),
analyzing aspects as average execution time and throughput, and the resource
consumption of the system, in order to figure out whether such an application
adoption may be feasible across diverse hardware environments. In summary,
this thesis presents a comprehensive approach to addressing the challenges of
integrating and analyzing heterogeneous clinical and genomics data. Posing its
foundations on the OBDA paradigm and advanced data federation techniques,
the proposed system offers a robust and scalable solution for managing the
complexities of biomedical data.

1.2 THESIS OUTLINE

The subsequent chapters are structured to explore the necessary back-
grounds, detail the methodology, prove the application functionalities through
a use case, and evaluate the system’s performance. In particular, Chapter 2
analyzes the needed technical and methodological background about data fed-
eration systems, covering essential concepts such as the Resource Description
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Framework, Knowledge Graphs, and Ontologies, crucial for understanding
their applications. Chapter 3 discusses the challenges of integrating diverse
biomedical datasets within the HEREDITARY project, setting the stage by
describing the complexities of clinical and genomics data landscape and em-
phasizing the need for robust integration tools. In Chapter 4, we review related
works, focusing on existing solutions and technologies that address similar
challenges, highlighting the gaps in current approaches and justifying the
necessity for our proposed system. Chapter 5 presents the detailed architecture
of our federated data analytics system, explaining the design choices, data
sources, and the federation-virtualization-integration mechanism that enable
effective data querying and retrieval across heterogeneous sources. Chapter
6 showcases the application of our system within the HEREDITARY project,
providing a practical demonstration of its capabilities and effectiveness in a
real-world scenario, by running a query that retrieves meaningful clinical data.
Chapter 7 is dedicated to benchmarking the system’s architecture, analyzing its
performance, both in terms of consumed resources and query executed within
time. The thesis concludes with Chapter 8, which summarizes the findings,
outlines the significant contributions of the research, and suggests directions for
future work based on the encountered limitations and the evolving landscape
of data integration technologies.
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2
Background

2.1 METHODOLOGICAL BACKGROUND

2.1.1 RESOURCE DESCRIPTION FRAMEWORK

The Resource Description Framework (RDF) is a standard1 by the World
Wide Web Consortium (W3C) designed for data interchange on the web. Its
definitive syntax was lastly defined on 2003 [1].

RDF is based on the idea of making statements about resources, expressed as
triples: for example, a triple might consist of ”Gene123” (subject) ”hasFunction”
(predicate) ”DNA Repair” (object). These triples are stored in a graph, making
RDF uniquely suited for modern data analytics where relationships and link-
ages are crucial: this structure is by design flexible, and it is used to represent
information in a way that makes it easier to aggregate, integrate, and manage
diverse data from various sources.

The standard utilizes Uniform Resource Identifier (URI) to ensure that each
element in the triple is uniquely identifiable, allowing to link data across dif-
ferent datasets seamlessly. RDF also supports literal values and data types, en-
abling detailed descriptions of properties and values.

In summary, RDF provides a robust and flexible framework for describing
and interlinking data on the web, which is crucial for any federated data system

1https://www.w3.org/RDF/
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that aims to integrate diverse data sources effectively.

2.1.2 KNOWLEDGE GRAPHS

Knowledge Graphs represent an innovative way of structuring and query-
ing interconnected data. A Knowledge Graph (KG) organizes data in a graph
format, where entities (nodes) and their interrelations (edges) are defined ac-
cording to a schema that encapsulates both the entities and the possible links
between them. This structure allows not only to better visualize data, but is also
very well suited for data exploration and analysis.

Central to the concept of KG is the idea of enhancing search and data dis-
covery capabilities beyond simple data retrieval. By semantically linking data
entities, KG allow for more intuitive and sophisticated queries that are closer
to natural language questions. This capability makes them useful in complex
domains like biomedical research, where users may need to uncover hidden re-
lationships and patterns among vast datasets.

Furthermore, KG well suits in scenarios requiring data integration from dis-
parate sources. They support the combination of structured and unstructured
data and they can scale well as new data need to be integrated. This flexibility
is crucial in fields such as genomics, where new data attributes and relation-
ships are continuously being discovered and need to be rapidly integrated into
existing datasets.

In practice, KG are usually powered by technologies such as RDF and other
standards discussed earlier, leveraging the strengths of these frameworks to en-
sure robust data handling and scalability.

2.1.3 ONTOLOGIES

Ontologies are a shared vocabulary for a particular domain. They serve as
a crucial tool in structuring data by defining classes where data entities can be
categorized. This classification systemnot only standardizes data representation
but also simplifies the communication between different systems and users by
providing a common understanding of the domain.

Ontologies involve the use of first-order logic to define rules about the rela-
tionships between different classes. These rules allow for the logical inference
of new information from the data that is already known, which can significantly
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deepen data analysis and querying capabilities. This set of first-order logic rules
used to model ontologies composes the Ontology Web Language (OWL) [2].

With ontologies integrated within a KG, it is possible to employ inferential
algorithms either at query time or at preprocessing time. This capability enables
the derivation of new knowledge that isn’t explicitly stated in the data but can
be inferred based on the ontological representations.

The use of ontologies in a KG is crucial in complex domains like genomics.
Here, the ability to infer new relationships and properties can lead to under-
standing intricate biological connections and processes.

In summary, ontologies provide the foundational structure for managing
complex information systems. They not only facilitate a standardized approach
to data handling and integration but also enhance the capability of systems to
derive and utilize new knowledge effectively.

2.1.4 DATA FEDERATION

Data Federation is a technology that organizes data from multiple different
and autonomous data sources and makes it accessible under a uniform data
model, allowing for real-time data retrieval from various sources without re-
quiring data deduplication. This approach creates a unified data access layer
that abstracts the underlying technical details of each DBMS. Users can query
this virtual layer using standard data querying languages, like SQL, without
needing to know where the data is physically stored or in what format.

A key strength of Data Federation lies in its capacity to harmonize heteroge-
neous data sources, ranging from traditional relational databases to modern big
data solutions and cloud services. This integration is seamless and dynamic,
scaling well as soon as new sources come in, without requiring significant re-
configuration. Such agility is crucial in fields like genomics, where data formats
and sources evolve rapidly alongside scientific advancements. Moreover, it min-
imizes the risks associated with data duplication and movement, such as data
loss or corruption. It also ensures that data remains current, reflecting real-time
changes without delay. This is particularly valuable for decision-making pro-
cesses where up-to-date information is critical.

Different existingData Federation systemsmay have different characteristics,
and the choice of which system suits better certain requirementsmay depend on
many different factors. A recent comparative study on Data Virtualization Sys-
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tems [3] highlights and evaluates diverse features of many systems coming both
from the academia as well as enterprise solutions, such as supported query lan-
guages, supported data sources, data security, exposed interfaces and software
support.

2.1.5 SEMANTIC DATA INTEGRATION

Semantic Data Integration is an approach that aims to integrate data from a
single relational source to an ontology that models a specific domain. This inte-
gration is achieved by defining mappings that establish semantic relationships
among data entities.

The core idea behind semantic data integration involves establishing a global
schema, represented by the ontology, which acts as a blueprint for how data
from various sources is viewed and accessed. This ontology defines not just the
entities and their attributes but also the relationships and constraints between
these entities. The mapping between the ontology (global schema) and the rela-
tional data source is critical as it dictates how data is interpreted in ameaningful
way.

The concept of Data Integration, firstly introduced without a semantic fo-
cus [4], has evolved with research advancements in this field. These advance-
ments have led to the development of tools and mapping languages specifically
designed for semantic data integration, laying the groundwork for a paradigm
known as OBDA [5].

The OBDA framework, that has been precisely formalized [6], is composed
of a chain of procedures that can be summarized as follows:

1. input query 𝑞(𝑥®) is rewritten [7] into 𝑞′ over the virtual ABox 𝐴′ (i.e., the
first-order logic specification of the ontology);

2. the rewritten query 𝑞′ is unfolded using the mappings into an SQL query
𝑞∗;

3. the optimized SQL query 𝑞∗ is evaluated over the data instance 𝐷 (e.g., a
relational DBMS).

Figure 2.1 outlines the aforementioned algorithm within a flowchart.
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Figure 2.1: The OBDA framework

2.2 TECHNICAL BACKGROUND

2.2.1 SPARQL QUERY LANGUAGE

SPARQL, developed by the W3C, is the definitive standard for querying and
managing data stored in RDF format.

As a key technology in semantic web applications, SPARQL enables sophisti-
cated querying of KG, offering a query syntax that often resembles natural lan-
guage. This user-friendly syntax facilitates intuitive data exploration and ma-
nipulation, differently from traditional relational databases that require joining
tables to establish relationships.

For instance, as shown in Code 2.1, if a researcher wishes to find all genetic
markers associatedwith a particular trait, a SPARQL querymight directly reflect
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the question, “Which patients are associated with genetic markers X?” This par-
allels natural language questioning closely, making SPARQL particularly suited
for domains where complex relationships must be understood and explored,
such as genomics and biomedical research.

PREFIX bto: <https://w3id.org/brainteaser/ontology/schema/>
PREFIX BTO_resource: <https://w3id.org/brainteaser/ontology/resource/>

SELECT ?patient ?FUS ?FUS_mutation
WHERE {

?p a bto:Patient;
bto:enrolledIn ?ctp.

?ctp bto:inClinicalTrial BTO_resource:BrainteaserALSTurin.

OPTIONAL{
?p bto:tested ?FUStest.

?FUStest bto:hasMutation ?FUS;
bto:onGene NCIT:C91852.

OPTIONAL{
?FUStest bto:mutationType ?FUS_mutation.

}
}

BIND(SUBSTR((STR(?p)), 48) AS ?patient)
}

Code 2.1: Example of a SPARQL query for genetic markers data.

2.2.2 DATA FEDERATION SYSTEMS

As discussed in section 2.1.4, Data Federation Systems are sophisticated soft-
ware and thus evaluable under many aspects. In this background analysis we
will focus on four main aspects, considering their importance as the Data Feder-
ation Systemwill be part of a broader framework. In particular, by the aforemen-
tioned comparison, we will present three most prominent systems considering:

• software support & documentation;

• scalability;
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• logging capabilities;

• performances.

These features are also briefly summarized in Tab. 2.1.

DENODO

Denodo2 is an enterprise virtualization platform that serves as a data feder-
ation system, integrating data from diverse sources to provide a unified view
without requiring physical data deduplication. It allows for real-time access to
structured and unstructured data from various sources including relational, col-
umn and No-SQL databases, web Application Program Interface (API), and flat
files.

Denodo provides robust security features, including hashing, encrypt-
ing functions and user privileges, ensuring that sensitive data is protected
according to compliance standards.

Moreover, it utilizes advanced query optimization techniques, such as
caching and query rewriting, to enhance performance. These optimizations
ensure efficient data retrieval, reducing latency and improving the overall
speed of data access across the federated sources.

Although it is highly scalable, capable of accommodating new data sources,
and it is provided also with a custom source wrapper template for unsupported
data sources, being it an enterprise solution allows for maximum five connec-
tions, unless a premium plan is signed.

TEIID

Teiid3 is an open-source Java component developed by Red Hat4 that pro-
vides integrated access to multiple data sources through a single uniform API.
Rather than a DBMS, Teiid is more a query engine for integrating data from
multiple sources, accessible both through API and Java Database Connectiv-
ity (JDBC)/Open Database Connectivity (ODBC) interfaces.

2https://denodo.com/en
3https://teiid.io/
4https://www.redhat.com/
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It comes in different shapes: there are Teiid implementations as an Eclipse
plugin as well as deployable packages on web containers such as Wildfly and
OpenShift.

One of the main issues with Teiid is poor documentation when it is not de-
ployed alongside enterprise solutions (like OpenShift). Moreover, no major re-
leases have been published since four years, andmany open issues on the official
GitHub repository5 are not being addressed.

DREMIO

Similarly to Denodo, Dremio6 is a virtualization platform that serves as a
data federation system. Although it is developed within an enterprise context,
the standard version, comprehensive of most of the Dremio features, it is Free
and Open Source (FOSS) under the Apache 2.0 license, combining typical enter-
prise software robustness with a strong community active on continuous main-
tenance.

Even if it is possible to use Dremio as a standalone instance (e.g., on a server),
it is by design a distributed system and thus it can run on clusters up to more
than 1000 nodes. In case of standalone configurations, in linux server environ-
ments it is possible to install it using packet managers, but the easiest way is to
use the Docker image it comes with.

Dremio makes use of Apache Arrow to enhance processing speeds and re-
duce latency. Moreover, it optimizes query performance through its advanced
query planner and execution engine, which can push down operations to the
data source level, minimizing data movement and speeding up response times.

It provides comprehensive security features that include encryption, access
controls, and data masking to ensure privacy. It also maintains detailed logs
of all queries, which are crucial for compliance purposes in many fields such
as the clinical domain, where patient medical data is managed alongside their
personal information.

As in Denodo, but under an open-source perspective, it is possible to build
custom connectors for unsupported data sources and Dremio. This is realizable
throughAdvancedRelational Pushdown (ARP) connectors: a public repository7

5https://github.com/teiid/teiid
6https://www.dremio.com/
7https://github.com/dremio-hub/dremio-sqllite-connector
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provides a Maven template, that is customizable for each data source for which
a JDBC driver is available.

In conclusion, Dremio offers an open-source virtualization system with the
typical robustness of enterprise software; it is highly scalable both in the sense
of computation distribution over clusters and in the types of supported sources,
and it has a comprehensive logging system that suits well for tracking data flow.

Support Free and
Open
Source

Well
Docu-
mented

Scalability Solid
Logging
Capabil-
ities

Denodo 3 3 3 3

Teiid 3

Dremio 3 3 3 3 3

Table 2.1: Comparative of Data Federation Systems

2.2.3 OBDA SYSTEMS

OBDA, as shown in Fig. 2.2, allows to seamlessly integrate a relational source
within an ontology, so to add a semantic layer. Research on this specific topic
has been performed not only by the academy, but also fromResearch&Develop-
ment branches of big companies, considering the impact on the industry: a pre-
liminary analysis [8] by Siemens8 that lead subsequently to a custom platform,
analyzed existing systems. Table 2.2 summarizes the content of this analysis.

Given that ontology reasoning is one of the most important requirements in
the OBDA approach (without this, using this paradigm would allow just to run
queries in SPARQL language, without any other real advantage), and consid-
ering that the Optique system is an enterprise, on-premise and closed source
solution, more in-depth comparisons [9] studied Ontop andMastro. Their com-
parison can be summarized as follows.

MASTRO

By our knowledge, Mastro [10] was the first OBDA tool, developed at La
Sapienza University of Rome. It supports a subset of SPARQL queries and inte-

8https://www.siemens.com/
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System Characteristics
Optique (Siemens) Supports ontology reasoning; supports both static

and streaming relational DBMS
Ontop Supports ontology reasoning
Mastro Supports ontology reasoning
morph-RDB Supports ontology reasoning
D2RQ Does not support ontology reasoning
OntoQF Does not support ontology reasoning
Virtuoso Does not support ontology reasoning
Spyder Does not support ontology reasoning
Ultrawrap Does not support ontology reasoning

Table 2.2: Comparative of OBDA Systems

grates a custom XML-based mapping syntax. Mastro’s mappings were not ini-
tially compliant with R2RML standards, which was a strong limitation in stan-
dard OBDA environments. The tool used a complex system of view predicate
mappings, which may affect its adaptability to standardized environments. Al-
though recent updates have integrated R2RML support, the system’s architec-
ture still lacks certain optimizations due to its design constraints. For instance,
Mastro cannot perform advanced semantic query optimizations because it does
not support detailed data constraints in its mappings. This limitation could lead
to less efficient query processing and increased execution times, especially with
complex queries involving multiple joins or extensive data operations. More-
over, Mastro is less efficient handling of datatype operations and IRI construc-
tions within SQL, leading to potential slowdowns in query processing.

ONTOP

Ontop [11] is an open-source and well maintained OBDA framework devel-
oped at the Free University of Bolzano. It is compliant with W3C standards, in-
cluding R2RML for ontology mapping, OWL for ontology representation, and
SPARQL for querying. Ontop is designed for high-performance query answer-
ing over virtualized RDF graphs. Ontop provides an efficient query answering
system that leverages R2RMLmappings and supports comprehensive optimiza-
tions. The system uses advanced query rewriting techniques, which are highly
effective in reducing query complexity and execution time. Ontop’s strengths
are particularly evident in its handling of complex SPARQL queries, where it ef-
ficiently translates these into SQL, utilizing T-mappings and database integrity
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Figure 2.2: The OBDA framework

constraints for optimization. Regardless of its adherence to standards, Ontop
comprises also a custom mapping language (Ontop Native Language).

The comparison between the two systems has been performed in two differ-
ent scenarios. In general, Mastro shown faster responses in scenarios requiring
extensive in terms of timings, while Ontop performs better in scenarios where
a considerable number of mappings is involved for unfolding a certain query.
This means that a choice on which system fits better depends on how constrain-
ing are timings in the query processing phase and on howmanymappings have
to be unfolded on average, that strictly depends on the heterogeneity of the un-
derlying relational source.

2.2.4 TRIPLE STORES

Triple stores are databasemanagement systems specifically designed to store
and retrieve triples through semantic queries. Triple stores typically ingests RDF
files that contains IRI’s in the usual format of subject, predicate, object. These
systems are optimized for storing vast amounts of triples and efficiently han-
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dling complex queries that involve traversing relationships across a network of
data. Triple stores support SPARQL, enabling semantic queries that are essen-
tial for applications in data integration, knowledge management, and semantic
web projects. Many comparisons, especially in the biomedical field [12], among
different triple stores systems analyze their performances under different point
of view such as the volume of ingested data, the implementation of an ontol-
ogy within the KG, and the language used to represent it (RDF, RDFS, OWL,
etc.). For the purposes of this project, where materialized triples are not used,
GraphDB has been selected due to its integration with Ontop. This integration
allows GraphDB to support virtual graph functionalities, meaning it can per-
form SPARQL queries over non-RDF relational data by translating these queries
into SQL through Ontop’s engine. This scenario eliminates any particular re-
quirements from the triple store system regarding the query processing phase,
considering that the task will be accomplished by the underlying OBDA system.

GRAPHDB

GraphDB is a robust, enterprise-ready triple store that excels in handling
large volumes of data and complex queries. Developed by Ontotext9, GraphDB
is designed to facilitate efficient data integration, knowledge discovery, and se-
mantic analytics. It uses RDF for data representation and SPARQL for querying,
supporting seamless transitions between different data formats and query lan-
guages. GraphDB’s integration with Ontop for virtual RDF stores and its robust
performance metrics make it an ideal choice for projects that require dynamic
semantic data integration without the overhead of materialized triples. Its ca-
pabilities ensure that it is not only a powerful tool for RDF data management
but also a flexible solution for broader data integration challenges in semantic
environments.

9https://www.ontotext.com/
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3
Context of the Work

Handling biomedical data entails considerable challenges. Practitioners
have to deal with multiple distinct storage systems, each using different data
models, that may be subject to evolution over time. This introduces substantial
heterogeneity, with the same data domain represented possibly through
various models, such as relational [13], hierarchical [14], or graph based.
Graph models are particularly prevalent in biomedical data [15] [16], as their
structure effectively represents the intricate and interconnected relationships
characteristic of biological systems. These systems typically operate under
various database management systems (DBMSs). Further, the data is described
using diverse metadata schemas, increasing the heterogeneity. This fragmen-
tation complicates the ability to query these systems together and infer new
knowledge, unless experts manually integrate them, by defining a unified data
model, achieving consensus among data stakeholders, manually matching ex-
isting data to this new model, migrating data accordingly, and then modifying
applications to adapt to changes in the used query language. These steps are
both time-consuming and expensive. At the European level, there exist many
contexts where these challenges are relevant. Therefore, in this context, we can
actively pursue our objectives, grappling with collections of unstructured and
heterogeneous biomedical data. In particular, the Department of Information
Engineering at the University of Padova leads the European Union (EU) project
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HEREDITARY1, collaborating with three medical centers that manage het-
erogeneous multimodal clinical and genomic data requiring integration. The
HEREDITARY project emphasizes the critical need for a capable and efficient
system that can seamlessly integrate diverse biomedical datasets. By setting up
an effective federated architecture, we aim to automate the querying process
across various data models, cutting the cost of performing analytics. This
approach will facilitate a more detailed analysis of the clinical and genomic
data from the three medical centers participating in HEREDITARY.

In this chapter, we will discuss the overall structure of the HEREDITARY
project, andwewill discuss the structure of available clinical and genomics data.
By this discussionwewill highlight which features are of interest for a federated
data analytics platform that has to manage efficiently these sources of data.

3.1 THE HEREDITARY PROJECT

The HEREDITARY project represents a groundbreaking initiative funded by
the EuropeanUnion, aimed at transforming our understanding of brain diseases
through an innovative convergence of multimodal heterogeneous data, such as
genomic data, bioimages, clinical records and environmental data. This ambi-
tious project is structured to exploit the power of big data and advanced an-
alytics to tackle some of the most pressing challenges in modern healthcare.
At the heart of the HEREDITARY project there is its commitment to change
the paradigm of healthcare by integrating diverse data streams to unlock pre-
viously inaccessible insights. This integration involves sophisticated data link-
age across various modalities. By leveraging this integrated data framework,
HEREDITARY seeks to revolutionize the fields of disease detection, treatment
response, and preventive healthcare.

PRIVACY COMPLIANCE

Security and privacy compliance stands at the fundamentals of the
HEREDITARY project, particularly in handling sensitive health data. The
project employs state-of-the-art secure supercomputing facilities and feder-
ated learning techniques. These methodologies ensure that while the data is

1https://hereditary-project.eu/
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extensively analyzed to produce critical health insights, it remains within the
confines of local data governance laws, such as the General Data Protection
Regulation (GDPR). This system not only protects individual privacy but also
facilitates a collaborative environment where data does not cross organizational
boundaries unnecessarily.

TECHNOLOGICAL COMPONENTS

HEREDITARY is pioneering the use of advanced learning models, includ-
ing deep neural networks and self-supervised learning algorithms, to analyze
large heterogeneous datasets. The project’s focus on semantic-aware learning
methodologies, facilitated by the OBDA paradigm, allows for the seamless inte-
gration of disparate data types. These integrated datasets are utilized to perform
complex queries and enhance predictive analytics capabilities, which are crucial
for identifying new disease patterns and treatment possibilities.

USER-FRIENDLY ANALYTICAL PLATFORMS

To maximize the impact of its research findings, HEREDITARY is develop-
ing interactive data-driven solutions that simplify the exploration and analysis
of complex health data. The project includes the creation of a visual analytics
platform that combines advanced data visualization tools with user-friendly in-
terfaces. This initiative not only aids researchers and clinicians in hypothesis
testing and decision-making but also enhances public understanding and trust
in health data use.

COLLABORATIVITY AND MULTIDISCIPLINARITY

HEREDITARY’s structure is inherently collaborative, involving multiple
leading European universities and research institutions. Each participant
brings unique expertise and resources, facilitating a comprehensive approach
to tackling healthcare challenges. The project encourages continuous interac-
tion among all partners, ensuring that insights and methodologies are shared
and refined across different disciplines and sectors.

FOCUS ON NEURODEGENERATIVE AND GUT-RELATED DISORDERS INTERPLAY

One of the primary research focuses of the HEREDITARY project is the in-
vestigation of neurodegenerative and gut microbiome-related disorders. By ex-
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amining the gut-brain axis and its impact on diseases such as Parkinson’s and
Alzheimer’s, the project aims to uncover novel therapeutic and diagnostic ap-
proaches that could lead to more personalized medicine practices. These efforts
are supported by sophisticated datamodels that predict disease progression and
treatment responses, tailoring healthcare strategies to individual patient needs.

FUTURE PERSPECTIVES

HEREDITARY is set to continue its influence beyond the project’s timeline by
developing sustainable strategies for health data utilization. The project’s out-
puts are expected to inform future policy, enhance clinical practices, and con-
tinue to provide valuable insights into complex health conditions. By establish-
ing a robust framework for data integration and analysis, HEREDITARY posi-
tions itself as a beacon for future initiatives in the realmof data-driven healthcare
innovation.

HEREDITARY PROJECT STRUCTURE

The duration of the HEREDITARY project is four years. The structural or-
ganization of the HEREDITARY project is meticulously designed to ensure effi-
cient project management, seamless collaboration across disciplines, and rigor-
ous pursuit of its scientific objectives. The project is divided into nine distinct
Work Package (WP), each taskedwith specific aspects of the project’s implemen-
tation and goals.

3.2 DATA DESCRIPTION

In the broader framework of the HEREDITARY project, the integration and
analysis of detailed clinical and genomics data play a crucial role. This section
delineates the structure and types of data used within the project, highlighting
how this information contributes to the overarching goals of enhancing health-
care through advanced data analytics.

3.2.1 CLINICAL DATA

Clinical data in theHEREDITARYproject originates from three distinctmed-
ical centers located in Madrid, Lisbon, and Turin. Despite the geographical di-
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versity, the data adheres to a unified schema, which ensures consistency and fa-
cilitates comprehensive data analysis across centers. This schema encompasses
three main relational categories.

STATIC VARIABLES

This relation provides a snapshot of patient demographics and health status
at the time of their entry into the study. It includes a wide range of fields such
as patient identifiers, dates of disease onset and diagnosis, vital status, demo-
graphic details (sex, ethnicity, height, weight), medical history (major traumas,
surgical interventions, prevalent conditions), lifestyle factors (such as smoking
habits and occupation), detailed clinical assessments of disease symptoms, fa-
milial history, genetic markers related to diseases such as Amyotrophic Lateral
Sclerosis (ALS) (e.g., mutations in FUS, SOD1, TARDBP, C9orf72), and other
relevant clinical data. These static variables are crucial for establishing baseline
characteristics and stratifying patients based on demographic and clinical fea-
tures.

ALS FUNCTIONAL RATING SCALE DATA

This relation captures dynamic, longitudinal data on the progression of ALS
through a standardized functional rating scale. The fields include patient iden-
tifiers, assessment dates, and scores across multiple functional domains such as
bulbar, motor, and respiratory functions, as well as detailed scores for individ-
ual tasks assessing the patient’s daily living abilities.

SPIROMETRY MEASUREMENTS

The third relation contains spirometry test results, which are critical for as-
sessing respiratory function in ALS patients. Fields include patient identifiers,
test dates, and the relative forced vital capacity (FVC),which is a primarymarker
of pulmonary function decline in neurodegenerative conditions.

3.2.2 GENOMICS DATA

The genomics component of the HEREDITARY dataset is sourced from syn-
thetic data specifically designed to reflect the complexity of real-world genetic

21



3.2. DATA DESCRIPTION

data while ensuring privacy and compliance with ethical standards. This syn-
thetic data is provided by the CINECA project2, which models it to mirror the
variability found in populations typically studied in biomedical research. The
data retains the statistical properties of original datasets without compromising
individual privacy, making it ideal for research purposes.

GENOTYPIC DATA

This dataset contains information such as dataset identifiers, chromosomal
positions, variant identifiers, reference and alternate alleles, and variant types.
These details are crucial for identifying genetic variations that may be related
with disease phenotypes observed in the clinical data. The synthetic genetic data
is derived from the 1000 Genomes project, ensuring a robust representation of
genetic diversity.

PHENOTYPIC DATA

Complementing the genotypic data, the phenotypic component includes
variables that describe patient characteristics and health status, such as physical
activity levels, alcohol frequency, smoking habits, job type, living arrange-
ments, vital statistics like blood pressure and heart rate, and clinical diagnoses
and prescriptions. The phenotypic data is modeled using the DataSynthesizer3

tool, which is designed for privacy-preserving dataset generation.

2https://www.cineca-project.eu/cineca-synthetic-datasets
3https://github.com/DataResponsibly/DataSynthesizer
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Related Works

Performing federated analytics tasks requires a robust architecture com-
posed by different layers: a federation layer that allows for multiple streaming
connections with diverse and heterogeneous sources (relational, no-SQL and
columnar DBMSs); a virtualization layer that exposes ”virtual” relational views
of non-materialized data; an integration, ontology-based layer, so to add a
semantic layer to the virtualized relational views, given the importance of
exploring complex relationships among genomics data.

This approach has been formalized under the concept of Ontology-Based
Data Federation (OBDF) [17], and it is represented in Fig. 4.1. As far as we
know, no existing off-the-shelf system implementing this framework has ever
been released: who intends to apply this architecture design have to manually
install different components choosing among diverse competitors, and combin-
ing them together, dealing with possible underlying platform incompatibilities.
Moreover, having no off-the-shelf solutions implies having no solutions specif-
ically tailored and optimized for dealing with genomics data.

Nonetheless, similar design proposal have been implemented in order to ad-
dress both research questions as well as enterprise requirements. In this section,
we will briefly discuss two solutions, one for each environment, analyzing them
in details, highlighting strengths and weaknesses.
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Figure 4.1: OBDF approach

4.1 BIGDAWG

Big Data Analytics Working Group (BigDAWG)1 [18] represents a crucial
milestone in the world of polystore systems, designed to address the complex-
ities of managing heterogeneous data environments. Developed at the Intel
Science and Technology Center for Big Data, BigDAWG’s architecture realizes
the paradigm ”one size does not fit all” in database management systems. This
polystore system is engineered to support a wide set of data models and storage
engines, offering a unified platform for cross-storage-system queries, real-time
analytics, and complex data visualizations.

1https://bigdawg.mit.edu/sites/default/files/images/BigDAWGv01.pdf
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4.1.1 ARCHITECTURE OVERVIEW

BigDAWG’s architecture is meticulously structured into four primary layers:
the base layer, the island layer, the main BigDAWG layer, and the application
layer. Each of these layers serves a distinct function, creating a system capable of
managing diverse data stores and facilitating seamless user interaction through
applications.

BASE LAYER

The base layer of BigDAWG consists of the physical data stores, which in-
clude a variety of storage engines such as relational databases (e.g., PostgreSQL),
array databases (e.g., SciDB), key-value stores (e.g., Apache Accumulo), and
streaming databases (e.g., S-Store). Each of these storage systems is optimized
for specific types of data and query workloads, adhering to the principle that no
single storage engine is best suited for all types of data. This layer is responsi-
ble for the actual storage and retrieval of data, leveraging the strengths of each
specialized engine to handle the respective data types effectively.

ISLAND LAYER

Above the base layer is the island layer, a critical abstraction within
BigDAWG’s architecture. An island in BigDAWG represents a domain-specific
environment tailored to a particular data model and query language. For
example, the relational island interfaces with traditional relational DBMSs
like PostgreSQL, the array island interacts with SciDB, and the text island is
linked to systems like Accumulo. Each island encapsulates the syntax and
semantics of its underlying data model, thus preserving the rich functionalities
and optimizations offered by the native storage engines. The island layer also
facilitates the casting of data between different islands, enabling queries that
span multiple data models. The ability to perform these cross-island operations
is central to BigDAWG’s polystore capability, ensuring that users can execute
queries that utilize the most appropriate data model for each part of their
analysis.
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MAIN BIGDAWG LAYER

The main BigDAWG layer orchestrates the interaction between the various
islands and the underlying data stores. This layer includes components such as
the query planner, optimizer, and the casting engine, which all together manage
the distribution of queries across the appropriate islands. The casting engine is
particularly noteworthy, as it enables the movement of data between different
storage systems, translating data formats and query languages as needed. For
instance, data stored in an array database might be cast into a relational for-
mat to allow for SQL-based analytics, and then cast back into an array format
for further processing. This layer is also responsible for maintaining metadata
about the data stores and islands, including information about data distribution,
query capabilities, and performance characteristics of each storage engine. This
metadata is crucial for optimizing query execution, as it allows BigDAWG to in-
telligently route queries to themost suitable storage engine based on the query’s
requirements and the data’s location.

APPLICATION LAYER

At the top of the BigDAWG architecture is the application layer, which pro-
vides user-facing tools and interfaces for interacting with the system. This layer
includes APIs for query submission, tools for data visualization, and interfaces
for real-time datamonitoring and complex analytics. BigDAWG supports a vari-
ety of applications, from simple SQL-based data retrievals to complex analytics
involvingmachine learning and real-time data processing. The application layer
abstracts the underlying complexity of the polystore system, offering a unified
interface that allows users to focus on their data analysis tasks without needing
to understand the intricacies of the underlying data storage systems.

4.1.2 OPERATIONAL PRINCIPLES AND INNOVATIONS

BigDAWG’s operational principles are grounded in the concept of federating
multiple, heterogeneous data stores while preserving the specialized capabili-
ties of each storage engine. This approach allows BigDAWG to offer a robust
platform for executing complex queries across different data models, something
that traditional database systems struggle to achieve.
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ISLANDS AND CROSS-ISLAND QUERYING

The island-based architecture is one of BigDAWG’s most significant innova-
tions. By organizing data stores into islands, BigDAWG allows users to interact
with data using the most appropriate data model and query language. This ca-
pability is particularly important in environments where data is stored in mul-
tiple formats, each optimized for a different type of analysis. For example, a
user might store time-series data in an array database like SciDB while storing
text data in a key-value store like Accumulo. BigDAWG’s island architecture al-
lows the user to query both datasets in a single operation, casting the results
into a common format for further analysis. The cross-island query capability
is facilitated by the casting engine, which can translate data formats and query
languages on-the-fly. This ensures that data can bemoved between islandswith-
out loss of fidelity or functionality. For instance, a query might start in the re-
lational island to extract patient metadata from PostgreSQL, then cast the data
into the array island to perform complex mathematical operations on waveform
data stored in SciDB, and finally cast the results back into the relational island
for final aggregation and reporting.

PERFORMANCE OPTIMIZATION

Another key feature of BigDAWG is its ability to optimize query performance
[19] by leveraging the strengths of the underlying storage engines. The system’s
query planner uses metadata about the data stores and islands to determine the
most efficient way to execute a query. For example, if a query involves a large
text search, BigDAWG might choose to cast the data into the text island, where
the key-value store (e.g., Accumulo) can handle the search more efficiently than
a relational database. Similarly, if the query involves complex mathematical op-
erations on large datasets, the planner might route the query to the array island,
where SciDB’s array-based storage engine can perform the operations more ef-
ficiently. BigDAWG also supports real-time data processing, making it suitable
for applications that require immediate responses, such as monitoring systems
in healthcare settings. The system’s streaming capabilities, provided by engines
like S-Store, allow it to handle high-velocity data streams while maintaining
transactional consistency. This is particularly important in environments like
medical data monitoring, where delays or errors in data processing could have
serious consequences.
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USE CASES AND PRACTICAL IMPLEMENTATIONS

BigDAWG has been demonstrated in several complex real-world scenarios
[20] [21], highlighting its versatility and robustness. One of the most promi-
nent use cases is the management of the MIMIC II dataset, a large-scale medical
database containing various types of data, including time-series waveform data,
patient metadata, and clinical notes.

MIMIC II DATASET MANAGEMENT

The MIMIC II dataset is an example of a heterogeneous data environ-
ment, where different types of data require different storage and processing
techniques. BigDAWG demonstrated to being able to effectively manage
this dataset, by distributing the data across multiple storage engines, each
optimized for a specific type of data. For instance, patient metadata is stored
in PostgreSQL (relational island), waveform data is stored in SciDB (array
island), and clinical notes are stored in Accumulo (text island). BigDAWG’s
ability to perform cross-island queries allows researchers to analyze the data
in a comprehensive manner, combining insights from the different data types
into a single analysis. In practical terms, this means that a query might involve
extracting patient metadata from PostgreSQL, performing a Fourier transform
on the waveform data in SciDB, and searching for relevant clinical notes in Ac-
cumulo. BigDAWG handles the complex task of routing the query through the
appropriate islands, casting the data as needed, and optimizing the execution
to minimize processing time and resource usage. This capability is particularly
valuable in medical research, where researchers need to quickly and accurately
analyze large datasets to draw meaningful conclusions.

CHALLENGES AND FUTURE DIRECTIONS

Despite its advanced architecture and capabilities, BigDAWG is not without
challenges. One of themain issues is its prototype nature; it is not available as an
off-the-shelf solution and requires significant expertise to install, configure, and
extend. This limits its accessibility to organizations with the necessary technical
skills and resources. Furthermore, the development of new islands to support
additional data models and storage engines requires a deep understanding of
both the BigDAWG system and the underlying technologies. Another challenge
is the limited literature and empirical studies on BigDAWG’s deployment in real-
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world scenarios. While the system has been successfully demonstrated in aca-
demic and research environments, there is still a lack of comprehensive studies
on its performance and reliability in operational settings. This raises questions
about its scalability and robustness when applied to large-scale, production en-
vironments.

4.1.3 CONCLUSION AND FUTURE WORK

In conclusion, BigDAWG represents a significant advancement in the field of
polystore systems and heterogeneous datamanagement. Itsmulti-layered archi-
tecture, island-based abstraction, and cross-island querying capabilities offer a
powerful solution for managing and analyzing complex datasets. However, its
practical application is currently limited by the need for specialized knowledge
and the lack of extensive real-world testing. Future research could focus on sev-
eral key areas to reduce the barriers to adoption and expand BigDAWG’s appli-
cability. These include the development of more user-friendly installation and
configuration tools, the creation of additional islands to support awider range of
data models, and the conducting of large-scale empirical studies to validate the
system’s performance and reliability in operational environments. Addition-
ally, efforts could be made to improve the system’s documentation and provide
more comprehensive training resources to help users understand and leverage
its full capabilities.

4.2 OPTIQUE

The Optique system, born from the EU-funded Seventh Framework Pro-
gramme [22], represents a significant evolution in the field of OBDA systems
tailored for industrial applications [23]. Unlike typical OBDA systems which fo-
cus predominantly on static data, Optique extends its capabilities to effectively
handle both streaming and static data, providing a robust platform designed for
real-time and historical data integration and accessibility using semantic tech-
nologies. The project involved multiple prestigious institutions and industry gi-
ants like Siemens, underscoring a collaborative effort aimed at enhancing data
accessibility and integration across varied sectors. Optique documentation rel-
ative to its development stage during the EU project execution is publicly avail-
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able2.

4.2.1 ARCHITECTURAL OVERVIEW

Optique is designedusing a layered architecture approach, ensuring scalabil-
ity and extensibility [24]. At its core, the architecture comprises several distinct
layers, each responsible for a specific aspect of the system’s functionality:

• Presentation Layer : This layer includes user interfaces for both end-users
and Information Technology (IT) experts, facilitating interactions such as
query formulation, system configuration, and ontologymanagement. Key
interfaces in this layer are developed to ensure user-friendliness and ac-
cessibility, allowing users to interact with the system without needing in-
depth technical knowledge of the underlying semantic technologies.

• Application Layer: This layer represents the backbone of the Optique sys-
tem, hosting critical components including the Query Formulation, On-
tology and Mapping Management, and Query Answering components.
Each component is designed to handle specific functionalities, from man-
aging ontologymappings to processing complex queries over diverse data
sources.

• Data and Resource Layer: This foundational layer manages the data
sources accessed by the system, which may include relational databases,
triple stores, and data streams. It also encompasses the infrastructure
required to support the extensive computational needs of the system,
leveraging cloud technologies to enhance scalability and performance.

4.2.2 CORE COMPONENTS AND FUNCTIONALITIES

STARQL QUERY LANGUAGE

At the heart of Optique’s functionality is Streaming and Temporal ontology
Access with a Reasoning-based Query Language (STARQL), an advanced query
language that enables complex querying over both streaming and static data.
STARQL supports seamless integration of streaming data queries, allowing for
real-time data processing and analytics.

2https://mvnrepository.com/artifact/eu.optique-project
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EXASTREAM BACKEND SYSTEM

ExaStream represents the backend processing component of Optique, opti-
mized for handling high-velocity data streams with minimal latency. Its design
focuses on efficient data ingestion and query processing, ensuring that the sys-
tem can manage the continuous influx of data from industrial sensors and other
real-time data sources.

OPTIQUEVQS: VISUAL QUERY SYSTEM

The Optique Visual Query System (OptiqueVQS) enhances the accessibility
of the system by enabling users to construct queries visually [25]. This compo-
nent is particularly useful for users without experience in query languages, as it
provides an intuitive interface for building and executing queries, and thus re-
ducing dependence on IT departments and streamlining data access processes.

4.2.3 IMPACT AND EVALUATION

The deployment of Optique has shown a scalable approach to data access,
significantly reducing the reliance on IT intermediation and promoting efficient
data utilization. However, despite its advanced capabilities, the integration of
Optique within the Siemens ecosystem has led to its status as a proprietary sys-
tem. This exclusivity could potentially restrict broader adoption and external
validation, posing challenges in comparative analyses against other OBDA sys-
tems in diverse real-world settings.
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5
System Architecture

As discussed in Chapter 4, there exist no off-the-shelf solution implement-
ing the OBDF paradigm. This implies that for the specific task of dealing with
clinical and genomics data, within the HEREDITARY context, it is necessary to
design a system architecture, choosing components in such away that thewhole
architecture results in being solid, privacy-oriented (with strong logging capa-
bilities), and being capable tomanage these kind of data. This chapterwill firstly
discuss the overall proposed architecture, that retraces the one presented in pre-
vious chapters. Subsequently, each layer will be presented in details, outlining
how each components have been configured, reporting eventual code snippets.
In order to better describe the source heterogeneity of data that may occur in
contexts such as clinical and genomics, available relational data have been dis-
tributed among different sources.

5.1 SYSTEM ARCHITECTURE DESIGN

The proposed architecture described in Fig. 5.1 implements theOBDF frame-
work. It adopts Ontop as its semantic data integration layer and Dremio as its
data federation layer.

Ontop have been chosen because it natively supports two high levelmapping
languages, that gives more freedom on their optimization, without the need to
appeal to low level Description Logic (DL) languages, it is open-source and well
maintained by the Free University of Bolzano data integration team, it comes
embedded in GraphDB that offers solid APIs, and it comes even with an em-
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Figure 5.1: Proposed System Architecture

bedded web endpoint.
Dremio have been chosen as the virtualization and federation layer because,

as discussed in the Chapter 2, it is an open-source, robust and scalable software
influenced both from its enterprise nature and from a consistent community
providing contributions. Moreover, within its installationmethods, it is possible
to set it up through a Docker image: this may set the basis for the architecture
packaging, expanding the image to other software components.

The semantic integration requires an ontology well describing the domain
of clinical and genomics data. Considering the reusability principle that stands
at the basis of the semantic web, we identified the BRAINTEASER ontology1 as
suitable for accomplishing this task.

1https://brainteaser.dei.unipd.it/ontology/

34



CHAPTER 5. SYSTEM ARCHITECTURE

5.2 DATA SOURCES

Given the relational nature of the available data, we distributed it among five
different platforms to exploit the federation capabilities of the data federation
layer. The choice of the sources has been guided also by surveying commonly
used ones in the biomedicine field in contexts like research and hospital diag-
nostic. As we will discuss, they encompasses more structured DBMSs as well as
simple Comma Separated Values (CSV) files. We also included a novel DBMS
system, so to investigate how new, unknown data sources can be federated as
soon as they figure out.

5.2.1 MYSQL

MySQL2 is one of the most widely used relational DBMS in the world. It is
a FOSS solution now distributed by Oracle3. It is extensively employed across
a variety of applications, from small personal projects to critical enterprise en-
vironments. In our system architecture, we’ve chosen MySQL considering its
extensive adoption, possibly also in application software used in clinics and hos-
pitals to collect patients data. In our environment, MySQL’s role is to store part
of the structured clinical data presented in Chapter 3. The interfacing between
MySQL and our data federation layer, Dremio, is performed through MySQL’s
JDBC connector. This setup allows Dremio to access and query MySQL data
seamlessly. No special modifications or configurations were required to inte-
grate MySQL with Dremio, thanks to Dremio’s native support for MySQL. We
simply established a new data source within Dremio by specifying the connec-
tion parameters.

5.2.2 POSTGRESQL

PostgreSQL4 stands out as a widely adopted open-source relational DBMS.
It is particularly adopted within the research community due to its robustness,
advanced features, and strong compliance with SQL standards. Many research
institutions and academics prefer PostgreSQL for its extensive capabilities in

2https://www.mysql.com/it/
3https://www.oracle.com/it/
4https://www.postgresql.org/
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managing complex data types and its support for sophisticated data manipu-
lation operations. We considered PostgreSQL eligible to be a data source due
to its common adoption in research contexts as a data collector. Again, Post-
greSQL’s role in our environment is to store another portion of the structured
clinical data presented in Chapter 3. Just like with MySQL, integrating Post-
greSQL with Dremio did not require any specific modifications or additional
configurations.

5.2.3 POLYPHENY

Polypheny [26] is an open-source polystore system designed to support di-
verse data models, including relational, document, and graph data. It is engi-
neered to handle mixed workloads and various query languages, making it a
versatile platform suitable for dynamic data environments. In our architecture,
we consider Polypheny not just as a standalone polystore but as a potential low-
level federator under our main data federation layer managed by Dremio. This
perspective is particularly useful because it allows us to leverage Polypheny’s
ability to handle multiple data models, thus enriching the flexibility and capa-
bility of our overall data management system.

CUSTOM ARP CONNECTOR DEVELOPMENT

Unlike the straightforward integrations withMySQL and PostgreSQL, incor-
porating Polypheny required amore sophisticated approach. We performed this
task not only to include Polypheny as one of our data sources but also as a proof
of concept about the actual possibility of developing custom ARP connectors.
Dremio’s ARP framework offers a powerful mechanism to extend Dremio’s ca-
pability to interact with various data sources by interfacing Dremio’s internal
query representations into the native query language of the target data source.
For Polypheny, we developed a custom ARP connector to ensure interaction be-
tween Dremio and Polypheny. The connector we developed is open-source and
available for the community, which can be found at our GitHub repository 5.
These connectors rely on the target source having a JDBC driver and accepting
SQL as a query language, so to have an interface to dialog with.

5https://github.com/mircocazzaro/dremio-polypheny-arp
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CONNECTOR IMPLEMENTATION DETAILS

The custom ARP connector was implemented to translate SQL queries from
Dremio into the query formats that Polypheny can execute directly. The ARP
plugin template6 consists of a Java Maven project, that has to be compiled,
packed within a JAR file and injected, together with the target source JDBC
driver, into the running Dremio instance. To customize the template, two
files needs to be customize: the storage plugin configuration, which is a Java
class 5.1, and the plugin ARP file, which is a YAML7 file. The storage plugin
configuration file tells Dremio what the name of the plugin should be, what
connection options should be displayed in the source UI, what the name of the
ARP file is, which JDBC driver to use and how to make a connection to the
JDBC driver. The ARP YAML file is what is used to modify the SQL queries
that are sent to the JDBC driver, allowing you to specify support for different
data types and functions, as well as rewrite them if tweaks need to be made for
your specific data source.

1 /* ... */
2

3 @SourceType(value = "POLYPHENY", label = "POLYPHENY")
4 public class PolyphenyConf extends AbstractArpConf <PolyphenyConf > {
5 private static final String \ac{ARP}_FILENAME = "arp/implementation

/polypheny -arp.yaml";
6 private static final ArpDialect \ac{ARP}_DIALECT =
7 AbstractArpConf.loadArpFile(ARP_FILENAME , (ArpDialect::new));
8 private static final String DRIVER = "org.polypheny.jdbc.Driver";
9

10 @NotBlank
11 @Tag(1)
12 @DisplayMetadata(label = "Polypheny host <HOST:PORT>")
13 public String database;
14

15 /* ... */
16

17 @Tag(2)
18 @DisplayMetadata(label = "Record fetch size")
19 @NotMetadataImpacting
20 public int fetchSize = 200;

6https://github.com/dremio-hub/dremio-sqllite-connector
7https://yaml.org/
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21

22 @Tag(6)
23 @DisplayMetadata(label = "Polypheny User Name")
24 public String username = "pa";
25

26 @Tag(7)
27 @DisplayMetadata(label = "Polypheny Password")
28 public String password = "";
29

30 @Tag(4)
31 @DisplayMetadata(label = "Maximum idle connections")
32 @NotMetadataImpacting
33 public int maxIdleConns = 8;
34

35 @Tag(5)
36 @DisplayMetadata(label = "Connection idle time (s)")
37 @NotMetadataImpacting
38 public int idleTimeSec = 60;
39

40 @VisibleForTesting
41 public String toJdbcConnectionString() {
42 final String database = checkNotNull(this.database , "Missing

database.");
43

44 return String.format("jdbc:polypheny://%s", database);
45 }
46

47

48 private CloseableDataSource newDataSource() {
49 return DataSources.newGenericConnectionPoolDataSource(DRIVER,
50 toJdbcConnectionString(), username , password , null, DataSources

.CommitMode.DRIVER_SPECIFIED_COMMIT_MODE ,
51 maxIdleConns , idleTimeSec);
52 }
53 }

Code 5.1: The storage plugin configuration file

With respect to the storage plugin configuration Java class 5.1, being
Polypheny still an embryonic project not allowing for user management, but
rather having a default user ”pa” with empty password, fields are pre-filled
with default values. The class specification is then interpreted at run time
from Dremio, setting up a form with input fields corresponding to each @Dis-
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playMetadata annotation. The DRIVER static and immutable variable contains
the class path of the Polypheny JDBC driver. The newDataSource() method
is invoked at form submission, setting up the connection to the Polypheny
instance.

5.2.4 NAS FOLDERS

Dremio offers native support for a variety of ”relational” file types such as
CSV, Excel, JavaScript Object Notation (JSON), and Virtual Contact File (VCF).
These files may be physically moved within the Dremio instance, but losing any
streaming capability, or by attaching a Network Attached Storage (NAS) source
to it. In fact, Dremio integrates a connector to local folders, reading supported
files within them. The name NAS on this typology of data source is ambiguous:
the term refers to storage units usually located within the same Local Area Net-
work (LAN) of one or more hosts accessing it, while in Dremio is used to gener-
ically refer to a folder to which it can access. This in practice means Dremio can
browse local folders: thus, ifNAS shared folders aremountedwithin theDremio
server through the ServerMessage Block (SMB) protocol, they can be browsed as
well. In Linux environments where the standalone version of Dremio is used, its
daemonmust have permission to read these folders; in environments where the
Docker image is employed, where a clear separation between the host file sys-
tem and the Docker context occurs, folders and NAS shares must be mapped.
This is obtained with Docker Volumes8, and in particular the “Host Volume”
paradigm.

1 $ docker run -v NAS_PATH/folder:/opt/dremio/folder -p 9047:9047 -p
31010:31010 -p 45678:45678 -p 32010:32010 --name hereditary_dremio
dremio/dremio-oss

Code 5.2: Docker command to run a Dremio container with a Host Volume

For the purposes of our project, we have utilized the NAS data source to store
a portion of our genomics data. Specifically, we have chosen to include data in
VCF files. VCF is a text file format generally used in bioinformatics for storing
gene sequence variations.

8https://docs.docker.com/storage/volumes/
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5.2.5 GOOGLE DRIVE

Google Drive is a widely used cloud storage service offered by Google that
allows users to save files and access them from any device connected to the in-
ternet. Users can store documents, spreadsheets, and presentations, collaborate
with others, and have all their work backed up safely. We chose to consider
Google Drive as a data source for our system architecture primarily because of
its widespread use in various contexts, including scenarioswhere Google Sheets
are frequently adopted for data collection andmanagement. Google Sheets, part
of theGoogleDrive suite, is particularly popular in both academic and industrial
settings for its ease of use and collaborative features. The approach to integrat-
ing Google Drive is identical to that of the NAS system, as long as Google Drive
is adapted to a local host folder. This adaptation allows Dremio to interact with
Google Drive as if it were interacting with local file systems, thereby simplify-
ing access and manipulation of data stored in Google Drive. The adaptation of
Google Drive to a local system is facilitated by a tool known as google-drive-
ocamlfuse9, which provides a Filesystem in Userspace (FUSE)-based file system
backed byGoogleDrive. This toolwas built usingOCaml, a functional program-
ming language known for its expressiveness, efficiency, and robustness. OCaml
is utilized to handle the logical operations and data structure management, en-
suring that the application runs efficiently and securely. FUSE is a software in-
terface for Unix-like computer operating systems that lets non-privileged users
create their own file systemswithout editing kernel code. This is used in google-
drive-ocamlfuse to mount Google Drive as a file system on the user’s computer.

ADAPTATION OF GOOGLE SHEETS

With the google-drive-ocamlfuse tool, Google Sheets can be adapted to local
Excel files, which are natively supported by Dremio. This adaptation is crucial
because it allowsDremio to performoperations onGoogle Sheets just as it would
on local Excel files, enabling seamless data processing and integration without
needing to convert or move data physically.

9https://github.com/astrada/google-drive-ocamlfuse
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CONFIGURATION AND USAGE

Configuring google-drive-ocamlfuse involves setting up Google Drive as a
mounted file system. Once mounted, the Google Drive folder behaves like any
other directory on the local system.

1 # Installation of google-drive-ocamlfuse
2 $ sudo add-apt-repository ppa:alessandro -strada/ppa
3 $ sudo apt-get update
4 $ sudo apt-get install google-drive-ocamlfuse
5

6 # Authentication and mounting
7 $ google-drive-ocamlfuse
8 $ mkdir ~/google-drive
9 $ google-drive-ocamlfuse ~/google-drive

Code 5.3: google-drive-ocamlfuse Tool installation procedure

We used the Google Drive data source to store the remaining part of CSV ge-
nomics data.

5.3 FEDERATION AND VIRTUALIZATION LAYER

At the bottom of our system architecture we do have a software component
that encompasses both the federation and virtualization functionalities. In fact,
this component not only allows to seamlessly connecting to multiple diverse
data sources, but also serves as a virtualizer by creating unmaterialized virtual
views of the integrated data. This dual functionality is essential in our scenario
for efficiently managing data access and manipulation across the disparate sys-
tems involved in our project.

5.3.1 ROLE OF FEDERATOR

As a federator, this layer allows for extensive connectivity, facilitating inter-
actions with various types of data sources ranging from traditional relational
databases like MySQL and PostgreSQL to modern polystore systems such as
Polypheny, and even cloud-based storage solutions like Google Drive. The abil-
ity to federate across these diverse sources means that data, regardless of where
it is stored or in what format, can be accessed and queried as if it were located
within a single, homogeneous database.
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5.3.2 ROLE OF VIRTUALIZER

On the virtualization side, the layer enables the creation of virtual views that
do not requirematerialization. These views treats relations exposed fromunder-
lying data sources as if they are actual tables within the same database schema:
as Fig. 5.2 shows, this implies that these tables can be joined together and thus
expose themost meaningful information to the upper architecture layers. More-
over, tables can be joined with pre-defined views, further enhancing the virtu-
alization capabilities. No data is physically stored within this layer, but rather
queries coming into this layer are dynamically interpreted and delegated to the
source DBMSs. This approach ensures that the most current data is always pre-
sented to the user or application, without the overhead and delay associated
with physical data integration. In the subsequent sections, a diagram will be in-
cluded to illustrate how these virtual views are structured and managed within
our system.

Figure 5.2: Virtual Views

5.3.3 FOCUS ON DREMIO

WEB INTERFACE

One of the main features of Dremio is its user-friendly web interface, which
provides a graphical user interface (Graphical User Interface (GUI)) that sim-
plifies the process of data management. This interface is particularly beneficial
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for defining and managing virtual views. Users can interact with the system
through the web interface to run queries, visualize query results and configure
the system settings.

JDBC CONNECTION

Apart from its web interface, Dremio also supports JDBC connections, al-
lowing it to integrate seamlessly with a variety of programming environments
and data tools. This JDBC support is crucial for automating data processes
and integrating with other applications that require programmatic access to the
data federation layer. Developers can use the JDBC driver to connect directly to
Dremio from their applications, enabling them to run queries programmatically
and retrieve data for further processing or analysis. This capability is essential
for building automated data pipelines and for applications that need to interact
dynamically with the data layer.

VIRTUAL VIEWS DEFINITION

Within Dremio’s web interface, users can create and manage virtual views.
Users can define virtual views by writing standard SQL queries that join, fil-
ter, or transform the data across these sources. For instance, a researcher might
join genomic data stored in a NAS system with patient data from a MySQL
database to perform analytics concurrently between genetic markers and health
outcomes. In our architecture we defined different virtual views, with the in-
tent of aligning with the ontology structure. With respect to the clinical data
coming from the three medical centers, the views are limited to the union of the
relations composing the dataset, given that all three of these shares the same
identical schema. Only on the Amyotrophic Lateral Sclerosis view, given that
data from the Madrid dataset was missing some information, we filled some of
its columnwith null values. Views definedwithin Dremio are presented in code
5.4. As described before, data coming from Turin refers to a MySQL data store,
data from Lisbon refers to a PostgreSQL data store, and data from Madrid is
stored within a Polypheny instance.

1 # Amyotrophic Lateral Sclerosis View
2 SELECT * FROM LISBON.public.lisbon_alsfrs UNION SELECT * FROM TURIN

.alsfrs_turin.Turin_alsfrs UNION SELECT MADRID.madrid_alsfrs.
patient, MADRID.madrid_alsfrs."date", MADRID.madrid_alsfrs.tot,
NULL AS bulbar, NULL AS motor, NULL AS respiratory , NULL AS q1,
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NULL AS q2, NULL AS q3, NULL AS q4, NULL AS q5, NULL AS q6, NULL
AS q7, NULL AS q8, NULL AS q9, NULL AS q10, NULL AS q11, NULL AS
q12 FROM MADRID.madrid_alsfrs;

3

4 # Spirometry Forced Vital Capacity View
5 SELECT * FROM LISBON.public.lisbon_spiro UNION SELECT * FROM MADRID

.madrid_alsfrs.Madrid_spiro UNION SELECT * FROM TURIN.alsfrs_turin

.Turin_spiro;
6

7 # Patient Static Data
8 SELECT * FROM LISBON.public.lisbon_static_vars UNION SELECT * FROM

MADRID.madrid_alsfrs.Madrid_static_vars UNION SELECT * FROM TURIN.
alsfrs_turin.Turin_static_vars;

Code 5.4: Virtual views over clinical data

5.4 ONTOLOGY LAYER: BRAINTEASER ONTOLOGY

In our system architecture, the ontology layer is essential in modeling and
managing the complex relationships between genomics data interlaced with
clinical values and patients’ medical records. Through an extensive review of
the literature and existing resources, we identified a suitable ontology that ef-
fectively encapsulates these intricate data relationships: the BRAINTEASEROn-
tology [27].

5.4.1 BRAINTEASER ONTOLOGY OVERVIEW

Represented in Fig. 5.3, the BRAINTEASER Ontology is specifically de-
signed to model the multifaceted context of genomics and clinical data. This
ontology provides a structured framework that facilitates the integration of
diverse data types, ranging from detailed genomic sequences to comprehensive
patient medical records. By adopting this ontology within our system, we can
link data across these varied domains effectively, exploiting all the potentials
discussed in the background analysis, and enhancing our ability to conduct
meaningful analytical analyses that require a deep understanding of both
genetic and clinical factors. The ontology is part of the broader BRAINTEASER
project, which aims to address complex biomedical challenges through inno-
vative data integration techniques and advanced computational models. More
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information about the BRAINTEASER project and its initiatives can be found
on the official website10.

Figure 5.3: The BRAINTEASER Ontology

5.4.2 ONTOLOGY FEATURES AND CAPABILITIES

The BRAINTEASER Ontology models meticulously various aspects of pa-
tient health data, including genetic markers, clinical symptoms, diagnostic test
results, and treatment responses. This comprehensive modeling approach en-
sures that all relevant data dimensions are captured and can be queried effec-
tively. One of the key strengths of the BRAINTEASER Ontology is its focus on

10https://brainteaser.dei.unipd.it/ontology/
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interoperability. It is built to integrate seamlessly with existing medical and ge-
nomic data standards, facilitating easy data exchange and compatibility with
other health information systems. As new discoveries are made and healthcare
practices evolve, the ontology is structured to be scalable and flexible. It can
accommodate additional data types and relationships, supporting the ongoing
growth and diversification of biomedical data.

5.4.3 ONTOLOGY IMPLEMENTATION

In our system, the BRAINTEASER Ontology acts as the vocabulary for de-
signing semantic queries over data. Bymapping our virtual datamodelwith this
ontology, we ensure that data from disparate sources can be integrated coher-
ently and that complex queries involves all data coming from the heterogeneous
data sources.

5.5 OBDA LAYER

In our architecture, The component realizing the OBDA paradigm, that aims
to set up a Virtual Knowledge Graph (VKG), is Ontop. Ontop comes in different
shapes: different tools are provided for accomplishing different tasks. In this
section we will discuss the different Ontop tools that have been employed in our
project alongside their actual role, with also code examples.

5.5.1 ONTOP MAPPING

Protégé is a well-known tool for ontology modelling, developed and main-
tained by the Stanford University. Apart from its standard capabilities, it is open
to custom plugins that can be installed on demand, that expand its features. To
develop ontology mappings between an ontology and a single relational data
source, as in the OBDA paradigm is defined, the Ontop Mappings plugin for
Protégé have been realized. Its utilization process is defined as follows:

• The ontology that has to be mapped has to be opened with Protégé;

• TheOntopMappings plugin has three tabs: the first one is about setting up
the JDBC connection with the relational source (i.e., Dremio). The JDBC
driver has to be manually loaded within the Protégé ”connectors” folder;
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• The second tab is about defining Ontop properties. For the mapping task,
no specific property needs to be defined;

• The third tab is the mappings editor. Here, there are two different input
fields: one asks for a portion of the graph, in Turtle notation, with au-
tocomplete features; the second one is about the SQL query against the
relational sources. Rows coming from the relational sources are directly
mapped by including fields name within curly brackets in the Turtle syn-
tax. Note that if there aremistakes in the Turtle notation (e.g., the subgraph
doesn’t match with the ontology), the mapping can’t be added.

• After defining all mappings, they can be validated by clicking on ”Vali-
date”. SQL queries are executed and if they are wrong, or field names
doesn’t coincide with the one defined within curly brackets, an exception
is raised;

• By saving the Protégé project, an .obda file is created in the ontology folder,
containing mappings definition.

For shortness, a portion of the mappings implementation between the vir-
tual relational schema exposed by Dremio and the BRAINTEASER Ontology is
shown in Code 5.5.

[MappingDeclaration] @collection [[
mappingId MAPID−5b34961b80264140bb779dbd296424ac
target bto:Patient{patient} a bto:Patient .
source SELECT patient FROM "@mirco.cazzaro"."STATIC_VARS";

mappingId MAPID−f24debb89dc84f73a47acdf763ec0b4f
target bto:Patient{patient} bto:alive {alive}^^xsd:boolean .
source SELECT patient, LCASE(alive) AS alive

FROM "@mirco.cazzaro"."STATIC_VARS"
WHERE alive <> '';

mappingId MAPID−5b2c0dfea75d44279ce8ddde95f2a9aa
target bto:Patient{patient} bto:sex {sex}^^xsd:string .
source SELECT patient, LCASE(sex) AS sex

FROM "@mirco.cazzaro"."STATIC_VARS"
WHERE sex <> '';

mappingId MAPID−51a6eb8de7c64b7bbe4fe62d8188208c
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target bto:Patient{patient} bto:undergo bto:eventOnset1{patient} .
bto:eventOnset1{patient} a bto:Onset ; bto:eventStart {onsetDate}^^xsd
:datetime ; bto:bulbarOnset {onset_bulbar}^^xsd:boolean ; bto:
axialOnset {onset_axial}^^xsd:boolean ; bto:generalizedOnset {
onset_generalized}^^xsd:boolean ; bto:limbsOnset {onset_limbs}^^xsd:
boolean .

source SELECT patient, onsetDate, LCASE(onset_bulbar) AS onset_bulbar
, LCASE(onset_axial) AS onset_axial, LCASE(onset_generalized) AS
onset_generalized, LCASE(onset_limbs) AS onset_limbs FROM "@mirco.
cazzaro"."STATIC_VARS";

mappingId MAPID−541428e7a83441f5bd29e52d66ffc52e
target bto:Patient{patient} bto:undergo bto:eventOnset2{patient} .
bto:eventOnset2{patient} a bto:Onset ; bto:ageOnset {age_onset}^^xsd:
float .

source SELECT patient, age_onset FROM "@mirco.cazzaro"."STATIC_VARS"
WHERE age_onset <> '';

mappingId MAPID−ff2b4bdc90af468793b4f58105fa555f
target bto:Patient{patient} bto:undergo bto:diagnosis{patient} . bto:
diagnosis{patient} a bto:Diagnosis ; bto:eventStart {diagnosisDate}^^
xsd:datetime .

source SELECT patient, diagnosisDate FROM "@mirco.cazzaro"."
STATIC_VARS";

mappingId MAPID−13ab39d8b67c4f34a206b7f4bcc1f442
target bto:Patient{patient} bto:hasEthnicity bto:eth{patient} . bto:
eth{patient} rdfs:label {ethnicity}@en .

source SELECT patient, ethnicity FROM "@mirco.cazzaro"."STATIC_VARS"
WHERE ethnicity <> '';

mappingId MAPID−56da0e23dc6b4cb3a0bfc475f4bcb65f
target bto:eventOnset3{patient} bto:anatomicalLocation bto:location{
patient} . bto:location{patient} rdfs:label {onset_location}^^xsd:
string .

source SELECT patient, onset_location FROM "@mirco.cazzaro"."
STATIC_VARS" WHERE onset_location <> '';

mappingId MAPID−5ea1e8edbbb1446fb50e887c4f0605dd
target bto:eventOnset4{patient} bto:consists bto:clinicalEvaluation{
patient} . bto:clinicalEvaluation{patient} a bto:ClinicalEvaluation ;
bto:predominantLimbsSide {onset_limbs_side}^^xsd:string ; bto:
predominantLimbsImpairment {onset_limbs_impairment}^^xsd:string .
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source SELECT patient, onset_limbs_side, onset_limbs_impairment
FROM "@mirco.cazzaro"."STATIC_VARS"
WHERE onset_limbs_side <> '' OR onset_limbs_impairment <> '';

]]

Code 5.5: Mappings definition between the virtual relational schema exposed
by Dremio and the BRAINTEASER Ontology

5.6 ONTOP SPARQL

The aim of the OBDA approach is executing SPARQL queries over a VKG.
Testingmapping correctness before their utilization in a running environment is
essential. The Ontop SPARQL plugin for Protégé accomplishes this task. Given
its role of a testing tool, it allows to analyze the ”SQL translation” of the running
SPARQL query.

5.6.1 ONTOP ENDPOINT

The Ontop Standalone Endpoint provides a server environment where On-
top can operate independently, offering both an API and aweb interface for run-
ning SPARQL queries over the virtual knowledge graph. This setup is particu-
larly useful for environments where integration with existing data management
systems is necessary, as it comes as an independent and lightweight tool.

5.6.2 ONTOP WITH GRAPHDB

Integrating Ontop with GraphDB leverages the strengths of both platforms,
combining Ontop’s powerful OBDA capabilities with GraphDB’s management
functionalities. GraphDB allows to manage simultaneously different graph
databases, where data is collected in independent ”repositories”. In particular,
repositories can be standard repositories, thus ingesting RDF data, or virtual,
that actually is an adaptation of the repository over an Ontop instance. This
solution is particularly indicated for those scenarios where an easy-to-use web
interface is necessary, allowing to export retrieved data in various formats.
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6
Use Case

The proposed federated architecture in this thesis aims to run semantic
queries over sparse and diverse data sources. In this chapter we will consider a
practical use case of the architecture, showcasing both the flow of a query and
its transformations among the diverse components of the architecture, as well
as the inverse flow of the retrieved data, from the sources to the user interface.

6.1 EXPERIMENTAL SETUP

The use case selected for this analysis involves a sophisticated SPARQL
query designed to interlink and analyze clinical and recording data from the
BRAINTEASER project dataset. This scenario is meticulously chosen to demon-
strate the robust capability of the proposed architecture to manage and execute
queries that necessitate access to multiple physical locations. The experiment
is structured to conduct a thorough examination of the various components
comprising the architecture, beginning with an in-depth analysis of the query
itself. This initial stage focuses on inspecting the query’s structure, understand-
ing how it interacts with the data sources, and predicting its flow through the
underlying system components. The goal is to highlight the interaction between
the query and the data layers, offering insights into the complexities involved
in federated data management. Following the structural analysis, the query’s
flow through the architecture will be meticulously presented and visualized.
This involves analyzing each step of the query’s execution, highlighting how it
is rewritten, unfolded, and ultimately executed within the system. This phase
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aims to provide a clear and detailed schematic representation of the data flow,
showcasing the dynamic interactions between the architectural components.
The final phase of the experimental setup involves the actual execution of the
query. During this stage, we will closely monitor and document the transfor-
mations that the query undergoes at various stages of the architecture. From
its initial transformation from SPARQL into SQL by the Ontop component,
through its optimization and execution in the data virtualization layer powered
by Dremio, each transformation will be presented. The overarching objective of
this experimental analysis is to validate the architecture’s ability to efficiently
manage and process complex queries across a federated data environment.

6.2 SPARQL QUERY OVER ALSFRS RELATIONS

The selected SPARQL query, presented in Code 6.1, is specifically crafted
to access and analyze the ALSFRS data, which is crucial for assessing the pro-
gression of ALS symptoms over time. This section discusses the structure of the
query, its relevance to the dataset, and how it leverages the architecture’s capa-
bilities. The query employs the BRAINTEASER ontology schema, indicated by
the prefix bto, to query ALSFRS data. It is designed to retrieve a comprehen-
sive set of variables related to the ALSFRS assessments, including total scores
and sub scores for bulbar, motor, and respiratory functions, as well as individ-
ual question scores from the ALSFRS-R (Revised ALS Functional Rating Scale).
This query not only fetches detailed patient assessment data but also organizes
it chronologically for each patient, aiding in the longitudinal analysis of dis-
ease progression. The ordered structure facilitates efficient data retrieval and
subsequent analysis in a clinical research context. The chosen query is signifi-
cant for several reasons: first and foremost, it accesses data unified from distinct
sources, showcasing the architecture’s capability to seamlessly integrate data
across heterogeneous systems. Secondly, the query tests the system’s capabil-
ity to handle complex and extensive data structures, reflecting directly on the
underlying data’s relational union, which is a virtual view amalgamating iden-
tical table schemas from different databases. Finally, this same query will serve
lately also as a benchmark to assess the correctness of the ontology mappings
and the accuracy of data retrieval across the federated system. The ability to re-
trieve consistent and complete data sets across different platforms is crucial for
validating the effectiveness of the federated architecture.
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PREFIX bto: <https://w3id.org/brainteaser/ontology/schema/>

SELECT ?patient ?date ?tot ?bulbar ?motor ?respiratory ?q1 ?q2 ?q3 ?q4
?q5 ?q6 ?q7 ?q8 ?q9 ?q10 ?q11 ?q12 WHERE {

?p bto:undergo ?e.
?e bto:consists ?alsfrs.
?alsfrs a bto:ALSFRS;

bto:procedureStart ?date;
bto:revisedALSFRS ?tot;
bto:bulbarSubscore ?bulbar;
bto:motorSubscore ?motor;
bto:respiratorySubscore ?respiratory;
bto:alsfrs1 ?q1;
bto:alsfrs2 ?q2;
bto:alsfrs3 ?q3;
bto:alsfrs4 ?q4;
bto:alsfrs5 ?q5;
bto:alsfrs6 ?q6;
bto:alsfrs7 ?q7;
bto:alsfrs8 ?q8;
bto:alsfrs9 ?q9;
bto:alsfrs10 ?q10;
bto:alsfrs11 ?q11;
bto:alsfrs12 ?q12.

BIND(SUBSTR( (STR(?p)), 48) AS ?patient)
}
ORDER BY ?patient ?date

Code 6.1: SPARQL query on ALSFRS visits performed by patients over the
BRAINTEASER ontology vocabulary

6.3 QUERY FLOW

The flow of the query from its original form to the actual data retrieval across
physical data sources is a multi-step process involving several layers of trans-
lation and optimization. Each phase of this transformation leverages different
components of the architecture to ensure accurate and efficient query execution.
Figure 6.1 represents in details this flow as the query is submitted to its final des-
tinations (i.e., relational DBMSs).
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6.3.1 QUERY REWRITING OVER ONTOLOGICAL RULES

The first transformation step involves expanding the SPARQL query accord-
ing to the ontological rules defined in Ontop. Ontop uses these rules to inter-
pret the query in the context of the ontology, enhancing the query by incorpo-
rating ontological knowledge. This includes inferring relationships, attributes,
and classifications that are not explicitly stated in the query but are defined in
the ontology. This expansion helps in making the query more comprehensive
and aligned with the underlying data model, ensuring that the results are se-
mantically consistent with the ontology’s structure.

6.3.2 QUERY UNFOLDING TO SQL

Once the query is expanded, Ontop performs the unfolding process. In this
phase, the expanded SPARQL query is translated into SQL based on the map-
ping definitions that link the ontology to the virtual database schema. This step
is crucial as it converts the high-level ontological query into a format that can
be executed over a relational DBMS. The unfolding process ensures that the
query is syntactically correct and optimized for execution against the structured
schema of the data sources. The syntactical correctness of the output SQL query
is strictly correlated with the correctness of the mappings.

6.3.3 EXECUTION OF SQL ON VIRTUAL VIEWS

The final transformation occurswhen the SQL query is processed byDremio,
which acts on the virtual views defined over the physical data sources. Dremio
takes the SQL query and executes it against these virtual views, which represent
a unified interface over the disparate databases. This phase is critical as Dremio
optimizes the query’s execution by deciding how best to access and retrieve the
data from the underlying physical sources. This involves pushing down certain
operations to the databases and merging results from the different sources.
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Figure 6.1: Data Flow Block Diagram of a Query Through the Federated Archi-
tecture

6.4 EXPLORATION OF QUERY TRANSFORMATION IN ON-
TOP

In this phase we are using the Ontop framework within the Protégé environ-
ment, specifically chosen for its debugging capabilities. This setup is ideal for
detailed inspection and debugging of the query transformation process, from a
SPARQL query to an SQL query executable on relational databases. This deci-
sion allows for a granular inspection of howqueries are translated from SPARQL
to SQL, focusing on the use of ontological rules and mappings. After setting up
all the components, we ran the query and we waited for the retrieval process
to be completed. Given the distribution and the heterogeneity of the sources,
the process was time consuming with respect to high-performance, centralized
DBMSs. After assessing the result correctness by visual inspection, we analyzed
the output query q* produced in output by the Ontop framework, that was sub-
mitted to Dremio. The query resulted in having long recursive patterns, par-
ticularly due to special character parsing processes. After manually inspecting
and parsing these patterns in order to simplify and shorten the query repetitive
body, we obtained the SQL presented in 6.2.
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1 CONSTRUCT [patient, date, tot, bulbar, motor, respiratory , q1, q2, q3
, q4, q5, q6, q7, q8, q9, q10, q11, q12]

2 [date/RDF(CHARACTER VARYINGToVARCHAR(date2m51), xsd:datetime),
3 q1/RDF(INTEGERToVARCHAR(q11m25), xsd:integer),
4 motor/RDF(INTEGERToVARCHAR(motor1m55), xsd:integer),
5 ...]
6 NATIVE
7 SELECT
8 v23."bulbar1m17" AS "bulbar",
9 v23."date2m51" AS "date",

10 v23."motor1m55" AS "motor",
11 v23."q101m44" AS "q10",
12 v23."q111m42" AS "q11",
13 v23."q11m25" AS "q1",
14 v23."q121m41" AS "q12",
15 v23."q21m24" AS "q2",
16 v23."q31m23" AS "q3",
17

18 --- ... more fields
19

20 v23."patient26m9" AS "patient"
21 FROM (
22 SELECT DISTINCT
23 v7."bulbar" AS "bulbar1m17",
24 v5."date2m51" AS "date2m51",
25 v8."motor" AS "motor1m55",
26 v1."patient" AS "patient26m9",
27 v19."q10" AS "q101m44",
28 v20."q11" AS "q111m42",
29 v10."q1" AS "q11m25",
30

31 --- ... more fields
32

33 v6."tot" AS "tot1m45"
34 FROM "clinical_data"."ALSFRS" v1
35

36 --- ... recursive joins
37

38 WHERE v1."patient" IS NOT NULL AND v1."date" IS NOT NULL
39 ) v23
40

41 ORDER BY v23."date2m51" NULLS FIRST

Code 6.2: Parsed SQL Translation of the Original SPARQL Query
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The CONSTRUCT clause is crucial in shaping the structure of the resultant RDF
data, where each field is transformed to match a specific data type and linked
to its RDF representation. This transformation ensures that the output aligns
with the expected semantic standards, facilitating subsequent data integration
and analysis. The NATIVE clause instead specifies the direct SQL translation
components, signifying how the translated query interfaces with the underly-
ing SQL database. It highlights the direct mapping of SPARQL to SQL, ensur-
ing that the original semantic query’s intent is preserved while being adapted
for execution over relational data structures. The SELECT clause in SQL is con-
structed to directly map each variable specified in the SPARQL SELECT query.
Each variable such as ?patient, ?date, ?tot, etc., corresponds to specific fields in
the underlying database tables. For example, bto:procedureStart translates to se-
lecting the date column in SQL. The SPARQL BIND function used to extract the
patient ID from a URL or string is represented in SQL with a SUBSTRING func-
tion, allowing the extracted patient ID to be represented correctly in the result
set. The FROM clause in SQL involves the specification of tables and joins that
correspond to the triples patterns defined in the SPARQL query. The SPARQL
predicate bto:undergo and bto:consists suggest relational joins between patient
data and ALSFRS assessment data. This relationship is mapped to SQL joins
or subqueries that fetch data from multiple related tables, capturing the rela-
tional nature of the data as specified by the ontology. The WHERE clause in
SQL is essential for filtering data based on conditions expressed in SPARQL.
Conditions such as ensuring data completeness or filtering based on specific cri-
teria (like date ranges or specific patient characteristics) are directly translated
from SPARQL conditions. The SQL version ensures that only relevant, complete
records are processed. The ORDER BY clause in SQLmirrors the SPARQL order
condition, ensuring that the results are returned in a specific order, which in this
case is based on patient ID and date. This ordering is crucial for chronological
analysis of patient data in medical research. The detailed translation process
showcases the precise alignment from SPARQL to SQL, ensuring that the data
fetched and processed adheres strictly to the semantic structure defined by the
ontology.
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6.5 EXECUTION OF Q* ON DREMIO VIRTUAL VIEWS

In our architecture, Dremio operates as a single-instance node rather than
a distributed cluster, focusing on executing SQL queries that have been trans-
formed from SPARQL to SQL. This phase critically leverages Dremio’s robust
logging capabilities, which provide detailed insights into the query execution
process. The Dremio query planner, which is central to its operation, allows
for the export of query execution plans in JSON format. By inspecting these
logs, we can observe and analyze how the query is optimized and executed.
Dremio’s execution engine processes the query against virtual datasets, which
abstract the underlying physical data sources such as MySQL, PostgreSQL, and
Polypheny. This virtualization allows for efficient data querying across hetero-
geneously structured data repositories without necessitating physical data ag-
gregation or duplication. Such a setup is essential for maintaining high perfor-
mance and flexibility in data handling. The detailed query plan extracted from
the JSON log shows the optimizer’s role in structuring the execution. It details
the optimized execution paths designed to minimize the overhead associated
with processing complex SQL queries. These paths reflect the strategic planning
of operations to enhance query performance by reducing unnecessary data shuf-
fles and network traffic, which is crucial in a single-node setup where resource
optimization is key. The execution log provides insights into the handling of
complex joins and the extensive use of URL encoding within SQL queries. The
presence of multiple nested SELECT statements and intricate joins illustrates
Dremio’s capability to reconstruct semantic relationships that were initially ex-
pressed in the SPARQL format. This ensures that the semantic integrity and the
meaning of the original queries are preserved and effectively adapted for execu-
tion over relational data structures. Furthermore, the logs reveal Dremio’s use
of Apache Arrow for managing data formats, ensuring efficient data processing
and exchange. This choice underscores the system’s design towardsmaximizing
processing speed and minimizing latency, which is particularly beneficial in a
single-node environment where all processes converge on one machine. Perfor-
mance enhancement strategies such as sophisticated caching mechanisms are
also evident from the logs. These mechanisms optimize the execution of re-
peated queries and manage frequently accessed data, thereby reducing execu-
tion times and improving the system’s responsiveness. Moreover, specific SQL
transformations highlighted in the log, including the decoding of URLs back to
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standard formats, underscore themeticulous attention to ensuring data compat-
ibility and correctness. This aspect is critical for the subsequent stages of data
analysis and integration. By executing these virtual views, Dremio facilitates
real-time data retrieval and analysis, crucial for dynamic decision-making pro-
cesses in clinical research environments. The detailed inspection of Dremio’s
query execution logs not only demonstrates the practical application of seman-
tic web technologies in modern data architectures but also ensures that the data
retrieval process is both efficient and semantically consistent.

6.6 SUMMARY

This chapter detailed a use case that applied our federated data analytics
architecture to handle complex queries across diverse data sources. The ar-
chitecture facilitated the integration and querying of heterogeneous data sets
using SPARQL-to-SQL translations within a federated system featuring Ontop
and Dremio. The experiment demonstrated the system’s capability to efficiently
manage and optimize complex queries, reducing execution times and maintain-
ing data integrity. The analysis of Dremio’s logs revealed effective query opti-
mizations and the robust handling of federated queries, showcasing the poten-
tial of the architecture to support real-time, data-intensive operations in clinical
genomics research. Overall, the experiment confirmed the architecture’s effec-
tiveness in leveraging semantic web technologies and federated systems to en-
hance data processing and accessibility, setting a foundation for future research
and applications in distributed data environments.
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7
Architecture Benchmark Evaluation

Following the comprehensive exploration of our federated data architec-
ture’s design and practical use cases in earlier chapters, we now shift our focus
towards a crucial aspect of system development, that is its performance and
operational efficiency benchmarking evaluation. This evaluation is crucial, as
it determines the feasibility and effectiveness of the architecture in real-world
applications, particularly in the data-intensive field of genomics research.
Benchmarking in the context of this thesis encompasses necessarily a multi-
faceted approach, considering both the resource consumption as well as the
DBMS performance of the proposed architecture. The architecture must not
only prove robustness in handling complex data interactions but also achieve
this with good efficiency in terms of both time and cost. By implementing this
dual-focused benchmarking approach, we aim to address two fundamental
questions: how well the architecture performs under typical and peak loads,
and how does it manage the computational resources at its disposal. Answering
these questions will provide a comprehensive understanding of the system’s
operational characteristics and its suitability for deployment in real-world
genomics research environments. The insights gained from this benchmark-
ing phase are intended to provide a better understanding of the system’s
operational dynamics. These benchmark results will not only validate the
architecture’s capabilities but also highlight areas where further optimizations
are necessary, ensuring the system’s alignment with the high-throughput and
high-accuracy demands of modern DBMS, being always close to the clinical
and genomics fields’ requirements. This chapter will lay out the methodologies
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employed in our benchmarking tests, discuss the benchmarks selected for
evaluation, and detail the performance metrics that will guide our analysis of
the architecture’s suitability for real-world applications.

7.1 STATE OF THE ART ON BENCHMARKING TECHNIQUES

In this sectionwe aim to provide an overviewon two state-of-the-artmethod-
ologies and their respective framework, differing in the benchmarked factors,
that can provide useful insights under diverse point of view. The objective is
understanding their logics and wether they can be insightful in our context.

7.1.1 THE BERLIN SPARQL BENCHMARK

The Berlin SPARQL Benchmark (BSBM) [28] was developed to evaluate the
performance of RDF data management systems by comparing native RDF stores
with SPARQL-to-SQL rewriters, which translate SPARQL queries into SQL
queries on-the-fly. This benchmark is particularly crucial for understanding
how different systems handle RDF data under various conditions, an essential
factor for applications involving complex and voluminous datasets like those
found in genomics. BSBM is structured around an e-commerce use case where
products are offered by vendors and reviewed by consumers, creating a realistic
scenario for benchmarking. The design objectives of BSBM focus on providing
a meaningful comparison across different storage systems that expose SPARQL
endpoints. These objectives ensure the benchmark reflects typical use-case
scenarios and assesses how systems perform under realistic and concurrent
client workloads.

BSBM DATASET AND QUERY MIX

The BSBM dataset is scalable and can be generated in different sizes, allow-
ing for comprehensive testing across systems. Having the dataset “generated”
means assessing its performances on a synthetic dataset, that in particular mod-
els a typical e-commerce domain with entities like Products, Vendors, Reviews,
etc. The benchmark’s data generator supports creating arbitrarily large datasets
by adjusting the number of products, which serves as the scale factor. This flex-
ibility in data generation enables BSBM to simulate different data volumes and
complexities, providing insights into how systems scale with increasing data
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sizes, while working on synthetic data gives the best combination of a common
baseline for DBMSs comparisons as well as a variable dataset so not to overfit
while optimizing the performances. The query mix used in BSBM simulates
the search and navigation patterns of consumers looking for products, mimick-
ing a consumer’s interaction with a database. This includes queries for find-
ing products based on various features, retrieving detailed product informa-
tion, and querying for reviews. The mix consists of parameterized queries with
randomly generated values to prevent caching optimizations, ensuring that the
benchmark measures genuine query processing performance.

BENCHMARK IMPLEMENTATION

BSBM’s implementation includes a test driver and a data generator, which
together facilitate the execution of the benchmark across different systems. The
test drivermanages the execution of SPARQL queries over a network, simulating
multiple clients, and measures the system’s performance based on queries per
second and average query execution time. The data generator outputs the data
in both RDF and relational formats, allowing for a direct comparison of RDF
stores and relational databases using SPARQL-to-SQL translation techniques.

CONTRIBUTIONS AND IMPACT OF BSBM

BSBM has significantly contributed to the field by providing a robust frame-
work for evaluating RDF data management systems in terms of SPARQL query
performance and also standard relational DBMSs in terms of SQL query perfor-
mances, becoming undoubtedly the state of the art for benchmarking DBMSs
[29]. By applying BSBM across various systems, it has revealed strengths and
weaknesses in existing implementations, guiding improvements in RDF store
and SPARQL-to-SQL rewriter technologies. Moreover, BSBM assists applica-
tion developers in selecting appropriate storage systems based on performance
metrics critical to their specific requirements.

7.1.2 SEASHELL BENCHMARK FOR HEALTHCARE DATA LAKES

In the rapidly evolving domain of healthcare informatics, the creation of a
specialized benchmarking framework such as reSource bEnchmark for Analysis
taSks in HEaLthcare data Lakes (SEASHELL) was necessary [30]. This bench-
mark addresses the pressing need to evaluate healthcare data lake infrastruc-
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tures comprehensively, ensuring they are optimally configured to handle the
complexities of modern medical data. As healthcare organizations increasingly
rely on data-driven insights to improve patient outcomes and operational effi-
ciencies, the ability to effectivelymanage and analyze vast arrays ofmedical data
becomes crucial.

DESIGN AND OBJECTIVES OF SEASHELL

SEASHELL ismeticulously designed to assess the performance of healthcare
data lakes, namely critical infrastructures that integrate and process diverse data
types from electronic health records to genomics data. The benchmark aims
to evaluate these systems on several fronts: data handling, or rather the sys-
tem’s capability to manage and query large and varied datasets that are typical
in healthcare environments; performance efficiency, that means measuring the
speed and resource efficiency of data processing tasks, which are vital for timely
medical decisions, and the system scalability capabilities.

BENCHMARK FRAMEWORK AND TEST SCENARIOS

The SEASHELL benchmark introduces a comprehensive framework de-
signed to test data lake infrastructures under various workload scenarios,
including relational analyses and machine learning tasks that mirror real-
world applications such as disease prediction and patient data management.
It employs a virtualized implementation of a healthcare-specific data lake
architecture alongside two external cloud-based infrastructures to demonstrate
its flexibility and adaptability in diverse environments. The architectural
design of the SEASHELL benchmark is intentionally designed to be versatile
and accurately mirror the complexities found in real-world healthcare IT
environments. This design choice ensures that SEASHELL can thoroughly
evaluate how well a healthcare data lake manages, integrates, and analyzes
different data types, both structured, like Electronic Health Records (EHR)s,
and unstructured, such as medical images. Beyond just handling diverse data
types, the benchmark extends its testing to encompass a range of analytical
functions, from basic SQL-based querying to advanced analytics, reflecting
the comprehensive data analysis tasks encountered in healthcare settings.
Furthermore, the adaptability of SEASHELL is rigorously evaluated across
various settings, including custom-built virtualized environments and external
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cloud-based platforms, ensuring its effectiveness and applicability across the
diverse IT infrastructures that are typical in modern healthcare settings.

OVERVIEW OF NON-MACHINE-LEARNING TASKS IN SEASHELL

As outlined previously, SEASHELL comprises on non-machine-learning
tasks, which are particularly interesting for what concerns benchmarking
DBMSs. These tasks involve:

• Data Retrieval and Querying: Testing the efficiency and speed of ba-
sic data retrieval operations, which are foundational for any data-driven
healthcare system. This includes executing complex SQL queries across
large datasets to simulate the retrieval of patient information, treatment
outcomes, and other critical data in real time;

• Data Processing and Transformation: Evaluating the data lake’s capabil-
ity to performnecessary data transformations, such as normalizing diverse
data sets from various sources (like labs and medical devices) into a uni-
fied format that can be easily analyzed and stored.

• Resource Utilization: Measuring the computational and memory re-
sources utilized during these operations to assess the cost-effectiveness of
data lake architectures in a healthcare setting.

CONTRIBUTIONS AND IMPACT OF SEASHELL

SEASHELL is a comprehensive benchmark framework that not only tests the
performance of healthcare data lakes but also guides the optimization and scal-
ing of these critical infrastructures. It is a fundamental tool for gathering de-
tailed insights into both machine-learning and non-machine-learning capabil-
ities, and it helps ensure that healthcare data lakes are not only capable of ad-
vanced data analysis but are also efficient and reliable for everydaymedical data
processing.

7.2 SERVER ENVIRONMENT CONFIGURATION

Understanding the server environmentwhere our architecture is evaluated is
crucial for benchmarking, as it provides a context to the evaluation results, that
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will be presented later on in this chapter. Moreover, it is important to analyze
wether the server hardware and software capabilities are sufficient to accurately
assess the architecture’s performance under different loads.

Specification Details
Operating System Rocky Linux 8.10 (Green Obsidian)

CPU Intel(R) Xeon(R) Silver 4116 CPU @
2.10GHz

CPU Details 48 cores, 96 threads, 24 cores per
socket

RAM Memory Total: 564GB, Available: 487GB
Storage - Locale 2.5TB (1.9TB used, 148GB available)
Kernel Version Linux x86_64, Kernel 4.18.0

Table 7.1: Server Specifications

The server’s CPU, an Intel Xeon Silver 4116, features a high number of cores
and threads (48 cores and 96 threads distributed across two sockets). This setup
is excellent for multitasking and running multiple operations simultaneously,
which is common in our benchmark tests. About RAM memory, our server
has 564GB in total. This large amount of memory suits well for processing big
datasets without the need of frequently swapping data with slower disk-based
storages. Storage capacity is also important. Our server includes a 2.5TB local
drive, of which 1.9TB is used, leaving 148GB free. This space is adequate for our
needs during the benchmarking phase, allowing us to store and manage large
amounts of data effectively. In summary, the server setup is well-suited for the
demanding tasks of benchmarking our federated data architecture. The speci-
fications ensure that we can conduct thorough and accurate performance tests,
which are essential for validating the architecture’s performances.

7.3 BSBM BENCHMARK RESULTS OVER SYNTHETIC DATA

As underlined before, the BSBM framework aims to provide tools and
methodologies to assess DBMS performance, both relational and RDF-based,
stressing the databases in terms of concurrent queries, and gathering measure-
ments like queries per second (QPS) and the average query execution time. The
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BSBM toolkit1, provided and maintained by the Free University of Berlin, is
open source and it consists of a series of JAR packages that perform different
operations. In particular, we focus on two of them, that refers to the Generator
class and the TestDriver class. The Generator class, and its related JAR executor,
aims on generating the synthetic dataset. Users can decide by setting up
command line arguments, the size of the dataset in terms of total rows as well
as the output format, whether it has to be SQL or RDF. The schema structure
of the generated relational source or the generated graph is constant (i.e., 10
tables in case of the relational source), while data in text fields or individual
data properties is recreated at each generation from two text files, containing
many words, in a random manner.

SYNTHETIC DATA GENERATION

For our experiment, we generated 100k rows in SQL format, as these is the
feeding format for our architecture. The data was generated as shown in Code
7.1.

1 $ ./generate -pc 100000 -s sql

Code 7.1: BSBM generator script that invokes Generator class and JAR executor

As the output SQL syntaxwas compatiblewithMySQL, in order tomimic the be-
havior of the architecture at its operational status, we split the schema in half and
imported the two portions in two different MySQL servers. Figure 7.1, showing
the benchmarking setup, represents also this scenario.

BSBM R2RML MAPPINGS

A huge obstacle we were facing at this stage was that the tool was not in-
tended for running in a context like the one we developed in our thesis. In
other words, the BSBM procedures expects the user to generate RDF synthetic
data and benchmark a triple store system, by running SPARQL queries over it,
or instead generating SQL data and benchmark a relational DBMS, by running
SQL queries over it. No use case were foreseen for a scenario where SPARQL
queries were executed over a VKG on underlying SQL data. Luckily, a team of
researchers from the Charles University in Czech Republic faced this problem

1https://sourceforge.net/projects/bsbmtools/files/bsbmtools/
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in a recent scientific paper [31], developing R2RML mappings2, specifically be-
tween the graph and relational data models.

Given that mappings, as it occurs within the OntopNative syntax, must map
portions of a graph to an SQL query, the proposed mappings were performing
this operation with a standard SQL syntax, that was not suited for the Dremio
SQL dialect. Given this, we had tomanually inspect and edit the mappings so to
make them compatiblewith our virtualization system. Code 7.2 shows a portion
of thesemappings, where we intervened by adding the Dremio space name (i.e.,
the equivalent of the schema in PostgreSQL) that was hosting our virtual views.

<#ProductFeature> a rr:TriplesMap;
rr:logicalTable [ rr:tableName "\"@mirco.cazzaro\".productfeature" ];
rr:subjectMap [
rr:template "http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/
ProductFeature{nr}";
rr:class bsbm:ProductFeature;
];
rr:predicateObjectMap [
rr:predicate rdfs:label;
rr:objectMap [ rr:column "label"; ];
];
rr:predicateObjectMap [
rr:predicate rdfs:comment;
rr:objectMap [ rr:column "comment"; ];
];
rr:predicateObjectMap [
rr:predicate dc:publisher;
rr:objectMap [ rr:template "http://www4.wiwiss.fu-berlin.de/bizer/bsbm/
v01/instances/StandardizationInstitution{publisher}"; ];
];
rr:predicateObjectMap [
rr:predicate dc:date;
rr:objectMap [ rr:column "publishDate"; ];
];
.

Code 7.2: BSBM Custom Mappings for Dremio SQL Syntax in R2RML

2https://github.com/mchaloupka/bsbm-r2rml/blob/develop/src/main/dist/rdb2rdf/mapping.ttl
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BENCHMARKING SETUP

The whole setup, represented in Fig. 7.1 was finally ready to run the bench-
mark tests. The MySQL istances have set up on physical, remote servers, always
in order to adhere to the paradigm of replicating a real world scenario use case.

Figure 7.1: Architecture Setup for Benchmarking

BENCHMARK RESULTS

We ran the TestDriver with the following parameters:

1 $ java -cp bin:lib/* benchmark.testdriver.TestDriver -runs 32 -w
4 -mt 4 -t 30000 http://localhost:7200/repositories/BSBM

Code 7.3: BSBM TestDriver class execution

For each query (12 in total), we ran them 32 times with 4 concurrent processes
submitting queries. We excluded the first 4 queries from the measurements as
a warm-up phase to eliminate any potential noise from caching mechanisms.
Moreover, we set a timeout of 30 seconds for each query.

The first notable observation from results in Fig. 7.2 is that the plots are comple-
mentary: this is expectable, as a one of the main causes for a low query rate can
be for sure an high response time. We can observe how Query 3 and Query 11
are performing poorly with respect to the others. As we will see in next section
with other benchmarks, where we will compare resource consumption between
Dremio and Ontop hosted in GraphDB, the component that usually is more
resource-demanding and consuming is the virtualization system Dremio. This
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Figure 7.2: BSBM Benchmark Results

70



CHAPTER 7. ARCHITECTURE BENCHMARK EVALUATION

implies that an eventual bottleneck has to be caused at this level. By inspecting
Queries 3 and 11, we can see how these two make use of extensive joins among
tables that in our set up belongs to different sources as well as nested queries.
This translates to a possible weakness of the proposed architecture while deal-
ing with these case study, but that can surely be investigated and strengthen in
future. In general, our architecture was able, on average, to perform 15 queries
per seconds from 4 concurrent processes acting as independent users. This rep-
resent a huge milestone, considering it is an embryonic study.

7.4 ARCHITECTURE PERFORMANCE BENCHMARKING
OVER CLINICAL DATA

In alignment with the methodologies presented in Section 7.1.2, we con-
ducted an extensive evaluation of our healthcare data architecture using our
available clinical data. This benchmarking initiative was critical to validate the
architecture’s operational efficacy, specifically targeting its ability to handle real-
world healthcare analytics tasks efficiently. The benchmark frameworkwas con-
structed around a custom-developed monitoring script. This script, integral to
our testing methodology, was engineered to capture and log real-time CPU and
RAM delta usage metrics by process ID.

1 #!/bin/bash
2

3 pid=$1
4 output_file=$2
5

6 # Get the number of CPUs
7 num_cpus=$(nproc)
8

9 # Time interval in seconds
10 interval=1
11

12 trap 'echo "Monitor stopped"; exit' SIGINT SIGTERM
13

14 if [ -z "$pid" ] || [ -z "$output_file" ]; then
15 echo "Usage: $0 <PID> <output_file >"
16 exit 1
17 fi
18

71



7.4. ARCHITECTURE PERFORMANCE BENCHMARKING OVER CLINICAL DATA

19 exec > $output_file
20

21 while true; do
22 # Capture CPU times at the start of the interval
23 start_utime=$(cat /proc/$pid/stat | cut -d " " -f 14)
24 start_stime=$(cat /proc/$pid/stat | cut -d " " -f 15)
25 start_total=$(cat /proc/stat | grep '^cpu ' | awk '{print $2+$3+

$4+$5+$6+$7+$8}')
26

27 # Capture the initial RAM usage
28 start_ram=$(grep VmRSS /proc/$pid/status | awk '{print $2}')
29

30 sleep $interval
31

32 # Capture CPU times at the end of the interval
33 end_utime=$(cat /proc/$pid/stat | cut -d " " -f 14)
34 end_stime=$(cat /proc/$pid/stat | cut -d " " -f 15)
35 end_total=$(cat /proc/stat | grep '^cpu ' | awk '{print $2+$3+$4+

$5+$6+$7+$8}')
36

37 # Capture the end RAM usage
38 end_ram=$(grep VmRSS /proc/$pid/status | awk '{print $2}')
39

40 # Calculate the deltas for CPU
41 delta_process=$(( (end_utime + end_stime) - (start_utime +

start_stime) ))
42 delta_total=$(( end_total - start_total ))
43

44 # Calculate CPU usage as a percentage
45 cpu_usage=$(awk "BEGIN {printf \"%.2f\", (${delta_process} / ${

delta_total}) * 100 * ${num_cpus}}")
46

47 # Calculate RAM usage change if needed
48 ram_usage_change=$(( end_ram - start_ram ))
49

50 echo "$(date +'%Y-%m-%d %H:%M:%S') CPU Usage: ${cpu_usage}% | RAM
Usage Change: ${ram_usage_change} kB"

51

52 done

Code 7.4: Custom Monitor Script for Performance Tracking

The benchmarking trials were designed to assess the architecture’s perfor-
mance by running the same analytical query we considered for the use case
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Figure 7.3: CPU and RAM usage over time for Dremio during benchmarking

Figure 7.4: CPU and RAM usage over time for GraphDB (Ontop) during bench-
marking
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analysis in Chapter 6 that simulate typical data processing tasks encountered
in clinical settings. During these tests, our monitoring script provided contin-
uous feedback on system performance, enabling a comprehensive analysis of
CPU and RAM usage across different operational states. Illustrated in Figures
7.3 and 7.4, the system’s response to the execution of computationally inten-
sive queries reveals significant insights into its dynamic resource allocation and
management capabilities. We analyzed the output from the twomonitoring dae-
mons, synchronizing samples at the moment the query was submitted by in-
specting the query logs in Dremio. This allowed us to generate superimposable
plots for independent analysis of CPU load and variations in RAM usage. No-
tably, the trends for both CPU and RAM usage appear almost flat in GraphDB,
except for a spike nearly coinciding with the completion of query execution. In
contrast, Dremio exhibits non-negligible resource consumption throughout the
entire duration of the query execution, with spikes occurring both at the begin-
ning and the end of the process. These phenomena may be explained by the
fact that, upon submission, query execution in GraphDB does not initially in-
volve resource-intensive activities, whereas in Dremio, it is necessary to exploit
the views structure of the submitted query to begin fetching data from various
sources. The spikes at the end are likely related to the combination of results
from these sources and the activities involved in presenting the data to the user.
The occurrence of these spikes suggests potential areas for optimization, which
could be crucial for improving the system’s efficiency and responsiveness, es-
pecially under peak load conditions. In conclusion, this benchmarking exer-
cise has not only validated the robustness of our healthcare data architecture
but also identified specific enhancement opportunities that can significantly im-
prove system performance.

7.5 SUMMARY AND CONCLUSIONS

This chapter provided a detailed overview of the benchmarking process for
our federated data architecture, particularly focusing on its performance and op-
erational efficiency in the realm of genomics research. Through a series of metic-
ulously designed benchmarks, we evaluated the architecture’s ability to han-
dle complex data interactions and manage computational resources effectively,
ensuring its suitability for deployment in high-demand genomics research en-
vironments. The benchmarks detailed in this chapter utilized state-of-the-art
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methodologies, including the Berlin SPARQL Benchmark and the SEASHELL
framework for healthcare data lakes, to provide a comprehensive assessment
of the architecture’s performance across various scenarios. These tests revealed
both the strengths and potential areas for improvement in our system, highlight-
ing the critical need for continual optimization.
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8
Conclusions and Future Works

The research and development work undertaken in this thesis has focused
on the challenging task of integrating and analyzing heterogeneous biomedical
data, specifically clinical and genomics data. The primary aim has been to de-
sign a robust and scalable federated data analytics system, capable of handling
the complexities associated with diverse data sources. Leveraging the OBDA
paradigm and advanced data federation techniques, the system provides a
unified platform that not only integrates but also semantically enriches the
data from multiple, disparate sources. The system’s architecture, built on
Dremio as the data federation layer and Ontop for semantic data integration,
has demonstrated the feasibility and effectiveness of using these technologies in
a federated environment. The choice of Dremio was driven by its open-source
nature, robustness, scalability, and ability to manage different types of data
sources, including relational databases, polystore systems, and cloud storage
solutions. Ontop was selected as well because it is FOSS, but also for its com-
pliance with W3C standards and its capability to perform high-performance
query answering over virtualized RDF graphs. Together, these technologies
compose the backbone of the proposed system, enabling complex queries over
diverse datasets without the need for extensive data preprocessing or manual
data integration. The implementation of this system within the context of
the HEREDITARY project has further validated its applicability in real-world
scenarios. The federated data analytics system developed in this thesis has
been designed as an initial prototype that addresses the specific needs of this
project, facilitating the integration and analysis of clinical and genomics data
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from different medical centers across Europe. The system’s ability to handle
both structured and unstructured data, its support for real-time data retrieval,
and its compliance with privacy regulations such as GDPR, make it a valuable
tool for biomedical research. However, the work presented in this thesis is not
without limitations, and several areas for future research and development
have been identified. One of the most promising directions for future work is
the packetization or dockerization of the system’s software components, so to
transform it into a single reusable application. By containerizing the various
components of the system, such as the Dremio and Ontop instances, it would be
possible to simplify the deployment process and ensure consistent performance
across different environments. Dockerization would also facilitate the scaling
of the system, allowing it to handle larger datasets and more complex queries
by distributing the workload across multiple containers. Another area for
future research is strengthening the system’s compliance with GDPR and other
data protection regulations. While the current system has been designed with
privacy and data security in mind, there is always room for improvement.
Future work could focus on developing more sophisticated techniques for data
anonymization and encryption, as well as implementing stricter access controls
and auditing mechanisms to ensure that sensitive data is always protected.
Additionally, further research could explore the integration of federated
learning techniques, which would allow for the analysis of data across multiple
sites without the need to share the raw data itself, thus enhancing privacy and
security. Optimizing the system’s performance is another critical area for future
work. The benchmarking results presented in this thesis have highlighted the
strengths and weaknesses of the current architecture, particularly in terms of
query execution time and resource consumption. Future research could focus
on refining the system’s performance by utilizing the results of the benchmark-
ing as a ground point for optimization. This could involve fine-tuning the
system’s configuration, improving the efficiency of the query rewriting and
unfolding processes, or developing new algorithms for data federation and
virtualization. Special attention should be given to optimizing the system’s
performance during peak loads, as these are often the most critical points in
terms of resource usage and response time. In addition to these specific areas
of future research, there are also broader questions that could be explored
in relation to the system’s overall design and functionality. For example, the
system be made more user-friendly, particularly for researchers and clinicians
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who may not have a background in data science. As an example, it could be
possible to develop a custom endpoint, developed from scratch, that interfaces
with the architecture from the top, allowing to easily and visually build queries
to deliver to the federated architecture, and that effectively allows to perform
various analytics based on retrieved data. In conclusion, the federated data
analytics system developed in this thesis represents a significant step forward
in the integration and analysis of heterogeneous biomedical data. When
combining advanced data federation techniques with the semantic power of
OBDA, the system offers a scalable, flexible, and privacy-conscious solution
for managing the complexities of clinical and genomics data. As mentioned
earlier, the work is far from complete, and there are many opportunities for
future research and development. Continuing to build on the foundations laid
in this thesis will make it possible to create even more powerful and versatile
tools for biomedical research, contributing to better healthcare outcomes and a
deeper understanding of human health and diseases.
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