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Abstract

Brain-Computer Interfaces (BCIs) represent groundbreaking technology, offering substantial

improvements in the quality of life for individuals with severe motor disabilities. This study

focuses on the identification of Error-Related Potentials (ErrPs) and their key characteristics

during the continuous control of a powered wheelchair. Participants were instructed to navi-

gate the powered wheelchair using a joystick along a predetermined path with obstacles, while

EEG data were collected. ErrP was successfully identified when the wheelchair executed an

unexpected command not initiated by the user. The analysis, including artifact removal and

alignment of ErrP peaks, was performed offline. The obtained results are comparable to studies

in the literature for discrete control. This groundbreaking finding holds significant implications

for future advancements in continuous BCI control, aiming to enhance the user experience.
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Sommario

Le Brain-Computer Interfaces (BCI) rappresentano una tecnologia rivoluzionaria, offrendo

miglioramenti sostanziali nella qualità della vita per individui con gravi disabilità motorie.

Questo studio si concentra sull’identificazione dei Potenziali di Errore (ErrP) e delle loro carat-

teristiche chiave durante il controllo continuo di una sedia a rotelle motorizzata. Ai partecipanti

è stato chiesto di guidare la sedia a rotelle motorizzata utilizzando un joystick lungo un percorso

prestabilito con ostacoli, mentre venivano registrati dati EEG. Gli ErrP sono stati identificati con

successo quando la sedia a rotelle ha eseguito un comando inaspettato non generato dall’utente.

L’analisi, comprensiva della rimozione degli artefatti e dell’allineamento dei picchi ErrP, è stata

eseguita offline. I risultati ottenuti sono confrontabili con gli studi presenti in letteratura per il

controllo discreto. Questa scoperta rivoluzionaria ha significative implicazioni per futuri pro-

gressi nel controllo continuo BCI, con l’obiettivo di migliorare l’esperienza dell’utente.
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Chapter 1

Introduction

In the current technological context, Brain-Computer Interfaces (BCIs), or Brain-Machine In-

terfaces (BMIs), play a prominent role in the development of medical devices [1] for individuals

who have suffered severe damage to the nervous system due to various diseases such as stroke

[2], acute inflammatory demyelinating polyneuropathy [3], and multiple sclerosis [4]. The chal-

lenge for these individuals is the inability to perform even the simplest daily tasks due to physical

limitations, despite being cognitively active, and the inability to utilize assistive systems based

on alternative pathways (such as eye gaze, mouth opening, tongue protrusion) to communicate

the intention of movement [5]. BCIs serve as a bridge between the human and the computer

to perform a specific activity. Through the acquisition of the brain signals, human intention is

interpreted by the computer, translated into the required action, and executed by external de-

vices. Wolpaw proposed the first definition of BCI: “Brain-computer interfaces give their user

communication and control channels that do not depend on the brain’s normal output channels

of peripheral nerves and muscles.” [Wolpaw et al., IEEE Transactions on Rehabilitation Engi-

neering, 2000] [6]. To better understand the functioning of this technology, it is important to

briefly describe the characteristics, functioning, and types of the different elements at play.

1.1 The Brain: a brief description

The brain can be divided into three main parts: the cerebellum, the brainstem, and the cere-

brum, each with distinct functions [7]. The cerebellum plays a crucial role in motor control,

coordination, sensory perception, and fine motor skills [8]. It contributes to regulating posture

and balance and is involved in voluntary muscle movements. The brainstem serves as a vital

bridge between the cerebellum and the spinal cord [9]. It is the central control panel of the body

and oversees essential functions such as breathing, consciousness, eye and mouth movements,

and the transmission of sensory messages, including pain, temperature, and sound [9]. It also
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regulates vital processes such as heart rate, blood pressure, and hunger [10]. Finally, the most

important and of greater interest to BCI is the cerebrum, responsible for a wide range of cog-

nitive functions, including thoughts, movements, and emotions [8]. It is composed of neural

tissues called the cerebral cortex and is divided into the left and right hemispheres, each further

subdivided into four lobes [11]:

• The frontal lobe is associated with personality, emotions, problem-solving, motor devel-

opment, reasoning, planning, language production, and voluntary muscle movements [12]

• The parietal lobe is responsible for sensations, sensory understanding, stimulus recogni-

tion, spatial orientation, and movement [8]

• The occipital lobe is primarily responsible for the visual process [11]

• The temporal lobe handles the recognition of auditory stimuli, language processing, per-

ception, and memory [7].

Of particular interest is the area of the cingulate cortex. It is located in the medial part of the

brain, above the corpus callosum and below the striatum, and is part of the limbic system [13].

For this reason, it is involved, along with structures contained within it, such as the amygdala,

hippocampus, and cingulate gyrus, in multiple cognitive and emotional functions [14]. It is then

divided into four different functional regions: anterior, medial, posterior, and retrosplenial [15].

The Anterior Cingulate Cortex (ACC) is the anatomical area of primary interest of this thesis

since it is responsible for error detection and processing [16].

1.2 Acquisition Method

To record brain activity, various types of equipment have been developed and employed.

The choice of instrumentation varies based on the ultimate goal since each technique has

different characteristics. The most common ones include Positron Emission Tomography

(PET), electrocorticography (ECoG) [17], functional near-infrared spectroscopy (fNIRS) [18],

functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) [17]. Cur-

rently, the only data acquisition techniques utilized by BCI technologies are ECoG and EEG.

1.2.1 Electrocorticography

ECoG represents an advanced neurophysiological technique that allows the recording of cortical

potentials directly from brain tissue through the attachment or implantation of electrodes, mak-

ing it classified as an invasive investigative method [19]. This method distinguishes itself from

2



EEG as it eliminates signal dispersion and attenuation caused by the presence of the scalp and

skull [20], factors that can significantly compromise the amplitude of detected potentials [19].

The absence of these intervening structures allows ECoG to provide a more faithful and detailed

representation of brain activity due to its high spatial and temporal resolution [20], making it

particularly useful in operational contexts [21]. During surgical interventions where the brain is

exposed, ECoG is employed to continuously monitor changes in cortical electrical activity [22].

This real-time monitoring capability is crucial during brain stimulations, enabling surgeons to

assess the effect of stimulations directly on the cerebral cortex and evaluate activation areas

[23]. A crucial aspect of the ECoG application is its ability to detect non-convulsive epilepti-

form activity [23]. This form of epileptic activity can manifest without apparent physical signs

of seizures and may occur after electrical stimulation of cortical area [24].

1.2.2 Electroencephalography

EEG is a non-invasive technique for directly measuring brain electrical activity [25]. It is widely

used in both clinical and research fields and is also employed in psychology and cognitive sci-

ences to directly measure neuronal activity [26]. EEG has much better temporal resolution

compared to other possible non-invasive systems like fMRI, PET, or fNIRS [27].

What is measured is a macroscopic phenomenon that reflects the synchronized activity of an

extended neuronal population [25]. EEG primarily reflects the activity of cortical neurons as

it is more challenging to measure deeper neurons within the brain due to the low signal power

generated by these cells [28]. The neurons influencing measurements are pyramidal neurons,

organized in parallel with each other and having a dendrite, called the apical dendrite, orthog-

onal to the brain’s surface [29]. There are also other neurons that are not organized within the

cortical surface with a predominant direction, and therefore, they do not overly influence the

measured electrical activity due to their stochastic contribution [30].

What is measured with EEG is the postsynaptic potential [29]. The overall process leading to

the measured signal can be described as follows: from a given neuron, an action potential is

generated that will reach the target neuron, where a postsynaptic stimulus will be generated,

i.e., the signal causing extracellular depolarization or hyperpolarization, depending on the type

of synapse, which will be measured and detected in EEG signals [28]. Of course, the mea-

sured signal does not come from a single neuron but from a large number of neurons firing

synchronously [29].

To measure the activity of pyramidal neurons, these types of cells must exhibit high temporal

synchronicity and spatial summation that allows for generating a field potential strong enough

to be measured from the scalp [31]. These neuronal activities generate currents that flow in the

volume conductor of the head [32]. These are reflected as potential differences on the scalp
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surface.

Key parameters of EEG include frequency, quantifying the number of waves per second ex-

pressed in Hertz (Hz), and amplitude, measured in microvolts (μV), of potential oscillations,

known as EEG rhythms. Variations in these parameters reflect physiological events such as

normal brain activity, concentration, sleep [33], and sensory stimulation [34]. Similarly, they

can indicate pathological conditions such as tumors, hematomas, or epilepsy [35].

These rhythms are categorized based on the dominant frequency content, and the four main

categories are:

• α rhythm: typically manifesting in frequencies from 8 to 13 Hz and often associated with

relaxation or eye closure [36].

• β rhythm: having frequencies in the range [13-30] Hz, generally correlated with focused

mental activity and excitement. They can be recorded in the frontal part of the head [37].

• γ rhythm: fluctuations with a relatively high frequency (30-80 Hz). It is influenced by

sensory inputs and internal processes, such as attention and working memory [38].

• δ rhythm: referring to low frequencies (0.5-4 Hz), often present during deep sleep [39].

• ϑ rhythm: frequencies between 4 and 8 Hz, observable during sleep and in children up to

13 years old. If observed in awake adults, they may signal a subcortical lesion [40].

1.3 Electrophysiology

Electroencephalography can measure various types of signals; however, for the purpose of this

study, only a few of these numerous signals will be briefly described: Evoked Potentials (EPs)

and Event-Related Potentials (ERPs).

1.3.1 Evoked Potentials

EPs are electric responses of the central nervous system to external sensory or motor stimuli

[41]. These can be generated by visual, auditory, or tactile stimuli and provide a means to study

the speed and integrity of neural pathways involved in sensory perception and motor responses

[42]. EPs are characterized and classified based on their waveform, specifically positive and

negative peaks, and the temporal interval between the stimulus and the recorded fluctuation

[43]. The uniqueness of these signals lies in being time-locked and stimulus-specific, present-

ing consistently in the same form and after the same time interval for each stimulus type [42].

However, the amplitude varies from subject to subject, and a decrease is observed when the
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same stimulus is repeatedly presented to the same subject during an experiment [41]. Examples

of evoked potentials include:

• Visual Evoked Potentials (VEPs): Recorded in response to visual stimuli, such as light

flashes. VEP analysis can provide information about the functionality of optic pathways

and visual processing in the brain [44].

• Auditory Evoked Potentials (AEPs): Recorded in response to auditory stimuli, such as

sounds or tones. They can be used to assess hearing function and the integrity of auditory

pathways [45]

• Somatosensory Evoked Potentials (SEPs): Measured in response to tactile stimuli. These

can be used to assess the function of peripheral nerves and sensory pathways [45].

1.3.2 Event-Related Potentials

ERPs are a subset of evoked potentials representing variations in brain activity correlated with

specific cognitive events [46]. While EPs depend on the physical characteristics of the stimu-

lus, ERPs are related to the informational content of the stimulus and the meaning the subject

attributes to it [47]. They are often used to study cognitive processes such as attention, memory,

and perception [48]. Examples of ERPs include:

• P300: A positive potential (greater than 10 μV) associated with memory and attention

processing, appearing only after 300 ms (hence the name P300) following “target” stimuli

[49]. It has a characteristic distribution on posterior derivations (centro-parietal-occipital)

[50]. For example, P300 can be recorded when an individual recognizes an unexpected

or rare stimulus in a sequence of common stimuli.

• N400: Associated with language and semantic understanding. It is often recorded in

response to sentences or words that violate semantic expectations [46].

Additionally, there are other brain rhythms not generated by external factors, but spontaneously

modulated by individuals [51]. Examples include Sensorimotor Rhythms (SMRs) and Slow

Cortical Potentials (SCPs):

• Sensorimotor Rhythms: Comprising alpha rhythms, also called mu rhythms, and beta

rhythms [52]. The amplitude of these signals varies when brain activity is linked to motor

tasks, even if actual movement is not required to modulate the intensity of these rhythms

[53].
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• Slow Cortical Potentials: Representing slow-duration voltage changes in EEG, extending

from one to several seconds and connected to changes in cortical activity levels [54].

Negative SCPs are associated with increased neuronal activity, while positive SCPs occur

simultaneously with decreased activity in individual cells [54].

1.3.3 Error Related Potentials

Error-Related Potentials (ErrPs) are a specific category of ERP reflecting neural processing

related to the recognition and correction of errors in cognitive or motor tasks [55]. They are

generated by the ACC and can be recorded from electrodes Fz, FCz, Cz, and Pz at the sagittal

suture of the skull [56]. Like all other evoked potentials, ErrPs are time-locked to the beginning

of the stimulus [57]. Four types of ErrP have been identified based on the context in which the

error occurs:

• Response ErrP: Generated after an incorrect motor action [58].

• Feedback ErrP: Generated only after making a decision. If the decision results in an

error or the subject realizes they made a mistake, ErrP is generated [59].

• Observation ErrP: Generated after observing an external person make an error [60].

• Interaction ErrP: Generated when a BCI provides a command considered erroneous by

the subject [61].

The shape of ErrP can vary significantly depending on the type of task a person is performing

[62]. It can be a simple Error-Related Negativity (ERN) with a latency of about 50-100 ms in

the case of an incorrect response [63]. Alternatively, it can be a broader complex of deflections,

composed of an initial positive peak around 200 ms after a BCI feedback [64], a negative peak at

250 ms, a positive peak at 320 ms, and another negative deflection after about 400 ms [65], the

previously mentioned N400. However, all these latencies are indicative and not constant values

[66]. It should also be considered that ErrP amplitude is inversely proportional to the error rate

present.

1.4 BCI classification

BCI technology is based on a closed-loop architecture (Figure 1.1), where mutual learning is

fundamental [67]. Both agents, the brain and the machine, are stimulated for mutual learning

[68]. The brain generates specific brain signals under precise conditions, while the machine,
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through machine learning algorithms, comprehends and predicts the user’s intentions, facilitat-

ing the transmission and classification of intentions [67]. Specifically, a features extraction step

is necessary, wherein the essential features to describe the signal, such as amplitude, frequency,

and peak latency, are defined. Subsequently, the extracted features are utilized to classify the

user’s brain signal and intention using machine learning algorithms. The classifier is trained

on these features, allowing it to recognize future brain signals from the same individual. This

adaptability is crucial as brain patterns are highly subject-specific. The concept of a closed

loop is crucial as it allows the user, through feedback and reinforcement learning, to verify the

machine’s performance once the brain signal is classified [69]. Simultaneously, it enables the

computer to correct its errors, modify its interpretation, and reach the user’s actual intention

[70]. The classification of BCI technologies refers to the technology used to access information

on brain activity or the paradigm on which such technology is based.

Figure 1.1: BCI as closed loop

1.4.1 Invasive vs. non-invasive acquisition techniques

To record brain signals, various technologies have been developed, which can be either invasive

or non-invasive. A possible classification of BCI follows that of data acquisition technologies.

It is essential to note that invasive BCI (based on ECoG) is only possible following a surgi-

cal operation to implant electrodes in close contact with brain tissue [71]. This makes it more

expensive, risky, and ethically debated in the research field [72]. Several factors, such as the

brain area to be investigated, the subject under examination, electrode biocompatibility, post-

operation wound healing time, electrode sharpness, and electrode placement speed, must be

considered before, during, and after implantation [73]. However, the data obtained have high

signal-to-noise ratio due to limited impedance sources and proximity to the signal source [74].
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It also provides high spatial and temporal resolution compared to non-invasive brain recording

techniques [75]. This high precision is essential for accurately interpreting neural signals in-

volved in decision-making and motor processes.

Non-invasive BCI, usually based on EEG, has reduced costs and is more easily implementable

in various clinical and research contexts, making it the most widely used [76]. The main limi-

tations include the large size of the electrodes, resulting in low spatial resolution, and the high

impedance from the tissues between the brain and the electrodes [77].

1.4.2 Exogenous vs. endogenous BCI

Another possible classification is based on the two types of cerebral phenomena that can be

exploited by the BCI. The first involves signals generated by external sensory stimuli, such as

visual flashes or sounds, while the second involves internal voluntary decision processes, such

as imagining movement. The BCI is called exogenous when relies on the first cerebral phe-

nomenon; endogenous if the second phenomenon is elicited. One difference is that while ex-

ogenous systems usually present higher computational efficiency, require less training, and can

be learned by a broader user base; endogenous systems require constant user attention through-

out the task, which can be fatiguing and frustrating, [78]; its effectiveness lies in the ability to

directly detect and interpret internal neural signals, providing a more natural and intuitive inter-

face. This feature is particularly relevant in contexts where a complete lack of motor functions

necessitates advanced alternatives for communication and device control [79].

Endogenous BCI is primarily used for Motor Imagery (MI) experiments and the control of assis-

tive physical devices such as wheelchairs, robotic arms, and exoskeletons [80]. The uniqueness

of this technique lies in highly subject-specific and differently modulated brain rhythms among

different users. Consequently, the computer necessitates personalized training using individual

EEG data. The imagination of movement in the case of MI-based BCIs is subjective and gen-

erates signals with characteristics that vary from individual to individual. Consequently, users

need prior training to attempt to produce signals as similar as possible to those of other users,

allowing the computer to recognize such a signal correlated with motor intention. Similarly, the

inability of a subject to generate a signal with specific characteristics necessitates the creation

of a subject-specific classifier.

In this case, endogenous signals such as SMRs and SCPs are mainly employed [37]. The main

complication of this type of BCI is that the user must practice generating specific brain pat-

terns that the computer can record and discriminate from other physiological signals, achieved

through neurofeedback [81].

On the other hand, exogenous BCI exploits the passive and uncontrollable generation of brain

signals by the user, resulting from external stimuli [82]. The goal is to decode evoked potentials
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or event-related potentials generated by an external event. This type of BCI primarily relies

on steady-state visual evoked potential (SSVEP), P300, and ErrP [83]. It is more easily imple-

mentable than the previous type because, for certain modalities like SSVEP, there is no need for

extensive user training, and it often exhibits higher performances [84]. However, it is important

to note that this may not be as straightforward for other modalities, and the ease of implementa-

tion can vary based on the specific type of exogenous BCI. In this case, as well, it is necessary to

train a classifier to establish the presence of the sought-after signal. However, since this signal

is spontaneous, the training margin for the subject is more limited and less demanding.

1.5 Related work

The integration of ErrPs in BCI systems is particularly interesting because it provides a way to

detect and correct errors in the interpretation of the user’s intentions. As BCIs rely on decoding

neural signals to infer user commands, there is a possibility of misinterpretation. ErrPs can act

as a feedback mechanism, allowing the BCI system to recognize errors in real-time and adjust

its interpretation or actions accordingly.

As demonstrated in the experiment conducted by I. Batzianoulis et al. [85], the integration of

ErrP with a BCI can lead to an improvement in the performance of an external device. Specif-

ically, in the study, the ErrP was generated when a user observed the incorrect behavior of a

robotic arm during its autonomous movement. The robot adjusted its trajectory to reach a goal,

using ErrP as feedback. In this way, the movement of the robotic arm was optimized according

to the user’s intention, as the user judged a particular movement as incorrect.

Most of the studies in the literature focus on the analysis and implementation of ErrP in discrete

control BCI.

Ferrez andMillan conducted an experiment investigating ErrP resulting from BCI command ex-

ecution failures [86]. Participants manually transmitted cursor movement commands to prevent

ErrP recognition issues caused by the classifier misinterpreting user MI. The system deliber-

ately induced ErrP with a 20% probability by moving the cursor opposite to the user’s intended

direction. The study underscores the manifestation of ErrP due to BCI misinterpretations dur-

ing a discrete control. The research, focused on the neural correlates of error awareness, aims to

enhance BCI performance by identifying a unique ErrP type associated with the misrecognition

of the user’s intention. It provides valuable insights into BCI applications, demonstrating the

potential for detecting single-trial errors and highlighting the stability of these potentials over

time.

Unlike discrete control, there is a lack of studies in the scientific literature regarding the im-

plementation of such a signal during continuous control of an assistive device. Providing users
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with the ability to control a device continuously would increase the utility, convenience, and

effectiveness of BCI technologies, bringing them closer to real-world scenarios.

An example of the use of ErrP during continuous control of a device is represented by the work

of Catarina Lopes-Dias et al. [87]. During the experiment, ErrPs were asynchronously decoded

in an online scenario, revealing the electrophysiology of the signal during both the calibration

and online phases of the experiment. In both conditions, ErrPs exhibited similar shapes, but

the overall average of ErrPs in the online condition showed higher peak amplitudes. The de-

cision to display the electrophysiology of ErrPs in both conditions using EEG signals filtered

with a causal filter deviated from the standard literature practice, which commonly employs a

zero-phase filter. In the presented situation, the typical N200 component of ErrPs was shifted

after the P300 component, a direct consequence of using a causal filter and not reflecting any

peculiarities in neural activity (Figure 1.2). Lastly, it is suggested that providing participants

with comprehensive feedback on ErrP detections would not only not diminish their performance

but could potentially enhance it, considering the possible positive impact on their engagement

and the hypothetical correlation with the observed increase in peak amplitudes of ErrPs in the

online scenario.

Figure 1.2: Grand average correct and error signals at channel FCz (green and red lines, re-

spectively). The green and red shaded areas represent the 95% confidence intervals of the grand

average signals. The regions in which correct and error signals were significantly different are

marked with a grey rectangle. The vertical line at t=0s represents the error onset of error trials

and the virtual onset of correct trials. The dashed vertical lines at t=0.30s and t=0.75s delimit

the window used to train the ErrP classifier [87].

Another study is the work of Iwane et al. [66], which investigated the latency of Error Po-

tentials when generated in predicted or unpredicted states during a continuous control protocol.

Specifically, a cursor moved autonomously to reach a predetermined point and sometimes made

errors related to the angle of traversal and the distance from the final goal. The subject had to
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monitor and evaluate the cursor’s trajectory until it stopped. The error related to the angle of

traversal was classified as predicted because, once committed, reaching the final goal was not

possible, and it could be evaluated how and when the error occurred. If the cursor did not reach

the goal, despite the correct trajectory but stopped before or after the error, it was classified as

unpredicted because it was more difficult to predict. Researchers demonstrated how the shape

of Error Potentials, especially latency, varies from subject to subject and under different control

conditions. For unpredicted errors, an increase in latency was recorded due to an increase in the

user’s cognitive processing. Furthermore, it was highlighted that the shape of the error poten-

tials could undergo changes once data filtering was applied through a causal filter.

The ultimate goal of the scientific community is to develop a control device for users with ir-

reversible damage to the upper and lower limbs but with still brain functionality. The use of

a motorized wheelchair would allow individuals with mobility impairments to regain their in-

dependence and experience an improvement in their quality of life. However, in the current

scientific literature, there are still no articles that integrate BCI technology with wheelchair con-

trol, also incorporating error detection management. An example of a study on a motorized

wheelchair is represented by Tonin et al. [88].

This research aims to explore the hypothesis that the acquisition of BMI skills by end-users is

crucial for the effective control of a non-invasive, thought-controlled intelligent wheelchair in

real-world scenarios. The findings illustrate the successful training of three tetraplegic individu-

als with spinal cord injuries to operate a non-invasive, self-paced thought-controlled wheelchair,

successfully executing complex navigation tasks. Notably, high navigation proficiency was at-

tained only by the two users who demonstrated improved decoding performance, feature dis-

criminancy, substantial neuroplasticity changes, and enhanced BMI command latency. The

study further underscores the viability of achieving precise and continuous control of robots

through a low degree of freedom, discrete, and uncertain control channel, exemplified by mo-

tor imagery BMI. This achievement is realized through the integration of human and artificial

intelligence using shared-control methodologies.

1.6 Motivation and aims of the thesis

The study aims to assess the feasibility of recording the Error Potentials in the context of con-

tinuous control of a motorized wheelchair. The detection of ErrP assumes critical relevance as

there are currently no specific applications for this type of assistive device based on BCI.

The objective is to identify the presence of the ErrP and describe its characteristics by compar-

ing them with those previously studied in the literature, which has primarily focused on the ErrP

during discrete BCI control.
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Additionally, the ability to implement continuous control on an assistive device, thereby avoid-

ing risks to the user’s safety due to incorrect signal classifications by the machine, brings this

technology closer to a real-world scenario. The control of a wheelchair is inherently continuous.

The analysis conducted will contribute to the improvement of control system design for

wheelchairs, providing guidelines for the development of broader applications of ErrP in contin-

uous control contexts. This will enhance the safety and effectiveness of user-controlled robotic

devices, solidifying the practical applicability of this technology in assistive settings.
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Chapter 2

Methods

2.1 Subjects

9 subjects, 7 males, and 2 females, with ages between 22 and 26 and an average age of 24.1,

participated in this study (Table 2.1). All subjects were healthy and were informed of the ex-

periment’s purpose and protocol before data acquisition. Informed consent was obtained from

every volunteer who participated in the experiment.

Table 2.1: List of participants in the experiment

Subjects’ List

Sex Age

S1 M 26

S2 M 23

S3 M 25

S4 M 26

S5 F 23

S6 M 25

S7 M 25

S8 F 23

S9 M 22

2.2 Equipment

2.2.1 Powered wheelchair

The wheelchair used is the HI-LO VARIO model 18.70 from the manufacturer Vassilli, located

in Padua, Italy. The wheelchair can be controlled by the user through a joystick located on the

right armrest, but for this experiment, an external gamepad has been connected to customize
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control and make driving more autonomous and convenient. Two motors drove the two front

wheels, while the rear wheels were free. A metal rod was installed on the left armrest with a

cross sign attached. The user had to keep their gaze on the cross throughout the entire run to

minimize as much as possible the noise generated by the eye movements.

Figure 2.1: Vassili’s HI-LO VARIO wheelchair, model 18.70, used in the experiment

2.2.2 Electroencephalography system

For the EEG data acquisition, the eegoTM sports 64 headset produced by AntNeuro (Hengelo,

Netherlands) was used. Out of the available 64 electrodes, 32 were utilized (Fp1, Fp2, F1,

F2, Fz, Fc1, Fc2, Fc3, Fc4, Fc5, Fc6, FCz, C1, C2, C3, C4, C5, C6, Cz, Cp1, Cp2, Cp3,

Cp4, Cp5, Cp6, P1, P2, P3, P4, P5, P6, Pz), due to the limited region of interest, in the stan-

dard 10-20 configuration [89] in addition to the electrode for recording electrooculographic

(electrooculogram (EOG)) activity [90]. The headset was connected to the supplied amplifier

via shielded cables. Each subject was asked to sit in the chair to allow the headset placement.

Once the helmet was worn, the distance from nasion to inion and from the right to the left ear

canal was measured using a tape measure, which was passed along the apex of the skull. The po-

sition of the Cz electrode was adjusted to coincide with the midpoint of the previously measured

distances, ensuring the correct alignment of all other electrodes. To improve signal conductiv-

ity, a water and ion-based gel was applied through the 32 electrodes using a syringe. The EOG

electrode was placed under the left eye using a strip of adhesive tape after applying a layer of
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conductive gel to the metal surface. The ground electrode was placed in GND and the reference

one in CpZ.

Figure 2.2: EEG used during the experiment.

2.3 Experiment protocol

The subject was instructed on the necessary commands for controlling the chair and the path

to follow, which consisted of 3 right turns and 3 left turns with varying angles and durations.

The path included obstacles such as 3 chairs with wheels and a column to navigate around. The

experiment was considered complete once the subject had performed a total of 18 runs - 9 with

continuous control and 9 with discrete control. The first run for both control types served as a

’practice’ run and did not involve induced errors, unbeknownst to the subject. The experiment

proceeded by alternating two runs with continuous control and two runs with discrete control

until completion. This thesis exclusively examines the continuous driving mode for wheelchair

control, and henceforth, only this control mode will be taken into consideration from now on.

2.4 Wheelchair control

2.4.1 Communication middleware

A set of software libraries, referred to as the Robot Operating System (ROS) [91], was im-

plemented to enable communication and ensure synchronized recording of data from the three

distinct hardware components (joystick, motorized chair, EEG headset). This framework facil-

itated interaction between the joystick and the motorized chair, allowing efficient transmission

of user commands. The commands were sent to the wheelchair, where they were processed and
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Figure 2.3: Map of the laboratory where the experiments were conducted. The black line in-

dicates the path that each subject had to follow, and the black arrows indicate the direction of

navigation. Xs are the chair while the circle indicates the column

converted into velocity signals. Thus, ROS allowed to manage four different types of data (joy-

stick input, wheelchair velocity, wheelchair odometry, EEG signals) from three distinct hard-

ware systems. This integration played a decisive role in synchronizing a substantial amount of

diverse data.

Specifically, the synchronization between the wheelchair’s velocity and the data from the

EEG headset was managed through ROS-Neuro: an open-source framework based on ROS for

neurorobotic applications [92]. This aspect is crucial for extracting EEG trials containing errors,

as a specific event was recorded at the temporal instance when an induced error occurred during

driving.

Moreover, ROS has proven instrumental in managing correct trials and evaluating the delay,

a temporal interval that will be described later in section 2.5.3. Utilizing the odometry of the

chair, specifically the angular velocity which allowed the determination of the onset of a curve,

was essential for extracting the trials without the induced error.
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2.4.2 User command

Wireless control was performed through the Logitech F710 gamepad connected to the laptop

located at the rear of the wheelchair. The protocol developed exclusively required the use of

the right analog stick to control linear and angular speed and a button to halt navigation in case

of emergency. The wheelchair control was implemented by initially taking the joypad’s analog

stick’s position as input, representing a point with xy coordinates in a 2D plane. In this plane,

the x-axis represents angular velocity, and the y-axis represents linear velocity. The position

of this point was confined within a unit circle centered at the origin. A vertical section of a

right circular cone with two sides was defined within this circle to ensure a clear distinction

between linear and angular velocity components. These values were then scaled to ensure safe

and satisfactory chair control for the user.

There are three possible control conditions as shown in Figure 2.4:

1. Straight: the analog stick is positioned within the cone section, resulting in only linear

velocity (no reverse velocity).

2. Turn: the analog stick is outside the cone, introducing an angular velocity component.

3. Stop: as long as the ”B” button is pressed, the chair remains stationary.

Figure 2.4: Joystick used during the experiment. The three different control conditions are

highlighted

During the command execution process, a temporal delay in EEG data emerged, as a result of

the interaction of various variables. These factors include the transmission time of the command

from the joystick to the chair, the period required for the effective execution of the command,

the initial position and velocity of the chair, the promptness with which the user perceives the
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transition from a Straight condition to a curve (”Turn”), the angle of curvature chosen by the

user, and the adopted driving style. It is crucial to emphasize that the temporal shift represents

a highly subject-specific measure. Consequently, a delay measure has been calculated for each

user as explained in section 2.5.3.

2.4.3 Error generation

To induce navigation errors and record the Error Potential, the duration of the path was pre-

estimated to be 2 minutes. At the beginning of each run, a random number of errors, ranging

from 1 to 4, is generated. The limitation on the number of errors has been introduced to prevent

the user’s expectation regarding the generation of induced errors. Furthermore, in the case of a

high and unrestricted number of errors over multiple sessions, there is a risk that the subject may

misinterpret the absence of induced errors as an error, rather than recognizing it as a command

executed correctly by the wheelchair. The estimated run time is divided into intervals equal to

the number of errors that will occur. An error is generated in each of these identified intervals

at a random time.

The occurrence of induced errors depends on the wheelchair’s condition:

Condition 1: If the wheelchair is in condition Straight, the error occurs as soon as the control

exits the cone and enters the curve phase.

Condition 2: If the wheelchair is in condition Turn, the error occurs only after the analog stick

re-enters the cone and exits it again.

Condition 3: If the wheelchair is in condition Stop, the error timing depends on the user’s

command immediately after exiting this condition, with reference to the previous points

a and b.

The induced error consists of reversing the angular velocity of the curve compared to the

input provided by the user for X seconds with fixed acceleration.

2.5 Data analysis

The dataset consists of two separate files: a gdf file containing EEGdata and a bag file containing

wheelchair odometry data. Data processing was performed using MATLAB R2022a.

2.5.1 GDF processing

For each run of each subject, the initial and final 3 seconds of data were removed to avoid

transients during data concatenation. Out of the initial 32 channels, only the 10 significant
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channels (FZ, FC1, FC2, CZ, CP1, CP2, PZ, FCz, C1, C2) were retained for the investigation

of the specific brain area. To demonstrate that eye movement did not influence the extraction

and classification of Error Potentials, three distinct analyses were subsequently conducted:

(a) Raw analysis: Since ErrPs are relatively slow potentials [93] a 4th order Butterworth causal

bandpass filter with a frequency range of [1, 8] Hz was applied

(b) CAR analysis: Filtering as point (a) and then a spatial filter was applied, using the common

average reference (CAR) [94]. For each Error Trials, a delay was computed as will be

explained in section 2.5.3, and applied to them, intending to align temporally the peaks

of the ErrP.

(c) AMICA analysis: A 4th order Butterworth causal bandpass filter with a frequency range

of [1, 45] was applied. The use of a wide range of frequencies is justified by the need to

initially retain high-frequency components not attributable to EEG signals, particularly

ocular signals, which typically fall within the frequency range of 0 to 50 Hz [95]. This

procedure was essential for subsequently conducting the Adaptive Mixture of Indepen-

dent Component Analysis (AMICA) [96] and accurately identifying and separating all

components contributing to the raw EEG signal. The components visually attributable to

artifacts of various nature (eye movements, muscle movements, heart rate, noise channel,

line noise) or exhibiting patterns not resembling a brain signal were removed. Subse-

quently, the signal was reconstructed considering only the remaining components. Fi-

nally, a bandpass filter and a spatial filter were applied as in point (b). For each Error

Trials, the instant of the negative peak of the Error Potential was identified. This peak was

subsequently shifted to 0.4 seconds to allow for a comparison of the shape and latency

with the literature.

For each analysis, the individual runs were concatenated without including data from the

EOG electrode, which was stored in a separate variable.

Trials related to errors, referred to as Error Trials, were extracted considering a time window

of 1.5 seconds, starting from 0.5 seconds before the occurrence of the error until 1 second after.

Trials related to moments without errors called Correct Trials, consisted of 1.5 seconds of data

starting from the transition from the Straight to Curve condition when no induced error was

present. Similarly, trials, both Correct and Errors, related to the EOG signal were extracted,

called EOG Trials.
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2.5.2 Statistical Analysis

For each signal resulting from the three analyses described above, the correlation between all

EEG and EOG trials (Correct and Incorrect) was calculated. A Analysis of Variance (ANOVA)

was applied to assess the independence of each signal from the other two, using a significance

level alpha equal to 0.5.

2.5.3 BAG processing

The wheelchair odometry was used to extract the Correct Trials beginning time: the instant

when the wheelchair enters the Turn condition was recorded as the time required to reach a

predetermined angular velocity chosen empirically, called Turn Velocity reflecting the speed at

which the user realizes the Turn condition has been reached. This instant was sent to the GDF

file for the extraction of the Correct Trials.

Similarly, the signal shift value over time called Delay, has been extracted. In this case, two

instants were considered: one related to the delivery of the command and the other related to

the achievement of the Turn Velocity. It is worth noting that induced error can occur only after

transitioning from a Straight condition to a Turn condition. The difference between these two

instances constitutes the Delay.

The calculation of the Delay was not necessary for the Correct Trials due to the particularly

flat EEG waveform without fluctuations in this context.
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Figure 2.5: The blue line is the wheelchair’s angular velocity, the black points are the instants

at which the error-induced commands are generated, and the red stars are the delays calculated.

The dashed lines at±0.05 refer to the empirical angular velocity at which the user realizes that
is in the Turn condition
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Chapter 3

Results

The following chapter presents the results of the analyses conducted. The images related to the

EEG signal specifically refer to the FCz channel.

3.1 Eyes movements

Of all the possible different physiological artifacts influencing an EEG signal, herein, only those

related to eye movement were considered. In a driving context such as that outlined in the the-

sis, it is natural to observe participants exhibiting ocular movements. The predetermined path,

the presence of obstacles along the route, and the unfamiliarity of the environmental context in

which the subjects found themselves, compounded by the novel experience of operating amotor-

ized wheelchair, collectively influenced ocular behavior. Despite pre-experimental instructions

to fixate on a sign placed in front of the wheelchair, individuals exhibited a lack of consistent

gaze fixation. Figure 3.1 depicts the comparison of average EOG and EEG signals during the

Error Trials for subject S8. Signals are both filtered with a fourth-order causal bandpass filter

in the frequency range of [1-8] Hz and no spatial filter was applied. From Figure 3.1, it can be

observed that the EEG signal of Error Trials follows the same trend as the EOG, confirming the

hypothesis of a strong presence of ocular artifacts in the cerebral signals.

A CAR filter has been applied to remove ocular components. Figure 3.2 shows the EOG

and EEG signals related to the Error Trials for two distinct subjects, S8 and S1, to highlight the

different results after the application of the spatial filter.

As can be seen in Figure 3.2 after the application of CAR, non-uniform results were obtained

among these two subjects. On the one hand, in the case of S1, one can observe a qualitative

difference in the EEG signal compared to the EOG, by examining the position and amplitude

of the peaks. On the other hand, for subject S8 the EEG signal exhibits a similar waveform to

the EOG signal, with the only distinction being in amplitude. The positive and negative peaks
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Figure 3.1: Mean with standard deviation (dashed line) of the EEG signal (red curve) and the

EOG signal (grey curve), related to the Error Trials for channel FCz. At 0 seconds (vertical

black line) it’s the beginning of the condition Turn

are aligned, suggesting a close correlation between the two signals. This lack of uniformity is

probably due to the subject-specific behavior during the navigation task and it affects all the

participants in the study.

Since the CAR filter was not able to remove the eye influences in all the subjects, it was

decided to perform an AMICA analysis. AMICA was also used to remove artifacts originat-

ing from other sources (muscle, heart rate, hardware noise, etc.). Figure 3.3 shows a visually

different signal following the removal of the noise components.

To quantitatively assess the influence of eye artifacts in raw signals, CAR-filtered signals, and

signals obtained through the combination of CAR and AMICA, cross-correlation between EEG

(electrode FCz) and EOG signals was calculated.

Figure 3.4 reports the distribution of the correlation values for all the subjects in the three afore-

mentioned conditions. Results show that the correlation between EEG and EOG signals without

any spatial filter is very high (median is equal to 0.84). Applying CAR filter reduces this cor-

relation, resulting in a median value of 0.43. The further application of ICA! (ICA!) decreases

this value (median = 0.29), indicating the low influence of eye artifacts in the filtered signals.

To assess the statistical differences in correlation indices among the three cases under analysis,

an ANOVA test with Bonferroni correction was conducted. The presence of the asterisks in

Figure 3.4 indicates the statistical difference with a significance level of 0.05 from ANOVA

results.

Subsequently, a subject-specific cross-correlation analysis was conducted. The results re-

vealed that in only 2 out of 9 subjects (S6 and S8), the correlation between EOG signals and
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Figure 3.2: Mean with standard deviation (dashed line) of EOG (grey line) and EEG (red line)

signal filtered with CAR. Signals are related to Error Trials for S8 (left) and S1 (right). The

black vertical line indicates the beginning of the condition Turn

CAR-filtered EEG signals was high (median > 0.5). This highlights that the CAR filter removes

the ocular component in most of the subjects.

Comparing the results between the CAR-filtered signal and the signal filtered with both CAR

and AMICA, a decrease in correlation values was observed for all subjects, except one (S9),

where the median correlation values were 0.40 and 0.45 in the respective analyses. This demon-

strates that the application of AMICA further removes components related to eye movement and

other sources of noise, making the signal cleaner.

Figure 3.5 presents the results for three subjects, while the remaining results are provided in the

Appendix A. For S1, it is observed that the application of the CAR filter and the CAR filter in

combination with AMICA progressively reduces the ocular component. S8, on the other hand,

shows that spatial filtering alone does not eliminate the influence of the eyes, while the addi-

tional application of AMICA achieves this effect. For S3, cross-correlation values are similar

and low for all analyses, indicating a low initial influence of the eyes on the signal.

The statistical ANOVA test was conducted to assess significant differences, and the results are

presented in the Figure 3.5 using asterisks to identify statistically different groups with a signif-

icance level of 0.05.

It is therefore evident that ocular influence is subject-specific and only for some subjects it

has an impact on the EEG signal despite the application of the CAR filter. Nevertheless, it has

been decided to proceed with the analysis using the CAR filter and the application of AMICA
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Figure 3.3: Top: the EOG mean signal with standard deviation. Bottom: the EEG mean with

standard deviation after the application of CAR and AMICA. The time window refers to the

Error Trials for S8. The black vertical line indicates the beginning of the condition Turn

to extract the ErrP from signals where the artifacts’ influence is the lowest.

3.2 Delay results

The ErrP is a signal associated with the perception of an error; as such, its occurrence varies

for each individual by nature. The moment at which it is generated is not fixed but influenced

by subjective factors. Furthermore, in the driving context described, the transmission of the

command to the wheelchair occurred with a delay due to physical factors. In theMethods section

2.5.3, it was explained how the Delay was calculated by considering the angular velocity of the

wheelchair and how it depends on subjective factors (driving style, attention, subject’s weight)

and objective factors (position of the wheelchair wheels, speed, command transmission time).

Therefore, the computation of a delay was necessary to understand the instant at which the user
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Figure 3.4: Cross-correlation indices for all subjects related to all trials (Errors and Correct)

of the EEG signal without CAR filter, with CAR filter and with CAR filter and AMICA vs. EOG

signal. The asterisk means that the two corresponding correlation values are statistically dif-

ferent

perceived the induced error. Figure 3.6 reports the average delays with standard deviation for

each subject.

The average delay among all subjects is 0.274±0.097 seconds. The use of these delays had

initially been hypothesized to shift each Error Trials to achieve a temporal alignment of peaks

capable of qualitatively highlighting the ErrP. It was thus applied to the CAR filtered signal of

each subject. Figure 3.7 shows of which two examples are provided.

In the signal of S2, after the application of the delay, a clear ErrP-shape appears, and the

negativity is present at 0.19 seconds. However, this result has not consistently been achieved,

as seen in the case of S1, where the shift of the signal does not allow the identification of an

ErrP. The averages of Error Trials for each subject were analyzed to assess the presence of ErrP

after the introduction of the delay in the signal. All the other results are reported in Appendix

A.

As the application of delay to CAR-filtered signals did not yield satisfactory results for iden-

tifying the ErrP, it was decided to manually align trial-by-trial the signal filtered with CAR plus

AMICA. Manual shifting was performed to position the negativity of the ErrP at 0.4 seconds to

obtain its characteristic shape. The average shifts for each subject are depicted in Figure 3.8.

It can be observed that the shifts exhibit greater variability compared to the delays extracted

from angular velocity.
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Figure 3.5: Cross-correlation indices for S1, S8, and S3 related to all trials (Errors and Cor-

rect) of the EEG signal without CAR filter, with CAR filter and with CAR filter and AMICA vs.

EOG signal. The asterisk means that the two corresponding correlation values are statistically

different

3.3 Grand average analysis

Since the goal of the thesis is to verify the presence and characteristics of ErrP during continuous

control of a motorized wheelchair, it was decided to analyze the signal after AMICA to remove

artifact components. Following the manual shifting of the negativity to 0.4 seconds, the signals

obtained show the ErrP shape. The results of S1, S3, and S5 are depicted in Figure 3.9 and the

others are in Appendix A. The figure shows the trend for Correct and Error Trials in the 1.5-

second window of interest highlighting the two different brain responses to the external stimuli.

The negativity is present in every subject, but the amplitude varies from subject to subject.

On the other hand, the two positive peaks are highly variable both in terms of amplitude and the

timing at which they occur.

The average for all subjects of Error and Correct Trials is shown in Figure 3.10.

From Figure 3.10 is possible to distinguish three main peaks in the Error Trials:

1. First positive peak: at 0.3 seconds a positive peak appears with an amplitude of 1.20µV

2. Negative peak: at 0.4 seconds a negative peak is present with an amplitude of −4.25µV

3. Second positive peak: at 0.5 seconds a second positive peak is present with an amplitude

of 2.13µV
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Figure 3.6: Mean and standard deviation of the delay evaluated via angular velocity for each

subject.

The distinct brain response between the two classes of trials (Incorrect and Correct) is also

highlighted by the topographic representation as shown in Figure 3.10.

A comparison was conducted with a similar study during the discrete control of the powered

wheelchair in order to assess differences and compare the waveform associated with the two

different control strategies. Results were analyzed cohesively in the continuous control study.

Consequently, the signals were filtered through the application of a CAR filter followed by

AMICA and appropriately shifted so that the negative peak of the ErrP aligned at 0.4 seconds.

From the visual analysis of Figure 3.11, the three peaks previously identified with continu-

ous control are distinctly discernible:

• Positive peak: at 0.3 seconds, with an amplitude of 2.28µV

• Negative peak: at 0.4 seconds, with an amplitude of −4.20µV

• Positive peak: at 0.5 seconds, with an amplitude of 1.29µV
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Figure 3.7: Top: average with standard deviation Correct and Error Trials for subject S2,

where ErrP is visible. Bottom: average with standard deviation Correct and Error Trials for

subject S1, where no ErrP is present. The vertical black line at t=0s indicates the moment when

it is hypothesized that the user perceives the occurrence of the induced error.
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Figure 3.8: Mean and standard deviation of the delay evaluated via angular velocity for each

subject
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Figure 3.9: Average with standard deviation of Correct and Error Trials (blue and red lines,

respectively) at channel FCz for S1, S3, and S5. The signals were previously translated to

manually align the negative peak of the Error Trials at 0.4 seconds.
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Figure 3.10: Average with standard deviation correct and error signals at channel FCz of

every participant (blue and red lines, respectively). The signals of each subject were previously

translated to manually align the negative peak of the Error Trials at 0.4 seconds.

Figure 3.11: Average with standard deviation correct and error signals at channel FCz of

every participant (blue and red lines, respectively) in an experiment with discrete control of

the wheelchair. The signals of each subject were previously translated to manually align the

negative peak of the Error Trials at 0.4 seconds.
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Chapter 4

Discussion

.

4.1 Eyes movements

Before the experiment, participants were instructed to minimize movements and focus on a

signal placed in front of the wheelchair to reduce ocular artifacts. Nevertheless, it was found

that one of the most important disturbances to the EEG signal was related to eye movement.

Figure 3.1 illustrates how the EEG signals exhibit a similar trend and amplitude to the ocular

components recorded by the EOG electrode. This phenomenon can be attributed to the nature

of the experiment, which involved a driving task for which the user had no prior experience.

Furthermore, the route was not free, but rather well-defined, with the presence of obstacles

requiring the user to make eye movements to avoid them. This led to eye movements during the

driving task.

For the removal of ocular artifacts, a CAR filter was implemented, which eliminates com-

ponents common to all EEG signals. The performance of the filter was satisfactory for most of

the subjects in removing the eye components. From the visual inspection, for the other subjects,

the influence of the eyes is still present (Figure 3.2, S8). This could be attributed to the fact that:

1. In cases where the eye component was present only in a few electrodes, the filter failed

to remove that component as it was not considered common.

2. If the eye component was too high, the filter failed to remove it.

Since CAR did not remove all ocular components, it was decided to apply AMICA to further

eliminate other interfering components, such as muscle movements, heartbeats, line noise, and

channel noise. From a visual inspection (Figure 3.3), it can be appreciated that for S8, the trends
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of the EOG and EEG signals are different. This confirms that AMICA is an effective method

for removing noisy components from the signal.

As described in the Results the evaluation of ocular component removal was conducted.

From the results of the cross-correlation (Figure 3.4), both methods reduced the eye influence.

From the average analysis between all subjects, it follows that CAR is sufficient to remove

artifacts from the signal.

From the analysis of single-subject cross-correlation (Figure 3.5), it emerges that CAR does

not always yield satisfactory results, confirming what was observed in the previous qualitative

analysis.

Another observation that has emerged is that for S5 and S3 (the latter illustrated in Figure 3.5),

the correlation was already absent even before the application of the CAR filter. The explana-

tion could be that these two subjects exhibited minimal eye movements during the experiment,

minimizing the ocular influence on the brain signal.

Finally, the single subject correlation results indicate that the correlation between the signal

filtered with CAR followed by AMICA and EOG signal is low for each subject. This justifies

the use of AMICA in the search for the ErrP signal, as this analysis ensures greater signal clean-

liness.

This is due to the lack of relevant studies on continuous control; the primary objective of this

thesis is therefore to verify the presence of ErrP and characterize its form under the most con-

venient conditions possible.

However, implementing this technique online is impractical, necessitating the development of

an alternative method for ocular artifact removal. One possibility is pre-experiment eye move-

ment recording to create a subject-specific model. Nevertheless, online implementation of this

technique remains challenging, and in a real-world driving context, it is not guaranteed that all

ocular components will be correctly classified, potentially leading to issues.

4.2 Delay discussion

The calculation of the delay through the analysis of angular velocity has emerged as non-optimal

for the ultimate goal of the thesis. Figure 3.6 shows that such delay is very similar among

different subjects. Initially, this result was interpreted positively, as relatively low and consistent

delays were obtained across subjects, as expected. This assessment wasmotivated by continuous

control, as opposed to discrete control, allowing the user to maintain constant control over the

wheelchair’s position, speed, and acceleration, making them more attentive and sensitive to

possible externally induced changes in these parameters. Consequently, it was hypothesized

that any errors generated would be promptly recognized. Additionally, since each user traversed
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the same path the same number of times under identical conditions, a very similar delay was

anticipated across subjects.

However, it emerged that the introduction of the calculated delay was not functional. The classic

waveform of ErrP was not recognized in all subjects, as shown in Figure 3.7. The average of

erroneous trials in S2 exhibits a characteristic negativity associated with the ErrP, whereas such

negativity is not observable in S1 after the introduction of the delay. This suggests that the

delay is a subjective phenomenon, underscoring the need for a subject-specific universal metric

to calculate it. The motivation for this observation could be attributed to the significance of

subjective parameters, such as the user’s weight, attention during the experiment, and driving

style. These parameters were not quantifiable for a generalized analysis across all subjects.

Since the delay calculated through angular velocity did not yield satisfactory results for all

subjects, it was decided to introduce a subject-specific manual temporal shift based on aligning

the negative peak of the ErrP at 0.4 seconds of the signal with AMICA. The rationale for the

ultimate use of the signal filtered with CAR plus AMICA is presented in the next section.

Referring to the average shifts for each subject (Figure 3.8), it emerged that the moment

when the error is perceived varies significantly among subjects. Furthermore, the wide stan-

dard deviation suggests high intra-subject variability across trials. This is hypothesized to be

attributed not only to individual factors such as weight and driving style but also to experimen-

tally varying factors like attention level, error habituation, error expectation, which influence the

user’s error processing time. The aforementioned observation further justifies why the universal

delay calculation used did not prove effective.

4.3 Grand-Average discussion

Given the scarcity of literature on ErrP identification during continuous control, especially in

the context of wheelchair driving, where the waveform is not well-established, the analysis was

performed on signals filtered with AMICA. This was done to mitigate the influence of signals

originating from sources other than the brain that could potentially distort the characterization

of the ErrP.

As highlighted in the Figure 3.9, the manual alignment of erroneous trials has allowed for

the recognition of the distinctive shape of the ErrP. This result is consistent across all subjects,

emphasizing a differentiated brain response between correct actions and actions where an error

occurs. The data presented in the figure clearly indicate that the ErrP exhibits subject-specific

variability in both amplitude and peak timing. This variability was expected, as each individ-

ual perceives and processes the generation of an error in unique ways and at different times.
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However, from a visual standpoint, the trends of the displayed ErrPs indicate substantial sim-

ilarity, highlighting the ability to generate this brain response under experimental conditions.

The overall average across all subjects (see Figure 3.10) reveals a distinctive form of the ErrP.

This differentiation between the two classes (erroneous and correct trials) is further underscored

by the topoplots.

A comparison was made with the ErrP obtained in a similar experiment but with discrete

control of the wheelchair. The results reveal a qualitative similarity in the waveform, as both

display the two positive peaks separated by the negative peak. However, differences are evident

in the amplitude of the positive peaks. It is hypothesized that the waveform similarity between

the two control types can be attributed to the highly similar experimental protocol, suggesting

an analogous brain response.

In a more in-depth comparison with studies on continuous control, a different waveform

emerged. Specifically, considering Lopez’s article [87], it is hypothesized that differences in

the ErrP result from differently implemented experimental protocols. In the examined case, the

ErrP was obtained by introducing an error in a continuous control context of a robotic arm. The

main distinction lies in the fact that, during wheelchair control, unlike robotic arm control, the

user is in direct contact with the controlled device and thus more engaged. The achieved results

support the hypothesis that the form of the ErrP strictly depends on the type of task performed

at the time of its generation.
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Chapter 5

Conclusion

The study aimed to identify and describe the ErrPs during continuous control of a powered

wheelchair. It can be stated that this objective was satisfactorily achieved: ErrP in this experi-

mental context is present and well-defined, a result not yet documented in scientific literature.

The characteristics of the ErrP align with signals generated during discrete control, with minimal

differences in the occurrence of the positive peaks.

Inter-subject variability, arising from user driving style and attention during the experiment,

posed an additional challenge for delay calculation. In future studies, an automatic method for

delay calculation will need development, focusing on quantifying highly subjective and variable

parameters constituting this measure.

The study involved only 9 subjects, making it statistically less robust. Future studies with

the same objectives should include a larger number of participants. A positive aspect is the

absence of restrictions in conducting the experiment, allowing the participation of subjects with

diverse characteristics. It will be necessary to involve individuals with movement limitations to

gather feedback on the experimental protocol and assess potential differences in brain response.

The development of a classifier will be essential to automatically identify the presence of

ErrP. Implementing online classification would offer the advantage of immediately recording

and correcting errors, altering the wheelchair’s trajectory without incurring dangers.

In conclusion, the successful identification of ErrPs during the active control of a powered

wheelchair opens new perspectives for advancing brain-machine interfaces. Despite analytical

challenges and inter-subject variability, our study provides a solid foundation for future devel-

opments.
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Appendix A

Appendix A

Figure A.1: Cross-correlation indices for S1, S2, S3, and S4 related to all trials (Errors and

Correct) of the EEG signal without CAR filter, with CAR filter and with CAR filter and AMICA

vs. EOG signal. The asterisk means that the two corresponding correlation values are statisti-

cally different
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Figure A.2: Cross-correlation indices for S1, S2, S3, S4, and S5 related to all trials (Errors

and Correct) of the EEG signal without CAR filter, with CAR filter and with CAR filter and

AMICA vs. EOG signal. The asterisk means that the two corresponding correlation values are

statistically different
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Appendix B

Appendix B

Figure B.1: Average with standard deviation of Correct and Error Trials (blue and red lines,

respectively) at channel FCz for S1, S2, S3, and S4. The signals were previously translated to

manually align the negative peak of the Error Trials at 0.4 seconds.
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Figure B.2: Average with standard deviation of Correct and Error Trials (blue and red lines,

respectively) at channel FCz for S5, S6, S7, S8, and S9. The signals were previously translated

to manually align the negative peak of the Error Trials at 0.4 seconds.
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