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1 Introduction

The cell is the fundamental unit that characterizes any living being. From
the simplest organisms, the prokaryotes, which have only one cell, through
the most complex as the human organisms that contain around 100 thou-
sands billions cells in their bodies, the concept of life of the cell is always
strictly connected to its capacity to duplicate itself.
Duplicating consists of generating another cell that is able to build by itself
the same molecules that allow the mother cell to lead all its biochemical
processes. All the information necessary to generate these molecules are con-
tained in the genome of a cell. It consists of chains of molecules called DNA.
During the duplication process, the genome is copied and transferred to the
daughter cell. According to the amount of information that the genome can
carry, its chains can achieve huge lengths and generally they must be com-
pacted by nearly three orders of magnitude to fit within the limited volume
of a cell. Hence, they are organized in compacted structures called chromo-
somes.
Therefore, understanding how chromosomes duplicate and how they are ex-
pressed, i.e. how they generate proteins, is fundamental in order to discover
how life works. Furthermore, investigating gene expression can provide in-
struments that are useful to understanding diseases due to genetic mutations.
Many studies confirmed that local structural properties of the chromosomes
can influence gene expression, DNA replication and repairing [1] [57] [15] [13].
Understanding how chromosomes fold can provide insight into the relation-
ship between the chromatine structure and its functional activity.
Despite its importance, discovering higher order structural features is still
complicated due to technical limitations. Some traditional high resolution
measurements like electron microscopy or fluorescence are not easily applica-
ble or don’t provide information about the entire genome. Other techniques
such as light microscopy don’t achieve sufficient resolution instead.
Recently a new methodology has been proposed [17]. It provides high-
resolution topological information for an entire genome. In fact, the Captur-
ing Chromosome Conformation (or 3C) technique consists of counting how
often different loci of a genome interact with each other. The resolution of
the experiment has been recently increased and the most recent measure-
ments at higher resolution are referred to as Hi-C method [37].
Hence, this technique yields a set of relative frequencies of contact between
different parts of the same genome. These data, usually presented in matrix
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form, can be used to analyze the overall spatial organization of the chromo-
somes. In particular, it is reasonable to assume that the contact frequency
between two loci is somehow related to their distance: the bigger the fre-
quency, the smaller the expected distance.
The goal of this work is to obtain a consistent method to reconstruct the
three dimensional structure of the chromosome by means of the Hi-C data.
In particular, this thesis is inspired by a previous technique that interprets
the Hi-C data in terms of graph theory. Graph theory is the theory of math-
ematical structures called graphs which consist of a set of vertexes connected
by edges. Its applications are widespread: from physics to psychology, from
sociometry to linguistic. In this case, we will apply it to a biological problem.
We will consider each locus of the genome as a vertex of the graph and each
contact frequency between two loci as a weight to associate to the edge con-
necting them.
The problem of drawing a graph in a 3 dimensional space is also known as
the so-called embedding problem. A solution of this problem is the Multidi-
mensional scaling method (MDS) [59] [54]. Given a set of distances between
the vertexes of a graph, this method returns an Euclidean set of coordinates.
Hence, we will propose different ways to define distances between the ver-
texes of a graph and we will investigate which are the conditions that it must
satisfy in order to solve the embedding problem. In particular, we will stress
the use of a matrix called Laplacian matrix of the graph, demonstrating that
its spectrum and its eigenvectors have some interesting properties. We will
show that a distance called effective resistance yields to the most consistent
reconstruction.
Some simulations of Hi-C data will be performed in order to verify the the-
oretical statements, focusing on polymers with a linear, circular or rosette
conformation.
The thesis work is organized as follows: in the first chapter we will present
a theoretical approach to the problem remarking some knowledge of graph
theory and proposing some definitions for distances. Then the embedding
problem and the multidimensional scaling method are described both gen-
erally and in the case of the previously defined distances. In the second
chapter some results are presented, showing the consistence of the MDS for
simulated polymers and applying it to a set of real Hi-C data. Finally, in the
last chapter we will propose some further applications of the MDS method. In
particular, we will see how to combine Hi-C data with fluorescence measure-
ments. The latter provide a set of directly measured distances between just
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few loci. We will present two different methods, showing their advantages
and their limits.
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2 Theory

2.1 Chromosome Conformation Capture

The biological unit of any living organism is the cell. It contains all the
molecules that take part to the main biological processes, but, most impor-
tantly, it is the smallest unit able to replicate independently. This is the
basic concept of life. In fact, the cell is able to divide itself in two parts,
duplicating some particular molecules that contain all the biological infor-
mation, i.e. that can then produce all the other useful biomolecules.
The molecules that carries all these genetic instructions are the deoxidribonu-
cleic acid (DNA). They consist of long chains with the shape of a double helix.
They are polymers composed by repeating units called nucleotides. There
are 4 different kinds of nucleotides and their particular sequence in the chain
decodes for the production of specific biomolecules.
Since the DNA carries all the information necessary to the growth of the cell,
it contains a huge amount of nucleotides. The length of a DNA sequence is
usually measured in base pair (bp), that is a unit consisting of two coupled
nucleotides. Each filament contains several millions nucleotides and each cell
may contain many filaments of DNA. This means that the length of a DNA
chain can be very high and it must be compacted nearly by three orders of
magnitude to fit the limited volume of a cell. This is the reason why DNA is
not usually found on its own, but it is organized in packaged structures called
nucleoids in the bacteria [45] and chromosomes in the eukaryotes, where they
are confined inside the nucleus of the cell. The importance of chromosomes
and nucleoids is hence fundamental, because they are the instrument that
every living being uses to transmit life.
The number of chromosomes per cell is specific of the organism. The hu-
man cell has got 46 chromosomes, the dog’s cell 78 and the prokaryotes’ cell,
monocellular organisms, just one. The shape of the chromosomes is highly
dynamic: it is different in each type of organism and changes even during
the different phases of the life of the cell. For example, in the prokaryotes
the chromosome is circular, while in the human cell it can have an X shape
during the metaphase of the cell. In this case the chromosome is said to be
acrocentric.
The structural properties and the spatial conformations of chromosomes have
been linked with important chromosomal activities [57]. It has been proven
that even local high order structural features such as loops, axes, interchro-
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mosomal connections have important roles in the genetic expressions, i.e. in
the way the DNA is decoded in order to produce biomolecules. For instance,
the time of replication has been linked to the spatial disposition of different
regions of the chromosomes [1] [15] [13].

Despite its importance, the investigation of the chromosome spatial con-
formation is limited by technical limitations. In fact, light microscopy doesn’t
reach a sufficient resolution and electron microscopy, which would allow to
have high resolution, is not easily applicable to study specific loci of the
chromosome. The fluorescence technique consists in fusing some fluorescent
protein with the chromosome and permits the visualization of individual loci,
but only few positions can be examined simultaneously. The FISH (Fluores-
cence In Situ Hybridization) technique permits to visualize multiple loci, but
it requires several treatments that may affect the chromosome conformation.
A significant contribution to the exploration of the structure of the chro-
mosomes has been given by Dekker at al. in 2002 [17]. They proposed a
methodology called Capturing Chromosome Conformation (3C) to charac-
terize some overall physical properties at high resolution.
It consists in isolating the part of the cell where the chromosome are and
subject them to a process called formaldehyde fixation (Fig. 1). This pro-
cess creates cross-links between different parts of the DNA through proteins.
A cross-link determines a contact between different segments of the DNA.
Then each contact is counted and the relative frequency with which different
loci have become cross-linked is registered, by means of a reaction called
quantitative PCR (Polymerase chain reaction).

In principle, the 3C method required to choose a set of target loci and
count the cross links among them. A technique to obtain an unbiased
genomewide analysis, i.e. through the entire DNA sequences, was proposed
in 2009 [37]. Since it improved the resolution of the 3C measure, it has been
called Hi-C. In the following years, the resolution has been further increased
[19] [44] and today we may have a precision of 1 kilobase for the human
genome.
The results of the Hi-C measure are usually represented in a matrix form. If
N is the number of loci analyzed, an N ×N matrix W is used. The entries
wij represent the relative frequency of contacts between the loci i and j. This
can be visualized in an heat map (Fig. 2 and 3). The use of these topological
information has permitted to individuate some regions of the chromosomes
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Figure 1: Capturing Chromosome Conformation process. [Adapted from: [17]]
Schematic representation of the assay: first the cross-link is created using the formalde-
hyde. Then, after the EcoRI molecule digestion and intramolecular ligation, the PCR
mediates the detection of the ligation products, after reversal of the cross link.

that are closer in space through the analysis of particular patterns of the
matrix.

Despite these results, an exact three dimensional chromosomes’ confor-
mation has not been given yet. A possible use of these information to arise
a 3D reconstruction of the structure has been proposed by Lesne et al. [35].
In this case, the matrix W has been interpreted as the adjacency matrix of
a weighted graph. This interpretation may be extended and raised to other
applications. Because of this, it will be investigated deeply in the next sec-
tions, beginning from some remarks of the general graph theory.

10



Figure 2: Example of Hi-C output. [Adapted from: [37]] Hi-C produces a genomewide
contact matrix. The matrix shows the intrachromosomal interactions on chromosome 14.
It is acocentric; the short arm is not shown. The dimension of each pixel is 1Mb locus.
Intensity corresponds to the total number of reads (0 to 50).

Figure 3: Example of Hi-C output. [Adapted from: [34]] A normalized Hi-C contact
map of a bacterial chromosome is presented. The Caulobacter crescentus chromosome is
circular which can be noted in the off-diagonal intensity. It consists of multiple, largely
indipendent spatial domains likely comprised.
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2.2 Spectral Graph Theory

A graph G = (V,E) is a set of points V called vertexes connected by links
called edges represented by E.
The graph order is the number n of its vertexes. The graph size is the num-
ber m of its edges. The vertex degree is the number of the edges departing
from that vertex.
A graph is undirected if the edges have not orientation and directed or di-
graph if they have an orientation and may be represented by an arrow (Fig.
4 a-b). A loop is an edge that connects a vertex with itself.
A multiple graph is a graph in which two vertexes can be connected by two
or more edges. A simple graph is an undirected graph which does not contain
multiple edges or loops. A path between two vertexes i and j is an ordered
sequence of consecutive edges starting from i and ending in j.

The structure of a graph is usually represented by means of a matrix
called adjacency matrix A whose entries aij are 0 if vertexes i,j are not con-
nected and 1 otherwise. Obviously, the matrix of an undirected graph is
symmetric. Let’s give now some additional definitions.
A complete graph is a graph in which each pair of vertexes is connected by
an edge (Fig. 4 c).
A weighted graph is a graph in which each edge is equipped with a number
called weight. In this case the adjacency matrix entries wij correspond to
the weight of the ij edge and the vertex degree is defined as the sum of the
weights of all its vertexes. The degree matrix K of a graph is a diagonal
matrix, whose diagonal consists of the degrees of the vertexes of the graph.
A graph is connected if for each pair of vertexes at least one path exists
between them. It is disconnected otherwise (Fig. 4 d). This means that it
is always possible to reach a vertex from another one. A connected compo-
nent of a graph is a subgraph in which two vertexes are always connected
by a path and which is not connected to any other vertex of the graph. A
connected graph has got one connected component and a complete graph is
always connected.
A tree is an acyclic connected undirected graph, i.e. a graph where any two

vertexes are connected by exactly one path. A forest is a disjoint union of
trees.

Let’s now consider a simple complete weighted graph. We will give an
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Figure 4: Examples of graphs. a) Directed graph b) Undirected graph c) Complete
undirected graph d) Connected graph that becomes disconnected when the thedashed
edge is removed.

important definition that is adaptable in the case of unweighted graphs sim-
ply substituting each nonzero weight with 1.
The Laplacian Matrix of a graph is defined as L = K − A:

L =


k1 −w12 ... −w1n

−w12 k2 ... −w2n

... ... ... ...
−wn1 −wn2 ... kn


or for each component lij = δijkij − wij.
This matrix is important because it allows us to unveil some topological
properties of the graph.
The name “Laplacian” derives from the fact that the i-th row of the matrix
gives the value of the discrete Laplacian operator on the vertex i in N di-
mensions [5]. In fact, a Laplacian operator (for the sake of simplicity here
represented in 3 dimensions and for an unweighted graph) applied to a func-
tion φ(x, y, z) is defined as:

∇2φ(x, y, z) =
∂2φ(x, y, z)

∂x
+
∂2φ(x, y, z)

∂y
+
∂2φ(x, y, z)

∂z

When the function is defined only for discrete values, the derivative is sub-
stituted by the finite differences:

φ(x+ 1, y, z)− φ(x, y, z) = φ(x, y, z)− φ(x− 1, y, z)

Hence, the Laplacian becomes:

∇2φ(x, y, z) =
∑
α,β,γ

φ(α, β, γ)− kφ(x, y, z)
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where α, β, γ indicate the coordinates of the neighbors to x, y, z. The rela-
tionship between the Laplacian operator and the matrix is clear comparing
this result with any sum of the entries of a row of the Laplacian matrix (with
a minus sign).
As it will be clear later, the Laplacian matrix is also analogous to the Laplace-
Beltrami operator on manifolds.

The study of the graph Laplacian eigenvalues is known as spectral graph
theory [12] [51]. It has been developed in the past decades in order to to
deduce the principal properties and structure of a graph from its Laplacian
spectrum, showing that there is an interesting analogy with spectral Rie-
mann differential geometry.
Furthermore, it has been proven that the Laplacian spectra is strictly influ-
enced by topological factors, as clustering, symmetries and degree distribu-
tion [39]. We define now the normalized Laplacian as

L = T−1/2LT−1/2

where T denotes the diagonal matrix with i-th entry
∑

j wij.

We can view it as an operator in the space of the continuous functions
g : V (G)→ R which satisfies [12]

Lg(u) =
1√
ku

∑
v,u∼v

(
g(u)√
ku
− g(v)√

kv

)
wuv

Since L is symmetric with non negative entries, its eigenvalues are all real
and non-negative. By construction, the Laplacian matrix kernel has at least
dimension 1, i.e. it has a 0 eigenvalue whose corresponding eigenvector is
the constant eigenvector (with all entries equal). We can calculate the other
eigenvalues in terms of the Rayleigh quotient of L [41]. Let g be an arbitrary
function that assigns a value g(v) to each vertex v of the graph. Using the
notation 〈,〉 to indicate the standard inner product in Rn, the Rayleigh quo-
tient of L is then

〈g,Lg〉
〈g, g〉

=
〈f, Lf〉

〈T 1/2f, T 1/2f〉
=

∑
u∼v wuv(f(u)− f(v))2∑

v(f(v))2kv

where g = T 1/2f and the
∑

u∼v sums up all the pairs of adjacent vertexes.
The minimum value of the Rayleigh quotient corresponds to the minimum
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eigenvalue of L. It is easy to see it is 0, letting f be a trivial function that
assigns a constant value to each vertex. The first smallest eigenvalue after
0 is the the smallest value of the Rayleigh quotient, when f is a function
orthogonal to the trivial one.
In the non trivial case the functions f are usually called harmonic eigenfunc-
tions of L. For their particular properties, these functions often find many
applications, e.g. in video imaging. In fact, in order to solve PDE problems,
they can be used as eigenfunctions for a mesh refinement process and they
respect the symmetries of the surface of the grid [36].
The above formulation for the non trivial eigenvalue corresponds in a natural
way to the eigenvalues of the Laplacian-Beltrami operator [3] that we will
define now in the unweighted case. Considering a smooth m-dimensional
manifold M embedded in Rk, the Riemann structure on the manifold is in-
duced by the standard Riemann structure on Rk. Let now f be a map
f : M → R, then the Laplace-Beltrami operator is defined as L = ∇ · ∇f .
For the Stokes theorem then:∫

M

‖∇f‖2 =

∫
M

L(f)f

We see that L is positive semidefinite and the f that minimizes
∫
M
‖∇f‖2

has to be an eigenfunction of L. We further notice then that the gradient
∇f is a vector field on the manifold, such that for small δx:

|f(x+ δx)− f(x)| ≈ |〈∇f(x), δx〉| ≤ ‖∇f‖‖δx‖

The eigenvalues for the Laplace-Beltrami operator are thus:

λM = inf

∫
M
‖∇f‖2∫
M
f 2

For a general k-th eigenvalue of the Laplacian matrix, we have

λk = inf
f⊥TPk−1

∑
u∼v wuv(f(u)− f(v))2∑

v f(v)2kv

where Pk−1 denotes the subspace generated by the harmonic eigenfunctions
corresponding to the eigenvalues smaller than λk. Let’s now show the follow-
ing [12]:
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Theorem. If λi = 0 and λi+1 6= 0 then G has exactly i+1 connected
components.

Proof. If G is connected, the eigenvalue 0 has multiplicity 1 since any
harmonic eigenfunction with eigenvalue 0 assumes the same value at each
vertex. The proof of the theorem follows from the fact that the union of two
disjoint graphs has as its spectrum the union of the spectrum of the original
graphs.

The energy of a graph is defined as E =
∑N

i λi where λi is the i-th eigen-
value of the Laplacian [26].
This definition yields to a natural analogy between the Laplacian and the
Hamiltonian operator, e.g. in the Schroedinger equation. Each eigenvalue
can represent a different energy level and the correspondent eigenmode is
analogous to a state function. A similar approach is typical for the quantum
graph theory [33]. This suggests that the study of the Laplacian spectrum
can be interpreted in terms of quantum repulsion between energy levels [46].

The eigenvalue problem can be formulated also in a useful matrix formal-
ism as a constrained minimization problem. Note that for any vector y we
have:

1

2

∑
i,j

(yi − yj)2wij = yTLy

In fact, since W is symmetric, we can write:∑
i,j

(y2i + y2j − 2yiyj)wij =
∑
i

y2iKii +
∑
j

y2jKjj − 2
∑
i,j

yiyjwij = 2yTLy

The problem is formulated in order to find the stationary points of this func-
tion under the constraint yTMy = 1 for a generic matrix M . The constraint
removes an arbitrary scaling factor in the embedding and the matrix M pro-
vides a natural measure on the Laplacian eigenvectors of the graph. Let λ
be a lagrange multiplier, then the solution of the minimization problem is:

Ly = λMy
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Let’s now analyze what happens with different choices of the metric con-
straint M :

• choosing M = 1 leads to Ly = λy with the constraint yTy = 1, hence
it is equivalent to solve the eigenvalues problem for the Laplacian;

• choosing M as a general diagonal matrix whose eigenvectors are y
leads to Ly = λλMy = λLy , hence the lagrange multiplier is equal
to λ = λL

λM
. In this particular example we can see how

√
λM gives

naturally a metric to each eigenvector of the Laplacian. In fact, since
Ly = λLy, then we can simply solve the minimization problem as

λMyTLy = y′
T
Ly′ =

1

2

∑
i,j

(y′i − y′j)2wij

with y′ =
√
λMy ;

• for some reasons that will be clear later, let’s show a particular case in
which M is a general matrix symilar to a diagonal matrix, i.e. such that
M = xTΛx = x′Tx′ where x′ = Λ1/2x with the condition xT1x = 1.
Then (xy)TΛ(xy) = 1. Suppose now that for some particular eigenvec-
tors y = x/

√
λM holds, i.e. the eigenvectors of M and L are parallel.

In this case the constraint condition is always true and the minimiza-
tion problems is solved by Ly = λ√

λM
Mx = λλMy = λLy i.e. again

λ = λL/λM .
In the trivial case in which all the eigenvalues of M are equal to 1, we
obtain the generalization of the previous case when M is symilar to the
identity matrix.

Let’s note that, according to the definition of energy of a graph given above
and considering the case in which M = 1, we have:

E =
∑
i

λLi =
∑
i

yTi Lyi

Hence we can redefine the energy in one of the previous general cases as:

E =
∑
i

y′
T
i Ly′i =

∑
i

λMi λ
L
i
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That can be interpreted as an energy in which the eigenvalues λM give a
weight to each energetic eigenvalue of the Laplacian, according to the chosen
metric.

The eigenvectors will represent the eigenmodes of the system. The first
one, corresponding to the mode of null energy, is the constant vector and
represents the trivial equilibrium case in which all the points have the same
coordinates.

2.3 Distances in graph theory

We will now remark some basic concepts of general topology, beginning with
the definition of a distance, in order to apply it later in the graph theory.

Definition. A metric or distance on a set X is a function d : X ×X →
[0,∞) such that satisfies the following conditions:

1. non negativity: d(x, y) ≥ 0 for any x,y and d(x, y) = 0 iff x = y;

2. symmetry: d(x, y) = d(y, x);

3. triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for any x,y,z ∈ X.

Definition. Given a vector space V a norm on V is a function ‖ · ‖ :
V → R such that:

1. ‖av‖ = a‖v‖ for a ∈ R

2. ‖(v + w)‖ ≤ ‖v‖+ ‖w‖

3. ‖v‖ = 0 iff v is the zero vector.

It follows that ‖v‖ ≥ 0 for any v ∈ V .

Definition. Two norms are equivalent if α‖x‖1 < ‖x‖2 < β‖x‖1 for
some real numbers α, β ≥ 0.

Theorem. All norms are equivalent in a finite dimensional space.
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It is possible to define a distance induced by a norm as d(x, y) = ‖(x−y)‖.

Definition. Given a set X a topology T is a subset of the partition set
P(X) such that:

1. 0 ∈ T , X ∈ T

2. The union of elements of T still belongs to T

3. The intersection of a finite number of elements of T belongs to T

The elements of T are called open sets.

A metric can naturally induce a topology, simply defining an open set as
the set of all elements y such that d(x, y) < r where r is called radius of the
open set.

Definition. Two metrics d and D on X are equivalent if all open sub-
sets of X are equal with respect of d and D. They are strongly equivalent if
αd < D < βd for some real numbers α, β > 0.

These definitions leads to an important theorem [40].

Theorem. In Rn all the metrics induced by a norm are equivalent, i.e.
they induce the same topology.

This is generally not true if the distance is not induced by a norm. We
will now introduce a general way to define a distance not induced by a norm
in a discrete space X, hence applicable in the graph space. This method is
based on the following definition of proximity matrix. Proximity measures
for the vertexes of directed and undirected graphs arise in a wide range of
applications, from cristallography to mathematical sociology (applied, for in-
stance, to the social networks).

We will introduce it in the discrete case, since this case will be useful for
our applications [10].

Definition. Let X be a discrete set of dimension n. A proximity (or
accessibility or connectedness) measure is a function p : X × X → [0,∞)
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that can be represented by a n× n matrix P and that satisfies the following
conditions for any multigraph:

1. non negativity: pij ≥ 0 for any i, j = 1, . . . n;

2. symmetry: the matrix P is symmetric;

3. reversal property: if the graph is directed, the reversal of all its arcs
results in the transposition of the proximity matrix;

4. diagonal maximality: for any i, j = 1, . . . n such that i 6= j, pii > pij
and pii > pji holds;

5. triangle inequality for proximities: for any i, j, k = 1, . . . n pij + pik −
pjk ≤ pii holds. If then j = k and i 6= j the inequality is strict.

The definition of this matrix will be very useful because, as we will see, some-
times it is easier to define a map that satisfies the above triangle inequality,
rather than the distance one. Nevertheless, a simple theorem allows us to
construct a metric through the use of a proximity measure.

Theorem. Consider the quantity dij = pii + pjj − pij − pji with i, j =
1, . . . n. This defines a distance, i.e. it satisfies the axioms of a metric.

In fact, provided that p satisfies the conditions and the triangle inequality
of a proximity measure, then d satisfies the triangle inequality for a distance.

In the matrices formalism the distance matrix can be written as:

D = 1diagP T + diagP1T − 2P

We are now ready to give some definitions of distances for graphs, us-
ing both traditional definitions or definition through the use of proximities.
In particular we will focus on: shortest path distance, resistance distance,
connectedness distances, Laplacian distance, natural proximity distance, en-
tropy distance and potential proximity distance, Katz proximity distance.

Shortest path distance. Let’s define the length of an edge as the in-
verse of its weight and the length of a path as the sum of lengths of all the
edges belonging to that path. Considering all possible paths between two
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for k from 0 to N
for j from 0 to N

for i from 0 to N
if dist[i][j]>dist[i][k]+dist[k][j]

dist[i][j]=dist[i][k]+dist[k][j]
end if

Table 1: Floyd-Marshall algorithm. The algorithm has to be repeated until its
convergence, i.e. the triangular disequation is always respected.

vertexes i and j, the shortest path distance is defined as the length of the
shortest path connecting i and j. This is the most common distance between
vertexes defined in graph theory. Many algorithms have been developed in
order to calculate it, as Williams [56], Pettie and Ramachdran [43] or John-
son Dijkstra for directed graph [28].
Nevertheless, the algorithms that will concern this thesis is the Floyd-Warshall
algorithm shown in Table 1 [22]. Its time complexity is of order O(N3). Let’s
note that this method defines a true distance. The shortest path distance is
obviously symmetric, positive and it is 0 if and only if the points are iden-
tical. Furthermore, by construction the minimal path length going from i
to j is always smaller or equal to any other path length connecting i and j
passing through any other vertex k.

We should finally mention that even if the definition and properties of
the shortest path distance do not depend on the definition of the length of
an arch, this doesn’t hold for the particular value it will assume. Hence, it
is always possible to find another definition of length of an edge, according
to the real meaning of the network and of the weights. For example, another
possible choice for the length may be 1/wa where a is a generic real number
(bigger or smaller than one).
Expanding with a Taylor series each length, it is straightforward to see that
it always respects the distances equivalence inequality, hence the topology in-
duced by these distances is the same. Another interesting example of length
definition is known as chemical shortest path distance and has been proposed
by [4]. In this case the length of an edge is defined as lij = 1 − ewij . This
approach is based on the fact that, if wij represents the probability of interac-
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tion between i and j, the interaction is governed by a long range percolation.

Resistance distance. [30]. Let’s define the resistance of an edge again
as the inverse of its weight. The resistance distance between two vertexes i
and j is then defined as the equivalent resistance between the points i and
j, obtained by considering the graph as an electric circuit. That is, if two
resistances are connected in series, the equivalent resistance is the sum of
their resistances, if two resistance are connected in parallel, the inverse of
the equivalent resistance is equal to the sum of the inverses of their resis-
tances. We can note that this definition is equivalent to the definition of an
equivalent spring constant in a system of springs whose elastic constant is
equal to the weight of the edges. In this case the rules for the calculus of the
equivalent spring constant in series or parallel have to be inverted.
According to this definition, it has been proved [9] that the resistance dis-
tance can be calculated using the Moore-Penrose generalized inverse of the
Laplacian matrix as a proximity measure [55] [42]:

drij = l+ii + l+jj − 2l+ij

The use of the pseudoinverse of the Laplacian is due to the fact that the
Laplacian matrix is never invertible since its kernel has at least dimension 1
in the case of a connected graph. In the only case of connected graphs, the
pseudoinverse of the Laplacian can be calculated as [10] [52]

L+ = (L+ J)−1 − J

where J is the n× n matrix with all entries 1/n.

Let’s now note some remarkable facts about the spectrum of the pseu-
doinverse, using the following theorem [32]:

Theorem. Let A and B be two n×n hermitian matrices with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn and ν1 ≥ ν2 ≥ · · · ≥ νn respectively and let µ1 ≥ · · · ≥ µn
denote the ordered eigenvalues of the sum of matrices A+B. The following
properties hold:

1.
∑
µi =

∑
νi +

∑
λi

2. ν1 ≤ µ1 + λ1
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3. νi+j+1 ≤ λi+1 + µj+1 with 0 ≤ i, j, i+ j < n

Since the eigenvalues of J are 0 with multiplicity n-1 and 1 with multi-
plicity 1, using the third property of the previous theorem we find that the
eigenvalues ν of the matrix (L+J) the inequality νi ≤ min{λi+1, λi−1} must
hold. Let Oi denote the positive difference λi−1−νi. From the conservation of
the trace in the previous theorem, Oi is null if min{λi+1, λi−1} = λi−1, conse-
quently ν1 = λn+1. In the general case ν1 = λn+1+

∑
i(λi+1−νi) = 1+Otot.

That means that the 0 eigenvalue of the Laplacian has been replaced with
a positive quantity bigger than 1. Taking the inverse of this matrix and
repeating the same calculus for the matrix (L + J)−1 − J we find that the
eigenvalues are λ+i ≤ 1/νi with i 6= n and λ+min = 1

λmin+1+Otot
− 1 +O′tot. For

small Otot and O′tot the non-zero eigenvalues of the pseudoinverse are equal to
the inverse of the non-zero eigenvalues of the Laplacian and the zero eigen-
value remains zero.

In our specific case, we can further use the following theorem, usually
common in quantum physics.

Theorem. If two hermitian matrices commute, they share a common
eigenvectors basis.

The matrices we consider are real and symmetric. The matrix J in partic-
ular commutes with any matrix, hence they share a common basis of eigenvec-
tors. Then it is easy to show that if two matrices share the same eigenvectors,
their sum will have the same eigenvectors too and its eigenvalues will be the
sum of the corresponding eigenvalues. In our case ν1 = λmin + 1 and νi = λi,
because λmin and 1 are the eigenvalues of the matrices L and J , respectively,
that correspond to the constant eigenvector.
Hence, the Laplacian and its pseudoinverse have the same eigenvectors basis
and the corresponding non zero eigenvalues are one the inverse of the other.
The eigenvector corresponding to the 0 eigenvalue is the constant vector for
both the matrices.

Theorem. [30] For any pair of vertexes i, j in G, dshort ≤ dres with
equalities true iff there is only a single path between i and j.
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Proof. Let π be the shortest path between i and j. Increasing a resistance
for any edge e not in π, the resistance distance strictly decrease. Letting all
the resistances re →∞ for all e not in π, then dres → dshort. However, then
dres ≥ dshort with equality only if there is not any edge e out of π.

Corollary. The shortest path and the resistance distances are the same
between every pair of vertexes of a connected graph iff the graph is a tree.

As the above theorem suggests, it is possible to prove the existence of
a relationship between these two distances. In particular, both of them be-
long to a generalized class of distances called forest distance dα [7]. It is a
one-parametric family of distances which reduce to the shortest path and the
resistance distances at the limiting values of the parameter α.
Let Qα = (1 +Lα)−1, where α is a real parameter and Lα is the Laplacian of
the graph obtained from G, applying a certain transformation of the edges’
weights depending on α. For instance, a possible choice is Lα = αL where
each weight has been multiplied by α. Let γ be a positive factor. We define
the matrix Hα as Hα = γ(α − 1)Q∗α where Q∗α is the matrix obtained from
Qα taking the logarithm to base α of each entry of Qα.

Theorem. For any connected multigraph G and any α, γ > 0, the ma-
trix Dα whose entries are dij = 1/2(hii + hjj)− hij, is a matrix of distances
on V (G).

We are interested in some consequences of this theorem in a particular
case. In fact, consider the edge transformation wij(α) = αwije

(−1/(wijα)) and a
positive scaling factor γ such that limα→0+ γ(α) = 1 and limα→∞ γ(α) = 2/n
(e.g. γ(α) = (2/nα + β)/(α + β) where β > 0 is a parameter). Then, the
following theorem for connected graphs is true.

Theorem. For any connected multigraph G and any i, j = 1, . . . n, the
distance dα(i, j) defined above converges to the shortest path distance as
α→ 0+ and to the resistance distance as α→∞.

Hence, both the shortest path distance and the resistance distance fit,
as limiting cases, into the framework of generalized logarithmic forest dis-
tances. The proof of this theorem is based on the fact that in these limits
Hα converges to a matrix of spanning rooted forests of the graph that can
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be considered as a proximity measure [8].

The resistance distance can also be directly related to the eigenvalues
and eigenvectors of the Laplacian matrix [58]. In fact, let uik denote the i-th
entry of the k-th eigenvector of L. Expressing the pseudoinverse Laplacian
entries as l+ij =

∑
k

1
λk
uikujk we find:

drij = l+ii + l+jj − 2l+ij =
∑
k

1

λk
(uik − ujk)2

Connectivity-based distances. [18]. The strength s of a a path π
of n edges is defined as the minimum weight among all the weights of the
edges of the path: s = minw(ei). The strength of connectedness between
two vertexes i and j is defined as the maximum strength among all possible
paths between i and j:

CONNG(ij) = max{s(π) : π is a path between i and j}

The calculus of the strength connectedness is easily recognizable as a maxi-
mum flow problem. That is, it is possible to consider each weight of the edge
as the maximum amount of a flow that can pass through the edge and the
strength of connectedness is thus the maximum amount of flow that can pass
from a source i to j or viceversa. We can define some distances based on the
strength of connectedness.
The strongest connectivity distance is defined as dss(ij) = 1/CONNG(ij) and
d(ii) = 0. If i and j are not connected by any edge, then CONNG(ij) = 0
and d =∞. By this definition it is straightforward to see that dss is positive,
symmetric and equal to 0 iff i = j. Note that for any three vertexes i, j, k
the inequality CONN(i, j) ≥ min{CONN(i, k), CONN(k, j)} holds since
CONN(i, k) can not be smaller than the strength of any path between i and
j. This yields:

1

CONNG(ij)
≤ 1

min{CONNG(ik), CONNG(kj)}
≤ 1

CONNG(ik)
+

1

CONNG(kj)

That is dss(i, j) ≤ dss(i, k) + dss(k, j).
The δ-distance is defined as dδ(ij) = 1 + ∆ − CONN(i, j) where ∆ is the
maximum weight of all arcs and dδ(ii) = 0 for any i.
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The distance dδ is symmetric and since CONN ≤ ∆ holds always, then
dδ(ij) ≥ 0 for any i, j and it is 0 iff i = j. Then 1 + ∆ − CONN <
1+∆−min{CONN(ik), CONN(kj)} and therefore dδ(ij) < dδ(ik)+dδ(kj).
The disadvantage of the use of these distances is that the computational cost
in terms of time of the algorithms proposed to solve the maximum flow prob-
lem for undirected graphs is high. For instance, it is necessary to apply the
Ford-Fulkerson algorithm for any possible pair of vertexes of the graph [23]
[48] .

Laplacian distance. According to the definition of Laplacian of a graph
given above, one may want to define a distance consistently to the Laplacian
minimization problem. Provided that the problem is solved and the eigen-
vectors matrix is known, the distance between two points i and j will be

dij =
√∑n

r (xri − xrj)2.
We notice that, considering the case in which M = 1, from the orthogonal-
ization constraint condition XTX = 1 we obtain

dij =

√√√√ r∑
k

(x2ri + x2rj − 2xrix
r
j) =

√
2δij

. This is a trivial case in which all distances are equals (hence they still
respect all the metric conditions). Another choice of M , for instance a non
trivial diagonal matrix, can lead to other results. A useful definition of M
should in any case give a consistent description of the system. This problem
is tautological: as we will see in the next section, a consistent metric matrix
M can be constructed if a distance matrix is already previously defined.
With the so-called algebraic distance a similar definition has been proposed
[11]. In particular, it has been shown that it is possible to calculate how fast
the distances converge to their constant value using a computation algorithm.

Natural proximity distance. A natural definition of a proximity mea-
sure is the following: pij = wij and pii =

∑
j wij. In this case, in fact

pij + pik − pjk ≤ pii =
∑

i′ pii′ since among all pii′ we consider also pij and
pik. It is clearly a proximity measure and hence it will be used to compute a
distance matrix of the graph.

Entropy distance. Let W be a set of probabilities of mutually exclusive
events. The Shannon entropy is defined as a function that describes the
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uncertainty associated to this probability distribution [49]. In particular:

S(w1, . . . wn) = −
∑
k

wklogwk

We can apply it to the graph theory if we consider each entry of the adjacency
matrix as one of the probability measures of W:

S = −
∑
i

∑
j>i

wijlogwij

The entropy proximity measure pij is defined as the increase of the Shannon
entropy of the graph when an edge of weight wij is added: pij = ∆Sij =
−wijlogwij. Analogously the entropy proximity measure of a vertex is the
increase of entropy obtained adding that vertex to the graph, i.e. adding
all the edges linked to that vertex: pii =

∑
j(−wijlogwij). Since wij ≤ 1,

this proximity measure is nonnegative and symmetric. By construction, it
respects the diagonal maximality and it is easy to prove that it respects also
the triangle inequality for proximities. Hence, it is possible to define a dis-
tance using the transformation between proximities and distances.
The main characteristic of Shannon entropy is to represent the amount of
disorder of a system due to a lack of information. That is, it is maximum
when the probability that an event occurs is 0.5 but it is null when we are
able to say for sure that an event is impossible (wij = 0) or certain (wij = 1).
The shape of this function is illustrated in Fig. 5a. Hence, the interpreta-
tion of the Shannon entropy as a proximity measure may not be physically
meaningful. In fact, an additional condition that is rather natural to require
to the proximity measure, provided that it respects the other ones, is the
monotonicity:

Definition. Monotonicity. If the weight wkt of some edges in a multi-
graph increases or a new edge is added from k to t, then:

1. ∆pkt > 0 and for any i, j = 1 . . . n i, j 6= k, t implies ∆pkt > ∆pij;

2. for any i if there is a path from i to k and each path from i to t includes
k, then ∆pit > ∆pik;

3. for any i1, i2, if i1 and i2 can be substituted for i in the hypothesis of
item 2, then pi1i2 does not increase. Thus, the proximity between two
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Figure 5: Curves of proximities. The curves show how the proximity changes with the
weights, in the case of the Shannon entropy proximity (a) and in the potential proximity
(b) in which the monotonicity condition is satisfied.

vertexes does not increase whenever the bond that is added or increased
is extraneous for the connection of these two vertexes.

This requirement may be interpreted as the request that the proximity
measure is maximum when the probability that an event occurs is 1 and
minimum when the event is impossible.
This condition is clearly not respected by the entropy proximity measure and
we will modify it in order to let it be monotonic.

Potential proximity measure. With respect to the classical thermo-
dynamics, we can define a function U : P → R called potential, such that
∆S = −U/T where T is the temperature of the system that will be set to 1
for the sake of simplicity. We can interpret the probability wij as a specific
mass that drives the attraction between i and j and therefore it is an intrinsic
property of both the vertexes i and j. Then the potential U can be defined
as a central potential: Uij = −w2

ij/pij. It yields: ∆Sij = w2
ij/pij and using

the definition of entropy introduced in the case of the entropy distance, we
obtain:

pij =
wij

log(1/wij)
.
This proximity measure called potential proximity measure is positive, sym-
metric and respects the triangular inequality and the diagonal maximality.
Furthermore, as shown in Fig. 5b, this proximity measure satisfies the rea-
sonable request of monotonicity, diverging in the case in which an event is
certain.
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It is important to notice that if we had defined directly Uij = w2
ij/dij, we

would have obtained a definition of distance that a priori was not said to
respect the triangular inequality.

Katz distance. This distance is defined using the Katz similarity matrix
Q of the graph as proximity measure. This matrix has been proposed in the
social sciences field or sociometric, f.i. to compute the popularity of a person
[29] [21] [14]. In an unweighted graph, the entries of the Katz matrix represent
the number of possible paths connecting the two correspondent vertexes.
The number of paths of length 1 is represented by the adjacency matrix
A. The elements of the n-th power of A indicate the numbers of paths
with length n. For instance the entry of A2 are a

(2)
ij =

∑
r airarj and each

component airarj is equal to 1 only if i is linked to r and r is connected
to j. Hence, the matrix of the number of all possible paths connecting two
vertexes is:

Q = A+ A2 + A3 + ... =
∑
k

Ak = (1− A)−1 − 1

In the case of a weighted graph, this matrix represents the probability of con-
nection between the vertexes. The proximity matrix is obtained by taking Q
and adding a diagonal matrix whose entries are the sums of the correspon-
dent rows of Q.

2.4 The embedding problem

In the previous section we have seen how it is possible to define distances
between the vertexes of a graph. In this section we will explore the ways
and the conditions to obtain a set of Cartesian coordinates in a generic r
dimensional space from a complete set of distances among N points, with
r ≤ N . This problem is known as bound embedding problem and in the graph
theory it has been used to draw a graphical representation of the network.
Further in this thesis, we will stress the use of the distances defined above in
order to reproduce a three dimensional configuration of the graph.

Solutions to the the bound embedding problem have been proposed since
1938 [60] and are often used even in mathematical psychology, marketing,

29



sociology, political science to obtain a geometrical representation of the sim-
ilarities among objects. In psychology, for example, the set of data consists
in similarities of human judgments and the more similar they are the closer
their correspondent points will be in the embedding multidimensional space.
This the reason why the method is often referred to as Multidimensional
Scaling (MDS) [59].

Let X be a set of N points of unitary mass and D be an N ×N matrix of
distances among them. D is symmetric, its diagonal elements all equal zero
and for any i, j, k = 1 . . . N the inequality Dik ≤ Dij +Djk holds. We aim to
find an n dimensional set of Cartesian coordinates for the N points.

Theorem. [16] The distance between the barycenter or center of mass,
0, of each point in any Euclidean space in terms of the remaining distances
is given by:

d20i =
1

N

∑
j

D2
ij −

1

N2

∑
k>j=1

D2
jk

Proof. Let rlk denote the vector from point l to k. From the definition of
the center of mass

∑
j r0j = 0 and since r0j = r0i + rij for any i we have∑

j(r0i + rij) = 0. Hence r0i = −
∑

j rij/N .

D2
0i = r0i · r0i =

1

N2

∑
j

∑
k

rij · rik

By the law of cosines:

D2
0i =

1

2N2

∑
j

∑
k

(D2
ij +D2

ik −D2
jk)

2 =

=
1

2N2

[
2(N − 1)

∑
j=2

D2
ij − 2

∑∑
j<k

D2
jk

]
=

=
N − 1

N2

∑
j=2

D2
ji −

1

N2

∑∑
j<k

D2
jk =

=
1

N

∑
j

D2
ji −

1

N2

∑ ∑
k>j=1

D2
jk
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Let now X be the matrix n × N of the n Cartesian principal axes coor-
dinates of the N points and λk =

∑N
i=0(xik)

2 be the moment along the k-th
coordinate axis. Define the diagonal matrix Λ whose entries are the moments
and the matrix n×N

Y = Λ−1/2X

Let’s extend Λ to an N × N matrix adding N − n rows and columns of
zeros and consequently extend also Y to a N × N matrix adding N − n
rows derived from the first n rows by Gram-Schmidt orthogonalization. By
construction, Y is unitary: Y TY = 1. Let’s finally define the Gram matrix
G = XTX = Y TΛY . This matrix is hence positive semidefinite of rank n
and its eigenvalues are the moments of the distribution. Using the low of
cosines as done in the proof of the previous theorem we can write

XTX =
1

2
[d20i + d20j −D2

ij] = M

This is also called metric matrix and coincides with the Gram matrix of the
N points [27]. It is possible to write the matrix M also in the form:

M =
1

2
H ′D2H

where H is the matrix 1 − 1/NJ , H ′ = −H and J is the matrix with all
elements equal to 1. The entries of H are hij = δij − 1/N . In fact:

mij =
1

2

∑
i′j′

(
−δii′ +

1

N

)
D2
i′j′

(
δj′j −

1

N

)
=

= −1

2
D2
ij +

1

2

∑
j′

D2
ij′

N
+

1

2

∑
i′

D2
i′j

N
− 1

2

∑
i′j′

D2
i′j′

N2
=

=
1

2
[d20i + d20j −D2

ij]

Theorem. The sum of the rows or the columns elements of the metric
matrix M is zero.

Proof.

∑
j

mij =
∑
j

(
−1

2
D2
ij +

1

2

∑
j′

D2
ij′

N
+

1

2

∑
i′

D2
i′j

N
− 1

2

∑
i′j′

D2
i′j′

N2

)
= 0
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Corollary. The metric matrix kernel dimension is at least 1 and it is not
invertible.

Proof. From the previous theorem it is shown that the dimension of the
row or column space of M is maximum N -1. So does the rank.

The following theorem shows which are the conditions for the Dij to be
the distances of an n-simplex lying in a Euclidean space Rr of dimension r
but not in a Euclidean space Rr−1 of dimension r − 1.

Theorem. [47] A necessary and sufficient condition that the Dij are the
lengths of the edges of an n-”simplex” lying in Rr but not in Rr−1 is that
the quadratic form

F (x1, . . . xn) =
1

2

∑
i,j

(d20i + d20j −D2
ij)xixj

is positive ( i.e. always ≥ 0) and of rank r. That is, the associate matrix M
has to be positive semidefinite of rank r.

Proof. See Appendix A.

The definition of the metric matrix M given above is actually a particu-
lar case of a more general case in which an isometric transformation of the
coordinates is taken into account, i.e. a translation of the origin or a rotation
of the axes. The consequence of such a transformation for the metric matrix
is that it won’t be anymore calculated relatively to the barycenter of the
system but to another point. In particular, it implies the following theorem,
that we won’t demonstrate for the sake of synthesis.

Theorem. [24] Given M = (1−1sT )D2(1−s1T ) with s a N -dimensional
vector, the distance D is Euclidean iff M is semidefinite positive for any s
such that sT1 = 1 and sTD2 6= 0.

If we chose s = 1/N1 we obtain the case described before. In this case
H is also called geometric centering matrix.

Hence, the rank of the metric matrix allows us to know the minimum
dimension in which it is possible to embed the graph. If the set of distance
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would be measured directly in a three dimensional space then we should ex-
pect to find a metric matrix with three positive eigenvalues which coincide
with the three principal moments of the inertia tensor and N -3 eigenvalues
equal to zero. Nevertheless, it should be considered that measure or com-
putational errors may cause some eigenvalues to be not exactly zero or even
negative [53]. If we used a set of distances defined in the N dimensional space
X of the vertexes of the graph, we could obtain even a rank of dimension
N -1. The i-th coordinate of the k-th point is then Xki =

√
λkYki where Yk

is the k-th eigenvector of M . It represents the first principal axis of the set
of points.
As mentioned, because of some calculus errors some eigenvalues may result
to be negative. This would not allow to take the root squared of them.
The literature on the solution of this problem is divided. Some [16] use to
order the eigenvalues in decreasing order of magnitude and hence take the
root squared of their absolute values. Others [35] simply set to zero all the
negative eigenvalues, implicitly reducing the dimension of the space. In this
thesis, for the future calculus we will consider the latter choice in order to
avoid to consider some negative eigenvalues (due to approximation errors) as
positive and maybe influential.

The Euclidean distance between two points will be: dE =
√∑r

k λr(x
i
r − x

j
r)2.

Hence, it strictly depends on the amount of nonzero eigenvalues. In the future
we will use the notation O(λ) = dN − d3 to indicate the difference between
the distance in the N dimensional space and distance obtained by using only
the first three coordinates.
Therefore, the role of the eigenvalues is to engage each direction of this Eu-
clidean space of a natural metric measure proportional to the corresponding
momentum of inertia in that direction. In terms of graph theory, it seems
natural to choose this metric as a metric constraint for the Laplacian mini-
mization problem.
It becomes evident that a matricial form to express the Euclidean distance
is [20]

D = 1diagXTX + diagXTX1− 2XTX

That means that if M is semidefinite positive, it is naturally a proximity
measure for the Euclidean distance. The viceversa is not always true. A
proximity measure, in fact, is not always an Euclidean metric, in the sense
that it is not always possible to write P = XTX for some Cartesian coordi-
nates X. In any case, it is always possible to construct a distance D from P ,
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verify that it is euclidean constructing M and check that it is semidefinite
positive and deduce the coordinates from M = XTX with the multidimen-
sional scaling method.
In fact, the equation dij = pii + pjj − 2pij = mii +mjj − 2mij is a necessary
but not sufficient condition to have M = P .

Nevertheless, M and P can share some properties, under certain condi-
tions on P .

Theorem. M and P share a common set of eigenvectors iff

∑
r

[∑
l,k

plr − plk

]
pri = c

with c a real constant for any i = 1, . . . N .

Proof. We will show the conditions to let M and P commute. Let P∗ be
the matrix P ∗ = diagP1T + 1diagP T whose entries are p∗ij = pii + pjj.Then:

M = −1

2
HD2H = −1

2
(1− 1

N
J)(P ∗ − 2P )(1− 1

N
J)

Hence each element of M is:

mij = −
∑
i′j′

(δii′ −
1

N∗
)(pi′i′ + pj′j′ − 2pi′j′)(δj′j −

1

N
) =

= −2

(∑
l(plj + pil)

N
−
∑

lk plk
N2

− pij
)

Let’s now calculate the element cij of the matrix MP and the element c∗ij of
the matrix PM .

cij = − 2

N

∑
r

[∑
l

(pil + prl)−
∑

lk plk
N

− pir

]
prj =

= − 2

N

[[∑
r

prj

](
pil − plk
N

)
+
∑
lr

plrprj −
∑
r

pirprj

]
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c∗ij = − 2

N

∑
r

pir

[∑
l

(prl + pjl)−
∑

lk plk
N

− pjr

]
=

= − 2

N

[[∑
r

pir

](
pjl − plk

N

)
+
∑
lr

plrpir −
∑
r

pirprj

]
It is easy to verify that the condition cij = c∗ij holds iff the condition ex-
pressed by the theorem is satisfied.

Corollary. If the sum of the rows of the proximity matrix P is constant,
M and P share the same eigenvectors basis.

This means that this additional condition given to the proximity matrix
P assures that it can be a metric matrix. In particular, the requirement that
the sum of its rows is constant is equivalent to require that one of its eigen-
vector is the constant eigenvector 1. In fact, it is known from elementary
algebra that:

Theorem. Given a matrix A, the sum of the elements of any row is
constant iff one of the eigenvectors of A is the constant vector.

Finally, let’s note that even if the same distance can be calculated using
the matrix P or the matrix M , it represents two different distances, because
it is applied to two different spaces. The Euclidean distance is a metric
induced by a norm in a finite r-dimensional space, hence topologically equiv-
alent to any other metric induced by a norm in this space. The distance
calculated by P instead is defined in the graph space. They are not said to
be topologically equivalent, but it has to be opportunely demonstrated. To
do so, since the dimensions of the spaces are different, we should consider
the topology induced by the topology in the N -dimensional Euclidean space
for the r-dimensional space .

Definition. Let U be a subset of Rr and Rr ∈ RN and let also T be a
topology in RN . Tr is the topology induced by T in Rr and U is said to be
an open set of T r iff there exists an open subset V of RN such that V ∩Rr = U .

If there exists an embedding i : Rr → RN an induced topology always
exists. So it is true for projections.
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2.5 Embedding of a graph

An Euclidean reconstruction of the coordinates for a set of N vertexes of an
undirected weighted graph has already been performed in 2014 by Lesne et al.
interpreting the matrix Hi-C data as the adjacency matrix of the graph [35].
In that case, they calculated the Gram matrix simply using the shortest-path
distance. We will now focus on the description of the metric matrix obtained
by the use of different distances in order to give an interpretation of the Eu-
clidean structure built in this way. In particular, we will focus now on the
shortest path, resistance, natural proximity and katz distance because in all
these cases we can show that the metric matrix has the same eigenvectors of
the Laplacian.

For the resistance distance the proximity measure matrix is given by the
pseudoinverse of the Laplacian.

Theorem. The Metric matrix obtained by using the resistance distance
shares an eigenvector basis with the Laplacian of the graph.

Proof. As we have already shown, the pseudoinverse of the Laplacian and
the Laplacian itself have the same eigenvectors. The pseudoinverse of the
Laplacian is the proximity measure for the resistance distance. Since one of
its eigenvectors is the constant vector, the sum of its rows is constant and
consequently it has the same eigenvectors of the metric matrix M .

Theorem. The Metric matrix obtained by using the shortest path dis-
tance shares an eigenvector basis with the Laplacian of the graph.

Proof. We will show that the Laplacian L and the matrix Q∗α commute
when α→ 0. We can represent the matrix Qα = (1 + Lα)−1 as a series:

Qα = −[I + αL+ α2L2 + ...] = −[I + αX]

where X = [L+ αL2 + ...].
Each element of the matrix Q∗α is q∗αij = − logα(δij + αx). Then q∗ij =
limα→0 q

∗
αij = δij − 1. Hence

∑
r lirq

∗
rj = Nlij −

∑
r lir and

∑
r q
∗
irlrj =
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Nlij −
∑

r lrj. They are equal since the sum of the rows of the Laplacian
matrix is constant.

Theorem. The Metric matrix obtained by using a natural proximity
distance shares an eigenvector basis with the Laplacian of the graph.

Proof. The natural proximity measure matrix P commutes with L. In
fact, denoted with cij the elements of PL and with c∗ij the elements of LP ,
we note that they are equal:

cij = −
∑
r 6=i,j

wirwrj −
∑
l

wilwij + wij
∑
l

wjl = c∗ij

Theorem. The Metric matrix obtained by using a Katz proximity dis-
tance shares an eigenvector basis with the Laplacian of the graph.

Proof. The Katz matrix Q = (1−W )−1− 1 has the same eigenvectors of
W and W commutes with its Laplacian.

The multidimensional scaling reconstructs the coordinates, simply mul-
tiplying the eigenvectors of M for the squared root of the correspondent
eigenvalue. This means that the N points will be distributed in the space
along each axes as the principal axes of M . If these corresponds to the
eigenvectors of L, the principal axes of M corresponds to the eigenmodes of
the Laplacian of the graph. This equivalence is particularly interesting if we
consider the system as a system of N points connected by springs with the
weight of the correspondent edge as an elastic constant. Using M as the con-
straint metric in the Laplacian minimization problem we can then interpret
the energy of the graph as the minimal energy of the springs system with
the given distances as elongation. Furthermore, considering the energy of a
rigid body

E =
1

2
Iw

where I is the principal moment of inertia, in our case λM , and w is the
frequency of the mode, this is analogous to the energy of the graph. In fact,
in the case of the springs the frequency of the mode is equal to the elastic
constant divided by the (unitary) mass.
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3 Results

3.1 Introduction

In order to verify the correctness of the theory described in the previous
chapter, we stressed the use of some simulations of Hi-C data for artificial
polymers. In particular, the used polymers have been obtained with a lattice-
bound Monte Carlo simulation of a chain in normal conditions, i.e. without
any external potential. A simple excluded volume model interaction between
the subunits was simulated, with a self-avoiding walk [6]. The length of each
mesh of the lattice was fixed to 10 nm.
In particular, three different shapes of the polymer were simulated:

• linear polymer consisting of 300 monomers;

• circular polymer consisting of 400 monomers;

• rosette polymer consisting of 401 monomers and organized in 4 different
petals with a common center.

For all of them around 15000 conformations have been simulated. For each
single one the distance matrix between the loci has been computed. Any
time a distance was lower than a fixed threshold, a contact between the
points was counted. The threshold is the maximum possible bond length
between two points and its mean is

√
10 ≈ 2.7. In this way a matrix of

the relative frequencies of contacts has been constructed for every simulated
shape. Therefore the Sinkhorn-Knopp algorithm [31] has been used in order
to normalize them and obtain a doubly stochastic matrix that simulates the
Hi-C data.
The algorithms used for the following calculus are listed in Appendix B.

3.2 Test of the Multidimensional scaling

In order to verify the validity of the 3D reconstruction in the case of an exper-
imental measured or simulated distance matrix, the MDS has been applied
for any polymer to the distance matrix obtained from one random single con-
figuration over all the simulations. Then it has been applied to the distance
matrix obtained by taking the average of the 15000 distance matrices of the
simulated conformations for each polymer.
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Figure 6: Spectra of the metric matrices. The metric matrices are obtained from the
distances matrix computed with the simulation of a linear (a), circular (b) and rosette (c)
polymers. Considering one single conformation among the 15000 simulations, the metric
matrix has exactly rank 3 (green). Taking the average distances over all the conformations,
the spectra is smoother and the rank is not exactly 3 (purple).
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Figure 7: 3D reconstructions of the simulated polymers. The three dimensional
reconstructions are obtained by using the MDS for the averaged distance matrices (a-
c-e) and for one single conformation over all the simulations (b-d-f). The eigenvectors
corresponding to the three highest eigenvalues have been used to obtain the coordinates.
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Fig. 6 shows the spectrum of the metric matrix M obtained from each dis-
tance matrix. For one fixed single conformation the rank of the metric matrix
is 3, hence the reconstruction in a three dimensional space is consistent. In
order to verify this statement, the compatibility of each of the N − 3 eigen-
values with the 0 value has been established to be sufficiently small. In the
average case the spectrum of the metric matrices is not exactly 3 anymore.
The eigenvalues tend to 0 slower. This is probably due to the fact that the
distances are not measured directly. The average over a set of distances has
introduced small errors on their definition. The three dimensional structures
obtained from both the distances are shown in Fig. 7. The average structure
respects the shape of the polymers and reasonably reflects their symmetry.
Obviously, this symmetry is not kept taking only one conformation.

3.3 Hi-C simulations data

The Hi-C simulations data obtained as explained above have been interpreted
as adjacency matrices of a weighted undirected graph. Their Laplacian spec-
tra are shown in Fig. 8 .

Consequently, for each polymer the shortest path, resistance, natural
proximity, entropy, potential and Katz distances have been calculated. The
connectivity distances have not been calculated due to the long computation
time of their algorithms. The eigenvalues distribution of the metric matrices
are shown in Fig. 9.

These spectra show that some negative eigenvalues can arise from some
distances, even if the distance matrices are well defined. This means that the
set of distances is not embeddable in an Euclidean space. Nevertheless, we
calculated the reconstruction by means of the three eigenvectors correspon-
dent to only the first three positive eigenvalues.
The reconstructions obtained by these definitions of distances are shown in
Fig. 10 (linear), 11 (circular), 12 (rosette).

Let’s first note some qualitative properties of the reconstruction obtained:

• even if the spectra of these matrices are different pairwise, in some
cases their reconstruction is the same. Therefore, even if in some cases
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Figure 8: Laplacian spectra of the simulations. The Laplacian is obtained by
considering the matrix of the relative frequencies of contacts as an adjacency matrix.
Since all of the graphs are complete and connected, the Laplacian spectra have only one
0 eigenvalue in all the linear (a), circular (b) or rosette (c) cases.
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Figure 9: Spectra of the metric matrices. For the linear (a), circular (b) and rosette
(c) cases, metric matrices have been computed using 6 different definitions of distances.
Some of them (shortest path, potential, katz) show negative eigenvalues. The shortest
path and resistance spectra tend always faster to 0.
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Figure 10: 3D Reconstruction of the simulated linear polymer. The graphs show
the reconstruction obtained by using the MDS with the (a) shortest path, (b) resistance,
(c) proximity, (d) entropy, (e) potential and (f) katz distances.

44



Figure 11: 3D Reconstruction of the simulated circular polymer. The graphs
show the reconstruction obtained by using the MDS with the (a) shortest path, (b) resis-
tance, (c) proximity, (d) entropy, (e) potential and (f) katz distances.
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Figure 12: 3D Reconstruction of the simulated rosette polymer. The graphs show
the reconstruction obtained by using the MDS with the (a) shortest path, (b) resistance,
(c) proximity, (d) entropy, (e) potential and (f) katz distances.
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Figure 13: Laplacian reconstruction. Plots of the three eigenvectors of the Laplacian
of the Hi-C matrices correspondent to its 3 smallest non-zero eigenvalues.
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Figure 14: 2 dimensional plot of the circular simulation. The x and y axes of the
shortest path reconstruction are plotted for the circular case.

the rank of the matrix is higher than in others, the projections of the
conformation in a three dimensional space are still consistent with each
other;

• the potential proximity distance reconstruction doesn’t respect any
property of the polymer and of the reconstruction obtained by using
directly the simulated distance matrices;

• the entropy distance respects the symmetries but comparing it with
the natural proximity distance small perturbations arise. This is rea-
sonable, thinking that the entropy proximity measure is computed as
a perturbation of the natural proximity one due to the multiplication
of each entry of the matrix with its logarithm;

• in the rosette case, the Katz distance does not reproduce the same
structure of the others. This doesn’t happen in the linear and circular
case where its spectrum was non-negative;

• equally, in the circular case, even if the two dimensional plot is con-
sistent with the other reconstructions (Fig. 14), the third eigenvector,
correspondent to the third axes, is different.

In order to quantify these statements, we considered the reconstructed
coordinates vectors and we calculated the dot product with the correspond-
ing coordinates previously obtained by using directly the simulated averaged
distance matrix. The closer it is to 1 the more parallel the two vectors are,
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hence the reconstruction is consistent with the expected structure.
The resistance reconstruction is always consistent with a precision higher
than 93%. In the other cases the qualitative predictions of consistence are
confirmed. Some examples are shown in Fig. 15.

Hence, not all the reconstructions are consistent among themselves and
not all the reconstructions are consistent among the linear, circular and
rosette simulations.
In order to explain this behavior, we show a reconstruction obtained by using
the first three eigenvectors of the Laplacian of the graph instead (Fig. 13).
Surprisingly, it is always consistent with the expected structure with a high
precision. The average structure over a high number of simulations is exactly
reproduced by the eigenmodes of the Laplacian of the contact-frequencies
weighted graph relative to the three smallest nonzero energy states.
In the last years, the eigenvectors of the Laplacian have already been used
as a set of coordinates for the so-called synchronization dynamic of networks
[39].
From a theoretical point of view, it is possible to calculate the coordinates
with the MDS only using the resistance distance among the distances pro-
posed in this thesis. In fact, as explained above, the first 3 eigenvectors of
its metric matrix are always the eigenvectors corresponding to the 3 smallest
nonzero eigenvalues of the Laplacian. The resistance metric is the only one
that assures that the eigenvectors are the same and the order is reversed. In
the other cases, even if we demonstrated that the Laplacian and the met-
ric matrix share the same set of eigenvectors, their order is not said to be
respected. In fact, in these cases it is not possible to predict how the eigen-
values of the metric matrix depend from the Laplacian ones.

As an example, in the circular case the shortest path reconstruction didn’t
respect the order of the eigenvectors of the Laplacian. Nevertheless, substi-
tuting its third eigenvectors with its last one, the reconstruction would be
fully consistent with the expected one (Fig. 16).

Finally let’s note that according to the analogy of a system of springs con-
necting the vertexes of the graph, the constant eigenmode of the Laplacian
represents the case in which all the elongations are null and all the springs
assume their equilibrium length, that is 0.
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Figure 15: Examples of 1 dimensional comparison. (a) Linear case.The second
eigenvector obtained by using the entropy distance is compared with the expected y co-
ordinate. The resulting dot product is 0.878. (b) Circular case. The first eigenvector
obtained by using the resistance distance is compared with the expected x coordinate.
The resulting dot product is 0.999. (c) Rosette case. The third eigenvector obtained
by using the Katz distance is compared with the expected z coordinate. Even if some
macro-features are respected, the resulting dot product is 0.0001.
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Figure 16: Example of different eigenvectors order. The plot shows the first,
second and last eigenvector of the shortest path metric matrix in the circular case. The
dot product between the last eigenvector and the expected z axes is 0.998, but this doesn’t
appear in the 3d reconstruction, since its correspondent eigenvalue is 0.

3.4 Real data

In this section we will apply the previously developed algorithms to a real set
of Hi-C data. In fact, we verified that, simulating many times a self avoiding
walk for different shapes of a polymer, the average structure is reproduced
by the first eigenvectors of the Laplacian of the related contact graph. This
reconstruction is obtained by using the resistance distance in the multidi-
mensional scaling technique.

In the experimental Hi-C data, usually a certain amount of different cells
is analyzed. They grow in common conditions and after a specific treatment
they are subjected to formaldehyde fixation in order to create cross-links.
The cross-links are then counted and finally the Hi-C matrix are created.
Here we will apply the MDS to Hi-C data of the Bacillus subtilis [38] (Fig.
17). Each analyzed cell contained one single and unreplicated chromosome.
The genome has been divided into 1054 bins. The Hi-C data have been
demonstrated to be reproducible and consistent with the data obtained pre-
viously.

Even in this case the resistance distance reconstruction has been demon-
strated to be consistent with the first three eigenvectors of the Laplacian.
In the past, some applications which use the shortest path distance have
already been proposed. MDS has been used in order to demonstrate the
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Figure 17: Hi-C matrix. [Adapted from [38]] Hi-C contact matrix of the Bacillus
subtilis. The white dashed box represents the situ in which the replication begins.

Figure 18: Laplacian spectrum. Spectrum of the Laplacian of the graph of the
Caulobacter crescentus. Since there is only one 0 eigenvalue, the graph is connected.
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Figure 19: Laplacian reconstruction. Plots of the three eigenvectors of the Laplacian
of the Hi-C matrices correspondent to its 3 smallest non-zero eigenvalues.

Figure 20: Spectra of the metric matrices. Metric matrices have been computed
using 6 different definitions of distances. Some of them (shortest path, potential, katz)
show negative eigenvalues.
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Figure 21: 3D Reconstruction of the Caulobacter crescentus chromosome. The
graphs show the reconstruction obtained by using the MDS with the (a) shortest path,
(b) resistance, (c) proximity, (d) entropy, (e) potential and (f) katz distances.
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existence of particular domains and, in combination with super-resolution
microscopy, to verify that the structure of the chromosome changes during
the life cicle of the cell [38]. In particular, it has been used to unveil the
factors responsible for its regulating folding. For further applications, the
different reconstruction obtained by using the resistance distance may reveal
other important features.
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4 Other applications

4.1 Introduction

We have shown how it is possible to interpret the Hi-C data as an adjacency
matrix of a complete weighted graph and consequently reconstructing a set
of three dimensional Euclidean coordinates. We showed in which cases these
coordinates correspond to the first three eigenvectors of the Laplacian of the
graph. Nevertheless, this reconstruction unveils some overall properties of
the chromosomes, carrying a loss of information about the local details of
the structures, e.g. special patterns, loops or clusters.
The following chapter will investigate an application of the method shown
above in the case in which distances between just a few pairs of points are
known with a certain precision. The reason of this request arises from some
fluorescence measures that permit to visualize multiple loci at the same time
and hence to deduce their distances. Nevertheless, at the state of art it is
not possible to measure directly a complete set of distances.
This thesis proposes two methods: the first one is a Bayesian method whose
goal is to use the Hi-C data in order to complete the fluorescence distance
matrix or, in other words, it uses these distances as a constraint in the re-
construction process; the second method asserts the uncertainty of the FISH
distances and uses them to reconstruct a new adjacency matrix of contact
probabilities that combine the two kinds of data.
In our simulations we will consider as sets of measured distances a collection
of few distances chosen randomly from the previously used distance matrices,
i.e. the one single conformation and the averaged distance matrix.

In both the methods we will stress the use of a probability density defined
over some possible energy states that the graph can assume. The Boltzmann
probability density of the states of the generalized energy E of a graph G is:

ρ(E) = e−E = e
1
2

∑
ij d

2
ijwij =

∏
ij

e−
1
2
d2ijwij

Clearly, this probability density can change both with the frequencies wij
and with the way the distances are defined. Some authors [2] have already
used this definition of probability density for graphs focusing on the way the
probability changes when the graph adjacency matrix is modified. In our
cases instead we will be interested on considering the energy value over all
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the possible length that the distances can assume. For this purpose, the
following theorem on the number of independent distances will be useful.

Theorem. Given a set of N points in a d-dimensional space, the min-
imal number of distances between the points that can be defined freely is
m = d(d+1)

2
+ (N − d− 1)(d+ 1) where d ≥ 2 and N ≥ 2.

Proof. The proof arises from symmetry considerations. Embedding N =
d + 1 points needs necessarily

∑d
i=0 ni = d(d+1)

2
lines. For any other point x

added are then necessary d + 1 lines in order to not have any other degree
of freedom. In fact, adding only d lines from x to other d points, then these
points form a d-dimensional surface such that x can assume two different sym-
metric positions respect of the surface itself. Hence all the distances of x with
the other points would change. Thus, it is necessary to add (N−d−1)(d+1)
distances.

By this demonstration it is clear that the choice of the m distances is not
arbitrary. For instance, in the three dimensional case we must define for each
point at least 4 distances with other points.
For a three dimensional space at least only m = 4N − 10 distances can be
freely chosen. Fixing them the other ones will be certain. Let d̃ denote the
set of some m′ independent distances, where m′ ≤ m. Then we define a
partition function Z ′ of the graph as

Z ′ =

∫ ∞
0

e−E(d̃)dm
′
d̃ =

=
m′∏

(ij)=1

∫ ∞
0

e−
1
2
d̃2
(ij)

w(ij)dd̃(ij) =

=

(√
π

2

)m′ (m′)∏
(ij)=1

1
√
w(ij)

where in the last step we used the Gaussian integral.
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4.2 Bayesian method

The following method’s goal is to modify the adjacency matrix W of the
Hi-C data inserting an additional information. This means assuming that
a set of M distances d∗ is known from a statistical point of view. In fact,
we can interpret the entries wij of W as the probability p(ij) that there is a
contact between the points i and j, i.e. their distance dij = 0.
Considering the additional information provided by d∗ means calculating
p(ij|d∗). Using the Bayes theorem:

p(ij|d∗) =
p(ij)p(d∗|ij)

p(d∗)
= p(d∗|ij)wij

provided that p(d∗) = 1 and d∗ > 0.
By definition, p(d∗|ij) = 0 whenever one of the distances of d∗ is the distance
between the points i and j. Let’s assume the case in which d(ij) = 0 /∈ d∗

and let d̃ denote all the independent distances not belonging to d∗. They will
consequently be m−M . Then:

p(d∗|ij) =
e−E(d̃)e−E(d∗)

Z∗

In this case, the partition function Z∗ is calculated integrating the proba-
bility density not over all the independent distances, but only between the
distances d∗. In fact, in this case we are interested on calculating it only over
the values that the experimental measure could assume. Hence:

p(d∗|ij) =
e−E(d̃)e−E(d∗)

e−E(d̃)
∫∞
0
e−E(d∗)dd∗

=

√
2

π

M

e−E(d∗)
∏
M

√
wM

Consequently:

w′ij = p(ij|d∗) = wij

√
2

π

M

e−E(d∗)
∏
M

√
wM

Hence, these assumptions yield to the multiplication of the adjacency matrix
with a constant factor, always smaller than 1. The entries corresponding to
the given set of distances are set to 0. Considering the set of N points as
connected by springs with elastic constant equal to the contact frequency,

58



Figure 22: Substitution of one single distance. One defined and consistent, but rare
distance has been imposed to the circular structure. The number of consistent distances
is low and it doesn’t show any interesting property.

then setting one of them to 0 means substituting the spring with a not de-
formable bar of fixed length.
The new adjacency matrix has to be newly normalized in order to let the
rows and the columns sum again to 1.
Even if the method is theoretically interesting, it can not find immediate
applications. Its principal defect is that the measured distance is applied
during a second step of the algorithm and this may not be consistent. In
fact, applying the reconstruction method to the new adjacency matrix does
not assure that the distances between two points - whose distance is supposed
to be d∗ - will be exactly d∗. This condition should be imposed a posteriori,
provided that d∗ is consistent with the distances calculated, i.e. it satisfies
the triangular inequality with any other third point. This case is really rare
and, even if applied, it doesn’t yield to any interesting result (see Fig. 22).

4.3 New frequency method

We showed some limitations of the previous problem. In particular, it is not
possible to be sure a priori that the measured distance is consistent with the
reconstruction. Furthermore, we didn’t take into account the uncertainty of
the measured distance. In fact, one may assert that the measured distance
is not certain, but it is the most probable among all the possible values it
can take. The following method arises from this assumption.
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We will find a way to redefine the entries of the adjacency matrix. For this
purpose, let’s assume that each measured distance d∗ is equal to the average
distance that we would obtain by using the probability density ρ(E). That
is, consider

d∗ =

√
〈d1〉2 + 〈d2〉2 + · · ·+ 〈dN〉2

where the average of each component of the distance is

〈di〉 =

∫∞
0
λidie

−E(d)dd1 . . . dd4N−10∫∞
0
e−E(d)dd1 . . . dd4N−10

=

∫∞
0
die
− 1

2
λid

2
iwddi∫∞

0
e−

1
2
λid2iwddi

=

√
2

π

√
λi√
w

Hence the distance is:

d∗ =

√
2

π

1√
w

√∑
i

λi

Consequently, we can compute the related frequency of contact between two
points i and j as:

wij =
2

π

1

d∗2ij
TrM

This definition can be interpreted as a constraint for the energy of the graph,
since wijd

∗2
ij is dimensionally equivalent to the energy itself.

Let’s note that, since the relative frequency can’t be bigger than 1, then

the measured distance should be rescaled in such a way that d∗ ≥
√

2
πTrM

.

This means considering a rescaled distance: d∗resc =

√
2/(πTrM)

d∗min
d∗ where d∗min

is the smallest value that experimentally d∗ can assume. Alternatively, it is
possible to define arbitrarily a threshold distance d∗min, imposing that for any
distance d∗ij ≤ d∗min, then wij = 1. This means that the new probability wij
does not depend on the constant factor 2TrM

π
, but only on the choice of the

threshold distance.
After the substitution of the new few entries, it will be necessary to re-
normalize the matrix with the Sinkhorn-Knopp algorithm [50], in order to
let each row and column sum to 1. In fact, by construction the probabilities
that we found are the probabilities of uncorrelated events: the sum of differ-
ent probabilities in the same row may be bigger than 1. The normalization
assures that the contacts are considered mutually exclusive events; the rescal-
ing of the distances assures that the new frequency are in any case consistent
with the dimensions of the structure of the polymer. The normalization lets
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Figure 23: Reconstruction of the average structure. The algorithm of the new
frequencies has been applied to the linear (a), circular (b) and rosette (c) structures using
all the distances of the matrices of the averaged distances used also previously.

the new and the old data influence each other.
In order to verify the consistence of this construction we first reconstructed
the conformation of the polymers, substituting all the entries of the adja-
cency matrices with the new frequencies, using the averaged distance that
we have already used before (Fig. 7 a,c,e). Then, we applied the resistance
distance MDS algorithm to obtain the three dimensional reconstruction. The
threshold distance of the rescaling has been fixed as the maximum distance
between two consecutive monomers in the simulated chain.
The results and the spectra of the metric matrices are shown in Fig. 24 and
23.

Computing the dot product of the original coordinates vectors with the
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Figure 24: Spectra of the reconstruction of the average structure. The shown
spectra are the spectra of the metric matrices of the reconstruction with the new frequen-
cies applied to the linear (a), circular (b) and rosette (c) structures using all the distances
of the matrices of the averaged distances used also previously.
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correspondent reconstructed ones, they are verified to be exactly parallel.
Consequently, they are parallel to the coordinates vector obtained by using
the simulated Hi-C matrices. This result is reasonable. In fact the distances
are averaged over a high number of simulation. The smaller the average dis-
tance, the higher the amount of small distances and the higher the frequency
of contact too, according to the definition of frequencies used to calculate the
Hi-C matrices.
Consequently, we substituted only 100 frequencies on the adjacency matrix,
using only 100 random distances of the previously used set. The shape of the
structure results in any case slightly perturbed, probably due to the renor-
malization process (Fig. 25).

Therefore, the algorithm has been applied not to the average distances,
but to the distances among the points of the particular singular conforma-
tions shown in Fig. 7 b, d, f. Even in this case the threshold distance used
to rescale the distances is the maximum distance between two consecutive
monomers of the chain. The spectra and the reconstructions are shown in
Fig. 27 and 26.

The reconstruction is now not exactly consistent with the original one.
Table 2 shows the values of the dot products between the correspondent axes.
The first axes result parallel with high precision. The precision is lower for
the second axis, but still high, and finally it is not always acceptable for
the third axis. Since many of the eigenvalues are different than 0, the recon-
struction is a projection on the first three coordinates of a higher dimensional
space. In the original reconstruction the rank of the metric matrix was in-
stead exactly 3 since the set of distances was directly computed in a three
dimensional space (Fig. 6). The inconsistency now arises from the errors
introduced with the indirect computation of the distance through a contacts’
frequency matrix.
Let’s note that in the average structure’s case the reconstruction is consistent
since the spectrum of the metric matrix was already smoothed in the original
reconstruction.

Finally, we substituted only 20, 100 and 1000 new frequencies to the
adjacency matrix of the simulated Hi-C data corresponding to the average
structure. This test was performed in order to show how the structure in-
creasingly changes when new distances are added. The change of the struc-
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Figure 25: Reconstruction of the average structure with partial substitution.
The algorithm of the new frequencies has been applied to the linear (a), circular (b) and
rosette (c) structures using in each case only 100 distances of the matrices of the averaged
distances used also previously.
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Figure 26: Reconstruction of one single structure. The algorithm of the new
frequencies has been applied to the linear (a), circular (b) and rosette (c) structures using
in each case all the distances of the matrices of the distances of one single conformation
among all the simulated ones. In particular, the conformation used is the same shown in
Fig. 7.

65



Figure 27: Spectra of the reconstruction of one single structure. The shown
spectra are the spectra of the metric matrices of the reconstruction with the new frequen-
cies applied to the linear (a), circular (b) and rosette (c) structures using all the distances
of the matrices of the distances used also previously of one single conformation.
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x y z

Linear 0.973 0.874 0.812
Circular 0.992 0.705 0.551
Rosette 0.985 0.881 0.457

Table 2: Dot products between reconstructed and real coordinates. The theo-
retical value of the dot product for parallel vectors is 1. Here are shown the dot products
between the real coordinates’ vector and the ones reconstructed through the use of the
new frequencies. The dot product decreases with the order of the axes.

ture is continuous and in each case deforms the average structure without
breaking it, i.e. there are not points in isolated areas, not belonging to the
structure (Fig. 28, 29, 30).

The method presented in this last chapter has been proposed in order
to combine two different sets of data: one consisting of contact frequencies
(Hi-C data) and one consisting of a set of few directly measured distances.
We showed that if the set of measured distances is complete it is possible to
reconstruct a second probabilities matrix analogous to the Hi-C matrix. The
two matrices are consistent only if the set of distances coincides with the av-
erage distances over all the conformations analyzed by the Hi-C method. In
the other cases, we obtained some reconstructions whose precision decreases
with the order of the coordinates. Then we only changed some frequencies
on the Hi-C matrix through the new algorithm showing that the structure
slightly changes increasing the number of new frequencies, but always in a
smooth way.
This technique is obviously not accurate enough, but it presents some inter-
esting properties. Relationships between the spectra of the metric matrices
and on the choice of a particular set of distances may be further analyzed in
order to understand the behavior of the reconstruction.
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Figure 28: Reconstruction of the linear structure with partial substitution. The
algorithm of the new frequencies has been applied to the linear structure using only (a)
20, (b) 100 or (c) 1000 distances of the matrix of the distances of one single conformation
among all the simulated ones. In particular, the conformation used is the same shown in
Fig. 7.
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Figure 29: Reconstruction of the circular structure with partial substitution.
The algorithm of the new frequencies has been applied to the circular structure using
only (a) 20, (b) 100 or (c) 1000 distances of the matrix of the distances of one single
conformation among all the simulated ones. In particular, the conformation used is the
same shown in Fig. 7.
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Figure 30: Reconstruction of the rosette structure with partial substitution.
The algorithm of the new frequencies has been applied to the rosette structure using
only (a) 20, (b) 100 or (c) 1000 distances of the matrix of the distances of one single
conformation among all the simulated ones. In particular, the conformation used is the
same shown in Fig. 7.
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5 Conclusions

In this thesis, we investigated the structure of chromosomes, the molecules
that carry all the genetic information of a living being. In fact, high order
structural features may be connected with their function and with the gene
expression. Despite its importance, at the state of the art there is not a
technique to measure the coordinates or the distances between the loci of a
chromosome directly and with high resolution. In the last years, Capturing
Chromosome Conformation (3C) first and Hi-C later provided a method to
obtain a genomewide topological information at high resolution.
In particular, the data consist in matrices of relative frequencies of contact
between the loci. The goal of this thesis was to interpret this data in such a
way to obtain a three dimensional reconstruction of the chromosome. This
has been performed by means of the interpretation of the Hi-C matrix as the
adjacency matrix of a weighted complete undirected graph. Therefore it was
possible to define distances between the vertexes of the graph. We proposed
different definitions of distances in graphs. In particular, we focused on the
shortest path, resistance, natural proximity, entropy, potential proximity and
Katz distances.
By defining these distances between the nodes of the graph - correspond-
ing to the loci of the chromosome - we applied the Multidimensional scaling
method in order to reconstruct the Euclidean coordinates.
Multidimensional scaling consists of generating a Gram or metric matrix M
from the distance matrix. We showed that a necessary and sufficient con-
dition to embed N points with the given distances in an Euclidean space
of dimension r is M to be of rank r and semi-definite positive. The recon-
structed coordinates’ vector will be parallel to the eigenvectors of the metric
matrix. If r ≥ 3 we can reconstruct a projection in the first three coordinates.

Therefore, we simulated Hi-C data for three different polymers with a
linear, circular and rosette shape. We calculated all the distance matrices
for all of them and we applied the MDS for each of these distances. The
reconstructed structures were not always equal each other and not always
consistent with the expected structure. This has been calculated applying
MDS to the average distances of all the simulated conformations.
The only distance whose reconstruction is always consistent is the resistance
distance. Considering the Laplacian matrix L of the graph and a set of coor-
dinates composed by its three eigenvectors corresponding to the lowest three

71



non zero eigenvalues, we obtain a reconstruction always consistent with the
expected average structure of the polymers.
Any metric matrix that commutes with L, share with it a common eigenvec-
tor basis. The shortest path, resistance, proximity and Katz distances yield
to this property. Among them, the resistance distance is the only one that
provides the same reconstruction of the Laplacian eigenvectors. In fact, since
its eigenvalues are the inverse of the Laplacian eigenvalues, the order of the
eigenvectors is reversed.
We applied these algorithms to a set of real data too, obtaining further re-
constructions.

Finally, we considered the problem of combining the Hi-C data with some
distances directly measured with the fluorescence technique. For this pur-
pose, we introduced a partition function on the energetic states that a graph
can assume. Using it with a Bayesian approach, it is possible to modify
the adjacency matrix and obtain a new reconstruction. Nevertheless, this
method is not said to respect a priori the measured distances given as con-
straints.
Instead, forcing the measured distance to be the average distance obtained
by means of the partition function, we found a quadratic inverse relation-
ship between a measured distance and its corresponding contact frequency.
As expected, using the complete set of average distances, this relationship
is perfectly consistent with the expected average structure. Using the set of
distances of one single conformation, the reconstruction is excellent for the
x axis, but registers a lack of precision in the y and z axes. This is probably
due to the average operation. We showed that this reconstruction modifies
smoothly the shape of the polymer increasing the number of measured dis-
tances in the experiment. The insertion of only one new frequency influences
even the other frequencies and the structure changes slightly. The recon-
struction is not accurate enough, but it definitely suggests a basic method
for further studies.

The goal of this thesis was to describe some theoretical basis on the
multidimensional scaling process and on the application of this method in
graphs. For this purpose we investigated the ways to define distances on
graphs, their relationships with the Laplacian matrix and the conditions to
embed the graph in an Euclidean space. During the work, many similarities
with other physics fields have been underlined. Spectral graph theory is in
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fact generally applicable to many areas. In this case the energy levels of
the Laplacian have been interpreted as conditions for a three dimensional
reconstruction of chromosomes. Further studies may continue to focus on
this interpretation and on similar applications.
In fact, the study of chromosomes’ structure is fundamental in biology and in
medicine. It may unveil its relationship with chromosomes functionality or,
in the worst case, its relationship with its dysfunctional role. In other words,
it is important in order to understand the mechanisms of the transmission
of life, that is finally the reason why we do research.
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6 Appendix A

Given a complete set of distances between N points, the embedding problem
consists in understanding when the given distances are Euclidean, i.e. when
it is possible to find some Cartesian coordinates in a generic r-dimensional
space (r ≤ N). The following theorem establishes the minimum value of r
and the necessary and sufficient conditions to embed the set of points.

Theorem. [47] A necessary and sufficient condition that the Dij be the
lengths of the edges of an n-”simplex” lying in Rr but not in Rr−1 is that
the quadratic form

F (x1, . . . xn) =
1

2

∑
i,j

(d20i + d20j −D2
ij)xixj

be positive ( i.e. always ≥ 0) and of rank r. That is, the associate matrix
M has to be positive semidefinite of rank r.

Proof. Necessity. Let r0 = 0 be the origin of an Euclidean space in which
ri are the coordinates of the i-th point. Considering a point P such that

rP = x1r1 + · · ·+ xnrn

its distance from the barycenter is:

d20P =
∑
i

x2i
∑
ν

r2iν + 2
∑
i<k

xixk
∑
ν=1

riνrkν

Since: ∑
i

x2i
∑
ν

r2iν =
∑
i

x2i r
2
0i = 0

and:

2
∑
ν

riνrkν =
∑
ν

r2iν +
∑
ν

r2kν −
∑
ν

(riν − rkν)2 = d20i + d20j −D2
ij

we have d20p = F (x1 . . . xn). Hence F is positive. Furthermore, P = F = 0
on a linear manifold of n − r dimensions in the variables x1 . . . xn, hence F
is of rank r.
Sufficiency. Let us assume F to be positive definite, i.e. r = n. By means
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of a certain linear non singular transformation y = H(x) we get F = y21 +
· · · + y2n. Let’s consider the Cartesian space of the variables (y1, . . . yn) and
n correspondent points whose coordinates are:

(x1, . . . xn) = (1, 0, . . . 0), (0, 1, . . . 0), . . . , (0, 0, . . . 1)

Their coordinates are found by y = H(x), for their mutual distances we find:

x0xi
2 = F (0, . . . 1 . . . 0) = d20i

xixj
2 = F (0, . . . 1 · · · − 1 . . . 0) = d20i + d20k − (d20i + d20k − d2ik) = d2ik

Hence, these are exactly the coordinates we are looking for. If r < n then
F (x1 . . . xn) = y21 +y22 + · · ·+y2r and the distances d20i and d2ij are the squared
lengths of the projections on the sub-space (y1 . . . yn), i.e. on a manifold
yr+1 = · · · = yn = 0. By construction the n-simplex of points we found is
contained in a Rr but not in Rr−1.
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7 Appendix B

Algorithms and codes.
The following algorithms are coded in language C++. We stressed the use
of the template library Eigen [25], projected for linear algebra calculus. It
allowed us to deal with matrices of high dimension and to compute quickly
their spectral decomposition.
The input of any MDS algorithm is the Hi-C matrix. It is declared as
weight(N,N) where N is the dimension of the matrix. In the following tables
we show the algorithms to calculate the 6 distances matrices dist(N,N) used
in the ”Results” chapter from the weight(N,N) matrix.
We defined two Eigen types as follows:

typedef Matrix<long double, Dynamic, Dynamic> stdmat;

typedef Matrix<long double, 1, Dynamic> stdvec;

Shortest path.

long double eps=1e-20;

for (int i=0; i <N; i++) {

for (int j=0; j <N; j++){

if (abs(weight(i, j)) > eps)

weight(i, j)=1./weight(i, j);

if (abs(weight(i, j)) < eps)

weight(i, j)=1e308; } } //theoretically infinity

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

dist(i, j)=weight(i, j);

} }

for(int i=0; i<N; i++){

dist(i,i)=0.;

}

int correct=1;

while(correct != 0){

//we iterate until all points respect the triangle inequality (correct=0)

correct=0;

76



for(int i=0; i<N;i++){

for(int j=0; j<N;j++){

for(int k=0;k<N;k++){

if( ( dist(i, j)>( dist(i, k)+dist(k, j) ) )

&& (abs(dist(i, k))>eps) && (abs(dist(k, j))>eps) ) {

dist(i, j)=dist(i, k)+dist(k, j);

dist(j,i)=dist(i,j);

} } } }

for(int i=0; i<N;i++){

for(int j=0; j<N;j++){

for(int k=0;k<N;k++){

if( ( dist(i, j)>(dist(i, k)+dist(k, j)) )

&& (abs(dist(i, k))>eps)

&& (abs(dist(k, j))>eps)) {

correct++;

} } } } } }

Resistance.

// Calculus of the Laplacian matrix

stdvec rows(N);

for (int i=0; i<N; i++){

rows(i)=0.;

}

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

rows(i)=rows(i)+weight(i,j);

} }

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

weight(i,j)=-weight(i,j);

} }

for(int i=0; i<N;i++){

weight(i,i)=rows(i); }
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for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

weight(i,j)=weight(i,j)+1./N;

}

}

weight = weight.inverse();

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

weight(i,j)=weight(i,j)-1./N;

}

}

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

dist(i, j)=weight(i, i)+weight(j,j)-2*weight(i,j);

} }

Natural proximity.

stdvec rows(N);

for (int i=0; i<N; i++){

rows(i)=0.;

}

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

if( i!= j){

rows(i)=rows(i)+weight(i,j);

}} }

stdmat prox(N,N); //proximity matrix

for(int i=0; i<N;i++){

for(int j=0; j<N; j++){

if (i != j){

prox(i,j)=weight(i,j); }

if (i == j){

prox(i,j)=rows(i);}
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} }

//Does it respect the proximity properties?

int triangle =0;

for (int i=0; i<N; i++) {

for (int j=0; j<N; j++){

if ( abs(prox(i,j) -prox(j,i))>eps) {

cout << "Error symmetry " << i << "," << j << endl;}

if ( prox(i,i) < prox(j,i) ) {

cout << "Error maxim diagonal: " << i << "," << j << endl;}

if ((prox(i,j))<0) {

cout << "Error negative: " << i << "," << j << endl;}

for(int k=0; k<N; k++) {

if ((prox(i,j)+prox(i,k)-prox(j,k))>prox(i,i) && i != j && i!= k){

cout << i << " " << j << " " << k << endl;

triangle++;}}

} }

cout << "Triangle = " << triangle << endl;

stdmat dist(N,N); // distance matrix

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

dist(i, j)=prox(i,i)+prox(j,j)-2*prox(i,j);

} }

Entropy distance.

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

if (abs(weight(i,j))> eps) {

weight(i,j)= -weight(i,j)*log(weight(i,j));

}

if (abs(weight(i,j))< eps) { weight(i,j)=0.;}

} }

stdvec rows(N);

for (int i=0; i<N; i++){

rows(i)=0.;
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}

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

if( i!= j){

rows(i)=rows(i)+weight(i,j);

} } }

stdmat prox(N,N); //proximity matrix

for(int i=0; i<N;i++){

for(int j=0; j<N; j++){

if (i != j){

prox(i,j)=weight(i,j); }

if (i == j){

prox(i,j)=rows(i);}

} }

\\Check if it verifies the proximity properties as done before

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

dist(i, j)=prox(i,i)+prox(j,j)-2*prox(i,j);

} }

The potential proximity distance is analogous.
Katz distance.

for(int i=0;i<N;i++){

for(int j=0;j<N;j++){

weight(i,j)=-weight(i,j);

}

}

for(int i=0;i<N;i++){

weight(i,i)=1;

}

weight = weight.inverse();

for(int i=0;i<N;i++){

weight(i,i)=weight(i,i)-1;

}
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stdvec rows(N);

for (int i=0; i<N; i++){

rows(i)=0.;

}

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

rows(i)=rows(i)+weight(i,j);

}

}

stdmat dist(N,N); //minimum path distance matrix

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

dist(i, j)=weight(i, i)+weight(j,j)-2*weight(i,j);

} }

For each of these distance matrices we applied the MDS algorithm:

stdvec somma(N);

somma.setZero();// useful on the calculation of the barycenter distance

long double somma2 = 0.;

stdvec distbaryc(N);

distbaryc.setZero();//distances from the barycenter

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

somma(i)=somma(i)+dist(i, j)*dist(i, j);

}

}

for (int j=0; j<N; j++){

for (int k=0; k<j+1; k++){

somma2=somma2+dist(j, k)*dist(j, k);

}

}

for (int i=0; i < N; i++) {

distbaryc(i)=somma(i)/N - somma2/(N*N);
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if (distbaryc(i) < 0)

distbaryc(i)=0.;

}

stdmat gram(N,N); //Gram or metric matrix

for (int i=0; i<N; i++){

for (int j=0; j<N; j++){

gram(i, j)=(distbaryc(i)+distbaryc(j)-dist(i, j)*dist(i, j))/2.;

} }

EigenSolver<stdmat> es;

es.compute(gram, true);

stdvec eigenval = es.eigenvalues().real();

stdmat eigenvec = es.eigenvectors().real();

stdmat coord(N,N);

long double eigenvalues[N];

int neg=0;

for (int i=0; i < N; i++) {

eigenvalues[i]=eigenval(i); }

//ordering the eigenvalues and the eigenvectors

long double temp=10.;

long double temp2=10.;

int m=0;

while(m<N-1){

if( eigenvalues[m] < eigenvalues[m+1] ) {

temp=eigenvalues[m];

eigenvalues[m]=eigenvalues[m+1];

eigenvalues[m+1]=temp;

for (int j=0; j<N; j++){

temp2=eigenvec(j, m);

eigenvec(j, m)=eigenvec(j,m+1);

eigenvec(j, m+1)=temp2;

}

m=0;
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}

else

m++;

}

//calculate the coordinates

for (int i=0; i<N; i++){

if(eigenvalues[i]<0.){

eigenvalues[i]=0.;} // set to zero the negative eigenvalues

for (int j=0; j<N; j++){

coord(i, j)=eigenvec(j, i)*((eigenvalues[i]));

} }
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