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Chapter 1

Introduction

Positron Emission Tomography (PET) is a functional nuclear medicine imaging

technique widely used to study in vivo physiological processes in the body. The

image acquisition procedure requires a bolus injection of a radioligand into a

patient, then pairs of gamma rays generated after annihilation of any emitted

positron with any electron of the surrounding material are detected. The four-

dimensional images generated by a reconstruction algorithm and corrected for the

physical effects involved represent the concentration measurement of the tracer in

the districts. This concentration can be related to a specific physiological process

targeted by an appropriate tracer, as those used in this study: [11C](R)-rolipram,

[11C]WAY100635, [11C]PBR28.

The analysis of the data can be applied either at the Region of Interest (ROI)

level, where the ROI Time Activity Curve (TAC) is generated by averaging the

activity concentration of the specific ROI, or at the voxel level. Since ROI TACs

are characterized by a good Signal-to-Noise Ratio (SNR), at the ROI level data

are quantified using non-linear estimators, such as Weighted Non-Linear Least

Squares (WNLLS). However, the use of ROI TACs causes a loss of spatial res-

olution. Voxel level analysis produces parametric maps having the same spatial

resolution as the original PET image. However the SNR is often so low that the

use of non-linear estimators is difficult and unwieldy because of their computa-

tional cost. For this reason, alternative quantification approaches are called for.
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4 1. INTRODUCTION

The most adopted approach for the quantification at the voxel level is the Basis

Function Method (BFM) [1]. This method bypasses the problem of non-linearity

of the models. However, the setting procedure can heavily penalize the results in

terms of bias in the final estimates.

Other available approaches for quantification at the voxel level are the so called

“population approaches”. The performances of these methods are sensitive to the

goodness of the initial values and to the noise level of data.

Bayesian methods, such as Maximum-a-Posteriori (MAP), are available as well.

Their main limitation concerns the computational cost, which is comparable to

what required by non-linear estimators.

The purpose of this work is to evaluate, at the voxel level, the performance of

a Bayesian method never used before in PET domain that proves powerful per-

formance, even in terms of computation time, in analysing MR data [8]: the

Variational Bayes method, which is a Bayesian approach which returns the com-

plete posterior distribution of the parameters. The study includes analysis on

both simulated and real data. Therefore, are here presented the equations neces-

sary to attain a weighted estimation without additional computation time and is

proposed an algorithm to set the prior parameters.



Chapter 2

Methods

2.1 Quantification Methods

In this section two different estimation methods are presented: Variational Bayes

(VB) and Weighted Non-Linear Least Squares (WNLLS). A comparison between

them is made over three different datasets, which were made available by Molecu-

lar Imaging Branch of National Institute of Mental Health (USA) and by Division

of Experimental Medicine of Imperial College of London (UK).

2.1.1 Variational Bayesian Inference

Bayesian methods, which are based on Bayes’ theorem, have proved powerful in

many applications for the statistical inference of model parameters. However, in

practice the computations required are intractable, even for simple cases. There-

fore, these methods are either significantly approximated, e.g. Laplace approxi-

mation [2, 3, 4], or they achieve samples from exact solution, e.g. Markov Chain

Monte Carlo (MCMC) method, which is computationally intense and so not prac-

tical for most brain imaging applications [5, 6]. An efficient approximated method

has been proposed to facilitate analytical calculations of the posterior distribu-

tion over a model: Variational Bayes (VB), also known as Ensemble Learning.

This approach takes its name from Feynman’s variational free energy method de-

5



6 2. METHODS

veloped in statistical physics and has been applied in a variety of statistical and

signal processing domains. It is now also widely used in neuroimaging, especially

fMRI data [7], and in this work, for the first time, in the analysis of PET data. In

this Section 2.1.1 are described, first of all the bayesian inference, then the vari-

ational approach and the hypothesis that make the problem tractable. Finally, a

convergence algorithm is also proposed.

2.1.1.1 Bayesian Inference

As previously said, Bayesian methods are based on Bayes’ rule:

P (p|y,M) =
P (y,p|M)

P (y|M)
=
P (y|p,M)P (p|M)

P (y|M)
, (2.1)

where y denotes a series of measurements to be used to determine the param-

eters p of a chosen model M. The Equation 2.1 gives the posterior probability

of the parameters given the data and the model in terms of: the likelihood of

the data given the model and its parameters, P (y|p,M), the prior probability of

the parameters given the model, P (p|M), and the evidence for the measurements

given the model, P (y|M). As said, it may not be possible to reach analytically

the goal of the Bayesian inference, that is to evaluate the posterior probability

distribution of the parameters. Therefore, inferring this value might be a matter

of estimation of a simpler form, Q(p), which is the approximation of P (p|y,M)

[8]. The measure of the information lost in approximating P (p|y) with Q(p),

i.e. a non-symmetric measure of the difference between the two probability dis-

tributions, is given by the Kullback-Liebler (KL) divergence, also known as the

Relative Entropy [9]:

KL [Q(p)||P (p|y)] =

∫

Q(p) log
Q(p)

P (p|y)
dp. (2.2)

Due to Gibb’s inequality, this quantity is always assumed greater than or, when

the two densities are the same, equal to zero. Thence, the estimation of the correct

approximated posterior is achieved by minimising the KL divergence. The log of

the evidence, or marginal likelihood, now can be evaluated in terms of both KL
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divergence and free energy, F, which is defined as in the following equation, taking

the expectation with respect to the density Q(p) [10]:

logP (y) = log
P (y,p)

P (p|y)

=

∫

Q(p) log
P (y,p)

P (p|y)
dp

=

∫

Q(p) log

[

P (y,p)

P (p|y)
·
Q(p)

Q(p)

]

dp

=

∫

Q(p) log
P (y,p)

Q(p)
dp+

∫

Q(p) log
Q(p)

P (p|y)
dp

= F +KL.

(2.3)

Since the log of the evidence is a fixed quantity, minimising the KL divergence

is like maximising the free energy, F [8]. In fact, also according to Jensen’s in-

equality, F becomes equal to the model evidence when Q(p) is equal to the true

posterior.

2.1.1.2 Variational Approach

To obtain a practical learning algorithm, the integral in F, through which the

approximated posterior distribution can be achieved, must be tractable. A pro-

cedure for attaining this goal is to assume that the approximating density Q(p)

factorizes over groups of parameters. In physics, this is also known as the mean

field approximation:

Q(p) =
∏

i

Qpi
(pi), (2.4)

where pi represents the ith group of parameters. Thence the Equation 2.4 can

also be written as

Q(p) = Qpi
(pi)Qp6i

(p6i), (2.5)

where Qp 6i
(p 6i) denote the approximated distribution for the parameters not in

the ith group. The mean field approximation assumes that the parameters in the

separate groups are independent, although the complete factorisation of all the

individual parameters is generally not required [11] and the choice of the groups

is typically made logically, according to their role in the model and the simplicity
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of calculus. The approximated distributions Q(pi), which maximize the objective

function F with respect to a factorised posterior distribution in turn, can be

derived from:

F =

∫

Q(p) log
P (y|p)P (p)

Q(p)
dp. (2.6)

Now, because F is a functional, which is a function of a function, to maximise

that objective function is necessary to turn to the calculus of variations, here

purposely introduced. Writing the functional in terms of the parameters alone as:

F =

∫

g(pi, Qpi
(pi))dpi, (2.7)

where

g(pi, Qpi
(pi)) =

∫

f(p, Q(p))dp6i. (2.8)

The maximum of F is the solution of the Euler differential equation:

∂

∂Qpi
(pi)

[g(pi, Q(pi), Q
′(pi))]

−
d

dpi

{

∂

∂Q′
pi
(pi)

[g(pi, Q(pi), Q
′(pi))]

}

= 0,

(2.9)

where the partial derivative of the second term is zero as g is not dependent

upon Q′
pi
(pi). Returning to Equation 2.6 and using the logarithms’ properties,

the previous equation can be written as:

∂

∂Qpi
(pi)

∫

Q(p) log
P (y|p)P (p)

Q(p)
dp6i

=

∫

Qp6i
(p6i) logP (y|p)P (p)dp6i

−

∫

Qp 6i
(p6i) logQp6i

(p6i)dp6i

−

∫

Qp 6i
(p6i) logQpi

(pi)dp6i = 0.

(2.10)

It follows that:

logQpi
(pi) =

∫

Qp 6i
(p 6i) logP (y|p)P (p)dp6i + constant, (2.11)

so

logQpi
(pi) ∝

∫

Qp6i
(p6i) logP (y|p)P (p)dp6i. (2.12)
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2.1.1.3 Conjugate-Exponential Restriction

Typically, rather than assuming a specific parametric form for the posteriors, it

is possible to let them fall out of free-form optimisation of the objective function,

F. In this connection, Attias [11] propose an iterative algorithm for the VB up-

dating directly analogous to ordinary Expectation-Maximisation (EM) approach.

Then again, it is common to work with priors that are conjugate with the com-

plete data likelihood, in which case the posterior has the same parametric form

as the prior [5]. In this case, the VB learning becomes a process of updating

the posterior hyper-parameters, which is guaranteed by requiring the belonging

of the complete data likelihood to exponential family distribution. The list of

latent-variables models of practical interest with complete data likelihood in the

exponential family is very long, e.g. Gaussian mixture, hidden Markov models and

extentions, and all the models combining e.g. Gaussian, gamma, Poisson, Dirich-

let distributions [4]. Therefore this choice is not generally so restrictive in the VB

domain. Additionally, the advantage of requiring an exponential distribution for

the complete data likelihood can be seen by examining Equation 2.12, where the

choice naturally leads to an exponential form for the factorised posterior allowing

a tractable VB solution.

2.1.1.4 Convergence

In practice, the non-linear models treated are approximated using a Taylor ex-

pansion. For the problems tackled in this work, and especially in areas of high

non-linearity, the convergence might be no longer guaranteed. A typical conse-

quence is that the VB iterative algorithm cycles through a limited set of solutions

without settling on a single set of values.

Objective Function The adopted objective function is the free energy, which

is the negative value defined in Equation 2.6. The composition of this quantity
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can be deduced from [7] as:

F =

∫

Q(p) logP (y|p)dp−KL [Q(p)‖P (p)]

= Lav −KL [Q(p)‖P (p)] ,

(2.13)

where Lav is the average likelihood of the data and the second term is the KL

divergence defined at Equation 2.2, which grows with the number of model param-

eters. Thus, F contains both accuracy and complexity terms, reflecting the two

conflicting requirements of a good model. Considering the factorisation provided

for the mean field approximation for Q(p):

F = Lav −
∑

i

KL [Q(pi)‖P (pi|y)] . (2.14)

Convergence Algorithm During the iterative process, the value of F, which

must be maximised, may reach a maximum and, in reverse, start to decrease.

Considering the non-monotonic trend of the objective function over the iterative

process, a suitable convergence algorithm is called for. The approach chosen on

this work can be summed in the following pseudo-code [8].
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Data: Initial values of the hyper-parameters.

Result: Hyper-parameters corresponding to maximum value of Free

Energy.

while iter < max iter do

if Fnew = Fold ± tol then

break;

else if Fnew > Fold then

update;

trials=0;

else if Fnew < Fold & trials < max trials then

update;

trials=trials+1;

else

break;

end

end

Algorithm 1: Standard Trials (ST) method algorithm

In Section 2.4 are analysed two different update approaches by simulation studies:

in the first instance, the update equations are derived from the factorized log-

posterior and for all the hyper-parameters of the factorized posterior distributions;

secondly, the performances of Levenberg-Marquardt method are observed. The

best method for ensuring convergence depends upon the particular model used.

2.1.1.5 Hyper-parameters Definition

The model of the measurements y can be written as:

y = g(θ) + v, (2.15)

where g(θ) is the non-linear forward model for the measurements, with parameters

vector θ. The noise is assumed to be from a Gaussian distribution and can be
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written as:

v ∼ N(0, φ−1Σv), (2.16)

where Σv is the covariance matrix of the measurement error. Thus, for the N

observations, the log-likelihood is:

logP (y|Θ) =
N

2
log φ−

1

2
φ(y− g(θ))TΣ−1

v (y− g(θ)), (2.17)

where Θ = {θ, φ} is the set of all model and noise parameters. Hence, the fac-

torised approximation is based on the set of hyper-parameters included in Θ:

Q(Θ|y) = Qθ(θ|y)Qφ(φ|y). (2.18)

The hyper-parameters here introduced, according to M. Chappell et al. (2009),

are described by the following prior distributions:

P (θ) ∼MVN(θ;m0,Λ
−1

0
); (2.19)

P (φ) ∼ Ga(φ; s0, c0), (2.20)

where this gamma distribution is defined as:

Ga(φ; s0, c0) =
1

Γ(c0)

φc0−1

sc0
0

e
− φ

s0 , φ > 0. (2.21)

The factorized posterior distributions are chosen conjugate with the priors as:

Q(θ) ∼MVN(θ;m,Λ−1); (2.22)

Q(φ) ∼ Ga(φ; s, c). (2.23)

2.1.1.6 Update Equations and Free Energy

With the update equations proposed in this work and fully deduced in Appendix

A, it is possible to achieve a weighted estimation, in the same way as in the

WNLLS estimations, without additional computational price:

Λ = Λ0 + scJTΣ−1

v J; (2.24)

Λmnew = Λ0m0 + scJTΣ−1

v (k+ Jmold); (2.25)
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c =
N

2
+ c0; (2.26)

1

s
=

1

s0
+

1

2
(kTΣ−1

v + tr(Λ−1JTΣ−1

v J)). (2.27)

Alternatively to these, in adopting Levenberg-Marquardt algorithm, might be

used the equations described in details in Appendix B:

mnew = mold + (Λ + α · diag(Λ))−1∆, (2.28)

where

∆ = (scJTΣ−1

e (k+ Jmold) + Λ0mold)− Λmold. (2.29)

For both approach, the objective function to maximize is the free energy. This

quantity can be inferred aptly introducing the covariance matrix, Σv, in the equa-

tion proposed by M. Chappell et al. (2009), as follow:

F =−
sc

s0
+

(

N

2
+ c0 − 1

)

[log s+ ψ(c)]

−
1

2

{

(m−m0)
TΛ0(m−m0)

}

+ tr(
Λ0

Λ
)

−
1

2

{

kTΣ−1

v k + tr

(

JTΣ−1

v J

Λ

)}

− c log s− log Γ(c)− c+ (c− 1)[log s+ ψ(c)]

+
1

2
log det(Λ) + constant,

(2.30)

where ψ represents the di-gamma function and is defined as:

ψ(c) =
d

dc
ln Γ(c) =

Γ′(c)

Γ(c)
. (2.31)

2.1.1.7 Priors Setting

Noise Precision Priors Parameters that describe the gamma distribution of

the noise precision are chosen to be relatively non-informative, as in [8], using:

s0 = 106 (2.32)

c0 = 10−6 (2.33)
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Mean Priors of the Model Parameters The mean priors of the model pa-

rameters, m0, used for the VB estimation of all the voxels of a ROI are deduced

by a WNLLS estimation on the TAC of the same ROI. In fact, since data has an

high SNR at the ROI level, WNLLS offers reliable estimation.

Precision Prior of the Model Parameters The priors setting of the preci-

sion, Λ0, of the model parameters can be deduced in terms ofm0 and its coefficient

of variation, CV, concerning the whole brain. The relationship between Λ0, CV

and m0 is described by the following equation:

Λ0 = diag

(

1

(CVm0)
2

)

. (2.34)

The setting algorithm is here described by the following pseudo-code:

Data: Initial value of the coefficient of variation of the model mean

parameters.

Result: Chosen value of the coefficient of variation of the model mean

parameters.

while | outliers1 − outliers2 |> tol do

if outliers1 > outliers2 then

CV = CV −∆d;

else if outliers1 < outliers2 then

CV = CV +∆i;

else

break;

end

quantification;

end

Algorithm 2: Algorithm for the setting of the precision priors of the model

parameters

The quantity outliers1 represents the percentage of outliers found when the pre-

cision of estimation is not satisfactory, i.e. when priors is not enough informative.
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The value of outliers2 represents the percentage of outliers found when the es-

timates are too constraint to priors, i.e. when priors are too informative. The

parameters used in this algorithm, i.e. tol, the decrease factor ∆d and the in-

crease factor ∆i, are empirically set in dependence to the specific needs.

Details concerning the choice of the classification criteria of outliers for real data

quantification are described in Section 2.3. Therefore, the specific choice of the

parameters tol, ∆d and ∆i, the results of the setting procedure for the differ-

ent datasets and the impact of the precision prior of the model parameters on

estimation are described in Section 4.2 and 5.3.

2.1.2 Weighted Non-linear Least Squares Method

Non-linear least squares problems arise when fitting a parametrized function,

which is non-linear in parameters, to a set of N measured data points by min-

imizing the sum of the weighted square errors between the function and the

measured data points. In general, the weights value might be arbitrary. However,

when the variance of the measurement error is known, setting weights as the re-

ciprocal of it is highly recommended. Consequently, smaller weights correspond

to noisier measurements. Hence, the objective function is:

WRSS =

N
∑

i=1

r2i
σ2

i

=

N
∑

i=1

(yi − gi(p))
2

σ2

i

, (2.35)

where yi is the ith measured data point, g represents the function which is non-

linear in the parameters, p, and σi is the standard deviation of the measurement

error correspondent to ith sample. Introducing the covariance matrix of the mea-

surement error, Σv, the objective function can be written in the matrix form as

follow:

WRSS = ‖r2‖
Σ

−1
v

= rTΣ−1

v r = (y−G(p))TΣ−1

v (y−G(p)) (2.36)

and

p̂ = argminp{(y−G(p))TΣ−1

v (y−G(p))}, (2.37)
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where p̂ is the correct estimated parameters vector. Since only in the case of

linearity of the models the problem become analytically tractable, the estimations

shown in this work need a numerical approach, e.g., the Levenberg-Marquardt

(LM) method.

2.1.2.1 Implementation

Each result concerning the WNLLS estimations presented in the following sections

is obtained using the MATLAB
R© (2012a) (The MathWorks Inc., Natick, MA,

USA) function lsqnonlin, in which are implemented and alternatively used ei-

ther LM method [14] or, by default, Trust-Region-Reflective (TRR) optimization

approach [15]. A limitation of LM method is that it does not handle bound con-

straints. However, all model parameters estimated in this work have to satisfy,

among them, the non-negativity constraint. For this reason TRR optimisation

approach is adopted.

2.2 Compartmental Models and Quantification

In this section two different compartmental models used in this study to quantify

the kinetic of the different tracers are described. In addition to this, there are

some aspect of implementation that cannot be neglected, in particular in the

matter of features of Variational Bayesian inference.

(a) 2TCM (b) 2TCM-1K

Figure 2.1: Compartmental models used to quantify the kinetics of the different

tracers
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2.2.1 The 2TCM

For both [11C](R)-rolipram and [11C]WAY100635 datasets the optimal model to

describe the kinetic in the brain is the 2-tissue compartmental model (2TCM)

[17, 20]. As shown in Figure 2.1, the model includes an arterial plasma fictitious

compartment, CP , and two tissue compartments: CNS, which represents the non-

displaceable component, and CS, which describes the specific binding. The kinetic

of the radioligands is described by the following first-order differential equations:










˙CNS(t) = K1CP (t)− (k2 + k3)CNS(t) + k4CS(t) CNS(0) = 0

ĊS(t) = k3CNS(t)− k4CS(t) CS(0) = 0,

(2.38)

where K1 ([ml/cm3/min]), k2 ([min−1]), k3 ([min−1]) and k4 ([min−1]) are the

micro-parameters that respectively represent the rate constants for tracer trans-

port from plasma to tissue and back and from the non-displaceable to the specific

compartment and back [17]. Furthermore, the measurement equation in a given

volume is:

Cmeasured(t) = (1− Vb)[CNS(t) + CS(t)] + VbCb(t), (2.39)

where Vb is a unitless quantity that represents the fraction of blood volume and Cb

is the concentration of the radioligand in the whole blood including metabolites

([kBq·ml−1]). The estimated measurement of concentration, Cmeasured, can also

be written as in [20]:

Cmeasured(t) = (1− Vb)
(

α1e
β1t + α2e

β2t
)

⊗ CP + VbCb, (2.40)

with

β1,2 =
(k2 + k3 + k4)∓

√

(k2 + k3 + k4)2 − 4k2k4
2

; (2.41)

α1 =
K1(β1 − k3 − k4)

β1 − β2
; (2.42)

α2 =
K1(k3 − k4 − β2)

β1 − β2
. (2.43)

In practice, the principal macro-parameter of interest is the total volume of dis-

tribution VT ([ml/cm3]), which is calculated as:

VT =
K1

k2

(

1 +
k3
k4

)

. (2.44)
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2.2.2 The 2TCM-1K

[11C]PBR28 binding is quantified using the 2TCM-1K and an arterial input func-

tion i.e. a 2-tissue compartment model with irreversible vascular trapping. The

introduction of an irreversible tracer retention compartment is based on biological

knowledge. The model is described by the following equations:



























˙CNS(t) = K1CP (t)− (k2 + k3)CNS(t) + k4CS(t) CNS(0) = 0

ĊS(t) = k3CNS(t)− k4CS(t) CS(0) = 0

ĊV (t) = KiCP (t) CV (0) = 0,

(2.45)

where the Ki ([min−1]) is the rate constant for tracer binding to the vascular

receptors. The measurement equation is:

Cmeasured(t) = (1− Vb)[CNS(t) + CS(t)] + Vb(Cb(t) + CV (t)) (2.46)

where the Ki ([min−1]) is the rate constant for tracer binding to the vascular

receptors The macro-parameter of interest, VT is still calculated according to

equation 2.44.

2.3 Performances Evaluation andMethods Com-

parison on Real Data

The comparison between VB and the reference method, WNLLS, is made in terms

of outliers percentage and the computational time required. For both [11C](R)-

rolipram and [11C]WAY100635 the outliers classification criteria is based on esti-

mation coefficient of variation of VT (threshold = 100%), when outliers percent-

age in other sections is also called outliers1, and, only for VB, difference between

estimated and prior parameters (threshold = 5%), when outliers percentage in

other sections is also called outliers2. For [11C]PBR28 data are also excluded

estimations where CVKi > 250%. In addition to that, VT estimates > 10 always

represents non-physiological values and are not included in results.
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The correlation among the results obtained with the two quantification methods

is evaluated with a regression analysis: the slope (m) and the intercept (q) of the

fitted regression line with WNLLS as indipendent variable and VB as dependent

variable is calculated for each subject. Pearson’s R2 values are reported as the

correlation measure. Finally the percentage Mean Relative Difference, MRD, is

calculated between the estimates obtained with WNLLS and VB for each subject:

MRD =
1

N

N
∑

i=1

1

M

∑M

j=1
V i,j
TV B

− 1

M

∑M

j=1
V i,j
TWNLLS

1

M

∑M

j=1
V i,j
TWNLLS

· 100, (2.47)

where N is the number of ROIs, M is the number of voxels of the ROI, V i,j
TV B

is

the value of the VB estimate in the j th voxel for the ith ROI and V i,j
TWNLLS

is the

value of the WNLLS estimate in the j th voxel for the ith ROI.

2.4 Simulation Studies

Since there aren’t any results available on the theme, before starting the analysis

of the PET datasets with the VB approach, simulation studies are necessary.

The aims of these investigations mainly concern the choice of the convergence

algorithm and the performance of the quantification methods. For these purposes,

in particular, two simulation studies are proposed:

• Sensitivity test;

• Study on simulated PET data.

2.4.1 Sensitivity Test

The sensitivity test shows the performance of the method depending on parame-

ters prior setting. In details, fixing a prior precision vector, Λ0, and varying some

of the elements of the mean prior vector of the forward model, m0, over an estab-

lished values range, it’s possible to test the behaviour of the chosen algorithm.

Another aim of this test is the comparison between the Standard Trials (Algo-

rithm 1) and the Levenberg-Marquardt approach in order to chose the best of
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them for this study. A thousand noisy simulated curves were generated from a

noisless curve described as:

Ctrue = α1e
−β1 + α2e

−β2, (2.48)

where α1 = 10, β1 = 0.1, α2 = 4 and β2 = 0.01, which are also define as true

priors, and applying each time a noise vector of pseudo-random values drawn

from the standard normal distribution N(0, 1). The log-spaced 25-element prior

ranges, concerning only β1 and β2 parameters, are:

β1 = 0.01÷ 1; (2.49)

β2 = 0.001÷ 0.1. (2.50)

Thence, the prior matrix can be defined as:

















(β2(1), β1(1)) (β2(1), β1(2)) . . . (β2(1), β1(25))

(β2(2), β1(1)) . . . . . . . . .

. . . . . . . . . . . .

(β2(25), β1(1)) . . . . . . (β2(25), β1(25))

















For every couple of priors of this matrix (β2(i), β1(j)) is made an estimation.

Finally, The results obtained for each simulated curve are then averaged. The

classification criteria for the successful estimation is based on percentage bias

(threshold = 5%) between p̂i,j and ptrue, which is the estimated parameters

vector deduced from true priors.

2.4.2 Study on Simulated PET Data

The second simulation study includes a comparison between VB and WNLLS

in which the performances of quantification methods are investigated in terms

of outliers. The simulated voxels are generated as described in Figure 2.2. Mea-

surement data voxels are taken from a cluster of a [11C](R)-rolipram dataset. In

details, the frontal pole cluster is chosen as representative for the results. The out-

liers exclusion is based on estimation coefficients of variation (threshold = 100%)
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and bias between p̂ and ptrue (threshold = 5%). The behaviour of the VB al-

gorithm chosen from previous simulation study is tested in dependence of noise

standard deviation, where SD = 1÷ 5.

Figure 2.2: Stimulated voxels generation





Chapter 3

Datasets

The datasets analysed in this study include three different widely used radi-

oligands: [11C](R)-rolipram, [11C]WAY100635 and 11C]PBR28. Due to distinct

quantification methods required for the analysis of these tracers, these datasets

was chosen to evaluate the Variatioal Bayes performances.

3.1 [11C](R)-rolipram

[11C](R)-rolipram is a PET radioligand for the in vivo quantification of phos-

phodiesterase type IV (PDE4), whereof the Rolipram is a selective inhibitor.

The phosphodiesterase IV is an enzyme that metabolizes 3′,5′-cyclic adenosine

monophosphate. The cyclic adenosine monophosphate (cAMP) cascade plays an

important role in major depressive disorder (MDD) and it is a potential target

for drugs development [17].

Image Acquisition Data were obtained from 3 healthy subject and were made

available by National Institute of Mental Health. PET data were acquired using

Advance tomograph (GE Medical System, Waukesha, WI, USA) after a bolus

injection of 695±152 MBq (range, 727 to 756) of [11C](R)-rolipram. An 8-minute

68Ge transmission scan was obtained before injection of the tracer for attenuation

correction. Dynamic image data were acquired in 3D mode for 90 minutes. The

23
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dynamic scan comprised 27 frames (6 × 30, then 30 × 6, 2 × 120 and 16 × 300

seconds). PET data were reconstructed on a 128×128 matrix with a pixel size of

2.0×2.2×4.25 mm3. Informations about protocol approval and informed consent

are described in [17].

Blood Data Acquisition Blood samples were drawn during the acquisition

from the radial artery at 15-second intervals until 150 seconds, followed by 3 ml

samples at 3, 4, 6, 8, 10, 15, 20, 30, 40 and 50 minutes, 4.5 ml at 60, 75 an

90 minutes. The decay-corrected whole blood activity, the fraction of unchanged

radioligand in plasma and the plasma and whole blood ratio were calculated as

previously described [18, 19].

ROIs definition Each subject underwent a high resolution 3D T1-weighted

MRI scan. These MRI acquisitions were used, by adopting a maximum proba-

bility brain atlas, to derive the anatomic information necessary to define the 58

ROIs. The 9 regions chosen as significant for the results are: frontal pole, tha-

lamus, caudate nucleus, putamen, pallidum, brainstem, hippocampus, amygdala

and cerebellum.

3.2 [11C]WAY100635

[11C]WAY100635, is an high affinity radioligand and selective serotonin 5-hydroxytryptamine-

1A (5HT1A) receptor antagonist suitable for quantitative determination of 5HT1A

receptors in the human brain [20]. This receptors are of interest in the patho-

physiology of several neuropsychiatric disorders, such as anxiety, depression and

schizophrenia [21].

Image Acquisition A dataset of 3 healthy male subjects was made avail-

able from the Imperial College. Each subject underwent a 90-minute dynamic

PET study in a high-sensitivity ECAT EXACT3D (Siemens/CTI, Knoxville, TN,
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USA) scanner after a bolus injection of [11C]WAY100635. Acquisition was per-

formed in a list mode (event by event) and scans comprised 23 time frames of an

increasing duration (two variable length background frames, 3×5, 2×15, 4×60,

7 × 300 and 5 × 600 seconds). Data were reconstructed on a 128 × 128 matrix

with a pixel size of 2.0× 2.1× 2.4 mm3.

Blood Data Acquisition The radioactivity concentration in the blood was

measured continuously and in addition serial discrete blood samples were taken

at increasing time intervals throughout the study for the measurement of the ra-

dioactivity in the blood and plasma. Eight and nine of these samples respectively

were also used for the quantification of the fraction of radioactivity attributable

to the unmetabolized parent radiotracer, generating the metabolite-corrected ar-

terial plasma input function for all subjects.

ROIs definition Each subject also had high resolution 3D T1-weighted MRI

scans. These datasets were used only for ROIs definition, by using a maximum

probability brain atlas subdivided in 73 regions, among them only 9 is here con-

sidered for the results: hippocampus, amygdala, cerebellum, thalamus, brainstem,

putamen, caudate nucleus, pallidum, insula.

3.3 [11C]PBR28

[11C]PBR28 is a radioligand who targets the 18 kDa translocator protein (TSPO),

formerly known as the peripheral benzodiazepine receptor (PBR). This protein

is located on the outer mitochondrial membrane and is part of the mitochon-

drial permeability transition pore [22]. In particular, because TSPO is a putative

biomarker of inflammation, the use of 11C]PBR28 in brain PET data shows the

neuroinflammation. TSPO proteins are also localized in the endothelium of brain

vessels, such as venous sinuses and arteries. However, the impact of this compo-

nent on quantification has to be investigated [23].
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Image Acquisition The analysis of [11C]PBR28 has been limited to a dataset

of a single subject, that was made available by National Institute of Mental

Health, previously analysed in [23], as proof of concept. The PET data were

acquired on an Advance Nxi tomograph (GE Medical System, Waukesha, WI,

USA), after a bolus injection of 690± 13 MBq of [11C]PBR28. An 8-minute 68Ge

transmission scan of the brain was acquired for subsequent attenuation correction.

The dynamic scans comprised 33 frames (6 frames of 30 seconds each, then 3×60,

2×120, 22×300 seconds) for a 120 minutes experiment duration. PET data were

reconstructed on a 128 × 128 matrix with a pixel size of 2.0 × 2.0 × 4.25 mm3.

Informations concerning protocol approval and informed consent are included in

[23].

Blood Data Acquisition During the acquisition, blood samples (1.0 ml each)

were drawn from the radial artery at 15-second intervals until 150 seconds, fol-

lowed by 3 to 4.5 ml samples at 3, 4, 6, 8, 10, 15, 20, 30, 40, 50, 60, 75, 90,

120 minutes. The plasma time activity curve was corrected with the fraction of

uncharged radioligand, as previously described [19].

ROIs definition The chosen subject underwent 3 T clinical brain T1-weighted

MRI. These images were used to derive the anatomical information necessary to

define the 10 ROIs, similarly as done for previous tracers. The regions selected

to show the results are: frontal cortex, parietal cortex, striatum, temporal pole,

cingulum, insula, thalamus and cerebellum. In addition to these also white matter

is considered.

3.4 Measurement Error

The data are affected by a measurement error, v, which is assumed to be additive,

uncorrelated and from a Gaussian distribution with zero mean. The model of

measurements y is:

y = g(p) + v. (3.1)
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The corresponding covariance matrix is assumed to be diagonal with the variance

of the i -th element, V ar(Ci), define as ([24]):

V ar(Ci) = γ
C̄i

∆ti

, (3.2)

where Ci is the intensity of one reconstructed voxel C of ith frame, C̄i is the

average whole brain concentration in the ith frame and ∆ti the duration of the

same frame. As said before, the covariance matrix might be reasonably used to

calculate the weights. Furthermore, the proportionally constant γ is an unknown

scale factor and it is estimated a posteriori as in A. Bertoldo et al. (1998) for the

WNLLS estimation. For the VB inference, the utilisation of covariance matrix,

Σv, as weights matrix are described in Section 2.1.1.6 and γ must be inferred

according to noise precision hyper-parameter distribution. In particular, the mean

of the posterior gamma distribution is equal to s · c. Therefore, as can be deduced

from Equation 2.16, the scale factor can be calculated as:

γ =
1

sc
. (3.3)





Chapter 4

Results

4.1 Simulation Studies Results

4.1.1 Sensitivity Test Results

The sensitivity test described in Section 2.4.1 gives the results shown in the

following figure.

Performance of VB on Simulated Dataset: Impact of Prior Definition

(a) Standard Trials Method (b) Levenberg-Marquardt Method

Figure 4.1: Sensitivity test results. Comparison between standard trials (left) and

LM algorithm (right). Blue represents a failure in estimation, red shows a success

The standard trials (ST) shows great tolerance to priors definition. In most cases,

29
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it finds a successful estimation, even for high differences between true and tested

priors. In details, concerning borderline cases, both algorithms exhibit better

performance when priors are set to a smaller value than true. To note that, for

the model tested, LM has a higher percentage of failure. For this reason, ST is

hereon chosen as the convergence method.

4.1.2 Study on Simulated PET Data Results

The performances in terms of outliers percentage of VB, implemented using ST

algorithm, and WNLLS are compared for various level of noise variance. In partic-

ular, as shown in Figure 4.2, setting the noise standard deviation over a discrete

range (SD = 1÷ 5), the two approaches exhibit different performances.

Outliers Percentage for VB and WNLLS

Figure 4.2: Noise variance impact test: a comparison between VB and WNLLS

approach

At each noise variance level, VB exhibits better performance, i.e. smaller per-
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centage of outliers, on these simulated data. In particular, in adopting WNLLS

estimation method, the percentage of outliers constantly increases with the noise

variance. Differently, for VB approach, this percentage appears to be almost con-

stant (≃ 0.5%).

4.2 Impact of Precision Priors of the Model Pa-

rameters

The impact of model precision parameters prior on VB performance is shown in

the following figure, where the frontal pole region and the temporal pole region

are chosen as representative.

(a) Frontal Pole (b) Temporal Pole

Figure 4.3: Impact of precision priors of model parameters on VB performance.

Frontal pole (a) and temporal pole (b) ROIs are chosen as representative and

significant for the results

When CV gives the optimal solution, the VB estimations are almost always

successful (outliers percentage ≃ 0%). When the prior precision becomes too

small (i.e. when mean priors are too informative), or to high (i.e. when mean

priors are not enough informative) the percentage of outliers increases. Therefore,



32 4. RESULTS

comparing VB and WNLLS, the first method exhibit better performance for a

wide range of CV values, in which the true CV is obviously included. Results

shown in Figure 4.3 are assumed to be representative of all ROIs.

4.3 Real Data Results

4.3.1 [11C](R)-rolipram Results

interp. ratio = 560 VB WNLLS

ROI voxels out. [%] iter. c. time [min] out. [%] c. time [min]

Fr Pole 5980 0.05 14 2.97 29.13 3.62

Thal 1420 0.00 13 0.65 45.08 1.04

Caud 520 0.39 13 0.25 37.16 0.41

Put 821 0.49 14 0.40 38.37 0.61

Pall 271 0.74 13 0.12 39.11 0.19

Br Stem 1967 0.25 13 0.91 54.55 1.24

Hipp 781 0.38 13 0.37 44.17 0.47

Amyg 366 0.55 15 0.19 46.72 0.26

Cer 2918 0.21 14 1.45 64.87 1.76

Table 4.1: Performances table. Subject 25 taken from [11C](R)-rolipram dataset

The parametric maps of distribution volume VT , which is the macro-parameter

of interest, included in Figure 4.4, clearly show the difference between VB and

WNLLS. In details, for each subject, VB achieves successful estimations in ≃

100% of voxels. Differently, WNLLS finds a significant percentage of outliers (in

most cases > 25%). Also, VB appears to slightly underestimate VT in comparison

with WNLLS. Figure 4.5 shows the inter-subject regional values of VT obtained

with VB and WNLLS, with VB underestimation. Also MRD = −2.8% ± 0.5%

and the regression line (m = 1.2± 0.03), with a considerable correlation between

the methods (R2 = 0.77 ± 0.03), reports that result. Finally, Table 4.1 presents



4.3. REAL DATA RESULTS 33

the performances of the two methods for one representative subject.

[11C](R)-rolipram: Distribution Volume VT [ml/cm
3]

VB WNLLS

(a) Subject 25

(b) Subject 36

(c) Subject 42

Figure 4.4: Parametric maps (VT ) of one representative slice, for each quantifica-

tion method and for each subject. [11C](R)-rolipram datasets

The computation time is always in relationship with the interpolation ratio, which
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is equal to the ratio of length of time vector referred to Cp and Cb to length of

time vector relative to PET images acquisition. In fact, the interpolations required

during the quantification process significantly weights on computations, iteration

by iteration.

[11C](R)-rolipram

Figure 4.5: Inter-subject regional values of VT obtained with VB (red) and WN-

LLS (blue). The average estimated precision is expressed in terms of between-

subject SDs. The chosen representative ROI are: Fr Pole = Frontal Pole, Thel =

Thalamus, Caud = Caudate, Put = Putamen, Pall = Pallidum, Br Stem = Brain-

stem, Hipp = Hippocampus, Amyg = Amygdala, Cer = Cerebellum. [11C](R)-

rolipram datasets

Also the table demonstrates what previously said about outliers percentage. The

computation time required by VB is considerably shorter than that necessary for
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WNLLS estimation. On equal terms, at whole brain level and concerning same

previously introduced representative subject, the difference between methods is

clear: 39 minutes for VB, 52 minutes for WNLLS.

4.3.2 [11C]WAY100635 Results

Many results concerning [11C]WAY100635 datasets, such as the results of the

qualitative evaluation of the parametric maps included in Figure 4.6, are compa-

rable to those presented in previous section. For this reason, particular attention

is paid to the distinctive feature for these datasets.

interp. ratio = 356 VB WNLLS

ROI voxels out. [%] iter. c. time [min] out. [%] c. time [min]

Ins 3602 2.00 13 0.94 44.03 1.56

Thal 1865 3.64 13 0.5 78.98 0.64

Caud 1099 6.00 13 0.3 83.08 0.39

Put 1061 3.11 13 0.29 60.34 0.38

Pall 294 3.74 13 0.08 76.78 0.10

Br Stem 2911 4.98 13 0.79 82.58 1.04

Hipp 593 4.59 12 0.13 67.38 0.23

Amyg 352 4.55 12 0.09 65.45 0.15

Cer 16130 4.95 13 4.27 72.65 5.55

Table 4.2: Performances table. Subject 4028 taken from [11C]WAY100635 dataset

Inter-subject values of VT of representative chosen ROIs included in Figure 4.7

exhibit comparable results for the two estimation methods for small values of

VT . Differently, for higher values of VT , the difference between VB and WNLLS

increases.
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[11C]WAY100635: Distribution Volume VT [ml/cm
3]

VB WNLLS

(a) Subject 4028

(b) Subject 4088

(c) Subject 4104

Figure 4.6: Parametric maps (VT ) of one representative slice, for each quantifica-

tion method and for each subject. [11C]WAY100635 datasets

The [11C]WAY100635 measurements appear to be noisier than previous data. In

consequence of this, Table 4.2 reports VB results (with an outliers percentage
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< 6%) and WNLLS performance (that presents always a > 44% percentage of

outliers).

[11C]WAY100635

Figure 4.7: Inter-subject regional values of VT obtained with VB (red) and WN-

LLS (blue). The average estimated precision is expressed in terms of between-

subject SDs. The chosen representative ROI are: Ins = Insula, Thel = Thalamus,

Caud = Caudate, Put = Putamen, Pall = Pallidum, Br Stem = Brainstem,

Hipp = Hippocampus, Amyg = Amygdala, Cer = Cerebellum. [11C]WAY100635

datasets

However the methods have a very great agreement with MRD = 2.9 ± 2.2,

R2 = 0.91±0.02 and a regression line very similar to the bisector (m = 1.05±0.06,

q = −0.09 ± 0.06). Computation time is still significantly shorter for VB and,

at the whole brain level, it requires 34 minutes. 12 minutes less than WNLLS.
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Another important result is shown in Figure 4.8, where the average weighted

residuals are shown for both VB and WNLLS. VB presents on average zero-mean

weighted residuals, in according with the hypothesis in the error variance.

VB WNLLS

Figure 4.8: Average weighted residuals achieved from voxelwise quantification on

a representative ROI (left thalamus) with VB (left) and WNLLS (right)

4.3.3 [11C]PBR28 Results

[11C]PBR28: Distribution Volume VT [ml/cm
3]

VB WNLLS

Figure 4.9: Parametric maps (VT ) of one representative slice, for each quantifica-

tion method and for each subject. [11C]PBR28 datasets

The results shown in this section reveal a great variability for WNLLS perfor-

mance between ROIs. In details, this approach fails almost always in the white
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matter, which is a very noisy region. On the other side, the maps included in

Figure 4.9 exhibit almost constant and satisfying performances for VB.

[11C]PBR28

Figure 4.10: Subject regional values of VT obtained with VB (red) and WNLLS

(blue). The estimated precision is expressed in terms of SD. The chosen repre-

sentative ROI are: Fr Cort = Frontal Cortex, Par Cort = Parietal Cortex, Str =

Striatum, Temp Pole = Temporal Pole, Cing = Cingulate, Ins = Insula, The =

Thalamus, Cer = Cerebellum, WM = White Matter. [11C]PBR28 datasets

In Table 4.3 the computation time aren’t included because, differently from

2TCM model, the solution of the 2TCM-1K differential equations is numerically

achieved. As consequence of this, the computation time comparison is distorted
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and comparable to the WNLLS one. Thalamus region appears to be very difficult

to quantify. Indeed, WNLLS always fails and VB requires a number of iteration

notably greater than the average value. Nevertheless, VB percentage outliers is

still satisfying for this ROI. Differently, satisfactory performance is found only in

frontal cortex and insula region for WNLLS.

interp. ratio = 480 VB WNLLS

ROI voxels out. [%] iter. out. [%]

Fr Cort 22080 0.52 13 8.65

Par Cort 9223 6.12 12 39.65

Str 1904 0.11 14 29.04

Temp Pole 12681 1.81 14 27.39

Cing 3076 0.23 13 37.71

Ins 1421 0.42 14 15.41

Tha 847 2.72 19 100.00

Cer 9860 3.36 14 26.00

WM 133503 8.06 15 85.25

Table 4.3: Performances table concerning the subject taken from [11C]PBR28

dataset

White matter represents also the region where VB exhibits its worst performance

mainly because VT reaches non-physiological values (VT > 10). In the same region,

as shown in Figure 4.10, the greatest difference between VB and WNLLS quan-

tification is found. Therefore, lowest levels of estimation precision are especially

found in small and noisy, i.e. thalamus and white matter. If thalamus region, in

with WNLLS does not achieve any estimation, is excluded in comparing the two

quantification methods, MRD is very small (= 0.7%) and the regression line is
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similar to the bisector.





Chapter 5

Discussion

5.1 Sensitivity Test Discussion

As previously said, the performance of both ST and LM method is variable in

dependence to the particular quantification model [8]. Hence, before starting an

analysis on real data, a sensitivity test is highly recommended. In this work, the

best method for ensuring convergence appears to be the ST. Indeed, it shows so

great tolerance on priors definition that, in most cases, it achieves successful esti-

mation according to classification criteria described in Section 2.4.1. In analysing

real data, the priors m0 used for the voxelwise estimation in a particular ROI

are attained by WNLLS quantification on the related ROI TAC. However, these

priors rarely represent the best choice to achieve a satisfactory voxelwise estima-

tion. For this reason, the features here exhibited by ST are undoubtedly precious.

Thence, the convergence method adopted in this work is the ST.

5.2 Study on Simulated PET Data Discussion

The influence of noise level on estimation process can be deduced from both

simulated studies and real data analysis. First of all, as shown in Figure 4.2,

VB exhibits almost constant and satisfactory performance for all noise level here

tested on simulated voxels. However, a clear dependence between the signal to

43
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noise ratio (SNR) and the percentage of outliers on real data are expected for VB

as well. Indeed, different performances, in terms of outliers percentage, emerge

in analysing different datasets. In details, the estimations on [11C]WAY100635

data, which are the noisiest of the datasets analysed in this work, find higher

outliers percentages than those obtained on [11C](R)-rolipram datasets, on equal

quantification terms. In most cases, differently from WNLLS, VB find outliers

percentage smaller than 5%, even when the SNR became small. These perfor-

mances appears clear also for [11C]PBR28 data, which are quantified at the voxel

level using the 2TCM-1K model. In particular, the estimation on white matter

ROI, which is usually a very noisy region, is highly problematic for WNLLS and,

in reverse, successful for VB. In conclusion, the dependence between estimation

performance and noise level, which is less evident for VB, can be even problematic

for WNLLS and it can prevent the quantification process.

5.3 Impact of Prior Precision of Model Param-

eters

As previously said, the parameters used in the Algorithm 2, i.e. tol, the decrease

factor ∆d and the increase factor ∆i, can be empirically set in dependence to the

specific needs. For example, in this work the parameters can be set as tol = 3,

∆d = 0.025 and ∆i = 0.05, where the increase and the decrease factors are not

equal because the slopes of the different outlier curves shown in Figure 4.3 are

clearly distinct. Few iterations are usually required to achieve the CV value.

Therefore, for each tracer, the setting procedure can be done only on a repre-

sentative cluster. This process guarantees almost constant performance in the

whole brain and for all the different subjects of the dataset. In conclusion, the

approximated values of the coefficients of variation found for the datasets de-

scribed in Chapter 3 are respectively: CV = 40% for [11C](R)-rolipram datasets

and CV = 45% for [11C]WAY100635 and [11C]PBR28 data.
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5.4 Quantification Models Discussion

The discussion about the real data quantification must be done in dependence

to the different models described in Chapter 3. Particular attention is paid to

the 2TCM-1K because of its use on [11C]PBR28 dataset and the first attempt of

voxelwise quantification using this model.

5.4.1 The 2TCM Quantification Discussion

The 2TCM is used to quantify datasets relative to differently noisy radioligands.

[11C](R)-rolipram and [11C]WAY100635 are also characterized by different binding

affinity levels and targeting properties. Despite that and differently fromWNLLS,

VB method exhibit successful and promising performance at the voxel level for all

ROIs of the brain of all subjects. For all these reasons, satisfactory performance of

VB method are expected also for datasets concerning other radioligands quanti-

fied using 2TCM. Another important aspect must be discussed: the computation

time. Indeed, VB method achieves more reliable estimation than WNLLS in a

25% (or more) computational time shorter. The mean of MRD reports a small

difference between methods for both [11C](R)-rolipram and, with an higher SD,

[11C]WAY100635. The regression lines are always similar to the bisector with a

stronger correlation between methods when the binding affinity is higher, i.e. for

[11C]WAY100635. In any case, VB gives reliable estimation according to what

obtained with WNLLS.

5.4.2 The 2TCM-1K Quantification Discussion

The use of this model, which explicitly accounts for endothelial TSPO binding, is

fundamental for a precise and accurate quantification of [11C]PBR28 brain PET

data [23]. However, previous studies do not investigated this quantification at the

voxel level. The two estimation methods used in this work exhibit very different

behaviours. First of all, WNLLS shows so heterogeneous performance on different

ROIs that it completely fails on quantifying thalamus region, in which is observed
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the highest binding level, as it’s shown in Figure 4.10 and as it’s reported by

G. Rizzo et al. (2014). However a strict dependence between the binding level

and the WNLLS performance is not observed. A considerably correlation is here

observed (R2 = 80) with a regression line similar to the bisector. Also MRD

value reports a small difference between methods. On another side, the white

matter region represents an exception for both VB and WNNLS, as described

in Sections 5.2 and 4.3.3. The segmentation process classifies the white matter

voxels into a very numerous cluster that concerns also other anatomical regions.

As said before, the mean priors are given by a WNLLS estimation on the ROI

TAC and, in this case, they might not be sufficiently accurate. Thence, a more

specific segmentation might facilitate the quantification process on this ROI for

both methods. In any case, VB exhibits promising performance with a outliers

percentage, in most cases, smaller than 5%. Nevertheless, the quantification on

a single subject is not sufficient to evaluate a method, but the results shown in

this work represent a promising starting point.



Appendix A

Derivation of the Update

Equations

A.1 Forward Model Parameters

Equation 2.12 represents the condition of maximization of the objective function

F. In details that equation can be rewritten as:

logQ(θ|y) ∝

∫

LQ(φ|y)dφ, (A.1)

where

L = −
1

2
φ(y− g(θ))TΣ−1

v (y− g(θ)) +
N

2
logφ−

1

2
(θ −m0)

T

× Λ0(θ −m0)(c0 − 1) logφ−
1

s0
φ+ const {θ, φ}

(A.2)

is the log-posterior. The log of the multivariate normal distribution (MVN) of

the forward model parameters gives:

logQ(θ|y) = −
1

2
θTΛθ + θTΛm+ const {θ} . (A.3)
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Taking no notice of terms dependent to φ of the log posterior, also the second

term of A.1 can be rewritten as:
∫

LQ(φ|y)dφ =

∫
(

−
1

2
φ(y− g(θ))TΣ−1

v (y− g(θ))

)

×Ga(φ; s, c)dφ

+

∫
(

−
1

2
(θ −m0)

TΛ0(θ −m0)

)

×Ga(φ; s, c)dφ

+

∫

const {θ} ×Ga(φ; s, c)dφ

= −
1

2
(θ −m0)

TΛ0(θ −m0)

−
1

2
φ(y− g(θ))TΣ−1

v (y− g(θ))

∫

φGa(φ; s, c)dφ

+ const {θ}

= −
1

2
(θ −m0)

TΛ0(θ −m0)

−
1

2
scφ(y− g(θ))TΣ−1

v (y− g(θ)) + const {θ} .

(A.4)

Using the linearisation g(θ) ≈ g(m) + J(θ −m), where J is the Jacobian

Jj,k =
d(g(θ)j)

dθk
(A.5)

computed in θ = m:

y− g(θ) = y− (g(m) + J(θ −m)) = k− J(θ −m), (A.6)

where k = y− g(m). Proceeding with the calculus:
∫

LQ(φ|y)dφ = −
1

2
(θ −m0)

TΛ0(θ −m0)

−
1

2
scφ(y− g(θ))TΣ−1

v (y− g(θ)) + const {θ}

= −
1

2
(θTΛ0θ − θTm0 −mT

0Λ0θ)−
1

2
sc(−kTΣ−1

v Jθ

− θTJTΣ−1

v k+ θTJTΣ−1

v Jθ − θTJTΣ−1

v Jm

−mTJTΣ−1

v Jθ) + const {θ}

= −
1

2
θT(Λ0 + scJΣ−1

v J)θ −
1

2
θT(Λ0m0 + scJTΣ−1

v (k + Jm))

−
1

2
(Λ0m0 + scJTΣ−1

v (k+ Jm))Tθ.

(A.7)
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Comparing this solution with the second term in A.3 can be deduced the update

equations:

Λ = Λ0 + scJTΣ−1

v J; (A.8)

Λmnew = Λ0m0 + scJTΣ−1

v (k + Jmold). (A.9)

A.2 Noise Precision Parameters

In the same way as in the previous section, the noise precision hyper-parameters

can be inferred from equation:

logQ(φ|y) =

∫

LQ(θ|y)dθ. (A.10)

The log posterior is given by noise precision distribution:

logQ(φ|y) = (c− 1) logφ−
φ

s
+ constφ. (A.11)

Rewriting now the integral of the equation A.10 setting L as in A.2:

∫

LQ(θ|y)dθ =

∫
{

−
1

2
φ(y− g(θ))TΣ−1

v (y− g(θ)) +
N

2
log φ

}

Q(θ)dθ

+

∫
{

(c0 − 1) logφ−
1

s0
φ+ const {φ}

}

Q(θ)dθ

=

{(

N

2
+ c0 − 1

)

log φ−
1

s0
φ−

φ

2

}

×

∫

(y− g(θ))TΣ−1

v (y− g(θ))MV N(θ;m,Λ−1)dθ,

(A.12)

and using the linearisation as in A.6 this last integral can be written as:

=

∫

{

kTΣ−1

v k− 2(θ −m)TJTΣ−1

v k
}

MV N(θ;m,Λ−1)dθ

+

∫

(θ −m)TJTΣ−1

v J(θ −m)dθ

= kTΣ−1

v k + tr(Λ−1JTΣ−1

v J).

(A.13)

Hence integral in A.10 becomes

=

(

N

2
+ c0 − 1

)

logφ−
φ

s0
−

1

2
φ
{

kTΣ−1

v k+ tr(Λ−1JTΣ−1

v J)
}

(A.14)
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and the update equations are easily deduced:

c =
N

2
+ c0; (A.15)

1

s
=

1

s0
+

1

2
(kTΣ−1

v k + tr(Λ−1JTΣ−1

v J)). (A.16)



Appendix B

Levenberg-Marquardt Method

In the context of this work, the quantification method with whom the Varia-

tional Bayesian inference procedure is compared is the Weighted Nonlinear Least

Squares (WNLLS) approach, analyzed in Section ??. A standard technique pro-

posed by K. Levenbrg before (1944) and D. Marquardt then (1963) to solve

nonlinear least squares problems is the damped least squares method, better

known as the Levenberg-Marquardt method. This approach is a combination of

two minimization processes: the gradient descent method, in which the sum of

the squared errors is reduced by updating the parameters in the direction of the

greatest reduction of the least squares objective, and the Gauss-Newton method,

in which the sum of the squared errors is reduced by assuming the least squares

function as locally quadratic, and finding the minimum of the quadratic [12].

Thence, the L-M method acts more like a gradient descent method when the

parameters are far from their optimal estimation and, differently, plays more like

Gauss-Newton method when parameters are close to the optimal value. In details,

the L-M approach takes the G-N equation [8],

γnew = γold + H−1δ, (B.1)

and introduces the scalar, α, initialized to a small value as

γnew = γold + (H+ α · diag(H))−1 δ, (B.2)
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where H represents the Hessian matrix and δ is the increment from the ini-

tial value of the parameter. Availing of what obtained in the Appendix A, the

Levenberg-Marquardt method can be implemented in the VB on the update for

the means of the forward model parameters as follow:

mnew = mold + (Λ + α · diag(Λ))−1∆, (B.3)

where

∆ = (scJTΣ−1

e (k+ Jmold) + Λ0mold)− Λmold. (B.4)

Furthermore, α represents also the behaviour of the algorithm between the gradi-

ent descent update, when the scalar become large, and the G-N update, when it’s

small [12]. Therefore, in practice, if the convergence measure falls, i.e., F takes

a backward step, then an update according to B.3 is attempt with α = 0.01. If

it follows a reduction in the free energy then VB update proceed, otherwise α is

increased by a factor of 10 and the process repeted until F increases. Finally, if no

improvement in the convergence measure can be found, which mean that alpha

reaches a large value at which no significant change in m is called for and the

matrix to be inverted become diagonally dominant, then halt. The Levenberg-

Marquardt procedure in the Variational Bayesian inference context concerns only

the mean of the forward model parameter and the algorithm explained above

takes place of “update” procedure in the pseudocode of the Algorithm 1 [8]. The

stability of the method is guaranteed as long as the matrix to be inverted is not

ill conditioned [13].
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