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Abstract

The aim of this thesis is to give a presentation of Loop Quantum Gravity in its covariant form,
also known as spinfoam approach, and to present the basic mathematical tools to access the theory.
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Chapter 1

Introduction

1.1 Historical Overview

Quantum gravity is the search for a theory that aims to merge two well established theories of the
twenthieth century: General Relativity and Quantum Mechanics. The need for such a theory came
clear early, in lue of the fact that the gravitational field, being a field, was expected to be quantized.
Along the years, three main lines of research have been established:

• The covariant line of research is the attempt to build the theory as a quantum field theory
of the fluctuations of the metric over a flat Minkowski space, this approach eventually led to
string theory in the late eighties.

• The canonical line of research is the attempt to construct a quantum theory in which the
Hilbert space carries a representation of the operators corresponding to the full metric, or some
functions of the metric, without background metric to be fixed. The formal equations of the
quantum theory were then written down by Wheeler and DeWitt in the middle sixties, but
turned out to be too ill-defined. A well defined version of the same equations was successfully
found only in the late eighties, with loop quantum gravity.

• The sum over historiers line of research is the attempt to use some version of Feynman’s
functional integral quantization to define the theory, leading eventually to the spin foam ap-
proach.

In this introducion we focus solely on the last two approaches and we try to sketch the evoultion
of loop quantum gravity.
In the early thirties attempts are made in order to apply the quantization method of gauge theories to
the linearized Einstein field equations. Later in the decade, Bronstein realizes that field quantization
techniques must be generalized in such a way as to be applicable in the absence of a background
geometry, in sharp contrast to the approach used in quantum electrodynamics [1].
At the beginning of the fifties starts the development of the “flat space quantization” of the grav-
itational field. The idea is to quantize the small fluctations around the Minkowski metric, that is,
hµν = gµν − ηµν . This idea represents the birth of the covariant approach.
On the other hand, Bergmann starts its program of phase space quantization of non linear field theo-
ries and problems raised by systems with constraints are studied too [2]. The canonical approach to
quantum gravity is born.
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Later in the decade, Charles Misner introduces the “Feynman quantization of general relativity”
Z =

∫
exp(iS[g])dg [3], and so the three lines of research are established.

In 1959 Dirac has completely unraveled the canonical structure of GR [4], and two years later, Arnowit,
Deser and Misner complete the so-called ADM formulation of GR [5], namely its hamiltonian version
in appropriate variables, which greatly simplify the hamiltonian formulation and make its geometrical
reading transparent. Following the ADM methods, in 1962 Peres writes the Hamilton-Jacobi formu-
lation of GR [6]:

G2(qabqcd −
1

2
qacqbd)

δS(q)

δqac

δS(q)

δqbd
+ det(q)R[q] = 0 ,

which will lead to the Wheeler-DeWitt equation.
In 1967 Bryce DeWitt publishes the “Einstein-Schrödinger equation” [7]:(

(~G)2(qabqcd −
1

2
qacqbd)

δ

δqac

δ

δqbd
+ det(q)R[q]

)
Ψ(q) = 0 ,

which is known as the “Wheeler-DeWitt equation”. This equation comes with the so-called “problem
of time” in quantum gravity, because the time variable disappears. To be fair, the time coordinate
already disappears in the classical Hamilton-Jacobi form of GR, thus the fact that physical obsserv-
ables are coordinate independent is a genuine feature of any formulation of GR. But in the quantum
context there is no single spacetime, as there is no trajectory for a quantum particle, and the very
concepts of space and time become fuzzy.
In the seventies, Hawking announces the derivation of black hole radiation [8] and he states that a
Schwarzschild black hole of mass M emits thermal radiation at the temperature

T =
~c3

8πkGM
,

opening a new field of research in “black hole thermodynamics” and leading to the understanding of
the statistical origin of the black hole entropy, which, for a Schwarzschild black hole, reads

SBH =
1

4

c3

~G
A ,

where A is the area of the black hole surface. Later in the decade, the Hawking radiation is rederived
in a number of ways, strongly reinforcing its credibility.
In 1986 the connection formulation of GR is developed by Abhay Ashtekar [9](as opposed to the met-
ric formulation), semplifying the canonical analysis in the sense that the constraints take a simpler
form. Furthermore, the theory now takes the form of a SU(2)-theory, since the structure constants
associated to the Poisson structure of the Ashtekar variables coincide with the structure constants of
the su(2) algebra. In addition to this, there is a geometric interpretation of the “Ashtekar electric
field”, namely, the field conjugate to the Ashtekar connection, in terms of area elements.
In 1988, Ted Jacobson and Lee Smolin find loop-like solutions to the Wheeler-DeWitt equation for-
mulated in the connection formulation [10], that is, they present a large class of exact solutions to the
hamiltonian constraint written in terms of Wilson loops. Based on these results, and on knot theory,
the canonical approach gets new blood, and “loop quantum gravity” gets started. Let’s birefly summa-
rize this important step and explain where the word “loop” in LQG comes from. The Jacobson-Smolin
solutions are not physical states of quantum gravity, since they fail to satisfy the second equation of
canonical quantum gravity (the first being the Wheeler-DeWitt equation), which demands states to
be invariant under 3d diffeomorphisms. Then, soon afterwards, Smolin starts to think that since loops
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up to diffeomorphisms mean knots, knots could play a role in quantum gravity. The solutions are
written in terms of Wilson loops

ψ(γ) = Tr
[
Pe

∫
γ A
]
ψ(A)dA , (1.1)

moving from the connection representation to the loop representation means considering the “loop
transform”

ψγ [A] = Tr
[
Pe

∫
γ A
]
, (1.2)

where dA is a diffeomorphism-invariant measure on the space of connections (constructed by Ashtekar
and Lewandowski). This transform maps the ψ(A) representation of quantum states in A space to the
representation ψ(γ) of quantum states in γ space, that is, in loop space. The advantages of moving
to the loop basis are: ψ(γ) depending only on the knot class of the loop γ solve the diffeomorphism
constraint, that is, there is one independent solution for each knot; all such states where the loop
does not self-intersect are exact solutions of all equations of quantum gravity (the partial result ob-
tained by Smolin was that not self-intersecting loops gave rise to solution of the Hamiltonin constraint
only). Later on, Jorge Pullin realizes that all solutions without nodes (intersections between loops)
correspond to 3-geometries with zero volume, meaning therefore that nodes are essential to describe
physical quantum geometry [11]. In 1995 the spin network orthonormal basis on the Hilbert space of
loop quantum gravity is found [12], and a main main physical result is obtained: the computation of
the eigenvalues of area and volume.
In 1996 the Bekenstein-Hawking black hole entropy is computed within loop quantum gravity [13], as
well as within string theory.

1.1.1 The Problems Addressed

There are three major theoretical and conceptual problems that the theory addresses:

• Quantum geometry: What is a physical “quantum space”? That is, what is the mathematics
that describes the quantum spacetime metric? LQG predicts that any measured physical area
must turn out to be quantized and given by the spectrum (4.58).

• Ultraviolet divergences of quantum field theory: This is a major open problem in non-
gravitational contexts. But it is a problem physically related to quantum gravity because the
ultraviolet divergences appear in the calculations as effects of ultra-short trans-Planckian modes
of the field. If physical space has a quantum discreteness at small scale, these divergences should
disappear. In LQG the ultraviolet divergences are not present since there is a natural cut-off
due to the discretized spectrum of the area, nevertheless infrared divergences could possibly
arise by considering greater values of the spins, these are called “spikes”. Interestingly, when
one considers the theory with the presence of a cosmological constant, it can be shown that this
provides an upper limit for the greatest value of a spin, thus resolving the problem of infrared
divergences.

• General covariant quantum field theory: Loop gravity “takes seriously” general relativity,
and explores the possibility that the symmetry on which general relativity is based (general
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covariance) holds beyond the classical domain. Since standard quantum field theory is defined
on a metric manifold, this means that the problem is to find a radical generalization of quantum
field theory, consistent with full general covariance and with the physical absence of a back-
ground metric structure. In other words, loop gravity, before being a quantum theory of general
relativity, is the attempt to define a general covariant quantum field theory.

1.1.2 Open Problems

• Consistency: With the cosmological constant, the transition amplitudes are finite at all orders
and the classical limit of each converges to the truncation of classical limit of GR on a finite
discretization of spacetime; in turn, these converge to classical GR when the discretization is
refined. This gives a coherent approximation scheme. However the approximation scheme may
go wrong if the quantum part of the corrections that one obtains refining the discretization is
large. These can be called “radiative corrections”, since they are somewhat similar to standard
QFT radiative corrections: possibly large quantum effects effects that appear taking the next
order in the approximation. It is not sufficient for these radiative corrections to be finite, for the
approximation to be viable, they must also be small. Since the theory includes a large number,
the ratio of the cosmological constant scale over the Planck scale (or over the observation scale),
these radiative corrections a priori could be large.

• Completeness: The matter sector of the theory has not been sufficiently developed. In addition
to this, the q-deformed version of the theory, that is, based on the quantum group SU(2)q (a one-
parameter deformation of the representations of SU(2)), is very little developed. This version is
utilized in order to introduce the cosmological constant but it’s not clear if one can obtain the
results of the Λ = 0 theory.
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Chapter 2

Classical General Relativity

This chapter is devoted to a formulation of classical General Relativity more suitable for the
discretization and the consequent quantization.

2.1 Tetrad-Connection formalism

As already carefully explained in the Appendix, which we refer to, it is possible to express the
Einstein-Hilbert action in terms of the (co)tetrads and a Lorentz connection. Briefly we recall the
main formulas. Tetrads are such that:

gµν(x) = eIµ(x)eJν (x)ηIJ (2.1)

The metric is not affected if the tetrads undergo a local SO(3, 1) transformation; the Lorentz
connection associated to this gauge invariance is a one-form with values in the Lie algebra sl(2,C),
therefore it is antisymmetric:

ωIJµ = −ωJIµ (2.2)

The curvature of the connection is given by:

F IJ = dωIJ + ωIK ∧ ωKJ , (2.3)

if the connection is torsionless then it can be shown to be unique, namely, the spin connection, or the
Levi-Civita connection. In terms of these objects the Einstein-Hilbert action reads:

S[e] =
1

2

∫
eI ∧ eJ ∧ FKLεIJKL. (2.4)

In order to rewrite the action in a more succint form we introduce the Hodge dual in the Minkowski
space, that is, F ?IJ := ?FIJ := 1

2εIJKLF
KL. Furthermore the 2-form ΣIJ := eI ∧ eJ is called the

Plebanski 2-form, and, suppressing contracted indices we get:

S[e] =

∫
e ∧ e ∧ F ? . (2.5)
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We point out a difference between the Einstein-Hilbert action written in terms of the metric and the
action written in terms of tetrads. In fact, if we write both in terms of tetrads we see that:

SEH [e] =
1

2

∫
|dete|R[e]d4x ,

ST [e] =
1

2

∫
(dete)R[e]d4x .

(2.6)

The difference then amounts by a sign factor s := sgn(dete). Therefore, when moving to the quantum
case, where one takes the path-integral over tetrads, this sign translates to two different terms, namely:

e−
i
~SEH [g] and e+ i

~SEH [g] . (2.7)

These two terms will reappear when dealing with the classical limit.
We can regard (2.5) also as a function of a tetrad and a Lorentz connection as independent fields,
namely:

S[e, ω] =

∫
e ∧ e ∧ F [ω]? , (2.8)

performing the variation with respect to the connection gives the torsionless condition and the varia-
tion with respect to the tetrad yelds Einstein equations. This polynomial action is referred to as the
“tetrad-Palatini” action. It is possible to add another term respecting the given symmetries, this term
has the form

∫
e ∧ e ∧ F :=

∫
eI ∧ eJ ∧ F IJ . If we add this term with a coupling constant 1/γ (γ is

known as the “Barbero-Immirzi constant”) we get the following action:

S[e, ω] =

∫
e ∧ e ∧ F ? +

1

γ

∫
e ∧ e ∧ F . (2.9)

It can be shown that the second term has no effect on the equation of motion, because it vanishes
when the connection is torsionless. Seeking a more compact form we observe that:

S[e, ω] =

∫
e ∧ e ∧

(
F ? +

1

γ
F

)
=

∫
e ∧ e ∧

(
?+

1

γ

)
F

=

∫ (
? (e ∧ e) +

1

γ
e ∧ e

)
∧ F ,

(2.10)

renaming the term in parentheses by B :=
(
? (e ∧ e) + 1

γ e ∧ e
)

we finally get:

S[e, ω] =

∫
B ∧ F . (2.11)

From this equation we can read out that, on a t = 0 boundary, B is the derivative of the action
with respect to ∂ω/∂t, therefore B is the momentum conjugate to the connection. More precisely,
reintroducing the dimensionful constant 1

8πG in front of the action and going to a time gauge where
the restriction of ? (e ∧ e) on the boundary vanishes, the momentum is the 2-form on the boundary
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with values on sl (2,C), that is:

Π =
1

8γπG
B . (2.12)

2.2 Linear Simplicity Constraint

We consider now a spacelike boundary surface Σ, this is characterized by a vector which is normal
to all the tangent vectors in Σ, we can write it as:

nI = εIJKLe
J
µe
K
ν e

L
ρ

∂xµ

∂σ1

∂xν

∂σ2

∂xρ

∂σ3
, (2.13)

where {σi}, i = 1, 2, 3 are the coordinates of the point σ ∈ Σ and xµ(σ) indicates the embedding of
the boundary Σ into spacetime. By choosing a specific nI we can focus on a fixed-time surface where
nI = (1, 0, 0, 0). By doing so, the pull-back on Σ of the 2-form B can be decomposed into its electric
KI = nJB

IJ and magnetic LI = nJ (?B)IJ parts. Since B is antisymmetric, LI and KI do not have
components normal to Σ, i.e. nIK

I = nIL
I = 0 and so they are three-dimensional vectors in Σ. In

the gauge where nI = (1, 0, 0, 0) they are given by:

Ki = Bi0, Li =
1

2
εijkB

jk . (2.14)

Now, from the definition of B we have that:

nIB
IJ = nI

(
? (e ∧ e) +

1

γ
e ∧ e

)IJ
= nI

(
εIJKLe

K ∧ eL +
1

γ
eI ∧ eJ

)
, (2.15)

on the boundary we have nIe
I |Σ = 0, therefore

nIB
IJ = nI (?e ∧ e)IJ . (2.16)

Analogously:

nI (B?)IJ = nI

((
1

γ
e ∧ e

)?)IJ
=

1

γ
nI (?e ∧ e)IJ =

1

γ
nIB

IJ . (2.17)

In conclusion, by definition of KI and LI we can notice that:

−→
K = γ

−→
L . (2.18)

This equation is called “linear symplicity constraint” and turns out to be a fundamental feature of
covariant loop quantum gravity, indeed, it completely determines the dynamics of the theory.
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2.3 Hamilton Function and Boundary Term

In writing the action on a compact region of spacetime we have to add a boundary term if we want
to have a well-defined Hamilton function. In General Relativty, Gibbons and Hawkings have shown
that the boundary term is given by:

SEH boundary =

∫
Σ
kabqab

√
qd3σ , (2.19)

where kab is the extrinsic curvature of the boundary, qab is the three-metric induced by the embed-
ding, q its determinant and σ are coordinates on the boundary. In the case of pure gravity without
cosmological constant the Ricci scalar vanishes on the solution of the Einstein equations, therefore the
bulk action vanishes and the Hamilton function is given by the boundary term:

SEH [q] =

∫
Σ
kabqab

√
qd3σ . (2.20)

Notice that the Hamilton function is a functional of the boundary 3-metric, while the action is a func-
tional of the 4-metric. Indeed, the Hamilton function represents a non-trivial functional to compute,
because the extrinsic curvature kab[q] is determined by the bulk solution singled out by the boundary
intrinsic geometry, therefore it is going to be non-local. Knowing the general dependence of kab from
q is equivalent to knowing the general solution of the Einstein equations.

2.4 ADM variables and Ashtekar variables

In order to approach a Hamiltonian formulation of General Relativity we introduce the so-called
ADM variables and later on the Ashtekar variables.
The ADM variables are obtained by defining the following fields:

qab = gab ,

Na = ga0 ,

N = (−g00)−
1
2 ,

(2.21)

where a, b = 1, 2, 3. N and Na are called Lapse and Shift functions, qab is the three-metric. In these
variables the line element reads

ds2 = −(N2 −NaN
a)dt2 + 2Nadx

adt+ qabdx
adxb , (2.22)

and the extrinsic curvature of a t = constant surface is given by

kab =
1

2N
(q̇ab −D(aNb)) (2.23)

where the dot indicates the derivative with respect to t and Da is the covariant derivative of the
three-metric. The action in terms of this variables takes the form

S[N,
−→
N, q] =

∫
dt

∫
d3x
√
qN
(
kabk

ab − k2 +R[q]
)
, (2.24)
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where k = kaa and
√
q =
√

detq. From (2.24) one can read out the Lagrangian and the conjugate vari-
ables, thus obtaining an action written in hamiltonian form with the presence of constraints. Moving
to the Ashtekar variables accounts for a simplification of these constraints and a better comprehension
of the geometrical picture. Essentially, instead of dealing with tetrads on spacetime, we can introduce
tetrads on each t = constant surface. By doing so we have:

qab(x) = eia(x)ejb(x)δij , (2.25)

where qab is the 3-metric and i, j = 1, 2, 3 are flat indices. We can define also the triad version of the
extrinsic curvature by:

kai e
i
b := kab . (2.26)

In this way, we can consider the following connection:

Aia = Γia[e] + βkia , (2.27)

where Γia[e] is the torsionless spin connection of the triad and β is an arbitrary parameter, and the
so-called “Ashtekar electric field”:

Eai (x) =
1

2
εijkε

abcejbe
k
c , (2.28)

that is, the inverse of the triad multiplied by its determinant. What’s remarkable about these two
fields is that they satisfy the following Poisson brackets:{

Aia(x) , Aia(y)
}

= 0 (2.29)

and {
Aia(x) , Ebj (y)

}
= βδbaδ

i
jδ

3(x, y) . (2.30)

Therefore Aia and Eai are canonically conjugate variables. This simplifies the canonical analysis, i.e.
the expressions of the constraints are easier to read. From a geometrical point of view there is an
important feature which has a counterpart also in the quantum theory. In fact, the field Eai has an
interpretation in terms of the area element: choosing a two-surface S in a t = constant hypersurface
we have that:

AS =

∫
S
d2σ
√
Eai naE

b
inb . (2.31)

Then, by introducing the 2-form

Ei =
1

2
εabcE

aidxbdxc , (2.32)

we can write
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AS =

∫
S
|E| . (2.33)

Now, in the limit where the surface is small, the quantity

EiS =

∫
S
Ei =

1

2
εijk

∫
S
ej ∧ ek , (2.34)

is a vector normal to the surface, whose length is the area of the surface. Therefore we can say that
the momentum conjugate to the connection represents an area element, this fact still holds in the
quantum case.

14



Chapter 3

Discretization

3.1 Lattice QCD and Regge Calculus

Let’s consider a SU(2) Yang-Mills theory in four dimensions. The Yang-Mills field is known to be
the connection whose components are Aiµ(x), where i is an index in the Lie algebra su(2). Explicitly
we can write the connection as:

A(x) = Aiµ(x)τidx
µ , (3.1)

where τi provide a basis of su(2). In order to discretize such a theory Wilson suggests to fix a cubic
lattice with N vertices connected by E edges, this of course breaks the Lorentz invariance of the theory,
recovered only in a suitable limit. We call a the length of the lattice edges, this is determined by the
flat metric. Then we associate to each oriented edge a group variable Ue ∈ SU(2) in the following way:

Ue = Pe
∫
e A , (3.2)

where Pe stands for the path-ordered exponential (see Appendix). The idea is then to use a discrete
set of group variables in place of the continuous variable A. Starting from this group variables instead
of the algebra variables it is possible to calculate physical quantities in the limit where N → ∞ and
a→ 0. Under a gauge transformation the group elements Ue transform “homogeneously”, that is:

Ue → λseUeλ
−1
te , (3.3)

where se and te are the initial and final vertices of the edge e (source and target), λv is an element
of SU(2). Therefore a gauge transformation can be thought as an element of SU(2)V , where V is the
number of vertices. Gauge transformations take place at each vertex.
From eq. (3.3) it is straightforward to see that if we take the ordered product of four group elements
around a face f

Uf = Ue1Ue2Ue3Ue4 (3.4)

and we consider its trace, we get a gauge invariant quantity. In addition to this Uf is a discrete version
of the connection, since it is the holonomy of the connection on the loop given by a square. Wilson
has shown that the discrete action
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S = β
∑
f

TrUf + c.c. (3.5)

approximates the continuous action in the limit where a is small.

The Hamiltonian formulation of the discretized theory is particularly important, since it is going
to have a counterpart in the quantum realm. We focus on a boundary, say spacelike, the hamiltonian
coordinates are given by the group elements Ul on the boundary edges, called “links”. The canonical
configuration space is therefore SU(2)L, where L is the number of links. The corresponding phase
space is the cotangent space T ∗SU(2)L, the Poisson structure of this space is carefully explained in
the Appendix. We denote the conjugate momentum of Ul by Lil ∈ su(2). The Poisson brackets are
then given by:

{Ul , Ul′} = 0 ,{
Ul , L

i
l′
}

= δll′Ulτ
i ,{

Lil , L
j
l′

}
= δll′ε

ij
k L

k
l ,

(3.6)

(no summation over l). The Hilbert space of the discrete theory can therefore be represented by states
ψ (Ul), i.e. functions on the configuration space. The space of these functions carries a natural scalar
product which is invariant under the gauge tranformations on the boundary, this is given by the SU(2)
Haar measure:

(φ , ψ) =

∫
SU(2)

dUlφ (Ul)ψ (Ul) . (3.7)

The boundary gauge transformations act at the nodes of the boundary and transform the states as
follows

ψ (Ul)→ ψ
(
λslUlλ

−1
tl

)
, λn ∈ SU(2). (3.8)

We move on and introduce Regge calculus now. Tullio Regge introduced a discretization of General
Relativity called “Regge calculus”. We can summarize it as follows: a d-simplex is a generalization of
a triangle or a tetrahedron to arbitrary dimensions, more precisely, it is the convex hull of its d + 1
vertices. These vertices are connected by d(d + 1)/2 line segments whose length Ls fully specify the
shape of the simplex, i.e. its geometry.
A Regge space (M ,Ls) in d dimensions is a d-dimensional metric space obtained by gluing d-simplices
along matching boundary (d− 1)-simplices. For example, in two dimensions we can obtain a surface
by gluing triangles, bounded by segments, which meet at points. In three dimensions we chop space
into tetrahedra, bounded by triangles, in turn bounded by segments, which meet at points. In four
dimensions we chop spacetime into 4-simplices, bounded by tetrahedra, in turn bounded by triangles,
in turn bounded by segments, which meet at points. These structures are called triangulations. We
can legitimately ask how curvature arises in a Regge space, since all these geometrical objects are flat.
We consider the simplest case, that is d = 2 dimensions: it is easy to see that if we glue triangles
around a common vertex, curvature arises in terms of a deficit angle, that is, the sum of all the angles
insisting on a given vertex does not add up to 2π. In formulas:

δP (Ls) = 2π −
∑
t

θt (Ls) (3.9)
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This fact admits a generalization to higher dimensions: gluing flat d-simplices can generate curvature
on the (d − 2)-simplices (sometimes called “hinges”). Now, a Riemannian manifold (M , g) can be
approximated arbitrarly well by a Regge manifold, in fact, for any (M , g) and any ε we can find a
(M ,Ls) with sufficiently many simplices such that, for any two points x, y ∈ M , the difference be-
tween the Riemannian distance and the Regge distance is smaller than ε. In order to dicretize General
Relativity we need a discretized version of the action, the Regge action is defined as:

SM (Ls) =
∑
h

Ah (Ls) δ (Ls) , (3.10)

where the sum is over the hinges and Ah is the (d − 2)-volume of the hinge h. Remarkably, this
action converges to the Einstein-Hilbert action when the Regge manifold (M ,Ls) converges to the
Riemann manifold (M , g). The Regge action can be also rewritten as a sum over the d-simplices v of
the triangulation: from (3.9) and (3.10) we have that

SM (Ls) = 2π
∑
h

Ah (Ls)−
∑
v

Sv (Ls) , (3.11)

where the action of a d-simplex is

Sv (Ls) =
∑
h

Ah (Ls) θh (Ls) . (3.12)

3.2 Discretization in 3D

The discretization used in LQG differs from the Regge one, because essentially lengths are con-
strained by inequalities (think about a triangle for instance), and it’s difficult to implement a configu-
ration space with such constraints. It is preferable then to consider also the “dual” of a triangulation,
in three dimensions this is simply obtained by replacing each tetrahedra by a vertex sitting at its
center, each face (a triangle) by an edge coming off the vertex and puncturing the triangle. Therefore,
adjacent tetrahedra are replaced by vertices connected by edges. The dual of the triangulation ∆ is
denoted as ∆∗ and the set of vertices, edges and faces is called a “2-complex” (denoted with C). Thus,
we are going to discretize classical GR on a 2-complex. One word about the boundary: if we con-
sider a compact region of spacetime, the discretization ∆ will induce a discretization of the boundary,
formed by the boundary segments and the boundary triangles of ∆. Moving to ∆∗ we realize that
the boundary is formed now by the end points of the edges dual to the boundary triangles, which are
called nodes, and the boundary of the faces dual to the boundary segments, together they form the
graph Γ of the boundary. The boundary graph, by construction, is at the same time the boundary of
the 2-complex and the dual of the boundary of the triangulation:

Γ = ∂ (∆∗) = (∂∆)∗ . (3.13)

Now, in 3 dimensions the gravitational field is described by a tetrad field ei = eiadx
a and a SO(3)

connection ωij = ωiajdx
a, where a, b, .. = 1, 2, 3 are spacetime indices and i, j = 1, 2, 3 are internal
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Figure 3.1: A 2-complex

indices. We discretize the connection as in Yang-Mills theory, that is, by assigning a SU(2) element
Ue to each edge e of the 2-complex. We discretize the triad by associating a vector Lis of R3 to each
segment s of the original triangulation:

ω −→ Ue = Pexp

∫
e
ω ∈ SU(2)

e −→ Lis =

∫
s
ei ∈ R3 ,

(3.14)

in the LQG jargon Ue is called the “holonomy” (of the connection along the edge). The Einstein-
Hilbert action can be approximated in terms of these objects. We have seen that under a gauge
transformation the holonomy transforms “well”, that is, as

Ue 7→ RseUeR
−1
te (3.15)

whereas the algebra values Li apparently don’t follow this rule. Nevertheless, it is possible to give a
gauge equivalent definition of Li in such a way that it transforms as the holonomy, as shown in [22].
The discretization approximates well the continuum theory when the curvature is small at the scale of
the triangulation and the segments are straight lines. We notice that the norm of vector Lis associated
with the segment s is the length of the segment, i.e.

L2
s = |

−→
Ls|2 . (3.16)

Since each face f of the 2-complex corresponds to a segment s = sf of the triangulation, we can view
Lis as associated with the face: Lif = Lisf . Furthermore, since R3 equipped with the usual cross product
is isomorphic (as a Lie algebra) to su(2) we can express Lif as an element of su(2), that is:

Lf = Lif τi . (3.17)
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Summarizing, the variables of the discretized theory are:

• An SU(2) group element Ue for each edge e of the 2-complex;
• An su(2) algebra element Lf for each face f of the 2-complex.

In the four-dimensional case the approach will be the same, group and algebra variables associated to
edges and faces.
Having discretized space, we need a discrete version of the action. The idea is to mimic the Regge
action, knowing that in three dimensions curvature arises around segments and so the volume of the
hinge is the length of the segment. The deficit angle is replaced by the curvature written in terms of
the holonomy, as already remarked earlier we have curvature around a segment if the group element
Uf = Ue1 · · ·Uen is different from the identity (e1, . . . , en being the edges bounding the face f). In this
way, we can write the discretized action as follows:

S =
1

8πG

∑
f

Tr (LfUf ) , (3.18)

Performing the variation of the action with respect to Lf and setting it to zero gives Uf = 1, that is,
flatness, which is equivalent to the continuous Einstein equations in three dimensions.

Figure 3.2: Boundary graph

We specify on the boundary now. On the boundary there are two kinds of variables: the group
elements Ul of the boundary edges, namely, the links, and the algebra elements Ls of the boundary
segment s. Notice that there is precisely one boundary segment s per each link l, and the two cross.
We can therefore rename Ls as Ll whenever l is the link crossing the boundary segment s. In this way,
the boundary variables are formed by a pair (Ll , Ul) ∈ su(2)× SU(2) for each link l of the graph Γ.
Therefore on the boundary we have a pair of conjugate variables at each link, the Poisson brackets
are the ones already written in (3.6), only with a factor 8πG on the RHS coming from the action.
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3.3 Discretization in 4D

Moving to the four-dimensional case we consider a triangulation ∆ made of 4-simplices, the corre-
sponding dual triangulation ∆∗ has the following properties: a vertex is dual to a 4-simplex, an edge
is dual to a tetrahedron, a face is dual to a triangle (for instance a face in the (x, y) plane is dual to a
triangle in the (z, t) plane). Therefore, we have that a face of the 2-complex that touches the boundary
is dual to a boundary triangle, this in turn is dual to a boundary link l. Geometrically, this link is
the intersection of the face with the boundary. Thus, a boundary link l is obviously a boundary edge
(by definition), but is also associated with a face f touching the boundary. From these considerations
follows that we discretize the connection and the triad as

ω −→ Ue = Pexp

∫
e
ω ∈ SL(2,C)

e −→ Bf =

∫
tf

B ∈ sl(2,C) ,

(3.19)

where B =
(

(e ∧ e)∗ + 1
γ (e ∧ e)

)
is the 2-form defined in the action, and tf is the triangle dual to the

face f .
The variables of the discretized theory are then:

• a group element Ue for each edge e of the 2-complex;
• an algebra element Bf for each face f of the 2-complex.

Pretty much the same as seen in the three-dimensional case. Therefore we call Ul the group ele-
ments associated with the boundary edges l, that is, the links of the boundary graph Γ, and Bl are
the elements of a face bounded by the link l. There is a remarkable geometric interpretation of Bl:
consider a triangle lying on the boundary, choose the tetrad field in the time gauge, that is, e0 = dt
and ei = eiadx

a, the pull-back of (e ∧ e)∗ on the boundary vanishes and we are left with

Lif =
1

2γ
εijk

∫
tf

ej ∧ ek . (3.20)

In the approximation in which the metric is constant on the triangle it follows then that the norm of
Lif is proportional to the area of the triangle:

|Lf | =
1

γ
Atf . (3.21)

Here we see an analogy between the vector
−→
Lf and the vector

−→
ES defined in terms of the Ashtekar

variables.
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Chapter 4

Quantization

4.1 3D Theory

In order to define the quantum theory two features are needed:

• a boundary Hilbert space that describes the quantum states of the boundary geometry;
• the transition amplitude for these boundary states; in the small ~ limit the transition amplitude
must reproduce the exponential of the Hamilton function.

4.1.1 Hilbert Space

To construct the Hilbert space and the transition amplitude we proceed as follows: first, we dis-
cretize the classical theory; then, we study the quantum theory that corresponds to the discretized
theory; finally we discuss the continuum limit.
We recall from the previous chapter that the discrete boundary geometry is described by a pair of
variables for each link of the graph Γ: (Ul , Ll) ∈ SU(2)× su(2). We are seeking the quantum version
of these phase space variables, i.e. we are looking for operators Ul and Ll satisfying the quantum
version of the Poisson brackets seen earlier:[

Ul , L
i
l′
]

= i (8π~G) δll′Ulτ
i (4.1)

For this purpose we consider, as the Hilbert space, the space of square integrable functions on SU(2)L:

HΓ = L2

[
SU(2)L

]
. (4.2)

States are therefore wavefunctions ψ(Ul) of L group elements Ul. The scalar product compatible with
the SU(2) structure is given by the group-invariant measure, that is, the Haar measure:

〈φ|ψ〉 =

∫
SU(2)L

dUlφ (Ul)ψ (Ul) . (4.3)

By doing so, Ul can be seen simply as a multiplicative operator acting as Ul′ (ψ(Ul)) = ψ (Ul′Ul).
Furthermore, as showed in the Appendix, on the Lie group SU(2) it is defined a left-invariant vector
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field, whose components are:

(
J iψ

)
:= −i d

dt
ψ
(
Uetτi

)
|t=0 . (4.4)

Then, to get the correct operator satysfing (4.1) it is sufficient to scale the left-invariant vector field
with the appropriate dimensionful factor:

Lil := (8π~G) J il . (4.5)

One important consequence is that length is quantized. In fact, we recall that Ls = |
−→
Lf |, with f being

the face dual to the segment s. This means that on the boundary we have Ll = |
−→
Ll| where l is the link

crossing the boundary segment s. Therefore, since
−→
Jl is the generator of SU(2), |

−→
Jl |2 is the SU(2)

Casimir, its eigenvalues are j(j + 1), j being an half-integer. Then we get the following spectrum for
the operator Ll:

Ljl = 8π~G
√
jl(jl + 1) , (4.6)

for half-integers jl.
We go on now with the definition of the boundary Hilbert space. Since the theory must be invariant
under SU(2) gauge transformations (taking place at nodes), we have to take that into account. Then,
the gauge-invariant states must satisfy

ψ (Ul) = ψ
(
ΛslUlΛ

−1
tl

)
, Λn ∈ SU(2) . (4.7)

We can write equivalently

−→
Cnψ = 0 (4.8)

for every node n of the boundary graph, where
−→
Cn is the generator of SU(2) transformations at the

node n, i.e. :

−→
Cn =

−→
Ll1 +

−→
Ll2 +

−→
Ll3 = 0 ; (4.9)

where l1, l2, l3 are the three links emerging from the node n. This relation is called gauge constraint.
From a geometrical standpoint the interpretation of this equation is straightforward: l1, l2, l3 are three
links that cross three segments which in turn bound a triangle, then, the condition (4.9) can be read
as the closure condition satisfied by every triangle (since Lli represents the length of the segment si).
It is worth noting that a similar result was obtained by Roger Penrose in 1971 [21], in his “spin-

geometry theorem”. Penrose observed that if we consider the operators
−→
L l, which are not gauge

invariant, we can define a gauge invariant operator, called “Penrose metric operator”, by

Gll′ =
−→
L l ·
−→
L l′ , (4.10)

where l and l′ share the same source. The Casimir operators of SU(2) are then given by

A2
l =
−→
L l ·
−→
L l . (4.11)
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The theorem states that the equations (4.10), (4.11) and (4.9) (which generalizes to a node with ar-
bitrary valence), are sufficient to guarantee the existence of a flat polyhedron, such that the area of
its faces is Al and where Gll′ is given by Gll′ = AlAl′ cos θll′ , θll′ being the angle between the normals
to the faces l and l′. More precisley, there exists a 3× 3 metric tensor gab, a, b = 1, 2, 3 and normal to
the faces −→n l, such that

Gll′ = gabn
a
l n

b
l′ (4.12)

and the length of these normals is equal to the area of the face. In conclusion, the algebraic structure
of the momentum operators in HΓ determine the existence of a metric at each node and therefore
endows each quantum of space with a geometry. It is curious that these results reappered more than
20 years later in LQG.
Proceeding with the construction of the boundary Hilbert space, we consider the subspace of HΓ where
(4.7) is verified, which is a proper subspace, we call it KΓ and write it as

KΓ = L2

[
SU(2)L/SU(2)N

]
Γ
. (4.13)

Clearly L indicates the number of links, N is the number of nodes and the subscript Γ denotes the
fact that the pattern of the SU(2)N transformations is dictated by the structure of the graph Γ.
Let’s study the structure of KΓ. On this Hilbert space the length operators Ll are gauge-invariant,
furthermore, they form a complete commuting set. This means that a basis of KΓ is given by the
normalized eigenvectors of these operators, which we indicate as |jl〉. An element of this basis is
therefore determined by assigning a spin jl to each link l of the graph. A graph with a spin assigned
to each link is called a “spin network”. The spin network states |jl〉 form a basis of KΓ, this is called
a spin-network basis and spans the quantum states of geometry.
More concretely, we can make use of the Peter-Weyl theorem to get a more intuitive picture of what’s
going on. In fact, we know that the Wigner matrices Dj

mn provide an orthogonal basis for the spin-j
representation, that is: ∫

dUDj′

m′n′(U)Dj
mn(U) =

1

dj
δjj
′
δmm′δnn′ , (4.14)

where dj = 2j+1 is the dimension of the j representation and dU is the SU(2) Haar measure. In other
words, the Hilbert space L2 [SU(2)] can be decomposed into a sum of finite dimensional subspaces
of spin j, spanned by the basis states formed by the matrix elements of the Wigner matrices Dj(U).
This matrix is a map from the Hilbert space Hj to itself, therefore we can see Dj(U) as an element of
Hj ⊗H∗j . Since we know that Hj ∼= H∗j , for notational convenience we omit the asterisk. All together
this reads as

L2 [SU(2)] =
⊕
j

(Hj ⊗Hj) . (4.15)

Having L links it is straightforward to consider the following:

L2

[
SU(2)L

]
= ⊗l [⊕j (Hj ⊗Hj)] = ⊕jl ⊗l (Hjl ⊗Hjl) . (4.16)

The two Hilbert spaces associated with a link can be seen as belonging to the two ends of the link,
because each transforms according to the gauge transformation at one end. In order to see what’s
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going on a node we can regroup the Hilbert spaces Hj in such a way that

L2

[
SU(2)L

]
= ⊕jl ⊗n

(
Hj ⊗Hj′ ⊗Hj′′

)
, (4.17)

where j, j′, j′′ are the spins coming out from the node n. Next, we want the space of gauge-invariant
states, thus we should restrict to the invariant part of the spaces transforming at the same node, that is:

L2

[
SU(2)L/SU(2)N

]
= ⊕jl ⊗n InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3) . (4.18)

From SU(2) representation theory it is known that InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3) does not exist unless
the sum of three spins is an integer and the three spins satisfy the triangular inequality:

|j1 − j2| < j3 < j1 + j2 . (4.19)

If this condition holds then the invariant space is one-dimensional:

InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3) = C . (4.20)

Therefore

L2

[
SU(2)L/SU(2)N

]
= ⊕jlC (4.21)

where the sum is restricted to the jl that satisfy the triangular inequalities. Since spins are associated
to the lengths of the sides of a triangle, and these are known to satisfy the triangular inequality, the
resemblance with the geometrical picture holds nicely.
Then, a generic quantum state in loop quantum gravity is a superposition of spin-network states:

|ψ〉 =
∑
jl

Cjl |jl〉 . (4.22)

Summarizing, the spin network states |jl〉:

• are an eigenbasis of all lengths operators;
• span the gauge-invariant Hilbert space;
• have a simple geometric interpretation: they just say how long the boundary links are.

Next, we would like to write the spin-network states |jl〉 in the ψ (Ul) representation, that is, com-
pute the spin-network wavefunctions:

ψjl (Ul) = 〈Ul|jl〉 . (4.23)

This can be done explicitly by solving the eigenvalue equation for the length operators Ll

Llψjl (Ul) = Ljlψjl (Ul) . (4.24)

It is possible to write a generic state ψ(U) ∈ L2[SU(2)] as a linear combination in the basis provided
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by the Wigner matrices, as follows:

ψ(U) =
∑
jmn

CjmnDj
mn(U) . (4.25)

Therefore, in our case, a state ψ (Ul) ∈ L2[SU(2)L] can be written as

ψ (Ul) =
∑

ji,mi,ni

Cj1···jLm1···mLn1···nLD
j1
m1n1

(Ul1) · · ·DjL
mLnL

(UlL) , (4.26)

where i = 1, . . . , L. A state invariant under a SU(2) transformation must be invariant if we act with
a transformation Λn taking place at the node n. This in turn acts on the three group elements of the
three links that meet at the node. Since the Wigner matrices are representation matrices, the gauge
transformation acts on the three corresponding indices, for this reason we have that, for the state to
be invariant, Cj1···jLm1···mLn1···nL must be invariant when acted upon by a group transformation on
the three indices corresponding to the same node. From representation theory it is known that, up to
normalization, it exists only one invariant tensor with three indices in three SU(2) representations, it
is called the Wigner 3j-symbol and is denoted as

ιm1m2m3 =

(
j1 j2 j3
m1 m2 m3

)
. (4.27)

In this way, we can express any invariant state in the triple tensor product of representations of SU(2)
as

ιm1m2m3 =
∑

m1m2m3

(
j1 j2 j3
m1 m2 m3

)
|j1,m1〉 ⊗ |j2,m2〉 ⊗ |j3,m3〉 . (4.28)

Going on, a gauge-invariant state must then have the form

ψ (Ul) =
∑
j1···jL

Cj1···jLι
m1m2m3
1 · · · ιmL−2mL−1mL

N Dj1
m1n1

(Ul1) · · ·DjL
mLnL

(UlL) (4.29)

where all the indices are contracted between the intertwiner ι and the Wigner matrices D. Don’t
let confuse yourself if you don’t see any n-indices contracted, because the pattern of contraction is
dictated by the structure of the graph (and so, broadly speaking, m’s and n’s are interchangeable, it
is just the notation of Wigner matrices that keeps them different).
Seeking a more compact form we write a generic gauge-invariant state as

ψ (Ul) =
∑
jl

Cjlψjl (Ul) , (4.30)

where

ψjl (Ul) = ιm1m2m3
1 · · · ιmL−2mL−1mL

N Dj1
m1n1

(Ul1) · · ·DjL
mLnL

(UlL) (4.31)

are the orthogonal states labeled by a spin associated with each link. These are the spin-network
wavefunctions. We can write them more compactly as

〈Ul|jl〉 = ψjl (Ul) =
⊗

n

ιn ·
⊗
l

Djl (Ul) . (4.32)
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4.1.2 Transition Amplitude

The next goal is to write down the transition amplitude of the three-dimensional theory. The
transition amplitude is a function of the boundary states, therefore we assume that a triangulation ∆
is fixed and we consider a boundary, which means considering the boundary graph Γ = (∂∆)∗. We
denote the transition amplitude expressed in terms of the “coordinates” as W∆ (Ul) = 〈W∆|Ul〉 and
the transition amplitude in terms of the “momenta” as W∆ (jl) = 〈W∆|jl〉.
Notice that the transition matrix between the two basis is given precisely by the spin-network states.
To compute the transition amplitude W∆ of the theory discretized on the 2-complex, dual to ∆, we
use the Feynman path integral. The amplitude is given by the integral over all classical configurations
weighted by the exponential of the (discretized) classical action:

W∆ (Ul) = N
∫
dUe

∫
dLfe

i
8π~G

∑
f Tr[UfLf ] , (4.33)

where N is a normalization factor. Reabsorbing factors on the overall constant N and performing the
integral over the momenta we obtain

W∆ (Ul) = N
∫
dUe

∏
f

δ (Uf ) . (4.34)

To compute this integral, we expand the delta function over the group in representations using

δ(U) =
∑
j

djTrD(j)(U) , (4.35)

where dj = 2j + 1 is the dimension of the spin-j representation. Therefore (4.34) turns out to be

W∆ (Ul) = N
∫
dUe

∏
f

∑
j

djTrDj(Uf )


= N

∑
f

(∏
f

djf

)∫
dUe

∏
f

Tr
(
Djf (U1f ) · · ·Djf (Unf )

)
,

(4.36)

where Uf = U1f · · ·Unf . Now, if we focus our attention on one edge in particular, we notice that an
edge bounds precisely three faces (because an edge is dual to a triangle, which is bounded by three
segments, and segments are dual to faces). Therefore each dUe integral is of the form∫

dUD
jl1
m1n1(U)D

jl2
m2n2(U)D

jl3
m3n3(U) , (4.37)

but, since the Haar measure is invariant on both sides, the result must be invariant in both set of
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indices. As we have seen before, there is only one such object, the Wigner 3j-symbol, then∫
dUD

jl1
m1n1(U)D

jl2
m2n2(U)D

jl3
m3n3(U) = ιm1m2m3ιn1n2n3

=

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n3

)
,

(4.38)

where, again, we emphasize that the m and n indices are dictated by the structure of the graph
Γ. Thus, what we obtain in the end is nothing but 3j-symbols contracted among themselves. More
precisley, we observe that each edge produce two 3j-symbols which we can view as located at the
two ends of the edge, since their indices are contracted at the end (on a vertex). At each vertex
there are four edges, therefore four 3j-symbols contracted among themselves. The contraction must
be SU(2)-invariant, so we are looking for an object which involves four 3j-symbols and is invariant
under a SU(2) transformation, it turns out it exists and it is called the Wigner 6j-symbol:{
j1 j2 j3
j4 j5 j6

}
:=

∑
ma,na

6∏
a=1

gmana

(
j1 j2 j3
m1 m2 m3

)(
j1 j4 j5
n1 m4 m3

)(
j3 j4 j6
n2 n4 m6

)(
j3 j5 j6
n3 n5 n6

)
,

(4.39)

where

gmn =
√

2j + 1

(
j j 0
m n 0

)
= δm,−n(−1)j−m . (4.40)

After integrating over all internal edge-group variables, the group variables of the boundary are left.
We can integrate these as well contracting with a boundary spin network state, obtaining [14]

W∆(jl) = N∆

∑
jf

∏
f

(−1)jf djf
∏
v

(−1)Jv {6j} , (4.41)

where the sum is over the association of a spin to each face, respecting the triangular inequalitites at
all edges, Jv =

∑6
a=1 ja, and ja are the spin of the faces adjacent to the vertex v (a vertex of the

2-complex is adjacent to six faces).

We can see the connection with general relativity in the classical limit (the continuum limit will
be discussed in the four-dimensional case, which is more interesting). If we consider a single tetrahe-
dron whose sides have length La = ja+1/2, it is possible to show [15] that, in the large j limit we have

{6j} ∼
j→∞

1√
12πV

cos
(
S +

π

4

)
. (4.42)

Thus, by using the well known relation eiα = cosα+ isinα we get the following

{6j} ∼
j→∞

1

2
√
−12iπV

eiS +
1

2
√

12iπV
e−iS . (4.43)

We see therefore that two terms with opposite phase enter here, this is precisely the discussion we
were addressing when dealing with the tetrad action.
If we consider only large spins we can disregard quantum discreteness and the sum over the spins
is approximated by an integral over lengths in a Regge geometry. This is a discretization of a path
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integral over geometries of the exponential of the Einstein-Hilbert action. Therefore (4.38) is a con-
crete implementation of the path-integral “sum over geometries” formal definition of quantum gravity:

Z ∼
∫
D[g]e

i
~
∫ √
−gR . (4.44)

The next discussion addresses a topic that will be generalised to the four-dimensional case and it
is particularly relevant. Consider a triangulation formed by a single tetrahedron τ , the boundary
graph has again the shape of a tetrahedron, since we have four vertices obtained as the end points of
the four edges puncturing the four faces of the original tetrahedron. The amplitude is then a function
of the variables of the links of the graph. Let’s label with a, b = 1, 2, 3, 4 the nodes of the graph and
denote with Uab = U−1

ba the boundary group elements. The transition amplitude is then a function
W (Uab). Notice that we have already constructed the 2-complex, which consists of the four edges
puncturing the four faces and of the boundary links, therefore it is made of six faces (obtained by
connecting the vertex sitting inside τ with the six boundary links). Using (4.34) and dropping the
normalization we get:

W (Uab) =

∫
dUa

∏
ab

δ
(
UaUabU

−1
b

)
. (4.45)

Once this integrals are performed we obtain:

W (Uab) = δ (U12U23U31) δ (U13U34U41) δ (U23U34U42) (4.46)

Notice that each sequence of Uab inside the deltas corresponds to an independent closed loop in the
boundary graph. The interpretation of this amplitude is therefore immediate: the amplitude forces
the connection to be flat on the boundary (by the very definition of the delta). More precisely, it is
the three-dimensional connection which is flat, not the two-dimensional one living on the boundary.
We can think of it as having a spacetime reference frame on each face that can be parallel transported
along the boundary in such a way that any closed loop gives unity. In other words, W (Uab) is just
the gauge-invariant version of

∏
ab δ (Uab).

Notice in particularly that:

〈W |ψ〉 =

∫
dUabW (Uab)ψ (Uab) =

∫
dUaψ

(
UaU

−1
b

)
, (4.47)

from which we read that W projects on the flat connections, averaged over the gauge orbits.
To achieve the important result we are aiming for we would like to see if everything is still consistent,
that is, we know that the same amplitude in the spin representation is given by:

W (jab) =

{
j1 j2 j3
j4 j5 j6

}
, (4.48)

therefore, we expect to obtain the same result by considering

W (jab) =

∫
dUabψjab (Uab)W (Uab) . (4.49)

Thus, by inserting the definitions we get

28



W (jab) =

∫
dUab

∫
dUa

∏
ab

δ
(
UaUabU

−1
b

)
⊗a ιa ·

∏
ab

Djab (Uab) . (4.50)

Performing the integral we obtain

W (jab) =

∫
dUa

∏
ab

⊗aιa ·
∏
ab

Djab (Ua)D
jab
(
U−1
b

)
. (4.51)

It is possible to show that the overall result of this integral is:

W (jab) = Tr [⊗aιa] , (4.52)

which coincides precisely with the 6j-symbol (since it is the invariant contraction of four 3j-symbols).
This result tells us that the 6j-symbol can be thought as the Fourier transform of the gauge-invariant
delta functions on flat connections, in the Hilbert space associated with the tetrahedral graph. This
can be written in the notation

W (jab) = ψjab (1) , (4.53)

or, by using the projector PSU(2) on the SU(2) invariant part of a function, the vertex amplitude can
be written as

〈ψv|Wv〉 =
(
PSU(2)ψv

)
(1) , (4.54)

where ψv is a state in the boundary of a vertex.

We can summarize the properties of the amplitude by pointing out the following features:

1. Superposition principle: this is the basic principle of quantum mechanics, the amplitude is
given by the sum of elemetary amplitudes, that is, by a Feynman’s sum over the possible paths σ:

〈W |ψ〉 =
∑
σ

W (σ) . (4.55)

2. Locality: the elementary amplitudes can be seen as products of amplitudes associated with space-
time points (in QFT the product is expressed as the exponential of an integral on spacetime):

W (σ) ∼
∏
v

Wv . (4.56)

3. Local euclidean invariance: the 6j-symbol can be written as the projection on the SU(2)-
invariant part of the state on the boundary graph of the vertex, i.e.

Wv =
(
PSU(2)ψv

)
(1) . (4.57)

These properties will be found also in the 4-dimensional theory.
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4.2 4D Theory

Following the same line of reasoning of the previous section and recalling the results obtained in
the four-dimensional discretization we are ready to face the four-dimenisonal quantization.

4.2.1 Hilbert Space

The boundary Hilbert space we are interested in is obtained in the same manner of the three-
dimensional one: the variables Bl ∈ sl(2,C) and Ul ∈ SL(2,C) become operators in the quantum
theory, the states are given by ψ(Ul), functions on SL(2,C)L and the operator Bl ∈ sl(2,C) is realized
as the generator of SL(2,C) transformations. We recall that B on the boundary is split into its elec-

tric and magnetic parts, and these are constrained by
−→
K = γ

−→
L , therefore we expect this condition

continues to hold, at least in the classical limit. Keeping this constraint in the quantum case has
crucial consequences, it completley determines the dynamics of LQG.
Furthermore, we recall from eq. (3.21) that |Lf | = 1

γAtf and this, together with eq (4.6), which now
reads

Ljl = 8π~Gγ
√
jl(jl + 1) , (4.58)

suggests that the scale of LQG is given by L2
loop = 8π~Gγ. Then it can be stated, that, since the value

of the Barbero-Immirzi constant γ is of order unity (γ ∼ 0.274067 is the value fixed by the Bekenstein-
Hawking entropy) the scale of LQG is of the same order of the Planck scale (L2

Planck = ~G).
To begin with, we are interested in irreducible unitary representations of SL(2,C), these are labeled
by a positive real number p and a non-negative half-integer k. The Hilbert space V (p,k) of the (p, k)
representation decomposes into irreducibles representations of SU(2) ⊂ SL(2,C) as follows:

V (p,k) =

∞⊕
j=k

Hj , (4.59)

where Hj is the 2j + 1-dimensional space that carries the spin j irreducible representation of SU(2).
Therefore, we can choose a basis of states |p, k; j,m〉, with j = k, k + 1, . . . and m = −j, . . . , j. The
quantum numbers (p, k) are related to the two Casimir operators of SL(2,C) by

|
−→
K |2 − |

−→
L |2 = p2 − k2 + 1 ,

−→
K ·
−→
L = pk ,

(4.60)

where j and m are the quantum numbers of |
−→
L |2 and Lz respectively. Now, taking into account the

linear simplicity constraint for large quantum numbers means that

|
−→
K |2 − |

−→
L |2 =

(
γ2 − 1

)
|
−→
L |2 ,

−→
K ·
−→
L = γ|

−→
L |2 ,

(4.61)

and so, by means of (4.59) we get

p2 − k2 + 1 =
(
γ2 − 1

)
j(j + 1) ,

pk = γj(j + 1) .
(4.62)
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In the large quantum numbers limit we then obtain

p2 − k2 + 1 =
(
γ2 − 1

)
j2 ,

pk = γj2 ,
(4.63)

which is solved by

p = γk ,

k = j .
(4.64)

The first of these two equations is a restriction on the set of unitary representations, whereas the
second one picks out a subspace within each representation (the lowest one).
Thus, the states that satisfy these relations have the form

|p.k; j,m〉 = |γj, j; j,m〉 . (4.65)

Clearly these states are in one-to-one correspondence with the states in the representations of SU(2).
It is legit then to introduce a map Yγ defined by

Yγ : Hj −→ V (p=γj, k=j)

|j;m〉 7−→ |γj, j; j,m〉 ,
(4.66)

and all the vectors in the image of this map satisfy the linear simplicity constraint, in the sense that

〈Yγψ|
−→
K − γ

−→
L |Yγφ〉 = 0 , (4.67)

holds in the large j limit. For this reason, we assume that the states of the four-dimensional theory
are constructed from the states |γj, j; j,m〉 alone.
The map Yγ can be extended to a map from functions over SU(2) to functions over SL(2,C), namely

Yγ : L2[SU(2)] −→ F [SL(2,C)]

ψ(h) =
∑
jmn

cjmnD
(j)
mn(h) 7−→ ψ(g) =

∑
jmn

cjmnD
(γj,j)
mn (g) , (4.68)

This is the way to map SU(2) spin-networks into SL(2,C) spin-networks.
The physical states of quantum gravity are thus, essentially, SU(2) spin-networks. This fact is con-
sistent with the classical theory expressed in terms of the Ashtekar variables, which form the same
kinematical phase space of a SU(2) Yang-Mills theory.
Following the same line of reasoning of the three-dimensional case, we would like to find the gauge-
invariant states. In order to do this we decompose the Hilbert space as

L2

[
SU(2)L

]
= ⊗l [⊕j (Hj ⊗Hj)] = ⊕jl ⊗l (Hjl ⊗Hjl) (4.69)

and so

L2

[
SU(2)L/SU(2)N

]
= ⊕jl ⊗n InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3 ⊗Hj4) (4.70)
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where clearly we have an additional factor due to the fact that now each edge is bounded by four faces,
not three. The space InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3 ⊗Hj4) is not one-dimensional in general, it turns out
that linearly independent invariant tensors in this space can be constructed as follows:

ιm1m2m3m4
k =

(
j1 j2 k
m1 m2 m

)
gmn

(
k j3 j4
n m3 m4

)
, (4.71)

for any k that satisfies the triangular relations both with j1, j2 and j3, j4, more precisely:

max[|j1 − j2|, |j3 − j4|] ≤ k ≤ min[j1 + j2, j3 + j4] . (4.72)

We denote these states with |k〉 and the invariant subspace as

Kj1...j4 := InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3 ⊗Hj4) , (4.73)

whose dimension is therefore

dim[Kj1...j4 ] = min[j1 + j2, j3 + j4]−max[|j1 − j2|, |j3 − j4|] + 1 . (4.74)

It follows that a generic gauge-invariant state is a linear combination

ψ (Ul) =
∑
jlkn

Cjlknψjlkn (Ul) , (4.75)

of the orthogonal states

ψjlkn (Ul) = ιm1m2m3m4
k1

· · · ιmL−3mL−2mL−1mL
kN

Dj1
m1n1

· · ·DjL
mLnL

. (4.76)

The difference from the three-dimensional case is that the spin-networks of the four-dimensional case
are labeled not only by spins, but also by an intertwine quantum number k associated to each node
n. Using a more compact notation we denote the spin-network wave functions as

ψjlkn (Ul) = 〈Ul|jl, kn〉 =
⊗
n

ιkn ·
⊗
l

Djl (Ul) . (4.77)

At a classical level, this residual geometric freedom at each node is described by the space of possible
shapes of a tetrahedron with fixed areas, which is a two-dimensional space (coordinatized for instance
by two opposite dihedral angles). This space can also be seen as the space of quadruplets of vectors
satisfying the closure relation, with given areas, up to global rotations, the counting of the dimension
gives: 4× 3− 4− 3− 3 = 2.
An observable on this space is given by the volume V of the tetrahedron, which is given by

V 2 =
2

9
εijkE

iEjEk . (4.78)

where the operator
−→
E is associated with each link and it is given by

−→
E l = 8πγ~G

−→
L l . (4.79)
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The matrix elements of V can be computed in the |k〉 basis, then by diagonalization of this matrix
it is possible to obtain the eigenvalues v and their correspondent eigentates |v〉 of the volume in each
Hilbert space Kj1...j4 . In this basis, the spin-network states can be written as

ψjlvn (Ul) = 〈Ul|jl, vn〉 =
⊗
n

ιvn ·
⊗
l

Djl (Ul) . (4.80)

To summarize, the Hilbert space associated with the boundary graph Γ is given by

HΓ = L2[SU(2)L/SU(2)N ] (4.81)

and spin-network states are denoted by |Γ, jl, vn〉, where jl is a spin associated with each link of the
graph and vn is a volume eigenvalue associated with each node of the graph.
This formalism is referred to as “spinfoam”, where “foam” refers to a 2-complex and “spin” is obviuosly
associated to the spin representation sitting on each edge.

4.2.2 Transition Amplitude

To complete the description of the full theory we need to write down the transition amplitude.
First of all, we give an alternative form of the amplitude which will be more suitable for the four-
dimensional case. We start from

Z =

∫
dUe

∏
f

δ (Ue1 · · ·Uen) . (4.82)

At this point, we introduce two group variables per each edge e, that is, Ue = gvegev′ , where gev = g−1
ve

is a variable associated with each couple vertex-edge. Thus, we can write

Z =

∫
dgve

∏
f

δ (gvegev′gv′e′ge′v′′ · · · ) . (4.83)

Then we regroup the gev variables in a different way, namely we define hvf = gevgve′ , where e and e′

are the two edges coming out from the vertex v and bounding the face f .

Clearly, the amplitude takes the form

Z =

∫
dhvfdgve

∏
f

δ (gvegev′gv′e′ge′v′′ · · · )
∏
vf

δ (ge′vgvehvf ) . (4.84)

This can be reorganised as a transition amplitude where a delta function glues the group element
around each face:

Z =

∫
dhvf

∏
f

δ (hf )
∏
v

Av (hvf ) , (4.85)

where hf :=
∏

v∈∂f hvf is a group variable associated with a face.
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Figure 4.1: Splitting of the group elements

Furthermore, the vertex amplitude is defined by

Av (hvf ) :=

∫
dgve

∏
f

δ (ge′vgvehvf ) . (4.86)

The SU(2) integrals in a vertex are n = 4, that is, one group element for each of the n = 4 edges coming
out of the vertex. However, if one thinks about it, there is one redundant integral, because after in-
tegrating n−1 group variables the result is not affected by the last integration. We denote this fact by∫

SU(2)n
dg′ve :=

∫
SU(2)(n−1)

dgve1 · · · dgven−1 . (4.87)

In three dimensions this observation does not change anything: performing the last integral gives
unity, since the volume of SU(2) is just one, but in the four-dimensional case this turns out to be
crucial, because SL(2,C) is non-compact. If we expand the delta function in representations we get

Av (hvf ) =
∑
jf

∫
dg′ve

∏
f

(2jf + 1) Trjf [ge′vgvehvf ] , (4.88)

where Trj(U) := Tr
[
Dj(U)

]
. Therefore the vertex amplitude is a function of one SU(2) variable

per face around the vertex. We can also picture this by drawing a sphere around the vertex, the
intersection between this sphere and the 2-complex is a graph, Γv. The vertex amplitude is then a
function of the states in

HΓv = L2

[
SU(2)6/SU(2)4

]
Γv

, (4.89)
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where Γv is the complete graph with four nodes and represents the boundary graph of the vertex.
Therefore, we can express the transition amplitude in the following way:

W (hl) =

∫
dhvf

∏
f

δ (hf )
∏
v

Av (hvf ) , (4.90)

where the vertex amplitude is given by

Av (hvf ) = N
∑
jf

∫
dg′ve

∏
f

(2jf + 1) Trjf [ge′vgvehvf ] , . (4.91)

We are ready now to treat the four-dimensional case.
We notice that the form of the transition amplitude is the same as in (4.84), since this only reflects the
superposition principle, therefore the dynamics is contained in the vertex amplitude. The vertex am-
plitude in turn must be SL(2,C)-invariant in the four-dimensional case, but Av (hvf ) can be regarded
only as a function of SU(2) group elements living on the graph of a node (which is on the boundary
of a 4-simplex). To obtain the analogue of (4.87) in the four-dimensional case then we have to replace
the SU(2) integrals with SL(2,C) ones and to map the SU(2) group elements into the SL(2,C) ones.
In order to do that we make use of the Yγ map, as follows:

Av(ψ) =
(
PSL(2,C)Yγψ

)
(1) (4.92)

which, more expilicitly, it reads

Av (hvf ) = N
∑
jf

∫
dg′ve

∏
f

(2jf + 1) Trjf

[
Y †γ ge′vgveYγhvf

]
, (4.93)

where the trace is given by

Trj

[
Y †γ gYγh

]
= Trj

[
Y †γD

(γj,j)(g)YγD
(j)(h)

]
=
∑
mn

D
(γj,j)
jm,jn(g)D(j)

nm(h) . (4.94)

The vertex amplitude is then a function of one SU(2) variable per face around the vertex. As seen
before, we can picture a small sphere around a vertex, obtaining a graph Γv, the vertex amplitude
becomes thus a function of the states in

HΓv = L2

[
SU(2)10/SU(2)5

]
Γv

. (4.95)

The graph Γv is the complete graph with five nodes.

4.2.3 Continuum Limit

We have seen above the equations that describe the theory on a given graph Γ, obtained from a
given 2-complex C. This is a theory with a finite number of degrees of freedom, beacuse it corresponds
to a truncation of classical general relativity, which is a theory with an infinte number of degrees of
freedom. The full theory is approximated by choosing increasingly refined complexes C and Γ = ∂C,
where the refinement is chosen in relation to the desired precision, in analogy with a finite order in
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perturbation theory in QED. More precisely: let Γ′ be a subgraph of Γ, namely, a graph formed by
a subset of nodes and links of Γ, then, there is a subspace HΓ′ ⊂ HΓ which is isomorphic to the
loop-gravity Hilbert space of the graph Γ′. Indeed, this is formed by all the states ψ(Ul) ∈ HΓ which
are independent of the group elements Ul associated with the links l that are in Γ but not in Γ′.
Equivalently, HΓ′ is the linear span of the spin-network states characterized by jl = 0 for any l that
is in Γ but not in Γ′.
Therefore, if we define the theory on Γ we have at our disposal a subset of states that captures the
theory defined on the smaller graph Γ′, in this way, the step from Γ′ to Γ is a refinement of the theory.
More precisely, the continuum limit can be defined by

Z(hl) = lim
C→∞

ZC(hl) , (4.96)

which is well defined in the sense of nets, because two-complexes form a partially ordered set with
upper bound. Nevertheless, there is not a unique notion of limit at the present time, and it is often
said that the approximation is good when the discretized theory approximates the continuum theory
in the classical context, that is, when the degree of accuracy of the triangulation meets the desired
expectations.
When dealing with the continuum limit it is natural then to ask what happens to the tranistion ampli-
tude when refining the triangulation. The simplest case to analyze is considering a single tetrahedron
τ and adding a point P inside it, then joining P to the four vertices of τ . In this way the original
tetrahedron has been split into four smaller tetrahedra. If we call ∆1 the original triangulation and ∆4

the new one, it’s clear that, when dealing with the respective 2-complexes, the refinement produces a
“bubble”, as shown in figure.

Figure 4.2: The graph ∆∗4
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Starting from (4.45) it is possible to compute the amplitude of this triangulation W∆4 . It can be
shown [16] that the relation between W∆4 and the original W∆1 amounts to an infinite factor multi-
pling the latter.
The appearance of the divergence is a manifestation of the standard quantum field theory divergences.
It is strictly connected to the existence of the bubble. To see that this is the case, reconsider the same
calculation in the spin representation. From eq. (4.41):

W∆4(jab) =
∑
jab

∏
ab

djab
∏
a

{6j} . (4.97)

In general, in a sum like this the range of summation of the jab is restricted by the triangular identities.
Since the boundary faces have finite spins, the only possibility for an internal face to have a large spin
is to be adjacent, at each edge, to at least one other face with a large spin. In other words, a set of
faces with arbitrary large spins cannot have boundaries. Therefore to have a sum which is not up to
a maximum spin by the triangular identities the only possibility is to have a set of faces that form
a surface without boundaries in the two complex. That is, a bubble. All this is very similar to the
ultraviolet divergences in the Feynman expansion of a normal quantum field theory, where divergences
are associated to loops, because the momentum is conserved at the vertices. Here, divergences are
associated to bubbles, because angular momentum is conserved on the edges. A Feynman loop is a
closed set of lines where arbitrary high momentum can circulate. A spinfoam divergence is a closed
set of faces, that can have arbitrarily high spin. Notice however that in spite of the formal similarity
there is an important difference in the physical interpretation of the two kinds of divergences. The
Feynman divergences regards what happens at very small scale. On the contrary, the spinfoam diver-
gences concern large spins, namely large geometries. Therefore they are not ultraviolet divergences,
they are infrared. A way to get rid of these divergences is by considering the so-called “Turaev-Viro”
amplitude, in which, instead of considering the group SU(2), one chooses the group SU(2)q (q being
a parameter), i.e. a one-parameter deformation of the algebra of the representations of SU(2). The
Turaev-Viro amplitude is given by:

Wq(jl) = wpq
∑
jf

∏
jf

(−1)jf dq(jf )
∏
v

(−1)Jv{6j}q . (4.98)

The remarkable fact, is that the dimension dqj has a maximum value [17], this finiteness makes the
amplitude finite.

Furthermore, the parameter q can be put in relation with the cosmological constant q = ei
√

Λ~G as
shown in [18], thus relating the finiteness of the amplitude to the presence of the cosmological constant.

4.3 Classical Limit

The classical limit in covariant LQG is studied on the basis of the so-called coherent states: these
are similar to wave packets in quantum mechanics, i.e. states in which both position and momentum
are minimally spread. Geometrically, a tetrahedron is uniquely determined by giving six numbers,
that is, the lengths of its sides, but we have seen before that a state associated to a node (and therefore
to a tetrahedron) is characterized only by five numbers: four areas and the volume. In a sense, the
geometry of the tetrahedron is fuzzy, in the same way angular momentum is, in quantum mechanics.
Let’s consider then a node n, we have a Hilbert space Hn, a basis of states is given by |ιk〉 defined

in (4.70). It can be shown that these states are eigenstates of
−→
L 1 ·

−→
L 2, that is, they diagonalize the

dihedral angle θ12 between the faces 1 and 2. We would like to find, given a classical tetrahedron,
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a quantum state whose dihedral angles are minimally spread around the classical variables. These
states are called “intrinsic coherent states”.

4.3.1 Intrinsic Coherent States

We recall that a tetrahedron is characterized by four vectors
−→
E a (one per each face) whose length

is the area of the correspondent face; in the quantum theory these are quantized and they are given
by

−→
E a = 8πG~γ

−→
L a . (4.99)

From the following commutation relations[
Lia, L

j
b

]
= iδabε

ij
k L

k
a (4.100)

it is possible to show that the commutation relations between two dihedral angles are given by[−→
E 1 ·

−→
E 2,
−→
E 1 ·

−→
E 3

]
= i8πG~γ

−→
E 1 · (

−→
E 2 ×

−→
E 3) . (4.101)

Then, from this, it follows the Heisenberg relation

∆(
−→
E 1 ·

−→
E 2) ·∆(

−→
E 1 ·

−→
E 2) ≥ 1

2
8πG~γ|〈

−→
E 1 · (

−→
E 2 ×

−→
E 3)〉| , (4.102)

where 〈A〉 = 〈ι|A|ι〉 and ∆A =
√
〈ι|A2|ι〉 − (〈ι|A|ι〉)2. Thus, we are aiming for states whose dispersion

is small compared with their expectation value, that is

∆(
−→
E a ·

−→
E b)

|
−→
E a||
−→
E b|

� 1 ∀a, b . (4.103)

The first step is to consider SU(2) coherent states. We start from a state of fixed total angular mo-
mentum j, |j,m〉 ∈ Hj is then a basis of these states. Then, because [Lx, Ly] = iLz, we have the
Heisenber relation

∆Lx∆Ly ≥
1

2
|〈Lz〉| , (4.104)

which is satisfied by every state. A state that saturates this inequality can be shown to be given by
|j, j〉.
Furthermore, there is an entire family of coherent states which can be obtained starting from the state
|j, j〉, namely, by rotating the state by means of a matrix R ∈ SO(3):

|j,−→n 〉 = D−→n (R)|j, j〉 , (4.105)

where −→n is the direction obtain by starting from the z-axis and then applying the rotation. These
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coherent states can be expanded in terms of eigenstates of Lz as follows

|j,−→n 〉 =
∑
m

φm(−→n )|j,m〉 , (4.106)

where φm(−→n ) = 〈j,m|D(R)|j, j〉 = D(j)(R)jm.
One of the most important properties of the coherent states is that they provide a resolution of the
identity, that is,

1j =
2j + 1

4π

∫
S2

d2−→n |j,−→n 〉〈j,−→n | . (4.107)

By means of these coherent states it is possible to describe a “coherent” tetrahedron, whose faces are
described by coherent states. More precisely, let’s consider the coherent state

|j1,−→n 1〉 ⊗ |j2,−→n 2〉 ⊗ |j3,−→n 3〉 ⊗ |j4,−→n 4〉 ∈ H1 ⊗ · · ·H4 , (4.108)

which is still a coherent state, since tensor products of coherent stantes are coherent, and project it
down to its invariant part by means of

P : H1 ⊗ · · ·H4 → Inv(H1 ⊗ · · ·H4) . (4.109)

Thus, we denote this coherent state as

||ja,−→n a〉 := P (|j1,−→n 1〉 ⊗ |j2,−→n 2〉 ⊗ |j3,−→n 3〉 ⊗ |j4,−→n 4〉) , (4.110)

which is then the element of HΓ that describes a semicalssical tetrahedron. More precisely, the pro-
jection can be explicitly implemented by the following

||ja,−→n a〉 =

∫
SO(3)

dR(|j1, R−→n 1〉 ⊗ |j2, R−→n 2〉 ⊗ |j3, R−→n 3〉 ⊗ |j4, R−→n 4〉) , (4.111)

which can be translated in a SU(2) integral as

||ja,−→n a〉 =

∫
SU(2)

dh(Dj1(h)|j1,−→n 1〉 ⊗Dj2(h)|j2,−→n 2〉 ⊗Dj3(h)|j3,−→n 3〉 ⊗Dj4(h)|j4,−→n 4〉 . (4.112)

These states are also referred to as the “Livine-Speziale coherent intertwiners”, since they are associ-
ated to a tetrahedron which is in turn associated to a node. It can be shown that these states can be
expanded in any intertwiner basis:

||ja,−→n a〉 =
∑
k

Φk(
−→n a)|ιk〉 , (4.113)

where the coefficients Φk(
−→n a) = ιm1m2m3m4ψm1(−→n 1) · · ·ψm4(−→n 4), for large j, have the form

Φk(
−→n a) ∼ e−

1
2

(k−k0)
2

σ2 eikψ, i.e. they are concentrated around a single value k0 which determines the
value of the corresponding dihedral angle, and have a phase such that, when changing basis to a
different intertwined basis, we still obtain a state concentrated around the same value.
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For large j, these states satisfy the following properties

〈ι(nl)|Ea · Eb|ι(nl)〉 ∼ jajb−→n a · −→n b (4.114)

and

∆(
−→
E a ·

−→
E b)

|
−→
E a||
−→
E b|

� 1 , (4.115)

the last one proves that these are in fact coherent states.
Putting everything together, that is, combining coherent intertwiners at each node, we can define a
coherent state in HΓ, which can be thought as a “wave packet” peaked on a classical triangulated
geometry:

ψjl,−→n sl ,
−→n tl

(Ul) = ⊗lD(jl)(Ul) · ⊗nιn(−→n l) . (4.116)

4.3.2 Spinors

Coherent states provide a tool to perform the classical limit, but to reach that goal we need to
exploit their relation with spinors. Spinors are the elements of the fundamental representation of
SU(2), namely, H 1

2
= C2, that coincides with the fundamental representation of SL(2,C). We denote

a spinor z ∈ C2 by

z =

(
z0

z1

)
= zA = |z〉 . (4.117)

The spinor n = (1, 0) is the eigenvector of Lz with eigenvalue 1
2 and unit norm, then, we can identify

it with the state |j = 1
2 ,m = 1

2〉, which is a coherent state. Since all the coherent states in the j = 1
2

representation are obtained by rotating |12 ,
1
2〉 and since rotation preserves the norm of a spinor, it

follows that all normalized spinors n describe coherent states in the fundamental representation, that
is,

|n〉 = |1
2
,−→n 〉 . (4.118)

Now, with each spinor n ∈ C2 we can associate a three-dimensional real vector by

−→n = 〈n|−→σ |n〉 , (4.119)

therefore we have that

〈n|
−→
L |n〉 = 〈n|

−→σ
2
|n〉 =

1

2
−→n = j−→n . (4.120)

Normalized spinors are coherent states for the normalized three-vector they define. This result can
be extended to any representation, because the tensor product of coherent states is a coherent state.
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Thus, it makes sense to consider the followng state

|j,n〉 = n⊗ · · · ⊗ n︸ ︷︷ ︸
2j

, (4.121)

which coincides with the spin-j representation, and is precisely the coherent state |j,−→n 〉 that satisfies

〈j,n|
−→
L |j,n〉 = j−→n . (4.122)

Armed with spinors we can look for a different realization of the spin-j representation, namely, the
finite-dimensional vector space Hj can be realized as the space of the totally symmetric polynomial
functions f(z) of degree 2j. In order to see this, we recall that the spin-j representation space Hj can
be realized by symmetric tensors yA1A2...A2j with 2j indices. Therefore, the corresponding polynomial
function of z is simply

f(z) = yA1A2...A2jzA1 · · · za2j . (4.123)

This function satisfies the homogeneity condition

f(λz) = λ2jf(z) (4.124)

and the SU(2) action on these functions is given by

(Uf)(z) = f(UT z) . (4.125)

We would like to see how coherent states look in this representation. For spin 1/2, a coherent state is
represented by the linear function

fn(z) ∼ nAzA ∼ 〈z|n〉 , (4.126)

up to normalization. If we take the symmetrized tensor product of this state with itself 2j-times, we
obtain the coherent state in the j representation in the following form (including normalization)

f
(j)
n (z) =

√
2j + 1

π
〈z|n〉2j . (4.127)

This relaization of SU(2) representation spaces turns out to be very useful to relate SU(2) representa-
tions with SL(2,C) unitary representations. We have seen previously that these representations were
given by V (p,k), but again we would like to write these spaces in terms of functions of spinors f(z),
with z ∈ C2. The representation (p, k) is defined on the space of the homogeneous functions of spinors
that have the property

f(λz) = λ(−1+ip+k)λ
(−1+ip−k)

f(z) (4.128)

and the SL(2,C) action reads

gf(z) = f(gT z) . (4.129)
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The transition between the canonical basis and the spinor basis can be shown to be given by

f jm(z) = 〈z|p, k; j,m〉 =

√
2j + 1

π
〈z|z〉ip−1−jDj

mk(g(z)) (4.130)

where

g(z) =

(
z0 z1

z1 z0

)
. (4.131)

In these representations the scalar product between two functions is given by an integral in spinor
space, that is, if f and g are functions of spinors, we have:

〈f |g〉 =

∫
fgdΩ , (4.132)

where

dΩ =
i

2
(z0dz1 − z1dz0) ∧ (z0dz1 − z1 − dz0) . (4.133)

These spinor representations are particurarly convenient because the Yγ map takes a particurarly sim-
ple form in this language. Since the embedding of Hj in V (p,k) is given by

f(z) 7→ 〈z|z〉−1+ip−kf(z) , (4.134)

we have then

Yγf(z) = 〈z|z〉−1+(iγ−1)jf(z) . (4.135)

This allows us to write the action of the Yγ map on the coherent states:

〈z|Yγ |j,−→n 〉 =

√
2j + 1

π
〈z|z〉−1+(iγ−1)j〈z|n〉2j , (4.136)

which we write also as

〈z|Yγ |j,−→n 〉 =

√
2j + 1√
π〈z|z〉

ej[(iγ−1)ln〈z|z〉+2ln〈z|n〉] . (4.137)

At this point, we would like to rewrite the amplitude in terms of spinors. In order to do so, we first
recall that

Av (hvf ) =
∑
jf

∫
SL(2,C

dg′ve
∏
f

(2jf + 1) Trjf

[
Y †γ ge′vgveYγhvf

]
, (4.138)

which can be written, dropping the subscript v and labeling the edges emerging from the vertex with
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a, b = 1, . . . , 5 and the faces adjacent to the vertices as ab,

Av (hab) =
∑
jab

∫
SL(2,C

dg′a
∏
ab

(2jab + 1) Trjab

[
Y †γ g

−1
a gbYγhab

]
. (4.139)

The trace in the last equation can be written inserting two resolutions of the identity in terms of
coherent states

Trj

[
Y †γ gg

′Yγh
]

=

∫
S2

d−→n d−→m〈j,−→m|Y †γ gg′Yγ |j,−→n 〉〈j,−→n |h|j,−→m〉 . (4.140)

The first matrix element can be expressed in terms of spinors:

〈j,−→m|Y †γ gg′Yγ |j,−→n 〉 =

∫
C2

dΩ〈Yγj,−→m|gz〉〈g′†z|Yγj,−→n 〉 . (4.141)

Using (4.133) and introducing the notation

Z = gz , Z′ = g′†z , (4.142)

we obtain

〈j,−→m|Y †γ gg′Yγ |j,−→n 〉 =
2j + 1

π

∫
C2

dΩ

〈Z|Z〉〈Z′|Z′〉
ej S(n,m,Z,Z′) , (4.143)

where

S(n,m,Z,Z′) := ln
〈Z|m〉2〈Z′|n〉2

〈Z|Z〉〈Z′|Z′〉
+ iγln

〈Z|Z〉
〈Z′|Z′〉

. (4.144)

We would like to insert this result in the expression of the amplitude. In order to do so, we choose
a coherent state in HΓv , that is, we pick a quadruplet of normalized vector −→n ab for each node of Γv,
these define a state |jab,−→n ab〉. Therefore the amplitude takes the form:

Av (jab,
−→n ab) ≡ 〈Av|jab,−→n ab〉 =

∫
SL(2,C)

dg′a
∏
ab

(2jab + 1) 〈jab,nab|Y †γ g−1
a gbYγ |jba,nba〉 . (4.145)

Now, using the result in (4.134), we get

Av (jab,
−→n ab) = µ(jab)

∫
SL(2,C)

dg′a

∫
C2

dΩab

|Zab||Zba|
e
∑
ab jab S(nab,nba,Zab,Zba) , (4.146)

where µ(jab) =
∏
ab

(2jab+1)2

π and Zab = gazab and Zba = gbzab.
In order to perform the classical limit we have to take the limit of large quantum numbers, that is,
when jab are large. In this limit, the integral in (4.143) can be computed using the saddle-point
approximation, which, in d dimensions takes the form:∫

Rd
dxdg(x)ejf(x) =

(
2π

j

) d
2

(detH2f)−
1
2 g(x0)ejf(x0)

[
1 + o

(
1

j

)]
, (4.147)

where H2f is the Hessian of f at the saddle point x0, which is the point where the gradient of f
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vanishes. Now, if f is real and negative, a large j gives a narrow gaussian around the maximum of f ;
if f is imaginary, when j is large, the exponential oscillates very rapidly and the integral is canceled
out except for the points where the derivative of f vanishes.
For this reason, we start from the real part of the action, this is given by:

Re[S] =
∑
ab

log
|〈Zab|nab〉|2 |〈Zba|nba〉|2

〈Zab|Zab〉〈Zba|Zba〉
. (4.148)

The maximum is obtained when the logarithm vanishes, that is, when

nab = eiφab
Zab
|Zab|

nba = eiφba
Zba
|Zba|

, (4.149)

which, by definition of Z, turns into

g−1
a nab =

|Zba|
|Zab|

eiθabg−1
b nba . (4.150)

At this point, we look at the extrema of the action under a variation of the spinor variables zab. The
explicit calculation gives

ganab =
|Zba|
|Zab|

eiθabgbnba . (4.151)

Next, we consider a variation with respect to the group elements ga and the spinor variables zab.
The former variation gives the action of the algebra elements, therefore the saddle-point equations
for the group elements give the vanishing of the action of an infinitesimal SL(2,C) transformation.
This action can be decomposed into boosts and rotations, but in the relevant representations these
are proportional, and so the needed invariance is only under rotations. In lue of (4.146), this can be
moved from the variables Z (which contain the group elements) to the normals, thus obtaining [19]∑

b

jab|nab〉 = 0 . (4.152)

This equation shows exactly the closure conditions for the normal at each of the boundary nodes of
the vertex graph. This is remarkable, because the initial set of normals is arbitrary; then, the dy-
namics suppreses all the possible sets of nab unless these satisfy the closure constraint at each node.
Therefore, the normals define a proper tetrahedron τa at each node a of the vertex graph. We have
then five tetrahedra in the vertex graph (which is the complete graph with five nodes), that is, one
for each boundary node. These tetrahedra are three-dimensional objects, we can think of them as
lying in a common three-dimensional surface Σ of Minkowski space, left invariant by the SU(2) action.
Now, a vector in Σ defines a surface in Σ to which it is normal, then, a Lorentz transformation can
act on this surface and move it to an arbitrary (spacelike) surface. In terms of spinors, this action
is given by the action an element of SL(2,C) on the spinor associated to the surface. This reason-
ing allows to interpret (4.149) in the following way: there are five Lorentz transformations ga that
rotate the five tetrahedra τa in such a way that the b face of the tetrahedron τa is parallel to the a
face of the tetrahedron τb. The value of the action at the saddle point can be shown to be given by [19]

S = iγ
∑
ab

jabΘab , (4.153)

where Θab is the difference between the Lorentz transformations to the opposite sides of adjacent
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tetrahedra, that is, it is the dihedral angle between two tetrahedra. We recall that γjab is the area of
the boundary faces of the 4-simplex, in units where 8πG~ = 1, therefore, S on the critical point is the
Regge action of the 4-simplex having the boundary geometry determined by the 10 areas jab.

4.3.3 Classical Limit versus Continuum Limit

The classical limit is obtained when considering a fixed triangulation and then taking the large-j
limit of the transition amplitude, whereas the continuum limit is obtained by refining the 2-complex C.
The two procedures are obviously not equivalent, but the strategy to obtain the Hamilton function of
General Relativity from the transition amplitude involves both. Indeed, one can perform the classical
limit in the first place, thus obtaining the Regge Hamilton function, and then perform the continuum
limit by considering more refined discretizations. The latter limit is known to converge to the General
Relativity Hamilton function as mentioned earlier.
Now, the regimes where the classical limit is good in quantum gravity are those involving scales L
that are much larger than the Planck scale:

L� LPlanck . (4.154)

The regimes where the truncation is good are suggested by the Regge approximation, that is, the
deficit angles have to be small. This happens when the scale of the discretization is small with respect
to the curvature scale Lcurvature:

L� Lcurvature . (4.155)

Therefore a triangulation with few cells, and, correspondingly, a two-complex with few vertices, provide
an approximation in the regimes (determined by the boundary data) where the size of the cells
considered is small with respect to the curvature scale (of the classical solution of the Einstein’s
equation determined by the given boundary data).
Refining the triangulation leads to including shorter length-scale degrees of freedom. But the physical
scale of a spinfoam configuration is not given by the graph or the two complex. It is given by the
size of its geometrical quantities, which is determined by the spins (and intertwiners). The same
triangulation can represent both a small and a large size of spacetime. A large chunk of nearly flat
spacetime can be well approximated by a coarse triangulation, while a small chunk of spacetime where
the curvature is very high requires a finer triangulation. In other words, triangulations do not need
to be uselessly fine, they need to be just as fine as to to capture the relevant curvature.

4.3.4 Extrinsic Coherent States

We would like to build, for practical applications, states which are coherent both in the intrinsic
and extrinsic geometry, since we recall that the extrinsic curvature is the variable conjugate to the
3-metric in the ADM variables. In order to introduce extrinsic coherent states, we recall that a wave
packet in quantum mechanics peaked on the phase space point (q, p) is of the form

〈x|q, p〉 ≡ ψq,p(x) = e−
(x−q)2

2σ2
+ i

~px . (4.156)
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Its Fourier transform is proportional to

〈k|q, p〉 ∼ e−
(k−p/~)2

2/σ2
+iqk

. (4.157)

We can rewrite this state also as

ψq,p(x) = e−
(x−z)2

2σ2 , (4.158)

where z is the complex variable given by

z = q − iσ
2

~
p . (4.159)

We need to find the analogue of this state in HΓ. Starting from L2[SU(2)], we notice that a state
peaked on group variables is given by a delta function:

ψ(U) = δ(Uh−1) , (4.160)

ψ(U) is a state sharp on the element h ∈ SU(2). This state is, on the other hand, completely spread
in the conjugate variable since

δ(U) =
∑
j

djTrj [U ] . (4.161)

It is possible to obtain a state peaked on the value j = 0 by adding an exponential factor, more
precisely,

ψh,0(U) =
∑
j

dje
−tj(j+1)Trj [Uh

−1] (4.162)

is a state peaked on U = h and j = 0. By complexifing the group variable it is possible to get a state
peaked on a generic j 6= 0, in analogy with the wave packet seen before, where, in that case, the factor
needed was eipx/~. A complexification of SU(2) is given by SL(2,C), for this reason we consider the
following state:

ψH(U) =
∑
j

dje
−tj(j+1)TrD(j)[UH−1] , (4.163)

where H ∈ SL(2,C) is given by

H = e
it E
l20 h , (4.164)

with h ∈ SU(2) and E ∈ su(2). This state can be regarded as a wave packet peaked both on the
group variable and its conjugate, since it is possible to show that:

〈ψH |U |ψH〉
〈ψH |ψH〉

= h ,
〈ψH |

−→
E |ψH〉

〈ψH |ψH〉
=
−→
E . (4.165)
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In order to generalize these states to spin-network states, it is necessary to make them invariant un-
der SU(2) at the nodes, therefore, an extrinsic coherent state on a graph Γ is labeled by a SL(2,C)
variable Hl associated with each link and is given by

ψHl(Ul) =

∫
SU(2)

dhn
∏
l

∑
jl

djle
−tjl(jl+1)TrD(jl)[UlhslH

−1
l h−1

tl
] . (4.166)

Extrinsic coherent states represent the ideal tools when studying cosmology. More precisely, if we write
the Hamilton function associated to a homogeneous and isotropic geometry, i.e. the one associated to
the Friedmann-Lemâıtre metric, and then write down the expected form of the transition amplitude,
it is possible to obtain the same behaviour starting from two extrinsic coherent states and then
performing the classical limit [20] (large spins and saddle point).
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Appendix A

Lie Algebra

A.1 Left-Invariant Vector Fields

In this section we introduce the basic notions in order to address the standard formulation of a
gauge theory from a mathemathical perspective. In addition to this we add some important issues
concerning the quantization in LQG and a different formulation of General Relativity based on the so
called tetrad fields.

Let’s consider a Lie group G, a vector field X ∈ T (G) is called left-invariant if

lg∗Xg′ = Xgg′ ∀g, g′ ∈ G (A.1)

where lg is the left multiplication by g , i.e lg : G→ G, h 7→ gh.
We denote by L(G) the vector space of left-invariant vector fields, one can easily show that it is a Lie
subalgebra of T (G), this is due to the fact that X as in (1) is the field lg-correlated to itself and so
the Lie bracket of two left-invariant vector fields is still left-invariant.
In addition to this, one remarkable property is that L(G) is isomorphic to TeG, the latter being
known as the Lie algebra of the Lie group G. The map that does the job is given by i : TeG −→ L(G),
A 7→ LA, where LA ∈ L(G) is defined by Lg

A := lg∗A.
An important feature of left-invariant vector fields is that they are complete, in the sense that if
X ∈ L(G) then its integral curve is defined everywhere on R, that is we have σX : R −→ G such that
σ∗

X( ddt) = X.
This fact allows us to define a map from TeG to G called the exponentialmap, in the following way:
first of all, the unique integral curve t 7→ σL

A
(t) of LA ∈ L(G) such that σL

A
(0) = e and σ∗

LA( ddt)0 = A
is denoted by t 7→ exptA, where A ∈ TeG; then the exponentialmap is the map exp : TeG −→ G
defined by exp := exptA|t=1.
If we consider the case G = GL(n,R) we can find a useful expression for a left-invariant vector field,
introducing coordinates on GL(n,R). First of all, we choose a coordinate system on GL+(n,R), which
is the connected component containing matrices whose determinant is positive, then, in a neighbour-
hood of the identity we define:

xij(g) := gij , g ∈ GL+(n,R), i, j = 1, ..., n . (A.2)

Now, let A ∈ TeG ∼= M(n,R), we get:
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LAg =

n∑
i,j=1

(
LAxij

)
g

(
∂

∂xij

)
g

(A.3)

and furthermore

(LAxij)g =
d

dt

(
xij(gexptA)

)
t=0

, (A.4)

where we used the definition of integral curve:

X(f)p =
d

dt

(
f(σX(t))

)
t=0

, (A.5)

where σX(0) = p.
Since A ∈ M(n,R) is a matrix , it is possible to consider the curve t 7→ etA in GL+(n,R), where etA

is the exponential of matrix defined by means of a series. Clearly, the tangent vector to this curve in
t = 0 is the matrix A, furthermore, the curve defines a one-parameter subgroup of GL+(n,R), thus,
because every one-parameter subgroup is necessariely of the form exp(tA) we have that:

etA = exptA, ∀t ∈ R, ∀A ∈ TeG. (A.6)

By means of (A.6) we can rewrite (A.4) as:

(LAxij)g =
d

dt

(
xij(getA)

)
t=0

=
n∑
k=1

d

dt

(
etA
)kj |t=0

=
n∑
k=1

gikAkj = (gA)ij ,

(A.7)

thus we get the following expression for a left-invariant vector field on a matrix group:

LAg =
n∑

i,j=1

(gA)ij
(

∂

∂xij

)
g

. (A.8)

This expression will reappear later on, when we’ll introduce the Poisson structure of T ∗G, choosing
G = SU(2).
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A.2 Left-Invariant One-Forms

We can move now to left-invariant one-forms. An n-form ω ∈ An(G) is left-invariant if

l∗g (ωg′) = ωg−1g′ , ∀g, g′ ∈ G. (A.9)

We have seen that TeG ∼= L(G) via the map i(A) = LA, we can therefore expect that T ∗eG
∼= L∗(G),

that is to each d ∈ T ∗eG is associated a left-invariant one-form λd defined by

λdg := l∗g−1(d) ∈ T ∗eG ∀g ∈ G. (A.10)

It is possible to find an explicit relation between a left-invariant vector field and a left-invariant one-
form, by contracting the latter with the previous one, as follows:〈

λd, LA
〉
g

= l∗g−1(d)
(
LAg
)

= l∗g−1(d)
(
l∗g(A)

)
= d

(
l∗−1
g
◦ l∗g(A)

)
= 〈d,A〉 ∀g ∈ G.

(A.11)

We have seen how L(G) is a Lie subalgebra of T (G), is there a similar result for the dual space L∗(G),
thought as the dual vector space? Let {E1, ..., En}, n = dimG, a base of L(G), then we have:

[Eα, Eβ] =

n∑
γ=1

CγαβEγ , (A.12)

where Cγαβ are the srtucture constants of G with respect to the chosen basis. Therefore in L∗(G) we

have the corrispondent dual basis {ω1, ..., ωn} of L∗(G) which, by definiton, is such that: 〈ωα, Eβ〉 :=
δαβ . We see at this point that, in general, given two vector fields, there is a natural way of obtaining
a third one by combining the two via the commutator; on the other hand, there is not a natural way
of doing the same thing using one-forms in place of vector fields. Nevertheless, we know that, given a
one-form, we can obtain a two-form either by taking the differential or by making the external product
of two one-forms. In the following we will use both these operations to find an equation that every
left-invariant one-form satisfies. Taking the differential of a left-invariant one-form we get:

dωα(Eβ, Eγ) = Eβ (〈ωα, Eγ〉)− Eγ (〈ωα, Eβ〉)− 〈ωα, [Eβ, Eγ ]〉 = −Cγαβ, (A.13)

taking the external product of two left-invariant one-forms we get:

ωδ ∧ ωε(Eβ, Eγ) = ωδ ⊗ ωε(Eβ, Eγ)− ωε ⊗ ωδ(Eγ , Eβ) = δδβδ
ε
γ − δδγδεβ, (A.14)

joining these two results we finally obtain:

dωα +
1

2

n∑
β,γ=1

Cγαβω
β ∧ ωγ = 0. (A.15)

This equation is called the Cartan-Maurer equation and it is always satisfied by a left-invariant one-
form. We will find again this equation when we will deal with T ∗G.
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A.3 Cartan-Maurer Form

Next, we are going to deal with the so called Cartan-Maurer form which we’ll find in the context
of gauge fields. The Cartan-Maurer form is the L(G)-valued one-form which assigns to each v ∈ TgG
the left-invariant vector field on G whose element in g is precisely v. If we denote with 〈Ξ, v〉 the
left-invariant vector field then we have:

〈Ξ, v〉(g′) := lg′∗
(
lg−1∗v

)
∀v ∈ TgG, (A.16)

in particular, that means that:

〈Ξ, LAg 〉(g′) = LAg′, (A.17)

furthermore, because L(G) ∼= TeG we can associate to LAg the element A ∈ TeG, to get 〈Ξ, LAg 〉 = A.
The Cartan-Maurer form is clearly left-invariant.
In the special case in which G = GL(n,R) we have seen that LAg = (gA)ij

(
∂

∂xij

)
, thus:

δij =
(
〈Ξ, L1

g〉
)ij

= Ξik
(
L1
g

)kj
= Ξikgkj , (A.18)

where 1 ∈ TeG is the identity matrix. From (A.18) we can deduce that:

Ξijg =
n∑
k=1

(
g−1
)ik (

dxkj
)
g
. (A.19)

The expressions for LAg and Ξg found in a coordinate system as in (A.2) are still valid for a general
Lie matrix group.

A.3.1 Gauge Transofrmations and Cartan-Maurer Form

Let’s end this section with an example, which turns out to be useful in the following.
Let U ∈M be an open set, Ω : U → G ,M is a m-dimensional differentiable manifold (in Yang-Mills
theories it represents spacetime), G is the gauge group and so Ω is meant to be a gauge function which
assigns to each point of M a gauge transformation. Obviously, on G is present the Cartan-Maurer
form, then we can consider the pull-back of Ξ onM through Ω. If G is a matrix group, using coordi-
nates as in (2.2) we can find an expression of Ω∗Ξ in the following way:

52



〈
(Ω∗Ξ)ijp ,

(
∂

∂xµ

)
p

〉
=

〈
Ξij ,Ω∗

(
∂

∂xµ

)〉
Ω(p)

=

〈
n∑
k=1

(
Ω(p)−1

)ik (
dxkj

)
Ω(p)

,Ω∗

(
∂

∂xµ

)
Ω(p)

〉

=
n∑
k=1

(
Ω(p)−1

)ik
Ω∗

(
∂

∂xµ

)
p

(
xkj
)

=
n∑
k=1

(
Ω(p)−1

)ik ∂

∂xµ
xkj (Ω(p)) ,

(A.20)

for each p belonging to a local chart whose domain is U .
Therefore we obtain the expression:

(Ω∗Ξ)ijp =
m∑
µ=1

n∑
k=1

(
Ω−1(p)

)ik ∂

∂xµ
Ωkj(p) (dxµ)p , (A.21)

which very often appears in the more succinct form:

Ω∗Ξ = Ω−1dΩ. (A.22)
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Appendix B

Principal Fibre Bundles

In this section we are going to explore the idea of a principal fibre bundle, the reason for that is
because it’s the main structure in guauge theories.

B.1 Principal Fibre Bundles

The idea of a principal fibre bundle is that of a fibre bundle in which fibres are diffeomorphic to a
Lie group G and on which the same group G acts in such a way to ”move points along the fibres”.

The preliminary definition we have to give is that of a G − bundle: a bundle (E, π,M) is a
G − bundle if E is a G-space (i.e. there is a G-action on E) and if (E, π,M) is isomorphic to the
bundle (E, ρ,E/G) where E/G is the space of the orbits of the G-action on E and ρ is the projection
on the orbit, to summarize we say that the following diagram has to commute:

E
u−−−−→ Eyπ yρ

M '−−−−→ E/G

(B.1)

The fact that (E, π,M) and (E, ρ,E/G) are isomorphic means that the fibres of E are the orbits of
the G-action on E. If the action of G on E is free, that is, if ∀p ∈ E we have {g ∈ G | pg = p} = {e},
then (E, π,M) is said principal G-bundle and G is called the structure group of the bundle. The fact
that the action of G is free implies that every orbit is homeomorphic to G, therefore it makes sense
to say that (E, π,M) is a fibre bundle with fibre G.

A principal fibre bundle which turns out to be very useful is the bundle of frames of a m-dimensional
differentiable manifold M. Let be x ∈ M, (b1, ..., bm) a basis of vectors in TxM, the total space
B(M) of the bundle of frames is defined as the set of all frames at each point of M, the projection
π : B(M) → M is defined by the function which sends each frame to the point it is attached. It is
possible to introduce a free right action of GL(m,R) on B(M) given by:

(b1, ..., bm) g :=

 m∑
j1=1

bj1gj11, ...,

m∑
jm=1

bjmgjmm

 ∀g ∈ GL(m,R). (B.2)
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This action is clearly free, as one can verifies; the action corresponds to a change of basis in TxM, x ∈
M. In addition to this, B(M) can be endowed with a differentiable structure, as follows: let U ⊂M
be a domain of a local chart on M, whose coordinates we denote by (x1, ..., xm), then each basis
b = (b1, ..., bm) of TxM, x ∈ U , can be written as

bi =

m∑
j=1

bji

(
∂

∂xj

)
x

, i = 1, ...,m, (B.3)

for a certain bji ∈ GL(m,R). We can therefore define the following map:

h : U ×GL(m,R) −→ π−1(U)

(x , g ) 7−→

 m∑
j1=1

gj11 (∂j1)x , ...,
m∑

jm=1

gjm1 (∂jm)x

 (B.4)

and use
(
x1, ..., xm; gji

)
as coordinates in B(M). In this way, B(M) becomes a m+m2 differentiable

manifold.

Having said what is meant by a G-principal bundle, now we have to say what we mean by a prin-
cipal map, i.e. a map between principal bundles. A bundle map (u, f) between a pair of G-principal
bundles (P, π,M) and (P ′, π′,M′) is said a principal map if u : P → P ′ is G-equivariant, that is,
u(pg) = pg ∀p ∈ P, ∀g ∈ G; in other words the orbit Op is sent to the orbit O′u(p), thus preserving the

fibre structure of P and P ′.
It is possible to generalize this definition to the case of a pair of principal bundles with different struc-
ture groups, say G and G′, the requirement of G-equivariance is now implemented by adding a group
homomrphism
Λ : G→ G′ and demanding that u(pg) = u(p)Λ(g) ∀p ∈ P, ∀g ∈ G.
This last property is important when we will deal with the so called spin connection: we will consider a
principal bundle with structure group given by G′ = SO(3), the base spaceM will be a 3-dimensional
Riemannian manifold and G = Spin(3,R), that is, the double cover of SO(3), which coincides with
SU(2), the universal cover of SO(3). Clearly, SO(3) and SU(2) are homomorphic, in addition to this
we know also that they have isomorphic Lie algebras, i.e. su(2) ∼= so(3).
In the same fashion, ifM is a Lorentzian manifold, G′ = SO(3, 1) and G = Spin(3, 1) ∼= SL(2,C) and
SO(3, 1) is homomorphic to SL(2,C). When we’ll introduce the connection on a principal bundle we’ll
see, as an application, the case of the principal bundle of orthonormal frames, which turns out to be
a SO(3,1)-bundle, and then take the pull-back of the connection on the principal bundle of spinorial
frames (hence the name, spin connection) which turns out to be a Spin(3,1)-bundle. We can safely do
that because there is a principal map between these two principal bundles.

B.2 Tetrads

We go on now introducing an object that will find place in the action of the GR and also in the
Poisson structure of LQG.
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We shall consider the bundle of orthonormal frames, denoted as O(M), which can be seen as a sub-
bundle of B(M), whose structure group GL(m,R) has been reduced to O(m.R) (this can be seen by
introducing the concept of associated bundle). However, O(M) is a principal bundle in its own right.
We choose a local orthonormal frame of TM, or equivalently, a local section of O(M), denoted as
{e1, ..., em}, this local frame is called m− bein and each ei is a tetrad. If we consider T ∗M instead of
TM, each ei is called a co− tetrad. The requirement of orthonormality reads:

δij = gµν(x)eµi (x)eνj (x), (B.5)

in the case of a Riemannian manifold, if M is a Lorentzian manifold we have instead

ηij = gµν(x)eµi (x)eνj (x), (B.6)

where x belongs to the local domain of the m-bein.

B.3 Connection

In order to write the action of GR in another form we need to replace the metric with tetrads and
connection (on a principal bundle). To introduce the idea of a connection we can follow this way of
reasoning: we seek a vector field on a principal bundle P that lets us move from one fibre to another
and not along the fibre. Now, in general, if G is a Lie group which acts on a differentiable manifold
M by means of a right action δ : M× G → M, (p, g) 7→ δ(p, g) =: δg(p), it is possible to define a
vector field XA ∈ T (M) induced by the action of the one-parameter subgroup t 7→ exp(tA), A ∈ TeG
(i.e. restricting the right action δ to those elements of G that can be written as the exponential of an
element in TeG). The vector field XA is defined as follows:

XA
p (f) :=

d

dt
f (pexp(tA)) |t=0, (B.7)

where f ∈ C∞(M) and pg := δg(p). In other words, the curve through p given by t 7→ pexp(tA) is the
integral curve of XA. The flux of XA, denoted as φAt is thus given by φAt (p) = pexp(tA) = δexp(tA)(p),

that is φAt = δexp(tA).
If, in lieu of M, we consider a principal bundle P , where, as we know, is defined a right action of G,
we can write down the vector field induced by this action. At this point, it is possible to show that
the map ι : L(G)→ T (P ), A 7→ XA is a Lie algebra homomorphism, that is X [A,B] =

[
XA, XB

]
.

However, the vector fields XA
p point along the fibre ∀A ∈ TeG, that’s because the right action moves

a point along the fibre, by its very definition. In this context we say that XA
p is a vertical vector,

in the sense that it belongs to the vertical subspace VpP of TpP , which is defined by VpP := {τ ∈
TpP |π∗τ = 0}, from which it is clear that τ points along the fibre. Now, the map A 7→ XA is an
isomorphism of L(G) onto VpP because it is linear, injective (beacuse the action of G on P is free)
and for dimensional reasons dimVpP = dimG = dimL(G).
Intuitively, then, it is justified the following definition of connection:
a connection on a prinicipal bundle G→ P →M is an assignement to each point p ∈ P of a subspace
HpP of TpP such that
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(a) TpP ∼= VpP ⊕HpP ∀p ∈ P

(b) δg∗ (HpP ) = HpgP ∀g ∈ G, ∀p ∈ P ;

(B.8)

this means that a connection is first of all a k-dimensional distribution on P , with k = dimP − dimG.
We can therefore split a vector τ ∈ TpP into two components, horizontal and vertical: τ = ver(τ) +
hor(τ). The condition (b) guarantees that this operation is compatible with the right action on P , in
the sense that: δg∗(τ) = δg∗hor(τ) + δg∗ver(τ) = hor(δg∗τ) + ver(δg∗τ).
There is also an equivalent definition of a connection, less intuitive but which is very used to find
explicit expressions in which the connection is involved. The alternative definition goes as follows: a
connection can be associated to a L(G)-valued one-form on P in the following way, if τ ∈ TpP we define

ωp(τ) := ι−1 (ver(τ)) , (B.9)

where ι : L(G)→ VpP is the isomorphism introduced before. From this definition it follows that:

(i) ωp(X
A) = A, ∀p ∈ P, ∀A ∈ L(G),

(ii) δ∗gω = Adg−1ω, i.e.
(
δ∗gω
)
p

(τ) = Adg−1 (ωp(τ)) , ∀τ ∈ TpP,
(B.10)

where we recall that Cg : G→ G, h 7→ hgh−1 (C being the conjugate action), and Adg := dCg.
In particular, we notice that τ ∈ HpP if and only if ωp(τ) = 0. From this last equation it is clear
that the connection is a sort of constraint on the space of vector fields on P , thought in this way, its
counterimage ω−1

p (0) ∀p ∈ P is exactly a distribution of horizontal vector fields.

B.4 Yang-Mills Fields and Gauge Transformations

At this point, we can establish the relation between a connection ω on a principal bundle, thought
as a L(G)-valued one-form on P and the so called Yang-Mills fields, often introduced as functions on
spacetime.
Usually, a Yang-Mills field is denoted as Aaµ, where µ is a spacetime index and a is a Lie algebra index,
therefore the following expression is meaningful:

A(x) =

m∑
µ=1

dimG∑
a=1

Aaµ(x)Ea (dxµ)x (B.11)

where {E1, ..., EdimG} is a basis of L(G), thus, locally, a Yang-Mills field corresponds to a L(G)-
valued one-form. More precisely, let σ : U ⊂ M → P be a local section of the principal bundle
G→ P →M on which is present also a connection one-form ω. We define the local σ-representative
of ω as ωU := σ∗ω, which is then a L(G)-valued one-form on U . Let then h : U ×G → π−1(U) ⊂ P
be the local trivialisation of P induced by σ, that is, h(x, g) := σ(x)g. As a consequence, it can be
shown that if (α, β) ∈ T(x,g) (U ×G) ∼= TxU ⊕TgG we have that h∗ω can be written in terms of ωU as
follows:

(h∗ω)(x,g) (α, β) = Adg−1

(
ωUx (α)

)
+ Ξg(β), (B.12)
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where Ξ is the Cartan-Maurer form. Therefore we notice that, locally, a connection one-form ω is split
into the sum of a L(G)-valued one-form on spacetime and a L(G)-valued one-form on the structure
group G.

Next, we know that YM fields are subjected to local gauge transformations, where with gauge
transformations we mean a principal automorphism of G→ P →M; if φ : P → P is such a map then
φ∗(ω) is still a L(G)-valued one-form and φ∗(ω) is called the gauge transform of ω. This one is the so
called active version of gauge transformations. We can ask ourselves how ωU changes if we choose a
different section σ, that is we address the same issue adopting a passive view. Let’s consider then two
local sections of P , σ1 : U1 → P and σ2 : U2 → P , where U1, U2 ⊂M, U1 ∩ U2 6= ∅.
We call A

(1)
µ and A

(2)
µ the local representatives of ω with respect to σ1 and σ2. Then, if Ω : U1∩U2 → G

is the unique (because the action of G on P is free) local gauge function such that σ2(x) = σ1(x)Ω(x)
we have from (B.12) that

A(2)
µ (x) = AdΩ(x)−1

(
A(1)
µ (x)

)
+ (Ω∗Ξ)µ (x), (B.13)

in the case where G is a matrix group we can write

A(2)
µ (x) = Ω(x)−1A(1)

µ (x)Ω(x) + Ω(x)−1∂µΩ(x). (B.14)

How it reads a gauge transformations if instead we adopt an active view?
The answer is easy, if σ : U → P is a local section, A := σ∗(ω) and φ : P → P is an automorphism
of G→ P →M, we can consider the transformation A 7→ σ∗ (φ∗ω) = (φ ◦ σ)∗ ω. Comparing now Aµ

with A
(1)
µ and σ∗ (φ∗ω) with A(2) it is clear that

Aµ(x)→ Ω(x)Aµ(x)Ω(x)−1 + Ω(x)∂µΩ(x)−1. (B.15)

B.5 Analogies between (M, g) and O (M)

B.5.1 Linear Connection and Connection one-form

At this point we can specialize to the case of the bundle of orthonormal frames O (M) on a dif-
ferentiable manifold M, where M is thought as spacetime. We have already established the relation
between the metric g of a (pseudo-)Riemannian manifold and the tetrads ei, we could ask then which is
the relation between the Levi-Civita connection (defined on (M, g)) and the corrispondent connection
one-form on O (M).
In order to do that we begin by recalling that, if M is a differentiable manifold, a linear connection
on M is a map:

∇ : T (M)× T (M) −→ T (M)

(X , Y ) 7−→ ∇XY
(B.16)
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which is R-linear in the second argument, C∞-linear in the first one and that satisfies the Leibniz rule.
Using local coordinates

(
x1, ..., xm

)
on U ⊂ M we have that ∇∂i∂j = Γkij∂k (summation of repeated

indices implied), Γkij are called the Christoffel symbols of the linear connection ∇ and determine
uniquely the connection. There is another equivalent definition of a linear connection, that states that
a linear connection ω on M is a T (M)-valued one-form, locally it is represented by a matrix of one-
forms as follows: (ω)kj = Γkijdx

i. In the context of (pseudo-)Riemmanian manifolds it is known that
it exists a unique linear connection symmetric and compatible with the metric, called the Levi-Civita
connection; in this case it is possible to show that the relation between Γkij and (ω)kj is given by:

g (∇Xei, ej) = ωki (X)ηkj = ωij(X), (B.17)

where ei are the tetrads. Let’s see why it is so: from ∇Xei = ωki (X)ek follows that ∇ρei = ωkj (∂ρ)ek,
thus

(∇ρei)µ = ∂ρe
µ
i + Γµρσe

σ
i = ωkj (∂ρ)e

µ
k , (B.18)

because gµνe
µ
ke
ν
j = eµkejµ = ηkj . Finally we get:

ωij (∂ρ) = (∂ρe
µ
i ) ejµ + Γµρσe

σ
i ejµ. (B.19)

On the other hand we have that

g (∇ρei, ej) = gµν (∇ρei)µ eνj = gµν
(
∂ρe

µ
i + Γµρσe

σ
i

)
eνj =

= (∂ρe
µ
i ) ejν + Γµρσe

σ
i ejµ

(B.20)

from which it is clear that (B.17) holds.
Obviously, it is possible to write the Christoffel symbols in terms of the tetrads, it is sufficient to
substitute in Γρµν = 1

2g
ρα (∂µgνα + ∂νgµα − ∂αgµν) the expression gµν = eiµe

j
νηij , in doing so we find

an expression of ωij solely in terms of ei.
The conclusion is that we deal with the bundle of orthonormal frames on M in place of a (pseudo-
)Riemannian manifold (M, g). In physics, the metric represents the gravitational field and the inde-
pendent components of gµν are 10, that equals the sum of the indepenent components of ηij (6) and
ei (4).
The connection one-form ω on O (M) is often called spin connection, because one has in mind the
G-principal bundle with G = Spin(3, 1) ∼= SL(2,C), i.e. the universal cover of SO(3, 1). However, we
know that homomorphic Lie groups have isomorphic Lie algebras, in this case so(3, 1) ∼= sl(2,C), then
the connection one-form doesn’t change.

B.5.2 Torsion and Curvature

At this point we want to introduce another very important concept: the curvature of a connection.
In particular, we shall focus our attention on the Levi-Civita connection, which, as remarked earlier,
is the unique linear connection on a Riemannian manifold that is compatible with the metric and
symmetric (i.e with null torsion).
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Let’s begin therefore by recalling how it is defined the torsion of a linear connection ∇:

τ : T (M)× T (M)→ T (M) , τ (X,Y ) := ∇XY −∇YX − [X,Y ] , (B.21)

it is easily verified that τ is C∞ (M)-linear in all the variables and so it can be regarded as a tensor
field τ ∈ T 2

1 (M), furthermore τ is antisymmetric.
We have already established the relation between a linear connection onM and a connection one-form
on the bundle of orthonormal frames, we would like to accomplish the same goal regarding the torsion.
In order to do so we choose local coordinates {x1, ..., xm}, the torsion in coordinates reads:

τγαβ = (∇α∂β)γ − (∇β∂α)γ − [∂α, ∂β]γ = Γγαβ − Γγβα, (B.22)

furthermore, in terms of the tetrads ei, we have

τ (∂α, ∂β) = τγαβ∂γ = τγαβe
i
γei = T iαβ, (B.23)

where we have defined T iαβ := τγαβe
i
γ =

(
Γγαβ − Γγβα

)
eiγ . It happens that T iαβ are the components of

the following 2-form:

T i := Γγµνe
i
γdx

µ ∧ dxν . (B.24)

Thus, the information on the torsion τ is equally contained in the 2-forms T i, i = 1, ..., 4. At this
point we seek an expression of T i purely in terms of the tetrads and the connection one-form ω on
O (M).
Firstly, we observe that dxµ = eµj e

j , dxν = eνke
k, then:

T i = Γγµνe
i
γe
ν
k

(
ej ∧ ek

)
, (B.25)

recalling eq. (B.19) we notice that:

Γγµνe
i
γe
ν
k = ωik (∂µ)− (∂µe

α
k ) eiα, (B.26)

from which

T i = ωik (∂µ) eµj

(
ej ∧ ek

)
− (∂µe

α
k ) eiαe

µ
j

(
ej ∧ ek

)
=

= eµj ω
i
k (∂µ)

(
ek ∧ ej

)
+
(
∂µe

i
α

)
eαk e

µ
j

(
ej ∧ ek

)
,

(B.27)

where we used the fact that (∂µe
α
k ) eiα = ∂µ

(
eαk e

i
α

)
− eαk∂µeiα = ∂µ

(
ηik
)
− ∂µeiαeαk .

Now the last steps:

eµj ω
i
k (∂µ) ek = ωij , (B.28)

in fact eµj ω
i
k (∂µ) ekν = ωij (∂ν) is true since eµj e

k
ν = ηkj , as one can easily verify.

Finally we observe that:

dei = d
(
eiαdx

α
)

= ∂µe
i
αdx

µ ∧ dxα = ∂µe
i
αe
µ
j e
α
k

(
ej ∧ ek

)
, (B.29)
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thus we can rewrite T i as follows:

T i = dei + ωij ∧ ej . (B.30)

Eq. (B.30) is the expression of the torsion of the connection one-form ω on O (M).
From the Riemannian geometry it is known that it exists a unique linear connection which is compat-
ible with the metric and symmetric.
The fact that ∇ is compatible with the metric is already implicitly contained in the fact that ωij is
antisymmetric, in fact from g (∇Xei, ej) = ωij we deduce that 0 = X (g (ei, ej)) = ∇X (g (ei, ej)) =
g (∇Xei, ej) + g (ei,∇Xej), thus ωij being antisymmetric (a necessary condition since ω is a sl (2,C)-
valued one-form) is equivalent to the fact that ∇ is compatible with the metric.
If, in addition to this, τ (X,Y ) = 0 ∀X,Y ∈ T (M) then ∇ is the Levi-Civita connection, equiva-
lently, if T i = 0 ∀i = 1, ..., 4 then ω is the Levi-Civita connection one-form on O (M).

It is known from GR that the curvature of the Levi-Civita connection is related to the gravita-
tional force; in gauge theories, similarly, the curvature of a connection one-form is associated with the
gauge interaction. In the tetrad-connection formalism GR resembles a gauge theory, for this reason
we attempt to establish a relation between the Riemann tensor R ∈ T 3

1 (M) defined by

R (X,Y, Z) := RXY (Z,W ) := ∇X (∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z (B.31)

and the analogous of the curvature of a connection one-form.
Let’s give then the definition of curvature in this context: if ω is a k-form on P , the exterior covariant
derivative of ω is the horizontal (k + 1)-form defined by:

Dω := dω ◦ hor, (B.32)

that is, Dω (X1, X2, ..., Xk+1) = dω (horX1, ..., horXk), ∀X1, ..., Xk+1 vector fields on P .
If ω is a connection one-form on P the curvature 2-form of ω is defined by

G := Dω. (B.33)

We mention a very important result: if G = Dω is the curvature 2-form of ω then, ∀p ∈ P , we have
that:

Gp (X,Y ) = dωp (X,Y ) + [ωp (X) , ωp (Y )] ∀X,Y ∈ T (P) , (B.34)

where [ , ] denotes the Lie brackets in L(G).
Choosing a basis {E1, ..., EdimG} of L(G) we obtain that ω = ωaEa and then:

Ga = dωa +
1

2
Cabcω

b ∧ ωc, (B.35)

where Cabc are the structure contants of L(G) with respect ot the basis {E1, ..., EdimG}.
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As already done previously, we can find what the curvature looks like when we consider its pullback
by a local section. Let then σ : U → P be a local section, A := σ∗ω the local representative of ω,
F := σ∗G the local representative of G. From the properties of the pull back it follows that:

F a = dAa +
1

2
CabcA

b ∧Ac. (B.36)

Introducing local coordinates on U ⊂M we can write:

F aµν =
1

2

(
∂µA

a
ν − ∂νAaµ + CabcA

b
µA

c
ν

)
, (B.37)

which is the familiar expression of the field strength found in gauge theories. It’s not difficult, in this
context, to prove the Bianchi identity DG = 0, in fact, from DGp (X,Y, Z) = dGp (horX, horY, horZ)
it’s enough to apply the definition of external differential and notice thatGp (horX, horY ) = 0 ∀X,Y ∈
T (P ). At this point, we choose as a basis of sl (2,C) the set {EIJ} of the antisymmetric matrices such
that ω = ωIJEIJ and:

[EKL, EMN ] = (ηKMηLN − ηLMηKN )IJ EIJ . (B.38)

Then we notice that, since (ηKMηLN )IJ = (ηKM )IP (ηLN )PJ = ηIKηMP η
P
L η

J
N = ηIKηMLη

J
N , we have

(ηKMηLN )IJ ωKM ∧ ωMN = ωIM ∧ ωMJ , for this reason the curvature can be written as:

F IJ = dωIJ + ωIK ∧ ωKJ . (B.39)

Now we want to find the relation between R and F . Starting from (B.39) it is possible to show that
(after long and painful calculations)

Rµνρσ = eµI e
J
νF

I
Jρσ, (B.40)

or, equivalently,

F IJ = eIµe
J
νR

µν
ρσdx

ρ ∧ dxσ. (B.41)

We recall that the Ricci tensor is obtained by contracting the first and the third indeces of the Rie-
mann tensor:

Rνσ = Rµνµσ = eµI e
J
νF

I
Jµσ, (B.42)

from which it follows that the Ricci scalar is given by:

R = gνσRνσ = gνσeµI e
J
νF

I
Jµσ = eµI e

σ
JF

IJ
µσ =

(
F IJ

)
IJ
. (B.43)

The last equality is due to the fact that:

F IJ =
1

2
F IJµσ dx

µ ∧ dxσ =
1

2
F IJµσ e

µ
Ke

σ
L

(
eK ∧ eL

)
=

1

2
F IJKL

(
eK ∧ eL

)
(B.44)
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where, again, the last equality holds by the very definition of differential form, F IJKL are the com-
ponenents of the 2-form F IJ in the basis of the cotetrads eI . With the intention of writing the
Einstein-Hilbert action we observe that:

det (gµν) = det
(
eT ηe

)
µν

= det2(e)det(η) = −det2(e), (B.45)

from which it follows that g := det (gµν) = −det2(e) =: −e2 and so
√
−g = |e|. Finally we notice that

εIJKLe
I ∧ eJ ∧ FKL =

1

2
εIJKLF

KL
MNe

I ∧ eJ ∧ eM ∧ eN =

=
1

2
εIJKLε

IJMNFKLMN |e|d4x =

= −
(
δMK δ

N
L − δML δNK

)
FKLMN |e|d4x =

= −2|e|Rd4x,

(B.46)

thanks to the fact that

eI ∧ eJ ∧ eM ∧ eN = eIµe
J
ν e
M
ρ e

N
σ dx

µ ∧ dxν ∧ dxρ ∧ dxσ =

= eIµe
J
ν e
M
ρ e

N
σ ε

µνρσd4x =

= εIJMN |e|d4x.

(B.47)

If we define now Tr (e ∧ e ∧ F ) := εIJKLe
I ∧ eJ ∧ FKL we can write the Einstein-Hilbert action SEH

as follows:

SEH =
1

16πG

∫
d4x
√
−gR = − 1

32πG

∫
Tr (e ∧ e ∧ F ) . (B.48)

In this form SEH is a functional of e and ω.

B.6 Holonomy

In order to approach the definition of holonomy it is necessary to explain what is meant by parallel
transport on a principal bundle. The idea is to find a curve that lets us move from one fiber to the
other, we have already seen that π∗ : HpP → Tπ(p)M is an isomorphism, then for each vector field

X ∈ T (M) it exists a unique vector field on P , denoted as X↑ such that, ∀p ∈ P , we have

(a) π∗

(
X↑p

)
= Xπ(p)

(b) ver
(
X↑p

)
= 0 ,

(B.49)

X↑ is called the horizontal lift of X. Intuitively the picture is quite clear: the integral curve onM of X
is lifted to a curve on P which does precisely the job we are looking for. Indeed, we can define the hor-
izontal lift of a curve α : [a, b]→M as the curve α↑ : [a, b]→ P such that π

(
α↑(t)

)
= α(t), ∀t ∈ [a, b]

and that is horizontal, i.e. ver
[
α↑∗
(
d
dt

)]
= 0. It is possible to show that ∀p ∈ π−1{α(a)} ⊂ P it exists
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a unique horizontal lift of α such that α↑(a) = p. As usual, it is useful to find an explicit expression
for α↑, which will naturally contain the connection one-form ω. In order to do so we can follow this
line of reasoning: let’s suppose that β : [a, b] → P is a lift of α (not necessarily horizontal), that
is, π (β(t)) = α(t) ∀t ∈ [a, b] (thus the vector field β∗

(
d
dt

)
will have nonzero vertical and horizontal

components). Then, it exists a unique function g : [a, b] → G such that α↑(t) = β(t)g(t) (because,
again, the action of G on P is free). It is worth considering the following factorisation:

[a, b]
β×g−−→ P ×G δ−→ P

t 7→ (β(t), g(t)) 7→ β(t)g(t)
(B.50)

in this way (see [1], page 265, for further specifications), since ω
(
α∗
(
d
dt

))
= 0, we find that

0 = Adg(t)−1

(
ωβ(t)

(
β∗

(
d

dt

)))
+ Ξg(t)

(
g∗

(
d

dt

))
, (B.51)

from which it follows that, for a matrix Lie group G,

0 = g(t)−1ωβ(t)

(
β∗

(
d

dt

))
g(t) + g(t)−1dg

dt
. (B.52)

This is the differential equation that determines the function g(t), which turns the (general) lift β
into a horizontal lift; g(t) clearly depends on ω. Sometimes the function g(t) is also called the parallel
transport matrix.
Our next goal is to find g(t), namely to resolve the differential equation (3.52). Before doing so, we
have to make a choice on the function β, because up to now it is a generic lift of α. A natural choice is
given by a local section of P , σ : U → P , we recall that σ is needed also to have a local representative of
ω, i.e. to deal with a Yang-Mills field. Let then be β(t) := σ (α(t)), from which β∗

(
d
dt

)
= σ∗

(
α∗
(
d
dt

))
,

then ωβ(t)

(
β∗
(
d
dt

))
= (σ∗ω)α(t)

(
α∗
(
d
dt

))
and σ∗ = ωU was named A (the Yang-Mills field).

With this notation eq. (3.52) becomes:

0 =
m∑
µ=1

g(t)−1Aµ (α(t)) g(t)
dxµ (α(t))

dt
+ g(t)−1dg(t)

dt
, (B.53)

where xµ are local coordinates on U ⊂ M. Choosing initial conditions on t 7→ g(t) as g(a) = g0 ∈ G
we get:

g(t) = g0 −
∫ t

a
dsAµ (α(s)) α̇µ(s)g(s), (B.54)

which admits a solution in terms of the path-ordered integral:

g(t) =

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
g0 :=

(
1−

∫ t

a
dsAµ (α(s)) α̇µ(s)

+

∫ t

a
ds1

∫ s1

a
ds2Aµ1 (α(s))Aµ2 (α(s)) α̇µ1(s)α̇µ2(s) + ...

)
g0.

(B.55)
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Finally, we can conclude that the horizontal lift α↑ is expressed, locally, in terms of σ by:

α↑(t) = σ (α(t))

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
g0. (B.56)

A word about terminology, in LQG the function g(t) is often referred to as the holonomy, though
matematically speaking that’s an abuse of language, as we shall see later.
Summarizing, we have seen that, in order to move from one fiber to another, we have to lift a curve
on the base manifold in an horizontal fashion. The result of this operation depends on the connection
one-form (even in the context of Riemannian manifolds the parallel transport depends on the Levi-
Civita connection), since we are interested in a local expression we use a local section to lift the curve
and to pullback the connection.

It is very important to know how the function g(t) changes if A is subjected to an active gauge
transformation, i.e. when Aµ(x) 7→ Ω(x)Aµ(x)Ω(x)−1 +Ω∂µΩ(x)−1. To see this, we shall consider Eq.
(B.53) (adopting a compact notation):

0 = g−1ΩAµΩ−1gα̇µ + g−1Ω∂µΩ−1gα̇µ + g−1ΩΩ−1dg

dt
, (B.57)

now we rewrite

g−1ΩΩ−1dg

dt
=g−1Ω

d

dt

(
Ω−1g

)
− g−1Ω

(
d

dt
Ω−1

)
g

=g−1Ω
d

dt

(
Ω−1g

)
− g−1Ω∂µΩ−1gα̇µ,

(B.58)

inserting (B.58) back into (B.57) we get:

0 = g−1ΩAµΩ−1gα̇µ + g−1Ω
d

dt

(
Ω−1g

)
, (B.59)

denoting with g̃(t) = Ω−1 (α(t)) g(t), finally we obtain:

0 = g̃−1(t)Aµ (α(t)) g̃(t)−1 + g̃(t)−1dg̃(t)

dt
. (B.60)

Eq. (B.60) admits a solution in terms of a path-ordered integral, as seen before,

g̃(t) =

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
g̃(a), (B.61)

from which

g(t) = Ω (α(t))

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
Ω−1 (α(a)) g0. (B.62)

From this expression it’s clear how the path-ordered integral transforms under a gauge transformation:

Pexp−
∫ t

a
dsAµ (α(s)) α̇µ(s) 7−→ Ω (α(t))

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
Ω−1 (α(a)) , (B.63)
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it is often said that the path-ordered integral transforms homogeneously.
If G is a matrix group and α is a closed loop, i.e. α(a) = α(b), it is clear that the function

Wα[A] := tr

(
Pexp−

∮
α
dsAµ (α(s)) α̇µ(s)

)
(B.64)

is gauge invariant, it is called the Wilson loop.
At this point we can give a precise definition of what is meant by parallel transport, intuitively we
want to render substantial the concept of a horizontal curve in P , in such a way that a vector field on
P would be transported from a fibre to another without being ”rotated” along the fibre.
Let α : [a, b]→M be a curve in M; the parallel transport along α is the map

τ : π−1 ({α(a)})→ π−1 ({α(b)}) , p 7→ α↑(b), (B.65)

where α↑ is the unique horizontal lift of α which passes through p when t = a.
A special case is when α is a closed curve, i.e a loop, inM. In general the horizontal lift of a loop has
not to be closed, therefore we get a non-trivial map from π−1 ({α(a)}) onto itself given by

p 7−→ p

(
Pexp−

∮
α
dsAµ (α(s)) α̇µ(s)

)
. (B.66)

It is clear from (B.66) that we can associate an element of G (which is given by the path-ordered
integral) to each loop in M, that is we have a natural map from the loop space of M into G. The
subgroup of G whose elements are obtained in this way is called the holonomy group of the bundle at
the point α(0) ∈M.
We see therefore that the word ”holonomy” is referring to loops, while in LQG terminology it is
referring to a curve (more precisely to an edge).
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Appendix C

Symplectic Geometry

The goal of this section is to introduce the mathematical tools used in Hamiltonian Mechanics and
to present the Poisson structure of the theory.

C.1 Symplectic Algebra

The study of Hamiltonian Mechanics is based on the fundamental concept of symplectic manifold.
To achieve that, we enlight first what we mean by symplectic structure on a vector space.

A symplectic tensor is an antisymmetric covariant 2-tensor which is non degenerate.

A couple (V, ω) where V is a vector space and ω ∈
∧

2 V is a symplectic tensor is said symplectic
vector space.
To give an example let V be a 2n-dimensional vector space, we denote a basis of V with {v1, w1, ..., vn, wn},
whose dual basis of V ∗ is given by {v1, w1, ..., vn, wn}. Let ω ∈

∧
2 V be given by

ω =
n∑
j=1

vj ∧ wj , (C.1)

then ω is symplectic, in fact

ω (vi, wj) = −ω (wj , vi) = δij ,

ω (vi, vj) = −ω (wi, wj) = 0,
(C.2)

for each 1 ≤ i, j ≤ n. Then, if we choose a vector v =
∑

i

(
aivi + biwi

)
∈ V such that ω(v, w) =

0, ∀w ∈ V we have that:

0 = ω(v, vj) = −bj ,
0 = ω(v, wj) = aj ,

(C.3)

for 1 ≤ j ≤ n, thus v = 0 and ω is non-degenerate.
The example above is very important, because one can show that if (V, ω) is a symplectic vector space
then the dimension of V is even and it exists a basis of V with respect to which ω has the form given
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by (4.1).
Let’s consider now a subspace W ⊂ V , the symplectic complement of W is the subspace

W⊥ = {v ∈ V | ω(v, w) = 0, ∀w ∈W}. (C.4)

In general, it’s not true that W ∩ W⊥ = {0}, in fact, if dimW = 1 then W ⊆ W⊥ because ω is
antisymmetric.
Then we have the following classification of subsets of V :

• W is symplectic if W ∩W⊥ = {0};

• W is isotropic if W ⊆W⊥;

• W is coisotropic if W⊥ ⊆W ;

• W is Lagrangian if W = W⊥.

From these definitions it is not difficult to show the following properties:

(i) dimW + dimW⊥ = dimV ;

(ii)
(
W⊥

)
= W ;

(iii) W symplectic ⇔ ω|W×W non-degenerate;

(iv) W isotropic ⇔ ω|W×W = 0;

(v) W Lagrangian ⇔ ω|W×W = 0 and dimV = 2dimW .

C.2 Symplectic Manifolds

At this point we can generalise these considerations to the context of differentiable manifolds,
where the role of the vector space V is naturally given by TxM, and the symplectic tensor ω is now
expressed in terms of differential forms. More precisely:
a symplectic form on a differentiable manifold M is a 2-form ω ∈ A2(M) which is closed and non-
degenerate, therefore ωp is a symplectic tensor ∀p ∈M.

A symplectic manifold is a pair (M, ω) where M is a differentiable manifold and ω ∈ A2(M) is
a symplectic form.
For each point p ∈ M we have that (TpM, ωp) is a symplectic vector space, therfore a symplectic
manifold has even dimension (dimTpM = dimM).
Not every differentiable manifold admits a symplectic structure, in fact it is possible to show that
H2 (M) 6= 0 ifM is symplectic and compact, this result comes from the fact that starting from ω one

can build a volume form onM, which is given by Ωω := 1
n!(−1)

n(n−1)
2 ωn (where ωn := ω ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸

n times

),
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then by applying Stoke’s theorem one can prove it.

Now we deal with an important type of functions between symplectic manifolds:

a symplectomorphism (or canonical transformation) between symplectic manifolds (M, ω) and
(
M̃, ω̃

)
is a diffeomorphism F :M→ M̃ such that F ∗ω̃ = ω.

As one may expect, the types of subspaces of a symplectic vector space admit a generalization to
the case of symplectic manifolds, this is done at the level of fibres.
If (M, ω) is a symplectic manifold and N is another differentiable manifold, an immersion F :M→N
is called symplectic (isotropic, coisotropic, Lagrangian, respectively) if dFp (TpN ) is a symplectic
(isotropic, coisotropic, Lagrangian, respectively) subspace of TF (p)M for each p ∈ N .
Therefore, if F is symplectic then F ∗ω is a symplectic form on N , in fact

(F ∗ω)p (v1, v2) = ωF (p) (dFp(v1), dFp(v2)) , ∀v1, v2 ∈ TpN . (C.5)

We saw at the beginning of the section that it is always possible to find a basis on a symplectic vector
space such that (C.1) holds. Thanks to the Darboux theorem it is possible to generalise this result to
the context of differentiable manifolds:
let (M, ω0) be a 2n-dimensional symplectic manifold, then for each p ∈ M is possible to find a local
chart (V, ϕ) in p with ϕ =

(
x1, y1, ..., xn, yn

)
such that

ω0|V =
n∑
i=1

dxi ∧ dyi. (C.6)

The local coordinates
(
x1, y1, ..., xn, yn

)
are called Darboux coordinates.

An important application frequently used in physics concern the cotangent bundle, in fact, on a cota-
gent bundle exists a canonical symplectic form.
Let M be a differentiable manifold and define a canonical one-form θ ∈ A1 (T ∗M) on the cotangent
bundle π : T ∗M→M, called the tautologic form, by

θξ = π∗ξ ∈ T ∗ξ (T ∗M) , ∀ξ ∈ T ∗M. (C.7)

Let’s choose a local chart (U,ϕ) on M, with coordinates ϕ =
(
x1, ..., xn

)
, if p ∈ U we can write

ξp = ξidx
i|p and a local chart

(
π−1(U), ϕ̃

)
on T ∗M is given by ϕ̃ (ξp) =

(
x1, ..., xn, ξ1, ..., ξn

)
.

These coordinates induce the local frame on T (T ∗M) given by
{

∂
∂x1

, ..., ∂
∂xn ,

∂
∂ξ1

, ..., ∂
∂ξn

}
and the

respective dual frame on T ∗ (T ∗M) given by
{
dx1, ..., dxn, dξ1, ..., dξn

}
.

In these coordinates the projection π : T ∗M → M is represented by ϕ ◦ π ◦ ϕ̃−1(x, ξ) = x, thus we

have that dπ
(
∂
∂xi

)
= ∂

∂xi
and dπ

(
∂
∂ξi

)
= 0

∀i = 1, ..., n, but then π∗dxj = dxj (with a slightly abuse of notation) and so in local coordinates the
tautologic one-form reads:

θξ = ξidx
i|ξ. (C.8)

Starting from (C.8) we can consider the 2-form ω ∈ A2 (T ∗M) defined by:

ω = dθ. (C.9)
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This form is closed, being exact, and in local coordinates is given by

ω = dξj ∧ dxi, (C.10)

and so it is clearly non-degenerate (as already seen in the case of symplectic vector spaces), then it
defines a symplectic form on T ∗M.
A word about notation, usually in physicsM is the configuration space, T ∗M is then the phase space,
local coordinates on T ∗M are denoted with

(
qi, pi

)
rather than

(
xi, ξi

)
.

C.3 Hamiltonian Fields and Poisson structure

We address at this point the topic of Hamiltonian fields and Poisson structure.
We recall a general result:
let V,W be two finite-dimensional (real) vector spaces and Φ : V ×W → R a bilinear form, then Φ is
non-degenerate if and only if the linear applications Φ[ : V →W ∗ and Φ] : W ∗ → V are isomorphisms.
This means that ω[ : TM → T ∗M is the isomorphism induced by ω given by ω[(v) = ω(v, ·) and

ω] =
(
ω[
)−1

. A similar result holds in the context of (pseudo-)Riemannian manifolds, where the
isomorphisms are induced by the metric.

For each function f ∈ C∞ (M) the Hamiltonian vector field associated to f is defined by:

Xf := −ω# (df) , (C.11)

in other terms Xfyω = −df1, or equivalently ω (Xf , Y ) = −df(Y ) = −Y (f) for each Y ∈ T (M).
Viceversa, a vector field X ∈ T (M) is Hamiltonian if exists a function f ∈ C∞ (M) such that
X = Xf , and is locally Hamoltanian if each p ∈M has a neighbourhood on which X is Hamiltonian.

Furthermore, X ∈ T (M) is symplectic if ω is invariant on the flow of X, that is LXω = 0.
Finally, a Hamiltonian system is a triple (M, ω,H) where (M, ω) is a symplectic manifold and
H ∈ C∞ (M) is a function called the Hamiltonian of the system.
From the definition of Hamiltonian vector field we deduce that Xfyω is a closed one-form. From this,
and from the fact that LXω = d (Xyω) +Xy (dω), we see that a vector field is symplectic if and only
if is locally Hamiltonian.
Let’s see now what a Hamiltonian vector field associated to f ∈ C∞ (M) looks like in Darboux coor-
dinates: if (U,ϕ) is a local chart and ϕ =

(
q1, p1, ..., qn, pn

)
we have that:

Xf |U =
n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi

)
= (∂pif) ∂qi −

(
∂qif

)
∂pi ,

(C.12)

which follows from the definition of Xf and ω|U = dpi ∧ dqi.
1the contraction of ω ∈ An (M) by a vector field X ∈ T (M) is the function ιX : An (M) → An−1 (M) defined by

ιX(ω) (Y1, Y2, ..., Yk−1) := ω (Y1, Y2, ..., Yk−1, X), we use the notation Xyω in place of ιX(ω).
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In the context of symplectic manifolds it is possible to introduce a structure on the space C∞ (M)
that turns it into a Lie algebra, we are talking about Poisson brackets:
let (M, ω) be a symplectic manifold, f and g ∈ C∞ (M), the Poisson bracket between f and g is the
function {f, g} ∈ C∞ (M) defined by the following equivalent formulas:

{f, g} = ω (Xf , Xg) = −df (Xg) = −Xg(f). (C.13)

From (4.14) it si possible to show that the Poisson bracket is R-linear, antisymmetric and it satisfies
the Jacobi identity:

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0, (C.14)

furthermore, X{f,g} = [Xf , Xg], so there is a homomorphism between the Lie algebra of Hamiltonian
vector fields and the Lie algebra of C∞ (M).
Using Darboux coordinates we have:

{f, g} =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
. (C.15)

In particular, then, the Poisson brackets between the coordinate functions (thought as functions on
the domain U ⊂M of the local chart) are given by:

{qi, qj} = 0, {pi, pj} = 0, {pi, qj} = δji . (C.16)

In addition to this, we can notice that the set of symplectic vector fields is a Lie subalgebra of T (M),
this is a simple consequence of
L[X,Y ] = LXLY − LY LX ∀X,Y ∈ T (M); also, thanks to the Poisson brackets we have that
[Xf , Xg] = X{f,g} and so the set of Hamiltonian vector fields is a Lie subalgebra of the symplectic
vector fields.
There’s an interesting relation with the first cohomologic group of M, H1 (M), in fact we can sum-
marize what we have found in the following way:

• X symplectic ⇔ Xyω is closed;

• X Hamiltonian ⇔ Xyω is exact;

it’s clear then that the quotient of symplectic vector fields by the subspace of the Hamiltonian vector
fields is isomorphic, as a vector space (not as a Lie algebra), to H1 (M).
Therefore, if H1 (M) = 0 each local Hamiltonian vector field (then symplectic) is globally Hamilto-
nian.
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C.4 Symplectic structure of T ∗G

Our next goal is to achieve the symplectic structure of T ∗G, since it plays an important role in
the phase space of LQG. In order to do so we have to mention a few results concerning the Poisson
structure on L(G)∗.
We begin with the definition of a Poisson manifold:
a Poisson manifold is a pair (M, { , }), whereM is a differentiable manifold and { , } is a Lie algebra
structure on C∞ (M) which satisfies the following Leibniz rule:

{f, gh} = g{f, h}+ {f, g}h, ∀f, g, h ∈ C∞ (M) . (C.17)

A function between Poisson manifolds Φ :M→N is called a Poisson function if

Φ∗{f, g}N = {Φ∗f,Φ∗g}M ∀f, g ∈ C∞ (N ) . (C.18)

We notice that the function {f, ·} : C∞ (M) → C∞ (M) is a derivation and so defines a vector field
Xf ∈ T (M), given by:

Xf (g) = {f, g}, (C.19)

which recalls the Hamiltonian vector field associated to f (if M is a symplectic manifold).
Furthermore, we have that for each p ∈M:

{f, g}(p) = (Xf (g)) (p) = dgp (Xf ) = −dfp (Xg) , (C.20)

it is then clear that {f, g}(p) depends linearly on dgp and dfp.
Now, every element of T ∗pM can be written as dfp with f ∈ C∞ (M), then it exists a unique tensor

field (or bivector) Π ∈ T
(∧2 TM

)
such that:

{f, g} = Π (df, dg) ∀f, g ∈ C∞ (M) (C.21)

The tensor field Π ∈ T
(∧2 TM

)
is called Poisson tensor of (M{ , }), is a sort of analogue of a

symplectic form ω ∈ A2 (M).
Starting from the definition of Lie derivative of a tensor field it’s not diffiuclt to show that LXfΠ = 0,
thanks to the Jacobi identity of {, }.
In particular Π defines a (vertical) morphism of vector fibre bundles
Π[ : T ∗M→ TM defined by:〈

β,Π[(α)
〉

:= Π (α, β) ∀α, β ∈ A1 (M) , (C.22)

and also Π[ ◦ df = Xf , in fact:

〈dg,Π[ (df)〉 = Π (df, dg) = {f, g} = Xf (g). (C.23)

In the case where (M, ω) is a symplectic manifold we have that Π[ = ω] and there is a one-to-one
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corrispondence between symplectic forms and Poisson tensors.
Let’s see at this point the expression in local coordinates of the Poisson tensor.
Let (U,ϕ) be a local chart , ϕ =

(
x1, ..., xn

)
, we have that:

Π|U =
1

2
Πij∂i ∧ ∂j , (C.24)

from (C.22) follows that

{f, g} = Πij∂if∂jg, (C.25)

in particular:

Πij =
{
xi, xj

}
and {f, g} =

{
xi, xj

}
∂if∂jg. (C.26)

Furthermore, by eq. (C.22), every bivector field Π on M defines a bilinear antisymmetric map
{ , } : C∞ (M) × C∞ (M) → C∞ (M) which satisfies the Leibniz rule. It also satisfies the Ja-
cobi identity, thus yielding a Poisson structure, if and only if

Π (df, d (Π (dg, dh))) + Π (dg, d (Π (dh, df))) + Π (dh, d (Π (df, dg))) = 0 , (C.27)

for all f, g, h ∈ C∞ (M). In local coordinates it reads

Πil∂lΠ
jk + Πjl∂lΠ

ki + Πkl∂lΠ
ij = 0 . (C.28)

In practice, a Poisson manifold can be seen also as a pair (M,Π) where Π is a Poisson tensor on M.
To reach the Poisson structure of L(G)∗ we focus on a vector space V in place of a differentiable
manifold M.
So, let V be a real vector space, take the (algebrical) dual V ∗, we can identify V with TV and, con-
sequently, V ∗ with TV ∗.
Clearly, to each bivector field Π on V ∗ corresponds a map V ∗ →

∧2 V ∗ and Π is linear if this map
is linear. In this case ∀v, w ∈ V the function ξ 7→ Πξ(v, w) is linear and corresponds to an element
of V (because (V ∗)∗ ∼= V ), it is clear then that this element is associated to the pair (v, w), we can
therefore introduce a bilinear function [ , ] : V × V → V defined by:

〈ξ , [v, w]〉 = Πξ(v, w), ∀ξ ∈ V ∗. (C.29)

If, in addition to this, Π satisfies equation (C.28) we can see how this condition reflects on the bilinear
map [ , ]: the result is that [ , ] has to satisfy the Jacobi identity.
In particular, if f ∈ V ∗, we have that df ∈ T ∗ (V ∗) = (T (V ∗))∗ ∼= (V ∗)∗ ∼= V , from which:

Πµ (df, dg) = 〈µ, [df(µ), dg(µ)]〉 , ∀µ ∈ V ∗. (C.30)

To conclude, Poisson structures on V ∗ whose Poisson tensor is linear are in one-to-one corrispondence
with Lie algebra structures on V .
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What we have found turns useful when we analyze the case V = TeG ∼= L(G), thanks to what we
have shown is possible to introduce a Lie-Poisson structure on L(G)∗, in the following way:
let {e1, ..., en} be a basis of L(G)∗, the respective basis of L(G) is given by {e1, ..., en}, in this way we
have that:

v = viei, w = wjej , ξ = ξke
k

[v, w] = [viei, w
jej ] = viwj [ei, ej ] = viwjckijek,

(C.31)

where ckij are the structure constants with respect to the base {ek}.
The Poisson structure is given by (C.28), which in coordiantes reads:

Π (ei, ej) =
〈
ξke

k, clij

〉
= ξkc

l
ijδ

k
l = ξkc

k
ij , (C.32)

thus we have the following expressions:

Π (ξ) =
1

2
ξkc

k
ij

∂

∂ξi
∧ ∂

∂ξj
(C.33)

and

{f, g} (ξ) = ξkc
k
ij

∂f

∂ξi
(ξ)

∂g

∂ξj
(ξ). (C.34)

We observe now that on L(G) we can introduce an inner product defined by 〈A,B〉 := −tr (AB),
in this way it is possible to show that L(G) ∼= L(G)∗, the isomorphism being given by i : L(G) →
L(G)∗, A 7→ (i(A)) (B) = 〈A,B〉.
In this sense, we can introduce a Poisson structure on L(G).
Let’s consider the case L(G) = su(2): we choose the basis of su(2) given by {τ1, τ2, τ3}, where τi = − i

2σi
(σi are the usual Pauli matrices), in this way the structure constants are ckij = εkij .

Called Li the coordinates of the vector L = Liτi, we have that:

{Li, Lj} (L) = Lkεmnk
∂Li

∂Lm
∂Lj

∂Ln

= Lkεmnk δjmδ
j
n = εijk L

k.

(C.35)

We shall go on to deal with T ∗G.
First of all, we show that TG ∼= G× L(G), that is, TG is a trivial vector bundle whose fibre is L(G),
in order to do so we prove that the map

χl : G× L(G) −→ TG

(a , X) 7−→ χl(a,X) := (La)∗X
(C.36)

is a vector bundle isomorphism. We recall that la : G → G, b 7→ ab and (la)∗ (b) : TbG → TabG. We
proceed with the proof:
the map χl can be factorized as follows
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G× TeG
s0×j−−−−→ TG× TGyχl yo

TG
(µ)∗←−−−− T (G×G)

(C.37)

where µ : G×G→ G is the multiplication in G, s0 : G× TG is the null section and j : TeG→ TG is
the natural inclusion.
To see that (4.36) commutes it is sufficient to observe that:

(a,X)
s0×j7−−−→ ((a, 0), (e,X))

∼7−→ ((a, e), (0, X))
µ∗7−→ (a, (la)∗X) (C.38)

where the last one is true since µ : G × {e} → G, (a, e) 7→ ae = la(e), therefore µ∗(X) is given by
(la)∗(X) ∀X ∈ TeG.
Since each map is smooth it follows that χl is smooth, furthermore we have that

G× TeG
χl−−−−→ TGyπ1 yπ

G
idG−−−−→ G

(C.39)

as one immeditely verifies, thus χl is a vertical morphism of vector bundles.
Finally, χl is bijective because (la)∗ is an isomorphism and it is linear since (la)∗ is linear, therefore
χl is an isomorphism.
In a similar way it is possible to show that T ∗G ∼= G × L(G)∗, knowing that L(G) ∼= L(G)∗ we get
the following result: T ∗G ∼= G× L(G).
At this point we aim to find the symplectic structure on T ∗G.
We work with local coordinates, let (g, pg) ∈ T ∗G where pg = pµdg

µ; we denote with {eα} a basis
in L(G) and with {εα} the respective basis in L(G)∗. It is easy to show that lg defines left-invariant
vector fields eLα and left-invariant one-forms εαL on G in the following way:

eLα(g) := lg∗eα

εαL(g) := l∗g−1ε
α.

(C.40)

For the moment we denote with:

Lαβ(g, h) :=
∂(gh)α

∂gβ
, (C.41)

then we can write the field eLα as:

eLα(g) = Lµα(g, e)
∂

∂gµ
, (C.42)

analogously we get;

εαL(g) = Lαµ
(
g−1, g

)
dgµ. (C.43)
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This basis, as already shown for TG, allows us to introduce a canonical local trivialisation:

λ : T ∗G −→ G× L(G)∗

(g, pg = pµdg
µ) 7−→

(
g, πL = l∗g |epg = πLµ ε

µ
) (C.44)

where πLµ = pg
(
eLµ
)

= pνL
ν
µ(g, e).

A basis in T ∗x (T ∗G), where x = (gα, εαL) ∈ T ∗G is given by:{
εαL := Lαµ

(
g−1, g

)
dgµ, εLµ := dπLµ

}
. (C.45)

We know that on T ∗G there is a canonical one-form, i.e. the tautological one-form θ = pαdg
α, from

which we obtain the symplectic form

ω = dθ = dpα ∧ dgα. (C.46)

In our case we have then θ = πLµ ε
µ
L and

ω = εLµ ∧ ε
µ
L −

1

2
πLµf

µ
αβε

α
L ∧ ε

β
L, (C.47)

where fµαβ are the structure constants of the Lie algebra L(G) in the basis {eLα}. We recall also

that since εµL are left-invariant one-forms on a Lie group G, they satisfy the Cartan-Maurer equation

dεµL = −1
2ε
α
L ∧ ε

β
L.

The Hamiltonian vector field XA associated to a function A ∈ C∞ (T ∗G) is given by the equation
XAyω = −dA, we can split the components as follows:

Xµ
A := εµL (XA) = −dA

(
eµL
)

(XA)α := εLα (XA) = dA
(
eLα
)

+ πLµf
µ
αβdA

(
eβL

)
.

(C.48)

Let XB be the Hamiltonian vector field associated to B ∈ C∞ (T ∗G), the Poisson bracket between A
and B is the function given by {A,B} = ω (XA, XB), in coordinates it reads:

{A,B} = dA
(
eLα
) ∂B
∂πLα

− ∂A

∂πLα
dB
(
eLα
)

+
∂A

∂πLα
πLµf

µ
αβ

∂B

∂πLβ
. (C.49)

In particular, we obtain that:

{gα, gβ} = 0 , {gα, πLν } = Lαν (g, e)

and {πLµ , πLν } = πLαf
α
µν .

(C.50)

We want now rewrite these relations in a more compact and slightly different form.
From Lie group theory it is known that to each element of the Lie algebra A ∈ TeG corresponds a
left-invariant vector field LA ∈ L(G), clearly we have that LA(g) = (lg)∗A. If we consider a matrix
Lie group we can introduce a coordinate system by defining xij(g) := gij . In this coordinate system
we can write LAg as follows:

LAg =

n∑
i,j=1

(gA)ij
∂

∂xij
, (C.51)
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where LAg x
ij = (gA)ij are the components of LA in the chosen coordinates (recall eq. (A.3)).

Identifying L(G)∗ with L(G) we can associate to each πL ∈ L(G)∗ an element
−→
L ∈ L(G). Further-

more, the components Lαβ(g, e) defined in (C.40) become now (gA)ij as seen before, in particular, we

choose A = τ i, where {τ i} is a basis of TeG ∼= L(G).
Finally, considering the case G = SU(2), TeG = su(2), we obtain a clear expression of the Poisson
parentheses in (C.49):

{gij , gkl} = 0 , {gij , Lk} =
(
gτk
)ij

and {Li, Lj} = Lkεijk .

(C.52)

In a more compact way, and taking into account the fact that in LQG to each link of a boundary
graph is associated a SU(2) element, we can write an equivalent expression of the latter:

{Ul, Ul′} = 0 , {Ul, Lil′} = δll′Ulτ
i

and {Li, Lj} = δll′ε
ij
k L

k
l .

(C.53)

More precisely, let Γ be the boundary graph coming from the 2-complex associated to ∆∗ and let
G = SU(2) the gauge group. We denote with Γi the i-dimensional element of Γ (nodes, links, trian-
gles, tetrahedra).
The gauge potential corresponds to the pull-back (by a local section) of the principal connection on
the principal fibre bundle whose structure group is G = SU(2), it is approximated on the links of Γ
by the holonomy:

Γ1 −→ G

(x, y) 7−→ g(x,y) =

(
Pexp−

∫ b

a
dsAµ (α(s)) α̇µ(s)

)
,

(C.54)

where the curve α : [a, b]→M is the link between the spacetime points x and y.
The configuration space and the phase space are given by, respectively:

Q = GL and M = T ∗GL (C.55)

where L is the number of links in Γ.
Using the identifications T ∗GL ∼= (T ∗G)L and T ∗G ∼= G×L(G)∗ ∼= G×L(G), as seen before, we have
that the momentum conjugate to the gauge potential is given by the map

Γ1 −→ L(G)

(x, y) 7−→ A(x,y),
(C.56)

We have seen that local gauge transformations act on the holonomy in the following way:

g′(x,y) = hxg(x,y)h
−1
x , (C.57)

this expression defines an action of GN on Q (N is the number of nodes in Γ).
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Thanks to the identifications above the lift of this action on M = T ∗Q = GL × L(G)L is given by:

A′(x,y) = Ad(hx)A(x,y). (C.58)
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Appendix D

Haar Measure

In this section we briefly introduce the concept of measure with the goal of defining a Haar mea-
sure on a Lie group G, specifically we are interested in G = SU(2). The presence of a Haar measure
allows us to introduce a scalar product on L2 (SU(2)) and, consequently, on L2

(
SU(2)L

)
, which is

the starting point to construct the Hilbert space of LQG.

D.1 Positive Measure

Therefore, we begin by giving the definition of a σ-algebra: let X be a set and M a collection of
subsets of X, M is a σ-algebra if

(i) X ∈M

(ii) A ∈M⇒ Ac ∈M

(iii) A =

∞⋃
n=1

An, An ∈M ∀n⇒ A ∈M,

(D.1)

if it is so, X is said measurable space and the elements of M are called measurable sets.
In the case where X is a topological space the following result holds: it exists a minimal σ-algebra B
in X such that each open set in X belongs to B, the elements of B are called Borel sets of X. This
fact is true since there is a theorem which states that for each collection of subsets of X is always
possible to find a σ-algebra that contains it, then, in particular, if (X, τ) is a topological space, τ is a
topology on X and so a collection of open subsets of X.
We move on now and give the definition of measure: a (positive) measure is a function µ defined on
a σ-algebra M,

µ : M→ [0,∞] (D.2)

which is additive measurable, i.e. if {Ai} is a countable family of disjoint sets of M then

µ

( ∞⋃
n=1

An

)
=

∞∑
i=0

µ (Ai) . (D.3)
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D.2 Left-Invariant Measure on a group

We consider a compact Lie group G, since we are interested in the case G = SU(2), which is
compact. We recall that if G is a Lie group then the multiplication is a smooth function, that is

m : G×G→ G

(g, h) 7→ gh
(D.4)

is smooth, which means that the left and right multiplication are smooth too:

lg : G→ G

h 7→ gh ∀g, h ∈ G,
(D.5)

rg : G→ G

h 7→ hg ∀g, h ∈ G.
(D.6)

In addition to this lg and rg are invertible with smooth inverse, that is they are diffeomorphisms
∀g ∈ G.
At this point we can tell what we mean by a Haar measure on a group G: a left Haar measure on a
group G is a positive measure µlH on the Borel σ-algebra in G with the following properties:

(i) is locally finite, that is each point in G possesses a neighbourhood with finite measure;

(ii) is left-invariant, i.e.:

µ (gE) = µ(E) (D.7)

∀g ∈ G and for each Borel set E ⊂ G, where gH = {gh|h ∈ H}, H ⊂ G.
Now that we have defined what a Haar measure is, let’s see how we can contruct one on a Lie group
G, obviously differential forms will be involved, since they play a crucial role in integration theory on
a differentaible manifold.

We have already seen that a left-invariant one-form onG has to satisfy the Cartan-Maurer equation:

dωα +
1

2

∑
β,γ

Cαβγω
β ∧ ωγ = 0, ∀α = 1, ..., n = dimG (D.8)

where {ω1, ω2, ..., ωn} is a basis of L∗(G), dual of the basis {E1, E2, ..., En} of L(G) ∼= TeG, such that
ωα(Eβ) = δαβ .
We can define in a natural way a n-form on G by means of

η := f ω1 ∧ ω2 ∧ · · · ∧ ωn, f ∈ C∞(G). (D.9)

We want to prove that η ∈ An(G) is a volume form on G, that is, a nowhere vanishing n-form on G,
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and also that η is left-invariant, i.e.:

l∗gη = η, ∀g ∈ G. (D.10)

We begin with the latter:(
l∗gη
)
h

= l∗g
(
f ω1 ∧ ω2 ∧ · · · ∧ ωn

)
h

= f(gh)
(
l∗gω

1
)
h
∧
(
l∗gω

2
)
h
∧ · · · ∧

(
l∗gω

n
)
h

=

= f(gh)ω1
gh ∧ ω2

gh ∧ · · · ∧ ωngh = ηgh
(D.11)

which is true since ωα are left-inariant ∀α = 1, ..., n.
Now, let v1, v2, ..., vn ∈ TgG linearly independent, we know that we can express them as vi = lg∗Ai,
for a certain Ai ∈ TeG, therefore:

η (v1, v2, ..., vn) = ω1 ∧ ω2 ∧ · · · ∧ ωn (v1, v2, ..., vn)

= ω1 ∧ ω2 ∧ · · · ∧ ωn (lg∗A1, lg∗A2, ..., lg∗An)

= l∗g
(
ω1 ∧ ω2 ∧ · · · ∧ ωn

)
(A1, A2, ..., An)

= ω1 ∧ ω2 ∧ · · · ∧ ωn (A1, A2, ..., An) = detA,

(D.12)

where A is the matrix of the basis change from {E1, E2, ..., En} to {A1, A2, ..., An}. Since detA 6= 0,
because A is invertible, we have that η is nowhere vanishing on G, thus η is a volume form on G.
Integrating functions against this form we obtain a Haar measure.
We are also interested under which circumstances a Haar measure is right-invariant, to see this we
proceed as follows:
let µ be a Haar measure on G, we define a new measure rg(µ) by
rg(µ)(E) := µ (rg(E)), ∀g ∈ G, E ⊂ G and rg is the right multiplication by g. It is not difficult to
show that rg(µ) is left-invariant, in fact:

rg(µ) (lhE) = µ (rglhE) = µ (lhrgE)

= µ (rgE) = rg(µ) (E) ,
(D.13)

since lh and rg commute ∀g, h ∈ G, and so rg(µ) is given by a left-invariant n-form. However the
n-form which describes rg(µ) could be different from the n-form that describes µ, rg(µ) and µ could
clearly differ by a multiplicative constant.
Therefore, ∀g ∈ G, it exists a constant χ(g) such that rg(µ) = χ(g)µ, the function χ : G → R is said
modular function of G.
A group G is called unimodular if χ(g) = 1, ∀g ∈ G. It follows that if G is unimodular we have that
rg(µ) = µ and so µ is right-invariant, too.

Using the description of a Haar measure in terms of differential forms it is possible to show that
if G is a connected Lie group then G is unimodular if and only if detAdg = 1 ∀g ∈ G or, equivalently,
if and only if tr (adX) = 0,∀X ∈ TeG ∼= L(G).
To prove this result we begin by showing the equivalence mentioned above: since etr(adX) = deteadX =
detAdeX , then tr(adX) = 0 if and only if detAdeX = 1, ∀X ∈ TeG. Furthermore, since G is connected
we have that g = eX1eX2 · · · eXm for a certain number of Xi ∈ TeG, thus
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detAdg = det (AdeX1eX2 ···eXm )

= det (AdeX1AdeX2 · · ·AdeXm )

= det (AdeX1 ) det (AdeX2 ) · · · det (AdeXm ) = 1,

(D.14)

where the second equality comes from the fact that Ad is a (linear) representation of G.
To prove the proposition we make the following observation:
let Cg : G → G, h 7→ ghg−1 be the conjugate action, recalling that Adg : TeG → TeG is defined by
Adg := (Cg)∗, we introduce the measure Cgµ defined by (Cgµ) (E) := µ (CgE) and we show that it is
left-invariant:

(Cgµ) (E) = µ (CgE) = µ
(
lg ◦ rg−1E

)
= µ

(
rg−1E

)
=
(
rg−1µ

)
(E).

(D.15)

Therefore, since rgµ is left-invariant ∀g ∈ G, Cgµ is left-invariant, too.
In addition to this, µ is Cg-invariant if and only if µ is right-invariant, as it is evident from (D.15).
Let’s see at this point how we can express in terms of differential forms the requirement of Cg invari-
ance.
Since Cgµ is left-invariant it is sufficient to prove it for e ∈ G, doing so we obtain:(

C∗gµ
)
e

(E1, E2, ..., En) = µe (Cg∗E1, Cg∗E2, ..., Cg∗En)

= µe (AdgE1,AdgE2, ...,AdgEn)

= f(e)ω1 ∧ ω2 ∧ · · · ∧ ωn (AdgE1,AdgE2, ...,AdgEn)

= f(e)detAdg = detAdg µ (E1, E2, ..., En) ,

(D.16)

it is then clear that C∗gµ = µ if and only if detAdg = 1. The proof is ended.
In particular, we have that compact groups are unimodular, because if G is compact it exists an inner
product with respect to which adX is antisymmetric and so adX is traceless. The reason for this is
that if G is compact it is always possible to find a basis {E1, E2, ..., En} in L(G) such that:

tr (EαEβ) = −c δαβ, with c > 0, (D.17)

by the way, the fact that c is positive implies that, in gauge theories, the kinetic term in the Lagrangian
is positive.
An inner product in L(G) is then given by:

t̃r : L(G)× L(G) −→ R

(A ,B) 7−→ t̃r (A,B) := tr (AB) ,
(D.18)

one can easily verify that t̃r is real, symmetric and independent from the choice of a basis in L(G).
We observe that

tr (adEα (Eβ)Eγ) = tr
(
CδαβEδEγ

)
= Cδαβtr (EδEγ)

= −cCδαβδδγ ≡ −cCαβγ .
(D.19)

We know that Cαβγ is antisymmetric in the first two indices, however it is possible to show that it is
also antisymmetric in the last two, that is, Cαβγ is completely antisymmetric, in fact:
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−cCαβγ = tr ([Eα, Eβ]Eγ) = tr (EαEβEγ − EβEαEγ)

= tr (EβEγEα − EβEαEγ)

= tr (Eβ [Eγ , Eα])

= −cCβγα,

(D.20)

which implies Cβγα = Cαβγ = −Cβαγ .
The fact that Cαβγ is completely antisymmetric shows that adX is antisymmetric with respect to the
inner product given by t̃r.
In the case of interest, G = SU(2) is compact and then unimodular, i.e. the Haar measure seen before
is left-invariant and right-invariant, specifically, it is gauge invariant for a gauge transformation taking
place on a node of the 2-complex.
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Appendix E

Hilbert Space

From the previous discussion on the Poisson structure of T ∗G we deduce that is possible, by means
of canonical quantization, to promote the Poisson brackets to a commutator and to assign to each Ul
and Ll the role of operators acting on a Hilbert space, with the due specifications.
We have seen that, in a compact form, Ul represents coordinates in G and Ll is its conjugate momen-
tum. This fact suggests to deal with the following Hilbert space:

HΓ = L2

[
SU(2)L

]
, (E.1)

where L is the number of links in the boundary graph Γ.
The states are then the wave functions ψ (Ul) of L group elements Ul.
On HΓ is defined a scalar product compatible with the Haar measure:

〈ψ|φ〉 =

∫
SU(2)L

dUlψ (Ul)φ (Ul) . (E.2)

For what concerns the operators Ul and Ll the following results hold: the operator Ul is simply defined
by

(Ulψ)
(
U ′l
)

:= ψ
(
UlU

′
l

)
, (E.3)

it acts then as a multiplicative operator.
Recalling now that Lil is a left-invariant vector field on G we can prove that it coincides with the
vector field on G induced by the right multiplication δg : G → G, δg(h) = hg. In fact, taking into
account the results found previously on induced vector fields (see eq. (B.7)) we have that:

XA
g = lg∗ (A) = LAg , (E.4)

in particular, ∀f ∈ C∞ (G),

LAg (f) =
d

dt
f (gexptA) |t=0 (E.5)

since δexp(tA) is the flow of the induced vector field XA which coincides with LA. In this manner it’s
easy to see that the field Lil acts on the wave functions in the following way 1

1the factor −i comes from the commutation relations [τi , τj ] = iεkijτk
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(
J iψ

)
(U) := −i d

dt
ψ
(
Uetτi

)
|t=0, (E.6)

where we have used the exponential of a matrix since SU(2) is a matrix group. If we finally insert the
multiplicative constants we can write Lil as follows:

Lil := (8π~G) J il . (E.7)

Having realised the canonical quantisation we want to know, at this point, how to build gauge-invariant
wave function. This requirement is necessary because in LQG physical states contain geometrical in-
formations, for instance, in 3D we know that at each node of the dual triangulation are located
tetrahedra, whose properties (volume, surfaces of its faces,...) are invariant under rotations. We have
seen how the holonomy transforms under an active gauge transformation:

Ul 7→ ΛslUlΛ
−1
tl

(E.8)

where sl and tl specify the points in spacetime that bound the chosen link. Gauge-invariant states
under these transformations must then satisfy

ψ
(
ΛslUlΛ

−1
tl

)
= ψ (Ul) , with Λn ∈ SU(2). (E.9)

If we consider a wave function on the (2-dimensional) bounding graph then a gauge transformation
acts on every node of that graph, that is, for each node we have three gauge transformations. For rhis
reason we shall introduce an operator Cin := Lil1 +Lil2 +Lil3 which has to satisfy the following property;

Cinψ = 0. (E.10)

More precisley, the condition of gauge invariance of ψ can be rewritten following this reasoning: say
we choose a node n which we consider a target of three links, in this way a gauge transformation will
produce the same element Λtl for each of the three links. Now, in general, we know that (dropping
the constants): (

Liljψ
) (
Ulj
)

:= −i d
dt
ψ
(
Ulje

tτi
)
|t=0, (E.11)

with j = 1, 2, 3 indexing the three links convergent on n. Since we are focusing on the node n we can
keep the gauge transformations on the other nodes as generic, that is Λslj generic. Then, it follows that(

Liljψ
)(

ΛsljUlj

)
= −i d

dt
ψ
(

ΛsljUlje
tτi
)
|t=0

= i
d

dt
ψ
(

ΛsljUlje
−tτi
)
|t=0.

(E.12)

To conclude, since SU(2) is compact and simply connected, every element of SU(2) can be written as
the exponential of an element of su(2), we understand that the condition (6.9) is translated into the
following requirement:

Lil1 + Lil2 + Lil3 = 0, i = 1, 2, 3. (E.13)
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Abstract

The aim of this thesis is to give a presentation of Loop Quantum Gravity in its covariant form,
also known as spinfoam approach, and to present the basic mathematical tools to access the theory.
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Chapter 1

Introduction

1.1 Historical Overview

Quantum gravity is the search for a theory that aims to merge two well established theories of the
twenthieth century: General Relativity and Quantum Mechanics. The need for such a theory came
clear early, in lue of the fact that the gravitational field, being a field, was expected to be quantized.
Along the years, three main lines of research have been established:

• The covariant line of research is the attempt to build the theory as a quantum field theory
of the fluctuations of the metric over a flat Minkowski space, this approach eventually led to
string theory in the late eighties.

• The canonical line of research is the attempt to construct a quantum theory in which the
Hilbert space carries a representation of the operators corresponding to the full metric, or some
functions of the metric, without background metric to be fixed. The formal equations of the
quantum theory were then written down by Wheeler and DeWitt in the middle sixties, but
turned out to be too ill-defined. A well defined version of the same equations was successfully
found only in the late eighties, with loop quantum gravity.

• The sum over historiers line of research is the attempt to use some version of Feynman’s
functional integral quantization to define the theory, leading eventually to the spin foam ap-
proach.

In this introducion we focus solely on the last two approaches and we try to sketch the evoultion
of loop quantum gravity.
In the early thirties attempts are made in order to apply the quantization method of gauge theories to
the linearized Einstein field equations. Later in the decade, Bronstein realizes that field quantization
techniques must be generalized in such a way as to be applicable in the absence of a background
geometry, in sharp contrast to the approach used in quantum electrodynamics [1].
At the beginning of the fifties starts the development of the “flat space quantization” of the grav-
itational field. The idea is to quantize the small fluctations around the Minkowski metric, that is,
hµν = gµν − ηµν . This idea represents the birth of the covariant approach.
On the other hand, Bergmann starts its program of phase space quantization of non linear field theo-
ries and problems raised by systems with constraints are studied too [2]. The canonical approach to
quantum gravity is born.
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Later in the decade, Charles Misner introduces the “Feynman quantization of general relativity”
Z =

∫
exp(iS[g])dg [3], and so the three lines of research are established.

In 1959 Dirac has completely unraveled the canonical structure of GR [4], and two years later, Arnowit,
Deser and Misner complete the so-called ADM formulation of GR [5], namely its hamiltonian version
in appropriate variables, which greatly simplify the hamiltonian formulation and make its geometrical
reading transparent. Following the ADM methods, in 1962 Peres writes the Hamilton-Jacobi formu-
lation of GR [6]:

G2(qabqcd −
1

2
qacqbd)

δS(q)

δqac

δS(q)

δqbd
+ det(q)R[q] = 0 ,

which will lead to the Wheeler-DeWitt equation.
In 1967 Bryce DeWitt publishes the “Einstein-Schrödinger equation” [7]:(

(~G)2(qabqcd −
1

2
qacqbd)

δ

δqac

δ

δqbd
+ det(q)R[q]

)
Ψ(q) = 0 ,

which is known as the “Wheeler-DeWitt equation”. This equation comes with the so-called “problem
of time” in quantum gravity, because the time variable disappears. To be fair, the time coordinate
already disappears in the classical Hamilton-Jacobi form of GR, thus the fact that physical obsserv-
ables are coordinate independent is a genuine feature of any formulation of GR. But in the quantum
context there is no single spacetime, as there is no trajectory for a quantum particle, and the very
concepts of space and time become fuzzy.
In the seventies, Hawking announces the derivation of black hole radiation [8] and he states that a
Schwarzschild black hole of mass M emits thermal radiation at the temperature

T =
~c3

8πkGM
,

opening a new field of research in “black hole thermodynamics” and leading to the understanding of
the statistical origin of the black hole entropy, which, for a Schwarzschild black hole, reads

SBH =
1

4

c3

~G
A ,

where A is the area of the black hole surface. Later in the decade, the Hawking radiation is rederived
in a number of ways, strongly reinforcing its credibility.
In 1986 the connection formulation of GR is developed by Abhay Ashtekar [9](as opposed to the met-
ric formulation), semplifying the canonical analysis in the sense that the constraints take a simpler
form. Furthermore, the theory now takes the form of a SU(2)-theory, since the structure constants
associated to the Poisson structure of the Ashtekar variables coincide with the structure constants of
the su(2) algebra. In addition to this, there is a geometric interpretation of the “Ashtekar electric
field”, namely, the field conjugate to the Ashtekar connection, in terms of area elements.
In 1988, Ted Jacobson and Lee Smolin find loop-like solutions to the Wheeler-DeWitt equation for-
mulated in the connection formulation [10], that is, they present a large class of exact solutions to the
hamiltonian constraint written in terms of Wilson loops. Based on these results, and on knot theory,
the canonical approach gets new blood, and “loop quantum gravity” gets started. Let’s birefly summa-
rize this important step and explain where the word “loop” in LQG comes from. The Jacobson-Smolin
solutions are not physical states of quantum gravity, since they fail to satisfy the second equation of
canonical quantum gravity (the first being the Wheeler-DeWitt equation), which demands states to
be invariant under 3d diffeomorphisms. Then, soon afterwards, Smolin starts to think that since loops
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up to diffeomorphisms mean knots, knots could play a role in quantum gravity. The solutions are
written in terms of Wilson loops

ψ(γ) = Tr
[
Pe

∫
γ A
]
ψ(A)dA , (1.1)

moving from the connection representation to the loop representation means considering the “loop
transform”

ψγ [A] = Tr
[
Pe

∫
γ A
]
, (1.2)

where dA is a diffeomorphism-invariant measure on the space of connections (constructed by Ashtekar
and Lewandowski). This transform maps the ψ(A) representation of quantum states in A space to the
representation ψ(γ) of quantum states in γ space, that is, in loop space. The advantages of moving
to the loop basis are: ψ(γ) depending only on the knot class of the loop γ solve the diffeomorphism
constraint, that is, there is one independent solution for each knot; all such states where the loop
does not self-intersect are exact solutions of all equations of quantum gravity (the partial result ob-
tained by Smolin was that not self-intersecting loops gave rise to solution of the Hamiltonin constraint
only). Later on, Jorge Pullin realizes that all solutions without nodes (intersections between loops)
correspond to 3-geometries with zero volume, meaning therefore that nodes are essential to describe
physical quantum geometry [11]. In 1995 the spin network orthonormal basis on the Hilbert space of
loop quantum gravity is found [12], and a main main physical result is obtained: the computation of
the eigenvalues of area and volume.
In 1996 the Bekenstein-Hawking black hole entropy is computed within loop quantum gravity [13], as
well as within string theory.

1.1.1 The Problems Addressed

There are three major theoretical and conceptual problems that the theory addresses:

• Quantum geometry: What is a physical “quantum space”? That is, what is the mathematics
that describes the quantum spacetime metric? LQG predicts that any measured physical area
must turn out to be quantized and given by the spectrum (4.58).

• Ultraviolet divergences of quantum field theory: This is a major open problem in non-
gravitational contexts. But it is a problem physically related to quantum gravity because the
ultraviolet divergences appear in the calculations as effects of ultra-short trans-Planckian modes
of the field. If physical space has a quantum discreteness at small scale, these divergences should
disappear. In LQG the ultraviolet divergences are not present since there is a natural cut-off
due to the discretized spectrum of the area, nevertheless infrared divergences could possibly
arise by considering greater values of the spins, these are called “spikes”. Interestingly, when
one considers the theory with the presence of a cosmological constant, it can be shown that this
provides an upper limit for the greatest value of a spin, thus resolving the problem of infrared
divergences.

• General covariant quantum field theory: Loop gravity “takes seriously” general relativity,
and explores the possibility that the symmetry on which general relativity is based (general
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covariance) holds beyond the classical domain. Since standard quantum field theory is defined
on a metric manifold, this means that the problem is to find a radical generalization of quantum
field theory, consistent with full general covariance and with the physical absence of a back-
ground metric structure. In other words, loop gravity, before being a quantum theory of general
relativity, is the attempt to define a general covariant quantum field theory.

1.1.2 Open Problems

• Consistency: With the cosmological constant, the transition amplitudes are finite at all orders
and the classical limit of each converges to the truncation of classical limit of GR on a finite
discretization of spacetime; in turn, these converge to classical GR when the discretization is
refined. This gives a coherent approximation scheme. However the approximation scheme may
go wrong if the quantum part of the corrections that one obtains refining the discretization is
large. These can be called “radiative corrections”, since they are somewhat similar to standard
QFT radiative corrections: possibly large quantum effects effects that appear taking the next
order in the approximation. It is not sufficient for these radiative corrections to be finite, for the
approximation to be viable, they must also be small. Since the theory includes a large number,
the ratio of the cosmological constant scale over the Planck scale (or over the observation scale),
these radiative corrections a priori could be large.

• Completeness: The matter sector of the theory has not been sufficiently developed. In addition
to this, the q-deformed version of the theory, that is, based on the quantum group SU(2)q (a one-
parameter deformation of the representations of SU(2)), is very little developed. This version is
utilized in order to introduce the cosmological constant but it’s not clear if one can obtain the
results of the Λ = 0 theory.
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Chapter 2

Classical General Relativity

This chapter is devoted to a formulation of classical General Relativity more suitable for the
discretization and the consequent quantization.

2.1 Tetrad-Connection formalism

As already carefully explained in the Appendix, which we refer to, it is possible to express the
Einstein-Hilbert action in terms of the (co)tetrads and a Lorentz connection. Briefly we recall the
main formulas. Tetrads are such that:

gµν(x) = eIµ(x)eJν (x)ηIJ (2.1)

The metric is not affected if the tetrads undergo a local SO(3, 1) transformation; the Lorentz
connection associated to this gauge invariance is a one-form with values in the Lie algebra sl(2,C),
therefore it is antisymmetric:

ωIJµ = −ωJIµ (2.2)

The curvature of the connection is given by:

F IJ = dωIJ + ωIK ∧ ωKJ , (2.3)

if the connection is torsionless then it can be shown to be unique, namely, the spin connection, or the
Levi-Civita connection. In terms of these objects the Einstein-Hilbert action reads:

S[e] =
1

2

∫
eI ∧ eJ ∧ FKLεIJKL. (2.4)

In order to rewrite the action in a more succint form we introduce the Hodge dual in the Minkowski
space, that is, F ?IJ := ?FIJ := 1

2εIJKLF
KL. Furthermore the 2-form ΣIJ := eI ∧ eJ is called the

Plebanski 2-form, and, suppressing contracted indices we get:

S[e] =

∫
e ∧ e ∧ F ? . (2.5)
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We point out a difference between the Einstein-Hilbert action written in terms of the metric and the
action written in terms of tetrads. In fact, if we write both in terms of tetrads we see that:

SEH [e] =
1

2

∫
|dete|R[e]d4x ,

ST [e] =
1

2

∫
(dete)R[e]d4x .

(2.6)

The difference then amounts by a sign factor s := sgn(dete). Therefore, when moving to the quantum
case, where one takes the path-integral over tetrads, this sign translates to two different terms, namely:

e−
i
~SEH [g] and e+ i

~SEH [g] . (2.7)

These two terms will reappear when dealing with the classical limit.
We can regard (2.5) also as a function of a tetrad and a Lorentz connection as independent fields,
namely:

S[e, ω] =

∫
e ∧ e ∧ F [ω]? , (2.8)

performing the variation with respect to the connection gives the torsionless condition and the varia-
tion with respect to the tetrad yelds Einstein equations. This polynomial action is referred to as the
“tetrad-Palatini” action. It is possible to add another term respecting the given symmetries, this term
has the form

∫
e ∧ e ∧ F :=

∫
eI ∧ eJ ∧ F IJ . If we add this term with a coupling constant 1/γ (γ is

known as the “Barbero-Immirzi constant”) we get the following action:

S[e, ω] =

∫
e ∧ e ∧ F ? +

1

γ

∫
e ∧ e ∧ F . (2.9)

It can be shown that the second term has no effect on the equation of motion, because it vanishes
when the connection is torsionless. Seeking a more compact form we observe that:

S[e, ω] =

∫
e ∧ e ∧

(
F ? +

1

γ
F

)
=

∫
e ∧ e ∧

(
?+

1

γ

)
F

=

∫ (
? (e ∧ e) +

1

γ
e ∧ e

)
∧ F ,

(2.10)

renaming the term in parentheses by B :=
(
? (e ∧ e) + 1

γ e ∧ e
)

we finally get:

S[e, ω] =

∫
B ∧ F . (2.11)

From this equation we can read out that, on a t = 0 boundary, B is the derivative of the action
with respect to ∂ω/∂t, therefore B is the momentum conjugate to the connection. More precisely,
reintroducing the dimensionful constant 1

8πG in front of the action and going to a time gauge where
the restriction of ? (e ∧ e) on the boundary vanishes, the momentum is the 2-form on the boundary
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with values on sl (2,C), that is:

Π =
1

8γπG
B . (2.12)

2.2 Linear Simplicity Constraint

We consider now a spacelike boundary surface Σ, this is characterized by a vector which is normal
to all the tangent vectors in Σ, we can write it as:

nI = εIJKLe
J
µe
K
ν e

L
ρ

∂xµ

∂σ1

∂xν

∂σ2

∂xρ

∂σ3
, (2.13)

where {σi}, i = 1, 2, 3 are the coordinates of the point σ ∈ Σ and xµ(σ) indicates the embedding of
the boundary Σ into spacetime. By choosing a specific nI we can focus on a fixed-time surface where
nI = (1, 0, 0, 0). By doing so, the pull-back on Σ of the 2-form B can be decomposed into its electric
KI = nJB

IJ and magnetic LI = nJ (?B)IJ parts. Since B is antisymmetric, LI and KI do not have
components normal to Σ, i.e. nIK

I = nIL
I = 0 and so they are three-dimensional vectors in Σ. In

the gauge where nI = (1, 0, 0, 0) they are given by:

Ki = Bi0, Li =
1

2
εijkB

jk . (2.14)

Now, from the definition of B we have that:

nIB
IJ = nI

(
? (e ∧ e) +

1

γ
e ∧ e

)IJ
= nI

(
εIJKLe

K ∧ eL +
1

γ
eI ∧ eJ

)
, (2.15)

on the boundary we have nIe
I |Σ = 0, therefore

nIB
IJ = nI (?e ∧ e)IJ . (2.16)

Analogously:

nI (B?)IJ = nI

((
1

γ
e ∧ e

)?)IJ
=

1

γ
nI (?e ∧ e)IJ =

1

γ
nIB

IJ . (2.17)

In conclusion, by definition of KI and LI we can notice that:

−→
K = γ

−→
L . (2.18)

This equation is called “linear symplicity constraint” and turns out to be a fundamental feature of
covariant loop quantum gravity, indeed, it completely determines the dynamics of the theory.
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2.3 Hamilton Function and Boundary Term

In writing the action on a compact region of spacetime we have to add a boundary term if we want
to have a well-defined Hamilton function. In General Relativty, Gibbons and Hawkings have shown
that the boundary term is given by:

SEH boundary =

∫
Σ
kabqab

√
qd3σ , (2.19)

where kab is the extrinsic curvature of the boundary, qab is the three-metric induced by the embed-
ding, q its determinant and σ are coordinates on the boundary. In the case of pure gravity without
cosmological constant the Ricci scalar vanishes on the solution of the Einstein equations, therefore the
bulk action vanishes and the Hamilton function is given by the boundary term:

SEH [q] =

∫
Σ
kabqab

√
qd3σ . (2.20)

Notice that the Hamilton function is a functional of the boundary 3-metric, while the action is a func-
tional of the 4-metric. Indeed, the Hamilton function represents a non-trivial functional to compute,
because the extrinsic curvature kab[q] is determined by the bulk solution singled out by the boundary
intrinsic geometry, therefore it is going to be non-local. Knowing the general dependence of kab from
q is equivalent to knowing the general solution of the Einstein equations.

2.4 ADM variables and Ashtekar variables

In order to approach a Hamiltonian formulation of General Relativity we introduce the so-called
ADM variables and later on the Ashtekar variables.
The ADM variables are obtained by defining the following fields:

qab = gab ,

Na = ga0 ,

N = (−g00)−
1
2 ,

(2.21)

where a, b = 1, 2, 3. N and Na are called Lapse and Shift functions, qab is the three-metric. In these
variables the line element reads

ds2 = −(N2 −NaN
a)dt2 + 2Nadx

adt+ qabdx
adxb , (2.22)

and the extrinsic curvature of a t = constant surface is given by

kab =
1

2N
(q̇ab −D(aNb)) (2.23)

where the dot indicates the derivative with respect to t and Da is the covariant derivative of the
three-metric. The action in terms of this variables takes the form

S[N,
−→
N, q] =

∫
dt

∫
d3x
√
qN
(
kabk

ab − k2 +R[q]
)
, (2.24)
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where k = kaa and
√
q =
√

detq. From (2.24) one can read out the Lagrangian and the conjugate vari-
ables, thus obtaining an action written in hamiltonian form with the presence of constraints. Moving
to the Ashtekar variables accounts for a simplification of these constraints and a better comprehension
of the geometrical picture. Essentially, instead of dealing with tetrads on spacetime, we can introduce
tetrads on each t = constant surface. By doing so we have:

qab(x) = eia(x)ejb(x)δij , (2.25)

where qab is the 3-metric and i, j = 1, 2, 3 are flat indices. We can define also the triad version of the
extrinsic curvature by:

kai e
i
b := kab . (2.26)

In this way, we can consider the following connection:

Aia = Γia[e] + βkia , (2.27)

where Γia[e] is the torsionless spin connection of the triad and β is an arbitrary parameter, and the
so-called “Ashtekar electric field”:

Eai (x) =
1

2
εijkε

abcejbe
k
c , (2.28)

that is, the inverse of the triad multiplied by its determinant. What’s remarkable about these two
fields is that they satisfy the following Poisson brackets:{

Aia(x) , Aia(y)
}

= 0 (2.29)

and {
Aia(x) , Ebj (y)

}
= βδbaδ

i
jδ

3(x, y) . (2.30)

Therefore Aia and Eai are canonically conjugate variables. This simplifies the canonical analysis, i.e.
the expressions of the constraints are easier to read. From a geometrical point of view there is an
important feature which has a counterpart also in the quantum theory. In fact, the field Eai has an
interpretation in terms of the area element: choosing a two-surface S in a t = constant hypersurface
we have that:

AS =

∫
S
d2σ
√
Eai naE

b
inb . (2.31)

Then, by introducing the 2-form

Ei =
1

2
εabcE

aidxbdxc , (2.32)

we can write
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AS =

∫
S
|E| . (2.33)

Now, in the limit where the surface is small, the quantity

EiS =

∫
S
Ei =

1

2
εijk

∫
S
ej ∧ ek , (2.34)

is a vector normal to the surface, whose length is the area of the surface. Therefore we can say that
the momentum conjugate to the connection represents an area element, this fact still holds in the
quantum case.
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Chapter 3

Discretization

3.1 Lattice QCD and Regge Calculus

Let’s consider a SU(2) Yang-Mills theory in four dimensions. The Yang-Mills field is known to be
the connection whose components are Aiµ(x), where i is an index in the Lie algebra su(2). Explicitly
we can write the connection as:

A(x) = Aiµ(x)τidx
µ , (3.1)

where τi provide a basis of su(2). In order to discretize such a theory Wilson suggests to fix a cubic
lattice with N vertices connected by E edges, this of course breaks the Lorentz invariance of the theory,
recovered only in a suitable limit. We call a the length of the lattice edges, this is determined by the
flat metric. Then we associate to each oriented edge a group variable Ue ∈ SU(2) in the following way:

Ue = Pe
∫
e A , (3.2)

where Pe stands for the path-ordered exponential (see Appendix). The idea is then to use a discrete
set of group variables in place of the continuous variable A. Starting from this group variables instead
of the algebra variables it is possible to calculate physical quantities in the limit where N → ∞ and
a→ 0. Under a gauge transformation the group elements Ue transform “homogeneously”, that is:

Ue → λseUeλ
−1
te , (3.3)

where se and te are the initial and final vertices of the edge e (source and target), λv is an element
of SU(2). Therefore a gauge transformation can be thought as an element of SU(2)V , where V is the
number of vertices. Gauge transformations take place at each vertex.
From eq. (3.3) it is straightforward to see that if we take the ordered product of four group elements
around a face f

Uf = Ue1Ue2Ue3Ue4 (3.4)

and we consider its trace, we get a gauge invariant quantity. In addition to this Uf is a discrete version
of the connection, since it is the holonomy of the connection on the loop given by a square. Wilson
has shown that the discrete action
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S = β
∑
f

TrUf + c.c. (3.5)

approximates the continuous action in the limit where a is small.

The Hamiltonian formulation of the discretized theory is particularly important, since it is going
to have a counterpart in the quantum realm. We focus on a boundary, say spacelike, the hamiltonian
coordinates are given by the group elements Ul on the boundary edges, called “links”. The canonical
configuration space is therefore SU(2)L, where L is the number of links. The corresponding phase
space is the cotangent space T ∗SU(2)L, the Poisson structure of this space is carefully explained in
the Appendix. We denote the conjugate momentum of Ul by Lil ∈ su(2). The Poisson brackets are
then given by:

{Ul , Ul′} = 0 ,{
Ul , L

i
l′
}

= δll′Ulτ
i ,{

Lil , L
j
l′

}
= δll′ε

ij
k L

k
l ,

(3.6)

(no summation over l). The Hilbert space of the discrete theory can therefore be represented by states
ψ (Ul), i.e. functions on the configuration space. The space of these functions carries a natural scalar
product which is invariant under the gauge tranformations on the boundary, this is given by the SU(2)
Haar measure:

(φ , ψ) =

∫
SU(2)

dUlφ (Ul)ψ (Ul) . (3.7)

The boundary gauge transformations act at the nodes of the boundary and transform the states as
follows

ψ (Ul)→ ψ
(
λslUlλ

−1
tl

)
, λn ∈ SU(2). (3.8)

We move on and introduce Regge calculus now. Tullio Regge introduced a discretization of General
Relativity called “Regge calculus”. We can summarize it as follows: a d-simplex is a generalization of
a triangle or a tetrahedron to arbitrary dimensions, more precisely, it is the convex hull of its d + 1
vertices. These vertices are connected by d(d + 1)/2 line segments whose length Ls fully specify the
shape of the simplex, i.e. its geometry.
A Regge space (M ,Ls) in d dimensions is a d-dimensional metric space obtained by gluing d-simplices
along matching boundary (d− 1)-simplices. For example, in two dimensions we can obtain a surface
by gluing triangles, bounded by segments, which meet at points. In three dimensions we chop space
into tetrahedra, bounded by triangles, in turn bounded by segments, which meet at points. In four
dimensions we chop spacetime into 4-simplices, bounded by tetrahedra, in turn bounded by triangles,
in turn bounded by segments, which meet at points. These structures are called triangulations. We
can legitimately ask how curvature arises in a Regge space, since all these geometrical objects are flat.
We consider the simplest case, that is d = 2 dimensions: it is easy to see that if we glue triangles
around a common vertex, curvature arises in terms of a deficit angle, that is, the sum of all the angles
insisting on a given vertex does not add up to 2π. In formulas:

δP (Ls) = 2π −
∑
t

θt (Ls) (3.9)
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This fact admits a generalization to higher dimensions: gluing flat d-simplices can generate curvature
on the (d − 2)-simplices (sometimes called “hinges”). Now, a Riemannian manifold (M , g) can be
approximated arbitrarly well by a Regge manifold, in fact, for any (M , g) and any ε we can find a
(M ,Ls) with sufficiently many simplices such that, for any two points x, y ∈ M , the difference be-
tween the Riemannian distance and the Regge distance is smaller than ε. In order to dicretize General
Relativity we need a discretized version of the action, the Regge action is defined as:

SM (Ls) =
∑
h

Ah (Ls) δ (Ls) , (3.10)

where the sum is over the hinges and Ah is the (d − 2)-volume of the hinge h. Remarkably, this
action converges to the Einstein-Hilbert action when the Regge manifold (M ,Ls) converges to the
Riemann manifold (M , g). The Regge action can be also rewritten as a sum over the d-simplices v of
the triangulation: from (3.9) and (3.10) we have that

SM (Ls) = 2π
∑
h

Ah (Ls)−
∑
v

Sv (Ls) , (3.11)

where the action of a d-simplex is

Sv (Ls) =
∑
h

Ah (Ls) θh (Ls) . (3.12)

3.2 Discretization in 3D

The discretization used in LQG differs from the Regge one, because essentially lengths are con-
strained by inequalities (think about a triangle for instance), and it’s difficult to implement a configu-
ration space with such constraints. It is preferable then to consider also the “dual” of a triangulation,
in three dimensions this is simply obtained by replacing each tetrahedra by a vertex sitting at its
center, each face (a triangle) by an edge coming off the vertex and puncturing the triangle. Therefore,
adjacent tetrahedra are replaced by vertices connected by edges. The dual of the triangulation ∆ is
denoted as ∆∗ and the set of vertices, edges and faces is called a “2-complex” (denoted with C). Thus,
we are going to discretize classical GR on a 2-complex. One word about the boundary: if we con-
sider a compact region of spacetime, the discretization ∆ will induce a discretization of the boundary,
formed by the boundary segments and the boundary triangles of ∆. Moving to ∆∗ we realize that
the boundary is formed now by the end points of the edges dual to the boundary triangles, which are
called nodes, and the boundary of the faces dual to the boundary segments, together they form the
graph Γ of the boundary. The boundary graph, by construction, is at the same time the boundary of
the 2-complex and the dual of the boundary of the triangulation:

Γ = ∂ (∆∗) = (∂∆)∗ . (3.13)

Now, in 3 dimensions the gravitational field is described by a tetrad field ei = eiadx
a and a SO(3)

connection ωij = ωiajdx
a, where a, b, .. = 1, 2, 3 are spacetime indices and i, j = 1, 2, 3 are internal
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Figure 3.1: A 2-complex

indices. We discretize the connection as in Yang-Mills theory, that is, by assigning a SU(2) element
Ue to each edge e of the 2-complex. We discretize the triad by associating a vector Lis of R3 to each
segment s of the original triangulation:

ω −→ Ue = Pexp

∫
e
ω ∈ SU(2)

e −→ Lis =

∫
s
ei ∈ R3 ,

(3.14)

in the LQG jargon Ue is called the “holonomy” (of the connection along the edge). The Einstein-
Hilbert action can be approximated in terms of these objects. We have seen that under a gauge
transformation the holonomy transforms “well”, that is, as

Ue 7→ RseUeR
−1
te (3.15)

whereas the algebra values Li apparently don’t follow this rule. Nevertheless, it is possible to give a
gauge equivalent definition of Li in such a way that it transforms as the holonomy, as shown in [22].
The discretization approximates well the continuum theory when the curvature is small at the scale of
the triangulation and the segments are straight lines. We notice that the norm of vector Lis associated
with the segment s is the length of the segment, i.e.

L2
s = |

−→
Ls|2 . (3.16)

Since each face f of the 2-complex corresponds to a segment s = sf of the triangulation, we can view
Lis as associated with the face: Lif = Lisf . Furthermore, since R3 equipped with the usual cross product
is isomorphic (as a Lie algebra) to su(2) we can express Lif as an element of su(2), that is:

Lf = Lif τi . (3.17)
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Summarizing, the variables of the discretized theory are:

• An SU(2) group element Ue for each edge e of the 2-complex;
• An su(2) algebra element Lf for each face f of the 2-complex.

In the four-dimensional case the approach will be the same, group and algebra variables associated to
edges and faces.
Having discretized space, we need a discrete version of the action. The idea is to mimic the Regge
action, knowing that in three dimensions curvature arises around segments and so the volume of the
hinge is the length of the segment. The deficit angle is replaced by the curvature written in terms of
the holonomy, as already remarked earlier we have curvature around a segment if the group element
Uf = Ue1 · · ·Uen is different from the identity (e1, . . . , en being the edges bounding the face f). In this
way, we can write the discretized action as follows:

S =
1

8πG

∑
f

Tr (LfUf ) , (3.18)

Performing the variation of the action with respect to Lf and setting it to zero gives Uf = 1, that is,
flatness, which is equivalent to the continuous Einstein equations in three dimensions.

Figure 3.2: Boundary graph

We specify on the boundary now. On the boundary there are two kinds of variables: the group
elements Ul of the boundary edges, namely, the links, and the algebra elements Ls of the boundary
segment s. Notice that there is precisely one boundary segment s per each link l, and the two cross.
We can therefore rename Ls as Ll whenever l is the link crossing the boundary segment s. In this way,
the boundary variables are formed by a pair (Ll , Ul) ∈ su(2)× SU(2) for each link l of the graph Γ.
Therefore on the boundary we have a pair of conjugate variables at each link, the Poisson brackets
are the ones already written in (3.6), only with a factor 8πG on the RHS coming from the action.
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3.3 Discretization in 4D

Moving to the four-dimensional case we consider a triangulation ∆ made of 4-simplices, the corre-
sponding dual triangulation ∆∗ has the following properties: a vertex is dual to a 4-simplex, an edge
is dual to a tetrahedron, a face is dual to a triangle (for instance a face in the (x, y) plane is dual to a
triangle in the (z, t) plane). Therefore, we have that a face of the 2-complex that touches the boundary
is dual to a boundary triangle, this in turn is dual to a boundary link l. Geometrically, this link is
the intersection of the face with the boundary. Thus, a boundary link l is obviously a boundary edge
(by definition), but is also associated with a face f touching the boundary. From these considerations
follows that we discretize the connection and the triad as

ω −→ Ue = Pexp

∫
e
ω ∈ SL(2,C)

e −→ Bf =

∫
tf

B ∈ sl(2,C) ,

(3.19)

where B =
(

(e ∧ e)∗ + 1
γ (e ∧ e)

)
is the 2-form defined in the action, and tf is the triangle dual to the

face f .
The variables of the discretized theory are then:

• a group element Ue for each edge e of the 2-complex;
• an algebra element Bf for each face f of the 2-complex.

Pretty much the same as seen in the three-dimensional case. Therefore we call Ul the group ele-
ments associated with the boundary edges l, that is, the links of the boundary graph Γ, and Bl are
the elements of a face bounded by the link l. There is a remarkable geometric interpretation of Bl:
consider a triangle lying on the boundary, choose the tetrad field in the time gauge, that is, e0 = dt
and ei = eiadx

a, the pull-back of (e ∧ e)∗ on the boundary vanishes and we are left with

Lif =
1

2γ
εijk

∫
tf

ej ∧ ek . (3.20)

In the approximation in which the metric is constant on the triangle it follows then that the norm of
Lif is proportional to the area of the triangle:

|Lf | =
1

γ
Atf . (3.21)

Here we see an analogy between the vector
−→
Lf and the vector

−→
ES defined in terms of the Ashtekar

variables.
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Chapter 4

Quantization

4.1 3D Theory

In order to define the quantum theory two features are needed:

• a boundary Hilbert space that describes the quantum states of the boundary geometry;
• the transition amplitude for these boundary states; in the small ~ limit the transition amplitude
must reproduce the exponential of the Hamilton function.

4.1.1 Hilbert Space

To construct the Hilbert space and the transition amplitude we proceed as follows: first, we dis-
cretize the classical theory; then, we study the quantum theory that corresponds to the discretized
theory; finally we discuss the continuum limit.
We recall from the previous chapter that the discrete boundary geometry is described by a pair of
variables for each link of the graph Γ: (Ul , Ll) ∈ SU(2)× su(2). We are seeking the quantum version
of these phase space variables, i.e. we are looking for operators Ul and Ll satisfying the quantum
version of the Poisson brackets seen earlier:[

Ul , L
i
l′
]

= i (8π~G) δll′Ulτ
i (4.1)

For this purpose we consider, as the Hilbert space, the space of square integrable functions on SU(2)L:

HΓ = L2

[
SU(2)L

]
. (4.2)

States are therefore wavefunctions ψ(Ul) of L group elements Ul. The scalar product compatible with
the SU(2) structure is given by the group-invariant measure, that is, the Haar measure:

〈φ|ψ〉 =

∫
SU(2)L

dUlφ (Ul)ψ (Ul) . (4.3)

By doing so, Ul can be seen simply as a multiplicative operator acting as Ul′ (ψ(Ul)) = ψ (Ul′Ul).
Furthermore, as showed in the Appendix, on the Lie group SU(2) it is defined a left-invariant vector
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field, whose components are:

(
J iψ

)
:= −i d

dt
ψ
(
Uetτi

)
|t=0 . (4.4)

Then, to get the correct operator satysfing (4.1) it is sufficient to scale the left-invariant vector field
with the appropriate dimensionful factor:

Lil := (8π~G) J il . (4.5)

One important consequence is that length is quantized. In fact, we recall that Ls = |
−→
Lf |, with f being

the face dual to the segment s. This means that on the boundary we have Ll = |
−→
Ll| where l is the link

crossing the boundary segment s. Therefore, since
−→
Jl is the generator of SU(2), |

−→
Jl |2 is the SU(2)

Casimir, its eigenvalues are j(j + 1), j being an half-integer. Then we get the following spectrum for
the operator Ll:

Ljl = 8π~G
√
jl(jl + 1) , (4.6)

for half-integers jl.
We go on now with the definition of the boundary Hilbert space. Since the theory must be invariant
under SU(2) gauge transformations (taking place at nodes), we have to take that into account. Then,
the gauge-invariant states must satisfy

ψ (Ul) = ψ
(
ΛslUlΛ

−1
tl

)
, Λn ∈ SU(2) . (4.7)

We can write equivalently

−→
Cnψ = 0 (4.8)

for every node n of the boundary graph, where
−→
Cn is the generator of SU(2) transformations at the

node n, i.e. :

−→
Cn =

−→
Ll1 +

−→
Ll2 +

−→
Ll3 = 0 ; (4.9)

where l1, l2, l3 are the three links emerging from the node n. This relation is called gauge constraint.
From a geometrical standpoint the interpretation of this equation is straightforward: l1, l2, l3 are three
links that cross three segments which in turn bound a triangle, then, the condition (4.9) can be read
as the closure condition satisfied by every triangle (since Lli represents the length of the segment si).
It is worth noting that a similar result was obtained by Roger Penrose in 1971 [21], in his “spin-

geometry theorem”. Penrose observed that if we consider the operators
−→
L l, which are not gauge

invariant, we can define a gauge invariant operator, called “Penrose metric operator”, by

Gll′ =
−→
L l ·
−→
L l′ , (4.10)

where l and l′ share the same source. The Casimir operators of SU(2) are then given by

A2
l =
−→
L l ·
−→
L l . (4.11)
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The theorem states that the equations (4.10), (4.11) and (4.9) (which generalizes to a node with ar-
bitrary valence), are sufficient to guarantee the existence of a flat polyhedron, such that the area of
its faces is Al and where Gll′ is given by Gll′ = AlAl′ cos θll′ , θll′ being the angle between the normals
to the faces l and l′. More precisley, there exists a 3× 3 metric tensor gab, a, b = 1, 2, 3 and normal to
the faces −→n l, such that

Gll′ = gabn
a
l n

b
l′ (4.12)

and the length of these normals is equal to the area of the face. In conclusion, the algebraic structure
of the momentum operators in HΓ determine the existence of a metric at each node and therefore
endows each quantum of space with a geometry. It is curious that these results reappered more than
20 years later in LQG.
Proceeding with the construction of the boundary Hilbert space, we consider the subspace of HΓ where
(4.7) is verified, which is a proper subspace, we call it KΓ and write it as

KΓ = L2

[
SU(2)L/SU(2)N

]
Γ
. (4.13)

Clearly L indicates the number of links, N is the number of nodes and the subscript Γ denotes the
fact that the pattern of the SU(2)N transformations is dictated by the structure of the graph Γ.
Let’s study the structure of KΓ. On this Hilbert space the length operators Ll are gauge-invariant,
furthermore, they form a complete commuting set. This means that a basis of KΓ is given by the
normalized eigenvectors of these operators, which we indicate as |jl〉. An element of this basis is
therefore determined by assigning a spin jl to each link l of the graph. A graph with a spin assigned
to each link is called a “spin network”. The spin network states |jl〉 form a basis of KΓ, this is called
a spin-network basis and spans the quantum states of geometry.
More concretely, we can make use of the Peter-Weyl theorem to get a more intuitive picture of what’s
going on. In fact, we know that the Wigner matrices Dj

mn provide an orthogonal basis for the spin-j
representation, that is: ∫

dUDj′

m′n′(U)Dj
mn(U) =

1

dj
δjj
′
δmm′δnn′ , (4.14)

where dj = 2j+1 is the dimension of the j representation and dU is the SU(2) Haar measure. In other
words, the Hilbert space L2 [SU(2)] can be decomposed into a sum of finite dimensional subspaces
of spin j, spanned by the basis states formed by the matrix elements of the Wigner matrices Dj(U).
This matrix is a map from the Hilbert space Hj to itself, therefore we can see Dj(U) as an element of
Hj ⊗H∗j . Since we know that Hj ∼= H∗j , for notational convenience we omit the asterisk. All together
this reads as

L2 [SU(2)] =
⊕
j

(Hj ⊗Hj) . (4.15)

Having L links it is straightforward to consider the following:

L2

[
SU(2)L

]
= ⊗l [⊕j (Hj ⊗Hj)] = ⊕jl ⊗l (Hjl ⊗Hjl) . (4.16)

The two Hilbert spaces associated with a link can be seen as belonging to the two ends of the link,
because each transforms according to the gauge transformation at one end. In order to see what’s
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going on a node we can regroup the Hilbert spaces Hj in such a way that

L2

[
SU(2)L

]
= ⊕jl ⊗n

(
Hj ⊗Hj′ ⊗Hj′′

)
, (4.17)

where j, j′, j′′ are the spins coming out from the node n. Next, we want the space of gauge-invariant
states, thus we should restrict to the invariant part of the spaces transforming at the same node, that is:

L2

[
SU(2)L/SU(2)N

]
= ⊕jl ⊗n InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3) . (4.18)

From SU(2) representation theory it is known that InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3) does not exist unless
the sum of three spins is an integer and the three spins satisfy the triangular inequality:

|j1 − j2| < j3 < j1 + j2 . (4.19)

If this condition holds then the invariant space is one-dimensional:

InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3) = C . (4.20)

Therefore

L2

[
SU(2)L/SU(2)N

]
= ⊕jlC (4.21)

where the sum is restricted to the jl that satisfy the triangular inequalities. Since spins are associated
to the lengths of the sides of a triangle, and these are known to satisfy the triangular inequality, the
resemblance with the geometrical picture holds nicely.
Then, a generic quantum state in loop quantum gravity is a superposition of spin-network states:

|ψ〉 =
∑
jl

Cjl |jl〉 . (4.22)

Summarizing, the spin network states |jl〉:

• are an eigenbasis of all lengths operators;
• span the gauge-invariant Hilbert space;
• have a simple geometric interpretation: they just say how long the boundary links are.

Next, we would like to write the spin-network states |jl〉 in the ψ (Ul) representation, that is, com-
pute the spin-network wavefunctions:

ψjl (Ul) = 〈Ul|jl〉 . (4.23)

This can be done explicitly by solving the eigenvalue equation for the length operators Ll

Llψjl (Ul) = Ljlψjl (Ul) . (4.24)

It is possible to write a generic state ψ(U) ∈ L2[SU(2)] as a linear combination in the basis provided
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by the Wigner matrices, as follows:

ψ(U) =
∑
jmn

CjmnDj
mn(U) . (4.25)

Therefore, in our case, a state ψ (Ul) ∈ L2[SU(2)L] can be written as

ψ (Ul) =
∑

ji,mi,ni

Cj1···jLm1···mLn1···nLD
j1
m1n1

(Ul1) · · ·DjL
mLnL

(UlL) , (4.26)

where i = 1, . . . , L. A state invariant under a SU(2) transformation must be invariant if we act with
a transformation Λn taking place at the node n. This in turn acts on the three group elements of the
three links that meet at the node. Since the Wigner matrices are representation matrices, the gauge
transformation acts on the three corresponding indices, for this reason we have that, for the state to
be invariant, Cj1···jLm1···mLn1···nL must be invariant when acted upon by a group transformation on
the three indices corresponding to the same node. From representation theory it is known that, up to
normalization, it exists only one invariant tensor with three indices in three SU(2) representations, it
is called the Wigner 3j-symbol and is denoted as

ιm1m2m3 =

(
j1 j2 j3
m1 m2 m3

)
. (4.27)

In this way, we can express any invariant state in the triple tensor product of representations of SU(2)
as

ιm1m2m3 =
∑

m1m2m3

(
j1 j2 j3
m1 m2 m3

)
|j1,m1〉 ⊗ |j2,m2〉 ⊗ |j3,m3〉 . (4.28)

Going on, a gauge-invariant state must then have the form

ψ (Ul) =
∑
j1···jL

Cj1···jLι
m1m2m3
1 · · · ιmL−2mL−1mL

N Dj1
m1n1

(Ul1) · · ·DjL
mLnL

(UlL) (4.29)

where all the indices are contracted between the intertwiner ι and the Wigner matrices D. Don’t
let confuse yourself if you don’t see any n-indices contracted, because the pattern of contraction is
dictated by the structure of the graph (and so, broadly speaking, m’s and n’s are interchangeable, it
is just the notation of Wigner matrices that keeps them different).
Seeking a more compact form we write a generic gauge-invariant state as

ψ (Ul) =
∑
jl

Cjlψjl (Ul) , (4.30)

where

ψjl (Ul) = ιm1m2m3
1 · · · ιmL−2mL−1mL

N Dj1
m1n1

(Ul1) · · ·DjL
mLnL

(UlL) (4.31)

are the orthogonal states labeled by a spin associated with each link. These are the spin-network
wavefunctions. We can write them more compactly as

〈Ul|jl〉 = ψjl (Ul) =
⊗

n

ιn ·
⊗
l

Djl (Ul) . (4.32)
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4.1.2 Transition Amplitude

The next goal is to write down the transition amplitude of the three-dimensional theory. The
transition amplitude is a function of the boundary states, therefore we assume that a triangulation ∆
is fixed and we consider a boundary, which means considering the boundary graph Γ = (∂∆)∗. We
denote the transition amplitude expressed in terms of the “coordinates” as W∆ (Ul) = 〈W∆|Ul〉 and
the transition amplitude in terms of the “momenta” as W∆ (jl) = 〈W∆|jl〉.
Notice that the transition matrix between the two basis is given precisely by the spin-network states.
To compute the transition amplitude W∆ of the theory discretized on the 2-complex, dual to ∆, we
use the Feynman path integral. The amplitude is given by the integral over all classical configurations
weighted by the exponential of the (discretized) classical action:

W∆ (Ul) = N
∫
dUe

∫
dLfe

i
8π~G

∑
f Tr[UfLf ] , (4.33)

where N is a normalization factor. Reabsorbing factors on the overall constant N and performing the
integral over the momenta we obtain

W∆ (Ul) = N
∫
dUe

∏
f

δ (Uf ) . (4.34)

To compute this integral, we expand the delta function over the group in representations using

δ(U) =
∑
j

djTrD(j)(U) , (4.35)

where dj = 2j + 1 is the dimension of the spin-j representation. Therefore (4.34) turns out to be

W∆ (Ul) = N
∫
dUe

∏
f

∑
j

djTrDj(Uf )


= N

∑
f

(∏
f

djf

)∫
dUe

∏
f

Tr
(
Djf (U1f ) · · ·Djf (Unf )

)
,

(4.36)

where Uf = U1f · · ·Unf . Now, if we focus our attention on one edge in particular, we notice that an
edge bounds precisely three faces (because an edge is dual to a triangle, which is bounded by three
segments, and segments are dual to faces). Therefore each dUe integral is of the form∫

dUD
jl1
m1n1(U)D

jl2
m2n2(U)D

jl3
m3n3(U) , (4.37)

but, since the Haar measure is invariant on both sides, the result must be invariant in both set of
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indices. As we have seen before, there is only one such object, the Wigner 3j-symbol, then∫
dUD

jl1
m1n1(U)D

jl2
m2n2(U)D

jl3
m3n3(U) = ιm1m2m3ιn1n2n3

=

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
n1 n2 n3

)
,

(4.38)

where, again, we emphasize that the m and n indices are dictated by the structure of the graph
Γ. Thus, what we obtain in the end is nothing but 3j-symbols contracted among themselves. More
precisley, we observe that each edge produce two 3j-symbols which we can view as located at the
two ends of the edge, since their indices are contracted at the end (on a vertex). At each vertex
there are four edges, therefore four 3j-symbols contracted among themselves. The contraction must
be SU(2)-invariant, so we are looking for an object which involves four 3j-symbols and is invariant
under a SU(2) transformation, it turns out it exists and it is called the Wigner 6j-symbol:{
j1 j2 j3
j4 j5 j6

}
:=

∑
ma,na

6∏
a=1

gmana

(
j1 j2 j3
m1 m2 m3

)(
j1 j4 j5
n1 m4 m3

)(
j3 j4 j6
n2 n4 m6

)(
j3 j5 j6
n3 n5 n6

)
,

(4.39)

where

gmn =
√

2j + 1

(
j j 0
m n 0

)
= δm,−n(−1)j−m . (4.40)

After integrating over all internal edge-group variables, the group variables of the boundary are left.
We can integrate these as well contracting with a boundary spin network state, obtaining [14]

W∆(jl) = N∆

∑
jf

∏
f

(−1)jf djf
∏
v

(−1)Jv {6j} , (4.41)

where the sum is over the association of a spin to each face, respecting the triangular inequalitites at
all edges, Jv =

∑6
a=1 ja, and ja are the spin of the faces adjacent to the vertex v (a vertex of the

2-complex is adjacent to six faces).

We can see the connection with general relativity in the classical limit (the continuum limit will
be discussed in the four-dimensional case, which is more interesting). If we consider a single tetrahe-
dron whose sides have length La = ja+1/2, it is possible to show [15] that, in the large j limit we have

{6j} ∼
j→∞

1√
12πV

cos
(
S +

π

4

)
. (4.42)

Thus, by using the well known relation eiα = cosα+ isinα we get the following

{6j} ∼
j→∞

1

2
√
−12iπV

eiS +
1

2
√

12iπV
e−iS . (4.43)

We see therefore that two terms with opposite phase enter here, this is precisely the discussion we
were addressing when dealing with the tetrad action.
If we consider only large spins we can disregard quantum discreteness and the sum over the spins
is approximated by an integral over lengths in a Regge geometry. This is a discretization of a path
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integral over geometries of the exponential of the Einstein-Hilbert action. Therefore (4.38) is a con-
crete implementation of the path-integral “sum over geometries” formal definition of quantum gravity:

Z ∼
∫
D[g]e

i
~
∫ √
−gR . (4.44)

The next discussion addresses a topic that will be generalised to the four-dimensional case and it
is particularly relevant. Consider a triangulation formed by a single tetrahedron τ , the boundary
graph has again the shape of a tetrahedron, since we have four vertices obtained as the end points of
the four edges puncturing the four faces of the original tetrahedron. The amplitude is then a function
of the variables of the links of the graph. Let’s label with a, b = 1, 2, 3, 4 the nodes of the graph and
denote with Uab = U−1

ba the boundary group elements. The transition amplitude is then a function
W (Uab). Notice that we have already constructed the 2-complex, which consists of the four edges
puncturing the four faces and of the boundary links, therefore it is made of six faces (obtained by
connecting the vertex sitting inside τ with the six boundary links). Using (4.34) and dropping the
normalization we get:

W (Uab) =

∫
dUa

∏
ab

δ
(
UaUabU

−1
b

)
. (4.45)

Once this integrals are performed we obtain:

W (Uab) = δ (U12U23U31) δ (U13U34U41) δ (U23U34U42) (4.46)

Notice that each sequence of Uab inside the deltas corresponds to an independent closed loop in the
boundary graph. The interpretation of this amplitude is therefore immediate: the amplitude forces
the connection to be flat on the boundary (by the very definition of the delta). More precisely, it is
the three-dimensional connection which is flat, not the two-dimensional one living on the boundary.
We can think of it as having a spacetime reference frame on each face that can be parallel transported
along the boundary in such a way that any closed loop gives unity. In other words, W (Uab) is just
the gauge-invariant version of

∏
ab δ (Uab).

Notice in particularly that:

〈W |ψ〉 =

∫
dUabW (Uab)ψ (Uab) =

∫
dUaψ

(
UaU

−1
b

)
, (4.47)

from which we read that W projects on the flat connections, averaged over the gauge orbits.
To achieve the important result we are aiming for we would like to see if everything is still consistent,
that is, we know that the same amplitude in the spin representation is given by:

W (jab) =

{
j1 j2 j3
j4 j5 j6

}
, (4.48)

therefore, we expect to obtain the same result by considering

W (jab) =

∫
dUabψjab (Uab)W (Uab) . (4.49)

Thus, by inserting the definitions we get
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W (jab) =

∫
dUab

∫
dUa

∏
ab

δ
(
UaUabU

−1
b

)
⊗a ιa ·

∏
ab

Djab (Uab) . (4.50)

Performing the integral we obtain

W (jab) =

∫
dUa

∏
ab

⊗aιa ·
∏
ab

Djab (Ua)D
jab
(
U−1
b

)
. (4.51)

It is possible to show that the overall result of this integral is:

W (jab) = Tr [⊗aιa] , (4.52)

which coincides precisely with the 6j-symbol (since it is the invariant contraction of four 3j-symbols).
This result tells us that the 6j-symbol can be thought as the Fourier transform of the gauge-invariant
delta functions on flat connections, in the Hilbert space associated with the tetrahedral graph. This
can be written in the notation

W (jab) = ψjab (1) , (4.53)

or, by using the projector PSU(2) on the SU(2) invariant part of a function, the vertex amplitude can
be written as

〈ψv|Wv〉 =
(
PSU(2)ψv

)
(1) , (4.54)

where ψv is a state in the boundary of a vertex.

We can summarize the properties of the amplitude by pointing out the following features:

1. Superposition principle: this is the basic principle of quantum mechanics, the amplitude is
given by the sum of elemetary amplitudes, that is, by a Feynman’s sum over the possible paths σ:

〈W |ψ〉 =
∑
σ

W (σ) . (4.55)

2. Locality: the elementary amplitudes can be seen as products of amplitudes associated with space-
time points (in QFT the product is expressed as the exponential of an integral on spacetime):

W (σ) ∼
∏
v

Wv . (4.56)

3. Local euclidean invariance: the 6j-symbol can be written as the projection on the SU(2)-
invariant part of the state on the boundary graph of the vertex, i.e.

Wv =
(
PSU(2)ψv

)
(1) . (4.57)

These properties will be found also in the 4-dimensional theory.
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4.2 4D Theory

Following the same line of reasoning of the previous section and recalling the results obtained in
the four-dimensional discretization we are ready to face the four-dimenisonal quantization.

4.2.1 Hilbert Space

The boundary Hilbert space we are interested in is obtained in the same manner of the three-
dimensional one: the variables Bl ∈ sl(2,C) and Ul ∈ SL(2,C) become operators in the quantum
theory, the states are given by ψ(Ul), functions on SL(2,C)L and the operator Bl ∈ sl(2,C) is realized
as the generator of SL(2,C) transformations. We recall that B on the boundary is split into its elec-

tric and magnetic parts, and these are constrained by
−→
K = γ

−→
L , therefore we expect this condition

continues to hold, at least in the classical limit. Keeping this constraint in the quantum case has
crucial consequences, it completley determines the dynamics of LQG.
Furthermore, we recall from eq. (3.21) that |Lf | = 1

γAtf and this, together with eq (4.6), which now
reads

Ljl = 8π~Gγ
√
jl(jl + 1) , (4.58)

suggests that the scale of LQG is given by L2
loop = 8π~Gγ. Then it can be stated, that, since the value

of the Barbero-Immirzi constant γ is of order unity (γ ∼ 0.274067 is the value fixed by the Bekenstein-
Hawking entropy) the scale of LQG is of the same order of the Planck scale (L2

Planck = ~G).
To begin with, we are interested in irreducible unitary representations of SL(2,C), these are labeled
by a positive real number p and a non-negative half-integer k. The Hilbert space V (p,k) of the (p, k)
representation decomposes into irreducibles representations of SU(2) ⊂ SL(2,C) as follows:

V (p,k) =

∞⊕
j=k

Hj , (4.59)

where Hj is the 2j + 1-dimensional space that carries the spin j irreducible representation of SU(2).
Therefore, we can choose a basis of states |p, k; j,m〉, with j = k, k + 1, . . . and m = −j, . . . , j. The
quantum numbers (p, k) are related to the two Casimir operators of SL(2,C) by

|
−→
K |2 − |

−→
L |2 = p2 − k2 + 1 ,

−→
K ·
−→
L = pk ,

(4.60)

where j and m are the quantum numbers of |
−→
L |2 and Lz respectively. Now, taking into account the

linear simplicity constraint for large quantum numbers means that

|
−→
K |2 − |

−→
L |2 =

(
γ2 − 1

)
|
−→
L |2 ,

−→
K ·
−→
L = γ|

−→
L |2 ,

(4.61)

and so, by means of (4.59) we get

p2 − k2 + 1 =
(
γ2 − 1

)
j(j + 1) ,

pk = γj(j + 1) .
(4.62)
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In the large quantum numbers limit we then obtain

p2 − k2 + 1 =
(
γ2 − 1

)
j2 ,

pk = γj2 ,
(4.63)

which is solved by

p = γk ,

k = j .
(4.64)

The first of these two equations is a restriction on the set of unitary representations, whereas the
second one picks out a subspace within each representation (the lowest one).
Thus, the states that satisfy these relations have the form

|p.k; j,m〉 = |γj, j; j,m〉 . (4.65)

Clearly these states are in one-to-one correspondence with the states in the representations of SU(2).
It is legit then to introduce a map Yγ defined by

Yγ : Hj −→ V (p=γj, k=j)

|j;m〉 7−→ |γj, j; j,m〉 ,
(4.66)

and all the vectors in the image of this map satisfy the linear simplicity constraint, in the sense that

〈Yγψ|
−→
K − γ

−→
L |Yγφ〉 = 0 , (4.67)

holds in the large j limit. For this reason, we assume that the states of the four-dimensional theory
are constructed from the states |γj, j; j,m〉 alone.
The map Yγ can be extended to a map from functions over SU(2) to functions over SL(2,C), namely

Yγ : L2[SU(2)] −→ F [SL(2,C)]

ψ(h) =
∑
jmn

cjmnD
(j)
mn(h) 7−→ ψ(g) =

∑
jmn

cjmnD
(γj,j)
mn (g) , (4.68)

This is the way to map SU(2) spin-networks into SL(2,C) spin-networks.
The physical states of quantum gravity are thus, essentially, SU(2) spin-networks. This fact is con-
sistent with the classical theory expressed in terms of the Ashtekar variables, which form the same
kinematical phase space of a SU(2) Yang-Mills theory.
Following the same line of reasoning of the three-dimensional case, we would like to find the gauge-
invariant states. In order to do this we decompose the Hilbert space as

L2

[
SU(2)L

]
= ⊗l [⊕j (Hj ⊗Hj)] = ⊕jl ⊗l (Hjl ⊗Hjl) (4.69)

and so

L2

[
SU(2)L/SU(2)N

]
= ⊕jl ⊗n InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3 ⊗Hj4) (4.70)
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where clearly we have an additional factor due to the fact that now each edge is bounded by four faces,
not three. The space InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3 ⊗Hj4) is not one-dimensional in general, it turns out
that linearly independent invariant tensors in this space can be constructed as follows:

ιm1m2m3m4
k =

(
j1 j2 k
m1 m2 m

)
gmn

(
k j3 j4
n m3 m4

)
, (4.71)

for any k that satisfies the triangular relations both with j1, j2 and j3, j4, more precisely:

max[|j1 − j2|, |j3 − j4|] ≤ k ≤ min[j1 + j2, j3 + j4] . (4.72)

We denote these states with |k〉 and the invariant subspace as

Kj1...j4 := InvSU(2) (Hj1 ⊗Hj2 ⊗Hj3 ⊗Hj4) , (4.73)

whose dimension is therefore

dim[Kj1...j4 ] = min[j1 + j2, j3 + j4]−max[|j1 − j2|, |j3 − j4|] + 1 . (4.74)

It follows that a generic gauge-invariant state is a linear combination

ψ (Ul) =
∑
jlkn

Cjlknψjlkn (Ul) , (4.75)

of the orthogonal states

ψjlkn (Ul) = ιm1m2m3m4
k1

· · · ιmL−3mL−2mL−1mL
kN

Dj1
m1n1

· · ·DjL
mLnL

. (4.76)

The difference from the three-dimensional case is that the spin-networks of the four-dimensional case
are labeled not only by spins, but also by an intertwine quantum number k associated to each node
n. Using a more compact notation we denote the spin-network wave functions as

ψjlkn (Ul) = 〈Ul|jl, kn〉 =
⊗
n

ιkn ·
⊗
l

Djl (Ul) . (4.77)

At a classical level, this residual geometric freedom at each node is described by the space of possible
shapes of a tetrahedron with fixed areas, which is a two-dimensional space (coordinatized for instance
by two opposite dihedral angles). This space can also be seen as the space of quadruplets of vectors
satisfying the closure relation, with given areas, up to global rotations, the counting of the dimension
gives: 4× 3− 4− 3− 3 = 2.
An observable on this space is given by the volume V of the tetrahedron, which is given by

V 2 =
2

9
εijkE

iEjEk . (4.78)

where the operator
−→
E is associated with each link and it is given by

−→
E l = 8πγ~G

−→
L l . (4.79)
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The matrix elements of V can be computed in the |k〉 basis, then by diagonalization of this matrix
it is possible to obtain the eigenvalues v and their correspondent eigentates |v〉 of the volume in each
Hilbert space Kj1...j4 . In this basis, the spin-network states can be written as

ψjlvn (Ul) = 〈Ul|jl, vn〉 =
⊗
n

ιvn ·
⊗
l

Djl (Ul) . (4.80)

To summarize, the Hilbert space associated with the boundary graph Γ is given by

HΓ = L2[SU(2)L/SU(2)N ] (4.81)

and spin-network states are denoted by |Γ, jl, vn〉, where jl is a spin associated with each link of the
graph and vn is a volume eigenvalue associated with each node of the graph.
This formalism is referred to as “spinfoam”, where “foam” refers to a 2-complex and “spin” is obviuosly
associated to the spin representation sitting on each edge.

4.2.2 Transition Amplitude

To complete the description of the full theory we need to write down the transition amplitude.
First of all, we give an alternative form of the amplitude which will be more suitable for the four-
dimensional case. We start from

Z =

∫
dUe

∏
f

δ (Ue1 · · ·Uen) . (4.82)

At this point, we introduce two group variables per each edge e, that is, Ue = gvegev′ , where gev = g−1
ve

is a variable associated with each couple vertex-edge. Thus, we can write

Z =

∫
dgve

∏
f

δ (gvegev′gv′e′ge′v′′ · · · ) . (4.83)

Then we regroup the gev variables in a different way, namely we define hvf = gevgve′ , where e and e′

are the two edges coming out from the vertex v and bounding the face f .

Clearly, the amplitude takes the form

Z =

∫
dhvfdgve

∏
f

δ (gvegev′gv′e′ge′v′′ · · · )
∏
vf

δ (ge′vgvehvf ) . (4.84)

This can be reorganised as a transition amplitude where a delta function glues the group element
around each face:

Z =

∫
dhvf

∏
f

δ (hf )
∏
v

Av (hvf ) , (4.85)

where hf :=
∏

v∈∂f hvf is a group variable associated with a face.
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Figure 4.1: Splitting of the group elements

Furthermore, the vertex amplitude is defined by

Av (hvf ) :=

∫
dgve

∏
f

δ (ge′vgvehvf ) . (4.86)

The SU(2) integrals in a vertex are n = 4, that is, one group element for each of the n = 4 edges coming
out of the vertex. However, if one thinks about it, there is one redundant integral, because after in-
tegrating n−1 group variables the result is not affected by the last integration. We denote this fact by∫

SU(2)n
dg′ve :=

∫
SU(2)(n−1)

dgve1 · · · dgven−1 . (4.87)

In three dimensions this observation does not change anything: performing the last integral gives
unity, since the volume of SU(2) is just one, but in the four-dimensional case this turns out to be
crucial, because SL(2,C) is non-compact. If we expand the delta function in representations we get

Av (hvf ) =
∑
jf

∫
dg′ve

∏
f

(2jf + 1) Trjf [ge′vgvehvf ] , (4.88)

where Trj(U) := Tr
[
Dj(U)

]
. Therefore the vertex amplitude is a function of one SU(2) variable

per face around the vertex. We can also picture this by drawing a sphere around the vertex, the
intersection between this sphere and the 2-complex is a graph, Γv. The vertex amplitude is then a
function of the states in

HΓv = L2

[
SU(2)6/SU(2)4

]
Γv

, (4.89)
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where Γv is the complete graph with four nodes and represents the boundary graph of the vertex.
Therefore, we can express the transition amplitude in the following way:

W (hl) =

∫
dhvf

∏
f

δ (hf )
∏
v

Av (hvf ) , (4.90)

where the vertex amplitude is given by

Av (hvf ) = N
∑
jf

∫
dg′ve

∏
f

(2jf + 1) Trjf [ge′vgvehvf ] , . (4.91)

We are ready now to treat the four-dimensional case.
We notice that the form of the transition amplitude is the same as in (4.84), since this only reflects the
superposition principle, therefore the dynamics is contained in the vertex amplitude. The vertex am-
plitude in turn must be SL(2,C)-invariant in the four-dimensional case, but Av (hvf ) can be regarded
only as a function of SU(2) group elements living on the graph of a node (which is on the boundary
of a 4-simplex). To obtain the analogue of (4.87) in the four-dimensional case then we have to replace
the SU(2) integrals with SL(2,C) ones and to map the SU(2) group elements into the SL(2,C) ones.
In order to do that we make use of the Yγ map, as follows:

Av(ψ) =
(
PSL(2,C)Yγψ

)
(1) (4.92)

which, more expilicitly, it reads

Av (hvf ) = N
∑
jf

∫
dg′ve

∏
f

(2jf + 1) Trjf

[
Y †γ ge′vgveYγhvf

]
, (4.93)

where the trace is given by

Trj

[
Y †γ gYγh

]
= Trj

[
Y †γD

(γj,j)(g)YγD
(j)(h)

]
=
∑
mn

D
(γj,j)
jm,jn(g)D(j)

nm(h) . (4.94)

The vertex amplitude is then a function of one SU(2) variable per face around the vertex. As seen
before, we can picture a small sphere around a vertex, obtaining a graph Γv, the vertex amplitude
becomes thus a function of the states in

HΓv = L2

[
SU(2)10/SU(2)5

]
Γv

. (4.95)

The graph Γv is the complete graph with five nodes.

4.2.3 Continuum Limit

We have seen above the equations that describe the theory on a given graph Γ, obtained from a
given 2-complex C. This is a theory with a finite number of degrees of freedom, beacuse it corresponds
to a truncation of classical general relativity, which is a theory with an infinte number of degrees of
freedom. The full theory is approximated by choosing increasingly refined complexes C and Γ = ∂C,
where the refinement is chosen in relation to the desired precision, in analogy with a finite order in
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perturbation theory in QED. More precisely: let Γ′ be a subgraph of Γ, namely, a graph formed by
a subset of nodes and links of Γ, then, there is a subspace HΓ′ ⊂ HΓ which is isomorphic to the
loop-gravity Hilbert space of the graph Γ′. Indeed, this is formed by all the states ψ(Ul) ∈ HΓ which
are independent of the group elements Ul associated with the links l that are in Γ but not in Γ′.
Equivalently, HΓ′ is the linear span of the spin-network states characterized by jl = 0 for any l that
is in Γ but not in Γ′.
Therefore, if we define the theory on Γ we have at our disposal a subset of states that captures the
theory defined on the smaller graph Γ′, in this way, the step from Γ′ to Γ is a refinement of the theory.
More precisely, the continuum limit can be defined by

Z(hl) = lim
C→∞

ZC(hl) , (4.96)

which is well defined in the sense of nets, because two-complexes form a partially ordered set with
upper bound. Nevertheless, there is not a unique notion of limit at the present time, and it is often
said that the approximation is good when the discretized theory approximates the continuum theory
in the classical context, that is, when the degree of accuracy of the triangulation meets the desired
expectations.
When dealing with the continuum limit it is natural then to ask what happens to the tranistion ampli-
tude when refining the triangulation. The simplest case to analyze is considering a single tetrahedron
τ and adding a point P inside it, then joining P to the four vertices of τ . In this way the original
tetrahedron has been split into four smaller tetrahedra. If we call ∆1 the original triangulation and ∆4

the new one, it’s clear that, when dealing with the respective 2-complexes, the refinement produces a
“bubble”, as shown in figure.

Figure 4.2: The graph ∆∗4
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Starting from (4.45) it is possible to compute the amplitude of this triangulation W∆4 . It can be
shown [16] that the relation between W∆4 and the original W∆1 amounts to an infinite factor multi-
pling the latter.
The appearance of the divergence is a manifestation of the standard quantum field theory divergences.
It is strictly connected to the existence of the bubble. To see that this is the case, reconsider the same
calculation in the spin representation. From eq. (4.41):

W∆4(jab) =
∑
jab

∏
ab

djab
∏
a

{6j} . (4.97)

In general, in a sum like this the range of summation of the jab is restricted by the triangular identities.
Since the boundary faces have finite spins, the only possibility for an internal face to have a large spin
is to be adjacent, at each edge, to at least one other face with a large spin. In other words, a set of
faces with arbitrary large spins cannot have boundaries. Therefore to have a sum which is not up to
a maximum spin by the triangular identities the only possibility is to have a set of faces that form
a surface without boundaries in the two complex. That is, a bubble. All this is very similar to the
ultraviolet divergences in the Feynman expansion of a normal quantum field theory, where divergences
are associated to loops, because the momentum is conserved at the vertices. Here, divergences are
associated to bubbles, because angular momentum is conserved on the edges. A Feynman loop is a
closed set of lines where arbitrary high momentum can circulate. A spinfoam divergence is a closed
set of faces, that can have arbitrarily high spin. Notice however that in spite of the formal similarity
there is an important difference in the physical interpretation of the two kinds of divergences. The
Feynman divergences regards what happens at very small scale. On the contrary, the spinfoam diver-
gences concern large spins, namely large geometries. Therefore they are not ultraviolet divergences,
they are infrared. A way to get rid of these divergences is by considering the so-called “Turaev-Viro”
amplitude, in which, instead of considering the group SU(2), one chooses the group SU(2)q (q being
a parameter), i.e. a one-parameter deformation of the algebra of the representations of SU(2). The
Turaev-Viro amplitude is given by:

Wq(jl) = wpq
∑
jf

∏
jf

(−1)jf dq(jf )
∏
v

(−1)Jv{6j}q . (4.98)

The remarkable fact, is that the dimension dqj has a maximum value [17], this finiteness makes the
amplitude finite.

Furthermore, the parameter q can be put in relation with the cosmological constant q = ei
√

Λ~G as
shown in [18], thus relating the finiteness of the amplitude to the presence of the cosmological constant.

4.3 Classical Limit

The classical limit in covariant LQG is studied on the basis of the so-called coherent states: these
are similar to wave packets in quantum mechanics, i.e. states in which both position and momentum
are minimally spread. Geometrically, a tetrahedron is uniquely determined by giving six numbers,
that is, the lengths of its sides, but we have seen before that a state associated to a node (and therefore
to a tetrahedron) is characterized only by five numbers: four areas and the volume. In a sense, the
geometry of the tetrahedron is fuzzy, in the same way angular momentum is, in quantum mechanics.
Let’s consider then a node n, we have a Hilbert space Hn, a basis of states is given by |ιk〉 defined

in (4.70). It can be shown that these states are eigenstates of
−→
L 1 ·

−→
L 2, that is, they diagonalize the

dihedral angle θ12 between the faces 1 and 2. We would like to find, given a classical tetrahedron,
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a quantum state whose dihedral angles are minimally spread around the classical variables. These
states are called “intrinsic coherent states”.

4.3.1 Intrinsic Coherent States

We recall that a tetrahedron is characterized by four vectors
−→
E a (one per each face) whose length

is the area of the correspondent face; in the quantum theory these are quantized and they are given
by

−→
E a = 8πG~γ

−→
L a . (4.99)

From the following commutation relations[
Lia, L

j
b

]
= iδabε

ij
k L

k
a (4.100)

it is possible to show that the commutation relations between two dihedral angles are given by[−→
E 1 ·

−→
E 2,
−→
E 1 ·

−→
E 3

]
= i8πG~γ

−→
E 1 · (

−→
E 2 ×

−→
E 3) . (4.101)

Then, from this, it follows the Heisenberg relation

∆(
−→
E 1 ·

−→
E 2) ·∆(

−→
E 1 ·

−→
E 2) ≥ 1

2
8πG~γ|〈

−→
E 1 · (

−→
E 2 ×

−→
E 3)〉| , (4.102)

where 〈A〉 = 〈ι|A|ι〉 and ∆A =
√
〈ι|A2|ι〉 − (〈ι|A|ι〉)2. Thus, we are aiming for states whose dispersion

is small compared with their expectation value, that is

∆(
−→
E a ·

−→
E b)

|
−→
E a||
−→
E b|

� 1 ∀a, b . (4.103)

The first step is to consider SU(2) coherent states. We start from a state of fixed total angular mo-
mentum j, |j,m〉 ∈ Hj is then a basis of these states. Then, because [Lx, Ly] = iLz, we have the
Heisenber relation

∆Lx∆Ly ≥
1

2
|〈Lz〉| , (4.104)

which is satisfied by every state. A state that saturates this inequality can be shown to be given by
|j, j〉.
Furthermore, there is an entire family of coherent states which can be obtained starting from the state
|j, j〉, namely, by rotating the state by means of a matrix R ∈ SO(3):

|j,−→n 〉 = D−→n (R)|j, j〉 , (4.105)

where −→n is the direction obtain by starting from the z-axis and then applying the rotation. These
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coherent states can be expanded in terms of eigenstates of Lz as follows

|j,−→n 〉 =
∑
m

φm(−→n )|j,m〉 , (4.106)

where φm(−→n ) = 〈j,m|D(R)|j, j〉 = D(j)(R)jm.
One of the most important properties of the coherent states is that they provide a resolution of the
identity, that is,

1j =
2j + 1

4π

∫
S2

d2−→n |j,−→n 〉〈j,−→n | . (4.107)

By means of these coherent states it is possible to describe a “coherent” tetrahedron, whose faces are
described by coherent states. More precisely, let’s consider the coherent state

|j1,−→n 1〉 ⊗ |j2,−→n 2〉 ⊗ |j3,−→n 3〉 ⊗ |j4,−→n 4〉 ∈ H1 ⊗ · · ·H4 , (4.108)

which is still a coherent state, since tensor products of coherent stantes are coherent, and project it
down to its invariant part by means of

P : H1 ⊗ · · ·H4 → Inv(H1 ⊗ · · ·H4) . (4.109)

Thus, we denote this coherent state as

||ja,−→n a〉 := P (|j1,−→n 1〉 ⊗ |j2,−→n 2〉 ⊗ |j3,−→n 3〉 ⊗ |j4,−→n 4〉) , (4.110)

which is then the element of HΓ that describes a semicalssical tetrahedron. More precisely, the pro-
jection can be explicitly implemented by the following

||ja,−→n a〉 =

∫
SO(3)

dR(|j1, R−→n 1〉 ⊗ |j2, R−→n 2〉 ⊗ |j3, R−→n 3〉 ⊗ |j4, R−→n 4〉) , (4.111)

which can be translated in a SU(2) integral as

||ja,−→n a〉 =

∫
SU(2)

dh(Dj1(h)|j1,−→n 1〉 ⊗Dj2(h)|j2,−→n 2〉 ⊗Dj3(h)|j3,−→n 3〉 ⊗Dj4(h)|j4,−→n 4〉 . (4.112)

These states are also referred to as the “Livine-Speziale coherent intertwiners”, since they are associ-
ated to a tetrahedron which is in turn associated to a node. It can be shown that these states can be
expanded in any intertwiner basis:

||ja,−→n a〉 =
∑
k

Φk(
−→n a)|ιk〉 , (4.113)

where the coefficients Φk(
−→n a) = ιm1m2m3m4ψm1(−→n 1) · · ·ψm4(−→n 4), for large j, have the form

Φk(
−→n a) ∼ e−

1
2

(k−k0)
2

σ2 eikψ, i.e. they are concentrated around a single value k0 which determines the
value of the corresponding dihedral angle, and have a phase such that, when changing basis to a
different intertwined basis, we still obtain a state concentrated around the same value.
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For large j, these states satisfy the following properties

〈ι(nl)|Ea · Eb|ι(nl)〉 ∼ jajb−→n a · −→n b (4.114)

and

∆(
−→
E a ·

−→
E b)

|
−→
E a||
−→
E b|

� 1 , (4.115)

the last one proves that these are in fact coherent states.
Putting everything together, that is, combining coherent intertwiners at each node, we can define a
coherent state in HΓ, which can be thought as a “wave packet” peaked on a classical triangulated
geometry:

ψjl,−→n sl ,
−→n tl

(Ul) = ⊗lD(jl)(Ul) · ⊗nιn(−→n l) . (4.116)

4.3.2 Spinors

Coherent states provide a tool to perform the classical limit, but to reach that goal we need to
exploit their relation with spinors. Spinors are the elements of the fundamental representation of
SU(2), namely, H 1

2
= C2, that coincides with the fundamental representation of SL(2,C). We denote

a spinor z ∈ C2 by

z =

(
z0

z1

)
= zA = |z〉 . (4.117)

The spinor n = (1, 0) is the eigenvector of Lz with eigenvalue 1
2 and unit norm, then, we can identify

it with the state |j = 1
2 ,m = 1

2〉, which is a coherent state. Since all the coherent states in the j = 1
2

representation are obtained by rotating |12 ,
1
2〉 and since rotation preserves the norm of a spinor, it

follows that all normalized spinors n describe coherent states in the fundamental representation, that
is,

|n〉 = |1
2
,−→n 〉 . (4.118)

Now, with each spinor n ∈ C2 we can associate a three-dimensional real vector by

−→n = 〈n|−→σ |n〉 , (4.119)

therefore we have that

〈n|
−→
L |n〉 = 〈n|

−→σ
2
|n〉 =

1

2
−→n = j−→n . (4.120)

Normalized spinors are coherent states for the normalized three-vector they define. This result can
be extended to any representation, because the tensor product of coherent states is a coherent state.
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Thus, it makes sense to consider the followng state

|j,n〉 = n⊗ · · · ⊗ n︸ ︷︷ ︸
2j

, (4.121)

which coincides with the spin-j representation, and is precisely the coherent state |j,−→n 〉 that satisfies

〈j,n|
−→
L |j,n〉 = j−→n . (4.122)

Armed with spinors we can look for a different realization of the spin-j representation, namely, the
finite-dimensional vector space Hj can be realized as the space of the totally symmetric polynomial
functions f(z) of degree 2j. In order to see this, we recall that the spin-j representation space Hj can
be realized by symmetric tensors yA1A2...A2j with 2j indices. Therefore, the corresponding polynomial
function of z is simply

f(z) = yA1A2...A2jzA1 · · · za2j . (4.123)

This function satisfies the homogeneity condition

f(λz) = λ2jf(z) (4.124)

and the SU(2) action on these functions is given by

(Uf)(z) = f(UT z) . (4.125)

We would like to see how coherent states look in this representation. For spin 1/2, a coherent state is
represented by the linear function

fn(z) ∼ nAzA ∼ 〈z|n〉 , (4.126)

up to normalization. If we take the symmetrized tensor product of this state with itself 2j-times, we
obtain the coherent state in the j representation in the following form (including normalization)

f
(j)
n (z) =

√
2j + 1

π
〈z|n〉2j . (4.127)

This relaization of SU(2) representation spaces turns out to be very useful to relate SU(2) representa-
tions with SL(2,C) unitary representations. We have seen previously that these representations were
given by V (p,k), but again we would like to write these spaces in terms of functions of spinors f(z),
with z ∈ C2. The representation (p, k) is defined on the space of the homogeneous functions of spinors
that have the property

f(λz) = λ(−1+ip+k)λ
(−1+ip−k)

f(z) (4.128)

and the SL(2,C) action reads

gf(z) = f(gT z) . (4.129)
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The transition between the canonical basis and the spinor basis can be shown to be given by

f jm(z) = 〈z|p, k; j,m〉 =

√
2j + 1

π
〈z|z〉ip−1−jDj

mk(g(z)) (4.130)

where

g(z) =

(
z0 z1

z1 z0

)
. (4.131)

In these representations the scalar product between two functions is given by an integral in spinor
space, that is, if f and g are functions of spinors, we have:

〈f |g〉 =

∫
fgdΩ , (4.132)

where

dΩ =
i

2
(z0dz1 − z1dz0) ∧ (z0dz1 − z1 − dz0) . (4.133)

These spinor representations are particurarly convenient because the Yγ map takes a particurarly sim-
ple form in this language. Since the embedding of Hj in V (p,k) is given by

f(z) 7→ 〈z|z〉−1+ip−kf(z) , (4.134)

we have then

Yγf(z) = 〈z|z〉−1+(iγ−1)jf(z) . (4.135)

This allows us to write the action of the Yγ map on the coherent states:

〈z|Yγ |j,−→n 〉 =

√
2j + 1

π
〈z|z〉−1+(iγ−1)j〈z|n〉2j , (4.136)

which we write also as

〈z|Yγ |j,−→n 〉 =

√
2j + 1√
π〈z|z〉

ej[(iγ−1)ln〈z|z〉+2ln〈z|n〉] . (4.137)

At this point, we would like to rewrite the amplitude in terms of spinors. In order to do so, we first
recall that

Av (hvf ) =
∑
jf

∫
SL(2,C

dg′ve
∏
f

(2jf + 1) Trjf

[
Y †γ ge′vgveYγhvf

]
, (4.138)

which can be written, dropping the subscript v and labeling the edges emerging from the vertex with
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a, b = 1, . . . , 5 and the faces adjacent to the vertices as ab,

Av (hab) =
∑
jab

∫
SL(2,C

dg′a
∏
ab

(2jab + 1) Trjab

[
Y †γ g

−1
a gbYγhab

]
. (4.139)

The trace in the last equation can be written inserting two resolutions of the identity in terms of
coherent states

Trj

[
Y †γ gg

′Yγh
]

=

∫
S2

d−→n d−→m〈j,−→m|Y †γ gg′Yγ |j,−→n 〉〈j,−→n |h|j,−→m〉 . (4.140)

The first matrix element can be expressed in terms of spinors:

〈j,−→m|Y †γ gg′Yγ |j,−→n 〉 =

∫
C2

dΩ〈Yγj,−→m|gz〉〈g′†z|Yγj,−→n 〉 . (4.141)

Using (4.133) and introducing the notation

Z = gz , Z′ = g′†z , (4.142)

we obtain

〈j,−→m|Y †γ gg′Yγ |j,−→n 〉 =
2j + 1

π

∫
C2

dΩ

〈Z|Z〉〈Z′|Z′〉
ej S(n,m,Z,Z′) , (4.143)

where

S(n,m,Z,Z′) := ln
〈Z|m〉2〈Z′|n〉2

〈Z|Z〉〈Z′|Z′〉
+ iγln

〈Z|Z〉
〈Z′|Z′〉

. (4.144)

We would like to insert this result in the expression of the amplitude. In order to do so, we choose
a coherent state in HΓv , that is, we pick a quadruplet of normalized vector −→n ab for each node of Γv,
these define a state |jab,−→n ab〉. Therefore the amplitude takes the form:

Av (jab,
−→n ab) ≡ 〈Av|jab,−→n ab〉 =

∫
SL(2,C)

dg′a
∏
ab

(2jab + 1) 〈jab,nab|Y †γ g−1
a gbYγ |jba,nba〉 . (4.145)

Now, using the result in (4.137), we get

Av (jab,
−→n ab) = µ(jab)

∫
SL(2,C)

dg′a

∫
C2

dΩab

|Zab||Zba|
e
∑
ab jab S(nab,nba,Zab,Zba) , (4.146)

where µ(jab) =
∏
ab

(2jab+1)2

π and Zab = gazab and Zba = gbzab.
In order to perform the classical limit we have to take the limit of large quantum numbers, that is,
when jab are large. In this limit, the integral in (4.146) can be computed using the saddle-point
approximation, which, in d dimensions takes the form:∫

Rd
dxdg(x)ejf(x) =

(
2π

j

) d
2

(detH2f)−
1
2 g(x0)ejf(x0)

[
1 + o

(
1

j

)]
, (4.147)

where H2f is the Hessian of f at the saddle point x0, which is the point where the gradient of f
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vanishes. Now, if f is real and negative, a large j gives a narrow gaussian around the maximum of f ;
if f is imaginary, when j is large, the exponential oscillates very rapidly and the integral is canceled
out except for the points where the derivative of f vanishes.
For this reason, we start from the real part of the action, this is given by:

Re[S] =
∑
ab

log
|〈Zab|nab〉|2 |〈Zba|nba〉|2

〈Zab|Zab〉〈Zba|Zba〉
. (4.148)

The maximum is obtained when the logarithm vanishes, that is, when

nab = eiφab
Zab
|Zab|

nba = eiφba
Zba
|Zba|

, (4.149)

which, by definition of Z, turns into

g−1
a nab =

|Zba|
|Zab|

eiθabg−1
b nba . (4.150)

At this point, we look at the extrema of the action under a variation of the spinor variables zab. The
explicit calculation gives

ganab =
|Zba|
|Zab|

eiθabgbnba . (4.151)

Next, we consider a variation with respect to the group elements ga and the spinor variables zab.
The former variation gives the action of the algebra elements, therefore the saddle-point equations
for the group elements give the vanishing of the action of an infinitesimal SL(2,C) transformation.
This action can be decomposed into boosts and rotations, but in the relevant representations these
are proportional, and so the needed invariance is only under rotations. In lue of (4.149), this can be
moved from the variables Z (which contain the group elements) to the normals, thus obtaining [19]∑

b

jab|nab〉 = 0 . (4.152)

This equation shows exactly the closure conditions for the normal at each of the boundary nodes of
the vertex graph. This is remarkable, because the initial set of normals is arbitrary; then, the dy-
namics suppreses all the possible sets of nab unless these satisfy the closure constraint at each node.
Therefore, the normals define a proper tetrahedron τa at each node a of the vertex graph. We have
then five tetrahedra in the vertex graph (which is the complete graph with five nodes), that is, one
for each boundary node. These tetrahedra are three-dimensional objects, we can think of them as
lying in a common three-dimensional surface Σ of Minkowski space, left invariant by the SU(2) action.
Now, a vector in Σ defines a surface in Σ to which it is normal, then, a Lorentz transformation can
act on this surface and move it to an arbitrary (spacelike) surface. In terms of spinors, this action
is given by the action an element of SL(2,C) on the spinor associated to the surface. This reason-
ing allows to interpret (4.152) in the following way: there are five Lorentz transformations ga that
rotate the five tetrahedra τa in such a way that the b face of the tetrahedron τa is parallel to the a
face of the tetrahedron τb. The value of the action at the saddle point can be shown to be given by [19]

S = iγ
∑
ab

jabΘab , (4.153)

where Θab is the difference between the Lorentz transformations to the opposite sides of adjacent
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tetrahedra, that is, it is the dihedral angle between two tetrahedra. We recall that γjab is the area of
the boundary faces of the 4-simplex, in units where 8πG~ = 1, therefore, S on the critical point is the
Regge action of the 4-simplex having the boundary geometry determined by the 10 areas jab.

4.3.3 Classical Limit versus Continuum Limit

The classical limit is obtained when considering a fixed triangulation and then taking the large-j
limit of the transition amplitude, whereas the continuum limit is obtained by refining the 2-complex C.
The two procedures are obviously not equivalent, but the strategy to obtain the Hamilton function of
General Relativity from the transition amplitude involves both. Indeed, one can perform the classical
limit in the first place, thus obtaining the Regge Hamilton function, and then perform the continuum
limit by considering more refined discretizations. The latter limit is known to converge to the General
Relativity Hamilton function as mentioned earlier.
Now, the regimes where the classical limit is good in quantum gravity are those involving scales L
that are much larger than the Planck scale:

L� LPlanck . (4.154)

The regimes where the truncation is good are suggested by the Regge approximation, that is, the
deficit angles have to be small. This happens when the scale of the discretization is small with respect
to the curvature scale Lcurvature:

L� Lcurvature . (4.155)

Therefore a triangulation with few cells, and, correspondingly, a two-complex with few vertices, provide
an approximation in the regimes (determined by the boundary data) where the size of the cells
considered is small with respect to the curvature scale (of the classical solution of the Einstein’s
equation determined by the given boundary data).
Refining the triangulation leads to including shorter length-scale degrees of freedom. But the physical
scale of a spinfoam configuration is not given by the graph or the two complex. It is given by the
size of its geometrical quantities, which is determined by the spins (and intertwiners). The same
triangulation can represent both a small and a large size of spacetime. A large chunk of nearly flat
spacetime can be well approximated by a coarse triangulation, while a small chunk of spacetime where
the curvature is very high requires a finer triangulation. In other words, triangulations do not need
to be uselessly fine, they need to be just as fine as to to capture the relevant curvature.

4.3.4 Extrinsic Coherent States

We would like to build, for practical applications, states which are coherent both in the intrinsic
and extrinsic geometry, since we recall that the extrinsic curvature is the variable conjugate to the
3-metric in the ADM variables. In order to introduce extrinsic coherent states, we recall that a wave
packet in quantum mechanics peaked on the phase space point (q, p) is of the form

〈x|q, p〉 ≡ ψq,p(x) = e−
(x−q)2

2σ2
+ i

~px . (4.156)
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Its Fourier transform is proportional to

〈k|q, p〉 ∼ e−
(k−p/~)2

2/σ2
+iqk

. (4.157)

We can rewrite this state also as

ψq,p(x) = e−
(x−z)2

2σ2 , (4.158)

where z is the complex variable given by

z = q − iσ
2

~
p . (4.159)

We need to find the analogue of this state in HΓ. Starting from L2[SU(2)], we notice that a state
peaked on group variables is given by a delta function:

ψ(U) = δ(Uh−1) , (4.160)

ψ(U) is a state sharp on the element h ∈ SU(2). This state is, on the other hand, completely spread
in the conjugate variable since

δ(U) =
∑
j

djTrj [U ] . (4.161)

It is possible to obtain a state peaked on the value j = 0 by adding an exponential factor, more
precisely,

ψh,0(U) =
∑
j

dje
−tj(j+1)Trj [Uh

−1] (4.162)

is a state peaked on U = h and j = 0. By complexifing the group variable it is possible to get a state
peaked on a generic j 6= 0, in analogy with the wave packet seen before, where, in that case, the factor
needed was eipx/~. A complexification of SU(2) is given by SL(2,C), for this reason we consider the
following state:

ψH(U) =
∑
j

dje
−tj(j+1)TrD(j)[UH−1] , (4.163)

where H ∈ SL(2,C) is given by

H = e
it E
l20 h , (4.164)

with h ∈ SU(2) and E ∈ su(2). This state can be regarded as a wave packet peaked both on the
group variable and its conjugate, since it is possible to show that:

〈ψH |U |ψH〉
〈ψH |ψH〉

= h ,
〈ψH |

−→
E |ψH〉

〈ψH |ψH〉
=
−→
E . (4.165)
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In order to generalize these states to spin-network states, it is necessary to make them invariant un-
der SU(2) at the nodes, therefore, an extrinsic coherent state on a graph Γ is labeled by a SL(2,C)
variable Hl associated with each link and is given by

ψHl(Ul) =

∫
SU(2)

dhn
∏
l

∑
jl

djle
−tjl(jl+1)TrD(jl)[UlhslH

−1
l h−1

tl
] . (4.166)

Extrinsic coherent states represent the ideal tools when studying cosmology. More precisely, if we write
the Hamilton function associated to a homogeneous and isotropic geometry, i.e. the one associated to
the Friedmann-Lemâıtre metric, and then write down the expected form of the transition amplitude,
it is possible to obtain the same behaviour starting from two extrinsic coherent states and then
performing the classical limit [20] (large spins and saddle point).
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Appendix A

Lie Algebra

A.1 Left-Invariant Vector Fields

In this section we introduce the basic notions in order to address the standard formulation of a
gauge theory from a mathemathical perspective. In addition to this we add some important issues
concerning the quantization in LQG and a different formulation of General Relativity based on the so
called tetrad fields.

Let’s consider a Lie group G, a vector field X ∈ T (G) is called left-invariant if

lg∗Xg′ = Xgg′ ∀g, g′ ∈ G (A.1)

where lg is the left multiplication by g , i.e lg : G→ G, h 7→ gh.
We denote by L(G) the vector space of left-invariant vector fields, one can easily show that it is a Lie
subalgebra of T (G), this is due to the fact that X as in (1) is the field lg-correlated to itself and so
the Lie bracket of two left-invariant vector fields is still left-invariant.
In addition to this, one remarkable property is that L(G) is isomorphic to TeG, the latter being
known as the Lie algebra of the Lie group G. The map that does the job is given by i : TeG −→ L(G),
A 7→ LA, where LA ∈ L(G) is defined by Lg

A := lg∗A.
An important feature of left-invariant vector fields is that they are complete, in the sense that if
X ∈ L(G) then its integral curve is defined everywhere on R, that is we have σX : R −→ G such that
σ∗

X( ddt) = X.
This fact allows us to define a map from TeG to G called the exponentialmap, in the following way:
first of all, the unique integral curve t 7→ σL

A
(t) of LA ∈ L(G) such that σL

A
(0) = e and σ∗

LA( ddt)0 = A
is denoted by t 7→ exptA, where A ∈ TeG; then the exponentialmap is the map exp : TeG −→ G
defined by exp := exptA|t=1.
If we consider the case G = GL(n,R) we can find a useful expression for a left-invariant vector field,
introducing coordinates on GL(n,R). First of all, we choose a coordinate system on GL+(n,R), which
is the connected component containing matrices whose determinant is positive, then, in a neighbour-
hood of the identity we define:

xij(g) := gij , g ∈ GL+(n,R), i, j = 1, ..., n . (A.2)

Now, let A ∈ TeG ∼= M(n,R), we get:
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LAg =

n∑
i,j=1

(
LAxij

)
g

(
∂

∂xij

)
g

(A.3)

and furthermore

(LAxij)g =
d

dt

(
xij(gexptA)

)
t=0

, (A.4)

where we used the definition of integral curve:

X(f)p =
d

dt

(
f(σX(t))

)
t=0

, (A.5)

where σX(0) = p.
Since A ∈ M(n,R) is a matrix , it is possible to consider the curve t 7→ etA in GL+(n,R), where etA

is the exponential of matrix defined by means of a series. Clearly, the tangent vector to this curve in
t = 0 is the matrix A, furthermore, the curve defines a one-parameter subgroup of GL+(n,R), thus,
because every one-parameter subgroup is necessariely of the form exp(tA) we have that:

etA = exptA, ∀t ∈ R, ∀A ∈ TeG. (A.6)

By means of (A.6) we can rewrite (A.4) as:

(LAxij)g =
d

dt

(
xij(getA)

)
t=0

=
n∑
k=1

d

dt

(
etA
)kj |t=0

=
n∑
k=1

gikAkj = (gA)ij ,

(A.7)

thus we get the following expression for a left-invariant vector field on a matrix group:

LAg =
n∑

i,j=1

(gA)ij
(

∂

∂xij

)
g

. (A.8)

This expression will reappear later on, when we’ll introduce the Poisson structure of T ∗G, choosing
G = SU(2).
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A.2 Left-Invariant One-Forms

We can move now to left-invariant one-forms. An n-form ω ∈ An(G) is left-invariant if

l∗g (ωg′) = ωg−1g′ , ∀g, g′ ∈ G. (A.9)

We have seen that TeG ∼= L(G) via the map i(A) = LA, we can therefore expect that T ∗eG
∼= L∗(G),

that is to each d ∈ T ∗eG is associated a left-invariant one-form λd defined by

λdg := l∗g−1(d) ∈ T ∗eG ∀g ∈ G. (A.10)

It is possible to find an explicit relation between a left-invariant vector field and a left-invariant one-
form, by contracting the latter with the previous one, as follows:〈

λd, LA
〉
g

= l∗g−1(d)
(
LAg
)

= l∗g−1(d)
(
l∗g(A)

)
= d

(
l∗−1
g
◦ l∗g(A)

)
= 〈d,A〉 ∀g ∈ G.

(A.11)

We have seen how L(G) is a Lie subalgebra of T (G), is there a similar result for the dual space L∗(G),
thought as the dual vector space? Let {E1, ..., En}, n = dimG, a base of L(G), then we have:

[Eα, Eβ] =

n∑
γ=1

CγαβEγ , (A.12)

where Cγαβ are the srtucture constants of G with respect to the chosen basis. Therefore in L∗(G) we

have the corrispondent dual basis {ω1, ..., ωn} of L∗(G) which, by definiton, is such that: 〈ωα, Eβ〉 :=
δαβ . We see at this point that, in general, given two vector fields, there is a natural way of obtaining
a third one by combining the two via the commutator; on the other hand, there is not a natural way
of doing the same thing using one-forms in place of vector fields. Nevertheless, we know that, given a
one-form, we can obtain a two-form either by taking the differential or by making the external product
of two one-forms. In the following we will use both these operations to find an equation that every
left-invariant one-form satisfies. Taking the differential of a left-invariant one-form we get:

dωα(Eβ, Eγ) = Eβ (〈ωα, Eγ〉)− Eγ (〈ωα, Eβ〉)− 〈ωα, [Eβ, Eγ ]〉 = −Cγαβ, (A.13)

taking the external product of two left-invariant one-forms we get:

ωδ ∧ ωε(Eβ, Eγ) = ωδ ⊗ ωε(Eβ, Eγ)− ωε ⊗ ωδ(Eγ , Eβ) = δδβδ
ε
γ − δδγδεβ, (A.14)

joining these two results we finally obtain:

dωα +
1

2

n∑
β,γ=1

Cγαβω
β ∧ ωγ = 0. (A.15)

This equation is called the Cartan-Maurer equation and it is always satisfied by a left-invariant one-
form. We will find again this equation when we will deal with T ∗G.
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A.3 Cartan-Maurer Form

Next, we are going to deal with the so called Cartan-Maurer form which we’ll find in the context
of gauge fields. The Cartan-Maurer form is the L(G)-valued one-form which assigns to each v ∈ TgG
the left-invariant vector field on G whose element in g is precisely v. If we denote with 〈Ξ, v〉 the
left-invariant vector field then we have:

〈Ξ, v〉(g′) := lg′∗
(
lg−1∗v

)
∀v ∈ TgG, (A.16)

in particular, that means that:

〈Ξ, LAg 〉(g′) = LAg′, (A.17)

furthermore, because L(G) ∼= TeG we can associate to LAg the element A ∈ TeG, to get 〈Ξ, LAg 〉 = A.
The Cartan-Maurer form is clearly left-invariant.
In the special case in which G = GL(n,R) we have seen that LAg = (gA)ij

(
∂

∂xij

)
, thus:

δij =
(
〈Ξ, L1

g〉
)ij

= Ξik
(
L1
g

)kj
= Ξikgkj , (A.18)

where 1 ∈ TeG is the identity matrix. From (A.18) we can deduce that:

Ξijg =
n∑
k=1

(
g−1
)ik (

dxkj
)
g
. (A.19)

The expressions for LAg and Ξg found in a coordinate system as in (A.2) are still valid for a general
Lie matrix group.

A.3.1 Gauge Transofrmations and Cartan-Maurer Form

Let’s end this section with an example, which turns out to be useful in the following.
Let U ∈M be an open set, Ω : U → G ,M is a m-dimensional differentiable manifold (in Yang-Mills
theories it represents spacetime), G is the gauge group and so Ω is meant to be a gauge function which
assigns to each point of M a gauge transformation. Obviously, on G is present the Cartan-Maurer
form, then we can consider the pull-back of Ξ onM through Ω. If G is a matrix group, using coordi-
nates as in (2.2) we can find an expression of Ω∗Ξ in the following way:
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〈
(Ω∗Ξ)ijp ,

(
∂

∂xµ

)
p

〉
=

〈
Ξij ,Ω∗

(
∂

∂xµ

)〉
Ω(p)

=

〈
n∑
k=1

(
Ω(p)−1

)ik (
dxkj

)
Ω(p)

,Ω∗

(
∂

∂xµ

)
Ω(p)

〉

=
n∑
k=1

(
Ω(p)−1

)ik
Ω∗

(
∂

∂xµ

)
p

(
xkj
)

=
n∑
k=1

(
Ω(p)−1

)ik ∂

∂xµ
xkj (Ω(p)) ,

(A.20)

for each p belonging to a local chart whose domain is U .
Therefore we obtain the expression:

(Ω∗Ξ)ijp =
m∑
µ=1

n∑
k=1

(
Ω−1(p)

)ik ∂

∂xµ
Ωkj(p) (dxµ)p , (A.21)

which very often appears in the more succinct form:

Ω∗Ξ = Ω−1dΩ. (A.22)
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Appendix B

Principal Fibre Bundles

In this section we are going to explore the idea of a principal fibre bundle, the reason for that is
because it’s the main structure in guauge theories.

B.1 Principal Fibre Bundles

The idea of a principal fibre bundle is that of a fibre bundle in which fibres are diffeomorphic to a
Lie group G and on which the same group G acts in such a way to ”move points along the fibres”.

The preliminary definition we have to give is that of a G − bundle: a bundle (E, π,M) is a
G − bundle if E is a G-space (i.e. there is a G-action on E) and if (E, π,M) is isomorphic to the
bundle (E, ρ,E/G) where E/G is the space of the orbits of the G-action on E and ρ is the projection
on the orbit, to summarize we say that the following diagram has to commute:

E
u−−−−→ Eyπ yρ

M '−−−−→ E/G

(B.1)

The fact that (E, π,M) and (E, ρ,E/G) are isomorphic means that the fibres of E are the orbits of
the G-action on E. If the action of G on E is free, that is, if ∀p ∈ E we have {g ∈ G | pg = p} = {e},
then (E, π,M) is said principal G-bundle and G is called the structure group of the bundle. The fact
that the action of G is free implies that every orbit is homeomorphic to G, therefore it makes sense
to say that (E, π,M) is a fibre bundle with fibre G.

A principal fibre bundle which turns out to be very useful is the bundle of frames of a m-dimensional
differentiable manifold M. Let be x ∈ M, (b1, ..., bm) a basis of vectors in TxM, the total space
B(M) of the bundle of frames is defined as the set of all frames at each point of M, the projection
π : B(M) → M is defined by the function which sends each frame to the point it is attached. It is
possible to introduce a free right action of GL(m,R) on B(M) given by:

(b1, ..., bm) g :=

 m∑
j1=1

bj1gj11, ...,

m∑
jm=1

bjmgjmm

 ∀g ∈ GL(m,R). (B.2)
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This action is clearly free, as one can verifies; the action corresponds to a change of basis in TxM, x ∈
M. In addition to this, B(M) can be endowed with a differentiable structure, as follows: let U ⊂M
be a domain of a local chart on M, whose coordinates we denote by (x1, ..., xm), then each basis
b = (b1, ..., bm) of TxM, x ∈ U , can be written as

bi =

m∑
j=1

bji

(
∂

∂xj

)
x

, i = 1, ...,m, (B.3)

for a certain bji ∈ GL(m,R). We can therefore define the following map:

h : U ×GL(m,R) −→ π−1(U)

(x , g ) 7−→

 m∑
j1=1

gj11 (∂j1)x , ...,
m∑

jm=1

gjm1 (∂jm)x

 (B.4)

and use
(
x1, ..., xm; gji

)
as coordinates in B(M). In this way, B(M) becomes a m+m2 differentiable

manifold.

Having said what is meant by a G-principal bundle, now we have to say what we mean by a prin-
cipal map, i.e. a map between principal bundles. A bundle map (u, f) between a pair of G-principal
bundles (P, π,M) and (P ′, π′,M′) is said a principal map if u : P → P ′ is G-equivariant, that is,
u(pg) = pg ∀p ∈ P, ∀g ∈ G; in other words the orbit Op is sent to the orbit O′u(p), thus preserving the

fibre structure of P and P ′.
It is possible to generalize this definition to the case of a pair of principal bundles with different struc-
ture groups, say G and G′, the requirement of G-equivariance is now implemented by adding a group
homomrphism
Λ : G→ G′ and demanding that u(pg) = u(p)Λ(g) ∀p ∈ P, ∀g ∈ G.
This last property is important when we will deal with the so called spin connection: we will consider a
principal bundle with structure group given by G′ = SO(3), the base spaceM will be a 3-dimensional
Riemannian manifold and G = Spin(3,R), that is, the double cover of SO(3), which coincides with
SU(2), the universal cover of SO(3). Clearly, SO(3) and SU(2) are homomorphic, in addition to this
we know also that they have isomorphic Lie algebras, i.e. su(2) ∼= so(3).
In the same fashion, ifM is a Lorentzian manifold, G′ = SO(3, 1) and G = Spin(3, 1) ∼= SL(2,C) and
SO(3, 1) is homomorphic to SL(2,C). When we’ll introduce the connection on a principal bundle we’ll
see, as an application, the case of the principal bundle of orthonormal frames, which turns out to be
a SO(3,1)-bundle, and then take the pull-back of the connection on the principal bundle of spinorial
frames (hence the name, spin connection) which turns out to be a Spin(3,1)-bundle. We can safely do
that because there is a principal map between these two principal bundles.

B.2 Tetrads

We go on now introducing an object that will find place in the action of the GR and also in the
Poisson structure of LQG.
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We shall consider the bundle of orthonormal frames, denoted as O(M), which can be seen as a sub-
bundle of B(M), whose structure group GL(m,R) has been reduced to O(m.R) (this can be seen by
introducing the concept of associated bundle). However, O(M) is a principal bundle in its own right.
We choose a local orthonormal frame of TM, or equivalently, a local section of O(M), denoted as
{e1, ..., em}, this local frame is called m− bein and each ei is a tetrad. If we consider T ∗M instead of
TM, each ei is called a co− tetrad. The requirement of orthonormality reads:

δij = gµν(x)eµi (x)eνj (x), (B.5)

in the case of a Riemannian manifold, if M is a Lorentzian manifold we have instead

ηij = gµν(x)eµi (x)eνj (x), (B.6)

where x belongs to the local domain of the m-bein.

B.3 Connection

In order to write the action of GR in another form we need to replace the metric with tetrads and
connection (on a principal bundle). To introduce the idea of a connection we can follow this way of
reasoning: we seek a vector field on a principal bundle P that lets us move from one fibre to another
and not along the fibre. Now, in general, if G is a Lie group which acts on a differentiable manifold
M by means of a right action δ : M× G → M, (p, g) 7→ δ(p, g) =: δg(p), it is possible to define a
vector field XA ∈ T (M) induced by the action of the one-parameter subgroup t 7→ exp(tA), A ∈ TeG
(i.e. restricting the right action δ to those elements of G that can be written as the exponential of an
element in TeG). The vector field XA is defined as follows:

XA
p (f) :=

d

dt
f (pexp(tA)) |t=0, (B.7)

where f ∈ C∞(M) and pg := δg(p). In other words, the curve through p given by t 7→ pexp(tA) is the
integral curve of XA. The flux of XA, denoted as φAt is thus given by φAt (p) = pexp(tA) = δexp(tA)(p),

that is φAt = δexp(tA).
If, in lieu of M, we consider a principal bundle P , where, as we know, is defined a right action of G,
we can write down the vector field induced by this action. At this point, it is possible to show that
the map ι : L(G)→ T (P ), A 7→ XA is a Lie algebra homomorphism, that is X [A,B] =

[
XA, XB

]
.

However, the vector fields XA
p point along the fibre ∀A ∈ TeG, that’s because the right action moves

a point along the fibre, by its very definition. In this context we say that XA
p is a vertical vector,

in the sense that it belongs to the vertical subspace VpP of TpP , which is defined by VpP := {τ ∈
TpP |π∗τ = 0}, from which it is clear that τ points along the fibre. Now, the map A 7→ XA is an
isomorphism of L(G) onto VpP because it is linear, injective (beacuse the action of G on P is free)
and for dimensional reasons dimVpP = dimG = dimL(G).
Intuitively, then, it is justified the following definition of connection:
a connection on a prinicipal bundle G→ P →M is an assignement to each point p ∈ P of a subspace
HpP of TpP such that
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(a) TpP ∼= VpP ⊕HpP ∀p ∈ P

(b) δg∗ (HpP ) = HpgP ∀g ∈ G, ∀p ∈ P ;

(B.8)

this means that a connection is first of all a k-dimensional distribution on P , with k = dimP − dimG.
We can therefore split a vector τ ∈ TpP into two components, horizontal and vertical: τ = ver(τ) +
hor(τ). The condition (b) guarantees that this operation is compatible with the right action on P , in
the sense that: δg∗(τ) = δg∗hor(τ) + δg∗ver(τ) = hor(δg∗τ) + ver(δg∗τ).
There is also an equivalent definition of a connection, less intuitive but which is very used to find
explicit expressions in which the connection is involved. The alternative definition goes as follows: a
connection can be associated to a L(G)-valued one-form on P in the following way, if τ ∈ TpP we define

ωp(τ) := ι−1 (ver(τ)) , (B.9)

where ι : L(G)→ VpP is the isomorphism introduced before. From this definition it follows that:

(i) ωp(X
A) = A, ∀p ∈ P, ∀A ∈ L(G),

(ii) δ∗gω = Adg−1ω, i.e.
(
δ∗gω
)
p

(τ) = Adg−1 (ωp(τ)) , ∀τ ∈ TpP,
(B.10)

where we recall that Cg : G→ G, h 7→ hgh−1 (C being the conjugate action), and Adg := dCg.
In particular, we notice that τ ∈ HpP if and only if ωp(τ) = 0. From this last equation it is clear
that the connection is a sort of constraint on the space of vector fields on P , thought in this way, its
counterimage ω−1

p (0) ∀p ∈ P is exactly a distribution of horizontal vector fields.

B.4 Yang-Mills Fields and Gauge Transformations

At this point, we can establish the relation between a connection ω on a principal bundle, thought
as a L(G)-valued one-form on P and the so called Yang-Mills fields, often introduced as functions on
spacetime.
Usually, a Yang-Mills field is denoted as Aaµ, where µ is a spacetime index and a is a Lie algebra index,
therefore the following expression is meaningful:

A(x) =

m∑
µ=1

dimG∑
a=1

Aaµ(x)Ea (dxµ)x (B.11)

where {E1, ..., EdimG} is a basis of L(G), thus, locally, a Yang-Mills field corresponds to a L(G)-
valued one-form. More precisely, let σ : U ⊂ M → P be a local section of the principal bundle
G→ P →M on which is present also a connection one-form ω. We define the local σ-representative
of ω as ωU := σ∗ω, which is then a L(G)-valued one-form on U . Let then h : U ×G → π−1(U) ⊂ P
be the local trivialisation of P induced by σ, that is, h(x, g) := σ(x)g. As a consequence, it can be
shown that if (α, β) ∈ T(x,g) (U ×G) ∼= TxU ⊕TgG we have that h∗ω can be written in terms of ωU as
follows:

(h∗ω)(x,g) (α, β) = Adg−1

(
ωUx (α)

)
+ Ξg(β), (B.12)
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where Ξ is the Cartan-Maurer form. Therefore we notice that, locally, a connection one-form ω is split
into the sum of a L(G)-valued one-form on spacetime and a L(G)-valued one-form on the structure
group G.

Next, we know that YM fields are subjected to local gauge transformations, where with gauge
transformations we mean a principal automorphism of G→ P →M; if φ : P → P is such a map then
φ∗(ω) is still a L(G)-valued one-form and φ∗(ω) is called the gauge transform of ω. This one is the so
called active version of gauge transformations. We can ask ourselves how ωU changes if we choose a
different section σ, that is we address the same issue adopting a passive view. Let’s consider then two
local sections of P , σ1 : U1 → P and σ2 : U2 → P , where U1, U2 ⊂M, U1 ∩ U2 6= ∅.
We call A

(1)
µ and A

(2)
µ the local representatives of ω with respect to σ1 and σ2. Then, if Ω : U1∩U2 → G

is the unique (because the action of G on P is free) local gauge function such that σ2(x) = σ1(x)Ω(x)
we have from (B.12) that

A(2)
µ (x) = AdΩ(x)−1

(
A(1)
µ (x)

)
+ (Ω∗Ξ)µ (x), (B.13)

in the case where G is a matrix group we can write

A(2)
µ (x) = Ω(x)−1A(1)

µ (x)Ω(x) + Ω(x)−1∂µΩ(x). (B.14)

How it reads a gauge transformations if instead we adopt an active view?
The answer is easy, if σ : U → P is a local section, A := σ∗(ω) and φ : P → P is an automorphism
of G→ P →M, we can consider the transformation A 7→ σ∗ (φ∗ω) = (φ ◦ σ)∗ ω. Comparing now Aµ

with A
(1)
µ and σ∗ (φ∗ω) with A(2) it is clear that

Aµ(x)→ Ω(x)Aµ(x)Ω(x)−1 + Ω(x)∂µΩ(x)−1. (B.15)

B.5 Analogies between (M, g) and O (M)

B.5.1 Linear Connection and Connection one-form

At this point we can specialize to the case of the bundle of orthonormal frames O (M) on a dif-
ferentiable manifold M, where M is thought as spacetime. We have already established the relation
between the metric g of a (pseudo-)Riemannian manifold and the tetrads ei, we could ask then which is
the relation between the Levi-Civita connection (defined on (M, g)) and the corrispondent connection
one-form on O (M).
In order to do that we begin by recalling that, if M is a differentiable manifold, a linear connection
on M is a map:

∇ : T (M)× T (M) −→ T (M)

(X , Y ) 7−→ ∇XY
(B.16)
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which is R-linear in the second argument, C∞-linear in the first one and that satisfies the Leibniz rule.
Using local coordinates

(
x1, ..., xm

)
on U ⊂ M we have that ∇∂i∂j = Γkij∂k (summation of repeated

indices implied), Γkij are called the Christoffel symbols of the linear connection ∇ and determine
uniquely the connection. There is another equivalent definition of a linear connection, that states that
a linear connection ω on M is a T (M)-valued one-form, locally it is represented by a matrix of one-
forms as follows: (ω)kj = Γkijdx

i. In the context of (pseudo-)Riemmanian manifolds it is known that
it exists a unique linear connection symmetric and compatible with the metric, called the Levi-Civita
connection; in this case it is possible to show that the relation between Γkij and (ω)kj is given by:

g (∇Xei, ej) = ωki (X)ηkj = ωij(X), (B.17)

where ei are the tetrads. Let’s see why it is so: from ∇Xei = ωki (X)ek follows that ∇ρei = ωkj (∂ρ)ek,
thus

(∇ρei)µ = ∂ρe
µ
i + Γµρσe

σ
i = ωkj (∂ρ)e

µ
k , (B.18)

because gµνe
µ
ke
ν
j = eµkejµ = ηkj . Finally we get:

ωij (∂ρ) = (∂ρe
µ
i ) ejµ + Γµρσe

σ
i ejµ. (B.19)

On the other hand we have that

g (∇ρei, ej) = gµν (∇ρei)µ eνj = gµν
(
∂ρe

µ
i + Γµρσe

σ
i

)
eνj =

= (∂ρe
µ
i ) ejν + Γµρσe

σ
i ejµ

(B.20)

from which it is clear that (B.17) holds.
Obviously, it is possible to write the Christoffel symbols in terms of the tetrads, it is sufficient to
substitute in Γρµν = 1

2g
ρα (∂µgνα + ∂νgµα − ∂αgµν) the expression gµν = eiµe

j
νηij , in doing so we find

an expression of ωij solely in terms of ei.
The conclusion is that we deal with the bundle of orthonormal frames on M in place of a (pseudo-
)Riemannian manifold (M, g). In physics, the metric represents the gravitational field and the inde-
pendent components of gµν are 10, that equals the sum of the indepenent components of ηij (6) and
ei (4).
The connection one-form ω on O (M) is often called spin connection, because one has in mind the
G-principal bundle with G = Spin(3, 1) ∼= SL(2,C), i.e. the universal cover of SO(3, 1). However, we
know that homomorphic Lie groups have isomorphic Lie algebras, in this case so(3, 1) ∼= sl(2,C), then
the connection one-form doesn’t change.

B.5.2 Torsion and Curvature

At this point we want to introduce another very important concept: the curvature of a connection.
In particular, we shall focus our attention on the Levi-Civita connection, which, as remarked earlier,
is the unique linear connection on a Riemannian manifold that is compatible with the metric and
symmetric (i.e with null torsion).
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Let’s begin therefore by recalling how it is defined the torsion of a linear connection ∇:

τ : T (M)× T (M)→ T (M) , τ (X,Y ) := ∇XY −∇YX − [X,Y ] , (B.21)

it is easily verified that τ is C∞ (M)-linear in all the variables and so it can be regarded as a tensor
field τ ∈ T 2

1 (M), furthermore τ is antisymmetric.
We have already established the relation between a linear connection onM and a connection one-form
on the bundle of orthonormal frames, we would like to accomplish the same goal regarding the torsion.
In order to do so we choose local coordinates {x1, ..., xm}, the torsion in coordinates reads:

τγαβ = (∇α∂β)γ − (∇β∂α)γ − [∂α, ∂β]γ = Γγαβ − Γγβα, (B.22)

furthermore, in terms of the tetrads ei, we have

τ (∂α, ∂β) = τγαβ∂γ = τγαβe
i
γei = T iαβ, (B.23)

where we have defined T iαβ := τγαβe
i
γ =

(
Γγαβ − Γγβα

)
eiγ . It happens that T iαβ are the components of

the following 2-form:

T i := Γγµνe
i
γdx

µ ∧ dxν . (B.24)

Thus, the information on the torsion τ is equally contained in the 2-forms T i, i = 1, ..., 4. At this
point we seek an expression of T i purely in terms of the tetrads and the connection one-form ω on
O (M).
Firstly, we observe that dxµ = eµj e

j , dxν = eνke
k, then:

T i = Γγµνe
i
γe
ν
k

(
ej ∧ ek

)
, (B.25)

recalling eq. (B.19) we notice that:

Γγµνe
i
γe
ν
k = ωik (∂µ)− (∂µe

α
k ) eiα, (B.26)

from which

T i = ωik (∂µ) eµj

(
ej ∧ ek

)
− (∂µe

α
k ) eiαe

µ
j

(
ej ∧ ek

)
=

= eµj ω
i
k (∂µ)

(
ek ∧ ej

)
+
(
∂µe

i
α

)
eαk e

µ
j

(
ej ∧ ek

)
,

(B.27)

where we used the fact that (∂µe
α
k ) eiα = ∂µ

(
eαk e

i
α

)
− eαk∂µeiα = ∂µ

(
ηik
)
− ∂µeiαeαk .

Now the last steps:

eµj ω
i
k (∂µ) ek = ωij , (B.28)

in fact eµj ω
i
k (∂µ) ekν = ωij (∂ν) is true since eµj e

k
ν = ηkj , as one can easily verify.

Finally we observe that:

dei = d
(
eiαdx

α
)

= ∂µe
i
αdx

µ ∧ dxα = ∂µe
i
αe
µ
j e
α
k

(
ej ∧ ek

)
, (B.29)

60



thus we can rewrite T i as follows:

T i = dei + ωij ∧ ej . (B.30)

Eq. (B.30) is the expression of the torsion of the connection one-form ω on O (M).
From the Riemannian geometry it is known that it exists a unique linear connection which is compat-
ible with the metric and symmetric.
The fact that ∇ is compatible with the metric is already implicitly contained in the fact that ωij is
antisymmetric, in fact from g (∇Xei, ej) = ωij we deduce that 0 = X (g (ei, ej)) = ∇X (g (ei, ej)) =
g (∇Xei, ej) + g (ei,∇Xej), thus ωij being antisymmetric (a necessary condition since ω is a sl (2,C)-
valued one-form) is equivalent to the fact that ∇ is compatible with the metric.
If, in addition to this, τ (X,Y ) = 0 ∀X,Y ∈ T (M) then ∇ is the Levi-Civita connection, equiva-
lently, if T i = 0 ∀i = 1, ..., 4 then ω is the Levi-Civita connection one-form on O (M).

It is known from GR that the curvature of the Levi-Civita connection is related to the gravita-
tional force; in gauge theories, similarly, the curvature of a connection one-form is associated with the
gauge interaction. In the tetrad-connection formalism GR resembles a gauge theory, for this reason
we attempt to establish a relation between the Riemann tensor R ∈ T 3

1 (M) defined by

R (X,Y, Z) := RXY (Z,W ) := ∇X (∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z (B.31)

and the analogous of the curvature of a connection one-form.
Let’s give then the definition of curvature in this context: if ω is a k-form on P , the exterior covariant
derivative of ω is the horizontal (k + 1)-form defined by:

Dω := dω ◦ hor, (B.32)

that is, Dω (X1, X2, ..., Xk+1) = dω (horX1, ..., horXk), ∀X1, ..., Xk+1 vector fields on P .
If ω is a connection one-form on P the curvature 2-form of ω is defined by

G := Dω. (B.33)

We mention a very important result: if G = Dω is the curvature 2-form of ω then, ∀p ∈ P , we have
that:

Gp (X,Y ) = dωp (X,Y ) + [ωp (X) , ωp (Y )] ∀X,Y ∈ T (P) , (B.34)

where [ , ] denotes the Lie brackets in L(G).
Choosing a basis {E1, ..., EdimG} of L(G) we obtain that ω = ωaEa and then:

Ga = dωa +
1

2
Cabcω

b ∧ ωc, (B.35)

where Cabc are the structure contants of L(G) with respect ot the basis {E1, ..., EdimG}.
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As already done previously, we can find what the curvature looks like when we consider its pullback
by a local section. Let then σ : U → P be a local section, A := σ∗ω the local representative of ω,
F := σ∗G the local representative of G. From the properties of the pull back it follows that:

F a = dAa +
1

2
CabcA

b ∧Ac. (B.36)

Introducing local coordinates on U ⊂M we can write:

F aµν =
1

2

(
∂µA

a
ν − ∂νAaµ + CabcA

b
µA

c
ν

)
, (B.37)

which is the familiar expression of the field strength found in gauge theories. It’s not difficult, in this
context, to prove the Bianchi identity DG = 0, in fact, from DGp (X,Y, Z) = dGp (horX, horY, horZ)
it’s enough to apply the definition of external differential and notice thatGp (horX, horY ) = 0 ∀X,Y ∈
T (P ). At this point, we choose as a basis of sl (2,C) the set {EIJ} of the antisymmetric matrices such
that ω = ωIJEIJ and:

[EKL, EMN ] = (ηKMηLN − ηLMηKN )IJ EIJ . (B.38)

Then we notice that, since (ηKMηLN )IJ = (ηKM )IP (ηLN )PJ = ηIKηMP η
P
L η

J
N = ηIKηMLη

J
N , we have

(ηKMηLN )IJ ωKM ∧ ωMN = ωIM ∧ ωMJ , for this reason the curvature can be written as:

F IJ = dωIJ + ωIK ∧ ωKJ . (B.39)

Now we want to find the relation between R and F . Starting from (B.39) it is possible to show that
(after long and painful calculations)

Rµνρσ = eµI e
J
νF

I
Jρσ, (B.40)

or, equivalently,

F IJ = eIµe
J
νR

µν
ρσdx

ρ ∧ dxσ. (B.41)

We recall that the Ricci tensor is obtained by contracting the first and the third indeces of the Rie-
mann tensor:

Rνσ = Rµνµσ = eµI e
J
νF

I
Jµσ, (B.42)

from which it follows that the Ricci scalar is given by:

R = gνσRνσ = gνσeµI e
J
νF

I
Jµσ = eµI e

σ
JF

IJ
µσ =

(
F IJ

)
IJ
. (B.43)

The last equality is due to the fact that:

F IJ =
1

2
F IJµσ dx

µ ∧ dxσ =
1

2
F IJµσ e

µ
Ke

σ
L

(
eK ∧ eL

)
=

1

2
F IJKL

(
eK ∧ eL

)
(B.44)
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where, again, the last equality holds by the very definition of differential form, F IJKL are the com-
ponenents of the 2-form F IJ in the basis of the cotetrads eI . With the intention of writing the
Einstein-Hilbert action we observe that:

det (gµν) = det
(
eT ηe

)
µν

= det2(e)det(η) = −det2(e), (B.45)

from which it follows that g := det (gµν) = −det2(e) =: −e2 and so
√
−g = |e|. Finally we notice that

εIJKLe
I ∧ eJ ∧ FKL =

1

2
εIJKLF

KL
MNe

I ∧ eJ ∧ eM ∧ eN =

=
1

2
εIJKLε

IJMNFKLMN |e|d4x =

= −
(
δMK δ

N
L − δML δNK

)
FKLMN |e|d4x =

= −2|e|Rd4x,

(B.46)

thanks to the fact that

eI ∧ eJ ∧ eM ∧ eN = eIµe
J
ν e
M
ρ e

N
σ dx

µ ∧ dxν ∧ dxρ ∧ dxσ =

= eIµe
J
ν e
M
ρ e

N
σ ε

µνρσd4x =

= εIJMN |e|d4x.

(B.47)

If we define now Tr (e ∧ e ∧ F ) := εIJKLe
I ∧ eJ ∧ FKL we can write the Einstein-Hilbert action SEH

as follows:

SEH =
1

16πG

∫
d4x
√
−gR = − 1

32πG

∫
Tr (e ∧ e ∧ F ) . (B.48)

In this form SEH is a functional of e and ω.

B.6 Holonomy

In order to approach the definition of holonomy it is necessary to explain what is meant by parallel
transport on a principal bundle. The idea is to find a curve that lets us move from one fiber to the
other, we have already seen that π∗ : HpP → Tπ(p)M is an isomorphism, then for each vector field

X ∈ T (M) it exists a unique vector field on P , denoted as X↑ such that, ∀p ∈ P , we have

(a) π∗

(
X↑p

)
= Xπ(p)

(b) ver
(
X↑p

)
= 0 ,

(B.49)

X↑ is called the horizontal lift of X. Intuitively the picture is quite clear: the integral curve onM of X
is lifted to a curve on P which does precisely the job we are looking for. Indeed, we can define the hor-
izontal lift of a curve α : [a, b]→M as the curve α↑ : [a, b]→ P such that π

(
α↑(t)

)
= α(t), ∀t ∈ [a, b]

and that is horizontal, i.e. ver
[
α↑∗
(
d
dt

)]
= 0. It is possible to show that ∀p ∈ π−1{α(a)} ⊂ P it exists
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a unique horizontal lift of α such that α↑(a) = p. As usual, it is useful to find an explicit expression
for α↑, which will naturally contain the connection one-form ω. In order to do so we can follow this
line of reasoning: let’s suppose that β : [a, b] → P is a lift of α (not necessarily horizontal), that
is, π (β(t)) = α(t) ∀t ∈ [a, b] (thus the vector field β∗

(
d
dt

)
will have nonzero vertical and horizontal

components). Then, it exists a unique function g : [a, b] → G such that α↑(t) = β(t)g(t) (because,
again, the action of G on P is free). It is worth considering the following factorisation:

[a, b]
β×g−−→ P ×G δ−→ P

t 7→ (β(t), g(t)) 7→ β(t)g(t)
(B.50)

in this way (see [1], page 265, for further specifications), since ω
(
α∗
(
d
dt

))
= 0, we find that

0 = Adg(t)−1

(
ωβ(t)

(
β∗

(
d

dt

)))
+ Ξg(t)

(
g∗

(
d

dt

))
, (B.51)

from which it follows that, for a matrix Lie group G,

0 = g(t)−1ωβ(t)

(
β∗

(
d

dt

))
g(t) + g(t)−1dg

dt
. (B.52)

This is the differential equation that determines the function g(t), which turns the (general) lift β
into a horizontal lift; g(t) clearly depends on ω. Sometimes the function g(t) is also called the parallel
transport matrix.
Our next goal is to find g(t), namely to resolve the differential equation (3.52). Before doing so, we
have to make a choice on the function β, because up to now it is a generic lift of α. A natural choice is
given by a local section of P , σ : U → P , we recall that σ is needed also to have a local representative of
ω, i.e. to deal with a Yang-Mills field. Let then be β(t) := σ (α(t)), from which β∗

(
d
dt

)
= σ∗

(
α∗
(
d
dt

))
,

then ωβ(t)

(
β∗
(
d
dt

))
= (σ∗ω)α(t)

(
α∗
(
d
dt

))
and σ∗ = ωU was named A (the Yang-Mills field).

With this notation eq. (3.52) becomes:

0 =
m∑
µ=1

g(t)−1Aµ (α(t)) g(t)
dxµ (α(t))

dt
+ g(t)−1dg(t)

dt
, (B.53)

where xµ are local coordinates on U ⊂ M. Choosing initial conditions on t 7→ g(t) as g(a) = g0 ∈ G
we get:

g(t) = g0 −
∫ t

a
dsAµ (α(s)) α̇µ(s)g(s), (B.54)

which admits a solution in terms of the path-ordered integral:

g(t) =

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
g0 :=

(
1−

∫ t

a
dsAµ (α(s)) α̇µ(s)

+

∫ t

a
ds1

∫ s1

a
ds2Aµ1 (α(s))Aµ2 (α(s)) α̇µ1(s)α̇µ2(s) + ...

)
g0.

(B.55)
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Finally, we can conclude that the horizontal lift α↑ is expressed, locally, in terms of σ by:

α↑(t) = σ (α(t))

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
g0. (B.56)

A word about terminology, in LQG the function g(t) is often referred to as the holonomy, though
matematically speaking that’s an abuse of language, as we shall see later.
Summarizing, we have seen that, in order to move from one fiber to another, we have to lift a curve
on the base manifold in an horizontal fashion. The result of this operation depends on the connection
one-form (even in the context of Riemannian manifolds the parallel transport depends on the Levi-
Civita connection), since we are interested in a local expression we use a local section to lift the curve
and to pullback the connection.

It is very important to know how the function g(t) changes if A is subjected to an active gauge
transformation, i.e. when Aµ(x) 7→ Ω(x)Aµ(x)Ω(x)−1 +Ω∂µΩ(x)−1. To see this, we shall consider Eq.
(B.53) (adopting a compact notation):

0 = g−1ΩAµΩ−1gα̇µ + g−1Ω∂µΩ−1gα̇µ + g−1ΩΩ−1dg

dt
, (B.57)

now we rewrite

g−1ΩΩ−1dg

dt
=g−1Ω

d

dt

(
Ω−1g

)
− g−1Ω

(
d

dt
Ω−1

)
g

=g−1Ω
d

dt

(
Ω−1g

)
− g−1Ω∂µΩ−1gα̇µ,

(B.58)

inserting (B.58) back into (B.57) we get:

0 = g−1ΩAµΩ−1gα̇µ + g−1Ω
d

dt

(
Ω−1g

)
, (B.59)

denoting with g̃(t) = Ω−1 (α(t)) g(t), finally we obtain:

0 = g̃−1(t)Aµ (α(t)) g̃(t)−1 + g̃(t)−1dg̃(t)

dt
. (B.60)

Eq. (B.60) admits a solution in terms of a path-ordered integral, as seen before,

g̃(t) =

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
g̃(a), (B.61)

from which

g(t) = Ω (α(t))

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
Ω−1 (α(a)) g0. (B.62)

From this expression it’s clear how the path-ordered integral transforms under a gauge transformation:

Pexp−
∫ t

a
dsAµ (α(s)) α̇µ(s) 7−→ Ω (α(t))

(
Pexp−

∫ t

a
dsAµ (α(s)) α̇µ(s)

)
Ω−1 (α(a)) , (B.63)
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it is often said that the path-ordered integral transforms homogeneously.
If G is a matrix group and α is a closed loop, i.e. α(a) = α(b), it is clear that the function

Wα[A] := tr

(
Pexp−

∮
α
dsAµ (α(s)) α̇µ(s)

)
(B.64)

is gauge invariant, it is called the Wilson loop.
At this point we can give a precise definition of what is meant by parallel transport, intuitively we
want to render substantial the concept of a horizontal curve in P , in such a way that a vector field on
P would be transported from a fibre to another without being ”rotated” along the fibre.
Let α : [a, b]→M be a curve in M; the parallel transport along α is the map

τ : π−1 ({α(a)})→ π−1 ({α(b)}) , p 7→ α↑(b), (B.65)

where α↑ is the unique horizontal lift of α which passes through p when t = a.
A special case is when α is a closed curve, i.e a loop, inM. In general the horizontal lift of a loop has
not to be closed, therefore we get a non-trivial map from π−1 ({α(a)}) onto itself given by

p 7−→ p

(
Pexp−

∮
α
dsAµ (α(s)) α̇µ(s)

)
. (B.66)

It is clear from (B.66) that we can associate an element of G (which is given by the path-ordered
integral) to each loop in M, that is we have a natural map from the loop space of M into G. The
subgroup of G whose elements are obtained in this way is called the holonomy group of the bundle at
the point α(0) ∈M.
We see therefore that the word ”holonomy” is referring to loops, while in LQG terminology it is
referring to a curve (more precisely to an edge).
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Appendix C

Symplectic Geometry

The goal of this section is to introduce the mathematical tools used in Hamiltonian Mechanics and
to present the Poisson structure of the theory.

C.1 Symplectic Algebra

The study of Hamiltonian Mechanics is based on the fundamental concept of symplectic manifold.
To achieve that, we enlight first what we mean by symplectic structure on a vector space.

A symplectic tensor is an antisymmetric covariant 2-tensor which is non degenerate.

A couple (V, ω) where V is a vector space and ω ∈
∧

2 V is a symplectic tensor is said symplectic
vector space.
To give an example let V be a 2n-dimensional vector space, we denote a basis of V with {v1, w1, ..., vn, wn},
whose dual basis of V ∗ is given by {v1, w1, ..., vn, wn}. Let ω ∈

∧
2 V be given by

ω =
n∑
j=1

vj ∧ wj , (C.1)

then ω is symplectic, in fact

ω (vi, wj) = −ω (wj , vi) = δij ,

ω (vi, vj) = −ω (wi, wj) = 0,
(C.2)

for each 1 ≤ i, j ≤ n. Then, if we choose a vector v =
∑

i

(
aivi + biwi

)
∈ V such that ω(v, w) =

0, ∀w ∈ V we have that:

0 = ω(v, vj) = −bj ,
0 = ω(v, wj) = aj ,

(C.3)

for 1 ≤ j ≤ n, thus v = 0 and ω is non-degenerate.
The example above is very important, because one can show that if (V, ω) is a symplectic vector space
then the dimension of V is even and it exists a basis of V with respect to which ω has the form given
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by (4.1).
Let’s consider now a subspace W ⊂ V , the symplectic complement of W is the subspace

W⊥ = {v ∈ V | ω(v, w) = 0, ∀w ∈W}. (C.4)

In general, it’s not true that W ∩ W⊥ = {0}, in fact, if dimW = 1 then W ⊆ W⊥ because ω is
antisymmetric.
Then we have the following classification of subsets of V :

• W is symplectic if W ∩W⊥ = {0};

• W is isotropic if W ⊆W⊥;

• W is coisotropic if W⊥ ⊆W ;

• W is Lagrangian if W = W⊥.

From these definitions it is not difficult to show the following properties:

(i) dimW + dimW⊥ = dimV ;

(ii)
(
W⊥

)
= W ;

(iii) W symplectic ⇔ ω|W×W non-degenerate;

(iv) W isotropic ⇔ ω|W×W = 0;

(v) W Lagrangian ⇔ ω|W×W = 0 and dimV = 2dimW .

C.2 Symplectic Manifolds

At this point we can generalise these considerations to the context of differentiable manifolds,
where the role of the vector space V is naturally given by TxM, and the symplectic tensor ω is now
expressed in terms of differential forms. More precisely:
a symplectic form on a differentiable manifold M is a 2-form ω ∈ A2(M) which is closed and non-
degenerate, therefore ωp is a symplectic tensor ∀p ∈M.

A symplectic manifold is a pair (M, ω) where M is a differentiable manifold and ω ∈ A2(M) is
a symplectic form.
For each point p ∈ M we have that (TpM, ωp) is a symplectic vector space, therfore a symplectic
manifold has even dimension (dimTpM = dimM).
Not every differentiable manifold admits a symplectic structure, in fact it is possible to show that
H2 (M) 6= 0 ifM is symplectic and compact, this result comes from the fact that starting from ω one

can build a volume form onM, which is given by Ωω := 1
n!(−1)

n(n−1)
2 ωn (where ωn := ω ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸

n times

),
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then by applying Stoke’s theorem one can prove it.

Now we deal with an important type of functions between symplectic manifolds:

a symplectomorphism (or canonical transformation) between symplectic manifolds (M, ω) and
(
M̃, ω̃

)
is a diffeomorphism F :M→ M̃ such that F ∗ω̃ = ω.

As one may expect, the types of subspaces of a symplectic vector space admit a generalization to
the case of symplectic manifolds, this is done at the level of fibres.
If (M, ω) is a symplectic manifold and N is another differentiable manifold, an immersion F :M→N
is called symplectic (isotropic, coisotropic, Lagrangian, respectively) if dFp (TpN ) is a symplectic
(isotropic, coisotropic, Lagrangian, respectively) subspace of TF (p)M for each p ∈ N .
Therefore, if F is symplectic then F ∗ω is a symplectic form on N , in fact

(F ∗ω)p (v1, v2) = ωF (p) (dFp(v1), dFp(v2)) , ∀v1, v2 ∈ TpN . (C.5)

We saw at the beginning of the section that it is always possible to find a basis on a symplectic vector
space such that (C.1) holds. Thanks to the Darboux theorem it is possible to generalise this result to
the context of differentiable manifolds:
let (M, ω0) be a 2n-dimensional symplectic manifold, then for each p ∈ M is possible to find a local
chart (V, ϕ) in p with ϕ =

(
x1, y1, ..., xn, yn

)
such that

ω0|V =
n∑
i=1

dxi ∧ dyi. (C.6)

The local coordinates
(
x1, y1, ..., xn, yn

)
are called Darboux coordinates.

An important application frequently used in physics concern the cotangent bundle, in fact, on a cota-
gent bundle exists a canonical symplectic form.
Let M be a differentiable manifold and define a canonical one-form θ ∈ A1 (T ∗M) on the cotangent
bundle π : T ∗M→M, called the tautologic form, by

θξ = π∗ξ ∈ T ∗ξ (T ∗M) , ∀ξ ∈ T ∗M. (C.7)

Let’s choose a local chart (U,ϕ) on M, with coordinates ϕ =
(
x1, ..., xn

)
, if p ∈ U we can write

ξp = ξidx
i|p and a local chart

(
π−1(U), ϕ̃

)
on T ∗M is given by ϕ̃ (ξp) =

(
x1, ..., xn, ξ1, ..., ξn

)
.

These coordinates induce the local frame on T (T ∗M) given by
{

∂
∂x1

, ..., ∂
∂xn ,

∂
∂ξ1

, ..., ∂
∂ξn

}
and the

respective dual frame on T ∗ (T ∗M) given by
{
dx1, ..., dxn, dξ1, ..., dξn

}
.

In these coordinates the projection π : T ∗M → M is represented by ϕ ◦ π ◦ ϕ̃−1(x, ξ) = x, thus we

have that dπ
(
∂
∂xi

)
= ∂

∂xi
and dπ

(
∂
∂ξi

)
= 0

∀i = 1, ..., n, but then π∗dxj = dxj (with a slightly abuse of notation) and so in local coordinates the
tautologic one-form reads:

θξ = ξidx
i|ξ. (C.8)

Starting from (C.8) we can consider the 2-form ω ∈ A2 (T ∗M) defined by:

ω = dθ. (C.9)
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This form is closed, being exact, and in local coordinates is given by

ω = dξj ∧ dxi, (C.10)

and so it is clearly non-degenerate (as already seen in the case of symplectic vector spaces), then it
defines a symplectic form on T ∗M.
A word about notation, usually in physicsM is the configuration space, T ∗M is then the phase space,
local coordinates on T ∗M are denoted with

(
qi, pi

)
rather than

(
xi, ξi

)
.

C.3 Hamiltonian Fields and Poisson structure

We address at this point the topic of Hamiltonian fields and Poisson structure.
We recall a general result:
let V,W be two finite-dimensional (real) vector spaces and Φ : V ×W → R a bilinear form, then Φ is
non-degenerate if and only if the linear applications Φ[ : V →W ∗ and Φ] : W ∗ → V are isomorphisms.
This means that ω[ : TM → T ∗M is the isomorphism induced by ω given by ω[(v) = ω(v, ·) and

ω] =
(
ω[
)−1

. A similar result holds in the context of (pseudo-)Riemannian manifolds, where the
isomorphisms are induced by the metric.

For each function f ∈ C∞ (M) the Hamiltonian vector field associated to f is defined by:

Xf := −ω# (df) , (C.11)

in other terms Xfyω = −df1, or equivalently ω (Xf , Y ) = −df(Y ) = −Y (f) for each Y ∈ T (M).
Viceversa, a vector field X ∈ T (M) is Hamiltonian if exists a function f ∈ C∞ (M) such that
X = Xf , and is locally Hamoltanian if each p ∈M has a neighbourhood on which X is Hamiltonian.

Furthermore, X ∈ T (M) is symplectic if ω is invariant on the flow of X, that is LXω = 0.
Finally, a Hamiltonian system is a triple (M, ω,H) where (M, ω) is a symplectic manifold and
H ∈ C∞ (M) is a function called the Hamiltonian of the system.
From the definition of Hamiltonian vector field we deduce that Xfyω is a closed one-form. From this,
and from the fact that LXω = d (Xyω) +Xy (dω), we see that a vector field is symplectic if and only
if is locally Hamiltonian.
Let’s see now what a Hamiltonian vector field associated to f ∈ C∞ (M) looks like in Darboux coor-
dinates: if (U,ϕ) is a local chart and ϕ =

(
q1, p1, ..., qn, pn

)
we have that:

Xf |U =
n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi

)
= (∂pif) ∂qi −

(
∂qif

)
∂pi ,

(C.12)

which follows from the definition of Xf and ω|U = dpi ∧ dqi.
1the contraction of ω ∈ An (M) by a vector field X ∈ T (M) is the function ιX : An (M) → An−1 (M) defined by

ιX(ω) (Y1, Y2, ..., Yk−1) := ω (Y1, Y2, ..., Yk−1, X), we use the notation Xyω in place of ιX(ω).
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In the context of symplectic manifolds it is possible to introduce a structure on the space C∞ (M)
that turns it into a Lie algebra, we are talking about Poisson brackets:
let (M, ω) be a symplectic manifold, f and g ∈ C∞ (M), the Poisson bracket between f and g is the
function {f, g} ∈ C∞ (M) defined by the following equivalent formulas:

{f, g} = ω (Xf , Xg) = −df (Xg) = −Xg(f). (C.13)

From (4.14) it si possible to show that the Poisson bracket is R-linear, antisymmetric and it satisfies
the Jacobi identity:

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0, (C.14)

furthermore, X{f,g} = [Xf , Xg], so there is a homomorphism between the Lie algebra of Hamiltonian
vector fields and the Lie algebra of C∞ (M).
Using Darboux coordinates we have:

{f, g} =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi
∂g

∂pi
. (C.15)

In particular, then, the Poisson brackets between the coordinate functions (thought as functions on
the domain U ⊂M of the local chart) are given by:

{qi, qj} = 0, {pi, pj} = 0, {pi, qj} = δji . (C.16)

In addition to this, we can notice that the set of symplectic vector fields is a Lie subalgebra of T (M),
this is a simple consequence of
L[X,Y ] = LXLY − LY LX ∀X,Y ∈ T (M); also, thanks to the Poisson brackets we have that
[Xf , Xg] = X{f,g} and so the set of Hamiltonian vector fields is a Lie subalgebra of the symplectic
vector fields.
There’s an interesting relation with the first cohomologic group of M, H1 (M), in fact we can sum-
marize what we have found in the following way:

• X symplectic ⇔ Xyω is closed;

• X Hamiltonian ⇔ Xyω is exact;

it’s clear then that the quotient of symplectic vector fields by the subspace of the Hamiltonian vector
fields is isomorphic, as a vector space (not as a Lie algebra), to H1 (M).
Therefore, if H1 (M) = 0 each local Hamiltonian vector field (then symplectic) is globally Hamilto-
nian.
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C.4 Symplectic structure of T ∗G

Our next goal is to achieve the symplectic structure of T ∗G, since it plays an important role in
the phase space of LQG. In order to do so we have to mention a few results concerning the Poisson
structure on L(G)∗.
We begin with the definition of a Poisson manifold:
a Poisson manifold is a pair (M, { , }), whereM is a differentiable manifold and { , } is a Lie algebra
structure on C∞ (M) which satisfies the following Leibniz rule:

{f, gh} = g{f, h}+ {f, g}h, ∀f, g, h ∈ C∞ (M) . (C.17)

A function between Poisson manifolds Φ :M→N is called a Poisson function if

Φ∗{f, g}N = {Φ∗f,Φ∗g}M ∀f, g ∈ C∞ (N ) . (C.18)

We notice that the function {f, ·} : C∞ (M) → C∞ (M) is a derivation and so defines a vector field
Xf ∈ T (M), given by:

Xf (g) = {f, g}, (C.19)

which recalls the Hamiltonian vector field associated to f (if M is a symplectic manifold).
Furthermore, we have that for each p ∈M:

{f, g}(p) = (Xf (g)) (p) = dgp (Xf ) = −dfp (Xg) , (C.20)

it is then clear that {f, g}(p) depends linearly on dgp and dfp.
Now, every element of T ∗pM can be written as dfp with f ∈ C∞ (M), then it exists a unique tensor

field (or bivector) Π ∈ T
(∧2 TM

)
such that:

{f, g} = Π (df, dg) ∀f, g ∈ C∞ (M) (C.21)

The tensor field Π ∈ T
(∧2 TM

)
is called Poisson tensor of (M{ , }), is a sort of analogue of a

symplectic form ω ∈ A2 (M).
Starting from the definition of Lie derivative of a tensor field it’s not diffiuclt to show that LXfΠ = 0,
thanks to the Jacobi identity of {, }.
In particular Π defines a (vertical) morphism of vector fibre bundles
Π[ : T ∗M→ TM defined by:〈

β,Π[(α)
〉

:= Π (α, β) ∀α, β ∈ A1 (M) , (C.22)

and also Π[ ◦ df = Xf , in fact:

〈dg,Π[ (df)〉 = Π (df, dg) = {f, g} = Xf (g). (C.23)

In the case where (M, ω) is a symplectic manifold we have that Π[ = ω] and there is a one-to-one
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corrispondence between symplectic forms and Poisson tensors.
Let’s see at this point the expression in local coordinates of the Poisson tensor.
Let (U,ϕ) be a local chart , ϕ =

(
x1, ..., xn

)
, we have that:

Π|U =
1

2
Πij∂i ∧ ∂j , (C.24)

from (C.22) follows that

{f, g} = Πij∂if∂jg, (C.25)

in particular:

Πij =
{
xi, xj

}
and {f, g} =

{
xi, xj

}
∂if∂jg. (C.26)

Furthermore, by eq. (C.22), every bivector field Π on M defines a bilinear antisymmetric map
{ , } : C∞ (M) × C∞ (M) → C∞ (M) which satisfies the Leibniz rule. It also satisfies the Ja-
cobi identity, thus yielding a Poisson structure, if and only if

Π (df, d (Π (dg, dh))) + Π (dg, d (Π (dh, df))) + Π (dh, d (Π (df, dg))) = 0 , (C.27)

for all f, g, h ∈ C∞ (M). In local coordinates it reads

Πil∂lΠ
jk + Πjl∂lΠ

ki + Πkl∂lΠ
ij = 0 . (C.28)

In practice, a Poisson manifold can be seen also as a pair (M,Π) where Π is a Poisson tensor on M.
To reach the Poisson structure of L(G)∗ we focus on a vector space V in place of a differentiable
manifold M.
So, let V be a real vector space, take the (algebrical) dual V ∗, we can identify V with TV and, con-
sequently, V ∗ with TV ∗.
Clearly, to each bivector field Π on V ∗ corresponds a map V ∗ →

∧2 V ∗ and Π is linear if this map
is linear. In this case ∀v, w ∈ V the function ξ 7→ Πξ(v, w) is linear and corresponds to an element
of V (because (V ∗)∗ ∼= V ), it is clear then that this element is associated to the pair (v, w), we can
therefore introduce a bilinear function [ , ] : V × V → V defined by:

〈ξ , [v, w]〉 = Πξ(v, w), ∀ξ ∈ V ∗. (C.29)

If, in addition to this, Π satisfies equation (C.28) we can see how this condition reflects on the bilinear
map [ , ]: the result is that [ , ] has to satisfy the Jacobi identity.
In particular, if f ∈ V ∗, we have that df ∈ T ∗ (V ∗) = (T (V ∗))∗ ∼= (V ∗)∗ ∼= V , from which:

Πµ (df, dg) = 〈µ, [df(µ), dg(µ)]〉 , ∀µ ∈ V ∗. (C.30)

To conclude, Poisson structures on V ∗ whose Poisson tensor is linear are in one-to-one corrispondence
with Lie algebra structures on V .
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What we have found turns useful when we analyze the case V = TeG ∼= L(G), thanks to what we
have shown is possible to introduce a Lie-Poisson structure on L(G)∗, in the following way:
let {e1, ..., en} be a basis of L(G)∗, the respective basis of L(G) is given by {e1, ..., en}, in this way we
have that:

v = viei, w = wjej , ξ = ξke
k

[v, w] = [viei, w
jej ] = viwj [ei, ej ] = viwjckijek,

(C.31)

where ckij are the structure constants with respect to the base {ek}.
The Poisson structure is given by (C.28), which in coordiantes reads:

Π (ei, ej) =
〈
ξke

k, clij

〉
= ξkc

l
ijδ

k
l = ξkc

k
ij , (C.32)

thus we have the following expressions:

Π (ξ) =
1

2
ξkc

k
ij

∂

∂ξi
∧ ∂

∂ξj
(C.33)

and

{f, g} (ξ) = ξkc
k
ij

∂f

∂ξi
(ξ)

∂g

∂ξj
(ξ). (C.34)

We observe now that on L(G) we can introduce an inner product defined by 〈A,B〉 := −tr (AB),
in this way it is possible to show that L(G) ∼= L(G)∗, the isomorphism being given by i : L(G) →
L(G)∗, A 7→ (i(A)) (B) = 〈A,B〉.
In this sense, we can introduce a Poisson structure on L(G).
Let’s consider the case L(G) = su(2): we choose the basis of su(2) given by {τ1, τ2, τ3}, where τi = − i

2σi
(σi are the usual Pauli matrices), in this way the structure constants are ckij = εkij .

Called Li the coordinates of the vector L = Liτi, we have that:

{Li, Lj} (L) = Lkεmnk
∂Li

∂Lm
∂Lj

∂Ln

= Lkεmnk δjmδ
j
n = εijk L

k.

(C.35)

We shall go on to deal with T ∗G.
First of all, we show that TG ∼= G× L(G), that is, TG is a trivial vector bundle whose fibre is L(G),
in order to do so we prove that the map

χl : G× L(G) −→ TG

(a , X) 7−→ χl(a,X) := (La)∗X
(C.36)

is a vector bundle isomorphism. We recall that la : G → G, b 7→ ab and (la)∗ (b) : TbG → TabG. We
proceed with the proof:
the map χl can be factorized as follows
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G× TeG
s0×j−−−−→ TG× TGyχl yo

TG
(µ)∗←−−−− T (G×G)

(C.37)

where µ : G×G→ G is the multiplication in G, s0 : G× TG is the null section and j : TeG→ TG is
the natural inclusion.
To see that (4.36) commutes it is sufficient to observe that:

(a,X)
s0×j7−−−→ ((a, 0), (e,X))

∼7−→ ((a, e), (0, X))
µ∗7−→ (a, (la)∗X) (C.38)

where the last one is true since µ : G × {e} → G, (a, e) 7→ ae = la(e), therefore µ∗(X) is given by
(la)∗(X) ∀X ∈ TeG.
Since each map is smooth it follows that χl is smooth, furthermore we have that

G× TeG
χl−−−−→ TGyπ1 yπ

G
idG−−−−→ G

(C.39)

as one immeditely verifies, thus χl is a vertical morphism of vector bundles.
Finally, χl is bijective because (la)∗ is an isomorphism and it is linear since (la)∗ is linear, therefore
χl is an isomorphism.
In a similar way it is possible to show that T ∗G ∼= G × L(G)∗, knowing that L(G) ∼= L(G)∗ we get
the following result: T ∗G ∼= G× L(G).
At this point we aim to find the symplectic structure on T ∗G.
We work with local coordinates, let (g, pg) ∈ T ∗G where pg = pµdg

µ; we denote with {eα} a basis
in L(G) and with {εα} the respective basis in L(G)∗. It is easy to show that lg defines left-invariant
vector fields eLα and left-invariant one-forms εαL on G in the following way:

eLα(g) := lg∗eα

εαL(g) := l∗g−1ε
α.

(C.40)

For the moment we denote with:

Lαβ(g, h) :=
∂(gh)α

∂gβ
, (C.41)

then we can write the field eLα as:

eLα(g) = Lµα(g, e)
∂

∂gµ
, (C.42)

analogously we get;

εαL(g) = Lαµ
(
g−1, g

)
dgµ. (C.43)
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This basis, as already shown for TG, allows us to introduce a canonical local trivialisation:

λ : T ∗G −→ G× L(G)∗

(g, pg = pµdg
µ) 7−→

(
g, πL = l∗g |epg = πLµ ε

µ
) (C.44)

where πLµ = pg
(
eLµ
)

= pνL
ν
µ(g, e).

A basis in T ∗x (T ∗G), where x = (gα, εαL) ∈ T ∗G is given by:{
εαL := Lαµ

(
g−1, g

)
dgµ, εLµ := dπLµ

}
. (C.45)

We know that on T ∗G there is a canonical one-form, i.e. the tautological one-form θ = pαdg
α, from

which we obtain the symplectic form

ω = dθ = dpα ∧ dgα. (C.46)

In our case we have then θ = πLµ ε
µ
L and

ω = εLµ ∧ ε
µ
L −

1

2
πLµf

µ
αβε

α
L ∧ ε

β
L, (C.47)

where fµαβ are the structure constants of the Lie algebra L(G) in the basis {eLα}. We recall also

that since εµL are left-invariant one-forms on a Lie group G, they satisfy the Cartan-Maurer equation

dεµL = −1
2ε
α
L ∧ ε

β
L.

The Hamiltonian vector field XA associated to a function A ∈ C∞ (T ∗G) is given by the equation
XAyω = −dA, we can split the components as follows:

Xµ
A := εµL (XA) = −dA

(
eµL
)

(XA)α := εLα (XA) = dA
(
eLα
)

+ πLµf
µ
αβdA

(
eβL

)
.

(C.48)

Let XB be the Hamiltonian vector field associated to B ∈ C∞ (T ∗G), the Poisson bracket between A
and B is the function given by {A,B} = ω (XA, XB), in coordinates it reads:

{A,B} = dA
(
eLα
) ∂B
∂πLα

− ∂A

∂πLα
dB
(
eLα
)

+
∂A

∂πLα
πLµf

µ
αβ

∂B

∂πLβ
. (C.49)

In particular, we obtain that:

{gα, gβ} = 0 , {gα, πLν } = Lαν (g, e)

and {πLµ , πLν } = πLαf
α
µν .

(C.50)

We want now rewrite these relations in a more compact and slightly different form.
From Lie group theory it is known that to each element of the Lie algebra A ∈ TeG corresponds a
left-invariant vector field LA ∈ L(G), clearly we have that LA(g) = (lg)∗A. If we consider a matrix
Lie group we can introduce a coordinate system by defining xij(g) := gij . In this coordinate system
we can write LAg as follows:

LAg =

n∑
i,j=1

(gA)ij
∂

∂xij
, (C.51)
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where LAg x
ij = (gA)ij are the components of LA in the chosen coordinates (recall eq. (A.3)).

Identifying L(G)∗ with L(G) we can associate to each πL ∈ L(G)∗ an element
−→
L ∈ L(G). Further-

more, the components Lαβ(g, e) defined in (C.40) become now (gA)ij as seen before, in particular, we

choose A = τ i, where {τ i} is a basis of TeG ∼= L(G).
Finally, considering the case G = SU(2), TeG = su(2), we obtain a clear expression of the Poisson
parentheses in (C.49):

{gij , gkl} = 0 , {gij , Lk} =
(
gτk
)ij

and {Li, Lj} = Lkεijk .

(C.52)

In a more compact way, and taking into account the fact that in LQG to each link of a boundary
graph is associated a SU(2) element, we can write an equivalent expression of the latter:

{Ul, Ul′} = 0 , {Ul, Lil′} = δll′Ulτ
i

and {Li, Lj} = δll′ε
ij
k L

k
l .

(C.53)

More precisely, let Γ be the boundary graph coming from the 2-complex associated to ∆∗ and let
G = SU(2) the gauge group. We denote with Γi the i-dimensional element of Γ (nodes, links, trian-
gles, tetrahedra).
The gauge potential corresponds to the pull-back (by a local section) of the principal connection on
the principal fibre bundle whose structure group is G = SU(2), it is approximated on the links of Γ
by the holonomy:

Γ1 −→ G

(x, y) 7−→ g(x,y) =

(
Pexp−

∫ b

a
dsAµ (α(s)) α̇µ(s)

)
,

(C.54)

where the curve α : [a, b]→M is the link between the spacetime points x and y.
The configuration space and the phase space are given by, respectively:

Q = GL and M = T ∗GL (C.55)

where L is the number of links in Γ.
Using the identifications T ∗GL ∼= (T ∗G)L and T ∗G ∼= G×L(G)∗ ∼= G×L(G), as seen before, we have
that the momentum conjugate to the gauge potential is given by the map

Γ1 −→ L(G)

(x, y) 7−→ A(x,y),
(C.56)

We have seen that local gauge transformations act on the holonomy in the following way:

g′(x,y) = hxg(x,y)h
−1
x , (C.57)

this expression defines an action of GN on Q (N is the number of nodes in Γ).
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Thanks to the identifications above the lift of this action on M = T ∗Q = GL × L(G)L is given by:

A′(x,y) = Ad(hx)A(x,y). (C.58)
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Appendix D

Haar Measure

In this section we briefly introduce the concept of measure with the goal of defining a Haar mea-
sure on a Lie group G, specifically we are interested in G = SU(2). The presence of a Haar measure
allows us to introduce a scalar product on L2 (SU(2)) and, consequently, on L2

(
SU(2)L

)
, which is

the starting point to construct the Hilbert space of LQG.

D.1 Positive Measure

Therefore, we begin by giving the definition of a σ-algebra: let X be a set and M a collection of
subsets of X, M is a σ-algebra if

(i) X ∈M

(ii) A ∈M⇒ Ac ∈M

(iii) A =

∞⋃
n=1

An, An ∈M ∀n⇒ A ∈M,

(D.1)

if it is so, X is said measurable space and the elements of M are called measurable sets.
In the case where X is a topological space the following result holds: it exists a minimal σ-algebra B
in X such that each open set in X belongs to B, the elements of B are called Borel sets of X. This
fact is true since there is a theorem which states that for each collection of subsets of X is always
possible to find a σ-algebra that contains it, then, in particular, if (X, τ) is a topological space, τ is a
topology on X and so a collection of open subsets of X.
We move on now and give the definition of measure: a (positive) measure is a function µ defined on
a σ-algebra M,

µ : M→ [0,∞] (D.2)

which is additive measurable, i.e. if {Ai} is a countable family of disjoint sets of M then

µ

( ∞⋃
n=1

An

)
=

∞∑
i=0

µ (Ai) . (D.3)
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D.2 Left-Invariant Measure on a group

We consider a compact Lie group G, since we are interested in the case G = SU(2), which is
compact. We recall that if G is a Lie group then the multiplication is a smooth function, that is

m : G×G→ G

(g, h) 7→ gh
(D.4)

is smooth, which means that the left and right multiplication are smooth too:

lg : G→ G

h 7→ gh ∀g, h ∈ G,
(D.5)

rg : G→ G

h 7→ hg ∀g, h ∈ G.
(D.6)

In addition to this lg and rg are invertible with smooth inverse, that is they are diffeomorphisms
∀g ∈ G.
At this point we can tell what we mean by a Haar measure on a group G: a left Haar measure on a
group G is a positive measure µlH on the Borel σ-algebra in G with the following properties:

(i) is locally finite, that is each point in G possesses a neighbourhood with finite measure;

(ii) is left-invariant, i.e.:

µ (gE) = µ(E) (D.7)

∀g ∈ G and for each Borel set E ⊂ G, where gH = {gh|h ∈ H}, H ⊂ G.
Now that we have defined what a Haar measure is, let’s see how we can contruct one on a Lie group
G, obviously differential forms will be involved, since they play a crucial role in integration theory on
a differentaible manifold.

We have already seen that a left-invariant one-form onG has to satisfy the Cartan-Maurer equation:

dωα +
1

2

∑
β,γ

Cαβγω
β ∧ ωγ = 0, ∀α = 1, ..., n = dimG (D.8)

where {ω1, ω2, ..., ωn} is a basis of L∗(G), dual of the basis {E1, E2, ..., En} of L(G) ∼= TeG, such that
ωα(Eβ) = δαβ .
We can define in a natural way a n-form on G by means of

η := f ω1 ∧ ω2 ∧ · · · ∧ ωn, f ∈ C∞(G). (D.9)

We want to prove that η ∈ An(G) is a volume form on G, that is, a nowhere vanishing n-form on G,
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and also that η is left-invariant, i.e.:

l∗gη = η, ∀g ∈ G. (D.10)

We begin with the latter:(
l∗gη
)
h

= l∗g
(
f ω1 ∧ ω2 ∧ · · · ∧ ωn

)
h

= f(gh)
(
l∗gω

1
)
h
∧
(
l∗gω

2
)
h
∧ · · · ∧

(
l∗gω

n
)
h

=

= f(gh)ω1
gh ∧ ω2

gh ∧ · · · ∧ ωngh = ηgh
(D.11)

which is true since ωα are left-inariant ∀α = 1, ..., n.
Now, let v1, v2, ..., vn ∈ TgG linearly independent, we know that we can express them as vi = lg∗Ai,
for a certain Ai ∈ TeG, therefore:

η (v1, v2, ..., vn) = ω1 ∧ ω2 ∧ · · · ∧ ωn (v1, v2, ..., vn)

= ω1 ∧ ω2 ∧ · · · ∧ ωn (lg∗A1, lg∗A2, ..., lg∗An)

= l∗g
(
ω1 ∧ ω2 ∧ · · · ∧ ωn

)
(A1, A2, ..., An)

= ω1 ∧ ω2 ∧ · · · ∧ ωn (A1, A2, ..., An) = detA,

(D.12)

where A is the matrix of the basis change from {E1, E2, ..., En} to {A1, A2, ..., An}. Since detA 6= 0,
because A is invertible, we have that η is nowhere vanishing on G, thus η is a volume form on G.
Integrating functions against this form we obtain a Haar measure.
We are also interested under which circumstances a Haar measure is right-invariant, to see this we
proceed as follows:
let µ be a Haar measure on G, we define a new measure rg(µ) by
rg(µ)(E) := µ (rg(E)), ∀g ∈ G, E ⊂ G and rg is the right multiplication by g. It is not difficult to
show that rg(µ) is left-invariant, in fact:

rg(µ) (lhE) = µ (rglhE) = µ (lhrgE)

= µ (rgE) = rg(µ) (E) ,
(D.13)

since lh and rg commute ∀g, h ∈ G, and so rg(µ) is given by a left-invariant n-form. However the
n-form which describes rg(µ) could be different from the n-form that describes µ, rg(µ) and µ could
clearly differ by a multiplicative constant.
Therefore, ∀g ∈ G, it exists a constant χ(g) such that rg(µ) = χ(g)µ, the function χ : G → R is said
modular function of G.
A group G is called unimodular if χ(g) = 1, ∀g ∈ G. It follows that if G is unimodular we have that
rg(µ) = µ and so µ is right-invariant, too.

Using the description of a Haar measure in terms of differential forms it is possible to show that
if G is a connected Lie group then G is unimodular if and only if detAdg = 1 ∀g ∈ G or, equivalently,
if and only if tr (adX) = 0,∀X ∈ TeG ∼= L(G).
To prove this result we begin by showing the equivalence mentioned above: since etr(adX) = deteadX =
detAdeX , then tr(adX) = 0 if and only if detAdeX = 1, ∀X ∈ TeG. Furthermore, since G is connected
we have that g = eX1eX2 · · · eXm for a certain number of Xi ∈ TeG, thus
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detAdg = det (AdeX1eX2 ···eXm )

= det (AdeX1AdeX2 · · ·AdeXm )

= det (AdeX1 ) det (AdeX2 ) · · · det (AdeXm ) = 1,

(D.14)

where the second equality comes from the fact that Ad is a (linear) representation of G.
To prove the proposition we make the following observation:
let Cg : G → G, h 7→ ghg−1 be the conjugate action, recalling that Adg : TeG → TeG is defined by
Adg := (Cg)∗, we introduce the measure Cgµ defined by (Cgµ) (E) := µ (CgE) and we show that it is
left-invariant:

(Cgµ) (E) = µ (CgE) = µ
(
lg ◦ rg−1E

)
= µ

(
rg−1E

)
=
(
rg−1µ

)
(E).

(D.15)

Therefore, since rgµ is left-invariant ∀g ∈ G, Cgµ is left-invariant, too.
In addition to this, µ is Cg-invariant if and only if µ is right-invariant, as it is evident from (D.15).
Let’s see at this point how we can express in terms of differential forms the requirement of Cg invari-
ance.
Since Cgµ is left-invariant it is sufficient to prove it for e ∈ G, doing so we obtain:(

C∗gµ
)
e

(E1, E2, ..., En) = µe (Cg∗E1, Cg∗E2, ..., Cg∗En)

= µe (AdgE1,AdgE2, ...,AdgEn)

= f(e)ω1 ∧ ω2 ∧ · · · ∧ ωn (AdgE1,AdgE2, ...,AdgEn)

= f(e)detAdg = detAdg µ (E1, E2, ..., En) ,

(D.16)

it is then clear that C∗gµ = µ if and only if detAdg = 1. The proof is ended.
In particular, we have that compact groups are unimodular, because if G is compact it exists an inner
product with respect to which adX is antisymmetric and so adX is traceless. The reason for this is
that if G is compact it is always possible to find a basis {E1, E2, ..., En} in L(G) such that:

tr (EαEβ) = −c δαβ, with c > 0, (D.17)

by the way, the fact that c is positive implies that, in gauge theories, the kinetic term in the Lagrangian
is positive.
An inner product in L(G) is then given by:

t̃r : L(G)× L(G) −→ R

(A ,B) 7−→ t̃r (A,B) := tr (AB) ,
(D.18)

one can easily verify that t̃r is real, symmetric and independent from the choice of a basis in L(G).
We observe that

tr (adEα (Eβ)Eγ) = tr
(
CδαβEδEγ

)
= Cδαβtr (EδEγ)

= −cCδαβδδγ ≡ −cCαβγ .
(D.19)

We know that Cαβγ is antisymmetric in the first two indices, however it is possible to show that it is
also antisymmetric in the last two, that is, Cαβγ is completely antisymmetric, in fact:
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−cCαβγ = tr ([Eα, Eβ]Eγ) = tr (EαEβEγ − EβEαEγ)

= tr (EβEγEα − EβEαEγ)

= tr (Eβ [Eγ , Eα])

= −cCβγα,

(D.20)

which implies Cβγα = Cαβγ = −Cβαγ .
The fact that Cαβγ is completely antisymmetric shows that adX is antisymmetric with respect to the
inner product given by t̃r.
In the case of interest, G = SU(2) is compact and then unimodular, i.e. the Haar measure seen before
is left-invariant and right-invariant, specifically, it is gauge invariant for a gauge transformation taking
place on a node of the 2-complex.
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Appendix E

Hilbert Space

From the previous discussion on the Poisson structure of T ∗G we deduce that is possible, by means
of canonical quantization, to promote the Poisson brackets to a commutator and to assign to each Ul
and Ll the role of operators acting on a Hilbert space, with the due specifications.
We have seen that, in a compact form, Ul represents coordinates in G and Ll is its conjugate momen-
tum. This fact suggests to deal with the following Hilbert space:

HΓ = L2

[
SU(2)L

]
, (E.1)

where L is the number of links in the boundary graph Γ.
The states are then the wave functions ψ (Ul) of L group elements Ul.
On HΓ is defined a scalar product compatible with the Haar measure:

〈ψ|φ〉 =

∫
SU(2)L

dUlψ (Ul)φ (Ul) . (E.2)

For what concerns the operators Ul and Ll the following results hold: the operator Ul is simply defined
by

(Ulψ)
(
U ′l
)

:= ψ
(
UlU

′
l

)
, (E.3)

it acts then as a multiplicative operator.
Recalling now that Lil is a left-invariant vector field on G we can prove that it coincides with the
vector field on G induced by the right multiplication δg : G → G, δg(h) = hg. In fact, taking into
account the results found previously on induced vector fields (see eq. (B.7)) we have that:

XA
g = lg∗ (A) = LAg , (E.4)

in particular, ∀f ∈ C∞ (G),

LAg (f) =
d

dt
f (gexptA) |t=0 (E.5)

since δexp(tA) is the flow of the induced vector field XA which coincides with LA. In this manner it’s
easy to see that the field Lil acts on the wave functions in the following way 1

1the factor −i comes from the commutation relations [τi , τj ] = iεkijτk
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(
J iψ

)
(U) := −i d

dt
ψ
(
Uetτi

)
|t=0, (E.6)

where we have used the exponential of a matrix since SU(2) is a matrix group. If we finally insert the
multiplicative constants we can write Lil as follows:

Lil := (8π~G) J il . (E.7)

Having realised the canonical quantisation we want to know, at this point, how to build gauge-invariant
wave function. This requirement is necessary because in LQG physical states contain geometrical in-
formations, for instance, in 3D we know that at each node of the dual triangulation are located
tetrahedra, whose properties (volume, surfaces of its faces,...) are invariant under rotations. We have
seen how the holonomy transforms under an active gauge transformation:

Ul 7→ ΛslUlΛ
−1
tl

(E.8)

where sl and tl specify the points in spacetime that bound the chosen link. Gauge-invariant states
under these transformations must then satisfy

ψ
(
ΛslUlΛ

−1
tl

)
= ψ (Ul) , with Λn ∈ SU(2). (E.9)

If we consider a wave function on the (2-dimensional) bounding graph then a gauge transformation
acts on every node of that graph, that is, for each node we have three gauge transformations. For rhis
reason we shall introduce an operator Cin := Lil1 +Lil2 +Lil3 which has to satisfy the following property;

Cinψ = 0. (E.10)

More precisley, the condition of gauge invariance of ψ can be rewritten following this reasoning: say
we choose a node n which we consider a target of three links, in this way a gauge transformation will
produce the same element Λtl for each of the three links. Now, in general, we know that (dropping
the constants): (

Liljψ
) (
Ulj
)

:= −i d
dt
ψ
(
Ulje

tτi
)
|t=0, (E.11)

with j = 1, 2, 3 indexing the three links convergent on n. Since we are focusing on the node n we can
keep the gauge transformations on the other nodes as generic, that is Λslj generic. Then, it follows that(

Liljψ
)(

ΛsljUlj

)
= −i d

dt
ψ
(

ΛsljUlje
tτi
)
|t=0

= i
d

dt
ψ
(

ΛsljUlje
−tτi
)
|t=0.

(E.12)

To conclude, since SU(2) is compact and simply connected, every element of SU(2) can be written as
the exponential of an element of su(2), we understand that the condition (6.9) is translated into the
following requirement:

Lil1 + Lil2 + Lil3 = 0, i = 1, 2, 3. (E.13)
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Luminy, January 31, 2012.

[25] Chris J. Isham, Modern Differential Geometry For Physicists World Scientific Lecture Notes in
Physics - Vol.61 2nd edition, 1999.

[26] Marco Abate, Francesca Tovena, Geometria Differenziale Springer, Milano 2011.

[27] Carlo Rovelli, Francesca Vidotto, Covariant Loop Quantum Gravity, An Elementary Introduction
to Quantum Gravity and Spinfoam Theory Cambridge University Press, Cambridge 2015.

[28] Brian C. Hall, Lie Groups, Lie Algebras, and Representations, An Elementary Introduction
Springer, 2004.

[29] Klaus Jänich, Topology Springer-Verlag, New York, 1984.

[30] Gerd Rudolph, Matthias Schmidt, Differential geometry and mathematical physics Part I. Man-
ifolds, Lie Groups and Hamiltonian Systems Part I. Manifolds, Lie Groups and Hamiltonian Sys-
tems, 2013

[31] F.J. Vanhecke; C. Sigaud; A.R. da Silva, Modified symplectic structures in cotangent bundles of
lie groups Braz. J. Phys. vol.39 no.1 São Paulo Mar. 2009

88


