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Abstract

A quadratic estimator for the matter power spectrum from
weak gravitational lensing

Weak gravitational lensing is one of the most powerful tools available to cos-
mologists to gain an insight into our Universe. In particular, measurements
of this relativistic effect can provide information about the matter power
spectrum. This describes the amplitude of density fluctuations on different
scales and plays a key role in the theories that describe the formation of
large-scale structures. However, since the matter overdensity is connected
to the weak lensing convergence through a line-of-sight integral, this effect
mixes the different physical scales and makes it difficult to isolate the power
spectrum at a certain scale.

In this thesis a new quadratic estimator for the power spectrum, based on
weak lensing measurements, is developed. According to the Cramér-Rao in-
equality, the estimator is guaranteed to have the minimum variance and is
therefore the best unbiased estimator of the power spectrum. The proper-
ties of this estimator are explored, in particular its window functions which
are optimised to be as narrow as possible in k-space. This would permit
to isolate the effects of physical processes that act on different scales. A
major goal here is to detect features at k ∼ 1hMpc−1 arising from non-zero
neutrino masses. A second is to develop statistics that are insensitive to the
high-k regime (k > 1hMpc−1) that may be affected by uncertain baryon
feedback processes.
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Introduction

The term gravitational lensing refers to the deflection of light rays from dis-
tant sources by means of the intervening matter distribution along the line of
sight towards the observer. This effect, whose existence was speculated long
before the advent of General Relativity (see Schneider (1992) for a historical
review), was put on solid theoretical grounds by Einstein’s theory of gravity.
A famous general relativistic result [Einstein (1911)] is the prediction of the
deflection angle for a light ray approaching the surface of the Sun, which
yields a value twice as big as the one calculated within Newtonian gravita-
tion. Indeed, the confirmation of the larger value, thanks to the observations
performed in May 1919 by Arthur Eddington and his collaborators during
a total solar eclipse [Eddington et al. (1920)], still represents one of the best
tests of General Relativity as the correct theory of gravity.

The deflection of light rays emitted from a background galaxy produces a dis-
tortion of the image of the source, which is both sheared and (de)magnified.
It is customary to distinguish two fields of study of gravitational lensing,
according to the intensity of these effects. First, we can identify the so
called strong lensing regime (see Treu (2010) for a review), corresponding to
big effects, potentially leading to multiple images of distant objects. These
perturbations are usually produced by very massive and well-identified fore-
ground lenses, such as clusters of galaxies, whose properties (e.g. the mass)
can be investigated analysing the distortions induced on the images.

We refer instead to weak gravitational lensing (see Bartelmann and Schnei-
der (2001) or Schneider (2006) for comprehensive reviews) when the changes
in the observed images are small. We will be mainly interested in weak grav-
itational lensing on a large scale, or cosmic shear. This field of study, despite
being technically challenging, has recently seen rapid advances from the first
detections published only in the year 2000 [Bacon et al. (2000); Kaiser et al.
(2000); Van Waerbeke et al. (2000); Wittman et al. (2000)]. Cosmic shear is
based on the fact that the effects of gravitational lensing are not limited to
small scales or to high density regions. At large radii the tidal field causes
a subtle change in the shapes of galaxies, resulting in a coherent alignment
of the sources that can be measured statistically.
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Indeed, cosmic shear measurements are intrinsically statistical, because in
this case the lensing effect is not associated with a particular intervening lens,
but rather corresponds to small distortions (of the order of 1%) of the images
of distant galaxies by all density fluctuations along the line of sight. In this
context, one does not use gravitational lensing to obtain the characteristics
of a single massive object, but tries to derive the statistical properties of the
density field, which in turn can be used to constrain cosmological parameters
(see Munshi et al. (2008) for a review on cosmological applications of weak
lensing).

The key observable in this context is the matter power spectrum (see Pea-
cock (1999) for a definition), which describes the amplitudes of the density
fluctuations on different scales. The ability of weak lensing to constrain the
matter power spectrum makes it an invaluable tool to analyse the large scale
structures of our Universe. The advantage of weak lensing is its ability to
probe the matter distribution more directly than traditional methods such
as the galaxy catalogue, fundamentally limited by our poor knowledge of
galaxy formation and evolution.

This thesis addresses the question of the extraction of information about
the matter power spectrum P (k) from weak lensing measurements. We
develop a new quadratic estimator for P (k) from the convergence κ, one of
the parameters that describe the lensing effect on background sources.

Generally speaking, the estimation of power spectra from various types of
data is becoming increasingly important in cosmology (see Efstathiou (2004)
for a critical discussion). There are three main reasons for this. Firstly, there
has been an explosion in the size and quality of cosmological data sets. With
such large data sets it is now possible to measure power spectra accurately
over a wide range of angular and spatial scales. Secondly, the power spec-
trum is a simple two-point statistic and so it is natural that more effort has
been devoted to optimal methods for the power spectrum estimation rather
than to optimal estimators for higher order statistics. Thirdly, in most re-
alisations of the inflationary scenario, the fluctuations generated during the
inflationary phase are predicted to be Gaussian (see e.g. Liddle and Lyth
(2000), for a review). If the fluctuations are Gaussian, and as long as they re-
main linear, all of the information pertaining to the fluctuations is contained
in the power spectrum.

Quadratic estimators have been largely employed in the statistical challenge
of recovering as much information as possible about the power spectra. Most
importantly for our purposes, Tegmark et al. have proposed quadratic es-
timators for the CMB angular power spectrum [Tegmark (1997)] and the
three-dimensional power spectrum of galaxies [Tegmark et al. (2004)]. The
interest for a quadratic combination of data comes from the fact that these
methods have proved to be unbeatable, in the sense that their information
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content is maximised. In this case, estimation of the power spectrum can
be viewed as a form of lossless data compression. This approach is invalu-
able, since physical parameters of interest can be estimated from the power
spectrum and its covariance matrix, rather than from the pixel values them-
selves.

Motivated by the appealing features of these techniques, in this thesis we
devise and implement a quadratic estimator for the matter power spectrum
based on weak lensing estimates. Here the situation appears to be more
complicated than in Tegmark’s papers, because lensing is an integrated effect
along the line of sight and this implies mixing of different scales, which makes
it not clear a priori that the technique will succeed.

We first derive the mathematics of the estimator, essentially extending the
same basics of Tegmark (1997) and Tegmark et al. (2004) to the weak lensing
case, and subsequently we carry out a series of tests on our estimator. Given
the complexity of the problem, we decide to set out on the study of the
estimator following an increasing level of sophistication. In particular, this
implies moving from a unidimensional case to a 2D and 3D approach, while
passing from an idealised treatment in absence of noise to a more realistic
approach with a finite signal-to-noise ratio. The analysis is performed using
the convergence κ, since it is a scalar parameter and therefore easier to treat
in an initial approach, but the calculations for the shear γ are also presented
in the concluding section of the thesis.

The physical interest for this estimator resides in its ability to isolate the ef-
fects of physical processes that act on different scales. We are particularly in-
terested in developing statistics that could detect features at k ∼ 1hMpc−1

arising from non-zero neutrino mass, as well as developing statistics that
are sensitive or insensitive to the high-k regime (k > 1hMpc−1), where
uncertain baryon feedback processes become important.
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This thesis is structured as follows:

1. In Chapter 1 we review the main results of the gravitational lensing
theory, starting from the case of a single lens and a set of lenses at a
fixed redshift. We then move to the case of lensing by the large-scale
structure in the Universe.

2. In Chapter 2 we introduce the matter power spectrum and we analyse
the effect of massive neutrinos on it.

3. In Chapter 3 we describe the basis of the quadratic methods in the
estimation of power spectra, analysing the algorithms and the results
of Tegmark (1997) and Tegmark et al. (2004), as our new method
represents an extension of these models to the more complicated case
of weak lensing.

4. In Chapter 4 we describe the mathematical foundations of our new
method, developing the optimised weights for the estimation of P (k)
from the convergence κ in different signal-to-noise regimes.

5. In Chapter 5 we apply the new method to a unidimensional model
that we use to test the estimator. In this model we choose an input
power spectrum and we check how well the estimator recovers it from
the simulated convergence field. We describe in detail the algorithm
followed to test the estimator and we present the results obtained.

6. In Chapter 6 we apply the same procedure to a two-dimensional and
three-dimensional grid. We report the main differences with the uni-
dimensional model and the results obtained in these new cases.

7. In Chapter 7 we conclude by reviewing the results obtained, comment-
ing the approximations made and suggesting some possible future de-
velopments of the estimator. We also present the calculations for the
shear γ.
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Chapter 1

Lensing formalism

1.1 Light deflection

We start by considering the gravitational lensing effect by a single inter-
vening mass distribution (Sect. 1.1.1) and a set of lenses at a fixed redshift
(Sect. 1.1.2). This will introduce some of the ideas that we will then use in
Sect. 1.2, when we will analyse the gravitational lensing effect by the large-
scale structure in the Universe, the case of major interest for our purposes.

1.1.1 Deflection angle from Fermat’s principle

Following the approach of Meneghetti (2012), in this first subsection we de-
scribe light deflection using Fermat’s principle. This turns out to be equiva-
lent to the study of geodesic curves. In its simplest form, Fermat’s principle
states that the path followed by light waves of a given frequency is the one
that minimises the travel time, ∫

n

c
dl (1.1)

where n is the index of refraction of the medium. We thus search for a path,
~x(l), for which the variation

δ

∫ B

A
n (~x (l)) dl = 0 (1.2)

where the extreme points A and B are fixed.

In order to find the index of refraction we make a first approximation: we
assume the lens to be small, such that its dimension is negligible compared
to the overall system (source, lens and observer) and “weak”. By this we
mean a lens whose Newtonian gravitational potential Φ is much smaller than
c2, Φ/c2 � 1. The unperturbed space-time, described by the Minkowski
metric ηµν = diag(1,−1,−1,−1), is perturbed by a weak lens such that

5



ηµν → gµν = diag(1 + 2Φ
c2
, 1 − 2Φ

c2
, 1 − 2Φ

c2
, 1 − 2Φ

c2
) and the line element

becomes

ds2 =
(
dx0
)2−(dx1

)2−(dx2
)2−(dx3

)2 → ds2 =

(
1 +

2Φ

c2

)
c2dt2−

(
1− 2Φ

c2

)(
d~x2
)

(1.3)

Since for light we have ds = 0, it follows that(
1 +

2Φ

c2

)
c2dt2 =

(
1− 2Φ

c2

)(
d~x2
)

(1.4)

The light speed in the gravitational field is thus

c′ =
|d~x|
dt

= c

√
1 + 2Φ

c2

1− 2Φ
c2

≈ c
(

1 +
2Φ

c2

)
(1.5)

where Φ/c2 � 1 by assumption. The index of refraction is thus

n = c/c′ =
1

1 + 2Φ
c2

≈ 1− 2Φ

c2
. (1.6)

With Φ ≤ 0, n ≥ 1, and the light speed c is lower than in vacuum. n will
depend on the spatial coordinate ~x and on time t. Let ~x(l) be a light path.
Then the light travel time is proportional to∫ B

A
n [~x(l)] dl, (1.7)

and the light path follows from

δ

∫ B

A
n [~x(l)] dl = 0. (1.8)

Let us write

dl =

∣∣∣∣d~xdλ
∣∣∣∣ dλ (1.9)

with a curve parameter λ which is yet arbitrary, and find

δ

∫ λB

λA

dλ n [~x(λ)]

∣∣∣∣d~xdλ
∣∣∣∣ = 0. (1.10)

Defining

~̇x =
d~x

dλ
, (1.11)

we have
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∣∣∣∣d~xdλ
∣∣∣∣ =

∣∣∣~̇x∣∣∣ = (~̇x2)1/2 (1.12)

and, considering our Lagrangian

n [~x(λ)]

∣∣∣∣d~xdλ
∣∣∣∣ ≡ L(~̇x, ~x, λ) (1.13)

we find the Euler equations

d

dλ

∂L

∂~̇x
− ∂L

∂~x
= 0 (1.14)

where

∂L

∂~x
=
∣∣∣~̇x∣∣∣ ∂n

∂~x
= (~∇n)

∣∣∣~̇x∣∣∣ , ∂L

∂~̇x
= n

~̇x∣∣∣~̇x∣∣∣ . (1.15)

By a suitable choice of the curve parameter λ we can assume ~̇x = 1 and
write ~e ≡ ~̇x for the unit tangent vector to the light path. Then, we have

d

dλ
(n~e)− ~∇n = 0 (1.16)

or

n~̇e+ ~e · [(~∇n) ~̇∇] = ~∇n =⇒ n~̇e = ~̇∇n− ~e(~∇ · ~e). (1.17)

The right hand side is the gradient of n perpendicular to the light path.
Thus

~̇e =
1

n
~∇⊥n = ~∇⊥ lnn (1.18)

As n = 1− 2Φ/c2 and Φ/c2 � 1, lnn ≈ −2Φ/c2, and

~̇e = − 2

c2
~∇⊥Φ (1.19)

The total deflection angle of the light path is now the integral over −~̇e along
the light path,

~̂α =
2

c2

∫ λB

λA

~∇⊥Φdλ (1.20)

As it stands, the equation for α is not useful, as one would have to inte-
grate over the actual light path. However, since Φ/c2 � 1, we expect the
deflection angle to be small. Then, we can adopt the Born approximation
and integrate over the unperturbed light path. We suppose, therefore, that
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a light ray starts out into +~ez-direction and passes a lens at z = 0, with
impact parameter b. The deflection angle is then given by

~̂α =
2

c2

∫ +∞

−∞
~∇⊥φ dz (1.21)

In particular if the lens is a point mass, then

Φ = −GM
r

(1.22)

and the deflection angle is therefore:

|~̂α| = 4GM

bc2
= 2

RS
b
. (1.23)

This famous result, first obtained by Einstein himself [Einstein (1911)], is
twice as big as the one that we would obtain by treating the photons as
corpuscles in standard Newtonian Gravity.

1.1.2 Lens equation from a geometric approach

The deflection angle in Eq. 1.23 depends linearly on the mass M . This
ensures that the deflection angles of a set of lenses can be linearly superposed.
Then let us suppose to have a sparse distribution of N point masses on a
plane, whose positions and masses are ξi and Mi, 1 ≤ i ≤ N . The deflection
angle of a light ray crossing the plane at ξ will be:

~̂α(~ξ) =
∑
i

~̂αi(~ξ − ~ξi) =
4G

c2

∑
i

Mi

~ξ − ~ξi
|~ξ − ~ξi|2

(1.24)

In order to consider three dimensional distributions of matter we adopt a
simplifying approximation, called the thin screen approximation.
This consists of approximating the lens by a planar distribution of matter,
the lens plane. Even the sources are assumed to lie on a plane, called the
source plane. The physical motivation behind this approximation is the fact
that even in the case of lensing by galaxy clusters, the physical size of the
lens is generally much smaller than the distances between observer, lens
and source [Wambsganss (1998)]. The deflection therefore arises along a
very short section of the light path. Within this approximation, the lensing
matter distribution is fully described by its surface density,

Σ(~ξ) =

∫
ρ(~ξ, z)dz, (1.25)

where ~ξ is a two-dimensional vector on the lens plane and ρ is the three-
dimensional density. As long as the thin screen approximation holds, the
total deflection angle is obtained by summing the contribution of all the
mass elements Σ(ξ)d2ξ:

8



Figure 1.1: Model of a typical gravitational lens

~̂α(~ξ) =
4G

c2

∫
(~ξ − ~ξi)Σ(~ξ′)

|~ξ − ~ξi|2
d2~ξ′. (1.26)

In Fig. 1.1 a typical gravitational lens system is shown, consisting of a mass
concentration placed at redshift zL, corresponding to an angular diameter
distance DL. The lens deflects the light rays coming from a source at redshift
zS (or angular distance DS).
We first define an optical axis, indicated by the dashed line, perpendicular
to the lens and source planes and passing through the observer. Then we
measure the angular positions on the lens and on the source planes with
respect to this reference direction. Let us consider a source at the angular
position β, which lies on the source plane at a distance η = βDS from the
optical axis. The deflection angle α̂ of the light ray coming from that source
and having an impact parameter ξ = θDL on the lens plane is given by
Eq. 1.21. Due to the deflection, the observer receives the light coming from
the source as if it was emitted at the angular position θ. If ~θ, ~β and α̂ are
small, the true position of the source and its observed position on the sky
are related by a very simple relation, called the lens equation:

~θDS = ~βDS + ~̂αDLS (1.27)

where DLS is the angular diameter distance between lens and source. Defin-
ing the reduced deflection angle

~α(~θ) ≡ DLS

DS
~̂α(~θ), (1.28)

Eq. 1.27 becomes
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~β = ~θ − ~α(~θ). (1.29)

It is very useful to write the lens equation in a dimensionless form. We
then define a length scale ξ0 on the lens plane and a corresponding length
scale η0 = ξ0DS/DL on the source plane. Furthermore, if we define the
dimensionless vectors

~x ≡
~ξ

ξ0
; ~y ≡ ~η

η0
(1.30)

as well as the scaled deflection angle

~α(~x) =
DLDS

ξ0DS
~̂α (ξ0~x) , (1.31)

we can rewrite the lens equation as

~y = ~x− ~α(~x). (1.32)

1.1.3 Lensing potential

An extended distribution of matter is characterized by its effective lensing
potential, obtained by projecting the three-dimensional Newtonian potential
on the lens plane and by properly rescaling it:

Ψ̂(~θ) =
DLS

DLDS

2

c2

∫
Ψ(DL

~θ, z)dz (1.33)

and its dimensionless version

Ψ =
D2
L

ξ2
0

Ψ̂. (1.34)

This lensing potential satisfies two important properties:

(1) the gradient of Ψ gives the scaled deflection angle:

~∇xΨ(~x) = ~α(~x) (1.35)

This can be shown to be true by direct calculation:

~∇xΨ(~x) = ξ0
~∇⊥
(
DLSDL

ξ2
0DS

2

c2

∫
Φ(~x, z)dz

)
=
DLSDL

ξ2
0DS

2

c2

∫
~∇⊥Φ(~x, z)dz

= ~α(~x)

(1.36)

(2) the Laplacian of Ψ gives twice the convergence:
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∇2
xΨ(~x) = 2κ(~x) (1.37)

This is defined as a dimensionless surface density

κ(~x) ≡ Σ(~x)

Σcr
with Σcr =

c2

4πG

DS

DLDLS
(1.38)

where Σcr is called the critical surface density: this is a function of the
angular diameter distances of lens and source that characterizes the lens
system.
To show that Eq. 1.37 holds, we first remember the Poisson equation,

∇2Φ = 4πGρ. (1.39)

The surface mass density is

Σ(~θ) =
1

4πG

∫ +∞

−∞
∇2Φ dz (1.40)

and

κ(~θ) =
1

c2

DLDLS

DS

∫ +∞

−∞
∇2Φ dz. (1.41)

Let us now introduce a two-dimensional Laplacian

∇2
θ =

∂2

∂θ2
1

+
∂2

∂θ2
2

= D2
L

(
∂2

∂ξ2
1

+
∂2

∂ξ2
2

)
= D2

L

(
∇2 − ∂2

∂z2

)
(1.42)

which gives

∇2Φ =
1

D2
L

∇2
θΦ +

∂2Φ

∂z2
(1.43)

Inserting Eq. 1.43 into Eq. 1.41, we obtain

κ(~θ) =
1

c2

DLS

DSDL

[
∇2
θ

∫ +∞

−∞
Φdz +D2

L

∫ +∞

−∞

∂2Φ

∂z2
dz

]
(1.44)

If the lens is gravitationally bound, ∂Φ/∂z = 0 at its boundaries and the
second term on the right hand side vanishes. From Eqs. 1.33 and 1.34, we
find

κ(θ) =
1

2
∇2
θΨ̂ =

1

2

ξ2
0

D2
L

∇2
θΨ. (1.45)

Since

∇2
θ = D2

L∇2
ξ =

D2
L

ξ2
0

∇2
x (1.46)
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using adimensional quantities Eq. 1.45 reads

κ(~x) =
1

2
∇2
xΨ(~x). (1.47)

Integrating Eq. 1.37, the effective lensing potential can be written in terms
of the convergence as

Ψ(~x) =
1

π

∫
R2
κ(~x′) ln |~x− ~x′|d2x′, (1.48)

from which we obtain that the scaled deflection angle is

~α(~x) =
1

π

∫
R2
d2x′κ(~x′)

~x− ~x′

|~x− ~x′|
. (1.49)

1.1.4 Shear

One of the main features of gravitational lensing is the distortion which
it introduces into the shape of the sources. This is particularly evident
when the source has no negligible apparent size. For example, background
galaxies can appear as very long arcs in galaxy clusters. The distortion
arises because light bundles are deflected differentially. Ideally the shape of
the images can be determined by solving the lens equation for all the points
within the extended source. In particular, if the source is much smaller
than the angular size on which the physical properties of the lens change,
the relation between source and image positions can locally be linearized.
In other words, the distortion of images can be described by the Jacobian
matrix

A ≡ ∂y

∂x
=

(
δij −

∂αi(x)

∂xj

)
=

(
δij −

∂2Ψ(x)

∂xi∂xj

)
(1.50)

where xi indicates the i−component of x on the lens plane. Eq. 1.50 shows
that the elements of the Jacobian matrix can be written as combinations of
the second derivatives of the lensing potential. We will use the shorthand
notation

∂2Ψ(x)

∂xi∂xj
≡ Ψij . (1.51)

We can now split off an isotropic part from the Jacobian:

12



A− 1

2
trA · I = δij −Ψij −

1

2
(1−Ψ11 + 1−Ψ22) δij (1.52)

= −Ψij +
1

2
(Ψ11 + Ψ22) δij (1.53)

=

(
−1

2(Ψ11 −Ψ22) −Ψ12

−Ψ12
1
2(Ψ11 −Ψ22)

)
(1.54)

This antisymmetric, trace-free matrix is called the shear matrix. It quantifies
the projection of the gravitational tidal field (the gradient of the gravita-
tional force), which describes distortions of background sources.
This allows us to define the pseudo-vector ~γ = (γ1, γ2) on the lens plane,
whose components are

γ1(~x) =
1

2
(Ψ11 −Ψ22)γ2(~x) = Ψ12 = Ψ21 (1.55)

This is called the shear. The eigenvalues of the shear matrix are

±
√
γ2

1 + γ2
2 = ±γ (1.56)

Thus, there exists a coordinate rotation by an angle φ such that

(
γ1 γ2

γ2 −γ1

)
= γ

(
cos 2φ sin 2φ
sin 2φ cos 2φ

)
(1.57)

The factor 2 on the angle Φ indicates that the shear component are elements
of a 2 × 2 tensor and not a vector.
The remainder of the Jacobian is

1

2
TrA =

[
1− 1

2
(ψ11 + ψ22)

]
δij (1.58)

=

(
1− 1

2
∇2Ψ

)
δij = (1− κ)δij (1.59)

Thus, the Jacobian matrix becomes

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
= (1− κ)

(
1 0
0 1

)
− γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
(1.60)

13



Figure 1.2: Distortion effects due to convergence and shear on a circular
source

The last equation explains the meaning of both convergence and shear. The
distortion induced by the convergence is isotropic, i.e. the images are only
rescaled by a constant factor in all directions. On the other hand, the shear
stretches the intrinsic shape of the source along one privileged direction. For
this reason, a circular source, which is small enough compared to the scale
of the lens, like that shown in Fig. 1.2, is mapped into an ellipse when κ and
γ are both non-zero. The semi-major and -minor axes are

a =
r

1− κ− γ
, b =

1

1− κ+ γ
(1.61)

where r is the radius of the circular source.
An important consequence of the lensing distortion is the magnification.
Through the lens equation, the solid angle element δβ2 (or equivalently the
surface element δy2) is mapped into the solid angle δθ2 (or into the surface
element δx2). Since the Liouville theorem and the absence of emission and
absorption of photons in gravitational light deflection ensure the conserva-
tion of the source surface brightness, the change of the solid angle under
which the source is seen implies that the flux received from a source is mag-
nified (or demagnified).
Given Eq. 1.50, the magnification is quantified by the inverse of the deter-
minant of the Jacobian matrix. For this reason, the matrix M = A−1 is
called the magnification tensor. We therefore define
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µ ≡ detM =
1

detA
=

1

(1− κ)2 − γ2
(1.62)

The eigenvalues of the magnification tensor (or the inverse of the eigenvalues
of the Jacobian matrix) measure the amplification in the tangential and in
the radial direction and are given by

µt =
1

λt
=

1

1− κ− γ
(1.63)

µr =
1

λr
=

1

1− κ+ γ
(1.64)

The magnification is ideally infinite where λt = 0 and where λr = 0. These
two conditions define two curves in the lens plane, called the tangential and
the radial critical line, respectively. An image forming along the tangential
critical line is strongly distorted tangentially to this line. On the other hand,
an image forming close to the radial critical line is stretched in the direction
perpendicular to the line itself.

1.2 Lensing by large-scale structures

1.2.1 Light propagation through an inhomogeneous universe

In contrast to the earlier treatment, we have to take into account that lenses
can now be of comparable size to the curvature scale of the universe, thus we
need to refine the picture of straight light paths which are instantly deflected
by sheet-like, thin lenses. Starting from null geodesic in space-time, it can be
shown [Seitz et al. (1994)] that light rays propagate through the unperturbed
Friedmann-Lemaitre spacetime such that the comoving separation vector ~x
between them changes with the radial coordinate w as

d2~x

dw2
+K~x = 0 (1.65)

where K = (H0/c)
2(Ω0 +ΩΛ−1) is the curvature parameter of the universe.

Ω0 is the density parameter of the universe today,

Ω0 =

(
3H2

0

8πG

)−1

ρ0 (1.66)

while ΩΛ is the density parameter corresponding to the cosmological con-
stant,

ΩΛ =
Λ

3H2
0

. (1.67)
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H0 is the Hubble constant. Comoving means that the physical separation r
between the rays is divided by the scale factor of the universe,

~x =
~r

a
(1.68)

in order to get rid of the expansion of space-time. The metric is written as

ds2 = c2dt2 − a2[dw2 + f2
K(w)d2Ω] (1.69)

such that dw is the radial, comoving distance element, and fK(w) is given
by

fK(w) =


1√
K

sin
√
Kw (K > 0)

w (K = 0)
1√
−K sinh

√
−Kw (K < 0).

(1.70)

The propagation equation is easily solved. It is an oscillator equation, so
that its general solution is

~x = ~A cos
√
Kw + ~B sin

√
K (K > 0). (1.71)

With the boundary conditions ~x(w = 0) = 0 and d~x/dw|w=0 = ~θ , we find

~x(w) = ~θ sin
√
Kw. (1.72)

Generally, for negative and vanishing K, we find

~x(w) = ~θfK(w) (1.73)

Since lensing masses are typically much smaller than the Hubble radius,
in order to add perturbations space-time can be considered flat in their
surroundings, and we can use our earlier result on the deflection angle in the
form

d2~x

dw2
= − 2

c2
~∇⊥φ (1.74)

where it must now be noted that the perpendicular gradient of φ must be
taken with respect to the comoving coordinates as well. This means

2

c2
~∇⊥φ =

1

fK(w)
~∇θφ (1.75)

The propagation equation changes to

d2~x

dw2
+K~x = − 2

c2
~∇⊥φ (1.76)

which now incorporates overall space-time curvature and local perturbations
caused by a potential φ.
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Figure 1.3: Range of validity of the Green function G(w,w′)

The inhomogeneus oscillator equation can be solved by constructing a Green
function G(w,w′), which is defined on the square 0 ≤ w ≤ ws , 0 ≤ w′ ≤ ws,
where ws is the coordinate distance to the source (see Fig. 1.3). According
to the definition of a Green function, G(w,w′) must satisfy the following
conditions

• G(w,w′) is continuously differentiable in both triangles A1,2 and sat-
isfies the homogeneous differential equation

• G(w,w′) is continuous on the entire square;

• the derivative of G(w,w′) with respect to w jumps by 1 on the bound-
ary between A1 and A2 ;

• as a function of w, G(w,w′) satisfies the homogeneous boundary con-
ditions on the solution.

Accordingly, we set up
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G(w,w′) =

{
A(w′) cos

√
Kw +B(w′) cos

√
Kw on A1

C(w′) cos
√
Kw +D(w′) cos

√
Kw on A2

(1.77)

The homogeneous boundary conditions demand A = B = 0. Continuity
requires

C cos
√
Kw′ +D sin

√
Kw′ = 0 (1.78)

and the jump in the derivative implies

−C sin
√
Kw′ +D cos

√
Kw′ =

1√
K
. (1.79)

Thus,

C = − 1√
Kw′

sin
√
Kw′

D =
1√
Kw′

cos
√
Kw′.

(1.80)

This implies

G(w,w′) =

{
0 (w < w′)

1√
K

sin
√
K(w − w′) (w > w′)

(1.81)

More generally, i.e. for arbitrary sign of K, we find instead

G(w,w′) =

{
0 (w < w′)

fK(w − w′) (w > w′)
(1.82)

Therefore the general solution of the propagation equation reads

~x = fK(w)~θ − 2

c2

∫ w

0
dw′fK(w − w′)~∇⊥φ. (1.83)

As in the single-lens plane approach, we evaluate this integral along the
unperturbed path fK(w)~θ. The deflection angle is defined as the deviation
between the perturbed and the unperturbed path,

~α =
fK(w)~θ − ~x
fK(w)

=
2

c2

∫ w

0
dw′

fK(w − w′)
fK(w)

~∇⊥φ[fK(w′)~θ, w′]. (1.84)

This is now the deflection angle accumulated along a light path propagating
into direction θ out to the coordinate distance w. Hence, we denote it as
α(θ, w). For a spatially flat universe, K = 0 and fK(w) = w. Then,

~α(~θ, w) =
2

c2

∫ w

0
dw′(1− w′

w
)~∇⊥φ(w′~θ, w′) =

2w

c2

∫ 1

0
dy(1− y)~∇⊥φ(wy~θ,wy).

(1.85)
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1.2.2 Effective convergence

In the single lens-plane case, the convergence is one half the divergence of α.
Analogously, we define here an effective convergence for large-scale structure
lenses,

κeff (~θ, w) =
1

2
~∇~θ~α(~θ, w) =

1

c2

∫
dw′

fK(w′)fK(w − w′)
fK(w)

∇2(2)φ[fK(w′)~θ′, w′],

(1.86)

where ∇2(2) is the two-dimensional Laplacian with respect to comoving co-
ordinates,

∇2(2) = ~∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
(1.87)

We now do the same as we did when we introduced the lensing potential:
we replace

∇2(2) → ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (1.88)

and assume that ∂φ/∂z = 0 at the boundaries of the perturbations. Then,
we can write

κeff =
1

c2

∫ w

0
dw′

fK(w′)fK(w − w′)
fK(w)

∇2φ[fK(w′)~θ′, w′] (1.89)

and substitute for ∇2φ using Poisson’s equation. In its original form, Pois-
son’s equation reads

∇2
rφ = 4πGρ (1.90)

where the Laplacian is now taken with respect to physical coordinates. In-
troducing the density contrast

δ ≡ ρ− ρ̄
ρ̄

, (1.91)

we can write

∇2φ = 4πGρ̄(1 + δ)a2 = 4πGρ̄0a
−1(1 + δ) (1.92)

where we have inserted ρa−3 as for ordinary (non-relativistic) matter. De-
coupling the potential into a background potential

∇2φ̄ = 4πGρ̄0a
−1, (1.93)

and a peculiar (perturbing) potential φ, we have
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∇2φ = 4πGρ̄0a
−1δ, (1.94)

Using further

ρ̄0 = Ωm
3H2

0

8πG
(1.95)

yields the Poisson equation that we need,

∇2φ =
3

2
H2

0 Ωm
δ

a
(1.96)

The effective convergence can then be written as

κeff =
3Ωm

2

(
H0

c

)2 ∫ w

0
dw′

fK(w′)fK(w − w′)
fK(w)

δ[fK(w′)~θ′, w′]

a(w′)
(1.97)

where we can appreciate the similarity of the distance factor with the factor
DLDLS/DS that we had in the single-lens case. If the sources are distributed
in redshift or, equivalently, in coordinate distance w, the mean effective
convergence is

〈κeff 〉 (~θ) = w

∫ wH

0
dwG(w)κeff (~θ, w), (1.98)

where G(w)dw is the probability to find a source within dw of w. Then we
can write

〈κeff 〉 (~θ) =
3H2

0 Ωm

2c2

∫ wH

0
dwW (w)fK(w)

δ[fK(w)~θ, w]

a(w)
, (1.99)

with the effective weight function

W (w) =

∫ wH

w
dw′G(w′)

fK(w′ − w)

fK(w′)
. (1.100)
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Chapter 2

Neutrino cosmology and
matter power spectrum

2.1 Two-point correlation function and power spec-
trum

2.1.1 Definitions for a generic random field

In this subsection, we define the correlation function and the power spectrum
of a generic random field and then we apply these mathematical concepts
to the density perturbation field in the following subsection. Without loss
of generality, consider a random field g(~x) whose expectation value is zero
everywhere (if that was not the case, we could consider the field g(~x)−〈g(~x)〉
instead, which would have the desired property). Spatial positions ~x have
n dimensions, and the field can be either real or complex. A random field
g(~x) is called statistically homogeneous if it cannot statistically be distin-
guished from the field g(~x + ~y), where ~y is an arbitrary translation vector.
Formally, this means that all the joint multipoint probability distribution
functions p(g(~x1), g(~x2), ...) or its moments, ensemble averages of products
of elements of the field, remain the same under translation of the coordinates
~xi in space. Similarly, a random field g(~x) is called statistically isotropic if
it has the same statistical properties as the random field g(R~x), where R
is an arbitrary rotation matrix in n dimensions. Namely, this means that
p(g(~x1), g(~x2), ...) is invariant under spatial rotations. Restricting our atten-
tion to homogeneous and isotropic random fields, we note that the two-point
correlation function

〈g(~x)g∗(~y)〉 = ξgg(|~x− ~y|) (2.1)

can only depend on the absolute value of the difference vector between the
two points ~x and ~y. Note that ξgg is real, even if g is complex. This can
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be seen by taking the complex conjugate of Eq. 2.1, which is equivalent to
interchanging ~x and ~y, leaving the right-hand-side unaffected.
We define the Fourier-transform pair of g as

ĝ(~k) =

∫
Rn

dnx g(~x)ei~x·~k; g(~x) =

∫
Rn

dnk

(2π)n
ĝ(~k)e−i~x·~k. (2.2)

We now calculate the correlation function in Fourier space,〈
ĝ(~k)ĝ∗(~k′)

〉
=

∫
Rn

dnx ei~x·~k
∫

Rn
dnx′ e−i~x′·~k′ 〈g(~x)g∗(~x′)

〉
. (2.3)

Using Eq. 2.1 and substituting ~x′ = ~x+ ~y, this becomes

〈
g(~x)g∗(~x′)

〉
=

∫
Rn

dnx ei~x·~k
∫

Rn
dnye−i(~x+~y)·~k′ξgg(|~y|)

= (2π)nδD(~k − ~k′)
∫

Rn
dny e−i~y·~kξgg(|~y|)

= (2π)nδD(~k − ~k′)Pg(|~k|).

(2.4)

In the final step, we defined the power spectrum of the statistically homo-
geneous and isotropic random field g,

Pg(|~k|) =

∫
Rn

dny e−i~y·~kξgg(|~y|) (2.5)

which is the Fourier transform of the two-point correlation function. Isotropy
of the random field implies that Pg can only depend on the modulus of k.
Gaussian random fields are characterised by the property that the prob-
ability distribution of any linear combination of the random field g(~x) is
Gaussian. More generally, the joint probability distribution of a number M
of linear combinations of the random variable g(~xi) is a multivariate Gaus-
sian. This is equivalent to requiring that the Fourier components ĝ(~k) are
mutually statistically independent, and that the probability densities for the
ĝ(~k) are Gaussian with dispersion Pg(|~k|). Thus, a Gaussian random field is
fully characterised by its power spectrum.

2.1.2 Specialisation to the cosmological density field

Now we will apply the mathematical notions of the last subsection to the
following problem: how do we describe the fluctuations of density in the
Universe that caused the matter inhomogeneities we can observe around
us? It turns out that these fluctuations can be described by a statistically
homogeneous random field. First of all let us define the cosmological density
perturbation field as:

δ(~x) ≡ ρ(~x)− ρ̄
ρ̄

(2.6)
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This formula just states that δ(~x) is the fractional deviation of the cosmo-
logical density field ρ(x) above a certain average ρ̄ at position ~x. Since we
assume our Universe to be homogeneous and isotropic, the average of a cos-
mological quantity cannot depend on position or direction, as this would
indicate a preferred point or axis in space. Formally speaking, we have to
perform this average over an ensemble of different realizations of the Uni-
verse, with the same conditions, if we want to talk about statistical processes.
Since this is not possible and we can only observe a single realization of our
Universe, the best we can do is to average over largely separated regions
of space which, according to our theories, should be completely causally
disconnected, so that the bigger the volume we average over, the best we
approximate a true ensemble average. Fields which satisfy the property that
the ensemble average equals the volume average are called ergodic and the
validity of this hypothesis is taken as an axiom for cosmology (see Peacock
(1999)). The density contrast field δ(~x) changes sign and magnitude de-
pending on its position, but in order to be statistically homogeneous and
isotropic, its ensemble averages of local density products p, for example for
p = 3, 〈δ(~x1)δ(~x2)δ(~x3)〉, have to be independent under translations and
rotations of the coordinates ~x1, ~x2, ~x3 (see Bernardeau et al. (2002)). For
example the variance

〈
δ2
〉
, which is just the second moment of δ at the same

value of ~x, should only depend on the norm of this vector.

2.1.3 N-point correlations and Gaussian random fields

Correlation functions are directly related to the multipoint probability func-
tion, in fact they can be defined from it, as we show here for the density
field. The physical interpretation of the two-point correlation function is
a measure of the excess over random probability of finding a neighbouring
element in a volume dV1 at a distance r from another given element in a
volume dV2 :

dP = ρ2
0[1 + ξ(r)]dV1dV2 (2.7)

so that if clustering (ξ 6= 0) is present, the probability will be above the
usual Poisson value, which is just proportional to the density squared. The
n-point correlation functions are then interpreted as the excess probability
of finding an n-tuplet of objects in n specified volumes and they can be
written as:

dP = ρn0 [1 + ξ(n)]dV1...dVn (2.8)

Since the two-point function is proportional to the product of the density
field at the n-points, then the n-point correlation function is just:
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1 + ξ(n) =

〈
n∏
i

(1 + δi)

〉
(2.9)

Expanding the product for n = 3, we get:

ξ(3) = ξ(r12) + ξ(r13) + ξ(r32) + ζ(r1, r2, r3) (2.10)

The term ζ = 〈δ1δ2δ3〉 expresses just the excess correlation between three
objects that is not taken into account by the two-point correlations. This
is called the reduced or connected three-point correlation functions, because
of the analogy to the Green functions of quantum field theory.

For a Gaussian random field, the Wick theorem implies that the only non
vanishing p-moments δp are the even ones, while the odd-valued products
vanish. We have then:

〈
δ(~k1, ..., δ(~k2p+1)

〉
= 0 (2.11)〈

δ(~k1, ..., δ(~k2p)
〉

=
∑

associations p

∏
pairs(i,j)

〈
δ(~ki)δ(~kj)

〉
(2.12)

This just states that all possible statistical properties of the random variables
δ(~k) are completely determined by the form of the power spectrum P (k).
This implies that at least in the linear regime, a given cosmological model
will be entirely determined by the power spectrum, if one is interested only
in the behaviour of dark matter under gravitational evolution.

However, the dynamics of gravitational instability is a highly nonlinear pro-
cess and therefore nonlinear evolution leads inevitably to the development of
non-Gaussian features in the density field, specially at very small scales and
late times. This leads to a subtle problem, since for weakly non-Gaussian
fields the whole hierarchy of n-point correlation functions is needed to de-
scribe the statistical properties in a complete way. The general n-point
correlation function can be written as:

ξn(~x1, ..., ~xn) = 〈δ(~x1), ..., δ(~xn)〉c (2.13)

The connected ensemble average of products, also called the cumulants (if
they are located at the same point), are defined as the difference between the
n-th moment and all possible different combinations of connected ensemble
product averages of order less than n, between the n points. As an example
we write here the first four terms:
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〈δ〉c = 〈δ〉 (2.14)〈
δ2
〉
c

=
〈
δ2
〉
− 〈δ〉2c ≡ σ

2 (2.15)〈
δ3
〉
c

=
〈
δ3
〉
− 3

〈
δ2
〉
c
〈δ〉c − 〈δ〉

3
c (2.16)〈

δ4
〉
c

=
〈
δ4
〉
− 4

〈
δ3
〉
c
〈δ〉 − 3

〈
δ2
〉2

c
− 6

〈
δ2
〉
c
〈δ〉2c − 〈δ〉

4
c (2.17)

This can also be visualized for clearer understanding, as in Fig. 2.1, where
the connected components are represented by single points in the case of
〈δ〉c, or points joined by lines for higher order cumulants. If the average of
the density fluctuation is regarded as zero, as in cosmology, then the single
points do not contribute. To understand Eq. 2.16, compare it with Fig. 2.2.
The moment of order 3 is just the sum of a triangle

〈
δ3
〉
c
, plus three times

a line
〈
δ2
〉
c

with a single point 〈δ〉c plus 3 individual points 〈δ〉3c .
When nonlinearities in gravitational interactions start inducing mode cou-
plings between different scales, the Gaussianity is broken and we need an in-
finite hierarchy of correlation functions, therefore the power spectrum is not
the only quantity encoding cosmological information. The next order statis-
tical quantity at n = 3 is the bispectrum and is usually denoted B(~k1,~k2,~k3)
and measures correlations between three different points. In the halo model
of structure formation, this yields interesting insights into the bias parame-
ters [see Cooray and Sheth (2002)].

2.2 Matter power spectrum

The current large scale structure of the Universe is probed by the matter
power spectrum, introduced in the last section. Defined as the Fourier trans-
form of the matter correlation function, it describes the density contrast of
the universe as a function of scale. On large scales, gravity competes with
cosmic expansion, and structures grow according to linear theory. In this
regime, the density contrast field is Gaussian, Fourier modes evolve inde-
pendently, and the power spectrum is sufficient to completely describe the
density field. On small scales, gravitational collapse is non-linear: higher-
order statistics are necessary to describe the full field at small scales. The
shape of the matter power spectrum is affected in a scale-dependent way by
the free-streaming caused by small neutrino masses of O(eV) and thus it is
the key observable to constrain mν with cosmological methods.
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Figure 2.1: Representation of the connected part of the moments

Figure 2.2: Three-point moment in terms of connected parts

Figure 2.3: Four-point moment in terms of connected parts
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2.2.1 Neutrino free-streaming

After thermal decoupling, relic neutrinos constitute a collisionless fluid,
where the individual particles free-stream with a characteristic velocity that,
in average, is the thermal velocity vth. It is possible to define a horizon as
the typical distance on which particles travel between time ti and t. When
the Universe was dominated by radiation or matter t � ti, this horizon is,
as usual, asymptotically equal to vth/H, up to a numerical factor of order
one. Similarly to the definition of the Jeans wavelength, we can define the
neutrino free-streaming wavenumber and wavelength as

kFS(t) =

(
4πGρ̄(t)a2(t)

v2
th

)1/2

,

λFS(t) = 2π
a(t)

kFS(t)
= 2π

√
2

3

vth(t)

H(t)
.

(2.18)

As long as neutrinos are relativistic, they travel at the speed of light and
their free-streaming length is simply equal to the Hubble radius. When they
become non-relativistic, their thermal velocity decays like

vth ≡
〈p〉
m
∼ 3.15Tν

m
=

3.15T 0
ν

m

(a0

a

)
' 158(1 + z)

(
1eV

m

)
km s−1, (2.19)

where we used for the present neutrino temperature T 0
ν ' (4/11)1/3 T 0

γ and
T 0
γ ' 2.726K. This gives for the free-streaming wavelength and wavenumber

during matter or Λ domination

kFS(t) = 0.8

√
ΩΛ + Ωm(1 + z)3

(1 + z)2
(
m

1eV
)hMpc−1,

λFS(t) = 8
1 + z√

ΩΛ + Ωm(1 + z)3
(
1eV

m
)h−1 Mpc,

(2.20)

where ΩΛ and Ωm are the cosmological constant and matter density frac-
tions, respectively, evaluated today. After the non-relativistic transition
and during matter domination, the free-streaming length continues to in-
crease, but only like (aH)−1 ∝ t−1/3, i.e. more slowly than the scale factor
a ∝ t2/3. Therefore, the comoving free-streaming length λFS/a actually
decreases like (a2H)−1 ∝ t−1/3. As a consequence, for neutrinos becom-
ing non-relativistic during matter domination, the comoving free-streaming
wavenumber passes through a minimum knr at the time of the transition,
i.e. when m = 〈p〉 = 3.15Tν and a0/a = (1 + z) = 2.0 · 103(m/1eV ). This
minimum value is found to be

knr ' 0.018 Ω1/2
m

( m

1eV

)1/2
hMpc−1. (2.21)
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As we will see in more detail in the following subsection, the physical ef-
fect of free-streaming is to damp small-scale neutrino density fluctuations:
neutrinos cannot be confined into (or kept outside of) regions smaller than
the free-streaming length, because their velocity is greater than the escape
velocity from gravitational potential wells on those scales. Instead, on scales
much larger than the free-streaming scale, the neutrino velocity can be ef-
fectively considered as vanishing, and after the non-relativistic transition
the neutrino perturbations behave like CDM perturbations. In particular,
modes with k < knr are never affected by free-streaming and evolve like
being in a pure ΛCDM model.

2.2.2 Impact of massive neutrinos on the matter power spec-
trum

The small initial cosmological perturbations evolve within the linear regime
at early times. During matter domination, the smallest cosmological scales
start evolving non-linearly, leading to the formation of the structures we see
today. We will emphasize the main effects caused by massive neutrinos on
linear scales in the framework of the standard cosmological scenario: a Λ
Mixed Dark Matter (ΛMDM) model, where Mixed refers to the inclusion of
some HDM component. On large scales (i.e. on wavenumbers smaller than
the value knr defined in the previous subsection), neutrino free-streaming
can be ignored, and neutrino perturbations are indistinguishable from CDM
perturbations. On those scales, the matter power spectrum P (k, z) can be
shown to depend only on the matter density fraction today (including neu-
trinos), Ωm, and on the primordial perturbation spectrum. If the neutrino
mass is varied with Ωm fixed, the large-scale power spectrum remains in-
variant.

On small scales such that k > knr, the matter power spectrum is affected
by neutrino masses for essentially three reasons:

1. massive neutrinos do not cluster on those scales. The matter power spec-
trum can be expanded as a function of the three non-relativistic species,

P (k, z) =

〈∣∣∣∣δρcdm + δρb + δρν
ρcdm + ρb + ρν

∣∣∣∣2
〉

= Ω−2
m

〈∣∣Ωcdmδcdm + Ωbδb + Ωνδν
∣∣2〉

(2.22)

On scales of interest and in the recent universe, baryon and CDM fluc-
tuations are equal to each other, while δν � δcdm. Hence, even if the
evolution of δcdm was not affected by neutrino masses (which is not the
case, see the remaining two points below), the power spectrum would be
reduced by a factor (1− fν)2, with
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fν ≡
Ων

Ωm
; (2.23)

2. the redshift of radiation-to-matter equality zeq or the baryon-to-CDM
ratio ωb/ωcdm might be slightly affected by neutrino masses, with a po-
tential impact on the small-scale matter power spectrum. This depends
very much on which other parameters are kept fixed when the neutrino
mass varies. If neutrino masses are smaller than roughly 0.5 eV, they
are still relativistic at the time of radiation-to-matter equality, and the
redshift of equality depends on ωb + ωcdm, not on ωm. It is possible
to increase the total mass Mν =

∑
imνi and ωm with fixed parameters

Ωm, ωb, ωcdm (provided that the Hubble parameter also increases like the
square root of ωm). In that case, there is no significant impact of massive
neutrinos on the matter power spectrum through background effects, i.e.
through a change in the homogeneous cosmological evolution. However,
there are some important perturbation effects that we will summarize in
the following point;

3. the growth rate of cold dark matter perturbations is reduced through an
absence of gravitational back-reaction effects from free-streaming neutri-
nos. This growth rate is set by an equation of the type

δ
′′
cdm +

a′

a
δcdm = −k2ψ (2.24)

where δcdm stands for the CDM relative density perturbation in Fourier
space, and ψ for the metric perturbation playing the role of the New-
tonian potential inside the Hubble radius. There is a similar equation
for decoupled baryons, and very soon after baryon decoupling we can
identify δb = δcdm on scales of interest. The right-hand side represents
gravitational clustering, and is given by the Poisson equation as a func-
tion of the total density fluctuation. The second term on the left-hand
side represents Hubble friction, i.e. the fact that the cosmological ex-
pansion enhances distances, reduces gravitational forces and slows down
gravitational clustering. The coefficient a′/a is given by the Friedmann
equation as a function of the total background density. In a universe
such that all species present in the Friedmann equation cluster, as it is
the case in a matter-dominated universe with δρtotal ' δρcdm + δρb and
ρ̄total = ρ̄cdm + ρ̄b, the solution is simply given by δcdm ∝ a: the so-called
linear growth factor is proportional to the scale factor. But whenever one
of the species contributing to the background expansion does not cluster
efficiently, it can be neglected in the Poisson equation. In that case, the
term on the right-hand side becomes smaller with respect to the Hubble
friction term, and CDM (as well as baryons) clusters at a slower rate.
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This is the case in presence of massive neutrinos and for k � knr : the
linear growth rate during matter domination is then equal to a1−3/5fν .
During Λ domination, this effect sums up with that of the cosmologi-
cal constant (or of any non-clustering dark energy), which also tends to
reduce the growth rate for the very same reason.

In summary, the small-scale matter power spectrum P (k ≥ knr) is reduced
in presence of massive neutrinos for at least two reason: by the absence of
neutrino perturbations in the total matter power spectrum, and by a slower
growth rate of CDM/baryon perturbations at late times. The third effect
has the largest amplitude. At low redshift z ' 0, the step-like suppression
of P (k) starts at k ≥ knr and saturates at k ∼ 1hMpc−1 with a constant
amplitude ∆P (k)/P (k) ' −8fν . This result was obtained by fitting nu-
merical simulations [Hu et al. (1997)], but a more accurate approximation
can be derived analytically [Lesgourgues et al. (2013)]. As mentioned in
the second point above, neutrino masses can have additional indirect effects
through a change in the background evolution, depending on which cosmo-
logical parameters are kept fixed when Mν varies. When fitting data, one
can use analytical approximations to the full MDM or ΛMDM matter power
spectrum, valid for arbitrary scales and redshifts, as listed in Lesgourgues
and Pastor (2006). However, nowadays the analyses are performed using
the matter power spectra calculated by Boltzmann codes such as CAMB
[Lewis et al. (2000)] or CLASS [Lesgourgues and Tram (2011)], that solve
numerically the evolution of the cosmological perturbations. The step-like
suppression of the matter power spectrum induced by various values of fν
is shown in Fig. 2.4.
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Figure 2.4: Ratio of the matter power spectrum including three degenerate
massive neutrinos with density fraction fν to that with three massless neu-
trinos. The parameters ωm,ΩΛ are kept fixed, and from top to bottom the
curves correspond to fν = 0.01.0.02, 0.03, ...0.10. The individual masses mν

range from 0.046 to 0.46 eV, and the scale knr from 2.1× 10−3h Mpc−1 to
6.7× 10−3h Mpc−1.
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Chapter 3

Quadratic estimator basics

We now come to the description of the quadratic estimator developed in
this thesis work. The estimator acts on weak lensing data sets and produces
estimates of the matter power spectrum P (k). It is the first quadratic es-
timator derived for weak lensing measurements: nevertheless, there already
exist in literature examples of similar estimators for power spectra, acting
on different data sets. We present two cases of particular interest, Tegmark
(1997) and Tegmark et al. (2004), where the same quadratic estimator is
applied to the CMB and galaxies case, respectively. This thesis work is an
extension of this method to the weak lensing case, where the situation is in
principle more complicated, due to the fact that weak lensing constitutes an
integrated effect along the line of sight. This makes it not at all clear that
the technique will succeed. In this chapter we introduce the method fol-
lowed in the above cited papers, while in the next chapter we specialise the
discussion to the weak lensing case, introducing the mathematical details of
our estimator.

3.1 The CMB case

3.1.1 Preliminaries

In Tegmark (1997) a quadratic estimator for the CMB angular power spec-
trum Cl is presented. The estimation of Cl is crucial in cosmology as it
allows measurements of the cosmological parameters, from which the power
spectrum depends, with great accuracy. As we will see in detail later on,
the quadratic estimator presented in the paper has the alluring property of
producing the smallest error bars on the estimated Cl. It also turns out to be
computationally faster than other methods, such as the nonlinear maximum-
likelihood method or the Karhunen-Loève data compression method [Bond
(1995), Tegmark et al. (1997)], both requiring computations scaling with n3,
where n is the number of map pixels. In fact, the CPU time needed for ap-
plying the maximum-likelihood method directly to a map scales as n3, since
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Figure 3.1: Pipeline in the estimation of cosmological parameters from CMB
data. Figure from Tegmark (1997).

it involves computing determinants of n×n non-sparse covariance matrices.
The Karhunen-Loève method also scales as n3, requiring the diagonalization
of an n× n matrix. Therefore, both these methods show problems in terms
of computational feasibility as n becomes large. The quadratic estimator,
instead, scales as n2 in its crucial steps rather than n3.

Since a likelihood analysis, measuring the cosmological parameters from
time-ordered data, is computationally unfeasible, the power spectrum es-
timation plays a key role in splitting the extraction of the cosmological
parameters into feasible steps. Under the inflationary paradigm (see Liddle
and Lyth (2000) for a review), the temperature fluctuations are Gaussian,
which means that the harmonic coefficients have Gaussian distributions with
mean zero and variance given by Cl. In this case, all we need to characterise
the statistics of our temperature fluctuations field is the power-spectrum
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- all higher-point statistics will be zero and contain no extra information.
Therefore, provided that all the cosmological information that was present
in the map is still retained in the estimated power spectrum, the method
provides a measurement of the parameters with the same smallest error bars
of the likelihood technique. Thus, the power spectrum estimator becomes
only one of the steps characterising the pipeline described in Fig. 3.1, where
the data-compression performed at every step ultimately leads to a more
feasible, yet highly accurate, estimate of the cosmological parameters.
It is clear then that the quality of retaining as much information as possible is
vital for the validity of the estimator and the whole pipeline. In this regard
the Fisher information matrix formalism [Tegmark et al. (1997)] offers a
simple and useful way to measure how much information the methods in the
pipeline destroy. Given any set of cosmological parameters of interest, their
Fisher matrix F gives the smallest error bars with which the parameters can
be measured from a given data set, as F−1 can be thought of as the best
possible covariance matrix for the measurement errors on the parameters.
The Cramér-Rao inequality shows that no unbiased method can measure
the i-th parameter with error bars smaller than 1/

√
Fii .

If the probability distribution f for the data set ~x (the pixels temperatures
in a sky map, in the CMB case) depends on some parameters λ1, λ2, ..., then
the Fisher information matrix for these parameters is defined as [Tegmark
et al. (1997)]

Fλ
ij ≡ −

〈
∂2

∂αi∂αj
ln f

〉
(3.1)

Since f is a probability distribution over ~x,
∫
f(~x;λ1, λ2, ...)d

nx = 1 for any
choice of the parameter vector λi. Differentiating this identity, we obtain

〈
∂

∂λi
lnf

〉
=

∫
∂lnf

∂λi
fdnx =

∂

∂λi

∫
fdnx = 0 (3.2)

Using this result and the chain rule, we find that if the parameter set λi
depends on some other parameter set θj , then the Fisher matrix for these
new parameters is given by

Fθ = JtFλJ (3.3)

where the Jacobian matrix (not necessarily square) is

Jij ≡
∂λi
∂θj

(3.4)
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The transformation rule 3.3 holds regardless of whether the probability dis-
tribution is Gaussian or not. However, if the CMB fluctuations ~x are Gaus-
sian and isotropic, then we know that their probability distribution is en-
tirely determined by the power spectrum. This means that if we choose the
parameters λi to be the power spectrum coefficients Cl, the Fisher matrix
for any set of cosmological parameters can be computed directly from FC ,
the Fisher matrix for the power spectrum itself:

Fθ = JtFCJ (3.5)

So one does not need to compute and compare large numbers of Fisher
matrices for various parameter combinations, since they can all be computed
directly from FC . We will let Ĉl denote estimates of the true angular power
spectrum Cl. The estimates are unbiased if they satisfy

〈
Ĉl

〉
= Cl (3.6)

According to the Cramér-Rao inequality, to test if a power spectrum esti-
mation method is lossless, we compute the covariance matrix

Vll′ ≡
〈
ĈlĈl′

〉
−
〈
Ĉl

〉〈
Ĉl′
〉

(3.7)

and check if it equals the inverse of the Fisher matrix FC , for which we now
derive an explicit expression in the Gaussian case. We will follow closely the
approach of Tegmark et al. (1997). Let us consider a Gaussian probability
distribution, i.e., indicating with L the negative of the natural logarithm of
the likelihood function, a distribution for which

2L = lndetC + (x− µ)C−1(x− µ)t, (3.8)

where in general both the mean vector µ and the covariance matrix

C =
〈
(x− µ)(x− µ)t

〉
(3.9)

depend on the model parameters Θ. Defining the data matrix

D ≡ (x− µ)(x− µ)t (3.10)

and using the matrix identity ln det C = Tr ln C, we can rewrite equation
3.8 as
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2L = Tr[lnC + C−1D]. (3.11)

Since C is a symmetric matrix for all values of the parameters, all the
derivatives ∂C

∂θi
, ∂C
∂θi∂θj

... will also be symmetric matrices. Using the matrix

identities ∂C−1

∂θi
= −C−1 ∂C

∂θi
C−1 and ∂lnC

∂θi
= C−1 ∂C

∂θi
, we thus obtain

2
∂L
∂θi

= Tr

[
C−1∂C

∂θi
−C−1∂C

∂θi
C−1D + C−1∂D

∂θi

]
. (3.12)

When evaluating C and µ at the true parameter values, we have 〈x〉 = µ
and

〈
xxt
〉

= C + µµt, which gives


〈D〉 = C〈
∂D
∂θi

〉
= 0〈

∂D
∂θi∂θj

〉
= ∂µ

∂θi
∂µ
∂θj

t
+ ∂µ

∂θj
∂µ
∂θi

t
.

(3.13)

Applying the chain rule to equation 3.12, we find

2
∂2L
∂θi∂θj

= Tr[−C−1∂C

∂θi
C−1 ∂C

∂θj
+ C−1 ∂2C

∂θi∂θj

+ C−1

(
∂C

∂θi
C−1 ∂C

∂θj
+
∂C

∂θj
C−1∂C

∂θi

)
C−1D

−C−1

(
∂C

∂θi
C−1∂D

∂θj
+
∂C

∂θj
C−1∂D

∂θi

)
C−1D

−C−1 ∂2C

∂θi∂θj
C−1D + C−1 ∂2D

∂θi∂θj
]

Substituting this and equation 3.13 into equation 3.1 and using the trace
identity Tr[AB] = Tr[BA], the Fisher information matrix reduces to

Fij =
1

2
Tr[C−1∂C

∂θi
C−1∂C

∂θi
] + C−1Mij (3.14)

where Mij =
〈

∂D
∂θi∂θj

〉
= ∂µ

∂θi
∂µ
∂θj

t
+ ∂µ

∂θj
∂µ
∂θi

t
.

Let us now give an explicit expression for the CMB case, considering our
data to be the temperature fluctuations ∆T

T . With the standard assumption
that the CMB fluctuations are isotropic, we have µ = 0. We have the
following expression for the covariance matrix
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C ≡
〈
xxt
〉

= N +
∑
l

PlCl, (3.15)

where N denotes the noise covariance matrix and the matrices Pl are defined
as

Pl
ij ≡

2l + 1

4π
Pl(r̂i · r̂j). (3.16)

Here the Pl denote Legendre polynomials and r̂i is a unit vector pointing in
the direction of pixel i. Thus ∂C

∂Cl
= Pl, and equation 3.14 yields

FC
ll′ =

1

2
Tr

[
C−1 ∂C

∂Cl
C−1 ∂C

∂Cl′

]
(3.17)

3.1.2 The quadratic estimator

In Tegmark (1997) the author proposes a lossless estimator that is a quadratic
function of the pixels, taking the form

Ĉl = xtElx− bl. (3.18)

Here x is the data set consisting, in the CMB case, of pixels temperatures
in a sky map, while the symmetric matrix El and the constant bl are the
weights and the de-bias term to be found, respectively.
Given this generic quadratic combination of the pixels, the goal is to find the
weights and the de-bias term that give the best quadratic estimator of the
power spectrum, namely the one with the smallest error bars. The de-bias
term is found by inserting Eq. 3.15 in 3.18 and requiring the estimator to

be unbiased,
〈
Ĉl

〉
= Cl. This leads to the following expression for bl:

bl = Tr
(
NEl

)
(3.19)

and we are left with:

〈
Ĉl

〉
=
∑
l′

Wll′Cl′ (3.20)

where we have defined the Window function of the estimator as:

Wll′ ≡ Tr
(
Pl′El

)
. (3.21)
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Now we find the estimate of Cl with minimal variance, subject to the nor-
malization constraint that Wll = 1. Since we are assuming Gaussianity, the
covariance matrix of equation 3.7 is given by

Vll′ =
∑
ijkl

[CikCjl + CilCjk]E
l
ijE

l′
kl. (3.22)

Since both El and C are symmetric, we can rewrite equation 3.22 as

Vll′ = 2Tr[CElCEl′ ] (3.23)

so we simply want to minimize Tr
(
CElCEl′

)
subject to Tr

(
PlEl

)
= 1.

Introducing a Lagrange multiplier λ, we wish to minimize the function

L = Tr[CElCEl − 2λ(PlEl − 1)]. (3.24)

Requiring the derivatives with respect to the components of El to vanish,
we obtain

CElC = λPl, (3.25)

so substituting the λ that gives Tr
(
PlEl

)
= 1 leaves us with the solution

El =
1

2Fll
C−1PlC−1, (3.26)

where F is the Fisher information matrix given by Eq. 3.17, Fll = Tr[C−1PlC−1Pl]/2.
We will now prove that this method is lossless, in the sense that no other
(more nonlinear) method can do any better. We start by noting that the
way we chose to normalize El does not affect the error bars with which
we can determine cosmological parameters, since multiplying the estimated
power spectrum coefficients Ĉl by some constants (or more generally by any
invertible matrix) will not change their information content. To simplify the
calculation below, we therefore define rescaled power spectrum coefficients

yl ≡ xtElx (3.27)

where

El ≡ 1

2
C−1PlC−1 (3.28)
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Substituting equation 3.28 into equation 3.23, we find that the covariance
matrix for y reduces to

〈
yyt
〉
− 〈y〉 〈y〉t = F, (3.29)

the Fisher matrix. Arranging the true power spectrum coefficients Cl into a
vector c, equation 3.20 takes the form

〈y〉 = Fc, (3.30)

expressing the fact that the window function matrix W is also equal to the
Fisher matrix. This means that if we use the vector

c̃ ≡ F−1y (3.31)

to estimate the power spectrum c, then this estimator will be unbiased:

〈c̃〉 = c (3.32)

The Cramér-Rao inequality tells us that the best an unbiased estimator can
do (in terms of giving small error bars) is for its covariance matrix to equal
F−1, the inverse of the Fisher matrix. Using equation 3.29 and equation
3.31, we find that this covariance matrix is

〈
(c̃− c)(c̃− c)t

〉
= F−1[

〈
yyt
〉
− 〈y〉 〈y〉t]F−1 = F−1, (3.33)

so c̃ is indeed optimal in this sense: it is the best unbiased estimator of the
power spectrum, the one which gives the smallest error bars allowed by the
Cramér-Rao inequality.

It is worth noting that given the vector of raw power spectrum estimates yα,
one can always take linear combination of them and trade off the correlation
of the data points with the size of the error bars. Indeed, the author of
Tegmark (1997) points out that the choice of computing F−1, despite giving
uncorrelated parameter estimates, with all the window functions looking like
Kronecker delta functions, would give a plot of the power spectrum with huge
error bars, due to the incomplete sky coverage that makes the Fisher matrix
nearly singular. Instead, the author proposes three particular choices for the
linear combination of data to be taken, each producing characteristic features
in the window functions. All of these choices are based on the factorisation
of the Fisher matrix as

39



Figure 3.2: Window functions of the estimator at a fixed multipole l∗ = 10,
corresponding to three different linear combination of the raw data. This
means three different choices for the matrix M: using the original data vector
y, Choleski decomposing F = MMt and taking M such that M2 = F.

F = MMt (3.34)

for some matrix M, and then the linear combination considered is Xty with
X = M−1. The three particularly interesting choices for M are:

1. A lower triangular M, such that F = MMt corresponds to a Choleski
decomposition. This case produces narrow and non-negative window
functions (which is not guaranteed a priori) with side lobes only to
the right;

2. Contrastingly, an upper triangular M produces side lobes only to the
left;

3. Finally, the choice of M symmetric, such that M2 = F, produces non-
negative and narrow window functions.

In Fig. 3.2 we can see the features of the window functions corresponding
to these different choices. These linear combinations of the data produce
some quantities that characterise the data in a highly compressed form, but
are not estimates of the power spectrum in themselves, not being unbiased
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estimators of the power spectrum. However, they are linear functions of
c, therefore the cosmological content is unchanged. We would also like
to point out that, in a simulation with known power spectrum, one can
always visually compare these quantities and the true power spectrum, by
multiplying the latter on the left by XtF.

3.2 The galaxies case

In 2004 the Sloan Digital Sky Survey collaboration released a paper [Tegmark
et al. (2004)] where they provided a measurement of the matter power spec-
trum P (k) on large scales by using data of over 200000 galaxies coming
from the Survey. The matrix-based method followed in the paper differs
substantially from others already present in literature and based on tradi-
tional Fourier methods [Percival et al. (2001); Feldman et al. (1993)] that
have several drawbacks: since galaxies in a redshift survey probe the un-
derlying density field only in a finite volume, the power spectrum estimated
with Fourier methods only corresponds to a smeared out version of the
true power spectrum, can underestimate power on the largest scales because
of the integral constraint [Peacock and Nicholson (1991)] and has corre-
lated errors. Contrastingly, if the galaxies were faithful tracers of mass, the
proposed matrix-based method would produce unbiased minimum-variance
power spectrum measurements with uncorrelated error bars, smaller than
those from the Fourier methods.

The power spectrum estimation approach starts by expanding the galaxy
density field in a set of functions known as pseudoKarhunen-Loève eigen-
modes [Tegmark et al. (2002)]. This step compresses the data set into a
much smaller size while retaining the large-scale cosmological information
of interest. It also reduces the power spectrum estimation problem to a
mathematical form equivalent to that encountered in CMB analysis, mak-
ing the analysis similar to the case described in the previous section. Since
the mathematical details of the quadratic estimator have already been de-
scribed in the CMB section, here we will only briefly recall the key definitions
and change the notation to make it more suitable for the case of the galaxies
power spectrum; subsequently we will present the results, especially in terms
of window functions of the estimator, deriving from the different choices of
the linear combinations of data.

3.2.1 The method

The raw data consist of three-dimensional vectors rα, giving the measured
positions of each galaxy in redshift space. The observed three-dimensional
density field is expanded in a basis of Nx noise-orthonormal functions ψi, i =
1, ..., Nx,

41



xi ≡
∫
n(r)

n̄(r)
ψi(r)d3r (3.35)

and then we consider the Nx-dimensional data vector x of expansion coef-
ficients instead of the 3 × Ngal numbers rα. Quadratic estimators p̂i are
quadratic functions of the data vector x,

p̂i ≡ xtQix− Tr(NQi) (3.36)

where we already set the de-bias term equal to Tr (NQi) to make the es-
timate unbiased. The basic idea behind quadratic estimators is that each
matrix Qi can be chosen to effectively Fourier transform the density field,
square the Fourier modes in the i-th power spectrum band, and average the
results together, thereby probing the power spectrum on that scale. Group-
ing the parameters pi and the estimators p̂i into vectors denoted p and p̂,
the expectation value and covariance of the measurements is given by

〈p̂〉 = Wp (3.37)

cov(p̂) ≡
〈
p̂p̂t

〉
− 〈p̂〉

〈
p̂t
〉

= Σ (3.38)

where an explicit expression of W and Σ is provided below.
Following the CMB case, we choose the Q matrices to be of the form

Qi =
1

2

m∑
j=1

MijC
−1∂C

∂pi
C−1 (3.39)

where F is the Fisher matrix, given by

Fij =
1

2
Tr

[
C−1 ∂C

∂pi
C−1 ∂C

∂pj

]
. (3.40)

This gives for the window matrix and the covariance matrix

W = MF (3.41)

Σ = MFMt (3.42)

The choice of M is crucial. Ideally one would like to have both uncorrelated
error bars (diagonal Σ) and well-behaved (narrow, unimodal, and nonnega-
tive) window functions W. In fact, if the window functions have a nonzero
width ∆k, the estimate of the power on some scale k is really the weighted
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Figure 3.3: Window functions of the estimator in Tegmark et al. (2004),
corresponding to the choice M = F−1/2.

average of the power over a range of scales around k. For all choices of M,
we wish each window function (row of W) to sum to unity so that we can
interpret p̂i as measuring a weighted average of the true power. Because of
equation 3.41, the rows of M are therefore normalized to satisfy

∑
j

(MF)ij = 1 (3.43)

An interesting choice is M = F−1, which gives W = I. In other words,
all window functions are Kronecker delta functions, and p̂i gives completely
unbiased estimates of the band powers, with 〈p̂i〉 = pi regardless of what
values the other band powers take. This gives an estimate p̂ similar to the
maximum likelihood method, and the covariance matrix reduces to F−1. A
serious drawback of this choice is that this covariance matrix tends to give

large error bars (∆pi ≡M
1/2
ii = [(F−1)ii]

1/2).
The choice M = F−1/2 with the rows renormalized has the attractive prop-
erty of making the errors uncorrelated, with the covariance matrix diagonal.
The corresponding window functions W are plotted in Fig 3.3 and are seen
to be quite well behaved: this choice turns out to be very effective, as it
narrows the minimum-variance window functions at the cost of only a small
noise increase, with uncorrelated noise as an extra bonus.
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Chapter 4

The weak lensing case

We now move to the development of a quadratic estimator for the matter
power spectrum P (k) from weak lensing measurements, giving a detailed
mathematical description of how the power spectrum is recovered from the
measurements through the estimator. In the following we will concentrate on
estimates of P (k) from the convergence k, firstly introducing the mathemat-
ical basis of the estimator and then moving, in chapter 5, to the description
of the unidimensional implementation of the method. In chapter 6 we fi-
nally move to the two- and three-dimensional case. Here we will present two
different derivations of the method, valid in two different regimes: infinite
and finite signal-to-noise (S/N) ratio.

4.1 Mathematical foundations

The quantity that has been used as a starting point, from which we extract
information regarding the power spectrum, is the convergence κ, introduced
in Chapter 1. The reason for this choice is that, being k a scalar field, it is
easier to handle than a spin-2 field as the shear γ. The calculations for the
shear are presented in the concluding chapter.

4.1.1 Tomography of the convergence field

We know from the theory of lensing (see chapter 1) that the convergence is
related to the over density δ ≡ ρ−ρ̄

ρ̄ by a line-of-sight integral

κ(z, θ, φ) =

∫ z

0
dz′K(z, z′)δ(z′, θ, φ) (4.1)

where z is the redshift, θ and φ are the angular coordinates in a spherical
coordinate system and K(z, z′) is a broad kernel function of lensing, given
by Eq. 1.97:
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κeff =
3Ωm

2

(
H0

c

)2 ∫ w

0
dw′

fK(w′)fK(w − w′)
fK(w)

δ[fK(w′)~θ′, w′]

a(w′)
. (4.2)

Using the notation of chapter 1, in the flat-Universe approximation f(w) = w
and therefore we can rewrite Eq. 4.1, specifying the kernel function, as

κ(~r) =
3H2

0 Ωm

2c2

∫ r

0
dr′

r′(r − r′)
r

δ(~r′)

a(r′)
(4.3)

A basic issue we need to deal with is that the power spectrum evolves, so the
first approximation that we make is to ignore it, by assuming that P does
not evolve. We follow a tomographical approach, discretizing the problem
into a series of shells labelled by Roman indices i:

κi = Kijδj + εi (4.4)

where the summation convention on the indices is implied. εi represents
noise coming for example from shape/size dispersion and shot noise, or mea-
surement errors. We will have 〈ε〉i = 0 and 〈εiεj〉 = Nij . We will consider
Nij = σ2

i δ
K
ij , where δKij is the Kronecker delta.

4.1.2 Assumptions

The mathematical derivation of the method is based on some underlying
assumptions, which we now summarise here for clarity. We will then come
back on them in chapter 7, commenting extensively on their validity and
their possible developments in future work on the estimator.

1. P (k, z) = P (k), i.e. we ignore the evolution of the matter power
spectrum. This is a major simplification and may sound as a significant
limitation for the validity of the method. Nevertheless, it is clear
that even our simplified stationary treatment does not guarantee the
success of the quadratic estimator in recovering the power spectrum.
Therefore, dealing with a non-evolving P (k) still represents a crucial
initial step in the development of a complete estimator. Since it is
not clear a priori that the method will work even in this simplified
case, the fact that we prove in the next chapters that it does succeed
constitutes a first necessary goal to be achieved in the development
of a complete estimator. In other words if, for whatever reasons, the
method did not prove to be successful even in this simplified case,
there would be no hope in trying to extend it to a more complicated,
redshift-dependent version.
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2. σ 6= σ(z), i.e., analogously to what we have done for the power spec-
trum, we consider a simplified noise, independent of the redshift z.

3. Gaussian fields: for both the overdensity and noise fields, we assume
them to be Gaussian fields. This allows us to use Wick’s theorem for
them in our calculations (see Sect. 4.2.2).

4. “Distant observer” approximation: if the survey volume considered is
far enough from the observer, then the lines of sight can be considered
parallel and we can adopt a Fourier expansion (instead of a decom-
position in spherical harmonics), including the use of FFT and IFFT
algorithms when needed.

4.1.3 The starting point

Similarly to both the CMB and galaxies case, we start by seeking a quadratic
estimator for the 3D power spectrum P (k), at wavenumber kα (labelled by
the integer α), of the form:

P̂α = κiE
α
ijκj −Bα (4.5)

where the weights Eα and the de-bias term Bα are to be found. We can
rewrite the previous expression in terms of the overdensities:

Pα = KilEijKjmδlδm (4.6)

or, in matrix notation

P = δTGδ, (4.7)

where

G = KTEK (4.8)

The expectation value of Pα involves

〈δlδm〉 = ξlm =

∫
d3k

(2π)3
P (k) exp−i~k·(~rl−~rm) ≡ AαlmPα (4.9)

The matrices (for fixed α) A are defined by the discretised version of this
equation. We will come back on the exact definition of these matrices in
Chapters 4 and 5, where we will give an explicit expression for them in the
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1D, 2D and 3D case. ξ is the matrix that stores the correlation function, so
that ξlm contains the information regarding the correlation between the data
point labelled by index l and the data point labelled by index m. Again,
we will provide a more detailed insight into this matrix in the chapters
dedicated to the description of the method for the 1D, 2D and 3D case. For
the moment, we emphasize that ξlm relates the data point l and m, therefore
Eq. 4.9 is valid in any dimension, with the condition that the data set must
be stored in a single one-dimensional array, over which the indices l and m
can run.
That said, we have

P̂ = WP (4.10)

where

Wαβ = Tr(KAβTKTAα) (4.11)

and we choose

Bα = NijE
α
ij =

∑
i

σ2
iE

α
ii (4.12)

so as to make P̂ unbiased.

4.2 Different noise regimes

4.2.1 The infinite S/N case

In the high (theoretically infinite) S/N limit the covariance of P̂ is:

Vαβ =
〈

(P̂α − Pα)(P̂β − Pβ)
〉

= 2Tr(ξKTEαKξKEβKT ) (4.13)

which, following Tegmark’s approach in Tegmark (1997), we minimise sub-
ject to the constraint Wαα = 1. Assuming high S/N, we obtain the weights
(which will not be optimal in the finite S/N regime), still leading to unbiased
P̂α, provided we use the bias correction Bα with the weights Eα we deduce.
Since we can rewrite expression 4.13 as

Vαβ = 2Tr(ξGαξG
T
β ) (4.14)

we get an expression that is formally similar to the one in Tegmark’s paper,
the only big exception being that the E matrices in Tegmark’s version are
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now replaced by the G matrices, which in turn contain the E matrices.
Therefore, following the same procedure as Tegmark’s paper, we find that
the solution (for G, in this case), is given by

Gα = KTEαK =
ξ−1Aαξ

−1

2Fαα
(4.15)

where

Fαβ =
1

2
Tr(ξ−1AT

αξ
−1Aβ) (4.16)

is the Fisher matrix in our case of interest. Now we can see the main
difference between the weak lensing and both the CMB and galaxies cases:
as we want to find an explicit expression for the weights E, we need to invert
Eq. 4.15. It turns out that this can be done, as K is a triangular matrix
with no diagonal elements equal to 0, which makes it invertible (see chapter
5 for a detailed description of the K matrix). Then we can simply recover
E from G as

Eα =
(KT )−1ξ−1AT

αξ
−1K−1

2Fαα
(4.17)

4.2.2 The finite S/N case

We would like to include the noise in the covariance. We calculate the
covariance as

Vαβ = 〈P̂αP̂β〉 − 〈P̂α〉〈P̂β〉 (4.18)

where

P̂α = κiE
α
ijκj −Bα. (4.19)

We have

P̂α − Pα = KilE
α
ijKjmδlδm + 2εiδmE

α
ijKjm + εiεjE

α
ij −NijE

α
ijKilE

α
ijKjmξlm

(4.20)

then

Vαβ = 〈
(
KilE

α
ijKjmδlδm + 2εiδmE

α
ijKjm + εiεjE

α
ij −NijE

α
ijKilE

α
ijKjmξlm

)
(4.21)(

Ki′l′E
β
i′j′Kj′m′δ

′
lδ
′
m + 2ε′iδ

′
mE

β
i′j′Kj′m′ + ε′iε

′
jE

β
i′j′ −Ni′j′E

β
i′j′Ki′l′E

β
i′j′Kj′m′ξl′m′

)
〉.

(4.22)
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We assume both δ and ε are Gaussian fields, so we can use Wick’s theorem
for them:

〈δiδjδkδl〉 = 〈δiδj〉 〈δkδl〉+ 〈δiδk〉 〈δjδl〉+ 〈δiδl〉 〈δkδj〉 (4.23)

The two-point functions are ξij and Nij , therefore V reduces to:

Vαβ = KilE
α
ijKjmKi′l′E

β
i′j′Kj′m′(ξll′ξmm′ + ξlm′ξml′) (4.24)

+4NipξmqE
α
ijKjmE

β
psKsq + EαijE

β
pq(NipNjq +NiqNjp). (4.25)

Minimising Vαα with respect to Euv subject to Wαα = 1 gives

KulKvmKi′l′E
α
i′j′Kj′m′(ξll′ξmm′ + ξlm′ξml′) +KilKjmE

α
ijKul′Kvm′(ξll′ξmm′ + ξlm′ξml′)

(4.26)

+ 4NupξmqKvmE
α
psKsq + 4NivξmqE

α
ijKjmKvq + Eαpq(NupNvq +NuqNvp)

(4.27)

+ Eαij(NiuNjv +NivNju)− λKulKvmA
α
lm = 0 (4.28)

where λ is a Lagrange multiplier. Rearranging and letting µ = λ/4 , we
have

µTr
[
KTAαK

]
= Tr

[
KξKTEαKξKT + 2NEαKξKT + NξαN

]
(4.29)

which we can rewrite as

µTr
[
KTAαK

]
= Tr [MEαM + 2NEαM + NEαN] (4.30)

where M = KξKT .
Thus we solve with

Eα = µ(M + N)−1KAαKT (M + N)−1. (4.31)

The condition Wαα = 1 implies KTEαKAα = 1, so

Eα =
(M + N)−1KAαKT (M + N)−1

Tr[KT (M + N)−1KAαKT (M + N)−1KAα]
(4.32)

and we can see that we recover the infinite S/N result if N = 0.
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Chapter 5

Testing the estimator in one
dimension

In this chapter we start describing the analysis carried out on the estimator
to prove the goodness of the method previously derived. To this purpose, we
test the estimator by creating a density field from a given power spectrum
P (k), whose analytic form is known exactly. We then pass from the density
field δ(~x) to the convergence field κ(~x) and we let the estimator act on that,
so as to recover the original power spectrum. The estimate of the power
spectrum obtained from the matrix-based method described in the previous
chapter is then compared with the original, analytic power spectrum through
a chi-square analysis. Simultaneously we study the window functions of the
estimator and experiment different linear combinations of the data: following
what described in Sect. 3.2.1, we trade off the covariance of the data with
the size of the errorbars.

This testing of the estimator is performed through different levels of com-
plexity. In particular, this involves starting from a 1D configuration, moving
to a 2D approach and finally reaching a 3D analysis of the estimator. In
doing so, not only we experiment different linear combinations of the raw
data which give small error bars and/or uncorrelated values of the power
spectrum at the different scales, but we also pass from a simplified treat-
ment, with infinite signal-to-noise ratio, to a more realistic approach in the
finite signal-to-noise regime.

In this chapter we present a detailed implementation of the model in the 1D
case, providing a step-by-step description of the procedure followed to test
the estimator. We then present the results obtained and comment on them.

In chapter 6 we move to the description of the two- and three-dimensional
case, putting emphasis on the differences between those cases and the one-
dimensional case. In fact, while some of the steps followed in the procedure
are similar for all dimensions, some of them differ in a significant way. As
we will describe in detail later on, this particularly applies to the creation of
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the initial density field and to the storage of the data, based on a mapping
from multidimensional to one-dimensional arrays.
Furthermore, in the 1D case we will work under the assumption of infi-
nite S/N ratio: the optimised weights including the effect of noise will be
implemented in the 2D and 3D case.
Let us start now by describing the procedure followed to simulate a weak
lensing dataset, which our estimator will use to recover the input power
spectrum.

5.1 The mock dataset

Our purpose is to create a convergence field κ(~x) on a grid, whose elements
are labelled by index i. In the one-dimensional case this would represent a
line of sight, extending from the observer to the observed region in the sky, as
shown in Fig. 5.1. The one-dimensional case corresponds to concentrating
only on one particular line of sight, ignoring the others: with this approach,
we effectively reduce our analysis to a fully one-dimensional treatment.
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1 2 3 4 ... N
κi

i =δi

Figure 5.1: Sketch of the tomographic approach followed to model our mock
dataset. In the 1D case we concentrate on just one line-of-sight and ignore
the others. The result is the graphic shown in the lower part of the figure.
We thus have one value of the fields κ(~x) and δ(~x), both labelled by the
index i, for each pixel of the grid. Index i ranges from 1 to N , where N
indicates the number of pixels.

5.1.1 Choice of the input power spectrum

The first step consists in choosing an analytic form for our input power
spectrum P (k), which the estimator aims at recovering. The power spectrum
we choose for the generation of the field is a Gaussian,

P (k) = P0 e
− k

2σ2

2 (5.1)

P0 being a constant, its value always set to 50 in the following. This is
a simple analytic form that produces a likewise simple correlation function
(another Gaussian, see sect.5.2.1). Furthermore, in order to make sure that
the δ(~x) field has mean 0, we need to impose P (k) = 0. We also need to take
into account the grid step, which enters directly the expression provided for
the power spectrum. If we call L and N the length and number of pixels of
the grid respectively, we can write

52



k = k̃
2π

L
, σ = σ̃

L

N
, (5.2)

defining the physical wavenumbers k and the width σ of the power spectrum
in units of the grid step. Eq. 5.1 for the power spectrum then becomes

P (k) = P0 e
−

(k̃ 2π
L
σ̃ L
N

)2

2 = P0 e
−

( 2π
N
k̃σ̃)2

2 . (5.3)

Figure 5.2: Gaussian power spectrum chosen for the generation of the density
field. In this case σ̃ = 1.0 and L = N = 64. The symmetry of the power
spectrum with respect to the Nyquist frequency is due to the presence of
the negative frequencies on the right-hand side of the k̃ axis.

In Fig. 5.2 we report an example of this power spectrum, for values of
σ̃ = 1.0 and L = N = 64. We can appreciate the symmetry of the power
spectrum with respect to the Nyquist frequency knyq = N/2, due to the fact
that the Gaussian is symmetric for positive and negative values of k.
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5.1.2 Generating a density field from given power spectrum

Despite the fact that the results presented in this subsection are relative to
the one-dimensional case, the procedure to generate a density field from a
given power spectrum P (k) is conceptually the same for every dimension.
Therefore in the following we will indicate with n the generic dimension,
using then the 1D case to give a concrete example of the algorithm described.

The procedure to generate a density field from a given P (k) is easier to carry
out in Fourier space, if we consider our density field δ(~x) to be a statistically
homogeneous and isotropic Gaussian random field. With this assumption,
the Fourier coefficients,

δ(~k) =

∫
dnx ei~k·~x δ(~x) (5.4)

are only correlated as pairs

〈
δ(~k)δ(−~k′)

〉
= δ(~k − ~k′)P (k). (5.5)

All higher-order moments can be traced back to second-order correlations.
In addition, the Fourier coefficients, real and imaginary part separately,
are Gaussian random variables because they are linear combinations of the
field variables δ(~x), as we can see from Eq. 5.4. This simplicity makes the
realisation of a Gaussian random field easier if done for the coefficients δ(~k).
We only have to take care of the fact that the real and imaginary parts
of just two Fourier coefficients are statistically correlated to each other. It

follows for ~k 6= 0 from Eq. 5.5 that
〈
δ(~k)δ(~k)

〉
= 0, or, if we split the

equation into real and imaginary part,

〈
[Re δ(~k)]2

〉
=
〈

[Im δ(~k)]2
〉

(5.6)〈
Re δ(~k)Im δ(~k)

〉
= 0 (5.7)

This means that in a homogeneous random field, real and imaginary part of
δ(~k) are not correlated and both, individually, must have the same variance.
Furthermore, we can deduce that for ~k 6= 0:

〈
δ(~k)δ(−~k)

〉
= P (k) (5.8)

from which it follows that
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〈
Re δ(~k)Re δ(−~k)

〉
= −

〈
Im δ(~k)Im δ(−~k)

〉
=

ReP (k)

2
(5.9)〈

Re δ(~k)Im δ(−~k)
〉

= +
〈

Im δ(~k)Re δ(−~k)
〉

=
ImP (k)

2
. (5.10)

This confines the correlations between all combinations of real and imaginary
parts of the coefficient pair δ(~k) and δ(−~k). As we consider only cases in
which the power spectrum is purely real, ReP (k) = P (k) and ImP (k) = 0,
the imaginary and real parts of δ(~k) and δ(−~k) in Eq. 5.10 are not correlated.
We consider a more specialised case by restricting ourselves to real Gaussian
fields with δ∗(~x) = δ(~x). This introduces an additional condition that follows
from the definition 5.4 of the δ(~k):

δ(~k) = δ∗(−~k) ⇐⇒

{
Re δ(~k) = +Re δ(−~k)

Im δ(~k) = −Im δ(−~k)
(5.11)

This further simplifies the task of making a field realisation. We only need
a random number generator that makes a realisation of one single number
based on a Gaussian PDF. The conditions 5.11 are easily accounted for if,
for example, only the δ(~k) for half of the spatial frequencies ~k are worked out
and the frequencies are set accordingly. Furthermore, the real and imaginary
parts of δ(~k) are uncorrelated, and both follow the same Gaussian PDF. This
PDF has zero mean and a variance

σ2
k =

P (k)

2
(5.12)

according to Eq. 5.9.
The procedure for making one Gaussian field realisation thus requires two
steps:

1. drawing numbers for the real and imaginary parts for every indepen-
dent δ(~k) with a Gaussian random number generator,

2. transforming this Fourier space representation to real space in order
to obtain the field realisation. For this second step we used an IFFT
algorithm.

In Fig. 5.4 we show an example of the passage from step 1 to step 2,
namely from the k-space coefficients δ(~k), generated from our Gaussian
power spectrum, to the density field δ(~x). Having paid attention to re-
spect the conditions given by Eq. 5.11, we find an imaginary part of the
field in configuration space which is basically 0 to within numerical preci-
sion, therefore we will ignore it in the following. Since the amplitudes of the
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density and, consequently, of the convergence field (which depends on the
density, see Sect. 5.1.3), are not particularly interesting for our study, we do
not attempt to normalise them to realistic values.

Figure 5.3: Real and imaginary part of the field in k-space

Figure 5.4: Real and imaginary part of the field in configuration
space. Since, by construction, the imaginary part is negligible, we
will ignore it from now on.

56



5.1.3 From the density field to the convergence field

Once we have generated the density field δ(~x) we need to relate it to the
convergence field κ(~x), as it constitutes the actual mock dataset upon which
our estimator acts to recover the power spectrum. To pass from the density
to the convergence field we exploit Eq. 3.43,

κ(z, θ, φ) =

∫ z

0
dz′K(z, z′)δ(z′, θ, φ) (5.13)

In this formula K is the weak lensing kernel function. In the flat-Universe
approximation we can specify last expression, which becomes

κ(r) =
3H2

0 Ωm

2c2

∫ r

0
dr′

r′(r − r′)
r

δ(~r′)

a(r′)
(5.14)

so that we can identify the kernel function K as a function of the distances
r and r′

K(r, r′) =
3H2

0 Ωm

2c2

r′(r − r′)
r

. (5.15)

Eq. 5.14 contains the scale factor, which we can rewrite as a function of the
distance, assuming z � 1, as

1

a(r)
= 1 + z(r) ≈ 1 +

H0

c
r (5.16)

Now, following the tomographic approach described in sect. 4.1, we need
to discretize this expression, namely we need to find the matrices Kij such
that

κi = Kijδj (5.17)

This is easily done assigning the index i to the coordinate r and the index
j to the coordinate r′. In the one-dimensional case that we are considering
here, this simply means that given our 1D array of κi, we assign a distance
i to the i-th element and j to the j-th element. As we will see in the next
chapter, in the 2D and 3D case this approach is still valid only if we store
the multidimensional convergence field in a 1D array and pay attention to
establish a suitable mapping between the two arrays. An assumption that we
make is that, given a position i in the grid, the convergence κ in i depends on
the matter distribution until the i-th pixel, but is independent of the density
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field beyond i. This makes the K matrix triangular, as the summation over
j in Eq.5.17 goes from 0 to i.
The prefactor in Eq. 5.15, containing constants, can be set to 1, as in the
rest of the following treatment this numerical coefficient would get simplified
in any case. This allows us to avoid extremely small numbers, numerically
difficult to handle.
Nevertheless, a difficulty that we might encounter in building the K matrix
arises from the singularity of the matrix itself. This is a problem, as in
the algorithm for the recovery of the power spectrum we need to invert the
K matrix to find the optimised weights E. The shifting of indices that we
operate, in order to solve this problem, is the following:

i′ = i+ 2 (5.18)

j′ = j + 1 (5.19)

After this relabelling, we now have a K matrix which is lower triangular and
invertible. We plot in Fig. 5.5 an example of such matrix.

Figure 5.5: K matrix for a grid of 64 pixels.

Once the K matrix has been set up, it is straightforward to pass from the
density field to the convergence field, simply acting with the K matrix on
the δ(~x) field. In Fig. 5.6 we show a typical κ field obtained with this
approach. For the moment, we have deliberately not included any noise in
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the data, as we are working in the approximation of infinite S/N ratio. We
will come back to this point in the next chapter, when we implement the
weights described in sect. 4.3, for the finite S/N regime, in the 2D and 3D
case.

Figure 5.6: κ field for a grid of 64 pixels, obtained from a Gaussian power
spectrum like the one of Eq.5.3, with σ̃ = 1.0.

5.2 The correlation function

5.2.1 How to calculate it from the power spectrum

We now come to a crucial point in the algorithm for the recovery of the
power spectrum. We need to create the matrix ξ, defined in sect. 4.1 by

ξlm =

∫
dnk

(2π)n
e−i~k·(~xl−~xm)P (k) (5.20)

In the 1D case this expression is simpler as there is a direct correspondence
between the indices l and m of the matrix and those of the array of elements
of the field. Instead, as we will see in the next chapter, this is no longer true
in the 2D and 3D case and we will need to apply the same procedure used
for the 1D case to a one-dimensional array containing all the points of the
multidimensional grid. The previous relation becomes, in 1D:

ξlm =

∫
dk

2π
e−i k∆xlmP (k) (5.21)
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where we indicated with ∆xlm the separation between two pixels labelled
by indices l and m, ∆xlm = xl − xm. The first step is to calculate the
correlation function, for our given Gaussian power spectrum, as a function
of the separation ∆ between elements of the field. We indicate it with η,

η(∆) =
P0

2πσ
e−

∆2

2σ2 . (5.22)

Once we have this analytic expression as a function of the separation, we
need to use it to fill the entries of the matrix ξ. However, before doing that,
we need to keep into account that we are working with a discretised version
of the correlation function.

5.2.2 The correlation function: discretisation

The discretisation urges us to pay attention when we calculate analytically
the inverse Fourier transform of the power spectrum, as we need to multiply
it for a prefactor that accounts for the discretisation done. To explicate this
concept, let us first work out the relation between the correlation function,
calculated directly from the definition as average of products of the field,
and the Inverse Fast Fourier Transform (IFFT) of the power spectrum.
If we indicate with C the constant used by the routine that we employ
to calculate the IFFT (for example, using Python’s routine np.fft.ifft,
C = 1

N , where N is the dimension of the input array), we have that δj , the
δ field in correspondence of the index j, can be written as

δj = C
∑
k̃

δk̃e
ikk̃xj = IFFT(δ(k)) (5.23)

namely as the IFFT of the field in k-space. Thus, if we now calculate the
correlation function as a function of the separation, exploiting its definition
and inserting Eq.5.23, we get

η(∆) ≡ 〈δjδj+∆〉 = C2

∑
j

N

∑
k̃

∑
k̃′

δ∗
k̃
δk̃′e

−ikk̃xjeikk̃(xj+∆) (5.24)

=
C

N

C∑
k̃

P (k̃)eikk̃∆

N (5.25)

= C × IFFT(P (k̃)) (5.26)

where we indicated with IFFT(P (k̃)) the IFFT of the power spectrum P (k̃).
We exploited the definition of P (k̃) and the fact that when k = k′ we get a
factor
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∑
j

ei(k
k̃′−kk̃)xj =

∑
j

1 = N. (5.27)

Now we would like to shift from the discrete to the continuous approxima-
tion, transforming the summation into an integral. Therefore we start from
Eq. 5.25 and we change from the summation to the integral, rewriting η as

η(∆) = 〈δjδj+∆〉 (5.28)

=
C

N

C∑
k̃

P (k̃)eikk̃∆

N → C2

∫
P (k̃)eikk̃∆dk̃

∆k̃
(5.29)

=
L

2π
C2P0

∫
e−

k2σ2

2 eik(∆ L
N

)dk (5.30)

=
L

2π
C2

√
2π

σ
P0e
− (∆x)2

2σ2 (5.31)

=
L√
2πσ

C2P0e
− (∆x)2

2σ2 (5.32)

where we changed variable from k̃ to k, we set ∆k̃ = 1 and we defined
∆x = ∆L/N . Now we make explicit the dependence on the grid step:

η(∆) = η(∆x̃) =
L√

2πσ̃ L
N

C2P0e
− 1

2
(

∆x̃ L
N

σ̃L
N

)2

=
N√
2πσ̃

C2P0e
− 1

2
( ∆x̃
σ̃

)2
(5.33)

To fill the matrix ξ we exploit the homogeneity and isotropy of the density
field, which makes the correlation function depend only on the modulus of
the separation between two elements of the field,

ξlm = ξ|l−m| = η(∆x̃|l−m|) = η(|x̃l − x̃m|). (5.34)

The result is a matrix, ξ, that is symmetric and filled by bands, as shown
in Fig. 5.7.
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Figure 5.7: ξ matrix, plotted for a grid of N = 16 pixels and a power
spectrum P (k) like the one of Eq. 5.3, with σ̃ = 5.0. This value of σ̃
has been chosen so that in this plot it is possible to better appreciate the
Gaussian decrease of the values from the diagonal to the edges.

In Fig. 5.8 it is shown a comparison between the analytic expression of
the correlation as a function of the separation, and the actual correlation
function, obtained through a direct calculation from the elements of the
field. From the plots shown we can appreciate how the analytic version of
the correlation as a function of the separation faithfully represents the actual
correlation of the elements of the field.
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Figure 5.8: Comparison between the correlation function calculated analyti-
cally from the power spectrum (top) and directly from the realisation of the
field, exploiting the definition given by Eq. 5.24 (bottom). Here we can see
a lack of ergodicity due to the small N considered (N = 64). As N → ∞,
the two tend to agree more and more.

5.2.3 Approximation of the correlation function

We now need to work out the matrices Aα, that correspond, in the notation
of sect. 4.1, to the expansion coefficients in the expression

ξlm =

∫
dk

2π
P (k)e−i k∆xlm ≡ AαlmPα (5.35)

which represents a discretisation of the integral definition of the correlation
function, as inverse Fourier transform of the power spectrum. The index α
labels the wavenumber at which the power spectrum is evaluated. To find
the Aα matrices, then, we explicitly evaluate the Fourier transform of the
power spectrum in the 1D case and we discretise this relation, remembering
to make explicit the dependence on the grid step:
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∫
dk

2π
P (k)e−i k∆xlm ∼

∑
k

P (k)e−ik∆xlm (5.36)

=
∑
k>0

P (k)
(
eik∆xlm + e−ik∆xlm

)
(5.37)

= 2
∑
k>0

cos (k∆xlm)P (k) (5.38)

= 2
∑
k>0

cos

(
k̃

2π

L
∆x̃lm

L

N

)
P (k̃) (5.39)

= 2
∑
k>0

cos

(
2π

N
k̃∆x̃lm

)
P (k̃) (5.40)

from which we derive that the expression for the Aα matrices, in the 1D
case, is

Aαlm = 2 cos

(
2π

N
α∆x̃lm

)
= 2 cos

(
2π

N
α(x̃l − x̃m)

)
(5.41)

Here the index α is equivalent to the integer k̃.
In Fig. 5.9 we show the approximated version, obtained summing over α (ξ =
AαPα), of the same ξ matrix in Fig. 5.7. From the plot we can appreciate
how the approximated version assumes periodic boundary conditions, while
the ξ matrix plotted in Fig.5.7, obtained through an analytic calculation,
does not.
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Figure 5.9: Approximation of the ξ matrix, obtained through the use of the
Aα matrices. Note the periodic boundary conditions assumed, evident from
the edges of the matrix, as opposed to the Gaussian non-periodic decay of
Fig. 5.7.

5.3 Results and analysis

We are now at a point such that we have all the elements necessary to recover
the power spectrum from our mock dataset of convergence field κi. Before
proceeding and showing the results of this procedure, we would like to briefly
summarise the algorithm we followed. The whole procedure aims at testing
the estimator in a sort of “exercise” for the estimator, where the theoretical
value of the power spectrum is known in advance and the estimator should
recover it reasonably well. If this should not be true, then this would signal
some serious problem in the theory of the estimator, gravely compromising
its applicability to real experiments of weak lensing.

5.3.1 Summary of the algorithm for the recovery of the power
spectrum

In short, the procedure can be summarised in the following steps (we refer
the reader to sect. 4.1 for the notation used):

1. Choice of the initial power spectrum

2. Generation of the density field δi from the power spectrum

3. Creation of the kernel K matrix

4. Passage from the density field δi to the convergence field κi by means
of the matrix K
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Figure 5.10: Fisher matrix for the Gaussian power spectrum with σ̃ = 1.0

5. Creation of the ξ matrix from the correlation function, calculated ana-
lytically from the known power spectrum via inverse Fourier transform

6. Creation of the matrices Aα, coefficients of the expansion of the ma-
trix ξ as a discrete summation of the power spectrum at different
wavenumbers, labelled by α

7. Creation of the Fisher matrix F, which is calculated simply through
Eq. 4.16,

Fαβ =
1

2
Tr(ξ−1ATαξ

−1Aβ) (5.42)

We show in Fig.5.10 an example of Fisher matrix.

For every value of the integer α, labelling the wavenumber at which
we want to recover the power spectrum, we then need to repeat the
following operations:

8. In the notation of Sect. 4.1, create the matrix Gα

9. From Gα get Eα, by inversion of the K matrix

10. From Eα find the quadratic combination yα and multiply the array y
obtained by the inverse of the Fisher matrix, F−1, on the left, so as to
get an unbiased estimate of the power spectrum.
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Once we get an estimate of P (k), we can then study the goodness of the
recovered data by analysing different characteristics of the estimator and the
data, such as the window functions W , or performing a χ2 analysis on the
recovered spectrum, obtaining a best fit of the data. We will describe these
operations in the following sections, as well as presenting some examples of
recovered power spectra.

5.3.2 χ2 analysis of the recovered power spectrum

In order to quantify the goodness of the recovered power spectrum ,we need
to perform a χ2 analysis, comparing the recovered power spectrum and the
input one, and ultimately producing a best fit of the data. However, we
cannot proceed with the ordinary χ2 theory that is normally used to find the
best fit of a set of data. This is due to the fact that, contrarily to what usually
happens, we are dealing with measurements that are correlated, therefore
the covariance matrix is not diagonal and this modifies the formulas for the
χ2.
Let us be more explicit by revising the usual situation, considering a series xi
of n measurements, labelled by the index i, completely uncorrelated between
each other and with σi, i = 1...n errors on them. The covariance matrix for
this set of measurements looks like:

Cij =


σ2

1 0 0 . . .
0 σ2

2 0 . . .

0 0
. . .

. . .

. . . . . . . . . σ2
n

 (5.43)

Let us now consider p(~λ|~x), the probability that a set of parameters, col-
lectively grouped in the vector ~λ, represent our theory, given the set of
measurements xi, in turn grouped in the vector ~x. This probability is given
by

p(~λ|~x) =
p(~x|~λ)p(~λ)

p(~x)
(5.44)

∝ p(~x|~λ) = L. (5.45)

Thus, if we take p(~λ), the probability of the parameters, to be a constant
(“uniform prior”), we find that p(~λ|~x) is proportional to the Likelihood L.
If we assume the σ2

i to be Gaussian errors on ~x and uncorrelated, then the
probability of one xi, given the parameters, is

p(xi|~λ) =
1√

2πσi
exp

[
−1

2

(xi − ti(~λ))2

σ2
i

]
(5.46)
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where we indicated with ti(~λ) the theoretical value correspondent to xi. If
the xi measurements are independent, then,

p(~x|~λ) ∝ 1∏
i σi

exp

[
−1

2

∑
i

(xi − ti(~λ))2

σ2
i

]
(5.47)

where
∑

i
(xi−ti(~λ))2

σ2
i

is the χ2 of the measurements. We notice that we can

rewrite it as

χ2 =
∑
i

(xi − ti(~λ))2

σ2
i

= (xi − ti(~λ))C−1
ij (xj − tj(~λ)) (5.48)

exploiting the diagonal form of the covariance matrix C given by Eq.5.43.

In our case, the errors σi on the recovered values of the power spectrum are
correlated, so Eq. 5.47 is no longer valid at face value. We need to consider
a generalisation of the expressions provided, namely a generalised χ2 where
the covariance matrix is not necessarily diagonal:

p(~x|~λ) ∝ 1

detC
exp

−1

2

∑
ij

(xi − ti(~λ))C−1
ij (xj − tj(~λ))

 (5.49)

with the new χ2 given by

χ2 =
∑
ij

(xi − ti(~λ))C−1
ij (xj − tj(~λ)) (5.50)

In the case when we produce an unbiased estimate of the power spectrum
we have C = F−1, therefore Eq.5.50 becomes

χ2 =
∑
ij

(xi − ti(~λ))Fij(xj − tj(~λ)) (5.51)

Given this generalised version of the χ2, the procedure to quantify the good-
ness of the recovered power spectrum is based on the calculation of Eq. 5.51
for a grid of different parameters (those that describe our curve: for example,
the amplitude and width of the Gaussian) with the purpose of finding where
the minimum value happens to be. The set of parameters that minimise
the χ2 is the set that best describe our experimental data: we have thus
provided a best fit for the data. To quantify the goodness of it, we need to
evaluate the difference ∆χ2 = χ2−χ2

min and see if it falls between predeter-
mined intervals known from the literature (Press (2007)). We report here
three reference values of ∆χ2, corresponding to three different Confidence
Levels p:
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∆χ2 p

2.30 68.27%

4.61 90%

6.18 95.45%

5.3.3 Recovered power spectra and window functions

In Fig. 5.11, 5.12 and 5.13 we present plots of the recovered power spectrum,
obtained following the procedure described before, starting from an input
power spectrum with σ̃ = 1.0, superimposed for a graphical comparison. We
can see that the shape of the power spectrum is well recovered. The errorbars
are given by the square roots of the diagonal elements of the covariance
matrix, which in this case corresponds also to the inverse of the Fisher
matrix. Later on we will present other combinations of the data, essentially
given by a multiplication of the raw data vector y for another invertible
matrix: in those cases we will have different errorbars.
We also plot the best fits of the data, obtained through the χ2 analysis
described in subsection 5.3.2: in this regard, we also present the grid of
values for which we calculate the chi square and we find the minimum. We
choose to parametrize our power spectrum with a canonical amplitude A
and a width σ̂, so that

P (k) = Ae−
k2

2σ̂2 (5.52)

In the χ2 plots we can appreciate the contour plots of ∆χ2 = χ2 − χ2
min for

the reference values of Tab. 5.3.2 and the value corresponding to the actual
data. In the same plots we also show the window functions (rows of W),
for certain values of k̃: what we find is a W matrix essentially resembling a
Kronecker delta, therefore the window functions manage to isolate a certain
scale. Furthermore, considering the correlation matrix Cαβ, defined by

Cαβ =
Vαβ√

VααVββ

(5.53)

where the covariance Vαβ of the estimator is defined by Eq. 4.13,

Vαβ =
〈(
Pα − P̂α

)(
Pβ − P̂β

)〉
= 2Tr

(
ξKTEαKξKEβKT

)
(5.54)

we note that the off-diagonal elements of the C matrix are very small, indi-
cating that the estimates of the power spectrum are close to be uncorrelated
(although formally they are not). We speculate that this could be a con-
sequence of the fact that we are dealing with small arrays, therefore we
have a limited number of k-modes over the range where the power spectrum

69



changes from 1 to 0. These modes are well separated, making the estimates
almost uncorrelated: however, if we had considered larger arrays then we
would have had closer modes and the situation might have changed, leading
to more correlated estimates of the power spectrum.
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Figure 5.11: (Top row) Recovered power spectrum (left), superimposed to
the theoretical one, and the best fit coming from the χ2 analysis, whose
contour plots are also shown (right). (Second row) Window functions and
correlation matrix for the recovered power spectrum. All these plots are
relative to a one-dimensional grid with 64 pixels (the possible values for k
therefore range from 0 to 32) and a Gaussian power spectrum with σ̃ = 1.0.

Figure 5.12: Same as 5.11, but for a grid of 128 pixels.
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Figure 5.13: Same as 5.11, but for a grid of 256 pixels.
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5.3.4 Varying the width of the power spectrum

As regards the window functions, we would like to point out an interesting
feature that we discovered in our testing of the estimator. In order to show
this point, we present in Fig. 5.14 a series of plots of window functions,
plotted as the value σ̃ of the input power spectrum varies.
We notice the appearance of an unexpected feature at the Nyquist frequency,
which grows as the value of σ̃ grows. We do not know how to exactly
interpret this feature, although we suspect that it might be of numerical
origin. In any case, as we will see in the next chapter, the implementation
of the weights optimised for a finite S/N ratio allows the estimator to recover
well the form of the power spectrum despite this strange feature that persists
in the window functions. For this reason, although it remains an unresolved
issue which needs further investigation, it was not treated as high priority.

Figure 5.14: Window functions for the recovered power spectrum, for differ-
ent values of σ̃: from left to right, from top to bottom, σ̃ = 0.8, 1.0, 1.2, 1.4,
respectively. The number of pixels of the grid is always 64.

5.3.5 Implementing different linear combinations of the data

As anticipated before, we now come to point when we would like to test
different linear combinations of the raw data, so as to trade off the covariance
of the data with the size of the errorbars. We follow the description provided
in section 3.1.2 to identify the different linear combinations. In particular,
we implement the Choleski decomposition
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F = LLT (5.55)

with L lower triangular. The combination considered is Xy with X = L−1.
This procedure clearly does not give an unbiased estimate of the power
spectrum, therefore in order to compare the recovered and the input power
spectrum we need to multiply the input P (k) by XF = LT . We also imple-

ment the combination
(
L−1y

)t
, which has the interesting property to have

a lower triangular window matrix as shown later on in this Section. In this
case we need to plot ctL in order to compare the biased estimate of the
power spectrum with a rescaled version of the original one. We thus obtain
estimates of the power spectrum like those shown in Fig.5.15.

in fact
〈(

L−1y
)t〉

= ctL, where c represents the vector of the true power

spectrum.

Figure 5.15: Linear combinations of the power spectra and χ2 contour plots
for the linear combinations described in the text, namely Xy with X = L−1

(top) and
(
L−1y

)t
(bottom). P (k) is originally the usual Gaussian with

σ̃ = 1.0, but needs to be rescaled to be compared with the biased estimates
provided.

Alongside the power spectrum we plotted the χ2 contour plots: as expected,
they did not change, as we only considered linear combinations of the data.
However, if we consider the new errorbars given by the square roots of the
diagonal elements of the new covariance matrix, they are different from the
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case when we multiplied by the inverse Fisher matrix. Let us now give
an explicit expression of the new covariance matrix. If we call q the new
combination of data, in the first case we have q = Xy and if we calculate
the covariance C from its definition (assuming for simplicity and without
loss of generality that 〈q〉 = 0), we find

C ≡
〈
qqt
〉

=
〈

(X y) (Xy)T
〉

(5.56)

= X
〈
yyt
〉

Xt (5.57)

= X F XT (5.58)

= 1. (5.59)

where we exploited Eq. 3.29,
〈
yyt
〉

= F. Following similar calculations we

can show that the same relation holds for the case
(
L−1y

)t
.

Let us now give an explicit expression for the new window functions, which
we denote by Sij . For q = Xy we consider

〈q〉 = 〈Xy〉 =
〈
(L−1)y

〉
=
[
(L−1)F

]
P = Ltc (5.60)

where c denotes the true power spectrum, we can then identify the window
functions as

Sij = Ltij (5.61)

or, in matrix notation, S = LT , i.e. they are upper triangular. For
(
L−1y

)t
we have

〈(
L−1y

)t〉
=
〈
yt
(
L−1

)t〉
= ct L (5.62)

i.e. we have a lower triangular window matrix. We plotted some of the
window functions (rows of the window matrices) in Fig. 5.16.
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Figure 5.16: Window functions for the different linear combinations de-
scribed in the text, namely L−1y (top) and

(
L−1y

)t
(bottom). The original

power spectrum is always a Gaussian with σ̃ = 1.0. In this particular case
the window functions are not only upper triangular (top) or lower triangular
(bottom), but also extremely peaked around the wavenumber k, labelled by
the integer α, of the corresponding row of the window matrix.

76



Chapter 6

Testing the estimator in two
and three dimensions

We will now present the extension of the novel quadratic estimator for P (k)
to a 2D and 3D analysis, providing an insight into the simulations carried
out on the estimator in two and three dimensions. The essential testing
mechanism of the estimator is unchanged, conceptually following the same
steps described in the unidimensional case (see Sect. 5.3.1): in summary, we
choose an input power spectrum, create a mock dataset from it and we see
how well the estimator recovers the original P (k). However, some technical
implementations differ significantly in the 2D and 3D case. This applies in
particular to the creation of the mock dataset, which is now generated on a
two- and three- dimensional grid. Namely, we generate a convergence field
on a square and a cube: this not only implies a different technical approach
to the creation of the field, but also calls for a shrewd storage of the data
into a unidimensional vector, from the original 2D or 3D field. We will ex-
tensively investigate this feature in Sect. 6.1.4, but we anticipate here that,
being the recovery of the power spectrum essentially a unidimensional proce-
dure (as P (k) depends only on the modulus of the wavenumber), we need a
mapping between the two- or three- dimensional field and a unidimensional
data vector that contains all the elements of the field. Let us now start from
the description of the 2D testing of the estimator, subsequently moving to
the 3D analysis. In both cases we will focus on the main differences with
the 1D case, referring the reader to the previous chapter for those parts of
the algorithm that are unchanged from the unidimensional analysis.
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6.1 The 2D case

6.1.1 Tomographic approach

The tomographic approach followed in the 2D case is based on a planar
configuration, that we can visualize starting from the 1D line of sight in
Fig. 5.1 and considering multiple lines of sight, placed next to each other
and extending along the direction of observation. In other words, we do
not consider a planar image of the sky, extending orthogonally to the line of
sight between the observer and the distribution of matter: contrastingly, we
consider a planar grid along the direction of observation. The motivation
behind this choice is that, as we will see in detail later on in the chapter,
this allows us to take advantage of some of the techniques already employed
in the 1D case, appropriately reinterpreted. We can appreciate the new
geometrical configuration in Fig. 6.1, where we reproduce a view of the
survey from above and the modelisation given in terms of a square grid.
We choose a square grid for our survey: in particular, not only we set the
dimensions Lx and Ly of the two axes to be the same, Lx = Ly, but we
also consider the same number of pixels in each direction, Nx = Ny . We
will come back to this important aspect, common to the 3D analysis, in the
concluding chapter, where we will outline some of the possibilities that could
result from changing this feature. For the moment, let us consider Lx = Ly
and Nx = Ny, and let us describe the generation of the 2D density field from
a given power spectrum.
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X

Y

Observer

Figure 6.1: Seen from above: tomographic approach in 2D and modelisation
given in terms of a square grid. The planar configuration lies along the
direction of observation.

6.1.2 Choice of the input power spectrum

Regarding the options for our input power spectrum, we stick to the choice
of the Gaussian already made for the 1D case. We decide to use the form

P0 e
−(k2

xσ
2
x+k2

yσ
2
y)

2 , (6.1)

P0 being a constant, in the following always set equal to 50. This is a general,
potentially anisotropic form for the power spectrum: for our purposes we

will choose an isotropic power spectrum P (k) = P (
√
k2
x + k2

y), by requiring

σx = σy. Said Lx and Ly the physical lengths of the axes of our grid and
Nx and Ny the number of pixels in each direction, such that

kx = k̃x
2π

Lx
, ky = k̃y

2π

Ly
, (6.2)

σx = σ̃x
Lx
Nx

, σy = σ̃y
Ly
Ny

, (6.3)
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we can express Eq. 6.1 in terms of the grid steps as

P (k) = P0 e
− 1

2

((
k̃x

2π
Lx

)2(
σ̃x

Lx
Nx

)2
+
(
k̃y

2π
Ly

)2(
σ̃y

Ly
Ny

)2
)

(6.4)

= P0 e
− 1

2( 2π
N )

2
(k̃2
xσ̃

2
x+k̃2

yσ̃
2
y) (6.5)

= P0 e
− 1

2( 2π
N )

2
σ̃2(k̃2

x+k̃2
y). (6.6)

The simplest choice to satisfy σx = σy is to put Lx = Ly ≡ L and Nx =
Ny ≡ N , from which it follows σ̃x = σ̃y ≡ σ̃. As we will see in the concluding
chapter, there are very good reasons to desire to have far fewer pixels in the
radial direction than in the angular direction, but for the moment we stick
to the choice Nx = Ny, referring the reader to the concluding chapter for a
discussion of different possibilities. We show in Fig.6.2 an example of such
power spectrum, for N = L = 32 and σ̃ = 1.0. Since we expect the power
spectrum to be isotropic, we also impose that P (k) = 0 for k > kNyq, the
Nyquist frequency. This follows from the fact that, with wavenumbers that
are directed along an axis, we cannot have any power beyond the Nyquist
frequency. Then it is appropriate to truncate the power spectrum for modes
that are at some angle with respect to an axis: if this did not happen,
then we could have anisotropic power, for example along the diagonal of the
square grid (up to

√
2×kNyq, see Fig. 6.9 later on), while we would not have

power going along the axes. In other words, within the constraints given by
the discreteness of our grid, we want to make the power spectrum as much
isotropic as we can: by truncating the power spectrum when the modulus
of k reaches the Nyquist frequency, regardless of the direction, we aim at
treating all the directions as equally as we can.
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Figure 6.2: Input 2D Gaussian power spectrum, presented in a 3D plot and
on the grid. The analytic form is given by Eq. 6.6, with σ̃ = 1.0. As in the
1D case, the “wrapping” effect around the Nyquist frequency is due to the
presence of positive and negative frequencies plotted on both the axes.
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6.1.3 The generation of the density field

We now want to specify the treatment of Sect. 5.1.2, valid for all dimensions,
to the two-dimensional grid discussed insofar. The generation of the density
field δ(~x) = δ(x, y) is still carried out passing through the coefficients δ(~k) =
δ(kx, ky) in Fourier space. Therefore we still have to respect the symmetry

δ(~k) = δ∗(−~k), due to the reality of the field in configuration space. In two
dimensions this relation becomes

δ(kx, ky) = δ∗(−kx,−ky). (6.7)

We plot in Fig. 6.3 a typical two-dimensional grid and the way it has been
divided to account for Eq. 6.7. We see how we need to generate a complex
δ(~k), made up of independently generated Re δ(~k) and Im δ(~k), for only
half of the plane, the other half being filled according to Eq. 6.7. A special
treatment is reserved to the elements of the grid whose index kx and/or ky is
equal to the Nyquist frequency Nx/2 or Ny/2. These elements are indicated

by the bands in Fig. 6.3: they are set real and such that Re δ(~k) = Re δ(−~k).
This happens because at the Nyquist frequency we have a turning point
between positive and negative frequencies, but the Nyquist frequency itself
plays both roles of positive and negative frequency at the same time.
Once we have set up the field following the indications described, we trans-
form it via a two-dimensional IFFT and we obtain a field in configuration
space, which we can consider as purely real to within numerical precision,
the imaginary part being negligible as shown in Fig. 6.4 and 6.5. The reality
of the field in configuration space represents a good test to verify that the
Fourier coefficients have been set up correctly.
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Nyquist

Nyquist
frequency

frequency

Figure 6.3: An example of 2D grid for the generation of the density field.
In this case Nx = Ny = 8. The numbers written between parentheses
are the couples (kx, ky) in Fourier space. We used the same colours to
match couples that are complex conjugates, respecting Eq. 6.7 as required
by the reality of the field in configuration space. The modes at the Nyquist
frequency (included between bands in the figure) receive a special treatment,
as explained in the text.
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Figure 6.4: Plot on the grid of the real and imaginary part of the den-
sity field generated from a Gaussian power spectrum with σ̃x = σ̃x = 1.0.
As expected, the imaginary part is negligible and we will ignore it in the
following.
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Figure 6.5: Same as Fig.6.4, this time in a 3D plot.
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6.1.4 From the density to the convergence field

In order to pass from the density to the convergence field we still need a
K matrix, representing a two-dimensional discretised version of the lensing
kernel function, Eq. 5.15. In building this matrix our tomographic approach,
based on a planar configuration parallel to the line of sight, reveals all its
utility. In fact, as described before, we can consider the square grid as
composed of multiple repeated lines of sight, placed next to each other, and
proceed in filling the K matrix by applying to each of these lines the same
reasoning applied to the single line of sight of the 1D case. This implies that,
for every line of sight, we consider the convergence in the position labelled by
index i to depend on the density field along the line sight from the observer
until the position i, but not beyond it. We apply this hypothesis to every
line of sight and we consider the various lines of sight to be independent
of each other, in the sense that the convergence on one line of sight does
not depend on the density field on another line. Furthermore, we adopt
the “distant observer” approximation, considering the different lines of sight
all parallel to each other. Within the “distant observer” approximation we
could be concerned about density fluctuations coming from outside the“box”
(with this term we refer to either a planar or volumetric configuration, as the
same 2D reasoning applies to the 3D case). However, for the purposes of our
exercise, we assume that this is not true and that the density fluctuations
are therefore confined to the box. With these approximations, we find a K
matrix which is lower triangular, simply resulting from the same 1D kernel
matrix, repeated as many times as the number of lines that constitute our
grid. We can see an example of such matrix in Fig. 6.6.
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Figure 6.6: K matrix in the case of a grid of 16 × 16 pixels. We chose to
plot this particular dimension to better illustrate how the 2D kernel matrix
is essentially the repetition of the 1D K matrix along the diagonal.

We need to keep track of how we built the kernel matrix when we store our
data. In fact, it is clear from the previous description that our K matrix
will be a (Nx×Ny)× (Nx×Ny) = N4 matrix, being essentially N times the
repetition along the diagonal of the same 1D, N ×N , kernel matrix. Thus
this K matrix needs to act on a N2, unidimensional data vector, storing
the density field in an appropriate way. Therefore, the particular form of
the kernel matrix requires the 1D data vector to be filled according to the
approximations that were used to build K. Concretely speaking, this means
that when we take our 2D grid of values we need to “append” one row to
another, starting from the first row corresponding to the first 1D kernel
matrix in the big 2D K matrix, and then proceeding until we include all
the field elements. There is no other way of filling the 1D data vector: its
structure is imposed by the assumptions made to build the K matrix. If we
carefully follow this procedure and then apply the K matrix to the density
field previously generated, we get a convergence field like the one in Fig. 6.7.
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Figure 6.7: 2D convergence field, plotted on the grid and in a 3D plot,
deriving from a Gaussian power spectrum with σ̃x = σ̃y = 1.0.

6.1.5 The correlation function and its approximation

We now come to another crucial difference between the 1D and 2D case. The
general definition (Eq. 5.20) of the ξ matrix becomes, in two dimensions,

ξlm =

∫
d2k

(2π)2
e−ikx(xl−xm)e−iky(yl−ym)P (k), (6.8)

and the discretised version of this relation, ξlm = AαPα, still defines the
matrices Aα,where α is an integer labelling the wavenumber. We want to
provide an explicit form for these expressions in the 2D case.
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As regards ξ, its definition is relatively easy to implement once we have set up
our 1D data vector from the 2D density field. Indeed, the indices l and m in
the definition of ξ refer to this compressed 1D data vector, therefore we need
a mapping between the indices l,m of the 1D vector, and the indices of the
2D density field. This mapping can be realised either by using some pre-built
routines (for example np.unravel) or explicitly working out a mathematical
relation between the two set of indices. Other than that, the matrix ξ is filled
in a very similar fashion to the 1D case: we first calculate the correlation
function as a function η of the separation between the pixels, and then
exploit the homogeneity and isotropy (ξlm = ξ|l−m| = η(|l − m|)) to fill ξ
starting from the correlation function. The explicit expression of the latter
is

η(∆x,∆y) =

∫
d2k

(2π)2
P0e
−(k2

xσ
2
x+k2

yσ
2
y)

2 e−ikx∆xe−iky∆y (6.9)

= P0

∫
dkx
2π

e−
k2
xσ

2
x

2 e−ikx∆x

∫
dky
2π

e−
k2
yσ

2
y

2 e−iky∆y (6.10)

= P0
e
− (∆x)2

2σ2
x

2πσx

e
− (∆y)2

2σ2
y

2πσy
(6.11)

= P0
e−

((∆x)2+(∆y)2)
2σ2

(2πσ)2 . (6.12)

Arrived at this point, following Sect. 5.2.2, we discretise the relation found,
obtaining

η(∆x,∆y) =
P0

2πσ2

Lx
N2
x

Ly
N2
y

e−
((∆x)2+(∆y)2)

2σ2 (6.13)

Given that ξlm = ξ|l−m| = η(|l−m|), finally we have a banded matrix, such
as the one shown in Fig. 6.8.

Regarding the A matrices in the expression ξ = AαPα, we start by evaluating
the integral

∫
d2k

(2π)2
P (k)e−i~k·∆~r (6.14)

where ~k = (kx, ky) and ∆~r = (∆x,∆y). We introduce polar coordinates,

such that ~k·∆~r = k|∆~r| cos θ = k∆~r cos θ, and d2k = kdkdθ, so that Eq. 6.14
becomes
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Figure 6.8: Example of 2D ξ matrix, for a Gaussian power spectrum with
σ̃x = σ̃y = 5.0 and a grid of Nx = Ny = 32 pixels. The value of the width
has been chosen to better appreciate the Gaussian decay of the correlation
function from the diagonal to the edges of the matrix.
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∫ ∞
0

∫ 2π

0

k dk dθ

(2π)2
P (k)e−ik∆r cos θ =

1

2π

∫ ∞
0

P (k)J0(k∆r)kdk (6.15)

where we recognised the definition of J0, the Bessel function of the first kind
of order 0,

J0(k∆r) =
1

2π

∫ 2π

0
dθ e−ik∆r cos θ. (6.16)

Arrived at this point, we discretise Eq. 6.15, which becomes

∑
k

P (k)
J0(k∆r)

2π
k∆k (6.17)

=
∑
k̃

P (k̃)
J0

(
k̃ 2π
L

√
(∆x)2 + (∆y)2

)
2π

k̃
2π

L
∆k̃

2π

L
(6.18)

=
∑
k̃

P (k̃)
k̃

2π

(
2π

L

)2

J0

(
k̃

2π

L

√
(∆x)2 + (∆y)2

)
, (6.19)

where we inserted the grid steps and exploited ∆k̃ = 1. From the last ex-
pression we read the definition of the Aα matrices (the integer α replaces k̃
in labelling the modulus of the wavenumber) as

Aα =
α

2π

(
2π

L

)2

J0

(
α̃

(
2π

L

)2√
(∆x̃)2 + (∆ỹ)2

)
(6.20)
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6.1.6 Implementation of the weights for finite S/N ratio and
results

In the context of this 2D analysis we also implement the optimised weights
for finite S/N ratio, developed in Sect. 4.2.2. In order to include noise in
the mock dataset, when we pass from from the generated density field to
the convergence field we add a Gaussian noise term ε to it, according to
Eq. 4.4, by simply generating ε from a Gaussian distribution with mean 0
and constant variance σN . The value of σN is parametrized so as to be
related to the variance σκ of the convergence data vector, through the S/N
ratio:

σ2
κ =

(
S

N

)2

σ2
N . (6.21)

The inclusion of noise in the estimator has already been discussed in Sect.
4.2.2: its application to the algorithm is straightforward, as we only need to
modify the weights E including the noise covariance matrix N, following the
expressions derived in Sect. 4.2.2. The matrix N is determined according to
the hypothesis Nij = σ2

i δ
K
ij .

The rest of the algorithm for the recovery of the power spectrum is formally
similar to the 1D case, therefore we refer the reader to Sect. 1.3 for a detailed
description. The main difference is that, while in the 1D case we considered
the values of the integer α, labelling the modulus of the wave number, to
range from 0 to the Nyquist frequency N/2, we now have more possible
values for α, namely from 0 to

√
2Nx/2 =

√
2Ny/2. This is straightforward

to understand if one looks at the 2D grid in Fig. 6.9 and considers the possible
values for k: the maximum value for the modulus of the wavenumber is
determined by the length of the diagonal of the square grid.
Here we present a series of results obtained for the 2D case with a S/N ratio
of 10. We first show some cases of recovered power spectra, with the relative
window functions and χ2 contour plots (Fig. 6.10). Then, we show similar
plots for the choices of linear combinations of data previously described in
Sect. 5.3.5 (Fig. 6.11 and 6.12).

6.2 The 3D case

When testing the estimator in 3D we can take advantage of the techniques
employed in the 2D case and reinterpret them considering an extra dimen-
sion. However, it is indeed this extra dimension that noticeably increases the
number of pixels, and consequently data, that we need to store. This may
end up creating problems in terms of computer memory needed for the stor-
age of the data. We will come back to this point in the concluding section,
but it is already clear from what we showed in the 2D case that big matrices
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Figure 6.9: The grid of Fourier modes. The maximum possible value for k is
the length of the diagonal of the square,

√
2×(Nyquist frequency) =

√
2×N

2 .

such as the ξ matrix, whose dimension is now (Nx×Ny ×Nz)× (Nx×Ny ×
Nz) = N6, may require a seriously challenging amount of computer memory.
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Figure 6.10: Recovered power spectrum, χ2 contour plots and window func-
tions of the estimator, obtained using the inverse of the noise-including
Fisher matrix, which makes the estimate of P (k) unbiased. The input power
spectrum is a Gaussian with σ̃x = σ̃y = 2.0.
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Figure 6.11: Recovered power spectrum, χ2 contour plots and window func-
tions of the estimator, obtained using the linear combination of data de-
scribed in Sect. 3.1.2, based on the Choleski lower triangular decomposi-
tion of the Fisher matrix. The input power spectrum is a Gaussian with
σ̃x = σ̃y = 1.0.
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Figure 6.12: Same as Fig.6.11, this time using the linear combination(
L−1y

)t
.
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6.2.1 Tomographic approach

Our data grid is now a cube, which we create keeping the same axis length
Lx = Ly = Lz for each dimension. Furthermore, we adopt the same pix-
elization in every direction, Nx = Ny = Nz, referring the reader to the final
chapter for a discussion of the possible features that may come up from dif-
ferent choices. The geometrical approach of our 3D survey is based on the
extension of the 2D case to multiple planes. If in the 2D case we considered
only one plane along the direction of observation, now we ’pile up’ different
planes, letting the “altitude” vary. This is modelled by considering, in the
distant observer approximation, a cube. This geometrical configuration is
shown in Fig. 6.2.1.

Observer

Y

Z

X

Figure 6.13: Tomographic approach in the 3D analysis and modelisation
given in terms of a square grid.

6.2.2 Choice of the input power spectrum

The power spectrum is still a Gaussian,

P0 e
−(k2

xσ
2
x+k2

yσ
2
y+k2

zσ
2
z)

2 (6.22)

where we need to have σx = σy = σz to have an isotropic power spectrum.
P0 is a constant, in the following set equal to 50. We can rewrite Eq. 6.22,
using the grid steps

kx = k̃x
2π

Lx
, ky = k̃y

2π

Ly
, kz = k̃z

2π

Lz
(6.23)

σx = σ̃x
Lx
Nx

, σy = σ̃y
Ly
Ny

, σz = σ̃z
Lz
Nz

(6.24)

as
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P (k̃x, k̃y, k̃z) = P0 e
− 1

2

((
2π
Lx

)2
k̃2
x

(
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)2
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x+

(
2π
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y
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)2
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(
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(
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)
(6.25)

= P0 e
− 1

2

((
2π
Nx
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k̃2
xσ̃

2
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(
2π
Ny
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k̃2
yσ̃

2
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(
2π
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)2
k̃2
z σ̃

2
z

)
(6.26)

= P0 e
−( 2π

N )
2
σ2(k̃2

x+k̃2
y+k̃2

z), (6.27)

Analogously to the 2D case, we require Lx = Ly = Lz ≡ L, Nx = Ny = Nz ≡
N and consequently σ̃x = σ̃y = σ̃z ≡ σ to satisfy σx = σy = σz. Motivated
by the same intention to make our power spectrum as much isotropic as
possible, we operate the same truncation applied in the 2D case, setting to 0
the values of P (k) for k > kNyq. We show an example of this kind of power
spectrum in Fig. 6.14.

Figure 6.14: Example of Gaussian power spectrum with σ̃x = σ̃y = σ̃z = 0.3.

6.2.3 The generation of the density field

To create the density field δ(~x) = δ(x, y, z) from the chosen power spectrum
we first generate the Fourier coefficients δ(~k) = δ(kx, ky, kz), paying atten-

tion to respect the Hermitian symmetry δ(~k) = δ∗(−~k), due to the reality
of the field in configuration space. Written explicitly, this relation becomes
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δ(kx, ky, kz) = δ∗(−kx,−ky,−kz). (6.28)

To fill the 3D vector storing the field we only need to create half of the
coefficients, as the others will be automatically determined by Eq. 6.28. To
this purpose, it is useful to divide the cube in eight octants, corresponding to
the eight possible combinations kx, ky, kz ≶ 0. The octants are divided from
each other by the intersections of the planes x = Nx/2, y = Ny/2, z = Nz/2.
The elements of the grid belonging to these planes receive the same special
treatment reserved, in the 2D case, to the x = Nx/2 and/or y = Ny/2

elements of the grid: they are set real and such that they satisfy Re δ(~k) =
Re δ(−~k).

If we follow the procedure described, the result is a density field with negli-
gible imaginary part, like the one shown in Fig. 6.15.

Figure 6.15: Density field generated from a Gaussian power spectrum with
σ̃x = σ̃y = σ̃z = 0.3. We plotted only the real part, as the imaginary one is
negligible as a result of Eq. 6.28.
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6.2.4 From the density to the convergence field

The procedure to build the kernel matrix directly follows from the geometry
of our model. Having modelled our cubic grid as a collection of planes, we
also set our K matrix as a collection of kernel matrices specifically designed
for the various planes. Since we are in the distant observer approximation,
every plane is equivalent to the others. If we also consider that they are in-
dependent of each other, in the sense that the convergence on one plane does
not depend on the density on another (as well as the convergence on one line
of sight does not depend on the density along another line of sight, as in the
2D case) we find a K matrix that is basically an extension of the 2D version,
in turn obtained as an extension of the 1D kernel matrix. This is represented
in Fig. 6.16, where we can appreciate the fact that K is lower triangular and
largely sparse. This is crucial for the technical implementation of this matrix
which, despite its big dimension, (Nx ×Ny ×Nz)× (Nx ×Ny ×Nz) = N6,
can be easily stored in memory thanks to its particular configuration and
sparsity.

Figure 6.16: K matrix for a grid of Nx = Ny = Nz = 8 pixels.

As in the 2D case, this particular configuration of the kernel matrix requires
us to follow the same pattern when we store the 3D density field into a
single unidimensional vector, which we need to create so that we can get
a convergence field acting on it with the K matrix. The creation of the
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Figure 6.17: Convergence field obtained from a 3D Gaussian power spectrum
with σ̃x = σ̃y = σ̃z = 0.3.

unidimensional data vector can be easily achieved by simply appending the
rows of the different planes of the cube one after the other, paying attention
to respect the order

• a) between the planes and

• b) within a single plane.

The resulting convergence field, obtained after acting with the kernel matrix
on the 1D density vector, is plotted in Fig. 6.17.

6.2.5 The correlation function and its approximation

Let us now briefly describe the creation of the ξ matrix, whose definition in
the 3D case is:

ξlm =

∫
d3k

(2π)3
e−ikx(xl−xm)e−iky(yl−ym)e−ikz(zl−zm)P (k), (6.29)

We always start with the analytic calculation of the correlation function as
a function of the separation :
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Figure 6.18: ξ matrix obtained from a 3D Gaussian power spectrum with
σ̃x = σ̃y = σ̃z = 5.0.

η(∆x,∆y,∆z) =

∫
d3k

(2π)3
P0e
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2
x+k2

yσ
2
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2
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(6.30)
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(6.31)

=
P0

(2πσ)3 e
−((∆x)2+(∆y)2+(∆z)2)

2σ2 (6.32)

where σ = σx = σy = σz. Discretising this expression, according to
Sect. 5.2.2, we get

η(∆x,∆y,∆z) =
P0(√
2πσ

)3 Lx
N2
x

Ly
N2
y

Lz
N2
z

e−
((∆x)2+(∆y)2+(∆z)2)

2σ2 . (6.33)

As in the 2D case, we then fill the ξ matrix exploiting its definition and the
homogeneity and isotropy, which imply ξlm = ξ|l−m| = η(|l−m|). The result
is a banded matrix like the one shown in Fig. 6.18.

We then need to calculate the A matrices, coefficients of the expansion of
the ξ matrix as a discrete summation of the power spectrum at different
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wavenumbers, labelled by α. We start by evaluating the integral definition
of ξ

∫
d3k

(2π)3
P (k)e−i~k· ~∆r (6.34)

where this time ~k = (kx, ky, kz) and ∆~r = (∆x,∆y,∆z). We introduce

spherical polar coordinates, such that ~k · ∆~r = k|∆~r| cos θ, and d3k =
k2 sin θdkdθdφ. The integral becomes

1

(2π)3

∫ ∞
0

∫ π

0

∫ 2φ

0
P (k)e−ik∆r cos θk2 sin θdkdθdφ (6.35)

=
1

(2π)2

∫ ∞
0

∫ π

0
P (k)e−ik∆r cos θk2 sin θdkdθ (6.36)

=
1

(2π)2

∫ ∞
0

∫ +1

−1
P (k)e−ik∆rtk2dkdt (6.37)

=
2

(2π)2

∫ ∞
0

P (k)
sin(k∆r)

∆r
k dk (6.38)

where we first integrated in φ and then performed a change of variable, from
θ to t ≡ cos θ. At this point we perform a discretisation, so that the previous
expression becomes

∑
k

P (k)
2

(2π)2

sin(k∆r)

∆r
k∆k (6.39)

=
∑
k̃

P (k̃)
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k̃ 2π
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(6.40)

where we inserted explicitly the grid steps and exploited the hypothesis
Lx = Ly = Lz = L and Nx = Ny = Nz = N . We finally obtain for the A
matrices

Aα =
2Nα

L3

sin
(
α2π
N

√
(∆x̃)2 + (∆ỹ)2 + (∆z̃)2

)
√

(∆x̃)2 + (∆ỹ)2 + (∆z̃)2
(6.41)

We notice that this expression is not defined for |∆r̃| =
√

(∆x̃)2 + (∆ỹ)2 + (∆z̃)2 =
0, therefore we perform a Taylor expansion when |∆r̃| → 0 and we use the
result as a definition of Aα in the special case |∆r̃| = 0. We find

lim
|∆r̃|→0

Aα =
4π

L3
α2 (6.42)
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6.2.6 Results

Bearing in mind that the values for k can range from 0 to
√

3 × N/2, as
a result of the cubic grid adopted, we can now present some of the results
obtained for the 3D analysis. We first show in Fig. 6.19 the recovery of
the power spectrum, with a S/N ratio of 10, using the inverse of the noise-
including Fisher matrix to get an unbiased estimate of the power spectrum.
As usual, we plot not only the recovered P (k), but also the χ2 contour
plots and the window functions of the estimator. We then show in Fig. 6.20
and 6.21 the same graphs, but relative to the linear combinations of data
described in Sect. 5.3.5.
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Figure 6.19: Recovered power spectrum, χ2 contour plots and window func-
tions of the estimator, obtained using the inverse of the noise-including
Fisher matrix, which makes the estimate of P (k) unbiased. The input power
spectrum is a Gaussian with σ̃x = σ̃y = σ̃z = 5.0.
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Figure 6.20: Recovered power spectrum, χ2 contour plots and window func-
tions of the estimator, obtained using the linear combination of data de-
scribed in Sect. 3.1.2, based on the Cholesky lower triangular decomposi-
tion of the Fisher matrix. The input power spectrum is a Gaussian with
σ̃x = σ̃y = σ̃z = 5.0.
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Figure 6.21: Same as Fig. 6.11, this time using the linear combination(
L−1y

)t
.
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Chapter 7

Conclusions

In this concluding chapter we summarise and comment the results obtained,
we discuss the approximations made in devising our estimator and we pro-
pose some possible future developments of our work. In particular, we in-
clude the calculations for the shear γ.

7.1 Discussion of the results obtained and prob-
lems encountered

We have successfully demonstrated that the estimator works, well recovering
the analytic form of the power spectrum as witnessed by the good χ2 values
reported. However, we notice that generally speaking the width of the input
Gaussian is recovered worse than the amplitude. We also point out that
the goodness of the global recovery highly depends on the analytic form of
the input power spectrum, in particular on its width. This is true in every
dimension (1D, 2D and 3D case), but we identify two main trends:

• the dependence on the width of the power spectrum is less impor-
tant as we increase the dimension and is related to the appearance
of the spurious feature in the window functions already described in
Sect. 5.3.4;

• despite this fact, the χ2 results improve as we decrease the dimension.

While we are unable to fully explain the appearance of the strange feature
in the window functions, we think that the first aspect can be related to
the development of optimal weights for different signal-to-noise regimes. In
fact, we notice that while in the 1D case, when we worked only with weights
optimised for infinite S/N ratio, the dependence on the width of the power
spectrum was particularly strong, this is less true in the 2D and 3D case,
where we implemented weights optimised for a finite S/N ratio. We suspect
that the issue could be of numerical origin and perhaps connected with the
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particular analytic form chosen for the input power spectrum. Therefore,
we propose to study different input power spectra in future work, especially
some that may allow for a decay from finite values to essentially 0 in a wider
range of k, rather than the Gaussian used.

As regards the second point, we suspect that it might be the result of effects
due to the discreteness of the grid considered. In fact, while in the 1D
case we could push our analysis to fairly big numbers of pixels N , this
was not possible for the 2D and 3D case, for computational reasons (see
next Section for a discussion). We suspect that, extending the 2D and 3D
algorithm to larger arrays (for example through the use of supercomputers)
these issues might disappear as a result of the increased precision in our
analysis, which is a discretised treatment of a continuous problem. We think
that this particularly applies to the approximation given for the correlation
function and its approximation. We defined both of them through Eq. 4.9

ξlm =

∫
d3k

(2π)3
P (k) exp−i~k·(~rl−~rm) ≡ AαlmPα (7.1)

In a comparison with the actual correlation function, i.e. the one calculated
directly from the realisation of the field through the definition ξlm = 〈δlδm〉,
we notice that both the analytic and the approximated version represent
a more and more faithful description of the original one as the number of
pixels increase. We show this effect in Fig.7.1, where we propose the same
plot shown in Fig. 5.8, this time with an array of 512 pixels. We can see
that the ergodicity is much improved and the analytic correlation function
represents a more accurate description of the actual correlation function.
The approximation given by the summation AαlmPα relies on the fact that
Aij is constant along the interval ∆k, which represents our discretisation of
the infinitesimal interval dk. Therefore, the approximation will be better
and better as this interval becomes smaller and smaller as the number of
pixels increase.

We would like to particularly emphasise the results obtained for the window
functions of the estimator. We successfully managed to implement window
functions that are well peaked around the k value of interest, although at
times they get seriously compromised by the spurious feature present around
the Nyquist frequency. However, we also managed to implement window
functions that are one-sided, as described in Tegmark’s paper [Tegmark

(1997)]. With the choice of the linear combination
(
L−1y

)t
we even managed

to get rid of this feature at it arises towards the Nyquist frequency which
is cut off by the lower triangular window matrix. This is just an example
of a particularly attractive feature of these window functions, which make
them particularly interesting in future applications. Indeed, we might take
advantage of the one-sided window functions to isolate different regimes for
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Figure 7.1: Comparison between the correlation function calculated analyt-
ically from the power spectrum (top) and directly from the realisation of
the field, exploiting the definition ξlm = 〈δlδm〉 (bottom). Here the lack of
ergodicity found in Fig. 5.8, due to the small N considered (N = 64) there,
is much less important.

the k-values, namely, we might use the Choleski lower decomposition to
isolate the low-k values, and the other decomposition for the high-k regime.
This is crucial, as it would allow us to concentrate on the k-values that
we are most interested in, without unwanted influences from the others.
We could therefore become sensitive or insensitive at various parts of the
matter power spectrum that are influenced by different physical processes,
for example the region around k ∼ 1 h Mpc−1, governed by neutrino mass
effects or the high-k regime (k > 1 h Mpc−1), which is affected by uncertain
baryon feedback processes.

7.1.1 Computational requirements

Now we would like to briefly comment the computational requirements for
the algorithm for the recovery of the power spectrum as it has been presented
in this thesis. We start by showing in Fig. 7.2 some plots concerning the
scaling of the computational time with the total number of pixels N , for
all the three cases considered. In the 1D case N represents the number of
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Dimension Index p

1 4.72

2 3.68

3 2.96

Table 7.1: Fitted index p of power-law scaling with the number of pixels N ,
in the various cases considered.

Figure 7.2: Computational time required for the three dimensions consid-
ered, as a function of the total number of pixels

pixels on the one and only axis of the grid, in the 2D and 3D case it is the
square or the cube of the number of pixels on one axis (the grid is always
considered square). We find that the computational time scales like Np with
p roughly between 3 and 5.

The computational time shown refers only to the pure algorithm for the
recovery of the power spectrum, without any other features such as the cal-
culation of the window functions or the χ2 analysis. It is clear how the
current situation is not ideal for a realistic implementation. However, we
claim that some improvements can be achieved by some future optimisa-
tion performed on the algorithm. Improvements may also come from the
implementation of the code in programming languages other than Python,
which was used for this thesis since we were mainly interested in studying
the application of the principle rather than in an optimised version of the
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algorithm. In addition to that, we might always consider the possibility
of using supercomputers for realistic analyses, especially if we consider the
problems linked with the storage of the data, discussed in the following.

Indeed, one of the problems encountered in the computational implementa-
tion of the estimator was the amount of computer memory needed for the
storage of the data. As already pointed out in the text, this particularly
applies to the 3D case, where the presence of very large non-sparse matri-
ces (of order N6, where N is the number of pixels on one axis) constitutes
a serious issue and in our case effectively prevented the application of the
algorithm to arrays larger than 16 × 16 × 16. In this case too, a future
reconsideration of the algorithm, to the purpose of optimising the storage
of the data, seems appropriate. Nevertheless, it might happen that, in or-
der to deal with realistic configurations, we would simply need to apply the
algorithm on supercomputers.

7.1.2 Approximations

Let us now come to the discussion of the approximations made in the devel-
opment of our estimator.

We start from the hypothesis of redshift-independent matter power spec-
trum, which was assumed from the beginning of the treatment. The reason
behind this assumption is that even in this simplified case the success of the
method is not guaranteed a priori, therefore our “exercise” constitutes at the
same time a necessary first step and a “bottleneck” for the development of
a complete estimator: if this simplified version had failed, there would have
been no hope to proceed in a more complicated, redshift-dependent analy-
sis. Since we proved that the estimator successfully passed this “preliminary
test”, this opens up the possibility of a development of a redshift-dependent
estimator in future work. For example, a straightforward approach might
consider linear growth, where P (k, z) factorizes, but a full, general non-linear
P (k, z) would need more development.

We also assumed both the density and noise fields to be Gaussian, which
allowed us to exploit the Wick’s theorem in the derivation of the optimal
weights (see Sect.4.2.2). For the density field, this hypothesis seems justified
by most of the inflationary models [Liddle (1999)] and recent Planck results
[Planck Collaboration], while for the noise it is common procedure to model
it with a Gaussian distribution (see Refregier (2003)). Furthermore, the
hypothesis of Gaussian fields would be valid for large “voxels” (volumetric
pixels) as a result of the Central Limit Theorem.

Regarding the distant observer approximation, this seems to be a reasonable
hypothesis, especially considering the growing depth of surveys, such as
Euclid, planned to extend until redshift z ∼ 2 [Amendola et al.].

112



7.2 Future developments

We have already mentioned some of the future prospects for this estimator.
We summarise them here:

• To confirm the validity of the method, we think that further simula-
tions need to be carried out, using the same testing mechanism, but
changing the input power spectrum. For example one might use more
realistic power spectra coming from codes like CAMB [Lewis et al.
(2000)]. One might also be interested in carrying out further analy-
ses on the one-sided window functions, for example by still choosing
simple analytic forms, but with more features towards higher scales.

• Thinking about a real implementation of the method, one has to con-
sider how too calculate the various elements of the algorithm without
knowing the original power spectrum a priori. In fact, in our“exercise”
we knew the analytic form of the input power spectrum, but this is
not true in the real case. Therefore one might think about a “prior”,
i.e. a fiducial power spectrum from which the estimator can start,
and then proceed in an iterative approach, each time reinserting the
estimated power spectrum as the input one. This could be repeated as
many times as needed to satisfy some convergence criteria. A similar
approach can be found in Bond et al. (1998) and may initially be in-
vestigated in the simple form described in this thesis, where the“prior”
power spectrum is the true one.

• A very important and attractive feature is the possibility of varying
the number of pixels in the different directions, so that we do no longer
have a square grid. This approach can certainly be tested in our sim-
plified model, with a Gaussian power spectrum. It is hard to speculate
what features may arise from this procedure, but certainly it is very
appealing as it might be the actual case for future weak lensing surveys
(for example Euclid). The motivation behind that is that weak lensing
estimates strongly depend on the estimation of redshifts of the sources.
Since the number of galaxies that future surveys will utilize as lensing
sources is too large for spectroscopic measurements, one needs to rely
on the photometric redshifts whose accuracy may not be sufficient for
future surveys which are expected to have very small statistical errors.

Since the positions of sources have errors of typically 10% (see for
example Refregier et al. (2010)), there is no point in having bins that
are very close together. For this reason one might well want to have
a coarser grid in the radial direction, for example 5 - 10 bins for z =
0 ÷ 2, and a finer grid in the angular direction, of the order of a few
arcminutes square for each pixel.
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• The method can be extended to the treatment of shear (see next sec-
tion).

7.3 Shear

The derivation for shear proceeds in a similar way to the case of convergence.
Let the data vector be a set of shear components ~x = ({γ1}, {γ2}), in nvox
voxels, nvox = npix × nshells, for images with npix across the sky, and in
nshells tomographic bins. Thus ~x is a 2nvox - dimensional vector. It has
covariance matrix

Cij =
〈
xix

T
j

〉
=
∑
X

∑
l

CXl,αβ
∂Cij

∂CXl,αβ
+Nij (7.2)

where X = EE,BB,EB, l = lmin, . . . , lmax, Nij is the shot noise, and α, β
label the tomographic shells that points i, j reside in. CXl,αβ are tomographic
cross- and auto-power spectra associated with E and B modes. For now,
let us ignore B modes, so X = EE only and we will drop the superscript.
The lensing potential in shell α at angular coordinate Ω can be written (see
Bartelmann and Schneider (2001), or Munshi et al. (2008))

φα (Ω) =
2

c2

∫ ∞
0

dr gα (r) Φ (~r) (7.3)

where Φ is the gravitational potential, and

gα (r) =

∫ ∞
z(r)

dz′pα
(
z′
)(1

r
− 1

r′

)
(7.4)

(flat Universe), with pα (z) being the redshift distribution of shell α. In the
Limber approximation,

Cφφl,αβ =
4

c4

∫ ∞
0

dr gα (r) gβ (r)PΦ

(
l

r
; t (r)

)
(7.5)

where PΦ is the potential power spectrum (evaluated at the lookback time
corresponding to the distance r). From the relationship between shear and
the potential, the shear power spectrum is

Cl,αβ ≡ Cγγl,αβ =
1

4

(l + 2)!

(l − 2)!
Cφφl,αβ. (7.6)
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The correlation function of the complex number γ = γ1 + iγ2 is

〈γα (Ω) γβ (Ω + θ)〉 =
∑
l

Cl,αβPl (cos θ) (7.7)

where Pl is a Legendre polynomial, and θ is the angle between two pixels.
This is divided equally between γ1 and γ2, and the cross term is zero.
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