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1 Abstract

In this thesis we analize linear and weakly nonlinear behavior of perturba-

tions in a boundary layer with transonic free stream velocity. In the matter

of linear analysis, we deduce the dispersion relation which relates wave num-

ber and frequency for normal perturbations. An a�ne transformation that

reduces this transonic equation onto the subsonic one is found. This trans-

formation is used to �nd governing equations in the supersonic limit. The

aim is to extend the Tollmien-Schlichting waves theory toward supersonic

regimes. In the matter of weakly nonlinear analysis, we �nd an equation

for amplitude of Tollmien-Schlichting waves. The derivation of this equa-

tion takes into account both the linear displacement of the wave and the

nonlinear process of growth of the amplitude.

2 Introduction

Currently, signi�cant attention in aerospace industry is given to drag reduc-

tion of passenger aircraft, which comes mainly from:

1. Wave drag, which is due to losses in the shock waves. The phenomenon

is described on the basis of compressibility e�ects, therefore it is in-

dependent on viscosity. Although shock waves are tipically associated

with supersonic speed, they can form at transonic aircraft speeds on

areas of wings where the local air�ow experiences an acceleration above

sonic speed;

2. The induced drag, which is due to trailing vortices behind a wing

of �nite span. The pressure below the wing is greater than above.

On a wing of �nite span, this pressure causes air to �ow around the

wing tip. This air�ow causes vortices along the wing trailing edge.

These vortices create a downwash region behind the wing (�g. 1)

which reduces the e�ectiveness of the wing to generate lift and changes

the e�ective relative air�ow. This modi�ed condition tilts the total

aerodynamic force rearwards and its component parallel to the free

stream is the induced drag (�g. 2). Still, this e�ect is not related to

viscosity;

3. Viscous drag is the sum of friction and form drags, which are due

to viscous interaction between �uid and surface. Form drag gener-

ates when the �uid �ow separates from a wing surface. Because of an

ine�ective pressure recovery in the separation region, an adverse pres-

sure di�erence along with a loss of lift take place. Friction depends

substantially on boundary layer con�guration and viscosity.
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Figure 1: Trailing vortices

Free stream airflow

Effective airflow
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Figure 2: E�ective air�ow and induced drag

Let us focus on the third source of drag, which involves viscous e�ects. What

basically happens is that an initially laminar boundary layer, due to external

disturbances, presents some instabilities. Turbulence is the result of their

ampli�cation. The consequence is a rise in skin friction. Furthermore, a rise

of the external pressure can lead to separation, which results in form drag.

At present the main challenge in passenger aircraft research is a delay of

the laminar-turbulent transition in the boundary layer. Before continuing

to intoduce the problem, let us take a historical digression into separation.

Separation is a �uid dynamic phenomenon that in�uences the bahaviour

of a wide variety of liquid and gas �ows. Figures (3) show the di�erence

between a theoretical attached �ow, predicted via Euler equations , and the

real �ow visualization by Taneda (1956) for a circular cylinder in a water

tank. Clearly, the Euler equation cannot predict the wakes which develops

behind the cylinder. In case of an incompressible �ow, the incompressible

steady Navier-Stokes equations in the nondimensional form are:
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Figure 3: Theoretical streamline pattern and experimental visualization by

Taneda (Re = 26)

8>>>><
>>>>:
u@u@x + v @u@y = � @p

@x +
1
Re

�
@2u
@x2 + @2u

@y2

�
u@v@x + v @v@y = �@p

@y +
1
Re

�
@2v
@x2 +

@2v
@y2

�
@u
@x + @v

@y = 0

where Re = V1a
� , being a the radius of the cylinder. Dealing with �uids

with an extremely small viscosity, these equations reduce to the Euler equa-

tions, being the viscous term neglectible, and predict a fully attached �ow.

However, such �ows cannot be observed in practice except for some special

cases. In particular, the �ow past a cylinder assumes an attached form only

if Re < 6. The actual �ow shown in �gure (3) corresponds to Re = 26.

Further increase of the Reynolds number results in an extension of the ed-

dies and a loss of symmetry, but the �ow never returns to an attached form.

The �rst model of a separated �ow was developed by Helmholtz (1868) and

Kirchho� (1869). The major conclusion of this inviscid theory is that Euler

equations allow for a family of separated �ow solutions where the position of
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the separation point remains a free parameter. The dilemma is how to �nd

the location of the separation point. Prandtl (1904) introduced the concept

of boundary layer. His idea is that for large Reynold numbers most of the

�ow can be treated as inviscid and there always exists a thin boundary layer

developing along the wall where the �ow is viscous in nature. Matematically,

the second derivative with respect to y is large in this region and viscous

terms are still present in the equations. The behavior of the boundary layer

depends on the pressure distribution along the wall. If pressure decreases

downstream (favourable pressure gradient) the boundary layer stays more

likely attached to the wall. On the other hand, with adverse pressure gra-

dient the boundary layer tends to separate from the body surface. This

is because the velocity in the boundary layer drops towards the wall and

the closer a �uid particle is to the wall the smaller its kinetic energy is.

Indeed while the pressure rise in the outer �ow may be quite signi�cant,

the �uid particles inside the boundary layer may not be able to get over it.

That causes the �uid particles near the wall to stop and then turn back to

form a reverse �ow region characteristic of separated �ows (�gure (4)). A

y

u

S

Figure 4: Boundary layer separation

mathematical analysis of the separation has lead to the development of the

triple-deck theory. Interestingly enough this theory is also applicable to the

description of the laminar-turbulent transition.

Coming back to laminar-turbulent transition, in aerodynamic �ows this

transition follows a classical scenario when turbulence develops as a re-

sult of ampli�cation of instability modes. In the �ow past a swept wing,

two modes of instability are observed: cross-�ow vortices and Tollmien-

Schlichting waves. The former dominate the transition process on a wing

with larger sweep angle, tipical of long-distance passenger carriers. The

latter prevails in the case of smaller sweep angles, characteristic of regional

aircrafts. In this project the main attention is with the Tollmien-Schlichting

waves. When studying those waves there are a receptivity problem and a

stability one. Although in this project we deal with a stability problem, we
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take a short digression into the receptivity theory.

The receptivity theory is a branch of �uid dynamics the importance

of which has been highlighted by various experimental observations. It was

observed that the same aerodynamic model tested in two di�erent wind tun-

nels presented a di�erent transition point, despite reproducing the principal

similarity parameters, the Reynolds and Mach numbers. This di�erence is

due to apparently less important factors, like di�erence in the quality of

the �ow in the test section, level of turbulence in the oncoming �ow, acus-

tic noise in the test section, smoothness of the wind tunnel and the model

surface, etc. Basically, the quiter the wind tunnel, the longer the boundary

layer stays laminar. This can be understood only considering the interaction

between the boundary layer and the surrounding enviroment. The analysis

of possible forms of interaction is the subject of receptivity theory. Some

disturbances easily penetrate into the boundary layer and turn into instabil-

ity modes; others not. In the former category are acoustic waves, free stream

turbulence, local and distributed wall rourhness, etc. These perturbations

have to satisfy rather restrictive resonance conditions in order to amplify

and trigger the non-linear e�ects, characteristic of the transition process.

Finally the stability theory, which is the approach used in the sec-

ond part of this project. We basically disregard how the instability has

been generated and we focus on describing Tollmien-Schlichting waves. The

Hydrodynamic Stability theory is concerned with understanding how and

why transition occurs. Reynolds (1883) was the �rst to investigate the

laminar-turbulent transition process in the Hagen-Poiseuille �ow in a circu-

lar tube. Reynold observed that that �ow suddenly develops unsteadiness

for Re > 13000. Figure (5) shows the di�erence between the laminar �ow

and the turbulent one. The latter is signi�cantly more complicated and

no mathematical description of the phenomenon is present at the moment.

Transition in the boundary layer �ow on a �at plate was �rst observed by

Burgers (1924) and later in more detail studied by Drygen (1947) and Kle-

bano� & Tidstrom (1959). They found that near the leading edge of the �at

plate the �ow is laminar and well described by the Blasius solution. How-

ever, at a certain point the unsteadiness given by Tollmien-Schlichting waves

superimpose on the steady Blasius �ow (�gure (6)). Typical situtation is

that the initial amplitude of these waves is too small to cause noticeable

changes in the velocity �eld. Nevertheless, they grow downstream and ex-

ists a second point where transition happens.

The behaviour of Tollmien-Schlichting waves in subsonic �ows is well

known. Two di�erent approaches, depending on whether the parallel �ow

approximation is considered or not, are possible. When dealing with large

Raynolds numbers, the rate of change of the longitudinal velocity in the lon-
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Figure 5: Transition in a pipeline

gitudinal direction is much smaller than in the trasversal direction and the

lateral velocity is such small that may be neglected. Under these assump-

tions, namely the independence of the longitudinal velocity on the longitu-

dinal coordinate and the cancellation of the lateral velocity, parallel stability

theory can be used (see (3.6)). On the other hand, when considering the

non-parallel e�ects, the boundary layer assumes a di�erent conformation,

consisting on many layers. In the more general case there are �ve layers

shown in �gure (7):

1. Potential �ow zone (V): by means of this region the free stream con-

dition can be attained;

2. Main part of the boundary layer (IV): it is the continuation of the

Prandtl boundary layer;

3. Critical layer (III) : a singularity that occurs where the longitudinal

velocity equals the phase speed of the perturbation;

4. Wall layer (I): here the viscous e�ects are dominant;

5. Inviscid adjustment zone (II).

In this project we consider the case of coincident critical and wall layers,

situation that occurs on the lower branch of the neutral curve (later in
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Figure 6: In this image, acetone droplet scattering is used to visualize

streamwise cross-sections of a turbulent �at plate boundary layer at Mach

2.82 in streamwise wall-normal planes. The Reynolds number based on mo-

mentum thickness is about 82,000. The �ow is from right to left, and the

horizontal scale indicates the distance from the acetone injection point.

the discussion more details about the neutral curves). In this case we deal

with a Triple-Deck structure studied in section (4): an external potential

�ow zone, the continuation of the boundary layer and a boundary sublayer,

where viscous e�ects are relevant and displacement of the stream lines takes

place. Let us now explain what the neutral curve is. In the classical sta-

bility theory, perturbations named normal modes are considered. Namely,

the perturbations superimposed on the stationary state are periodic in time

and longitudinal coordinate. Two parameters, wavenumber and frequency,

characterize the periodicity respectively in space and time. Given that the

frequency is always real and positive, di�erent values of the wavenumber

lead to di�erent situations: ampli�cation, damping or conservation of per-

turbations. The latter is possible only if the wavenumber is real. The neutral

curve is a collection of points in which both wavenumber and frequency are

real.

The goal in this project is to analyze how the well known subsonic

theory of boundary layer instability near the lower branch of neutral curve

modi�es when moving to transonic �ows and when inspecting the supersonic

limit. In the �rst part we recall the Blasius boundary layer, the parallel �ow

stability, Triple-Deck and Tollmien-Schlichting waves theories for a subsonic

9
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Figure 7: Five-zoned structure

free stream velocity. Subsequently, transonic Triple-Deck and Tollmien-

Schlichting waves theories are discussed. At this point our research follows

two directions.

First, we perform linear analysis. We end up with a dispersion relation

which relates wavenumber and frequency. We found an a�ne transformation

which reduces the transonic equation to the subsonic one. The utility of this

transformation is dual. Not only does it allow to easly hand over all the well

known subsonic results, for example the neutral values, but also it conveys

the dependence of wavenumber and frequency on the Mach number (to be

more precise on the deviation from Mach number equals to one). Making

use of that result, we can explore the supersonic limit simply assuming that

the Karman-Guderley parameter tends to in�nity.

Second, we study the nonlinear evolution of a Tollmien-Schlichting wave

for a transonic free stream velocity. Supposing that at a certain point a

Tollmien-Schlichting wave has frequency close to the neutral value and its

amplitude is known, the problem is to determine the wave parameters down-

stream of this point. This process is given by a linear displacement of the

wave combined with a nonlinear process of growth of the amplitude. Having

the two processes a di�erent characteristic longitudinal lenght, the multi-

scale method has to be used. The aim is to work out a nonlinear equation

for amplitude of Tollmen-Schlichting waves. This equation has a term which

comes from the propagation of the wave in the inhomogeneous �ow accom-

pained by an increase in the growth rate of the wave and a term which comes

10



from the nonlinear growth of the wave amplitude in a �eld with constant pa-

rameters of the undisturbed �ow. What this equations shows is which terms

accelerate or retard the growth of the Tollmien-Schlichting wave amplitude.

Regarding practical applications, the hope is that the process is retarded,

so that transition to turbulence is delayed. We conclude the present project

with some suggestions for further research on these topics.

3 Prandtl Boundary Layer

Let us consider a two-dimensional steady �ow past a �at plate of lenght

L aligned with the oncoming �ow. We further assume that the �ow is

incompressible, i.e. the density � and the dynamic viscosity coe�cient �

are constant all over the �ow. Dimensional variables are always denoted

by hat. We can place the origin of our cartesian coordinate system at the

leading edge of the �at plate, with x̂-axis lying on the �at plate. With

-

6

-

ŷ

x̂O

V1

L

Figure 8: Problem layout

velocity components denoted by û, v̂ and pressure by p̂, the Navier-Stokes

equations, assuming that the body force is negligible, are written in the

following form: 8>>>><
>>>>:
û@û@x̂ + v̂ @û@ŷ = �1

�
@p̂
@x̂ + �

�
@2û
@x̂2 + @2û

@ŷ2

�
û@v̂@x̂ + v̂ @v̂@ŷ = �1

�
@p̂
@ŷ + �

�
@2v̂
@x̂2 +

@2v̂
@ŷ2

�
@û
@x̂ + @v̂

@ŷ = 0

(3.1)
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Since the problem is symmetric, we can focus on the upper half plane. The

boundary conditions for this problem are the impermeability condition on

the plate surface

v̂ = 0 at ŷ = 0 , x̂ 2 [0; L] (3.2)

the no-slip condition on the same

û = 0 at ŷ = 0 , x̂ 2 [0; L] (3.3)

and the free stream condition

û! V1

v̂ ! 0

p̂! p1

9>>>>=
>>>>;

as x̂2 + ŷ2 !1 (3.4)

where V1 and p1 are respectively velocity and pressure in the free stream.

Applying the following transformation

x̂ = Lx ŷ = Ly û = V1x v̂ = V1v p̂ = p1 + �V 21p (3.5)

equation (3.1) can be written in the nondimensional form.

8>>>><
>>>>:
u@u@x + v @u@y = � @p

@x +
1
Re

�
@2u
@x2 + @2u

@y2

�
u@v@x + v @v@y = �@p

@y +
1
Re

�
@2v
@x2 +

@2v
@y2

�
@u
@x + @v

@y = 0

(3.6)

where Re =
V1L
� and the boundary conditions become

u = v = 0 at y = 0 , x 2 [0; 1] (3.7)

u! 1

v ! 0

p! 0

9>>>>=
>>>>;

as x2 + y2 !1 (3.8)

3.1 Large Reynolds Number Flows

When dealing with �uids like air which have a small viscosity and in addition

with high free stream velocities, which is the case of an airplane motion, we

shall assume that Re !1. Looking at equation (3.6), at �rst it seems that

we can disregard the viscous terms, being proportional to R�1e . However,

disregarding those terms we obtain the Euler equations, which are solvable

12



considering only the free stream condition and the impermeability condition

on the plate. In this problem, being the �at plate in�nitely thin, we have

simply that

u = 1 v = 0 p = 0

everywhere in the plane and there is no way to satisfy the no-slip condition

on the �at plate surface. Ludwig Prandtl, in his talk at the 3rd International

Mathematics Congress which took place in Heidelberg in 1904, showed how

high Reynolds number �ows should be treated and put forward the idea

of singular perturbation, which later became one of the most important

concepts in modern applied mathematics and mathematical physics. He in-

troduced the concept of boundary layers, which are regions where a rapid

change occurs in the value of a variable. Indeed, we have to introduce a

region in the proximity of the plate surface where, in order to satisfy the

no-slip condition, the horizontal velocity should go from 1 to 0. Mathemat-

ically, the occurrence of boundary layers is associated with the presence of

a small parameter multiplying the highest derivative in the governing equa-

tion of a process. A perturbative expansion using an asymptotic expansion

in the small parameter leads to di�erential equations of lower order than

the original ones, so that the number of necessary boundary conditions is

reduced and one of the initial conditions is not satis�ed. The solution con-

sists in introducing an expansion, in terms of a new streched variable, valid

within a layer adiacent to the boundary where that condition is not satis�ed.

3.2 Boundary layer over a �at plate

We apply the idea of boundary layers to the �at plate problem (3.6), (3.7),

(3.8). The idea suggested in subsection (3.1) is to consider two regions:

� Outer region

In the outer region both coordinates x and y are of the order of the

�at plate lenght, i.e. they are order one quantities. Hence, there is no

inspection of the boundary layer and the equations turn out to be the

Euler equations, as in subsection (3.1).

� Inner region

Since the outer solution does not satisfy the no-slip condition we in-

troduce a small region with a scaled vertical coordinate where the

velocity u experiences a ripid variation.

See �gure (9) for a scatch of the two regions.
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3.2.1 Outer region

In this region we assume that

x = O(1) y = O(1) Re !1 (3.9)

and we can seek the following expansions

8>>>><
>>>>:
u(x; y;Re) = u0(x; y) + :::

v(x; y;Re) = v0(x; y) + ::

p(x; y;Re) = p0(x; y) + ::

(3.10)

Substituting (3.10) into the Navier-Stokes equations (3.6) we end up with

the following 8>>>><
>>>>:
u0

@u0
@x + v0

@u0
@y = �@p0

@x

u0
@v0
@x + v0

@v0
@y = �@p0

@y

@u0
@x + @v0

@y = 0

(3.11)

which are the Euler equations. They do not involve the second order deriva-

tives of velocity components and therefore they cannot be solved with the

entire set of boundary conditions (3.7) and (3.8). According with the invis-

14



cid theory, Euler equations are compatible with the free stream conditions

u0 ! 1

v0 ! 0

p0 ! 0

9>>>>=
>>>>;

as x2 + y2 !1 (3.12)

and the impermeability condition

v0 = 0 at y = 0 , x 2 [0; 1] (3.13)

An in�nitely thin �at plate does not produce any perturbation in an invis-

cid �ow and, indeed, by direct substitution one can easily verify that the

solution is

u0 = 1 v0 = 0 p0 = 0 (3.14)

3.2.2 Inner region

In this region the x coordinate is still order one, given the fact that the

boundary layer extends along the entire �at plate surface. On the other

hand, we write that

y = �(Re)Y with �(Re)! 0 as Re !1 (3.15)

where Y is an order one quantity. The limit procedure is

x = O(1) Y = ��1y Re !1 . (3.16)

Correspondingly, the leading order terms of the asymptotic expansions of

u, v and p in this region will be sought in the form

8>>>><
>>>>:
u(x; y;Re) = U0(x; Y ) + :::;

v(x; y;Re) = �(Re)V0(x; Y ) + ::; :

p(x; y;Re) = �(Re)P0(x; Y ) + :::;

(3.17)

where we know that u decreases from 1 to 0 and therefore is an order one

quantity, but we do not have any information about v and p in advance.

Let us start substituting (3.17) into (3.6).

� Continuity equation:

@U0
@x

+
�

�

@V0
@Y

= 0

15



Prandtl suggested the Principle of Least Degeneration, consisting of

retaining the largest number of terms in equations. This ensures that

the boundary layer solutions contain rapidly varying functions. Hence,

we have to choose

� = �: (3.18)

We can also prove that this choice is the only possible. Indeed, if

� >> � the continuity equation degenerates to

@U0
@x

= 0

which, according to the fact that u = 1 at the trailing edge of the �at

plate, has the solution

U0 = 1

like if we were still dealing with the inviscid region. If, on the other

hand, � << � the equation becomes

@V0
@Y

= 0

With V0 = 0 on the plate surface, the solutions is

V0 = 0

which means that the asymptotic expansion for v in (3.17) does not

really have a term with � larger that �.

� Longitudinal momentum equation:

U0
@U0
@x

+ V0
@U0
@Y

= ��@P0
@x

+
1

Re

@2U0
@x2

+
1

�2Re

@2U0
@Y 2

The second term on the right hand side is small compared to any

left hand side terms, which are all order one. The principle of least

degeneration suggests to set

� = R
�1=2
e : (3.19)

Again we can verify this condition. If �2 >> 1 the �uid would appear

inviscid and it would be impossible to satisfy the no-slip condition on

the �at plate surface. On the other hand, if �2 << 1 the equation

degenerates to
@2U0
@Y 2

= 0 (3.20)

with boundary conditions U0(Y = 0) = 0, which is the no-slip condi-

tion, and U0(Y = 1) = 1, which is the matching condition with the
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outer region. We have not mentioned before that when solving the

equations in the inner region we need one more condition which is the

matching condition with the outer region, in this case expressed by:

lim
Y!1

U0(x; Y ) = lim
y!0

u0(x; y):

Clearly (3.20) has no solution. Finally, the equation is:

U0
@U0
@x

+ V0
@U0
@Y

= ��@P0
@x

+
@2U0
@Y 2

: (3.21)

� Lateral momentum equation:

U0
@V0
@x

+ V0
@V0
@Y

= �Re�@P0
@Y

+
�
�
�
��1

Re

@2V0
@x2

+
@2V0
@Y 2

(3.22)

If � � 0 equation (3.21) reduces to

U0
@U0
@x

+ V0
@U0
@Y

=
@2U0
@Y 2

(3.23)

If � = O(1) or � >> 1 equation (3.22) becomes

@P0
@Y

= 0 (3.24)

which, with boundary condition P0(Y =1) = 0, produces

P0 = 0

everywhere inside the boundary layer and again (3.21) reduces to

(3.23). It is an important conclusion that, being the pressure per-

turbation equal to zero outside the boundary layer, the pressure does

not change across the boundary layer.

We can conclude that the full set of equations is:8>>>><
>>>>:
U0

@U0
@x + V0

@U0
@Y = @2U0

@Y 2

P0 = 0

@U0
@x + @V0

@Y = 0

(3.25)

We need now to formulate the boundary conditions. Let us start with the

momentum equation. In order to formulate the boundary conditions, we

have �rst to evaluate the type of the equation. The latter is determined by

the higher order derivatives in the equation considered, i.e.

U0
@U0
@x

=
@2U0
@Y 2

17



This is a parabolic equation, among which is the heat equation, which de-

scribes the heat transfer for a metallic rod.

@T

@t
= a

@2T

@x2

where T is the temperature, t the time and a a positive constant. The

boundary conditions needed to make unique the solution to this problem,

i.e. the temperature distribution at time t0, are:

� Initial temperature distribution at t0

� Thermal condition at the rod ends for any t 2 [0; t0]. There is no

dependence of the solution on later times.

In the same way, to solve the momentum equation we need to express:

� Initial condition for U0 at the trailing edge of the �at plate

� Boundary conditions for U0 on the plate surface and at the outer edge

of the boundary layer

These conditions are the free stream condition at the trailing edge:

U0 = 0 at x = 0 , Y 2 (0;1) (3.26)

the no-slip condition

U0 = 0 at Y = 0 , x 2 [0; 1] (3.27)

and the matching condition with the outer region

U0 = 1 at Y =1 (3.28)

Finally, the continuity equation needs a condition for V0 which comes from

the impermeability condition:

V0 = 0 at Y = 0 , x 2 [0; 1] (3.29)

The boundary layer problem consists in solving (3.25) with boundary con-

ditions (3.26)-(3.29).

3.3 The Blasius solution

We said that the momentum equation is parabolic. Therefore, at any point

x the solution for U0 does not depend on the following points and it is like

if the �at plate was semi-in�nite. This is an important consideration, as in
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the case of a semi-in�nite �at plate we do not have any characteristic lenght

and we can expect a solution in the self-similar form. Matematically we are

looking for an a�ne transformation.

Let us suppose that

U0 = F (x; Y ) V0 = G(x; Y ) (3.30)

are solutions to our problem. We look for an a�ne transformation that

leaves (3.25) with boundary conditions (3.26)-(3.29) unchanged. We write

U0 = A ~U0 V0 = B ~V0 x0 = C~x y = D~y (3.31)

where A, B, C and D are positive constants. Substitution into (3.25) and

into the boundary conditions (3.26)-(3.29) gives:8><
>:

A2

C
~U0

@ ~U0
@~x + AB

D
~V0
@ ~U0
@ ~Y

= A
D2

@2 ~U0
@ ~Y 2

A
C
@ ~U0
@~x + B

D
@ ~V0
@ ~Y

= 0
(3.32)

8>>>><
>>>>:
A ~U0 = 1 at ~x = 0

~U0 = ~V0 = 0 at ~Y = 0

A ~U0 = 1 at ~Y =1
(3.33)

To ensure that the equations and the boundary conditions remain unchanged

we have to set
A2

C = AB
D = A

D2

A
C = B

D A = 1

Solving these equations we �nd the following

A = 1 B = 1p
C

D =
p
C (3.34)

with C remaining arbitrary. Since this problem coincides with the original

one, also
~U0 = F (~x; ~Y ) , ~V0 = G(~x; ~Y )

is a solution to the boundary layer problem. Using (3.34) we can write that

U0 = F ( xC ;
Yp
C
) V0 =

1p
C
G( xC ;

Yp
C
) (3.35)

Being C an arbitrary value, it may be considered as an additional inde-

pendent variable which, in particular, could be chosen to coincide with x.

Therefore:

U0(x; Y ) = F (1; �) V0(x; Y ) =
1p
x
G(1; �) � = Yp

x
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The distributions for U0 and V0 across the boundary layer are reduced to

those at the trailing edge of the plate. Let us call those functions at the

trailing edge f(Y ) and g(Y )

U0(x; Y ) = f(�) V0(x; Y ) =
1p
x
g(�) � = Yp

x
(3.36)

In order to �nd f and g we have to substitute (3.36) into (3.25) and into

the boundary conditions (3.26)-(3.29), keeping in mind that we expect those

equations to be dependent only on � and not on x or Y separately. This

is because f and g depend only on � and therefore the equations cannot

contain x or Y separately. The derivatives are

@�
@Y = x�1=2 @�

@x = �1
2
�
x

@U0
@x = �1

2x
�1�f 0

@U0
@Y = x�1=2f 0 @2U0

@Y 2 = x�1f 00 @V0
@Y = x�1g0

The problem takes the following form8><
>:
�1

2�ff
0 + gf 0 = f 00

�1
2�f

0 + g0 = 0
(3.37)

8><
>:
f(0) = g(0) = 0

f(1) = 1
(3.38)

where the �rst in (3.38) comes from the impermeability and no-slip condi-

tions while the second comes from both the initial and the matching con-

ditions. We can simplify the problem by writing the continuity equation

as

g0 =
1

2
�f 0 =

1

2
(�f)0 � 1

2
f (3.39)

If we introduce '(�) such that

'0(�) = f(�) and '(0) = 0 (3.40)

we can integrate from 0 to � equation (3.39) getting

g =
1

2
�'0 � 1

2
' (3.41)

When substituting into the momentum equation we have the Blasius equa-

tion

'000 +
1

2
''00 = 0 (3.42)

with boundary conditions deduced by (3.38)

'(0) = '0(0) = 0 '0(1) = 1 (3.43)
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Figure 10: Solutionto the Blasius problem. This is the velocity pro�le U0(�).

When ' is numerically calculated, the velocity components in the boundary

layer are, from (3.36) with (3.40) and (3.41)

U0 = '0(�) V0 =
1

2
p
x
(�'0 � ') (3.44)

The results of the numeric calculation of ' are shown in (3.4). Figure (10)

shows the longitudinal velocity pro�le. For future references we need to

study the asymptotic behavior of '(�) at the upper edge of the boundary

layer and near the wall.

� Beheavior near the wall, � ! 0

In this limit we can write that

'(�) = '(0) + '0(0)� +
1

2
'00(0)�2 + :::

However, according with (3.43) we have that

'(�) =
1

2
��2 + ::: where � = '00(0) = 0:33 (3.45)

is known from the numerical solution (see (3.4)).

� Large values � !1
Due to the second expression in (3.43) we have that, in this limit:

'(�) = � + :::
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For the next term let us try a power function

'(�) = � + A�� + :::

Of course the second term must be smaller than the �rst one, therefore

� < 1. Substituting into the Blasius Equation (3.42)

A�(�� 1)(�� 2)���3 = �1

2
A�(�� 1)���1

and we have to set A�(� � 1) = 0, as the right hand side is much

greater than the left hand side. The only possible choice, according

with the constraint � < 1, is

� = 0

Finally we have that

'(�) = � + A+ ::: (3.46)

with

A = �1:78 (3.47)

from the numerical calculation (see (3.4)).

The last consideration about the Blasius boundary layer is about the dis-

placement thickness which can be expressed in the following way:

d�
dx = lim�!1 V0

U0
= lim�!1

�'0(�)�'
2
p
x'0(�)

=

= lim�!1 ������A2
p
x

= � A
2
p
x

(3.48)

where we have used the asympthotic expansion at � !1 and the boundary

condition '0(1) = 1. Integrating with �(0) = 0 we have

�(x) = �Ax1=2 (3.49)

i.e. a progressive displacement of the stream lines going downstream. This

is due to the �uid deceleration in the boundary layer. Indeed, looking at

�gure (11) we can say that the �uid volume �ux through AA0 and BB0 must
be the same, i.e. Z A0

A
udY =

Z B0

B
udY

Moreover, we know that on any line parallel to the �at plate u decreases

monotolically as moving downstream. Indeed, at �xed Y , an increase of x

results in a decrease of � which leads to a decrease of u, as shown in �gure

(10).
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A’
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B’

Figure 11: Displacement of the stream lines

3.4 Numerical solution to the Blasius equation

We recall that we have to solve

'000(x) = �1

2
'(x)'00(x) (3.50)

with boundary conditions

'(0) = '0(0) = 0 and '0(1) = 1 (3.51)

First of all we reduce equation (3.50) to a system of �rst order di�erential

equations. We call '(x) = f0(x) and then8>>>><
>>>>:
f 00(x) = f1(x)

f 01(x) = f2(x)

f 02(x) = �1
2f0(x)f2(x)

(3.52)

with boundary conditions

f0(0) = 0 f1(0) = 0 f1(1) = 1 (3.53)

3.4.1 Runge Kutta method

Let an initial value problem be speci�ed as follows

_y = f(t; y) with y(t0) = y0

The numerical solution using the forth order Runge Kutta method consists

of choosing a step-size h > 0 and de�ning

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h

where

k1 = f(tn; yn)
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k2 = f(tn +
h

2
; yn +

h

2
k1)

k3 = f(tn +
h

2
; yn +

h

2
k2)

k4 = f(tn + h; yn + hk3)

being k1 the increment based on the slope at the beginning of the interval

(Euler method) using _y, k2 and k3 the increments based on the slope at

the midpoint of the interval using respectively _y + 1
2hk1 and _y + 1

2hk2 and

�nally k4 the increment based on the slope at the end of the interval using

_y + hk3.

3.4.2 Runge Kutta for the Blasius Problem

Coming back to the Blasius problem (3.52) and (3.53) we can see that we

miss an initial condition for the third of equations (3.52). The only possibil-

ity is to guess a value for f2(0) and change it untill the boundary condition

f1(1) = 1 is satis�ed. Shooting methods are used in these situations. Our

aim here is neither to calculate with extreme precision the value of the ve-

locity nor to develop a vast programme to do so. Hence, in the programme

that is presented here the initial value for f2(0) comes from some runnings

with di�erent values. A noticeable consideration is that already for values

like x � 5 we are in a good approximation of1. This is the reason for which

the programme will evaluate all the quatities for x 2 [0; 5] with boundary

condition at x =1 evaluated at x = 5.

3.4.3 The programme

function effe,z,i

a=0.

if i eq 0 then a=z[1]

if i eq 1 then a=z[2]

if i eq 2 then a=-0.5*z[0]*z[2]

return,a

end

function runge4,x

common costanti,N,step,y

h=step/2.

t1=dindgen(N)

t2=dindgen(N)

t3=dindgen(N)
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k1=dindgen(N)

k2=dindgen(N)

k3=dindgen(N)

k4=dindgen(N)

for i=0,N-1 do begin

k1[i]=step*effe(y, i)

t1[i]=y[i]+0.5*k1[i]

endfor

for i=0,N-1 do begin

k2[i]=step*effe(t1, i)

t2[i]=y[i]+0.5*k2[i]

endfor

for i=0,N-1 do begin

k3[i]=step*effe(t2, i)

t3[i]=y[i]+k3[i]

endfor

for i=0,N-1 do k4[i]= step*effe(t3, i)

for i=0,N-1 do y[i]+=(k1[i]+2*k2[i]+2*k3[i]+k4[i])/6.0

plots,[y[1],x],color=0,psym=3

;print,y

end

common costanti,N,step,y

N=3

step=0.01

y=dindgen(N)

massimo=5.

y[0]=0.

y[1]=0.

y[2]=0.3360781

j=0

loadct,5

set_plot, 'z'

device, set_resolution=[640,680]

plot,[0.,0.],back=255,color=0,yrange=[0,5],xrange=[0,1], $

ytitle='!7g !N',xtitle='!7u!A,!N!3(x)',charsize=1.2, $

charthick=2,thick=0,xthick=2,ythick=2

;plots,[j*step,y[1]],color=0,psym=3

for j=0,massimo/step do a=runge4(j*step)

print,y
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write_png, 'Blasius.png',tvrd()

end

3.4.4 Results

The guessed value is

f2(0) = '00(0) = 0:3360781

This is what we call � = 0:33 in (3.45). We end up with the velocity pro�le

in �gure (12). The values for f1, f2 and f3 at in�nity are

Figure 12: Velocity pro�le

IDL> .GO

LOADCT: Loading table STD GAMMA-II

3.3264852 1.0000015 0.015318755

We note that f1 is quite close to 1 as desired. From the �rst value, using

the asymptotic expansion (3.46), we can write that

3:32 = 5 + A

being therefore able to evaluate A = �1:78 as in (3.47).

3.5 Parallel stability of the Boundary Layer

Lut us suppose that

U0(x; Y ) = f(�) , V0(x; Y ) = g(�)

26



is a solution to the boundary layer problem. However, the existence of the

solution does not guarantee that the corresponding �ow can actually exist

in Nature. For this to happen the �ow has to be stable, namely, if the basic

state is superimposed by a perturbation

8>>>><
>>>>:
U0 = f(�) + �u0(t; x; Y )

V0 = g(�) + �v0(t; x; Y )

P0 = �p0(t; x; Y )

of small amplitude �, then the perturbation has to extinguish with time

returning the solution to its basic state.

The idea is to use the Orr-Sommerfeld two-dimensional equation which de-

scribes parellel �ows, like the Poiseuille and the Shear ones. A parallel �ow

has longitudinal velocity dependent only on y and has no vertical velocity

component. If the steady solution is:

8>>>><
>>>>:
u(x; y) = U(y)

v(x; y) = 0

p(x; y) = 0

and we superimpose a normal mode perturbation as follows

8>>>><
>>>>:
u(x; y; t) = U(y) + ��u(Y )ei(kx�!t)

v(x; y; y) = ��v(Y )ei(kx�!t)

p(x; y; t) = ��p(Y )ei(kx�!t)

Substituting these into the full Navier-Stokes equations, Orr and Sommer-

feld obtained the following equation:

1

ikRe

�....
�v � 2k2��v + k4�v

�
= (U � !

k
)
�
��v � k2�v

�
� �U �v (3.54)

This equation has to be solved numerically, �nding the complex phase c =
!
k = cr + ici for each pair of real Re and k. Note that Re is positive and we

can consider k positive as well, without any loss of generality. Of primary

interest are points were ci = 0, in which case the perturbations are waves

with constant amplitude propagating with velocity cr. The locus of such

points is the (Re; k)-plane called neutral curve for which the perturbations

neither grow or decay. This allows to separate the region of instability where

ci > 0 from the region of stability where ci < 0.
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3.6 Parallel approximation

The Blasius solution shows that the longitudinal velocity component u de-

pends not only on y but also on x and that the lateral velocity component

v is non-zero. Therefore, the �ow is not parallel. However, if the Reynolds

number is large enough, than the rate of change of u in the x-direction is

much smaller than in the y-direction (see (3.16) and (3.19))

@u
@x
@u
@y

� R
�1=2
e

and furthermore the lateral velocity comoponent is small (see (3.17), (3.18)

and (3.19))

v � R
�1=2
e (3.55)

Being guided by the results of the instability analysis for the channel �ow,

we can expect the wave lenght l of the normal mode perturbations to be

comparable with the characteristic lenght scale across the boundary layer,

i.e.

l � Rec
�1=2

under the assumption that the critical Reynolds number is large. We now

choose a position x� and assume that the velocity pro�le can be considered

frozen in a vicinity of x�. In this position, the displacement thickness of the

boundary layer is

�� = �Ax1=2�

Let us now rescale in the following way:

x = x
1=2
� ~x Y = x

1=2
� ~Y t = x

1=2
� ~t

Consequently, the Reynolds number becomes

Re� =
V1L�
�

with L� =
r
�x�
V1

(3.56)

and the new similarity variable in x� is

� =
Yp
x�

= ~Y

According with (3.55) the �ow functions in the basic laminar �ow are (vari-

ables are now written without �)8>>>><
>>>>:
U0 = '0(Y )

V0 = 0

P0 = 0

(3.57)

28



Note that in this parallel �ow approximation, the stream function  which

satis�es the conditions

U0 =
@ 
@Y V0 = �@ 

@x

coincides with

 (Y ) = '(Y )

Let us now introduce a small perturbation to the stream function

 (x; Y; t) = '(Y ) + � � (Y )ei�(x�ct) (3.58)

Therefore, the Orr-Sommerfeld equation is

i
�Re�

�
� 0000(Y )� 2�2 � 00(Y )+ �4 � 

�
+ ('0(Y )� c)( � 00(Y )� �2 � (Y ))+

�'000(Y ) � (Y ) = 0

(3.59)

with boundary conditions on the wall (from the impermeability and no-slip

conditions for V0)
� (0) = � 0(0) = 0 (3.60)

and in the free stream
� (1) = � 0(1) = 0 (3.61)

This is an eigenvalue problem for the parameter c when � and Re� are

given. The parameter c is complex, in general. A point of the neutral curve

is obtained if for real � also c becomes real and therefore ! = �c is real.

The initial condition to integrate the problem will be given at 1, since the

asymptotic behavior at 1 is simple. Since from (3.43)

'0(1) = 1

and from (3.42) evaluated at 1 with (3.43)

'000(1) = 0

equation (3.59) becomes

i

�Re�

�
� 0000(Y )� 2�2 � 00(Y ) + �4 � 

�
+ (1� c)( � 00(Y )��2 � (Y )) = 0 (3.62)

which is a linear equation with constant coe�cients. Hence, four comple-

mentary solutions of this equation may be sought in the form

� i = e�iY at Y =1
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Solving the equation we have the following solutions

�1;2 = ��

�3;4 = � with  =
q
�2 + i�Re�(1� c)

In order to satisfy the free stream boundary condition (3.61) we have to

consider only �2 and �4, therefore:

� (Y ) = Ae��Y +Be�
p
�2+i�(1�c)Y (3.63)

3.7 Numerical solution of the Orr-Sommerfeld equation

The numerical method to solve the Orr-Sommerfeld equation is a shooting

method. The values of Re� and � real are given. The shooting consists

of �nding which values of cr and ci are such that, integrating from a large

value Y = Y1 toward Y = 0, the solution satis�es the boundary condition

(3.60) on the wall. Figure (13) shows the neutral curve. The critical value

of Re�c , at which the Blasius boundary layer looses stability, is found to be

Re�c = 518:0

with the corresponding wave number �c = 0:303.

In the following section the non-parallel e�ect will be taken into account.

As anticipated in the Introduction, we deal with the lower branch of the

neutral curve, where there is no distinction between the wall layer and the

critical layer, i.e. the critical layer is not considered.
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Figure 13: (- - -) Parallel �ow theory numerical solution for the neutral

curve
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4 Subsonic Triple-Deck Theory

The aim is to understand how a small perturbation O(�), occurring at dis-

tance x0 and interesting a region O(�) along the x-axis, changes the bound-

ary layer structure. Let us place the origin of the coordinate system in x0.

Considering a subsonic �ow regime, i.e. M1 = 0, we are dealing with the

incompressible unsteady Navier-Stokes equations, here expressed in their

adimensional form:8>>>><
>>>>:

@u
@t + u@u@x + v @u@y = � @p

@x +
1
Re

�
@2u
@x2 + @2u

@y2

�
@v
@t + u@v@x + v @v@y = �@p

@y +
1
Re

�
@2v
@x2 +

@2v
@y2

�
@u
@x + @v

@y = 0

(4.1)

4.1 Perturbation of the Boundary Layer

This region is the continuation of the normal boundary layer, whose quanti-

ties and equations are shown in section (3). However, a small perturbation

O(�) is added. Keeping in mind that �x = O(�) and �u = O(�) and

therefore �t = �x
�u = O( �� ), the scaling for the coordinates is the following:

x = �x� y = R
�1=2
e Y t = �

� t� (4.2)

We can seek the following expansions:8>>>><
>>>>:
u(x; y; t) = U0(Y ) + ��u(x�; Y; t�) + :::

v(x; y; t) = ��v(x�; Y; t�) + :::

p(x; y; t) = ��p(x�; Y; t�) + :::

The following considerations follow from the principle of least degeneration.

From the continuity equation � = �

�R
1=2
e

. Although from the �rst momentum

equation we obtain that � = �, the second momentum equation shows that

�p = 0. Hence, the pressure perturbation is order �2 and the equations are:8><
>:
U0(Y )

@�u
@x�

+ �v dU0dY = 0

@�u
@x�

+ @�v
@Y = 0

The �rst equation is written as U2
0
@
@Y

�
~v
U0

�
= 0 and the solution for �u and

�v leads to: 8>>>><
>>>>:

u(x; y; t) = U0(Y ) + �A(x�; t�)dU0dY + :::

v(x; y; t) = � �

�R
1=2
e

@A
@x�

U0(Y ) + :::

p(x; y; t) = O(�2) + :::

(4.3)
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The limit for Y !1, given that in this limit U0 = 1, produces:8>>>><
>>>>:

u = 1 +O(�2)

v = � �

�R
1=2
e

@A
@x�

+ :::

p = O(�2)

(4.4)

The limit for Y ! 0 , given that in this limit U0 = �Y , produces:8>>>><
>>>>:

u = �Y + �A(x�; t�) + :::

v = � �

�R
1=2
e

@A
@x�

�Y + :::

p = O(�2)

(4.5)

Since at Y=0 we have that v = 0 but u = �A(x�; t�)�, we need to introduce

a sublayer in order to satisfy the no-slip condition.

4.2 Viscous Sublayer

In the sublayer the velocity scale is � and, being the velocity linear in Y

near the wall, we expect the scaling for y to be order �R
�1=2
e . Hence, the

scaling is:

x = �x� y = �R
�1=2
e �y t = �

� t� (4.6)

and we seek the following expansions, where v is due to a least degeneration

of the continuity equation:8>>>><
>>>>:

u(x; y; t) = �u�(x�; �y; t�) + :::

v(x; y; t) = �2

�R
1=2
e

v�(x�; �y; t�) + :::

p(x; y; t) = �2p�(x�; �y; t�) + :::

Imposing the following equality between the time derivative and the viscous

term in the Navier-Stokes equation:

@u

@t
� 1

Re

@2u

@y2
! �

�
� 1

re

1�
�R

�1=2
e

�2 ) �3 = �

The Navier-Stokes equations turn out to be:8><
>:

@u�
@t�

+ u� @u�@x�
+ v� @u�@�y = �@p�(x�;t�)

@x�
+ @2u�

@�y2

@u�
@x�

+ @v�
@�y = 0

(4.7)

The boundary conditions are the impermeability and no-slip conditions on

the wall's surface and a matching condition with region 2.
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4.3 Region outside the boundary layer

It is known that the unperturbed �ow solution is:8>>>><
>>>>:
u(x; y) = u0 = 1

v(x; y) = v0 = 0

p(x; y) = p0 = 0

The scaling for the coordinates is the following:

x = �x� y = �y� t = �
� t� (4.8)

where x�, y� and t� are order one quantities. The addition of a perturbation

according with the lower limit we found above produces:8>>>><
>>>>:
u(x; y; t) = 1 + �2u1(x; y; t)

v(x; y; t) = !v1(x; y; t)

p(x; y; t) = �2p1(x; y; t)

(4.9)

Substituting (4.8) and (4.9) into (4.1) without considering the viscous terms,

being the external region an inviscid one:8>>>><
>>>>:

�2

�
@u1
@t�

+ �
� (1 + �u1)

@u1
@x�

+ �!
� v1

@u1
@y�

= � �
�
@p1
@x�

�2

�
@v1
@t�

+ !
� (1 + �u1)

@v1
@x�

+ !2

� v1
@v1
@y�

= � �
�
@p1
@y�

�
�
@u1
@x�

+ �
�
@v1
@y�

= 0

The least degeneration principle gives � = � and ! = �2. Disregarding

higher order terms the equations become:8>>>><
>>>>:

@u1
@x�

= � @p1
@x�

@v1
@x�

= �@p1
@y�

@u1
@x�

+ @v1
@y�

= 0

From these equation we can obtain an equation (Laplace equation) for pres-

sure perturbation:

@2p1(x�; y�; t�)
@x2�

+
@2p1(x�; y�; t�)

@y2�
= 0 (4.10)

with boundary conditions:

p1 ! 0 as y� !1 @p1
@y�

= � @v1
@x�

at y� = 0 (4.11)

where the second equation will be obtained by matching with the boundary

layer solution.
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4.4 Matching

We can now consider (4.5) and (4.4) in the middle tier and match with the

other solutions, in order to �nd the boundary conditions for the problem

and the order of � in Re. First, u in the limit Y ! 0 with Y = ��y has to be

matched with u in the sublayer:

�� (�y + A(x�; t�)) = �u�(x�; �y !1; t�)

which closes the system in the sublayer. Then, we look at the limit Y !1
for which

v = � �

�R
1=2
e

@A

@x�
= �2v1(x�; y�; t�)

which means that � = R
�1=8
e . We are ready to express the whole problem

with all the needed boundary conditions.

4.5 Canonical form of the Triple-Deck problem

See �gure (14) for a scatch of the three tiers. We can disregard the mid-

dle tier and write the problem involving only the external region and the

sublayer.
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Figure 14: The triple-deck structure
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4.5.1 External region

The independent variables in the upper tier are scaled as8>>>><
>>>>:
x = R

�3=8
e x�

y = R
�3=8
e y�

t = R
�1=4
e t�

(4.12)

The velocity components and pressure are represented in this region by the

asymptotic expansions8>>>><
>>>>:
u(x; y; t) = 1 +R

�1=4
e u1(x�; y�; t�)

v(x; y; t) = R
�1=4
e v1(x�; y�; t�)

p(x; y; t) = R
�1=4
e p1(x�; y�; t�)

(4.13)

Substituting this into the Navier-Stokes equations, we have8>>>><
>>>>:

@u1
@x�

= � @p1
@x�

@v1
@x�

= �@p1
@y�

@u1
@x�

+ @v1
@y�

= 0

(4.14)

Equations (4.14) can be reduced to a simple equation for pressure:

@2p1(x�; y�; t�)
@x2�

+
@2p1(x�; y�; t�)

@y2�
= 0 (4.15)

It has to be solved with boundary conditions:

p1 ! 0 as y� !1 @p1
@y�

= d2A(x�;t�)
dx2�

at y� = 0 (4.16)

4.5.2 Viscous sublayer

The independent variables in the viscous sublayer are scaled as8>>>><
>>>>:
x = R

�3=8
e x�

y = R
�5=4
e �y

t = R
�1=4
e t�

(4.17)

The velocity components and pressure are represented in this region by the

asymptotic expansions8>>>><
>>>>:
u(x; y; t) = R

�1=8
e u�(x�; �y; t�)

v(x; y; t) = R
�3=8
e v�(x�; �y; t�)

p(x; y; t) = R
�1=4
e p1(x�; 0; t�)

(4.18)
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Where the expression for p takes into account that the pressure does not

change in the boundary layer and sublayer, therefore it is equal to the pres-

sure at the bottom of the external part. The Navier-Stokes equations:

8><
>:

@u�
@t�

+ u� @u�@x�
+ v� @u�@�y = �@p1(x�;0;t�)

@x�
+ @2u�

@�y2

@u�
@x�

+ @v�
@�y = 0

(4.19)

And the boundary conditions:

u� = v� = 0 at �y = 0 and u� = � (�y + A(x�; t�)) at �y =1 (4.20)

5 Subsonic Tollmien-Schlichting waves theory

Starting from the steady �ow, now we add a time-dependent perturbation.

It will lead to linearized equations. The steady �ow solution of (4.19), (4.20)

is: 8><
>:
u� = ��y

v� = p1 = A = 0
(5.1)

5.1 Sublayer

Now we add to (5.1) small unsteady perturbations:

8>>>>>>><
>>>>>>>:

u� = ��y + �u0(x�; �y; t�)

v� = �v0(x�; �y; t�)

p1 = �p0(x�; ���y; t�)

A = �A0(x�; ���y; t�)

(5.2)

Substituting into (4.19) and disregarding order �2 terms, the linearized equa-

tions are: 8><
>:

@u0

@t�
+ ��y @u

0

@x�
= � @p0

@x�
+ @2u0

@�y2

@u0

@x�
+ @v0

@�y = 0
(5.3)

with boundary conditions:

8><
>:
u0 = v0 = 0 at �y = 0

u0 = �A0 at �y =1
(5.4)
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We seek the solution to (5.3), (5.4) in the normal modes:

8>>>>>>><
>>>>>>>:

u0 = ei(kx��!t�)�u(�y)

v0 = ei(kx��!t�)�v(�y)

p0 = ei(kx��!t�)�p(���y)

A0 = ei(kx��!t�) �A(���y)

(5.5)

where ! and k are real and positive and pressure p0 and displacement func-

tion A0 are independent on the vertical coordinate. The choice of the nega-

tive sign is due to a downstream propagating perturbation. As soon as we

perform the substitution into (5.2) we obtain:

8>>>>>>><
>>>>>>>:

u� = ��y + �ei(kx��!t�)�u(�y)

v� = �ei(kx��!t�)�v(�y)

p� = �ei(kx��!t�)�p

A� = �ei(kx��!t�) �A

(5.6)

Plugging (5.6) into the Navier-Stokes equations (4.19) yields

8><
>:
�i!�u(�y) + ik�u(�y)��y + ��v(�y) = �ik�p+ ��u(�y)

ik�u(�y) + _�v(�y) = 0
(5.7)

and the boundary conditions (4.20) take the form

8><
>:

�u(0) = �v(0) = 0

�u(1) = � �A
(5.8)

Furthermore, by evaluating (5.7) at �y = 0 we can deduce that

��u(0) = ik�p and _�v(0) = 0 (5.9)

Joining the two equations (5.7) we work out an equation for �u which is the

following
...
�u(�y)� i(k��y � !) _�u(�y) = 0 (5.10)8>>>><

>>>>:
�u(0) = 0

�u(1) = � �A

��u(0) = ik�p

(5.11)
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Let us now solve this di�erential equation. Setting _�u(�y) = f(�y) and rear-

ranging:
1

(ik�)2=3
d2f

d�y2
� (ik�)1=3

�
�y � !

k�

�
f = 0 (5.12)

The idea is to rewrite this equation in such a way that leads to the well-

known Airy equation. Clearly, after the following transformation:

� = (ik�)1=3
�
�y � !

k�

�
d� = (ik�)1=3d�y

the resulting equation is the Airy equation:

d2f(�y(�))

d�2
� �f(�y(�)) = 0 (5.13)

Its general solution is

f(�y(�)) = AAi(�) +BBi(�)

where functions Ai(�) and Bi(�) are plotted in �gure (15). We can deduce

Figure 15: Airy functions of �rst and second kind

some information from the boundary conditions:

1. From �u(1) = � �A we know that _�u(1) = 0. Therefore, the solution has

to be bounded at in�nity, requirement that forces B = 0. Therefore,

the equation turns out to be:

d�u(�y)

d�y
= (ik�)1=3AAi(�) (5.14)
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2. Now we consider that ��u(0) = ik�p. Basically, we derive the previous

equation and we evaluate it at �y = 0. Hence,

A(ik�)2=3Ai0(�0) = ik�p; (5.15)

where �0 = �(�y = 0) = �(ik�)1=3 !k� .
3. The last condition is �u(1) = ��a. We need to integrate (5.14):

R1
0

d�u
d�y d�y = �u(1)�����u(0) = �u(1) =

= A(ik�)1=3
R y0=1
y0=0 Ai(� 0)dy0 =

= A
R1
�0
Ai(� 0)d� 0 = � �A

Calling � =
R1
�0
Ai(� 0)d� 0 = � �A, we �nally have:

� �A = A�: (5.16)

Eliminating A in (5.15) and (5.16) we have a relation between �A and �p,

which is:
� �A

�
(ik�)2=3Ai0(�0) = ik�p (5.17)

Now, analizing the esternal region, we will be able to �nd �p as function of �A.

This will lead to the large Reynolds number version of the Orr-Sommerfeld

equation.

5.2 External region

We can write: 8><
>:
p1 = �p01(x�; y�; t�) = �ei(kx��!t�) �p1(y�)

A = �A(x�; y�; t�) = �ei(kx��!t�) �A
(5.18)

where A is the same as in (5.6) and, since the pressure does not change across

the middle tier, we can state that �p1(0) = �p. Equation (4.15) becomes:

��p1(y�)� k2 �p1(y�) = 0 (5.19)8><
>:

�p1(1) = 0

_�p1(0) = �k2 �A
(5.20)

The solution to this problem is:

�p1(y�) = k �Ae�ky� (5.21)

This gives the expression for �p in the sublayer, since

�p1(0) = �p = k �A (5.22)
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5.3 Large Reynolds numbers Orr-Sommerfeld equation

Plugging (5.22) into (5.17) we �nd the dispersion relation:

�5=3

k4=3
Ai0(�0) = ei

�
6

Z 1

�0
Ai(q)dq (5.23)

Let us now eliminate the dependence on � by setting:

k = ~k�5=4 ! = ~!�3=2

This turns (5.23) into:

Ai0(�0) = (ik)1=3k

Z 1

�0
Ai(q)dq (5.24)

As said earlier, this equation represents the large Reynolds number version

of the Orr-Sommerfeld equation. In section (5.4) we shall see that it has an

in�nite countable number of roots which all originate from ~! = 0. Further-

more, all of them, except the �rst one, remain in the second quadrant for

all ~!. It means that the corresponding perturbations in the boundary layer

decay with x. On the other hand, the �rst root crosses the real axis in the

complex plane k at

(~!� = 2:29797; ~k� = 1:00049) (5.25)

and then stays in the third quadrant for any other ~!. This root is the

Tollmien-Schlichting wave. In the following subsection the numerical solu-

tion is explained.

5.4 Numerical solution to the Orr-Sommerfeld high Reynolds

number equation

We show here how to solve equation (5.24), which is addressed as the high

Reynolds number Orr-Sommerfeld equation. We start by considering this

equation for ! real and k complex, with the aim to �nd the solution for k

real, corresponding to the neutral curve. In this case the equation is

Ai0(z0)� (ik)1=3jkj
Z 1

z0
Ai(z)dz = 0 (5.26)

with

z0 = � i!

(ik)2=3
(5.27)

Let us start considering small values of !, namely ! ! 0. We must have

k! 0 if we want z0 to be �nite. The equation is

Ai0(z0) = 0
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which has an in�nite countable number of zeros. We list here the �rst �ve

zeros:

z
(1)
0 = �1:01879:::
z
(2)
0 = �3:24819:::
z
(3)
0 = �4:82009:::
z
(4)
0 = �6:16330:::
z
(5)
0 = �7:37217:::

The idea is to �nd the value of z0 which solves (5.26) via the Newton method

with starting point z
(i)
0 and small !, say ! = 0:01. The pocedure is as

follows. Let us call the left hand side of (5.26) '(z0) after it has been

arranged as exclusively dependent on z0 = � i!
(ik)2=3

'(z0) = Ai0(z0)�
�
� i!
z0

�1=2 ������i
�
� i!
z0

�1=2�����
Z 1

z0
Ai(z)dz = 0

However, when calculating '(z
(i)
0 ) with ! = 0:01 we have '(z

(i)
0 ) 6= 0. The

starting point is supposed to be reasonably close to the real root, therefore

we can write:

'(z
(i)
0 + �z0) = '(z

(i)
0 ) + '0(z(i)0 )�z0

The requirement for this to be zero produces

�z0 = � '(z
(i)
0 )

'0(z(i)0 )

This is the Newton method, and it converges after a few iterations. Once

found the �rst value, we increase ! and we apply again the above procedure,

with the new root as starting point. The derivative of '(z0) has a quite long

expression

'0(z0) =
�
z0 �

�
� i!
z0

� 1

2

�����i �� i!
z0

� 3

2

����
�
Ai(z0)+

+

�
1
2z0

�
� i!
z0

� 1

2

�����i �� i!
z0

� 3

2

����� �� i!
z0

�2
3i
2z0
sign

�����i �� i!
z0

� 3

2

����
� R1

z0
Ai(z)dz

A programme in MATLAB has been developed in order to �nd the �rst �ve

roots of (5.26). The code is as follows:

function [ x, ex ] = newton( x0, omega, tol, nmax )

if nargin == 3

tol = 1e-6;

nmax = 1e1;
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elseif nargin == 4

nmax = 1e1;

elseif nargin ~= 5

error('newton: invalid input parameters');

end

f= @(z0) airy(1,z0)-(-i*omega/z0)^0.5*abs(-i*(-i*...

df= @(z0) (z0+(-i*omega/z0)^0.5*abs(-i*(-i*...

x(1) = x0 - (f(x0)/df(x0));

ex(1) = abs(x(1)-x0);

k = 2;

while (ex(k-1) >= tol) && (k <= nmax)

x(k) = x(k-1) - (f(x(k-1))/df(x(k-1)));

ex(k) = abs(x(k)-x(k-1));

k = k+1;

end

end

function [ int ] = integraleairy( z )

% Calculates the integral of the airy function from z to infinity

f=@(x) airy(x);

int=1/3-integral(f,0,z);

end

syms z0 k

syms omega real

k(1)=0;

syms count int

count=0;

%z0=-1.018792;

%z0=-3.24819;

%z0=-4.82009;

%z0=-6.16330;

z0=-7.37218;

for omega=0.1:0.2:30,

count=count+1;

[x ,ex]=Newton(z0,omega,1.0*10^(-6),20);

z0=x(numel(x));

k(count)=(-i^(1/3)*omega/x(numel(x)))^(3/2);

end
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Figure 16: The �rst �ve roots

plot(k,'b');

end

Figure (16) shows the trajectories of the �rst �ve roots as ! changes from

zero to large values. All the roots originate at ! = 0 from the coordinate

origin, and all of them, except the �rst one, remain in the �rst quadrant for

all ! > 0, indicating that the corresponding perturbations in the boundary

layer have the form

ei(kX�!T ) = e�Im(k)Xei(Re(k)X�!T )

and therefore decay with X. The beheavior of the �rst root is di�erent. It

crosses the real axis at

(!�; k�) = (2:29797; 1:00049)

This root represents the Tollmien-Schlichting wave. For ! 2 (0; !�) the

perturbation decays, for ! > !� it grows.
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6 Compressible Navier-Stokes equations

When dealing with transonic regime we have to consider full compressible

Navier-Stokes equations:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

�̂
�
@û
@t̂

+ û@û@x̂ + v̂ @û@ŷ

�
= � @p̂

@x̂ +
@
@x̂

h
�̂
�
4
3
@û
@x̂ � 2

3
@v̂
@ŷ

�i
+

+ @
@ŷ

h
�̂
�
@û
@ŷ + @v̂

@x̂

�i
�̂
�
@v̂
@t̂

+ û@v̂@x̂ + v̂ @v̂@ŷ

�
= �@p̂

@ŷ +
@
@ŷ

h
�̂
�
4
3
@v̂
@ŷ � 2

3
@û
@x̂

�i
+

+ @
@x̂

h
�̂
�
@û
@ŷ + @v̂

@x̂

�i
�̂
�
@�̂
@t̂

+ û @�̂@x̂ + v̂ @�̂@ŷ

�
= û @p̂@x̂ + v̂ @p̂@ŷ +

1
Pr

h
@
@x̂

�
�̂@ĥ@x̂

�
+

+ @
@ŷ

�
�̂@ĥ@ŷ

�i
+ �̂

�
4
3
@û
@x̂ � 2

3
@v̂
@ŷ

�
@û
@x̂+

+ �̂
�
4
3
@v̂
@ŷ � 2

3
@û
@x̂

�
@v̂
@ŷ + �̂

�
@û
@ŷ + @v̂

@x̂

�2
@�̂
@t̂

+ @�̂u
@x̂ + @�̂v

@ŷ = 0

(6.1)

Considering the gas as perfect, the state equation is

ĥ =


 � 1

p̂

�̂

The inviscid �ow can be described by the full unsteady potential form:

�
â2 � '̂2x̂

�
'̂x̂x̂�2'̂x̂'̂ŷ'̂x̂ŷ+

�
â2 � '̂2ŷ

�
'̂ŷŷ�2'̂x̂'̂x̂t̂�2'̂ŷ'̂ŷt̂�'̂t̂t̂ = 0 (6.2)

combined with the Bernoulli equation:

'̂t̂ +
'̂x̂ + '̂ŷ

2
+

â2

 � 1
=
V 21
2

+
â21
 � 1

(6.3)

We perform the following transformation in order to express the equations

in their adimensional form:

x̂ = Lx ŷ = Ly û = V1u v̂ = V1v

�̂ = �1� p̂ = p1 + �1V 21p ĥ = V 21h �̂ = �1�

t̂ = L=V1t '̂ = V1L' â = a1a

(6.4)
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This yields the nondimensional equations are:8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

�
�
@u
@t + u@u@x + v @u@y

�
= � @p

@x +
1
Re

n
@
@x

h
�
�
4
3
@u
@x � 2

3
@v
@y

�i
+

+ @
@y

h
�
�
@u
@y + @v

@x

�io
�
�
@v
@t + u@v@x + v @v@y

�
= �@p

@y +
1
Re

n
@
@y

h
�
�
4
3
@v
@y � 2

3
@u
@x

�i
+

+ @
@x

h
�
�
@u
@y + @v

@x

�io
�
�
@�
@t + u @�@x + v @�@y

�
= u @p@x + v @p@y +

1
Re

n
1
Pr

h
@
@x

�
�@h@x

�
+

+ @
@y

�
�@h@y

�i
+ �

�
4
3
@u
@x � 2

3
@v
@y

�
@u
@x+

+ �
�
4
3
@v
@y � 2

3
@u
@x

�
@v
@y + �

�
@u
@y + @v

@x

�2�
@�
@t +

@�u
@x + @�v

@y = 0

(6.5)

with state equation assuming the form

h =
1

( � 1)M21

1

�
+



 � 1

p

�

The potential equations are:8>>>><
>>>>:

�
a2

M2
1

� '2x
�
'xx �2'x'y'xy +

�
a2

M2
1

� '2y
�
'yy

�2'x'xt � 2'y'yt � 'tt = 0

't +
'x+'y

2 + a2

(�1)M2
1

= 1
2 +

1
(�1)M2

1

(6.6)

Here the nondimensional parameters are calculated as

M1 = V1
a1

a1 =
q
 p1�1 Re =

�1V1L
�1

(6.7)

7 Compressible Boundary Layer

Again we consider a �at plate aligned with the oncoming �ow. Its motion

is considered to be steady and two-dimensional. We already know that the

scaling in the boundary layer is:

x = O(1) y = R
�1=2
e Y Re !1 (7.1)

and the solution to the Navier-Stokes equations may be sought in the form

of the asymptotic expansions

u(x; y;Re) = U0(x; Y ) + ::: v(x; y;Re) = R
�1=2
e V0(x; Y ) + :::

�(x; y;Re) = �0(x; Y ) + ::: p(x; y;Re) = R
�1=2
e p0(x; Y ) + :::

h(x; y;Re) = h0(x; Y ) + ::: �(x; y;Re) = �0(x; Y ) + :::

(7.2)
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Substitution into (6.5) leads to the classical boundary layer equations which

can be solved with the free stream conditions U0 = 1 and h0 = h1 at the

leading edge of the �at plate (x = 0) as well as at the outer edge of the

boundary layer (Y = 1) and the impermeability and no-slip conditions

U0 = V0 = 0 on the plate surface (Y = 0), supplemented with a thermal

condition (e.g. the wall temperature is known h0 = F (x) or the wall is

thermally isolated @h0
@Y = 0). We highlight here the expression for:

h1 =


 � 1

p1
�1

1

V 21
=

1

( � 1)M21
What we need to proceed is to know that the solution remains smooth when

the trailing edge of the plate is approached, therefore we can assume valid

the following expansions:8>>>>>>><
>>>>>>>:

U0(x; Y ) = U00(Y ) + (1� x)U01(Y ) + :::

h0(x; Y ) = h00(Y ) + (1� x)h01(Y ) + :::

�0(x; Y ) = �00(Y ) + (1� x)�01(Y ) + :::

�0(x; Y ) = �00(Y ) + (1� x)�01(Y ) + :::

9>>>>>>>=
>>>>>>>;

as x� 1! 0� (7.3)

The leading order terms exhibit the following behaviour near the plate sur-

face 8>>>>>>><
>>>>>>>:

U00(Y ) = �Y + :::

h00(Y ) = hw + :::

�00(Y ) = �w + :::

�00(Y ) = �w + :::

9>>>>>>>=
>>>>>>>;

as Y ! 0 (7.4)

where �, hw, �w and �w are positive constants representing the dimension-

less skin friction, enthalpy, density and viscosity on the wall surface.

8 Transonic Triple-Deck Theory

Before starting, we will introduce some notation. We will label with u,

m and l the quantities in the upper, medium and lower tier respectively.

Indeed, as expected, the structure will be the same as in the subsonic in-

compressible case, although with di�erent scalings and expansions for the

solution to the Navier-Stokes equation. We will start from the upper deck,

where the full unsteady potential equation holds. It will allow us to work

out all the quantities in the upper tier. Being in a transonic �ow regime

means that:

M2
1 = 1 + :::
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8.1 The upper tier

The equation is (6.6). We consider that M21 = 1 + �m. We choose the

following scaling:

x = �X y = ���1=2yu t = �T (8.1)

and we write the potential in the following form:

' = �X +R
�1=2
e �1=3��1=2'1u + ::: (8.2)

Hence,

u = 'X = 1 +R
�1=2
e ��2=3��1=2 @'1u@X + :::

v = 'yu = R
�1=2
e ��2=3 @'1u@yu

+ :::

'T = R
�1=2
e �1=3��1��1=2 @'1u@T + :::

'TT = R
�1=2
e �1=3��2��1=2 @

2'1u
@T 2 + :::

(8.3)

Plugging into the Bernoulli equation (6.6) we obtain:

a2 = 1�M2
1( � 1)��1=2R�1=2e

"
�1=3

�

@'1u
@T

+
�1=3

�

@'1u
@X

#
+ :::

In order to make the derivative with respect to T a second order term, we

set � = �2=3. Then:

a2 = 1�M21( � 1)��1=2R�1=2e ��2=3 @'1u@X + :::

'XX = R
�1=2
e ��2=3��1��1=2 @

2'1u
@X2 + :::

'yuyu = R
�1=2
e ��2=3��1�1=2 @

2'1u
@y2u

+ :::

'XT = R
�1=2
e ��2=3��1��1=2 @

2'1u
@X@T + :::

'Tyu = R
�1=2
e ��2=3��1 @

2'1u
@yu@T

+ :::

(8.4)

Finally, the potential equation becomes:

1�M2
1

M2
1

R
�1=2
e ��5=3��1=2 @

2'1u
@X2 + 1

M2
1

R
�1=2
e ��5=3�1=2 @

2'1u
@y2u

+

�2R�1=2e ��4=3��1=2 @
2'1u
@X@T = 0

It may be rearranged using the fact that M1 � 1 and 1�M21 = ��m.

�mR�1=2e ��5=3�1=2 @
2'1u
@X2 +R

�1=2
e ��5=3�1=2 @

2'1u
@y2u

+

�2R�1=2e ��4=3��1=2 @
2'1u
@X@T = 0
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In order to avoid further degeneration, we have to set:

� = �1=3

As soon as we consider the viscous-inviscid interaction whereR
�1=2
e ��4=3��1=2 =

1 we can conclude that:

� = R
�1=3
e � = R

�2=9
e 1�M21 = R

�1=9
e m (8.5)

And the equation for '1u assumes the following simple form:

m@2'1u
@X2 + 2@

2'1u
@X@T = @2'1u

@y2u
(8.6)

We already know the asymptotic expansion for u and v from (8.3). Using

the equation of state and the Poisson adiabat equation, we can write that:

p̂�p1
�1V 2

1

= p = 1
M2

1

h�
�̂
�1

� � 1
i
= 1

M2
1

(� � 1)

�̂
�1

= � =
�
â
a1

�2=(�1)
= a2(�1)

(8.7)

Therefore, using the �rst of (8.4), the expansion (1+ x)� = 1+�x+ ::: and

M21 � 1, we obtain:8><
>:
� = 1� ��1=2R�1=2e ��2=3 @'1u@X + :::

p = ���1=2R�1=2e ��2=3 @'1u@X + :::
(8.8)

We can conclude that the problem in the upper deck is the following:

x = R
�1=3
e X y = R

�5=18
e yu t = R

�2=9
e T (8.9)

8>>>>>>><
>>>>>>>:

u(x; y;Re) = 1 +R
�2=9
e u1u(X; yu; T ) + :::

v(x; y;Re) = R
�5=18
e v1u(X; yu; T ) + :::

p(x; y;Re) = R
�2=9
e p1u(X; yu; T ) + :::

�(x; y;Re) = 1 +R
�2=9
e �1u(X; yu; T ) + :::

(8.10)

Where we notice that

p1u = �1u = �u1u = �@'1u
@X

v1u =
@'1u
@yu

This allow us to get an equation for p1u by di�erentiating (8.6) with respect

to X:

m
@2p1u
@X2

+ 2
@2p1u
@X@T

=
@2p1u
@y2u

(8.11)
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We need two boundary conditions to solve this equation. The �rst is

p1u ! 0 as yu !1 (8.12)

and the second one comes from di�erentiating v1u = @'1u
@yu

with respect to

X:
@v1u
@X

= �@p1u
@yu

at yu = 0 (8.13)

The last calculation in the upper deck before proceeding is about the slope

angle, which is de�ned as follows:

� =
v

u
=
O(R

�5=18
e )

O(1)
= O(R

�5=18
e ) (8.14)

8.2 The Lower Deck

The thickness of the sublayer can be estimated using the following balance

in the longitudinal momentum equation:

@u

@t
� 1

Re

@2u

@y2

We �nd that

�y = R
�1=2
e �t�1=2 = O(R

�11=18
e )

and the right scaling turns out to be:

x = R
�1=3
e X y = R

�11=18
e yl t = R

�2=9
e T (8.15)

The form of the asymptotic expansions for the velocity components may be

found taking into account:

� Being the velocity u linear in y at the bottom of the boundary layer,

we expect y = O(�u)R
�1=2
e yl. Hence,

O(�u) = R
�1=9
e

� The slope angle does not change across the middle boundary layer,

therefore

� =
v

u
=

�v

�u
= O(R

�5=18
e )

Using the previous statement:

�v = O(R
�7=18
e )

� We know from (7.4) the form of the expansion for h, � and � near the

wall.
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� The pressure does not change across the boundary layer, therefore it

is espected to be order R
�2=9
e .

Finally, the expansions are:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

u(x; y;Re) = R
�1=9
e u1l(X; yl; T ) + :::;

v(x; y;Re) = R
�7=18
e v1l(X; yl; T ) + :::;

p(x; y;Re) = R
�2=9
e p1u(X; 0; T ) + :::;

�(x; y;Re) = �w + :::;

h(x; y;Re) = hw + :::;

�(x; y;Re) = �w + ::::

(8.16)

Plugging into the Navier-Stokes equations (6.5) we get the following equa-

tions to the leading order:

8><
>:
�w
�
@u1l
@T + u1l

@u1l
@X + v1l

@u1l
@yl

�
= �@p1u(X;0;T )

@X + �w
@2u1l
@y2l

;

@u1l
@X + @v1l

@yl
= 0:

(8.17)

The boundary conditions are the impermeability and the no-slip conditions

on the wall surface and the matching condition for u at the outer edge of

the sublayer.

8.3 The Middle Tier

The middle tier is known to have the following scalings:

x = R
�1=3
e X; y = R

�1=2
e ym; t = R

�2=9
e T (8.18)

and we can seek the following expansions:

8>>>>>>><
>>>>>>>:

u(x; y;Re) = U0(x; ym) +R
�1=9
e u1m(X; ym; T ) +R

�2=9
e u2m(X; ym; T ) + :::

v(x; y;Re) = R
�5=18
e v1m(X; ym; T ) +R

�7=18
e v2m(X; ym; T ) + :::

p(x; y;Re) = R
�2=9
e p1u(X; 0; T ) + :::

�(x; y;Re) = �0(x; ym) +R
�1=9
e �1m(X; ym; T ) + :::

(8.19)

We are interested only in u and v, since our task is to perform tha matching

with the other solutions. For perturbation of this form, the viscous e�ects

are manifested only in the sublayer, therefore we can plug (8.31) into the
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inviscid Navier-Stokes equations, getting, like in (4.3)8><
>:
u1m = A(T;X) dU0dym

v1m = � @A
@XU0(Ym)

The limits we are interested in are the following:

lim
ym!1

v = �R�5=18e
@A

@X
(8.20)

Comparing with (8.10) we have

v1u(X; 0; T ) = � @A
@X

(8.21)

which turns out (8.13) to be:

@p1u
@yu

=
@2A

@X2
at yu = 0 (8.22)

The other limit is:

lim
ym!0

u = �(ym +R
�1=9
e A) = �R

�1=9
e (yl + A) (8.23)

The matching condition with the sublayer is the following:

u1l(X;1; T ) = �(yl + A(X;T )) (8.24)

8.4 Canonical Form

See �gure (17) for a scatch of the tiered structure. In the upper deck (8.9)

and (8.10) hold

x = R
�1=3
e X y = R

�5=18
e yu t = R

�2=9
e T (8.25)

8>>>>>>><
>>>>>>>:

u(x; y;Re) = 1 +R
�2=9
e u1u(X; yu; T ) + :::

v(x; y;Re) = R
�5=18
e v1u(X; yu; T ) + :::

p(x; y;Re) = R
�2=9
e p1u(X; yu; T ) + :::

�(x; y;Re) = 1 +R
�2=9
e �1u(X; yu; T ) + :::

(8.26)

and we need to solve (8.27)

m
@2p1u
@X2

+ 2
@2p1u
@X@T

=
@2p1u
@y2u

(8.27)
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Figure 17: Triple-deck structure

with boundary conditions (8.28) and (8.29)

p1u ! 0 as yu !1 (8.28)

@p1u
@yu

=
@2A

@X2
at yu = 0 (8.29)

In the viscous sublayer

x = R
�1=3
e X y = R

�11=18
e yu t = R

�2=9
e T (8.30)

and 8>>>><
>>>>:
u(x; y;Re) = R

�1=9
e u1l(X; yl; T ) + :::

v(x; y;Re) = R
�7=18
e v1l(X; yl; T ) + :::

p(x; y;Re) = R
�2=9
e p1u(X; 0; T ) + :::

(8.31)

After the following transformation

� = �w ~� � = �w ~�

the problem in the sublayer takes the form:8><
>:

@u1l
@T + u1l

@u1l
@X + v1l

@u1l
@yl

= �@p1u(X;0;T )
@X + @2u1l

@y2l
@u1l
@X + @v1l

@yl
= 0

(8.32)
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with boundary conditions

u1l = v1l = 0 at yl = 0 (8.33)

and (8.34)

u1l(X;1; T ) = �(yl + A(X;T )) (8.34)

8.5 Corrispondence to the subsonic regime

As little exercise, useful in showing that what obtained is right, consists in

rewriting equation (8.27) in the subsonic limit m! �1. We must end up

with equation (4.15). Comparing equations (8.9) and (8.10) with (4.12) and

(4.13) we have: 8>>>>>>><
>>>>>>>:

X = R
�1=24
e x�

yu = R
�7=72
e y�

T = R
�1=36
e t�

p1u = R
�1=36
e p1

(8.35)

Since M21 = 1 + R
�1=9
e m, in the subsonic regime we have m � �R�1=9e .

Using this and (8.35) in (8.27) we end up with (4.15).

Other relations which could be useful are:

AT = R
�1=72
e AS (8.36)

which comes from the correspondence

@p1u
@yu

=
@2AT
@X2

And:

kT = R
1=24
e kS !T = R

1=36
e !S (8.37)

which comes from the correspondence between the exponentials in the nor-

mal mode form.

9 Transonic Tollmien-Schlichting waves theory

The derivation of the neutral perturbation equation in the boundary layer is

exactly the same as in the subsonic regime, being (4.19) analogous to (8.32).

� �A

�
(ik�)2=3Ai0(�0) = ik�p1u(0) (9.1)
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where �0 = �(ik�)1=3 !k� . What is di�erent is the equation for pressure in

the upper tier (8.27) (to be compared to (4.15)). Again:

8><
>:
p1u = �ei(kX�!T )�p1u(yu)

A = �ei(kX�!T ) �A
(9.2)

and (8.27) becomes

��p1u(yu) + (k2m� 2k!)�p1u(yu) = 0

8><
>:

�p1u(1) = 0

_�p1u(0) = �k2 �A

Now we distinguish two di�erent cases:

1. k2m� 2k! < 0

The solution to the equation, according to the boundary conditions,

is:

�p1u(yu) =
k2 �Ap

2k! � k2me�
p
2k!�k2m yu

Therefore:

�p1u(0) =
k2 �Ap

2k! � k2m (9.3)

2. k2m� 2k! > 0

Now

�p1u(yu) = �ei
p
k2m�2k! yu + �e�i

p
k2m�2k! yu

Looking at this expression is evident that it is impossible to satisfy the

condition �p1u(1) = 0 which seemed to be reasonable in the subsonic

regime. Hence, in the transonic regime we have to allow the perturba-

tion to propagate at in�nity. However, we need a boundary condition

in place of the no any more valid one.

As we said in the introduction, in this paper we are dealing with a

stability problem and not a receptivity one. Therefore, we can only al-

low a perturbation which goes from the boundary layer toward in�nity

and not vice versa.

Let us �x x = 0 and write:

p1u = �f�eif
p
k2m�2k! yu�!Tg + �e�if

p
k2m�2k! yu�!Tgg

55



We choose � = 0 in order to have an upward propagating perturbation.

This leads to the following, after using the boundary condition for the

�rst derivative evaluated in 0:

�p1u(yu) =
ik2 �Ap

k2m� 2k!
ei
p
k2m�2k! yu

Therefore:

�p1u(0) =
ik2 �Ap

k2m� 2k!
(9.4)

The dispersion relations, obtained by substituting in (9.1), are the following:

1. k2m� 2k! < 0

p
2k! � k2m �5=3

k7=3
Ai0(�0) = ei

�
6

Z 1

�0
Ai(q)dq (9.5)

2. k2m� 2k! > 0

p
k2m� 2k!

�5=3

k7=3
Ai0(�0) = ei

�
3

Z 1

�0
Ai(q)dq (9.6)

The dependence on � can be hidden as in subsection (5.3). From now on,

we concentrate on the �rs case, for which k2m� 2k! < 0.

9.1 Subsonic limit

This is a way to check that everything is right. Indeed, as soon as we perform

the limit for m ! �1 we are in the sunsonic regime and we must obtain

equation (5.23). Since

M1 = 1 +R
�1=9
e m

we have to set

m = �R1=9
e (9.7)

in order to have M1 = 0. We have to consider the fact that in the subsonic

regime tha scaling is di�erent and (8.37) holds.

2kT!T = 2R
5=72
e kS!S

k2m = �R14=72
e k2S

�0 = �(ikT�)1=3 !T
kT�

= �(ikS�)1=3 !S
kS�

Hence, 2ks!S is neglectible and equation (9.5) takes the form:

�5=3

k
4=3
S

Ai0(�0) = ei
�
6 �

which is exactly the awaited equation.
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10 A�ne transformation and behaviors of k and !

with respect to m

One possibility is to solve numerically equation (9.5). There is an easier

way, though. As soon as we �nd a transformation which enables to write

(9.5) in the same form as (5.23) we can use everything already known about

that equation. The transformation is:8><
>:

k = A~k

! = B~!
(10.1)

Remember that the variables with � are those in the subsonic equations.

What we basically want is that:8><
>:

p
2k!�mk2
k7=3

= 1
~k4=3

�0(k; !) = �0(~k; ~!)

From the second equation we have:

A1=3B

A
= 1) B = A2=3

Hence: 8><
>:

k = A~k

! = A2=3~!
(10.2)

The second equation leads to:

2A5=3 ~!
~k
�mA2 = A14=3

Multiplying for A�2:

A8=3 � 2
~!
~k
A�1=3 +m = 0

Setting x = A1=3 > 0 we obtain:

x8 � 2
~!
~k

1

x
+m = 0 (10.3)

What we are interested in is evaluating the neutral point (5.25) for di�erent

values of m (with the aim to study the limit m!1). The equation (10.3)

may be written as

f(x;m) = x8 � 2
~!�
~k�

1

x
+m = 0 (10.4)
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with (~!� = 2:29797; ~k� = 1:00049). Keeping in mind that x > 0, we observe

that:

f(x! 0;m) = �1
f(1;m) =1

and there is no stationary point for x > 0, since the only one possible

f 0(x;m) = 8x7 + 2
~!�
~k�

1

x2
= 0) x = �

�
1

4

~!�
~k�

�1=9

is for a negative value of x. Therefore, there is only one solution ammitted

for x. A programm (language IDL) has been developed in order to work out

x for di�erent values of m (see the following subsection). Once x is found,

A = x3 and the transformation (10.2) are de�ned. See �gure (18).

10.1 Transormation programme

function func,x

common constant,m

return,x^8-2*(2.29797/1.00049)/x+m

end

function funcprime,x

common constant,m

return,8*x^7+2*(2.29797/1.00049)/x^2

end

function newtonmethod,func,funcprime,x0

IF Size(func, /Type) NE 7 THEN BEGIN

print, 'String argument required'

RETURN, -1

ENDIF

IF Size(funcprime, /Type) NE 7 THEN BEGIN

print, 'String argument required'

RETURN, -1

ENDIF

tolerance = 10.0^(-7)

epsilon = 10.0^(-14)

maxIterations = 20

haveWeFoundSolution = 0
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Figure 18: x as function of m

for i=1,maxIterations do begin

y = Call_Function(func,x0)

yprime = Call_Function(funcprime,x0)

if abs(yprime) lt epsilon then begin

print,'NEWTON>>WARNING: denominator is too small'

break

endif
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x1 = x0 - y/yprime

if abs(x1 - x0)/abs(x1) lt tolerance then begin

haveWeFoundSolution = 1

break

endif

x0 = x1

endfor

if haveWeFoundSolution then begin

print,'NEWTON>>The root is:',x1

endif else begin

print,'NEWTON>>Warning: Not able to find solution to within the desired tolerance of',tolerance

print,'NEWTON>>The last computed approximate root was',x1

endelse

return,x1

end

function find,enter

common constant,m

m=enter

r=(dindgen(5000)+0.01)/4999

f=func(r)

step=dindgen(n_elements(f)-1)

x=dindgen(n_elements(f)-1)

for I=1,n_elements(f)-1 do begin

step[I-1]=f[I]*f[I-1]

endfor

d=where(step lt 0, n)

;print,n,format='(I0," zeros")'

if n eq 1 then begin

;print,(r[d]+r[d+1])/2

a=newtonmethod('func','funcprime',(r[d]+r[d+1])/2)

endif else begin

a=newtonmethod('func','funcprime',2.)

endelse

return,a

end
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loadct,5

set_plot, 'z'

device, set_resolution=[640,680]

a=-200.0

b=200.0

plot,[0,0],back=255,color=0,xrange=[a,b],yrange=[0,2],xtitle='m',ytitle='x',charsize=1.2,charthick=2,thick=2

for I=a,b,0.5 do begin

plots,[I,find(I)],color=0,psym=3

endfor

write_png, 'filename.png',tvrd()

end

10.2 Subsonic limit

In the previous section we found that through the following a�ne transfor-

mation for ! and k 8><
>:
k = A~k;

! = A2=3~!;
(10.5)

with A satisfacting the equation

A8=3 � 2
~!
~k

1

A1=3
+m = 0; (10.6)

we can describe the Tollmien-Schlicting waves theory in the transonic regime.

The purpose in this section is to verify that, when performing the subsonic

limit m! �1, everything is in agreement with the well known equations.

The idea is to �nd what order with respect to m are k and !. After that, it

will be possible to evaluate which terms of the transonic equations to keep

and which ones becomes neglectible.

When m! �1 only A!1 can balance its growth, indeed

� If A! 0 we have

2
~!
~k

1

A1=3
= �jmj

which is impossible, being all the quatities in the left hand side posi-

tive;

� If A!1 we have

A8=3 = jmj ) A = jmj3=8 (10.7)

that is what we actually want.
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Given (10.7) we can explicitly express (10.5) as8><
>:
k = jmj3=8~k
! = jmj1=4~!

(10.8)

Let us �rst check that the condition k2m � 2k! < 0 is still satis�ed. It is

immediatly proven by substitution

�jmj7=4~k2 � 2jmj5=4~k~! < 0

Remember now that k and ! were introduced with the normal modes be-

heaving like

ei(kX�!T )

The need for kX and !T to be order one, leads to

X � 1
k � jmj�3=8 T � 1

! � jmj�1=4 (10.9)

What we want to do now is to analize the consequences of this beheavior

on the governing equations (8.27) to (8.34). Let us start from the external

region evaluating the order of all the terms.

m
@2p1u
@X2

+ 2
@2p1u
@X@T

=
@2p1u
@y2u

with boundary conditions (8.28) and (8.29)8><
>:
p1u ! 0 as yu !1
@p1u
@yu

= @2A
@X2 at yu = 0

Analizing the �rst equation we can forget about p1u which is present in each

term.

�
m

@2

@X2
� m

X2
� � jmj

jmj�3=4 � �jmj7=4

�
2

@2

@X@T
� X

T
� 1

jmj�3=8jmj�1=4 = jmj5=8

which is negelectible when compared to the previous term

�
�p1u(yu) =

k2 �Ap
2k! � k2me�

p
2k!�k2m yu
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We want

yu
p
2k! � k2m = O(1)

Therefore

y�1u �
p
2k! � k2m =

q
2jmj5=8~k~! + jmj7=4~k2 � jmj7=8

Namely

yu � jmj�7=8 (10.10)

and it follows that
@2

@y2u
� y�2u � jmj7=4

The �rst conclusion is that the equation for pressure turns out to be

jmj@
2p1u
@X2

+
@2p1u
@y2u

= 0 (10.11)

We want to retain the boundary condition as well

@p1u
@yu

=
@2A

@X2
) p1u

jmj�7=8 �
A

jmj�3=4 (10.12)

Let us now inspect the sublayer, where the pressure perturbation is of the

same order as in the outer region. This means that from (10.12) we have

p1l(X;T ) = p1u(X; 0; T ) � Ajmj�1=8 (10.13)

Here we recall the boundary sublayer equations8><
>:

@u1l
@T + u1l

@u1l
@X + v1l

@u1l
@yl

= �@p1u(X;0;T )
@X + @2u1l

@y2l
@u1l
@X + @v1l

@yl
= 0

with boundary conditions8><
>:
u1l = v1l = 0 at yl = 0

u1l(X;1; T ) = �(yl + A(X;T ))

Our will to maintain the second boundary consition leads to

u1l � yl � A

We clearly have

u1l � X

T
� jmj�1=8
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Thus,

u1l � yl � A � jmj�1=8 (10.14)

It follows that (10.13) becomes

p1l � jmj�1=4 (10.15)

Finally, from the continuity equation, that we clearly want to be still bal-

anced, we have that

v1l � u1lyl
X

� jmj1=8 (10.16)

The collection of all the quantities found so far is8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

X � jmj�3=8

T � jmj�1=4

yl � jmj�1=8

u1l � jmj�1=8

v1l � jmj1=8

p1l � jmj�1=4

(10.17)

The analysis of the momentum equation shows that

@u1l
@T

� u1l
@u1l
@X

� v1l
@u1l
@yl

� @p1u(X; 0; T )

@X
� @2u1l

@y2l
� jmj1=8

and therefore it stays unchanged. As we hoped since the beginning, the �nal

strucure completely matches with that in the subsonic regime. This is fair

enought when performing the following transformation:8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

X = jmj�3=8X̂
T = jmj�1=4T̂
yl = jmj�1=8ŷl
yu = jmj�7=8ŷu
u1l = jmj�1=8û1l
v1l = jmj1=8v̂1l
p1l = jmj�1=4p̂1l
A = jmj�1=8Â

(10.18)

Indeed now the equations are

@2p̂1u

@X̂2
+
@2p̂1u
@ŷ2u

= 0
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with boundary conditions8><
>:
p̂1u ! 0 as ŷu !1
@p̂1u
@ŷu

= @2Â
@X̂2

at ŷu = 0

and 8><
>:

@û1l
@T̂

+ û1l
@û1l
@X̂

+ v̂1l
@û1l
@ŷl

= �@p̂1l
@X̂

+ @2û1l
@ŷ2l

@û1l
@X̂

+ @v̂1l
@ŷl

= 0

with boundary conditions8><
>:
û1l = v̂1l = 0 at ŷl = 0

û1l(X̂;1; T̂ ) = �(ŷl + Â)

which are the same as in the subsonic theory. Once proved that everything

works as expected in the limitm! �1 let us move to the supersonic limit,

which is the actual subject of our research.

10.3 Supersonic limit

We want to �nd A such that

A8=3 � 2
~!
~k

1

A1=3
+m = 0 (10.19)

when m!1. We rearrange this equation in the following form

A1=3m =
2~!
~k
� A3

Clearly we want A1=3m = O(1), being 2~!
~k

= O(1) the only term which can

balance the growth of m. It means that

A1=3 =
�

m
) A =

�
�

m

�3
and A3 =

�
�

m

�9
(10.20)

Plugging (10.20) into (10.19) we have

� =
2~!
~k
�
�
�

m

�9
=

2~!
~k
�
0
@ 2~!

~k
� � �m�9
m

1
A
9

Considering the asymptotic expansions we have that

� =
2~!
~k
� 1

m9

�
2~!
~k

�9
+O(m�18) (10.21)
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Now we are ready to express the transformation

8>><
>>:
k =

�
2~!
~km

�3 �
1� 3

m9

�
2~!
~k

�8�
~k +O(m�21)

! =
�
2~!
~km

�2 �
1� 2

m9

�
2~!
~k

�8�
~! +O(m�20)

(10.22)

A calculation which makes use of (10.22) and will be useful later is

p
2k! � 2k2m = km1=2

s
2!

km
� 1 = ~k

�
2~!
~k

�7
m�7 (10.23)

This is the beheavior of the longitudinal and time coordinates

X � m3

T � m2

Let us start from the upper deck where we know that

p1u(yu) =
k2Ap

2k! � k2me�
p
2k!�k2m yu

Regarding the exponent we can consider that:

� If
p
2k! � k2m yu >> 1 then we have p1u(yu) = 0, which is not an

interesting solution.

� If
p
2k! � k2m yu << 1 then we have

p1u(yu) =
k2Ap

2k! � k2m � m�6A
m�7 = Am (10.24)

Nevertheless, the boundary condition

@p1u
@yu

=
@2A

@X2

gives

yu � p1uX
2

A
� Am7

A
= m7

which exactly produces
p
2k! � k2m yu = O(1) , in con�ict with the

�rst assumption.

� From the previous item we deduce that yu � m7 satis�es both the

preservation of the exponent and the boundary condition.
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We can notice that the choice of A is arbitrary so far and we can deduce it

by analizing the boundary sublayer. From the boundary condition

ul = �(yl + A)

we can write that

ul � X

T
� m � yl � A (10.25)

Therefore, from (10.24)

p1u � p1l � m2 (10.26)

From the continuity equation

vl � ylul
X

� 1

m
(10.27)

We perform the following transformation

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

X = m3X̂

T = m2T̂

yl = mŷl

yu = m7ŷu

u1l = mû1l

v1l = m�1v̂1l

p1l = m2p̂1l

A = mÂ

(10.28)

Now the equations are

@2p̂1u

@X̂2
+ 2

@2p̂1u

@X̂@T̂
=

1

m9

@2p̂1u
@ŷ2u

(10.29)

with boundary conditions

8><
>:
p̂1u ! 0 as ŷu !1
@p̂1u
@ŷu

= @2Â
@X̂2

at ŷu = 0

and 8><
>:

@û1l
@T̂

+ û1l
@û1l
@X̂

+ v̂1l
@û1l
@ŷl

= �@p̂1l
@X̂

+ @2û1l
@ŷ2l

@û1l
@X̂

+ @v̂1l
@ŷl

= 0
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with boundary conditions8><
>:
û1l = v̂1l = 0 at ŷl = 0

û1l(X̂;1; T̂ ) = �(ŷl + Â)

We can precisely calculate (10.24)

p1u(yu) =
�A~k2

2~!
e�

~k
�
2~!
~k

�7
yu

Therefore,

p1u(X; yu; T ) =
�A~k2

2~!
e�

~k
�
2~!
~k

�7
yuei(kX�!T )

with k and ! given by (10.22). Equation (10.29) shows that the determina-

tion of the wave speed becomes inviscid at �rst order and governed by its

left hand side.
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11 Nonlinear equation for amplitude of Tollmien-

Schlichting waves in a boundary layer with tran-

sonic free stream velocity

Let us recall some results and remarks obtained so far. The primordial stage

of the transition to turbulence is associated with the appearance of Tollmien-

Schlichting waves in the boundary layer, either spontaneously under the

in�uence of disturbances or arti�cially by using oscillating devices.

In section (4) we �rst analized the stability of the boundary layer under the

assumption of parallel �ow. For small perturbations in a parallel �ow, the

structure of a Tollmien-Schlicthing wave is described by the Orr-Sommerfeld

equation. It shows that the perturbation either increases or decreases de-

pending on the �ow parameters. Of particular interest is the borderline case

of neutral waves with constant amplitude.

However, the boundary layer �ow is not parallel. Only for large Reynolds

numbers it becomes asymptotically parallel. Therefore, we need to revise

stability theory for such �ows. The �rst consequence is the development of

a triple-tired structure. The second consequence concerns the presence of

two di�erent lenght scales along the surface of the �at plate for a Tollmien-

Schlichting wave propagating in such a weakly non-parallel �ow: the wave-

lenght and a lenght associated with the variation of the �ow downstream.

Given the presence of these two di�erent typical lenghts, it is natural to use

the method of multiscale expansion.

Mathematically, the problem consists of �nding eigensolutions to the lin-

earized Navier-Stokes equations. It was found that such solutions exist and

are proportional to

E = ei(�(X)���)

where the frequency � is constant, to be more precise it is independent of

the spatial variable, and X is the fast longitudinal coordinate. The ampli-

tude is found to be dependent on the slow longitudinal coordinate. The

stability boundary is determined by the condition that the derivative of the

amlplitude vanishes. Further downstream, the relative Reynolds number

increases, while the oscillation frequency remains the same. The result is

a growth in amplitude. Its further evolution cannot be studied without

allowance for the non-linear e�ects.

11.1 Formulation of the problem

As usual, we consider the two-dimensional �ow past a �at plate parallel to

the oncoming �ow. The free stream velocity is considerated to be transonic.

We consider a point O on the �at plate at distance L from the leading edge.
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Figure 19: Scatch of the problem

As we said in our previous analysis, for large Reynolds numbers a boundary

layer is formed.

Suppose that a Tollmien-Schlichting wave has been formed and its frequency

is close to its neutral value at point O. Furthermore, suppose that, always

at point O, the wave amplitude in known. Dealing again with the lower

branch of the neutral curve, a triple-decked structure has to be considered.

The aim is to determine the wave parameters downstream of point O, for

example at point O0 (see �gure (19)).
As usual we introduce a Cartesian coordinate system with origin at the

leading edge of the �at plate. The problem is treated in its nondimensional

form. We consider the displacement of the wave from O to O0, i.e. from

the point x = 1 to the point x = 1 + �x. We divide this process into two

stages: linear displacement of the wave from O to O0 and non-linear process

of growth of the amplitude at point O0. We proceed in the following way.

1. Linear displacement of the wave from O to O0.

In accordance with what seen hitherto, namely the linear theory of

boundary layer stability, the perturbations are proportional to

ei(�x�!t)

where the oscillation frequency ! is real and � in general is complex.

Regarding the point O, the immaginary part of � vanishes, being on

the neutral curve. Remember that

x = O(R
�1=3
e ) (11.1)
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Therefore

�r = (R
1=3
e ) (11.2)

Given that the oscillation frequency ! does not change from O to O0,
we have that at point O0

�i
�r

= O(�x) (11.3)

2. Nonlinear process of growth of the amplitude at point O0

From this point of view the �ow is no longer non-parallel and the non-

linear stability theory of parallel �ows can be used. According to this

theory, the wave amplitude does not increase to in�nity but tends to

a limit, which is of order (�i=�r)
1=2. The distance �x0 needed for this

transition process satis�es

�i�x
0 = O(1) (11.4)

These e�ects are compatible and are manifested simultaneously if�x = �x0.
From equations (11.2), (11.3) and (11.4) we have that this requirement is

�x0 = O(�i)
�1 = O(�r)

�1O(�x)�1 = O(�x)

and we have

O(�x) = O(�r)
�1=2 = R

�1=6
e (11.5)

What happens to the longitudinal variable is that it has two di�erent lenght

scales. In the multiscale theory we distinguish between a fast and a slow

variable. The slow variable is

X = R
1=6
e (x� 1)

The fast variable is, from (11.1)

x� = R
1=3
e (x� 1)

Let us write the fast variable and time in the following way

x� = R
1=3
e �(x� 1) = R

1=3
e (�0 + :::)(x� 1) (11.6)

t� = R
2=9
e !t = R

2=9
e (!0 + :::)t (11.7)

where only the leading order in the asymptotic expansion for wavenum-

ber and frequency, given by the linear stability theory, can be considered.

Writing those variables in this format allows to write the perturbations as

proportional to

ei(x��t�) = ei�
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All the way through the following research, the time derivative is

@

@t
= R

2=9
e !0

@

@t�

and the longitudinal coordinate derivative, due to the two-scale theory, be-

comes

@x = R
1=6
e @X +R

1=3
e �0@x�

Finally the transversal variable, which behaves according to the Triple-Deck

theory widely treated in the previous chapters. Our analysis, therefore, is

divided in three parts, one for each layer. We start from the viscous wall

layer, where the starting point is the Blasius boundary layer solution in the

vicinity of the wall surface. Subsequently, we move to the main part of the

boundary layer and the exterior potenzial �ow. The equations for the �rst

three orders are derived and an equation for the amplitude is inspected.

11.2 Viscous Wall Layer

Remember that the unperturbed steady �ow in a boundary layer is described

by the Blasius solution. In terms of  (x; Y ), the stream function such that

u = @y v = �@x 

the Blasius solution may be written as follows

 (x; Y ) = R
�1=2
e x1=2f(�) (11.8)

with

� = Y x�1=2 (11.9)

The variable Y = R
1=2
e y is order one in the main part of the boundary layer

and the function f is the solution to the following boundary-value problem

f 000 + 1
2ff

00 = 0 f(0) = f 0(0) = 0 f 0(1) = 1

We have already shown that when moving towards the wall, i.e. � ! 0, the

following expansion holds

f =
1

2
��2 +O(�5) (11.10)

with � = 0:33206:::. Therefore, in the boundary sublayer we have

 (x; Y ) = R
�1=2
e x1=2

1

2
�
�
Y x�1=2

�2
=

1

2
�R

�1=2
e Y 2x�1=2 (11.11)
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We want to rewrite (11.11) in the variables y� = R
11=18
e y, which is of order

unity in the viscous wall layer, and X. We have

y� = R
11=18
e y = R

11=18
e R

�1=2
e Y = R

1=9
e Y ) Y = R

�1=9
e y�

and

x = 1 +R
�1=6
e X

The expression (11.11) becomes

 (X; y�) = 1
2�R

�1=2
e R

�2=9
e y2�(1 +R

�1=6
e X)�1=2 =

= 1
2�R

�13=18
e y2�

�
1� 1

2R
�1=6
e X +O(R

�1=3
e )

�
=

= 1
2�y

2�R
�13=18
e � 1

4�y
2�XR

�16=18
e +O(R

�19=18
e )

The relative amplitude of the perturbations is of order R
�3=36
e and, therefore,

the unsteady solution to the Navier-Stokes equations can be sought in the

form

 (X;x�; y�; t�) = �
2y

2�R
�26=36
e +R

�29=36
e  1(X;x�; y�; t�)+

+ R
�32=36
e

�
 2(X;x�; y�; t�)� �

4y
2�X
�
+

+ R
�35=36
e  3(X;x�; y�; t�) +O(R

�38=36
e )

(11.12)

The �rst unsteady term has order O(R
�3=36
e ) relative to the main steady

term of the expansion. In order to �nd the expansion for pressure, we have

to recall that in the Triple-Deck theory it is known to have order R
�2=9
e which

has to be multiplied for the relative amplitude of perturbations R
�3=36
e . It

yields

p = R
�11=36
e p1 +R

�14=36
e p2 +R

�17=36
e p3 +O(R

�21=36
e ) (11.13)

All the coe�cients pi are functions of t�, x�, X and y�.
Remember that, from the triple-deck theory, when8>>>><

>>>>:
u = R

�4=36
e u�

v = R
�14=36
e v�

p = R
�8=36
e p�

(11.14)

the equations in the viscous sublayer are8><
>:
!0@t�u� + �0u�@x�u� + v�@y�u� = ��0@x�p� + @2y�u�

@y�p� = 0
(11.15)
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As soon as we write u, v and p as in (11.14), the equation is analogous to

(11.15) with the following modi�cation for the x� derivative

�0@x� = R
�6=36
e @X + �0@x�

Therefore (11.15) becomes8>>>><
>>>>:
!0@t�u� + �0u�fR�6=36e @X + �0@x�gu� + v�@y�u� =

= ��0fR�6=36e @X + �0@x�gp� + @2y�u�

@y�p� = 0

(11.16)

Let us calculate u, v and p considering up to the third order terms

u = @y = R
11=18
e @y� = R

�4=36
e

n
�y� +R

�3=36
e @y� 1+

+ R
�6=36
e

�
@y� 2 � �

2Xy�
�
+R

�9=36
e @y� 3

o
= R

�4=36
e u�

v = @x = �
n
R
1=3
e �0@x� +R

1=6
e @X

o
 =

= �R�14=36e

n
R
�3=36
e �0@x� 1 +R

�6=36
e �0@x� 2 +R

�9=36
e (�0@x� 3 + @X 1)

o
p = R

�8=36
e

n
R
�3=36
e p1 +R

�6=36
e p2 +R

�9=36
e p3

o
= R

�8=36
e p�

Let us call � = R
�3=36
e and substitute the expressions for u�, v� and p� into

equation (11.16).

�!0@
2
t�y� 1 + �2!0@

2
t�y� 2 + �3!0@

2
t�y� 3 + �0

�
�y� + �@y� 1 + �2(@y� 2

��
2Xy�) + ::

i
�
h
�@2x�y� 1 + �2@2x�y� 2 + �3(@2Xy� 1 + @2x�y� 3)

i
� �0 [�@x� 1

+�2@x� 2 + �3(@x� 3 + @X 1)
� � h�+ �@2y� 1 + �2(@2y� � �X

2 ) 2 + :::
i
=

���0@x�p1 � �2�0@x�p2 � �3�0@x�p3 + �@3y� 1 + �2@3y� 2 + �3@3y� 3

and

@y�p1 = @y�p2 = @y�p3 = 0

Collecting the same order terms we end up with the following equations

with i = 1; 2; 3

(11.17)

!0@
2
t�y� i + �0�

�
y�@2x�y� i � @x� i

�
+ �0@x�pi = @3y� i + gi

@y�pi = 0

g1 = 0

g2 = �0
�
@x� 1@

2
y� 1 � @y� 1@2x�y� 1

�
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g3 = �0
�
@x� 2@

2
y� 1 + @x� 1@

2
y� 2 � @y� 1@2x�y� 2 � @y� 2@2x�y� 1

�
+

1

2
�X

�
y�@2x�y� 1 � �0@x� 1

�
+ �

�
@X 1 � y�@2Xy� 1

�
� @Xp1

The boundary conditions for the equations are given by the impermeability

and no-slip conditions

 i(y� = 0) = @y� ijy�=0 = 0 (11.18)

and the condition of matching to the main part of the boundary layer.

11.3 Main Part of the Boundary Layer

In the main part of the boundary layer, the variable Y = R
1=2
e y is of order

one. The steady solution is described by (11.8). We now expand in terms

of the variable X

x = 1 +R
�1=6
e X

 (X;Y ) = R
�1=2
e (1+R

�1=6
e )1=2f

 
Y

(1 +R
�1=6
e X)1=2

!
= R

�1=2
e (1+

1

2
R
�1=6
e X

+
1

8
R
�2=6
e X2+:::)f(Y (1�1

2
R
�1=6
e X�3

8
R
�2=6
e X2+:::)) = R

�1=2
e (1+

1

2
R
�1=6
e X

+
1

8
R
�2=6
e X2 + :::)f(Y � [

1

2
R
�1=6
e X +

3

8
R
�2=6
e X2 + :::]Y )

Using the following expansion for f

f(Y � [
1

2
R
�1=6
e X +

3

8
R
�2=6
e X2 + :::]Y ) = f(Y )+

f 0(Y )(�1

2
R
�1=6
e X � 3

8
R
�2=6
e X2)Y +

1

2
f 00(Y )Y 2(�1

2
R
�1=6
e X � 3

8
R
�2=6
e X2)2

Finally, we have

 (X;Y ) = R
�18=36
e f(Y ) +R

�24=36
e f1(Y )X +R

�30=36
e f2(Y )X

2 + ::: (11.19)

where

f1(Y ) =
1

2
(f � Y f 0) f2(Y ) = �1

8
(f � Y f 0 � Y 2f 00)

Now we have to represent the unsteady solution. From (11.12) the per-

turbations move into the main deck. We can �nd their magnitude in the

following way

u = @y (:::; y�) = @y	(:::; Y )

Given that

y� = R
11=18
e y Y = R

1=2
e y
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we can conclude that

	(:::; Y ) = R
4=36
e  (:::; y�)

Therefore, the unsteady solution in the main part of the boundary layer is

 = R
�18=36
e f(Y ) +R

�24=36
e f1(Y )X +R

�25=36
e 	1 +R

�28=36
e 	2+

+R
�30=36
e f2(Y )X

2 +R
�31=36
e 	3 +O(R

�34=36
e )

(11.20)

From the triple-deck theory we know that the pressure has the same expres-

sion as in the sublayer

p = R
�11=36
e P1 +R

�14=36
e P2 +R

�17=36
e P3 +O(R

�20=36
e ) (11.21)

All the functions 	i and Pi are dependent on t�, x�, X and Y . The next

step is the substitution of (11.20) and (11.21) into the inviscid Navier-Stokes

equations. The calculation is performed in the following way.

u = @y = R
1=2
e @Y  = R

18=36
e @Y  

v = �@x = �fR1=6
e @X +R

1=3
e �0@x�g 

The calculation produces

u = f 0(Y )+ R
�6=36
e f 01(Y )X+ R

�7=36
e @Y	1+ R

�10=36
e @Y	2+

(u1) (u2) (u3) (u4)

+R
�12=36
e f 02(Y )X2+ R

�13=36
3 @Y	3+ :::

(u5) (u6)

v = �R�13=36e �0@x�	1 �R�16=36e �0@x�	2 �R�19=36e (@X	1 + �0@x�	3)

(v1) (v2) (v3)

�R�22=36e @X	2 �R�25=36e @X	3� :::

(v4) (v5)

When derivating u with respect to x, i.e.

@x = R
6=36
e @X +R

12=36
e �0@x�

we note that only the terms (u3), (u4) and (u6) produce a result and each

stems two terms, due to the X and x� derivatives. When deriving u with

respect to y all the terms are retained, even if multiplied for R
18=36
e .
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Keeping in mind that in the boundary layer @Y Pi = 0, the equation which

needs to be calculated is the following

u @xu+ v @yu = �@xp (11.22)

The following tables help us in calculating only the terms which are present

in the �rst, second and third approximations, instead of calculating all the

terms.

u @xu

(u1) 1 �0@x�(u3) R
5=36
e

(u2) R
�6=36
e �0@x�(u4) R

3=36
e

(u3) R
�7=36
e @X(u3) R

�1=36
e

�0@x�(u6)

(u4) R
�10=36
e @X(u4) R

�4=36
e

(u5) R
�12=36
e @X(u6) R

�7=36
e

(u6) R
�13=36
e

v @yu

(v1) R
�13=36
e @Y (u1) R

18=36
e

(v2) R
�16=36
e @Y (u2) R

12=36
e

(v3) R
�19=36
e @Y (u3) R

11=36
e

(v4) R
�22=36
e @Y (u4) R

8=36
e

(v5) R
�25=36
e @Y (u5) R

6=36
e

@Y (u6) R
5=36
e

@xp

�0@x�(p3) R
�1=36
e

�0@x�(p2) R
�2=36
e

@X(p1) R
�5=36
e

�0@x�(p3)

@X(p2) R
�8=36
e

@X(p3) R
�11=36
e

Now we can collect the terms of our interest.
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� O(R5=36
e )

f 0(Y )�0@2x�Y	1 � �0@x�	1f
00(Y ) = 0

It can be written as

��
��f 0(Y )2@Y

�
�0@x�	1

f 0(Y )

�
= 0

Therefore

	1 = f 0(Y ) ~A1(x�; X; t�)

For simplicity in future calculations we write

	1 =
f 0(Y )
�

A1(x�; X; t�)

� O(R2=36
e )

The equation is the same as before.

	2 =
f 0(Y )
�

A2(x�; X; t�)

� O(R�1=36e ) At this order the solution is

	3 =
f 0(Y )
�

A3(x�; X; t�) +
X

2�
(f 0 � Y f 00)A1

We can express these equations in a compact form:

	i =
f 0(Y )
�

Ai(x�; X; t�) +Gi @Y Pi = 0 (11.23)

where G1 = G2 = 0 and G3 = X
2�(f

0 � Y f 00)A1. We can now formulate a

boundary condition for the wall layer considering the limit Y = 0. At Y = 0

we have that 	i = Y Ai. The boundary condition is

 i = Aiy� + ::: as y� !1 (11.24)

11.4 Exterior potential �ow

In the main part of the boundary layer we have that the transversal velocity

is

v = �R�13=16e �0@x�	1 �R�16=36e �0@x�	2 +R
�19=36
e (@X	1 + �0@x�	3)

Kepoing in mind that f 0(1) = 1, we can work out the exression for v in

this limit.

v = �R�13=36e
�0
�
@x�A1 �R�16=36e

�0
�
@x�A2+
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�R�19=36e

�
�0
�
@x�A3 +

1

�
@XA1 +

�0
2�
X@x�A1

�
Therefore, always remembering the triple-deck expansions obtained earlier,

we represent the solution in the potential �ow in the form8>>>><
>>>>:
u = 1 +R

�11=36
e u1 +R

�14=36
e u2 +R

�17=36
e u3

v = R
�13=36
e v1 +R

�16=36
e v2 +R

�19=36
e v3

p = R
�11=36
e po1 +R

�14=36
e po2 +R

�17=36
e po3

(11.25)

Being u � R
�1=4
e , v � R

�5=18
e and p � R

�1=4
e in the external region, we

write 8>>>><
>>>>:
u = 1 +R

�8=36
e

n
R
�3=36
e u1 +R

�6=36
e u2 +R

�9=36
e u3

o
v = R

�10=36
e

n
R
�3=36
e v1 +R

�6=36
e v2 +R

�9=36
e v3

o
p = R

�8=36
e

n
R
�3=36
e po1 +R

�6=36
e po2 +R

�9=36
e po3

o (11.26)

The governing equation for pressure in the external potential �ow is the

following

2@2txp+mR
�1=9
e @2xp = @2yp� @2t p (11.27)

This is the small perturbed pressure equation, whose derivation is in ap-

pendix. Given that

t = !0R
�2=9
e t�

y = R
�5=18
e y0

x = R
�1=3
e �0x�

x = 1 +R
�1=6
e X

and consequently

@x = R
1=3
e @x� +R

1=6
e @X

@t = !0R
2=9
e @t�

@y = R
5=18
e @y0

equation (11.27) becomes

2!0�0R
20=36
e

@2p
@t�@x�

+ 2!0R
14=36
e

@2p
@t�@X

+ m!20R
20=36
e

@2p
@x2�

+

(1) (2) (3)

+2m�0R
14=36
e

@2p
@x�@X

+ mR
8=36
e

@2p
@X2 = R

20=36
e

@2p
@y2

0

+

(4) (5) (6)

�!20R16=36
e

@2p
@t2�

(7)

(11.28)
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Given that pressure is present in each term, the expansion we have to plug

into (11.28) is

po1 +R
�3=36
e po2 +R

�5=36
e po3

In the following table the resulting terms

po1 po2 po3

(1) R
20=36
e R

17=36
e R

14=36
e

(2) R
14=36
e R

11=36
e R

8=36
e

(3) R
20=36
e R

17=36
e R

14=36
e

(4) R
14=36
e R

11=36
e R

8=36
e

(5) R
8=36
e R

5=36
e R

2=36
e

(6) R
20=36
e R

17=36
e R

14=36
e

(7) R
16=36
e R

13=36
e R

10=36
e

Collection of the same order terms yields

2!0�0@
2
t�x�p

o
i +m�20@

2
x�p

o
i = @2y0p

o
i +Ri (11.29)

with

R1 = R2 = 0

and

R3 = �2!0@2t�Xpo1 � 2m�0@
2
x�Xp

o
1

The boundary conditions for this problem are analogous to those formulated

in the previous sections. Namely, the condition at in�nity

poi ! 0 as y0 !1 (11.30)

and the matching condition

@yp = �@xv ! R
5=18
e @y0p = �R1=3

e �0@x�v �R1=3
e @Xv at y0 = 0

Using the expression for v presented at the beginning of the present section,

we have

R
�1=36
e @y0p

o
1 +R

�4=36
e @y0p

o
2 +R

�7=36
e @y0p

o
3 =

= R
�1=36
e

�20
�
@2x�A1 +R

�4=36
e

�20
�
@2x�A2 +R

�7=36
e �

�
 
�20
�
@2x�A3 +

�0
�
@2x�XA1 +

�20
2�
X@2x�A1

!
+R

�7=36
e

�0
�
@2x�XA1 + :::
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We can conclude that the boundary conditions at y0 = 0 are

@y0p
o
i =

�20
�
@2x0Ai + ri (11.31)

with

r1 = r2 = 0

r3 =
2�0
�
@2x�XA1 +

�20
2�
X@2x�A1

Remember that

pi = poi (x�; X; y0 = 0; t�) (11.32)

11.5 Equation for amplitude - First order

The free interaction problem is given by equations (11.17) with boundary

conditions (11.18), (11.24) and equation (11.29) with boundary conditions

(11.30), (11.31). Namely,

!0@
2
t�y� 1 + �0�

�
y�@2x�y� 1 � �0@x� 1

�
+ �0@x�p1 = @3y� 1 (11.33)

with boundary conditions

 1(y� = 0) = @y� 1jy�=0 = 0  1 = A1y� + ::: as y� !1 (11.34)

and equation for pressure

2!0�0@
2
t�x�p

o
1 +m�20@

2
x�p

o
1 = @2y0p

o
1 (11.35)

with boundary conditions

@y0p
o
1 =

�2
0

� @
2
x0A1 po1 ! 0 as y0 !1 (11.36)

We seek the solution to this problem in the form of periodic functions of

the variable

� = x� � t�
We set

 1 = �1(X; y�)ei� + ��1(X; y�)e�i� (11.37)

It follows from the second of (11.34) that

A1 = a1(X)ei� + �a1(X)e�i� (11.38)

We have already shown in (9) the solution to (11.35)

po1(y0 = 0) = p1 =
�20a1(X)q

2�0!0 � �20m
ei�

�
+

�20�a1(X)q
2�0!0 � �20m

e�i�

�
(11.39)
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Let us focus our attention on the �rst term, neglecting the complex conju-

gate. We found that, when solving (11.33) we end up with equation (5.13).

Remember that

z = (i�0�)
1=3fy� � !0

�0�
g = �y� + z0

being

� = (i�0�)
1=3 and z0 = ��!0

�0�

When derivating we have

@z = �@y�

In equation (5.13) we can write f as

f = @y�u = �2@2z�1(z)

Therefore, the Airy equation is

�
(IV )
1 (z)� z�(II)

1 (z) = 0 (11.40)

From boundary conditions (5.8) and (5.11) it follows that

v(0) = �@x� 1 = �i�0�1(z0)e
i� = 0) �1(z0) = 0

u(0) = @y� 1jy�=0 � �
(I)
1 (z0) = 0

u(1) = a1(X)ei� ) �@z�1 = a1

�u(0) = �3�
(III)
1 (z0)e

i� = i�0p1

We can rearrange the boundary conditions as follows8>>>>>>>><
>>>>>>>>:

�1 = 0 at z = z0

�
(I)
1 = 0 at z = z0

�
(III)
1 = 1

�2
�2
0
a1(X)p

2�0!0��20m
at z = z0

�
(I)
1 = a1(X)

� at z =1

(11.41)

We know from (5.13) that the solution to this problem is

�2�
(II)
1 (z) = AAi(z)

We can write

�
(II)
1 (z) = B(X)Ai(z)

as well as

�1(z) = B(X)'1(z) with '
(II)
1 = Ai(z) (11.42)
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Finally, from the boundary conditions (11.41)

8><
>:
'1(z0) = '

(I)
1 (z0) = 0

a1(X) = �2

�2
0

B(X)Ai0(z0)
q
2�0!0 � �20m

(11.43)

Note that B(X) is the amplitude of the Tollmien-Schlivhting wave and we

know from the previous section that the nontrivial solution is for

�0 = A � 1:001 � �5=4

!0 = A2=3 � 2:299 � �3=2

where we remind that A is the solution to

A8=3 � 2
2:299

1:001
�1=4A�1=3 +m = 0

11.6 Equation for amplitude - Second order

The equations for the second order approximation are

!0@
2
t�y� 2 + �0�

�
y�@2x�y� 2 � �0@x� 2

�
+ �0@x�p2 =

@3y� 2 + �0
�
�0@x� 1@

2
y� 1 � @y� 1@2x�y� 1

� (11.44)

with boundary conditions

 2(y� = 0) = @y� 2jy�=0 = 0  2 = A2y� + ::: as y� !1 (11.45)

and equation for pressure

2!0�0@
2
t�x�p

o
2 +m�20@

2
x�p

o
2 = @2y0p

o
2 (11.46)

with boundary conditions

@y0p
o
2 =

�2
0

� @
2
x0A2 po2 ! 0 as y0 !1 (11.47)

The equation for the �ow function is inhomogeneous. On the basis of the

term on its right-hand side, we represent the function  2 in the form

 2 = B �Bh+B2'2e
2i� + �B2 �'2e

�2i� (11.48)

We set

A2 = a2(X)e2i� + �a2(X)e�2i� (11.49)
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The equation for pressure is exactly the same as in the previous approxima-

tion, therefore

p2 = 2
�20a1(X)q

2�0!0 � �20m
e2i�

�
+ 2

�20�a1(X)q
2�0!0 � �20m

e�2i�

�
(11.50)

From the �rst of (11.45) with (11.50) we deduce that

h(z0) = h0(z0) = 0 and '2(z0) = '02(z0) = 0 (11.51)

Let us start by analizing the governing equation for h(z). It is done by

substituting  2 = B �Bh(z) and (11.37) along with (11.42) into equatione

(11.44). The only terms involved are:

@3y�fB �Bh(z)g = @y� 1@
2
x�y� 1 � @x� 1@2y� 1

After substitution

�3B �Bh(III)(z) = �[B'
(I)
1 ei� + �B �'

(I)
1 e�i�]i�0�[B'

(I)
1 ei� � �B �'

(I)
1 e�i�]+

��2i�0[B'1e
i� � �B �'1e

�i�][B'(II)1 ei� + �B �'
(II)
1 e�i�]

After multiplication, terms proportional to e�i� are discarded. Finally:

h(III)(z) =
i�0
�

[ �'1'
(II)
1 � '1 �'(II)1 ] (11.52)

We can see that

h(III)(z) =
i�0
�

[ �'1'
(I)
1 � '1 �'(I)1 ](I)

and therefore

h(II)(1)������h(II)(z0) =
i�0
� [ �'1(1)'

(I)
1 (1)� '1(1) �'

(I)
1 (1)+

� �'1(z0)��
��'

(I)
1 (z0) +���

�'1(z0) �'
(I)
1 (z0)] = 0) h(II)(1) = 0

(11.53)

Here we used the fact that Stuart (see [11]) showed that the solution to this

equation is not unique and we can choose h(II)(1) = 0. Now we move to

the remaining part of  2, namely  2 = B2'2e
2i�. In the right-hand side

of (11.44) we use  1 = B'1e
i�. Clearly, only terms with phase e2i� in the

right-hand side are considered. Keep in mind that

y� =
z � z0
�

Equation (11.44) is

��
���

���2i!0B2'
(I)
2 + �0�

�
z���z0
��

2iB2'
(I)
2 ���� 2iB2'2

�
+ i�0p2 =

= �3B2'
(III)
2 + �0iB

2
�
'1�

2'
(II)
1 � '(1)1 �2'

(I)
1

� (11.54)
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It can be rearranged as

2i��0[z'
(I)
2 � '2] + i�0

B2 p2 = �3'
(III)
2 +

+�0i�
2('1'

(II)
1 � ('

(I)
1 )2)

(11.55)

We can formulate an additional boundary condition by evaluating the pre-

vious expression at z = z0. From the �rst condition in (11.45) it follows

that

'2(z0) = '
(I)
2 (z0) = 0

as well as we knew in the �rst order approximation that

'1(z0) = '
(I)
1 (z0) = 0

Therefore, the equation becomes:

'
(III)
2 (z0) =

i�0
B2

�p2

From (11.50)

'
(III)
2 (z0) =

1

�

4i�30
B2

a2(X)q
2�0!0 � �20m

Furthermore, from the second in (11.45) we can deduce that

 
(I)
2 (1) = A2 ) B2'

(I)
2 (1) = a2(X)

Finally, the boundary condition turns out to be

'
(III)
2 (z0) = 4

�
�0
�

�2 �q
2�0!0 � �20m

'
(I)
2 (1) (11.56)

We can now derivate (11.53) with respect to z. We get

'
(IV )
2 � z'(II)2 =

i�0
�

('
(I)
1 '

(II)
1 � '1'(III)1 ) (11.57)

We can conclude that the problem in the second approximation is the fol-

lowing

(11.58)

h(III)(z) =
i�0
�

[ �'1'
(II)
1 � '1 �'(II)1 ]

h(I)(z0) = h(II)(1) = 0

'
(IV )
2 � z'(II)2 =

i�0
�

('
(I)
1 '

(II)
1 � '1'(III)1 )

'2(z0) = '
(I)
2 (z0) = 0 and '

(III)
2 (z0) = 4

�
�0
�

�2 �q
2�0!0 � �20m

'
(I)
2 (1)
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11.7 Equation for amplitude - Third order

The equations are:

!0@
2
t�y� 3 + �0�

�
y�@2x�y� 3 � �0@x� 3

�
+ �0@x�p3 = @3y� 3 + �0

�
�
�0@x� 2@

2
y� 1 + �0@x� 1@

2
y� 2 � @y� 1@2x�y� 2 � @y� 2@2x�y� 1

�
+1

2�0�X
�
y�@2x�y� 1 � �0@x� 1

�
+ �

�
@X 1 � y�@2Xy� 1

�
� @Xp1

(11.59)

and

@y�p3 = 0 (11.60)

with boundary conditions

 3(y� = 0) = @y� 3jy�=0 = 0  3 = A3y� + ::: as y� !1 (11.61)

and equation for pressure

2!0�0@
2
t�x�p

o
3 +m�20@

2
x�p

o
3 = @2y0p

o
3 � 2!0@

2
t�Xp

o
1 � 2m�0@

2
x�Xp

o
1 (11.62)

with boundary conditions

po3 ! 0 as y0 !1 (11.63)

and

@y0p
o
3 =

�20
�
@2x0A3 +

2�0
�
@2x�XA1 +

�20
2�
X@2x�A1 (11.64)

The solution to the problem of the third approximation can be represented

in the form

 3 = �3e
i� + ��3e

�i� + F3e
3i� + �F3e

�3i� (11.65)

Let us focus on the e�i� terms. As before, we can write:

A3 = a3(X)ei� + c:c: (11.66)

and

po3 = po3(y0)e
i� + c:c: (11.67)

The latter, when evaluated at y0 = 0 yields

p3 = p3(X)ei� + c:c: (11.68)
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We start by evaluating expression (11.59).

�i!0�(I)
3 �ei� + i�0�

�
z�z0
� �

(I)
3 �� �4

�
ei� + i�0p3(X)ei� =

= �3�
(III)
3 ei� + i�0�

2
n�

2B2'2e
2i� � c:c:

� �
B'

(II)
1 ei� + c:c:

�
+
�
B'1e

i� � c:c:
� �
B �Bh(II) + 2B2'

(II)
2 e2i� + c:c:

�
+

�
�
B'

(I)
1 ei� + c:c:

� �
2B2'

(I)
2 e2i� � c:c:

�
+

�
�
B �Bh(I) + 2B2'

(I)
2 e2i� + c:c:

� �
B'

(I)
1 ei� � c:c:

�o
+

+1
2 i�0�XB

�
y��'

(I)
1 � '1

�
ei� + � dBdX ('1 � y�'(I)1 �)ei� � @Xp1

(11.69)

We are interested in ei� terms, and therefore we have

�3
�
z�

(I)
3 � �3

�
+ i�0p3 = �3�

(III)
3 + i�0B

2 �B�2+n
2'2 �'

(II)
1 + '1h

(II) � �'1 + '
(II)
2 � '(I)2 �'

(I)
1 � hI'(I)1

o
+

+1
2�

3XB(y��'
(I)
1 � '1) + � dBdX ('1 � y��'(I)1 )� @Xp1

(11.70)

From the �rst of equations (11.61) we can deduce that

�3(z0) = �
(I)
3 (z0) = 0

This condition, as well as the analogous ones for '1 and '2 and their �rst

derivatives, enable to evaluate (11.69) at z = z0

�
(III)
4 (z0) =

i�0
�3

p4 +
1

�3
@Xp1 =

1

�
p4 +

1

�3
@Xp1 (11.71)

We can �nally derivate equation (11.69) with respect to z , getting an equa-

tion for the third approximation function �3.

�
(IV )
3 � z�(II)

3 = �B2 �B i�0
�

n
'1h

(III) � h(I)'(II)1 + 2'2 �'
(III)
1 +

�2 �'(I)1 '
(II)
2 + '

(I)
2 �'

(II)
1 � �'1'

(III)
2

o
� �

2BXy�Ai(z)+

+ dB
dX

�
�2 y�Ai(z)

(11.72)

where the Airy functions come from the fact that '
(II)
1 (z) = Ai(z). It is now

time to evaluate properly the boundary condition (11.71). p1 is expressed

in (11.39). We have to solve (11.62). The homogeneus equation for p3 is

2!0�0@
2
t�x�p

o
3 +m�20@

2
x�p

o
3 = @2y0p

o
3

which has the following solution

po3 = Ae�
p
2�0!0��20my0
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We can seek the solution to (11.62) in the following form

po3 = A(y0)e
�
p
2�0!0��20my0

Plugging it into (11.62) yields to the following di�erential equation for A(y0)

A00(y0)� 2
q
2�0!0 � �20mA0(y0) = �2i (!0 �m�0)q

2�0!0 � �20m
�20
�

da1(X)

dX
(11.73)

The �rst integration is simple. The second integration requires to multiply

the whole equation for the factor

e�2
p
2�0!0��20my0

Let us call
q
2�0!0 � �20m by s. The �nal result is the following

A(y0) =
i�20
2�

(!0 �m�0)
s

da1(X)

dX

�
2y0
s

+
1

s2

�
+ c1 + c2e

2sy0 (11.74)

The constant c2 must vanish, due to the requirement that the solution has

to be bounded at in�nity. The constant c1 comes from condition (11.64).

c1 =
i�0
�

da1(X)

dX

3m�20 � 7�0!0
2s3

+
�20
�s

�
(I)
3 (1) +

�0
2�s

Xa1(X)

where we used the fact that a3 = �
(I)
3 (1). What we are interested in is p3,

which is

p3 = A(y0 = 0)

Therefore,

p4 =
i�0
�

da1(X)

dX

m�20 � 3�0!0
2s3

+
�20
�s

�
(I)
3 (1) +

�0
2�s

Xa1(X) (11.75)

It is by simply plugging into (11.71) that we obtain the following condition

�
(III)
3 (z0) =

�20
�2

�
(I)
3 (1)q

2�0!0 � �20m
+
BX

2
Ai0(z0)+

i

�0

dB

dX
Ai0(z0)

2�20m� 5�0!0
2�0!0 � �20m

(11.76)

We can conclude that the third approximation problem consists of equation

(11.72) with boundary condition (11.76).
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12 Conclusions

In this thesis we analized linear and weakly nonlinear behavior of perturba-

tions in a boundary layer with transonic free stream velocity. The problem

structure is the same as in the case of subsonic free stream velocities: the

boundary layer is composed of three layers, which form the so-called triple-

deck structure. The �rst layer is the exterior potential �ow zone. It is situ-

ated in the potential �ow region outside the boundary layer and it serves to

convert the perturbations in the form of streamlines into perturbations of

pressure. The importance of this layer is situated in the fact that it shows

that the boundary layer comes into interaction with external inviscid �ow.

For this reason, this interaction is also termed viscous-inviscid interaction.

The middle tier of the interactive structure is the main part of the boundary

layer, which represents a continuation of the conventional boundary layer

developing along the plate. Pressure does not experience variations across

this deck and all the streamlines are parallel to each other, meaning that

they simply carry the deformation produced by the displacement e�ect of

the viscous sublayer. The latter, indeed, takes place in a region which is

comprised of the stream �laments immediately adjacent to the wall. It is

the viscous wall layer. The viscous e�ects are important here and, owing

to the the slow motion of �uid here, the �ow exhibits high sensitivity to

pressure variations along the wall. Even a small variation of pressure along

the wall may cause signi�cant changes in particles' speed. Despite having

the same structure, triple-decks with subsonic and transonic free stream ve-

locities show di�erent thicknesses of the three layers and di�erent equations.

To be more precise, the only equation which di�ers is the pressure equation

in the upper tier.

Having a mathematical solution of the Navier-Stokes equations does not

guarantee that the con�guration actually exists in Nature. Indeed, for this

to happen the �ow has to be stable. Namely, if the stationary basic �ow

is superimposed by a perturbation of small amplitude, then the perturba-

tion has to extinguish with time returning the solution to its basic state.

This is why stability theories have been developed. Their aim, given some

parameters which describe the con�guration of the particular problem, is

to predict whether the perturbations will grow or not. Particular is the

case of the neutral curve, a set of points in which the perturbation stays

unchanged. It is a borderline between a region where the perturbations

grow and another where perturbations decay. In this type of problems, the

perturbations are regarded in the form of normal modes, namely periodic

in the longitudinal coordinate and time. The periodicity parameters are,

respectively, wavenumber and frequency. The neutral curve given by the
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non-parallel stability analysis of the Blasius boundary layer was presented

with the intent to show that two branches are present: the upper and the

lower branch. Even if we did not scrutinize the structure of the critical layer,

we stressed the fact that on the upper branch a �ve-zoned boundary layer is

present, owing to a distinction between the wall layer and the critical one.

On the other hand, these layers are coincident on the lower branch of the

neutral curve and this is the part we dealt with.

In the matter of linear analysis, we deduced the dispersion relation which

relates the wave number with the frequency of the normal perturbations.

Without any lost of generality, the frequency can be considered real. De-

pending on the sign, or vanishing, of the wave number immaginary part

we can predict the behavior of the perturbations. The equation in ques-

tion shows a dependence on the parameter m, which is related to the Mach

number as follows

M2
1 = 1 +R

�1=9
e m

At this point, we were able to �nd an a�ne transformation which reduces

the transonic equation onto the well-known subsonic one. The importance

of this transformation is double. On one hand it enables to use the well-

known and widely studied results from the subsonic analysis for any value

of m. On the other hand it expresses the dependence on m for the wave

number and the frequency. Furthermore, given that the wave number is

inversely proportional to the longitudinal coordinate and the frequency does

the same with time, we were able to determine the dependence onm for any

quantities involved in the problem, such as coordinates, pressure, velocities

and displacement function. Firstly, we led m to minus in�nity. In this limit

we expected to reduce to the subsonic case, and this is exactly what we

found. The equations turn out to be the same as in the subsonic analysis.

Secondly, we ledm to in�nity, in the will to extend the Tollmien-Schlichting

waves theory toward supersonic regimes. The most important result we

obtained in this direction, is that the upper deck equation for pressure has

the second derivative with respect to the trasversal coordinate multiplied

for a small parameter which vanishes for large m. This means that the

determination of the wave speed becomes inviscid to �rst order. Essentially

any disturbance moves downstream with the speed of the slowest sound wave

in the free stream. Further research has to be developed in this direction,

in order to better understand how a Tollmien-Schlichting wave supersonic

theory could be formulated.

In the matter of weakly non-linear analysis, we wanted to seek an equation

for amplitude of Tollmien-Schlichting waves. Starting from a point in which

the frequency of the wave is close to its neutral value and the amplitude

is known, the problem is to determine the wave parameters downstream of
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this point. From the linear analysis, we are aware of the behavior of the

wave downstream. Because of the growth of the local Raynolds number and

a conservation of the frequency, the wave ceases to be neutral and begins to

grow in amplitude. However, its futher evolution cannot be studied without

allowance for the non-linear e�ects. Therefore, we divide this process into

two stages: a linear displacement of the wave, which can be treated using

the linear theory of boundary layer stability studied earlier, and a non-linear

process of growth of the amplitude. The latter process can be analyzed on

the basis of the non-linear stability theory of parallel �ows, namely, neglect-

ing the non-parallel nature of the boundary layer. These two processes are

compatible and are manifested simultaneously. They have a di�erent lenght

scale as compared to the typical lenght given by the wavelenght. For this

reason we used the multiple-scales theory, distinguishing between slow and

fast longitudinal coordinates. Under these assumptions, we were able to ob-

tain the equations for amplitude in the �rst three orders of approximation.

The condition for the existence of a solution to this problem (see [8]) is the

required equation for amplitude:

dB

dX
= �XB + �B2 �B

The calculation of the coe�cients � and � goes beyond the scopes of this

project and will be subject of future research. The solution to this equation

depends only on the initial wave amplitude. Let us analyze the terms on

the right-hand side of this equation. The term proportional to X comes

from the linear growth of the wave, while the nonlinear term stems from the

non-linear phenomena. Clearly, we expect the real part of � to be positive,

since the boundary layer's being non-parallel accelerates the growth of the

Tollmien-Schlichting amplitude. On the other hand, we expect the real

part of � to be negative, given the fact that in the subsonic �ow regime

(see [6]) the non-linear term retards the growth of the Tollmien-Schlichting

amplitude. Any phenomenon which retards the growth of the instability

waves helps in delaying transition.
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13 Appendix - Small perturbed pressure equation

Let us start regarding the unsteady nonlinear Euler system of equations

8>>>>>>><
>>>>>>>:

@t̂�̂+ @x̂(�̂û) + @ŷ(�̂v̂) = 0

�̂(@t̂û+ û@x̂û+ v̂@ŷû) = �@x̂p̂
�̂(@t̂v̂ + û@x̂v̂ + v̂@ŷv̂) = �@ŷp̂
�̂(@t̂ĥ+ û@x̂ĥ+ v̂@ŷĥ) = �@t̂p̂+ û@x̂p̂+ v̂@ŷp̂

(13.1)

with state equation

ĥ =


 � 1

p̂

�̂

We consider non-dimensional coordinates x, y and t and small perturbed

�ow functions u, p, � and h, represented as

x̂ = Lx

t̂ =
L

V1
t

û = V1(1 + u)

p̂ = p1 + �1V 2
1p

�̂ = �1(1 + �)

ĥ = h1 + V 2
1h

We consider a subsonic �ow, i.e. with M1 < 1, where the entropy stays

unchanged and
p̂

�̂
=
p̂1
�̂

1

The substitution into this parity gives the solution

� =M2
1p

To determine u, p, � and h we substitute the expansions into the Euler

equations. the substitution into the continuity equation gives the linear

equation

@t�+ @x(�+ u) + @yv = 0

The linearized momentum equations may be written as

@tu+ @xu = �@xp

@tv + @xv = �@yp
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To obtain a solution for pressure we shall eliminate all functions except pres-

sure perturbation from our equations. Di�erentiating the linear continuity

equation and �rst momentum equation with respect to x and the second

one with respect to y we obtain

@2tx�+ @2x�+ @2xu+ @2xyv = 0

@2txu+ @2xu = �@2xp
@2tyv + @2xy = �@2yp

Let us substitute the term @2xu from the second equation and @2xyv from the

third to the �rst one

@2tx�+ @2x�� @2txu� @2xp� @2yp� @2ty = 0

From the continuity equation we have

�@t(@xu+ @yv) = �@t(�@t�� @x�)

It yields

M2
1@

2
txp+ (M2

1 � 1)@2xp� @2yp+ @t(@t�+ @x�) = 0

and then

M2
1@

2
txp+ (M2

1 � 1)@2xp� @2yp+M2
1@

2
t p+M2

1@
2
txp = 0

The small perturbed pressure equation has the form

2M2
1@

2
txp+ (M2

1 � 1)@2xp� @2yp+M2
1@

2
t p = 0

When dealing with a transonic regime, in which we write

M2
1 = 1 +R

�1=9
e m+ :::

the equation becomes

2@2txp+R
�1=9
e m@2xp� @2yp+ @2t p = 0
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