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Abstract

Non-Abelian symmetries are one of the most challenging forms of symmetries to be
used in tensor network methods. Their promised advantages in terms of accessible
physical phenomena and computational scaling makes them a meaningful tool for
many-body quantum physics. We implement tensor network methods with non-
Abelian symmetries to explore the bilinear biquadratic spin chain model for up to
50 sites, and compare their benefits with respect to the same system simulated
without symmetries. We motivate the Hamiltonian and highlight the benefits in
terms of group theory in the study of many-body systems in one dimension and
possibly beyond. In particular, we integrate the non-Abelian symmetry into the
existing library Quantum TEA, which consists of over twenty modules and covered
up to now only Abelian symmetries. The integration exploits code design principles
ranging from unit testing to dependency management.
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1
Introduction

Quantum computers, devices that perform numerical tasks with quantum bits, i. e.
qubits, instead of bits, have captivated the efforts and resources of academia, pub-
lic and private sectors. From emulator systems [1] to quantum circuits [2, 3], the
possibility of entanglement between qubits unlocks huge dimensional spaces for the
system state in-between gates up until measurement [4]. Since the operational prin-
ciples of quantum computers are those of quantum systems, these devices could
outperform classical computation in quantum many-body (QMB) simulations by
means of analogue models in quantum processing units as envisioned by R. Feyn-
man [5].

Advantages in problems beyond quantum systems simulations are also theoret-
ically achievable. Shor’s algorithm [6, 7], for example, could perform large prime
factorization in polynomial time on the input’s order. Item search in unstructured
databases can be achieved with

√
N complexity using Grover’s algorithm [8]. There

are also proposals to exploit the potential of quantum computers in discrete opti-
mization tasks [9, 10].

Although promising, even the Noisy-Intermediate Scale Quantum era (NISQ) [11]
for quantum technologies is yet to come. The study of quantum systems relying on
classical resources remains essential for developing general quantum technologies.
In the pursuit of modelling QMB systems with strong correlations, clever numerical
strategies, such as density functional theory [12] or quantum Monte Carlo [13],
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offer remarkable results. However successful these numerical procedures are, their
shortcomings remain an issue [14].

Even if not essential to quantum advantage [15], entanglement is a distinguishing
feature of quantum computers and thus one of the main challenges in the study
of quantum systems on a classical computer. The full description of a system with
N qudits, quantum bodies that can be observed in one out of d different states,
implies an a priori dN-dimensional Hilbert space [16]. Assuming single precision
complex entries, more than eight thousand terabytes would go into the description
of a generic, non-collapsed state for a system of 50 qubits. We are thus confronted
with the so-called curse of dimensionality, which quickly rules out straightforward
exact diagonalisation. Even the identification of symmetries, which often results in
insightful constraints that prune the search space, falls short behind the growth of
these exponentially scaling vector spaces.

Tensor network methods stand out as an approach that capitalises on the theory
of quantum information [17, 18]. Rooted in the developments of Wilker [19], and
White [20], and further formalized towards a class of solutions by the contributions
of Vidal [21] and Schollwöck [22], tensor networks (TNs) furnish a variety of ap-
plications. The development of TNs has impacted the condensed matter field [23],
quantum computation [24], as well as high energy physics [25]. In the growing
field of machine learning, TNs have drawn attention due to their hyperparameter
calibrating features [26]. The notation of tensor network methods provides a clear,
diagrammatic perspective on the manipulation of quantum states and operators [27].
This intuitiveness may in part explain their growing success in the cited fields: the
assumptions on model interactions are manifest in their structure.

With contemporary computational power, and the development of processing
units particularly fit for tensor operations, such as Tensor Processing Units (TPUs)
or high-end Graphical Processing Units (GPUs), TNs are a balanced and necessary
approach to the simulation of many body systems, as they allow the exploitation
of computational resources in an optimized fashion.

A growing variety of problems can be tackled by means of TNs. Ground state
search is possible by means of either variational approaches [23] or imaginary time
evolution, such as with the TEBD algorithm [28], which, as implied by the name,
also enables unitary time evolution. Evaluation of observables other than energy is
also possible, with loop-free TNs being particularly well-suited for efficient evalua-
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tion of local observables and tensor product observables [29]. Moreover, correlators,
which are of utmost relevance in the study of many-body quantum systems, can
be measured efficiently by means of appropriate contraction procedures with tensor
networks [30]. These features are not limited to ground states, since excited states
can be obtained from the ground-state ansätze [31].

Tensor networks are best-suited for QMB low-dimensional lattice systems. Among
such systems, we encounter the Bilinear Biquadratic (BLBQ) model [32, 33]. This
chain model is of theoretical and practical relevance because of its variety of phase
transitions, and the predicted Haldane phase [34]. Furthermore, promising proposals
for quantum processors rely on qutrits [35, 36], embodied by spin-1 systems, whose
interaction is approximated by the BLBQ model.

Although the nearest-neighbour BLBQ model proposes a spin interaction more
elaborate than, e. g. the Heisenberg model [37], it still exhibits SU(2) invariance,
both global and pointwise. In light of this trait, addressing the BLBQ model with
a symmetry-aware approach is essential for an accurate assessment.

The explicit introduction of Abelian symmetries into tensor networks has proved
advantageous resource, performance and accuracy wise [29]. Already efficient basic
operations in tensor networks can be optimised further given the resulting struc-
tures, which are parallelisable symmetry-sector decompositions. Once non-Abelian
symmetries are also taken into account [38], we can exploit further results from rep-
resentation theory, leading to yet more efficient manipulations, for each instance
in the degeneracy of a given sector accounts for multi-dimensional subspaces [39],
instead of only a one-dimensional subspace for each instance of degeneracy.

In this work, we consider the different ingredients required for the construction
of non-Abelian symmetric tensor network states, with a special focus on the Matrix
Product State (MPS) [40] and Tree Tensor Network (TTN) ansatz [41], highlighting
the emergence of both as intuitive decompositions.

The efforts hereby reported are part of the multipurpose tensor network project,
the Quantum TEA Library. In light of this, the search for numerical stability, ef-
ficiency, modularity and in general, the best practices of scientific software devel-
opment play a central role throughout the implementation. Building on top of the
developments on non-Abelian TNs in Ref. [42], we take further steps in the devel-
opment towards test coverage. There are already useful references for the program-
ming of non-Abelian symmetric TNs; see for example Ref. [43]. We believe that our
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exposition underlines the theoretical aspects relevant not only to address the object-
oriented definition of non-Abelian tensor networks but also to establish a framework
inspired by test-driven development (TTD), in the pursuit of maintainable, reliable
software. We also build towards increased compatibility with TN structures, like
the TTN, to exploit efficient, pre-defined procedures. Furthermore, we underline
manipulation steps which are often overlooked as implementation-specific or obvi-
ous.

Chapter 2 is a review of symmetries in quantum systems, with a focus on the
key results of representation theory. This chapter introduces the relevant terminol-
ogy, theorems and notation that go into the modelling of symmetric tensor network
states. We devote chapter 3 to general TNs, detailing their justification from a
quantum information point of view, to then list the standard operations and ma-
nipulations. After discussing different classes of loop-free TNs, we wrap up that sec-
tion with an example of time evolution and ground-state search algorithm: TEBD.
With these foundations, we finally present non-Abelian symmetric TNs in chapter 4,
where we point out their analogies with regular TNs as well as their differences. We
test our implementation with a SU(2) symmetry and contrast the behaviour de-
scribed by TEBD in a regime of sites beyond exact diagonalisation. Specifically, we
tackle the BLBQ model as an application in the study of phase transitions. We sim-
ulate for up to 50 qutrits, and study the convergence for a growing bond dimension.
Along with closing remarks and some implementation details, in chapter 5, we set
forth an outlook of potential improvements based on the current design choices of
the implementation, as well as specific model simulation requirements.
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2
Symmetries in quantum mechanics

It is hard to overstate the impact that the study of symmetries has played in the
development of theoretical physics. Symmetries result from invariance (or covari-
ance) of equations, variables or, more generally, operators under transformations.
In physics, symmetries can often be related to conserved quantities. For example,
U(1) invariance is associated with charge (or particle number) conservation, while
SO(3) symmetries point to angular momentum conservation.

Transformations can be mapped to the action of a group. Since we describe
quantum mechanics in Hilbert spaces, understanding how to express the action of
a group in vector spaces is key to exploiting the symmetric properties of quantum
systems.

In section 2.1 we review the definition of general groups, the notion of linear repre-
sentations and their connection to vector spaces, and exploit this formalism for the
notion of Lie groups, groups from which the physical symmetries we focus on arise.
Section 2.2 connects the tensor product of representations with the properties that
define a tensor. We present the structural implications of the fusion of irreducible
representations, which results in Clebsch-Gordan coefficients. To wrap up, in section
2.2.3 we focus on the decomposition that follows from the Wigner-Eckart theorem,
which is of central relevance in the study of quantum systems.
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2.1 Group theory
Groups are algebraic structures formed by a set G and an associative binary opera-
tion ◦ which together satisfy the following axioms:

1. closure: ∀ a, b ∈ G, a ◦ b ∈ G.
2. neutral element: ∃ e ∈ G | ∀ a ∈ G, e ◦ a = a ◦ e = a
3. inverse element: ∀a ∈ G, ∃a−1 ∈ G|a ◦ a−1 = a−1 ◦ a = e.

This small collection of axioms endows the construct of a group with useful proper-
ties. As they stand, groups comprehend a wide variety of systems.

As may immediately come to mind, the pair (R, +), that is, real numbers under
addition, form a group. In fact, this group is of Abelian nature, given the commu-
tation of all elements. In contrast, a non-Abelian group is such that not all of its
elements commute. This feature plays a key role in the applications of group theory
to quantum systems.

Yet another Abelian group is formed when we consider the set R× ≡ R/{0} with
the regular product ×, where we remove the 0 element, as it is the only element that
lacks an inverse under multiplication. When we consider the set C instead of R, we
also form Abelian groups: (C, +) and (C×,×), which combined form the field (C, +,×).
In a field, a set F with two binary operations, known as addition and product, are
defined so that each operation forms an Abelian group with the set F (without the
addition neutral element in the case of the product group). Furthermore, the two
operations are distributive: a × (b + c) = a × b + a × c, ∀a, b ∈ F.

A subset H of G forms a subgroup of (G, ◦) if it is also a group under the same
operation, ◦. Should a subgroup H of G be closed under the action of G, that is,
g ◦ h ◦ g−1 ∈ H ∀h ∈ H, ∀g ∈ G, then H is an invariant subgroup of G.

Let H1 and H2 be two subgroups of G. The group G is a direct product H1 ⊗ H2
of H1 and H2 if

• H1 ∩ H2 = {e}, the subgroups only share the identity element,
• ∀ (h1, h2) ∈ H1 × H2, h1 ◦ h2 = h2 ◦ h1, the elements of a subgroup commute

with those in the other subgroup,
• ∀g ∈ G, ∃! (h1, h2) ∈ H1 × H2 | g = h1 ◦ h2, each element in the group can be

expressed in exactly one combination of elements of the subgroups.
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We now turn to the set of non-singular N-square matrices over a field (F, +,×),
with the usual matrix product. We denote such a structure by GL(F,N). This
structure forms a group, given a square matrix is non-singular if and only if its
determinant is different from zero, and for any two N-dimensional square matrices,
det{AB} = det{A} det{B}. GL(F,N) is known as the general linear group. Since it is
packed with the matrix product, GL(F,N) is by construction a non-Abelian group.

Rotations on a plane, given by the matrix

R(𝜃) =
(
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

)
, (2.1)

form an Abelian subgroup of GL(R, 2), since R(0) = I2 is the identity, and,

R(𝜃1)R(𝜃2) =
(
cos 𝜃1 sin 𝜃1
− sin 𝜃1 cos 𝜃1

) (
cos 𝜃2 sin 𝜃2
− sin 𝜃2 cos 𝜃2

)
(2.2)

=

(
cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2 cos 𝜃1 sin 𝜃2 + sin 𝜃1 cos 𝜃2
− cos 𝜃1 sin 𝜃2 − sin 𝜃1 cos 𝜃2 cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2

)
(2.3)

=

(
cos (𝜃1 + 𝜃2) sin (𝜃1 + 𝜃2)
− sin (𝜃1 + 𝜃2) cos (𝜃1 + 𝜃2)

)
(2.4)

= R(𝜃1 + 𝜃2) = R(𝜃2)R(𝜃1). (2.5)

This is the special orthogonal group SO(2).
In three dimensions, rotations form the special orthogonal group SO(3), a sub-

group of GL(R, 3). In this case, since general three-dimensional rotations do not
commute, SO(3) is non-Abelian.

2.1.1 Linear representations
Consider a map 𝜌 which transforms elements g of a group G into linear operators
𝜌(g), that act on a space V. If the following relation holds

𝜌(g1 ◦ g2) = 𝜌(g1)𝜌(g2), ∀g1, g2 ∈ G, (2.6)

then we have a linear representation of the group G, which is a group itself. Notice
that, since 𝜌(e ◦ g) = 𝜌(e)𝜌(g) = 𝜌(g), we necessarily have 𝜌(e) = I, the identity
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operator. Furthermore, since 𝜌(g)𝜌(g−1) = 𝜌(e) = I, it follows that 𝜌(g−1) = 𝜌(g)−1.
Note that there is no requirement on the injectivity of the so-called representa-

tion. Neither is there any condition for the dimension of the map’s vector space
V. Thus, the identity in a vector space of arbitrary dimension, 𝜌(g) = I, ∀g ∈ G,
is a valid representation for any group. This is a trivial representation. If instead,
we impose the one-to-one property to the representation, we talk about a faithful
representation. To fulfil the non-commutative property, faithful representations of
non-Abelian groups necessarily have dim (V) ≥ 2.

By choosing a basis for the space V, 𝜌(G) forms a subgroup of GL(F,N). The
convenience of this is self-evident: many results from linear algebra can be applied
to group representations. From the study of vector spaces, we know that similar-
ity transformations take a matrix operator into a different basis. Representations
related by a similarity transformation are equivalent. Under the right basis, rep-
resentations may become block diagonal, and thus act invariantly on non-trivial
subspaces; such is the defining trait of reducible representations: they can be decom-
posed into smaller representations. Instead, representations for which no non-trivial
invariant subspaces exists are irreducible (irreps). We make explicit the fact that a
representation is irreducible by using Λ instead of 𝜌.

2.1.2 Schur’s Lemma

The beacon of representation theory, Schur’s lemma plays a pivotal role in the
study of symmetries. This lemma states that, given two irreps Λ1 : G → V1 × V1,
Λ2 : G→ V2 × V2, and a linear map Φ̂ : V2 → V1, such that

Λ1(g)Φ̂ = Φ̂Λ2(g), ∀g ∈ G (2.7)

then Φ̂ is either null or an isomorphism. In the special case where V1 = V2, a linear
operator Ĥ, invariant under the action of the group G, Ĥ is then either zero or
proportional to the identity for an irrep of G. That is, for a representation 𝜌,

Ĥ𝜌(g) = 𝜌(g)Ĥ, ∀g ∈ G (2.8)
=⇒ Ĥ = hI, when 𝜌 is irreducible. (2.9)
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If, in contrast, 𝜌 is reducible, then both maps decompose into the following block
diagonal matrices

Ĥ =

©«
h1I1

h2I2
. . .

hNIN

ª®®®®®¬
(2.10)

𝜌(g) =
©«
Λ1(g)

Λ2(g)
. . .

ΛN(g)

ª®®®®®¬
, (2.11)

with I𝜇 the identity in the space V𝜇 where irrep Λ𝜇 acts. The notation is deliberate.
Assume Ĥ to be the Hamiltonian of a quantum system, invariant under the unitary
transformations 𝜌. Then, each h𝜇 has a degeneracy of dim(V𝜇). This is a key appli-
cation of group theory and symmetries to quantum systems. Furthermore, it may
be the case that for two 𝜇, 𝜈 in the decomposition, Λ𝜇 = Λ𝜈, i. e. the same irrep can
show up multiple times.

2.1.3 Dual representations

The set of linear maps f : V → C behaves in a way that mirrors the properties of
objects v ∈ V. Consider the basis |j⟩, so that v =

∑
j vj |j⟩. Since f is linear, we have

f(v) = f
(∑

j
vj |j⟩

)
=

∑
j

vjf ( |j⟩) (2.12)

in particular, we focus on the function f = ⟨k|, so that ⟨k|
(∑

j vj |j⟩
)
= vk. A linear

combination f =
∑

k fk ⟨k| of such functions is also a linear map f. We can in fact
represent any such map in this way, and the set inherits all the properties of a vector
space. In light of this, we identify this space as the dual space V∗.

A representation can also be defined in a dual space V∗. A dual representation
𝜌∗ can be defined so that, acting on ⟨j|, the outcome remains dual to 𝜌(g) |j⟩. In
matrix notation f(v) = fTv, the transpose vector fT multiplies v. Therefore, we see
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that

(𝜌∗(g)f)T (𝜌(g)v) = fT𝜌∗T(g)𝜌(g)v = fTv (2.13)
⇐⇒ 𝜌∗T(g) = 𝜌(g−1). (2.14)

Which under unitary representations, is precisely the complex conjugate, 𝜌∗T(g) =
𝜌†(g).

2.1.4 Lie Groups

Starting from the notion of continuity, we focus on unitary transformations arbi-
trarily close to the identity, so that a first-order approximation is valid

W(𝜖) = I + i𝜖X (2.15)
W†(𝜖) = I − i𝜖X (2.16)
W†W = (I − i𝜖X)(I + i𝜖X) (2.17)

= I + O(𝜖2) (2.18)

where we set X to be Hermitian, and is recovered by X = −idW
dt

����
t=0

. Successive

applications of W are equivalent, to first order, to a transformation with parameter
n𝜖 . Going from an infinitesimal transformation to a finite one, we may then apply
the following limit

W(ta) = lim
n→∞

(
I + i

tX
n

)n
(2.19)

= eitX. (2.20)

The X is the generator of a Lie group.

Recall a rotation R(𝜃) ∈ SO(2) is given as

R(𝜃) =
(
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

)
. (2.21)
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Differentiation w. r. t. 𝜃 leads to

dR(𝜃)
d𝜃

����
𝜃=0

=

(
− sin 𝜃 cos 𝜃

− cos 𝜃 − sin 𝜃

) ����
𝜃=0

=

(
0 1
−1 0

)
(2.22)

=⇒ X =

(
0 −i
i 0

)
. (2.23)

Consider now a collection of operators Xa that forms a closed algebra under com-
mutation. These relations are mediated by structure constants, compactly denoted
by fab

c : [
Xa,Xb] = ifab

c Xc. (2.24)

Take U1(t1) = eit1X1 , U2(t2) = eit2X2 , and U3(t3) = eit3X3 . By the Baker-Campbell-
Hausdorff formula, successive application of U3 and U2 leads to a series of commu-
tations between operators Xa and commutators of them:

eXeY = eZ (2.25)

Z = X + Y + 1
2 [X,Y] + 1

12 [X, [X,Y]] − 1
12 [Y, [X,Y]] + . . . (2.26)

Given the algebra of the generators is closed under commutation, it follows that a
general application of the Ua transforms has the following form:

eit1X1eit2X2eit3X3 = ei(t′1X1+t′2X2+t′3X3) (2.27)
= eit′·X, (2.28)

with tj generally different from t′j. We therefore arrive to a multi-parameter gener-
alization of the Lie group, in which an infinitesimal transformation is given as

U(𝜖) ≈ I + i𝜖 · X, (2.29)

from which we recover the Xa by Xa = −i 𝜕U
𝜕ta

����
ta=0

. These operators are known as

the generators of the Lie group. As mentioned, they form a closed algebra under
commutation, known as the Lie algebra of the group.
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Now, starting from a general rotation in three dimensions,

R(𝜙, 𝜃, 𝜓) =
©«
cos 𝜙 cos𝜓 − cos 𝜃 sin 𝜙 sin𝜓 − cos 𝜙 sin𝜓 − cos 𝜃 sin 𝜙 cos𝜓 sin 𝜙 sin 𝜃

sin 𝜙 cos𝜓 + cos 𝜃 cos 𝜙 sin𝜓 − sin 𝜙 sin𝜓 + cos 𝜃 cos 𝜙 cos𝜓 − cos 𝜙 sin 𝜃

sin𝜓 sin 𝜃 cos𝜓 sin 𝜃 cos 𝜃

ª®®¬ ,
we obtain the following generators:

Lx =
©«
0 0 0
0 0 i
0 −i 0

ª®®¬ , Ly =
©«
0 0 −i
0 0 0
i 0 0

ª®®¬ , Lz =
©«

0 i 0
−i 0 0
0 0 0

ª®®¬ . (2.30)

Together, these generators form L = (Lx,Ly,Lz), the angular momentum operator
for quantum systems.

Generators are defined by their relation, as described by Eq. (2.24). The gen-
erators we have obtained in the form of matrices are in fact representations over
specific vector spaces. We distinguish between the representation of a Lie Group G
by Π

(
eit·X

)
and that of the Lie algebra 𝔤, 𝜋(Xa), Xa ∈ 𝔤, both to a given vector

space V.

2.2 Product of representations

We can multiply two representations together by means of a tensor product. For
the generators of a Lie group, this is given as

𝜋1(X1) ⊗ 𝜋2(X2) = −i d
dt

(
Π1

(
eitX1

)
⊗ Π2

(
eitX2

)) ����
t=0

(2.31)

= −i lim
𝜖→0

Π1
(
ei𝜖X1

)
⊗ Π2

(
ei𝜖X2

)
− I1 ⊗ I2

𝜖
(2.32)

= −i lim
𝜖→0

Π1
(
ei𝜖X1

)
⊗ Π2

(
ei𝜖X2

)
+ I1 ⊗ Π2

(
ei𝜖X2

)
− I1 ⊗ Π2

(
ei𝜖X2

)
− I1 ⊗ I2

𝜖
(2.33)

= −i lim
𝜖→0

Π1
(
ei𝜖X1

)
− I1

𝜖
⊗ Π2

(
ei𝜖X2

)
− i lim

𝜖→0
I1 ⊗

Π2
(
ei𝜖X2

)
− I2

𝜖
(2.34)

= 𝜋1 (X1) ⊗ I2 + I1 ⊗ 𝜋2 (X2) (2.35)

12



This result is the composition rule for observables arising from a Lie algebra on the
Hilbert space.

2.2.1 Tensors as operators

With the result of representations product in mind and the description of dual
spaces, we can put forward a definition of tensor from the representation theory
perspective. Consider a vector space V is formed by

V =W∗
1 ×W∗

2 × · · · ×W∗
N × V1 × V2 × · · · × VM. (2.36)

A tensor T : V→ F is a linear map

T
(
𝛼f1 + 𝛽f′1, f2, . . . , fN, v

1, . . . , vM
)
= 𝛼T

(
f1, . . . , fN, v1, . . . , vM

)
(2.37)

+ 𝛽T
(
f′1, . . . , fN, v

1, . . . , vM
)
, (2.38)

for scalars 𝛼, 𝛽 ∈ F. The fr ∈ W∗
r, are dual vectors of vector space Wr, while vs ∈ Vs.

In particular, f1 and f′1 are both dual vectors of W1, thus 𝛼f1 + 𝛽f′1 ∈ W∗
1 . We say a

tensor of this sort is of rank (N,M).
Since the map is linear, we can choose bases {⟨k1 |}, . . . , {⟨kN |} and {|j1⟩}, . . . , {|jM⟩},

and focus on T j1,...,jN
k1,...,kM

, the transformation that each element of the bases undergoes.

A tensor has special transformation properties. The action of a group G on its
components is given by the tensor product representation R = (⊗N

k=1𝜌
∗
k) ⊗ (⊗M+N

j=N+1𝜌j).
When the group is a (matrix) Lie group, the representation of the generators iterates
what we obtained in the previous section,

𝜋(X) =
∑
j=1

I1| (j−1) ⊗ 𝜋∗j (X) ⊗ I(j+1) | (N+M) (2.39)

+
∑

j′=N+1
I1| (j′−1) ⊗ 𝜋j′ (X) ⊗ I(j′+1) | (N+M) (2.40)

with Il|k =
⊗k

j=l Ij, where Ij is the identity operator in the space of the algebra
representation j.

13



2.2.2 Decomposing a product of representations

Consider the product of irreps Λa and Λb of the same group G, each acting on
span ({|a⟩}) and span ({|b⟩}), respectively. A priori, the resulting representation, Θab
acts on a space span ({|a⟩ ⊗ |b⟩}). However, we can often find non-trivial invariant
subspaces for Θab, leading to

Θab(g) =
⊕

c

(
IdΛc ⊗ Λc(g)

)
(2.41)

where Λc is an irreducible representation of the product group, and IdΛc accounts
for the degeneracy of irrep Λc.

Given the decomposition, then only a subspace of span
(
{
��j,mj

〉
⊗

��j′,mj′
〉
}
)

is
relevant. It is possible to generate bases for these subspaces starting from the tensor
product basis. Consider three irreps, Λj, Λj′ and ΛJ, with orthonormal bases {

��j,mj
〉
},

{
��j′,mj′

〉
} and {|J,MJ⟩}, respectively. Then we can expand |J,MJ⟩ as follows

|J,MJ⟩ =
∑

ma,mb

CF[J],MJ
j,mj;j′,mj′

��j,mj; j′,mj′
〉

(2.42)

CF[J],MJ
j,mj;j′,mj′

=
〈
j,mj, j′,mj′

��J,MJ
〉

(2.43)

The CF[J],MJ
j,mj;j′,mj′

are known as Clebsch-Gordan coefficients. These coefficients in fact
form a rank (2, 1) invariant tensor, since

CF[J],M′
J

j,m′
j;j′,m

′
j′
= W[J] M′

J
MJ

W∗[j] mj
m′

j
W∗[j′] mj′

m′
j′

CF[J],MJ
j,mj;j′,mj′

(2.44)

Furthermore, a map XF[J],tJ
j,tj;j′,tj′

is introduced to distinguish between degenerate con-
tributions:

XF[J],tJ
j,tj;j′,tj′

=


1 tj, tj′ contribute to tJ
0 otherwise.

(2.45)

The tensors XF and CF combine to form ΥF:

ΥF =
⊕
[j,j′,J]

XF[J]
j,j′ ⊗ CF[J]

j,j′ (2.46)

14



We can also expand a product basis element in terms of the fused basis:��j,mj; j′,mj′
〉
=

∑
MJ

CS[j,mj;j′,mj′]
J,MJ

|J,MJ⟩ (2.47)

And of course,

XS[j,tj;j′,tj′]
J,tJ

=


1 tJ contributes to tj, tj′

0 otherwise.
(2.48)

which together lead to an invariant split tensor ΥS

ΥS =
⊕
[j,j′,J]

XS[j,tj;j′,tj′]
J,tJ

⊗ CS[j,mj;j′,mj′]
J,MJ

. (2.49)

For some groups decomposition rules are well known, e. g. for two irreps l and l′

of the special unitary group, SU(2),

l ⊗ l′ = (|l − l′|) ⊕ (|l − l′| + 1) ⊕ · · · ⊕ (l + l′). (2.50)

However, for the decomposition of compact Lie groups irrep. products, useful algo-
rithms such as [39] can be used to find both the irreps and the Clebsch-Gordan
coefficients.

2.2.3 Wigner-Eckart Theorem

When we deal with operators T that are invariant under SO(3) or SU(2) transfor-
mations, Wigner-Eckart theorem states that we can decompose them as

Ti1,i2,i3 = R [J],tJ
j,tj;j′,tj′

CF[J,mJ]
j,mj;j′,mj′

, (2.51)

where CF[J]
j,j′ are the Clebsch-Gordan coefficients to fuse j and j′ into J, and R [J]

j,j′ is
a reduced tensor, a tensor that contains information not covered by the symmetry
sector. This is reminiscent of the decomposition in Eq. (2.52). We can therefore
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state invariant tree-tensors as:

T =
⊕
[j,j′,J]

RF[J]
j,j′ ⊗ CF[J]

j,j′ . (2.52)
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3
Tensor Networks

The pure state of a quantum system is described by the wavefunction |𝜓⟩ in a
Hilbert space H . Assuming H � V1 ⊗ · · · ⊗ V2, a generic superposition of states
in an N-sites quantum system can be described as a linear expansion over a basis
{|j1, ..., jN⟩}:

|𝜓⟩ =
d∑

j1,...,jN=1
Tj1,...,jN |j1, ..., jN⟩ (3.1)

The basis {|j1, ..., jN⟩} naturally arises as the tensor product between the bases of
each Vn in the decomposition, that is, |j1, ..., jN⟩ = ⊗N

𝜇=1
��j𝜇〉. The symbol Tj1,...,jN

which represents the coefficients of the expansion, is a map to C from J1 × · · · × JN,
which for simplicity we assume to be d-dimensional spaces.

Let Vn be the space where an irrep 𝜌n of G acts. Then, unitary transformations
are of the form 𝜌n(g) |jn⟩. Now, in the conjugate state

⟨𝜓 | =
d∑

j1,...,jN=1
T ∗

j1,...,jN ⟨j1, . . . , jN | , (3.2)

group G acts as ⟨jn | 𝜌n(g)†. The structure of Tj1,...,jN therefore fits our notion of
tensor expressed on a specific basis.
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3.1 Tensor network notation and operations

We regard each index as a link, which results in the diagrammatic rendition of
tensors in Fig. 3.1. The number of links is the tensor’s rank, and each link i acts on
a space Vi. In this notation, we can represent tensors that arise from the contraction

Figure 3.1: A vector is a tensor with only one link, whereas a matrix has two links. A generic tensor state of an
N‐site system, has a link in for each index.

of two (or more) tensors, e. g.

TiA,iB,iC,iD,iE =
∑

i
ΨiA,i,iBΦi,iC,iD,iE , (3.3)

as Fig. 3.2. For the time being, we do not distinguish between covariant and con-

Figure 3.2: A tensor that results from contracting two tensors together.
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travariant indices, and thus a rank-(n,m) tensor is described simply as rank-(m+n).
Duality of the link space is assumed for contractions.

A generic unitary transformation U can also be represented in this notation,
Fig. 3.3. Whereas the U = W1 ⊗ · · · ⊗ WN transformation is conveniently depicted

Figure 3.3: The diagrammatic representation of a unitary transformation.

as Fig. 3.4. This depiction of separability also applies to states, such as a three-qubit

Figure 3.4: The diagrammatic representation of a group transformation. Decompositions into tensor products of
different subsystems reduce to separate link actions.

state of the form:

|𝜓⟩ = 1
√

2
(
𝛼 |000⟩ABC + 𝛼 |011⟩BC + 𝛽 |100⟩ABC + 𝛽 |111⟩ABC

)
(3.4)

= (𝛼 |0⟩A + 𝛽 |1⟩A) ⊗
1
√

2
(
|00⟩BC + |11⟩BC

)
(3.5)

= (𝛼 |0⟩A + 𝛽 |1⟩A) ⊗
��Φ+〉

BC . (3.6)

This state is separable with respect to subsystem A, in contrast with the bipartite
system BC. In fact, |Φ+⟩ is a Bell state, which presents maximum entanglement.
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Figure 3.5: A state of three subsystems separable with respect to subsystemA, and fully entangled in BC.

With the listed depictions in mind in mind, we represent arbitrarily complex
tensor decompositions, like in Fig. 3.6. We identify the ”links and nodes” description
of tensors as tensor networks.

Figure 3.6: A tensor may decompose into an elaborate network.

3.1.1 Fundamental TN Operations
There exists a collection of low-level operations in the manipulation of tensor net-
works. These operations emerge frequently in many of the applications, and for
this reason, their identification and potential optimization become essential in the
development of TN numerical routines.

Split

The generic tensor of Eq. (3.1) comes from an expansion over the basis |j′⟩ =

{|j1, j2, . . . , jN⟩}. When we make explicit the N subsystems that come from the sites,
or when we treat it as a bipartite system, we are met with equivalent descriptions
of the state. To obtain either description, we split the j′ link.
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We can split a given link j into two or more links j1, j2, . . . , jN, as long as the
following relation holds,

dim (j) = dim (j′1) × dim (j′2) × · · · × dim (j′N). (3.7)

This operation is computationally equivalent to reshaping an array. For this rea-
son, it can be performed very efficiently, in negligible O(1). Assuming, e. g., a
column-major storing, Ψi1,(i4·di4+i5−1),i3 = Ψ′

i1,i4,i5,i3 .

Figure 3.7: The link i2 is split into the links i4 and i5. The resulting links satisfy di4 × di5 = di2 .

Fusion

Likewise, two or more links can be combined into a single one. This is particularly
useful when we require a specific rank for our tensor, as for the factorizations we dis-
cuss in section 3.1.2. Again, the following relation holds when fuse links j1, j2, . . . , jN
into j′,

dim (j1) × dim (j2) × · · · × dim (jN) = dim (j′). (3.8)

Permutation

We can generalize the transpose operation of a matrix. For traceability, links in a
tensor have a given order. We can alter this indexing sequence by means of link
permutations. Since we are relocating entries, this operation is bounded linearly on
the total size of the tensor, and records are related by

Ψ𝜎
p(i1,i2,...,in) = Ψi1,i2,...,in (3.9)
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Figure 3.8: Links i2 and i3 are fused into link i′2. These links satisfy di2 × di3 = di′2 .

Figure 3.9: By fusing links to either side, a generic tensor can be turned into a matrix.

Figure 3.10: Links a, b and c ofΨ𝜎 andΨ are related by a cyclic permutation p(a, b, c, d, e) = (c, b, a, d, e).

Contraction

Summation over a given index is essential to the manipulation of tensors. Con-
traction, which generalizes the matrix product, is a distinguished operation. We
can contract two tensors on compatible links, or compatible links within the same
tensor.

As we have seen in Fig. 3.2, contraction is fundamental for the construction of
tensor networks. Decompositions, norm calculation and trace all arise from contrac-
tion, Fig. 3.11.
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Figure 3.11: Norm calculation is a contraction that leads to a rank‐0 tensor, while contracting two indices to‐
gether in a rank‐N tensor reduces its rank toN − 2.

3.1.2 Decompositions

Rank-2 tensors can be interpreted as matrices, which transform under specific rules.
As such, tensors of this sort can be subjected to matrix decompositions, resulting
in new tensors, with useful properties such as being unitary, diagonal, or with man-
ifest non-trivial kernels, which can be used to reduce dimensionality. Furthermore,
from the basic tensor operations we have described, the links of any tensor can be
manipulated to cast the tensor into a convenient rank-2 form, and recover arbitrary
rank tensors after the matrix decompositions.
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Figure 3.12: Singular values decomposition of a tensor.

Singular Value Decomposition

This decomposition breaks an n × m matrix into two unitary matrices U, V and a
matrix S with a diagonal block and null otherwise,

T = USV (3.10)

S =



diag (𝜆)

0

 , m > n[
diag (𝜆) , 0

]
, m < n,

(3.11)

where diag (𝜆) is a diagonal matrix whose entries are those of the 𝜆 vector. U is
m×m, while V is n×n. The S matrix has shape m×n. The singular values vector, 𝜆
is of dimension min(m, n). Note that, when m = n, we get the eigendecomposition
and V = U†.

Valuable properties arise from this structure. Consider the squared norm of T:

∥T∥2 = Tr
{
T†T

}
(3.12)

= Tr
{
V†S†U†USV

}
(3.13)

= Tr
{
S†S

}
= ∥𝜆∥2 (3.14)

where the last line follows from the unitarity of both U and V. This property can
be exploited in tensor networks, setting the isometry centre in a convenient way to
spare computational resources while normalising states or computing expectations
of local observables. As we discuss in section 3.2.1, the entries of 𝜆 are real and non-
negative, and thus can be sorted. This feature is central in delimiting a relevant
subspace of the Hilbert space spanned by the system’s tensor product basis.
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Figure 3.13: The unitarity of tensors in the SVD allows for efficient norm calculation.

QR decomposition

A general QR decomposition of an n × m tensor T results in a product

T = QR (3.15)

=
[
Q1, Q2

] [
R1
0

]
(3.16)

= Q1R1, (3.17)

where Q is an n × n unitary matrix, while R is an n × m matrix. The matrix Q1 is
an n × m matrix, while an upper triangular m × m matrix, R1, is the relevant part
of R. This decomposition is a computationally less-intensive alternative to SVD. It
comes at the expense of the left tensor being only left-unitary, and truncation is
limited to that of exact zeros in the decomposition.
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Figure 3.14: In the QR decomposition of an n × m tensor, theQ tensor is an n × n unitary matrix, while theR
tensor is an n × m matrix formed by an upper triangular matrix and a 0 rectangular matrix or vector.

3.2 Loop-free Tensor Networks

The absence of loops in a tensor network enables useful properties. To begin with,
a finite update sequence is clearly defined, from which follows isometrization of the
full network, be it from gauge freedom or sequential decompositions like SVD or
QR. Given the absence of cycles, adjacent nodes induce a bipartition of the graph.
As we discuss in section 3.2.1, this bipartition of the TN is related to the Schmidt
decomposition, and the dimension of the virtual link bounds the Schmidt rank [29].

3.2.1 Schmidt decomposition and entanglement

Consider a bipartite pure quantum state for subsystems A and B, that is, a quantum
state |Ψ⟩ that exists in HA ⊗ HB. We can perform the Schmidt decomposition:

|Ψ⟩ =
∑

a

∑
b

Tab |a⟩ |b⟩ (3.18)

=
∑

r
𝜆r |𝜓r⟩ |𝜙r⟩ (3.19)

=
∑

r

∑
a

∑
b

𝜓ra𝜆r𝜙rb |a⟩ |b⟩ (3.20)

where 𝜆r ≥ 0 ∀r. For bipartite separable states, |Ψ⟩AB = |𝜓⟩A |𝜙⟩B, the Schmidt
decomposition has only one non-zero 𝜆r. This results in a criterion for non-separable
states: entangled bipartite states necessarily have more than one non-zero 𝜆r. The
total number of positive 𝜆r is known as the Schmidt rank.

For pure states in bipartite systems, the Von Neumann entropy gives us a measure
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of entanglement, which simplifies to

E{|𝜓⟩} = −
∑

r
𝜆2

r log 𝜆
2
r , (3.21)

where 0 ≤ 𝜆a ≤ 1 are the Schmidt coefficients.
Notice how the Schmidt decomposition is analogous to the SVD one. This fact

is the backbone of tensor network states as an approximate description of entan-
gled quantum many-body systems. In practice, a selected number of sites, or sites
and virtual links, are grouped into a bipartite system, whose singular values are
discarded with basis on e. g. a defined threshold, thereby (momentarily) reducing
the norm of the resulting system, and the bond dimension of a virtual link.

3.2.2 Matrix Product States
With the basic operations we described for tensor networks, we can cast a general
tensor state into a bipartite system (Fig. 3.9). In particular, fusing links together
until only two links remain, we effectively have a map on H1 ⊗ H2|N � H1 ⊗ (H2 ⊗
· · · ⊗ HN). We then decompose the bipartite system into singular values.

Contracting s to the right, we end up with two tensors, one with d×d components,
and the other with d × dN−1. We can decompose the second tensor, now fusing its
second link with the first, and the links into a separate link. After contraction of
the singular values matrix to the right, we are left with two new tensors, Fig. 3.15.
We can iterate this process until we have run out of sites. This decomposition is
foundational to the hypothesis of tensor network solutions. Contraction of all these
tensors together recovers the original state.

A Matrix Product State (MPS) is a tensor network ansatz which is structurally
identical to the output decomposition described above. In practice, however, the
initial, full state is only accessible for a small number of states. Instead, the MPS
configuration is initialized with a maximum bond dimension, 𝜒max the dimension of
the virtual links between the tensors in the decomposition, Fig. 3.16.

3.2.3 Tree Tensor Networks
MPS are not the only loop-free TN decompositions. Consider again the N-sites
state general tensor. For simplicity, assume the number of sites N to be a power of
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Figure 3.15: A derivation for illustrative purposes of the matrix product state decomposition starting from a full
state.

2, N = 2m. Split the tensor in half by fusing N/2 links to the left and the other N/2
to the right. After SVD and contraction of the singular values to either side, the
outcome is two tensors with 2m−1 free links each and a virtual link that connects
them. Now, fuse half of the free links at one tensor to the virtual link, and fuse its
remaining links together to break it into two tensors with four free links each. One
of the tensors has two virtual links. Fuse them together, and the physical links into
a separate one, then decompose this tensor to generate another tensor with only
one virtual link. Iteration of the last two steps eventually leads to a binary tree
structure.

The decomposition structure depicted in Fig. 3.17 serves as reference to motivate
the ansätze known as (binary) Tree Tensor Networks (TTNs), which are generated
with a controlled bond dimension.

Given the path sizes between nodes, TTNs can encode a power-law decaying
correlation [44], as opposed to MPS, which encode exponentially decaying correla-
tions [21].
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Figure 3.16: Generic MPS decomposition. The virtual links kn have a dimension at most 𝜒max.

Figure 3.17: A binary TTN for 16 sites.

3.2.4 Enconding meaningful states

Having established the TTN and MPS decompositions, we naturally wish to ad-
dress how meaningful states are encoded in these TNs. We can privilege a specific
configuration of the basis we are using and find an almost trivial description.

|𝜓⟩ = |0, 0, . . . , 0, 0⟩ (3.22)

=⇒ Ti1,i2,...,iN =


1, if ik = 0 ∀k
0, any other case.

(3.23)

In an MPS description, this is equivalent to

Ti1,i2,...,iN =
∑

j1,j2,...,jN−1

A[1] j1
i1 A[2] j2

j1,i2 . . .A[N]
jN−1,iN (3.24)

T0,0,...,0 =
∑

j1,j2,...,jN−1

A[1] j1
0 A[2] j2

j1,0 . . .A[N]
jN−1,0 = 1. (3.25)
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We set each A[k] jk
jk−1,ik = 0 whenever ik ≠ 0. Then, for simplicity, we impose a similar

condition over the jk, so that

A[k] jk
jk−1,ik =


1, if jk = jk−1 = ik = 0
0, otherwise.

(3.26)

And, therefore,∑
j1,j2,...,jN−1

A[1] j1
0 A[2] j2

j1,0 . . .A[N]
jN−1,0 = A[1] 0

0 A[2] 0
0,0 . . .A[N]

0,0 = 1, (3.27)

we effectively encode |𝜓⟩ = |0, 0, . . . , 0⟩ in our MPS.

In this fashion, we could find a description for generic elements of the Fock space
basis, which we can then isometrize for efficient manipulations. We could, for exam-
ple, model a quantum circuit with gates that operate over a small number of qubits
at a time [45].

Nevertheless, not every state can be described accurately by means of the MPS
and TTN ansätze, or any tensor network decomposition for that matter. The state
fidelity is constrained by the bond dimension, resulting in only approximate descrip-
tions of states.

Eigenstates of Hamiltonian operators cannot always be reached efficiently from a
Fock basis state. In practice, informed or random initializations for TNs are often
useful to reach meaningful states through variational approaches. An outstanding
algorithm for ground-state search is that of imaginary time evolution, the imple-
mentation of which for MPS we discuss in section 3.3.

3.3 Time-evolving block decimation

Time-Evolving Block Decimation (TEBD), as the name implies, can be used to
study the time evolution of a quantum state under a given Hamiltonian. We can
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split a nearest-neighbour Hamiltonian Ĥ =
∑

l ĥl,l+1 into even and odd site terms:

Ĥ =
∑

l odd
ĥl,l+1 +

∑
l even

ĥl,l+1 (3.28)

=
∑

l odd
F̂l +

∑
l even

Ĝl = F̂ + Ĝ (3.29)

[Fl,Fl′] = [Gl,Gl′] = 0 ∀l, l′ (3.30)

where the last equation follows from the definition of the tensor product.
Given the commutation of the F̂l terms, we have

e−itF̂ = e−it ∑ F̂l =
∏
l odd

e−itF̂l . (3.31)

Likewise,

e−itĜ =
∏

l even
e−itĜl . (3.32)

The operators F̂l and Ĝl however, do not commute, and thus the application of
eit(F̂+Ĝ) must be approximated. Taking finitely small timesteps 𝛿t, an approximation,
e. g. Suzuki-Trotter to the second order, enables the layered application of these
unitary transformations.

When the Hamiltonian is time-independent, and in between energy measure-
ments, we can spare a third part of steps by applying together adjacent e−i 𝛿t

2 Ĝ.

e−i𝛿tĤ |𝜓⟩ ≈ e−i 𝛿t
2 Ĝe−i𝛿tF̂e−i 𝛿t

2 Ĝ |𝜓⟩ (3.33)

e−i𝛿tĤe−i𝛿tĤ |𝜓⟩ = e−i 𝛿t
2 Ĝe−i𝛿tF̂e−i𝛿tĜe−i𝛿tF̂e−i 𝛿t

2 Ĝ |𝜓⟩ . (3.34)

After each contraction, we recover the two site matrices by means of SVD. No-
tice that this decomposition would increase the dimension of the intermediate link,
requiring truncation to keep the bond dimension, and subsequent renormalization
of the resulting state.

As usual, considering imaginary time 𝜏 = it, we obtain a ground state search
procedure, assuming |𝜓⟩ to be initialized in a state which has a non-zero projection
to the ground state.
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Figure 3.18: Application of two full time‐steps of second‐order evolution operator in TEBD. We depict odd (even)
layers in green (purple).
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4
Symmetric Tensor Networks

In chapter 3, we established the structure and methods for general tensor networks.
We now take a step back to exploit our knowledge of representation theory from
chapter 2, which we saw to be deeply related to the notion of a tensor.

An in-depth review of Abelian symmetric TNs can be found in [29]. Here, we focus
on non-Abelian symmetric TNs, which exploit the structure provided by Clebsch-
Gordan coefficients. Thus, invariant tensors so defined, allow us to be mostly con-
cerned with the manipulation of a reduced tensor, while much of the dimensionality
is covered by the structure tensors.

The present chapter mirrors the discussion of chapter 3, promoting tensors to
symmetry-preserving objects. In section 4.1 we review how symmetric tree tensors
emerge from the Clebsch-Gordan decomposition and Schur’s lemma, and discuss
how tree-tensors are building blocks for higher-rank tensors. Section 4.2 highlights
the key differences between non-symmetric tensors and symmetric ones in low-level
operations and decompositions. In section 4.3, we show MPS and TTN to be intu-
itive constructs with tree-tensor building blocks.

The discussions in this chapter largely borrow from [38], with methods from [39],
as combined in [42]. Ref. [43] offers a practical guide on the implementation of these
methods with extensive examples with SU(2).
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4.1 Symmetric nodes
We begin our discussion by studying the invariant-tensor structure for different
numbers of links. Since we are interested in the group action properties, the direction
of links in tensors becomes relevant, and thus we make it explicit.

A rank-0 symmetric tensor is defined as a scalar. As such, it is by construction
trivially invariant.

A rank-1 symmetric tensor is a vector. For it to be SU(2)-invariant, it can only
exist in the trivial representation, 𝟘. A rank-1 invariant tensor’s dimensionality
arises solely from the link degeneracy, Fig. 4.1.

Figure 4.1: A one link invariant tensor can only have the trivial irrep.

Consider now an invariant rank-(1, 1) map Φ̂ : Vn → Vn. Of course, Schur’s
lemma follows, resulting in the decomposition

Φ̂ =
⊕

J
R[J] ⊗ IJ, (4.1)

where IJ is the identity map in the irrep J space, and R[J] is a diagonal matrix of
dimension dJ, the degeneracy of irrep J. Eq. 4.1 describes the archetypical rank-2
symmetric tensor. We depict the decomposition of Φ by Fig. 4.2.

As we saw in 2.2.3, SU(2)-invariant operators are decomposed as

T =
⊕
[j,j′,J]

RF[J]
j,j′ ⊗ CF[J]

j,j′ . (4.2)

This decomposition, illustrated in Fig. 4.3 is the tree-tensor, the invariant tensor
structure that serves as a building block for tensor networks with global symmetries.
It is the quintessential rank-3 symmetric tensor.

We may obtain a rank-4 symmetric tensor by means of contracting two tree-
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Figure 4.2: Schur decomposition of an invariant rank‐2 tensor.Φ is a direct sum over the different sectors J, and
decomposes into the reduced tensor R

Figure 4.3: A tree‐node is the building block decomposition of symmetric tensor networks.

tensors together, as in Fig. 4.4. This is not the only possible underlying structure.
We can contract two tree tensors in a different way, and end up with the same irrep
spaces for the links.

Tensors with an even higher number of links possess many more different tree-
tensor decompositions for the structural part. The ansätze and algorithms we focus
on, almost exclusively rely on tree-tensor decompositions. A comprehensive treat-
ment of how different multi-link decompositions relate can be found in [38].

4.2 Manipulations of symmetric tensors

The fundamental operations of regular tensor networks have an analogue in non-
Abelian symmetric TNs, with the distinction that they are performed sector-wise
and over the reduced tensors. This execution enables an overall improved perfor-
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Figure 4.4: A rank‐4 tensor requires an intermediate structural link which is not fixed by the tensor’s external
links.

mance in runtime, and renders the operations highly parallelisable.

4.2.1 Operations

Contraction

Contraction requires a duality relation between the spaces of target links. For regular
TNs, this can be overlooked: the dimension suffices as a reference. However, in
symmetric tensor networks, the directions, as well as the sectors contained, must
be compatible, so that symmetry transformations are propagated properly.

The incoming link in Φ̂ from Eq. 4.1 and the outgoing link in T from Eq. 4.2 live
in dual spaces to one another. This means we can in fact contract them together, as
in Fig. 4.5. Furthermore, given the special structure of both tensors, the resulting
tensor remains symmetric. This operation is performed sector-wise and its signifi-
cant part is the contraction of links in the reduced tensors, since structure tensors
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Figure 4.5: Another tree‐tensor results from contracting a tree‐tensor and an invariant rank‐2 tensor.

are kept in the form discussed for rank-4 tensors and higher.

Fuse

The fusion of links in symmetric tensors differs from that of regular TNs. Given
the transformations that act on the spaces associated to each tensor index, we
must understand how the resulting link space decomposes to keep the symmetric
tensor properties. In practice, this means precisely applying the tensor ΥF from
section 2.2.2,

ΥF =
⊕
[j,j′,J]

XF[J]
j,j′ ⊗ CF[J]

j,j′ . (4.3)

In the symmetric TN notation, ΥF is depicted by Fig. 4.6. The target links are
contracted together with their corresponding links in the fuse tensor. For the same
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reason as Fig. 4.5, the resulting tensor remains invariant.

Figure 4.6: A fuse tensor is a tree‐tensor that maps components between the bases of degenerate irreducible
representations.

Split

Splitting a link in a symmetric node requires reviewing even further conditions. First
of all, it must be possible to map the decomposition of link sectors to the tensor
product of two sets of sectors. For SU(2) this is always possible. For any irrep J,

𝟘 ⊗ J = J, (4.4)

and thus a link iA can always be split into two links iB and iC, one of them identical
sector-wise to iA, and the other with the trivial sector. This is particularly useful
to introduce a dummy link.

In contrast, target sectors must be specified when we desire splits other than
the trivial one; it must of course be possible to find a bi-partite factorization that
contains such sectors. In practice, we usually split links that are originally the
outcome of a known fusion ΥF. We can therefore conjugate this fuse node to split
the target link.

Permutation

The permutation of links is performed in much the same fashion as with regular
TNs, except coupling sector-wise, so that

T 𝜎
p(a,b,c) =

⊕
[p(a,b,c)]

R𝜎
p(ja,tja ;jb,tjb ;jc,tjc ) ⊗ C𝜎

p(ja,mja ;jb,mjb ;jc,mjc ) . (4.5)

38



4.2.2 Decompositions
The decompositions that were valid for regular TNs remain possible, with the ad-
vantage that they are now performed on the reduced tensors along the coupling
sectors.

Singular Value Decomposition

Starting from a rank-2 tensor,

M =
⊕

J
RJ ⊗ IJ (4.6)

=
⊕

J

(
U[J] ⊗ IJ

) (
𝜆[J] ⊗ IJ

) (
V[J] ⊗ IJ

)
, (4.7)

the decomposition is mapped to the reduced tensor, and all the properties from
regular SVD follow block-wise.

4.3 Special Symmetric tensor network states
We can iterate this procedure with as many sites are required, and generate a
non-Abelian symmetric MPS or bTTN. Contracting the top layer links together
while preserving the symmetry requires them to be dual. For SU(2), such fusion is
straightforward, as its irreps are self-dual. We can ”revert” an outcoming link by
focusing on the Clebsch-Gordan coefficients that map the irrep fusion to the singlet.
Likewise, incoming links of the same irrep can be obtained by splitting the singlet
irrep:

Figure 4.7: Reversal nodes map a link to its dual space pivoting on the trivial irrep.

Invariance for rank-one tensors is only possible when the structure tensor is the
trivial one, that is, the symmetry sector is the trivial irrep. To study a symmetry
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Figure 4.8: A binary TTN is formed by many tree‐tensors. A virtual reversal node connects the top layer of a sym‐
metric bTTN. Contraction of this node to either side sets the direction of the renormalization.

Figure 4.9: An MPS is formed by many tree‐tensors. A virtual reversal node connects the last two tensors of a
symmetric MPS.

sector other than 𝟘, we attach an outgoing selector link which contains the target
sector. Conceptually, this is equivalent to imposing a structure compatible with
Schur’s lemma for the tensor at hand, so that the symmetry is no longer limited to
trivial transformations. The resulting tensor is therefore covariant.

4.4 Application: Bilinear biquadratic spin-𝟙 chain

Consider the bilinear biquadratic model [33, 34], a two-site interaction given by

ĥi,i+1 = cos 𝜃 (Si · Si+1) + sin 𝜃 (Si · Si+1)2 (4.8)

where Si is the spin operators vector, thus Si·Si+1 = Sx
i ⊗Sx

i+1+Sy
i ⊗Sy

i+1+Sz
i⊗Sz

i+1. Notice
that since for irrep 𝟙

𝟚
, (Sa)2 = I 𝟙

𝟚
, ∀a, this model necessarily operates over sites of

higher dimensional irreps. This model exhibits pointwise as well as global SU(2)
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symmetry, and is therefore a candidate for non-Abelian symmetric TN modelling.

4.4.1 Sectors of the nearest-neighbour Hamiltonian

Starting from the spin-𝟙 representation of the SU(2) generators,

Sx
𝟙 =

1
√

2

©«
0 1 0
1 0 1
0 1 0

ª®®¬ , Sy
𝟙
=

1
√

2

©«
0 −i 0
i 0 −i
0 i 0

ª®®¬ , Sz
𝟙 =

©«
1 0 0
0 0 0
0 0 −1

ª®®¬ , (4.9)

the two-site interaction of the BLBQ model requires two terms,

S𝟙 · S𝟙 =

©«

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 −1 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 −1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®¬

, (4.10)

and the same term squared,

(S𝟙 · S𝟙)2 =

©«

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 2 0 −1 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 −1 0 2 0 −1 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 −1 0 2 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®¬

. (4.11)

Each term exhibits SU(2) invariance, and therefore, linear combinations of them
are also SU(2)-invariant. We can use the Casimir operator basis to diagonalise both
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terms,

S𝟙 · S𝟙 = (−2 ⊗ I𝟘) ⊕ (−1 ⊗ I𝟙) ⊕ (1 ⊗ I𝟚) (4.12)
(S𝟙 · S𝟙)2 = (4 ⊗ I𝟘) ⊕ (1 ⊗ I𝟙) ⊕ (1 ⊗ I𝟚), (4.13)

broken into symmetry sectors as expected from Schur’s lemma.
Thus, the BLBQ two-site interaction is a non-Abelian symmetric tensor operator

of the form

ĥ(𝜃) = cos 𝜃
(
S′𝟙 · S

′
𝟙

)
+ sin 𝜃

(
S′𝟙 · S

′
𝟙

)2 (4.14)
=(4 sin 𝜃 − 2 cos 𝜃) ⊗ IV𝟘

⊕ (4.15)
⊕ (sin 𝜃 − cos 𝜃) ⊗ IV𝟙

⊕ (4.16)
⊕ (sin 𝜃 + cos 𝜃) ⊗ IV𝟚

. (4.17)

With this expression for the nearest-neighbours interaction, we are now ready to
tackle the spin-𝟙 BLBQ model with a symmetric tensor network.

4.4.2 TEBD ground states

For a small number of sites, we take as reference the spin-0 sector lowest energy,
which is not necessarily the ground state. The exact diagonalization energy curve for
the full range of 𝜃 is depicted in 4.10. Already at N = 6 sites we notice pronounced
phase transitions in the model [34]. We now proceed to measure the energy relative
error,

err(𝜃i) =
����EED(𝜃i) − ETEBD(𝜃i)

EED(𝜃i)

����, (4.18)

where EED and ETEBD are the sector minimum energies as predicted by ED and
TEBD, respectively. Notice how those points harder to simulate are close to phase
transitions, Fig. 4.11.

In contrast, for the highest possible sector in each site, we encounter well-converged
results, where most of the error values are numerical zeros. For non-degenerate sec-
tors in the physical links, as is the case in our model, the highest possible spin sector
is not degenerate, and its reduced tensor amounts to a single entry. To illustrate
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Figure 4.10: Spin‐0 minimum energy in BLBQ model for different lattice sizesN. In the exact diagonalization for
a small number of sites,N (left), different phase transitions are already present. In the total spin 0 ground state
TEBD estimation for larger numbers of sites (right), the transitions become more pronounced.
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Figure 4.11: Error in TEBD ground energy for total spin 0 configuration in the BLBQ model (left). Phase transitions
are harder to predict accurately. To the right, error in energy prediction for the highest possible total spin for a
small number of sites. The values are numerical zeros. The highest possible total spin configuration is usually non‐
degenerate, making it an easy simulation target.

this, consider an N-sites, spin-𝟙 MPS. In the virtual links, always keep the highest
possible sector. This is non-degenerate at each site n,

R[vn,tvn]
vn−1,tvn−1 ;jn,tjn

, (4.19)

|tvn−1 | = |tjn | = |tvn | = 1, (4.20)

where vl is the highest sector in the outcoming virtual link of site l’s matrix. This
chain eventually leads to a selector link which cannot have more than one possible
ts for the maximum s.

We take as reference the highest error 𝜃 values from Fig. 4.11 to study the conver-
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Figure 4.12:Measured energy convergence study for critical point 𝜃 = 𝜋/2 (left) and 𝜃 = 𝜋/4 (right).

gence in a 50-site MPS for the BLBQ model, Fig. 4.12. At each step t, we increase
the bond dimension 𝜉t and compare the energy predictions as follows,

conv𝜒t =

�����E0
𝜒t − E0

𝜒t−1

E0
𝜒t−1

�����. (4.21)

We observe the transition between the ferromagnetic phase and the critical phase,
𝜃 = 𝜋/2 to remain resource-intensive.
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5
Conclusions and Outlook

Our contribution is a big step towards the use of non-Abelian tensors by client
modules such as the Matrix Product Operator. Many internal dependencies of the
NASTY library were adapted, so as to comply with an easier-to-maintain, deploy
and upgrade module. The global types, general tensors, and error-handling depen-
dencies are now fulfilled by equivalent independent submodules. The advantage of
this update lies in the fact that such submodules are consumed by applications
similar to NASTY, and become more reliable development-wise: upgrades and bug-
fixes at the lower level are easier to propagate. We developed robust and versatile
interfaces aimed towards non-Abelian TTN simulations.

We showed the computational advantages of tensor networks (TNs), and their
relevance to quantum many-body (QMB) problems. We discussed the conceptual
challenges towards building a symmetric TN, and established a collection of unit and
integration tests in the pursuit of reliable TN software development. We expanded
the functionality of the Quantum Green TEA library, enabling the explicit encod-
ing of non-Abelian symmetries for their subsequent exploitation in the simulation
of QMB systems. Given the prevalence of such symmetries in systems of interest
for the development of quantum technologies, and, even more so, models of theo-
retical relevance such as the bi-linear bi-quadratic (BLBQ) spin-1 model, we expect
this outcome to be of considerable use. Exploiting Schur’s lemma and, more gener-
ally, the Wigner-Eckart theorem, the construct of tree-tensor blocks for symmetric

45



TNs proved convenient for manipulating binary tree tensor network (TTN) ansätze.
This compatibility has- resulted in an almost seamless transition from non-Abelian
symmetric matrix product states (MPS) to TTNs of the same nature.

We demonstrated the accuracy and effectiveness of the TEBD algorithm by com-
paring it with the results of exact diagonalization (ED) for the Heisenberg nearest
neighbours model, as well as the BLBQ model for bosonic interactions. Given the
periodic nature of the 𝜃 parameter in the BLBQ model, we were able to estab-
lish a maximum deviation between the ED prediction and that of TEBD, with a
10−2 relative error for the critical point 𝜃 = 𝜋/4. With this reference, we scaled the
model up to 50 sites and tested the estimation convergence with an increasing bond
dimension.

A first potential improvement for the future is the encoding of multiple non-
Abelian symmetries, as much of the structure is already compatible with this. Al-
though a separate Quantum TEA implementation exists for Abelian symmetries, a
multiple symmetries version of NASTY may be easily adapted to deal with com-
bined symmetries, e. g. U(1)×SU(2), where at least one of the symmetries is Abelian
and at least one of them is non-Abelian.

Extending the applications of the current implementation, we could perform effi-
cient measurement of symmetric correlators by encoding them as rank-4 tensors and
performing an SVD decomposition, avoiding the computational costs of converting
a non-Abelian symmetric tensor network state into a dense tensor network.
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