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Abstract

Le sorgenti X ultraluminose (Ultraluminous X-ray Sources, ULXs) sono inter-

pretate come oggetti compatti in accrescimento in galassie esterne. La loro

luminosità supera il limite di Eddington per un buco nero di 10 M�. La recente

scoperta di tre ULXs pulsanti fa ritenere che in questo caso l’oggetto com-

patto sia una stella di neutroni con un elevato campo magnetico B (B > 12 G).

Quest’ultimo diminuisce l’opacità di electron scattering rispetto all’opacità di

Thomson, consentendo cos̀ı luminosità di accrescimento più elevate. Il calcolo

della luminosità di accrescimento per una stella di neutroni magnetizzata è stato

fatto in questa Tesi seguendo l’implementazione ed il relativo procedimento it-

erativo proposto da Mushtukov et al. (2015b).

Tuttavia la ULX pulsante NGC 5907 ULX-1 non può essere spiegata da

questo modello (Israel et al. 2017b). Ipotizzando che il campo magnetico della

stella di neutroni abbia una topologia più complessa del caso dipolare, è possibile

riprodurre il modello di Mushtukov et al. (2015b) assumendo che il campo

magnetico della stella di neutroni abbia un termine di ordine maggiore nel suo

sviluppo multipolare (come suggerito da Israel et al. 2017b). I risultati di

quest’ultimo modello, da noi implementato, sono in grado di rendere conto delle

proprietà osservative di NGC 5907 ULX-1, confermando l’ipotesi di Israel et al.

(2017b).
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Chapter 1

Ultraluminous X-ray

Sources

It is widely accepted that the majority of Ultraluminous X-ray Sources

(ULXs) are accreting compact object hosted in external galaxies; their lumi-

nosity exceeds the Eddington limit for a 10 M� black hole and challenges the

standard accretion model. In this Chapter we shortly review their properties:

Sec. 1.1-1.3 introduce the theoretical framework and the scenarios proposed to

account for their luminosity; in Sec. 1.4 some of their observational properties

are discussed in more detail, referring in particular to the case of ULXs with

black holes.

1.1 Introduction

Ultraluminous X-ray Sources (ULXs) are X-ray non-nuclear, point-like sources

in external galaxies whose luminosity L exceeds the Eddington limit for a 10 M�

compact object, i. e. L & 1039 erg s−1. They were first detected with the Ein-

stein satellite but they could not be studied in detail because of its poor spatial

7



resolution (see e. g. Fabbiano & Trinchieri 1987).

If the accreting compact object is a Black Hole (BH), accounting for an

observed luminosity higher than 1039 erg s−1 might seem feasible if the BH is

more massive than 10 M�. But the current models of stellar evolution show that

BHs of stellar origin with mass greater than ∼ 100M� cannot form (Zampieri

& Roberts 2009, Mapelli et al. 2009, Belczynski et al. 2010). An alternative

possibility is that the accreting compact object is an intermediate mass BH,

with a mass in excess of 100 M� (e. g. Colbert & Mushotzky 1999). However,

significant evidence of the occurence of intermediate mass BH in ULXs is limited

to a few sources (most notably HLX-1 ESO 243-49, Farrell et al. 2009).

On the other hand, in certain conditions the luminosity could be greater

than ∼ 1039 erg s−1 because the source is emitting above the Eddington limit or

it is beamed. In the latter case, the radiative flux SO can be expressed as:

SO =
L

ΩR2
, (1.1.1)

where Ω is the solid angle within which the flux SO is emitted. If Ω < 4π, the

actual luminosity emitted by the source is:

L =
Ω

4π
L′ , (1.1.2)

where L′ is the apparent isotropic luminosity. Hence the observed super-Eddington

luminosities of ULXs might be explained in part by the fact that the emission is

beamed (i. e. geometrically confined within a solid angle Ω < 4π). Thus, a BH-

powered ULX can be modelled by a midly-beamed emission from a 10÷100M�

BH.

We will discuss this scenario and the possibility that emission overcomes the

Eddington limit in more detail in the following Sections.
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1.2 The Eddington limit

Accretion onto compact objects is a physical process invoked for explaining

many phenomena in high-energy astrophysics, especially those emitting in the

X-ray and gamma-ray bands. The standard accretion theory tells us that in

spherical symmetry and in stationary condition the maximum luminosity emit-

ted by an accreting compact star is the well-known Eddington limit LEdd.

Indeed assuming a spherically symmetric accretion of matter onto the sur-

face of an object of mass M and radius R and considering a pure-hydrogen

gas, infalling electrons emit radiation (e.g. through free-free process) that will

afterwards interact with the other electrons via Thomson scattering. Electrons

and protons dragged (by Coulomb forces) with them are simultaneously:

• attracted inwards by the gravitational field;

• accelerated outwards by the radiative force.

Indicating with kT the Thomson opacity and neglecting the electron mass me

with respect to the proton mass mp, the balance of the two opposite forces

returns:

GM

R2
mp −

kT

c

LEdd

4πR2
= 0 . (1.2.1)

The corresponding limiting luminosity, known as the Eddington luminosity,

is:

LEdd =
4πGMmpc

kT
= 1.3× 1038

(
M

M�

)
erg s−1 . (1.2.2)

As already mentioned above, in writing equation (1.2.2) we have made four

crucial assumptions:

• spherical symmetry;

• stationarity of the accretion-flow;

• pure hydrogen accreting gas;
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• Thomson opacity.

Relaxing one or more of these hypotheses may provide a super-Eddington

luminosity.

1.3 Effective gravitational potential and mass

transfer

In this Section we briefly summarize the properties of the effective gravita-

tional potential of a ULX in a binary systems. We start from the solution of

the Circular Restricted Three-body Problem: a small point-mass m moves in the

gravitational potential of two masses M1 and M2 orbiting around each other,

with m�M1,M2.

Let the two objects be in the position r1 = (x1, 0) and r2 = (x2, 0) in a

corotating frame of reference (O, x, y), as displayed in Fig. 1.1. In the position

r = (x, y) the point-mass particle feels the gravitational potential Φ(r) (see e.

g. Frank et al. 2002):

Φ(r) = − M1

d1(r)
− M2

d2(r)
− Ω2r2 , (1.3.1)

where d1(x, y) =
√
x2 + y2 − r2

1 and d2(x, y) =
√
x2 + y2 − r2

1 are the distances

between the istantaneous position of the point-mass object and the center of

mass of M1 and M2 respectively. With these results in mind, let us then suppose

that:

• M1 is a compact star, e. g. a BH.

• M2 is a normal star1.

The extrema of Φ(r) are generally referred to as Lagrangian points. Gas moves

along the equipotential lines and can reach M1 via the inner Lagrangian point

1I. e. a non-degenerate star.
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Figure 1.1: Contour lines of the potential V (x, y); the green contour represents

the Roche Lobe of the system.

L1, hence forming an accretion disc. The limiting equipontential surface that

surrounds both stars is usually called Roche Lobe. Plasma can reach L1 basically

in two ways:

• if the star does not fill entirely its own lobe, matter expelled through

stellar wind can reach L1;

• if the star instead fills its lobe, matter from the surface of the star can flow

directly through L1 acquiring a huge angular momentum and establishing

the Roche-lobe overflow regime.

As we will see in Sec. 2.3.1 the latter case is the dominant mass transfer process

in ULXs.
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1.4 BH-powered ULXs

We started assuming that ULXs are accreting Black Hole Binaries (BHBs).

In fact, the present work will focus mostly on the physics of ULX Pulsars (see

Chapter 2), but in this Section the main properties of the BH-powered ULXs

are briefly summarized.

1.4.1 Super Eddington accretion

Different scenarios for BH-powered ULXs may be put forward considering:

• beamed emission with b = Ω/4π < 1 (see Sec. 1.1);

• different BH masses M in the range 10÷ 100 M� (see Sec. 1.1);

• super-Eddigton accretion with ṁ > 1, where ṁ = Ṁ/ṀEdd.

The first two possibilities have been shortly addressed above. The latter is

discussed in detail in Feng & Soria 2011. Here we simply note that exceeding

the Eddigton limit may be possible if the mass-accretion rate Ṁ itself exceeds

the Eddington mass-accretion rate ṀEdd. In these conditions the disc becomes

geometrically thick (Poutanen et al. 2007). As a consequence, the approximation

of thin disc (Shakura & Sunyaev 1973) must be relaxed. The timescale for the

plasma-inflow becomes smaller than that for the diffusion of photons, that are

then carried inward towards the BH (Abramowicz et al. 1988). For this reason

this accretion flow is referred to as Advection Dominated Accretion Flow. In

these conditions the flow is able to drive a strong matter outflow (e. g. Poutanen

et al. 2007).

1.4.2 Spectral properties

Given that the majority of ULXs are likely to be X-ray binaries, a comparison

of their X-ray spectral properties with those of known Galactic Black Hole
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Binaries (BHBs) is appropriate. An extended treatment of these latter can be

found in the exhaustive review of Remillard & McClintock (2006).

Spectral properties of Galactic BHBs In Galactic BHBs, we distinguish

two components of the spectrum:

• a thermal component, generally modelled by a multicolour-blackbody spec-

trum with T ∼ 1 keV;

• a high-energy component that is described by a power law N(E) ∼ E−γ .

The relative contribution of the two components changes with time, as discov-

ered by Tananbaum et al. 1972. They observed a transition from a soft to the

hard X-ray spectrum (2 ÷ 6 keV) in the X-ray binary Cyg X-1. That’s why

it is common to speak about state and state transitions in the X-ray spectra

of BHBs. Often the power-law continuum of the X-ray spectrum of a Galac-

tic BHBs shows a break or an exponential cut-off at high energies ∼ 60 keV

(Remillard & McClintock 2006).

The soft state of the spectrum is typically dominated by the thermal com-

ponent, and it is possible to observe it when the luminosity in the 2 ÷ 20 keV

energy range is brighter (it is also called high/soft state); the hard state is gen-

erally described by a power law ∼ E−γ with spectral index γ ∼ 1.7 (Remillard

& McClintock 2006). We observe it when the source is fainter in the 2÷ 20 keV

energy range (we also refer to it as low/hard state). A thorough characterization

of the BHB-spectral states would also require an accurate analysis of the timing

properties that is beyond the goals of this thesis. We mention only that a typ-

ical hallmark of some spectral states is presence of Quasi-Periodic Oscillations

(QPOs), i. e. some quasi periodic variability in the power-density spectrum.

Although they are a rather typical feature of accretion-powered emission spec-

tra, QPOs provide an useful tool in the BHB-spectral classification because they

seem to be somehow related to the transition between different states.
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The study and classification of QPOs are based on some of their intrinsic

parameters it is possible to observe, namely their mean frequency, width and

associated noise (see Motta 2016); depending on the value of these parameters,

it is possible to attempt a physical explanation for their origin. At least for

those occuring at low frequencies, it is generally accepted that they originate

from a general-relativistic effect2 (see e. g. Motta 2016 and references therein).

QPOs can then be used for identifying another emission state of the BHB-

spectra, called very high state: the very high state is indeed chatacterized by

QPOs and high luminosity, with the X-ray spectrum showing a thermal com-

ponent and a power law with a steep index (γ ∼ 2.5) (Remillard & McClintock

2006).

Spectral properties of ULXs Even though BHB- and ULX-spectra show

similarities, significant differences are found between them.

Similarly to BHBs, there is spectral variability between states (as in Fig.

1.2, Kubota et al. 2001) although the properties of these states are not so well

defined. There are indeed some ULXs whose spectra are well described by a

power-law, while other are better fitted with a multicolour blackbody disc (Fig.

1.2).

The better spectral resolution achieved e. g. by XMM-Newton shed light

on the ULX spectra, highligthing differences from Galactic BHB-spectra. Many

ULX spectra could be initially fitted with single-component models because of

their poor spectral resolution. However, high counting statistics spectra taken

later on showed that the X-ray spectral shape consists of two convex (thermal

like) components one below 1 keV (soft component) and other at higher ener-

gies (often described phenomenologically with an optically thick Comptonizing

component).

2I. e. the Lense-Thirring precession. For this reason QPOs can in principle be used also

for determining the mass of the accretor compact object.
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These spectral features cannot be fitted by the model of BHB spectra and

suggest that they represent a new spectral state. This is usually referred to as

Ultraluminous state (Gladstone et al. 2009; see Fig. 1.3) since it is observed

only for luminosities & 1039 erg s−1.

Figure 1.2: An example of transition between spectral states in two ULXs in

the spiral galaxy I342 (Kubota et al. 2001). The X-ray spectra were obtained

in two different ASCA observations.

1.4.3 Environment

ULXs are found in both elliptical and spiral galaxies (Feng & Soria 2011,

Mushotzky 2004), but they are systematically brighter in spirals (LX,spirals &

5×1039 erg s−1) than those hosted in ellipticals (LX,ellipticals . 2×1039 erg s−1).

Moreover, the number of ULXs in a given galaxy clearly correlates with

its Star Formation Rate (SFR) (see Fig. 1.4; Mapelli et al. 2010, Mushotzky

2004). Actually the relation between the number of ULXs and SFR is probably

dependent also on the metallicity of the stellar environment (Mapelli et al.

2010; Prestwich et al. 2013) where the stellar BH formed. As suggested by

Zampieri & Roberts (2009), the metallicity of the progenitor star should affect

the BH mass. While at solar metallicities the stellar envelope of a massive star

is removed thanks to line-driven stellar winds, at lower metallicities the process

is less effective, leaving a more massive star at the time of core collapse. This in
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Figure 1.3: A typical behaviour of an ULX spectrum (grey solid line), where

the various components are distinguishable (Feng & Soria 2011).

turn may cause most of the envelope to fallback after the supernova explosion

or may induce the direct collapse of the star to a BH (of mass comparable to

that of the final mass of the star; see Fig. 1.5.)
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Figure 1.4: Positive correlation of the number of Massive stellar BHs NBH with

SFR (Mapelli et al. 2010).

Figure 1.5: Theoretical dependence of the final mass of the star on its initial

main sequence mass for different metallicities (Zampieri & Roberts 2009).
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Chapter 2

ULX Pulsars

The main focus of this Thesis is studying the ULX Pulsars, interpreted as

accreting Neutron Stars (NSs) endowed with a strong magnetic field B. Since

the latter reduces significantly the Thomson opacity kT (at least if B > 12 G),

it contributes to enhance the total luminosity emitted by an accreting magne-

tized NS. In Sec. 2.1-2.3 we discuss in detail the physics of the accretion onto

magnetized NSs, while Sec. 2.4 containes a summary of the main observational

properties of the known ULX Pulsars.

2.1 Introduction

Until few years ago ULXs have always been modelled as accreting BHs as

discussed in the previous Chapter. The discovery of a pulsing ULX in the

nuclear region of the galaxy M82 (M82 X-2, Bachetti et al. 2014) and of two

other pulsars thereafter (NGC 7793 P13, Israel et al. 2017a, Fürst et al. 2016;

NGC 5907 X-1, Israel et al. 2017b) changed completely our view of ULX and

forced us to consider accretion-powered pulsars as alternative model.

The physics of the accretion onto NSs is rather different from that required

for modelling accretion onto BHs: NSs have a solid surface and are indeed known
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to be magnetized stars, whose magnetic-field strenght B ranges between 108 ÷

1015 G. In the following we will refer mainly to the case of highly magnetized-

NSs (with B ∼ 1013 ÷ 1015 G): we will show that magnetic field in this interval

may allow for the observed Super-Eddington luminosities.

Clearly we must take in account that the magnetic field plays a role in the

interaction of radiation with matter: i. e. the electron scattering cross section

differs from the Thomson cross section σT.

We will carefully treat this aspect in the next chapter, when we will describe

a recently-proposed model for NS ULXs. For the moment we concentrate on

the basic phenomenology of accretion onto magnetized NSs.

2.2 Disc-fed accretion onto magnetized NSs

Suppose to deal as usual with a binary system, this time with a NS-accretor

of radius R and mass M , and a donor star loosing matter through the inner

Lagrangian Point L1 and forming a thin accretion disc. As the stream of the

accreting plasma approaches the NS-magnetosphere, the accretion disc is dis-

rupted by the interaction with the magnetic field B. The radius at which this

occurs is approximately where the raw pressure of the gas balances the magnetic

pressure:
1

2
ρv(r)2 =

B(r)2

8π
. (2.2.1)

Here:

• v is the bulk velocity of the gas, assumed for the sake of simplicity equal

to the free-fall velocity vff =
√

2GM/r (of the same order of magnitude

of the Keplerian velocity);

• ρ is the gas density (calculated from the continuity equation);

• B(r) is the magnetic field, assumed to be dipolar B(r) = µ/r3, where

µ = B∗R3 is the dipolar magnetic moment and B∗ is the magnetic field
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at the surface of the star.

Equation (2.2.1) can be solved for r and gives:

RA = Ṁ−2/7(2GM)−1/7µ4/7 . (2.2.2)

The radius RA is often referred to as Alfvén radius.

We stress the fact that this radius must be intended as a scale lenght that

provides an order of magnitude estimate for the distance at which the magnetic

field becomes dynamically important. A more rigorous calculation can be done

by solving the whole set of MHD equations for the so-called magnetospheric

radius1 RM: for r < RM, the magnetic field becomes dynamically important

and the accreting plasma will follow the magnetic-field lines (see Fig. 2.1).

2.2.1 Critical luminosity and accretion columns

We know that magnetic-field lines move close between them as they ap-

proach the NS-surface: since the accreting plasma is dynamically bound to

magnetic-field lines it will accumulate in two funnell-shaped structures known

as accretion funnels, at the base of which there are the magnetic polar caps.

Following the model developed by Basko & Sunyaev (1976), we assume that

at a certain radius above the NS surface the flow will reach the sonic point, i.

e. that its free-fall velocity will be equal to the sound speed of the gas. A shock

will form if the luminosity (accretion rate) is above a certain value L∗ (Ṁ∗), e.

g. given by Mushtukov et al. (2015a):

L∗ ' c

keff
l0
GM

R
, (2.2.3)

where keff is the effective opacity and l0 is the lenght of the circle representing

the footprint of the accretion column on the NS surface (see Sec. 3.2). Hence

two scenarios are possible:

1It is worth noting that magnetospheric radius preserves the same analytical dependence

on the magnetic moment µ.
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donor star

neutron star

accretion funnels
B

magnetic-field lines

Figure 2.1: A sketch of the geometry of the accretion flow in a magnetizes NS:

accreting matter flowing from the donor star follows the B-field lines and forms

accretion funnels onto the NS surface.

• if L < L∗, no shock forms and accreting matter is stopped directly at the

NS-surface, hence thermalizing and emitting X-rays;

• if L > L∗ a shock forms above the NS surface and accreting matter sinks

in a so-called accretion column inside which it is gradually halted by the

radiation pressure.

Since L∗ is typically of the order of 1037 erg s−1 we are mostly interested in

the latter case, where the accretion column height can reach in principle the

Alfvén radius RA for sufficiently high X-ray luminosities. Radiation is in large

part emitted perpendicularly to the magnetic-field because electron scattering

opacity is lower in that direction.2

The Rankine-Hugoniot jump-conditions written for a politropic equation of

state P ∼ ρΓ between the pre-shock and the post-shock region (labelled with

2For high values of the magnetic-field strenght (B & 1012 G), but we will go deeper in

detail in Sec. 3.4.3.
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subscripts 1 and 2, respectively) are:

ρ1u1 = ρ2u2 conservation of mass (2.2.4)

P1 + ρ1u
2
1 = P2 + ρ2u

2
2 conservation of momentum (2.2.5)

1

2
u2

1 +
Γ

Γ− 1

P1

ρ1
=

1

2
u2

2 +
Γ

Γ− 1

P2

ρ2
conservation of energy (2.2.6)

From them it is possible to obtain an expression for the post-shock velocity3:

u2 =
Γ− 1

Γ + 1
u1 , (2.2.7)

that, for a radiation-dominated gas (Γ = 4/3) returns

u2 =
u1

7
. (2.2.8)

Assuming as before that the accreting gas falls in the NS-gravitational field with

free-fall velocity, the post-shock velocity in the sinking region will be then

v =
vff

7
. (2.2.9)

This latter condition will be used extensively in our model.

2.3 Effects preventing accretion

In this Section we focus on the conditions under which accretion onto a

magnetized NS can take place.

2.3.1 Propeller effect

We know that the accreting plasma is expected to have a high angular mo-

mentum, but we also expect that a particle must get rid of a part of it for

settling on a smaller orbit until it reaches the NS surface. In the typical case of

3We are obviously considering the simple case in which Mach number is formally infinite,

the so-called strong shock : equations (2.2.4-2.2.6) would eventually return for Γ = 5/3 the

result of the gasdynamics for an ideal gas.
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an accretion disc around a BH the loss of angular momentum is typically caused

by the viscous torques; for an accreting NS, we must take in account also the

magnetic field.

We start considering an important parameter:

ωs =
Ωs

ΩK(RA)
, (2.3.1)

where Ωs is the angular velocity of the NS and ΩK(RA) is the keplerian an-

gular velocity evaluated at the Alfvén Radius. ωs is generally called fastness

parameter.

It is possible to show that the total torque N (including material, magnetic,

and viscous stresses) can be written as:

N = n(ωs)N0 , (2.3.2)

where n(ωs) is often referred to as adimensional accretion torque, and depends

only on ωs. N0 (the torque of the accreting matter) is given by:

N0 =
d

dt
[M(t)r2

1Ω] ' ρvr2
1ΩS1 . (2.3.3)

A detalied modelling of n(ωs) is needed for investigating the spin properties of

a rotating NS: the term N0 causes a spin-up of the NS, since it accounts for the

angular momentum transferred by the accreting plasma, while the other con-

tributions to the torque (magnetic and viscous stresses) eventually present can

either spin up or spin down the NS4. They are accounted for by the expression

of n(ωs).

A simple analytic expression for n(ωs) is5 (Ghosh 2002):

n(ωs) = 1 +
1

2(1− ωs)
. (2.3.4)

4In the case of a magnetized NS the sign of the torque depends on the so-called azimuthal

pitch γφ = Bφ/Bz |z=−h, where h is the height of the disc (see Ghosh & Lamb 1979, III),

whose sign can change.
5Alternative expressions can also be found in e. g. Dall’Osso et al. (2015).
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From equations (2.3.4, 2.3.2) it turns out that accretion is possible (the torque

is positive) if:

ωs < 1 . (2.3.5)

From equation (2.3.1) we are indeed requiring that the whole magnetosphere ro-

tates with an angular velocity lower than that of the accreting gas: the condition

(2.3.5) can be rewritten as:

RA < RC , (2.3.6)

where RC is the corotation radius, namely the distance at which the Keplerian

angular velocity equals the rotational angular velocity of the NS, in formulae

Ωs(RC) = ΩK(RC).

If RA > RC the NS cannot accrete since the NS rotational velocity is too

high and centrifugal forces would then prevent matter from falling on it. This

is the so-called propeller effect that fixes a requirement for the accretion onto

a magnetized NS to take place.

Finally, the torques exterted on an accreting NS permit to estimate the

mass-accretion rate Ṁ via the measured period derivative Ṗ (once an estimate

for the value of B is provided). From equation (2.3.3), and using the continuity

equation it is possible to show that:

Ṁ
√
GMRA = −2πI

Ṗ

P
, (2.3.7)

where I is the moment of inertia and we have written dL/dt = −2πIṖ /P

(L = IΩs = 2πI/P is the NS angular momentum).

2.3.2 Thick disc

A fundamental assumption made in Sec. 2.2 is that the stream of plasma that

is accreting onto the NS lies on the orbital plane, forming thus a thin accretion

disc (Shakura & Sunyaev 1973); i. e. we are assuming that the disc-scale height

H(R) is much lower than the radius of the disc R.
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If instead H ∼ R the disc becomes geometrically thick and advection of

matter and energy take place allowing accretion above the Eddington limit

(Abramowicz et al. 1988, Watarai et al. 2001). Radiation pressure may acceler-

ate matter producing a powerful equatorial outflow (e. g. Poutanen et al. 2007).

The radius at which advection energy starts to dominate is called spherization

radius Rsp (Shakura & Sunyaev 1973).

Rsp = RM . (2.3.8)

If Rsp < RM < RC accretion is possible and the thin disc approximation still

holds; if Rsp > RM and RM < RC a strong plasma outflow develops and the NS

accretes from a thick disc that would rapidly engulf the magnetosphere.

2.4 Observations of ULX Pulsar

A self-consistent model that accounts for all the observational properties of

ULX pulsars is still missing. Here we summarize all the available data for the

three known sources of this type.

2.4.1 M82X-2 (NuSTAR J095551+6940.8)

The starbust galaxy M82 is known to harbour a population of ULXs (Mat-

sumoto et al. 2001) in its nuclear region. The two brightest among them, called

M82X-1 and M82X-2 can be resolved only by means of the Chandra X-ray tele-

scope because of their small angular separation of roughly 5 arcsec. The same

area of the sky was targeted also by NuSTAR seven times between the 23rd

January 2014 and the 6th March 2014; a careful analysis of the NuSTAR data

(Bachetti et al. 2014) led to indentification of NuSTAR J095551+6940.8 with

M82X-2 and revealed the presence of coherent pulsations. The observed pe-

riod is P ∼ 1.37 s, with an orbital modulation of 2.53 days (see Fig. 2.2), and

its first-time derivative is Ṗ ∼ −2 × 1010 s s−1. The X-ray luminosity reaches
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LX ∼ 1.8 × 1040 erg s−1, hence largely exceeding the Eddington limit for a BH

with mass M = 10 M�. The torque N0 ' 6×1045I45 gr cm2 s−1 (2.3.7) implies a

Figure 2.2: Panel a: lightcurves taken in the 3-30 keV energy band within 70”

from the position of J095551+6940.8; different colours correspond to a different

count rate. Panel b: measurements of the pulse period (black points) fitted

with a sinusoidal ephemeris (blue dashed line) showing a ∼ 2.5 days modula-

tion. Panel c: pulsed flux normalized to the total emission within 70” from the

position of J095551+6940.8. The panels show the pulse profiles (Bachetti et al.

2014).

high value of the mass-accretion rate6 Ṁ , hence suggesting a disc-fed accretion

6In the assumption that it is entirely due to the matter torque N0.
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via Roche-lobe overflow; the presence of the coherent flux pulsations leads one

to identify M82X-2 as an accreting NS.

2.4.2 NGC 7793 P13

The ULX P13 in the spiral galaxy NGC 7793 was observed several times

since the first Einstein satellite observations carried out in 1979; subsequent

observations with ROSAT (1992) and Chandra (2003) confirmed the presence

of an ULX whose Eddington luminosity reaches ∼ 4×1039 erg s−1 (Motch et al.

2014). Optical measurements led to constrain the mass of the compact object in

this source, that was determined to be > 15 M� (Motch et al. 2014). Recently

(see Israel et al. 2017a and Fürst et al. 2016) detected a ∼ 0.42 s pulsation in

the XMM Newton EPIC data of this source, showing that it contains a NS (see

Fig. 2.3).

Albeit its luminosity is not as high as NGC 5907 ULX, the interpetation

of the ULX P13 is non trivial. It is difficult to find a value of the magnetic

field that, given the observed period P and its time-variation Ṗ , fulfills all the

requirements mentioned in the previous Section. An even more extreme case

in this sense is represented by the ULX pulsar recently discovered, NGC 5907

ULX-1 (Israel et al. 2017b).

2.4.3 The case of NGC 5907 ULX-1

NGC 5907 ULX-1 is the most powerful ULX pulsar ever discovered at the

present date. As its name already suggests, it was found in the spiral galaxy

NGC 5907 with NuSTAR and with XMM Newton in 2003 (Israel et al. 2017b).

The observed luminosity is exceptionally high, reaching 0.25÷2×1041 erg s−1

(Israel et al. 2017b).

We summarize the main observational parameters for NGC 5907 ULX-1

in the Tab. 2.4.3. From Tab. 2.4.3 NGC 5907 ULX has also a suprinsingly
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Figure 2.3: Folded lightcurve (upper panel) and Fourier power spectra taken

in 2013 and 2014 of NGC 7793 P13. A pulsation is clearly detected with a

frequency corresponding to ∼ 0.42 s (Israel et al. 2017a).

NGC 5907 ULX-1

Luminosity L ................................................................ 0.25÷ 2× 1041 erg s−1

Period P (2003) ................................................................ 1.428 s

Period P (2014) ................................................................ 1.136 s

Table 2.1: Table summarizing the main observational parameters of NGC 5907

ULX-1 (Israel et al. 2017b).
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high average value of Ṗ : considering the eleven-years span between the two

measurements, it is:

Ṗ ∼ (1.136 s− 1.428 s)/11 yr ' −8.42× 10−10 s s−1 (2.4.1)

showing via equation (2.3.7) that the torque is very high: it is then likely that

the donor star is filling its Roche Lobe.

A possible explanation of the luminosity of NGC 5907 ULX-1 is that the

accreting NS is endowed with a multipolar magnetic field. As suggested by Israel

et al. (2017b), a dipolar componet B1 = (0.2 − 3) × 1013 G and a multipolar

component B2 = (0.7− 3)× 1014 G can account for the observed luminosity of

this ULX Pulsar (see Fig. 2.4).
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Figure 2.4: Luminosity of a ULX Pulsar versus magnetic field strenght. The

region above the red dashed line corresponds to the case in which high geo-

metrical thickness leads to a nearly spherical accretion (see Sec. 2.3). On the

right of the blue dashed line, the propeller effect does not permit accretion. The

green dashed line represents the minimum luminosity that can account for the

observed Ṗ of NGC 5907 ULX-1. The arrows represent the interval of luminos-

ity covered by the detected flux variations, where the black points represent the

average luminosity; each arrow is labelled with the value of the beaming factor

required to account for the observed flux, in order to not to imply a too high

magnetic field.
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Chapter 3

The model

This Chapter deals with the calculation of the accretion luminosity of a

magnetized NS following the model proposed by Mushtukov et al. (2015b). Sec.

3.2 briefly presents the seminal treatment of Basko & Sunyaev (1976), on which

the model of Mushtukov et al. (2015b) is based; in Sec. 3.3-3.5 we describe our

implementation of the model and the iterative procedure of Mushtukov et al.

(2015b), incorporated in the numerical (FORTRAN90) code MACHD; in Sec. 3.6 we

present the results of our numerical computation and compare them with those

of Mushtukov et al. (2015b).

3.1 Introduction

We calculate the maximum accretion luminosity of a magnetized NS using

the approach introduced by Mushtukov et al. (2015b). The latter is based on

the treatment published in Basko & Sunyaev (1976). The crucial improvement

on the model of Mushtukov with respect to the treatment of Basko & Sunyaev

is the inclusion of the correct dependence of the photon cross section on the
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B-field1.

As already mentioned before, accreting matter is first halted by the radiation-

dominated shock, and then enters in the sinking region where it is stopped at

the NS-surface. Very large luminosities are produced in the radiation-dominated

plasma in this zone. The implementation of the model is done by means of a

numerical code written in FORTRAN90.

3.2 Geometry of the accretion column

Figure 3.1: The two possible geometries of the accretion column, from Basko &

Sunyaev (1976).

The geometry of the accretion column depends on whether:

• matter is accreted through an accretion disc formed in a Roche potential

and arranges itself on a narrow wall of the column (Fig. 3.1, left);

1In Basko & Sunyaev the Thomson-cross section σT was adopted. They discussed the fact

that high values of B may lower significantly its value (see Basko & Sunyaev 1976 for further

details).
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• matter flows on the NS surface via spherical accretion, filling then the

whole column (Fig. 3.1, right).

In both cases the accreting plasma will cross a shock experiencing a deceleration.

The relevant geometry considered in the following is that for an accretion disc.

As shown in Fig. 3.1 left, we will use the following parameters to describe the

geometrical configuration of the accretion column:

• the outer lenght of the accretion column, lh;

• the thickness of the accretion column, dh;

• the radius of the accretion column, ah.

All these quantities vary with the height below the shock surface h ∈ [0, Hx]

(see Fig. 3.2).

The shape of the shock surface is shown in Fig. 3.2 (it will be discussed

later).

Figure 3.2: Profile of the shock surface, in a plane perpendicular to it. Hx is

the height of the shock above the NS surface, while x and h are two coordinates

across and along the accretion column.
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3.3 Fundamental equations

As the accreting plasma approaches the Alfvén radius RA, the ram pressure

of the flow becomes of the same order of the magnetic pressure:

Pmag =
B2

8π
(3.3.1)

As mentioned earlier, at this radius the magnetic field becomes dynamically

important and channels the plasma along the magnetic-field lines until it reaches

the shock surface with roughly free-fall velocity:

vff =

√
GM

R+Hx
(3.3.2)

The model of Mushtukov et al. (2015b) is based on three equations, derived

from the fundamental laws of thermodynamics and fluid dynamics. The main

assumptions of the model are:

1. radiation balances the gravitational forces in the accretion column, i. e.

the infalling plasma is in hydrostatic equilibrium;

2. matter falling in the accretion column is optically thick and in local

thermodynamic equilibrium with radiation;

3. radiation transport across the column can treated in the plane-parallel

diffusion approximation.

Hydrostatic equilibrium We assume that radiation pressure dominates and

hydrostatic equilibrium along the accretion column is expressed as:

∂Prad(x, h)

∂h
= −ρ GM

(R+ h)2
, (3.3.3)

where ρ is the matter density and Prad(x, h) is the radiation pressure.

A general solution of the equation (3.3.3) is then given by:

Prad(x, h) = Prad(x,Hx) +

∫ Hx

h

ρ
GM

(R+ y)2
dy . (3.3.4)
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Figure 3.3: Accretion-column geometry (Mushtukov et al. 2015b).

Local thermodynamic equilibrium The equation of radiative transfer fixes

the budget with which the intensity of a beam of radiation Iν varies when it

interacts with matter. Though its general solution is difficult to calculate, a good

approximation for our goals can be provided complying with the hypotheses

of high optical thickness and local thermodynamic equilibrium, for which the

solution of the equation of radiative transfer writes:

Iν = Bν(T ) , (3.3.5)

where Bν(T ) is the Planck function. Since the infinitesimal radiation pressure

dPrad of a single radiation beam with momentum k passing through an infinites-

imal oriented surface and emitted within a solid angle dΩ in a frequency band

dν is by definition:

dPrad = µ2Iν dΩ dν (3.3.6)
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(where µ is the cosine of the angle between k and the normal to the surface),

the integration of the equation (3.3.6) combined with the equation (3.3.5) gives:

Prad '
εR
3

=
aT 4

3
, (3.3.7)

where a = 7.5646× 10−15 erg cm−3 K−4 is the radiation density constant.

Radiative transfer Assuming plane-parallel diffusion approximation in the

x direction, the first moment of the radiative transfer equation takes the form:

∂Prad(x, h)

∂x
= −ρk⊥

F⊥(x, h)

c
, (3.3.8)

where k⊥ is the Rosseland-mean opacity and F⊥(x, h) the radiation flux across

the accretion column.

We can integrate equation (3.3.8) between x and dh/2 to get:

Prad(x, h) = Prad

(
dh
2
, h

)
+

1

c

∫ dh/2

x

ρk⊥F⊥(x, h) dx . (3.3.9)

3.4 The model of Mushtukov et al.

In the previous paragraphs we discussed the assumptions and wrote the three

main equations of the model; for the sake of clarity they are summarized in this
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box:

Main Equations of the Model

Hydrostatic Equilibrium

Prad(x, h) = Prad(x,Hx) +

∫ Hx

h

ρ
GM

(R+ y)2
dy (3.3.4)

Local Thermodynamic Equilibrium

Prad =
aT 4

3
(3.3.7)

Radiative Transfer

Prad(x, h) = Prad

(
dh
2
, h

)
+

1

c

∫ dh/2

x

ρk⊥F⊥(x, h) dx (3.3.9)

3.4.1 Analytical estimates

In order to obtain order-of-magnitude estimates for the considered physi-

cal quantities2, let us simplify even more the treatment with some additional

assumptions that we will relax afterwards.

Let us then assume that the density ρ is constant and that the flux along

the direction perpendicular to the magnetic-field lines F⊥(x, h) can be expressed

as3:

F⊥(x, h) ' F⊥,esc(h)
2x

d0
. (3.4.1)

If we neglect also the radiation pressure at x = d0/2 (Prad(d0/2, h) = 0), equa-

tion (3.3.9) returns:

Prad(x, h) ∼ τ0F⊥,esc(h)

4c

(
1− 4x2

d2
0

)
, (3.4.2)

where we have introduced the optical depth across the accretion column τ0 =

2We will use these estimates as initial guess in numerical calculations.
3We will not relax this assumption later.
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ρk⊥d0; equation (3.4.2) is our first tool to constrain the escaping flux F⊥,esc:

F⊥,esc(h) =
4c

τ0
Prad(0, h) (3.4.3)

Assuming that Prad(0, H0) can be neglected, we obtain Prad(0, h) from equation

(3.3.4):

Prad(0, h) ∼ ρ GM

R+H0

H0 − h
R+ h

. (3.4.4)

From equations (3.4.3, 3.4.4) we then obtain:

F⊥,esc(h) ' 4cPrad(0, h)

τ0
=

4c

k⊥d0

GM

R+H0

H0 − h
R+ h

. (3.4.5)

Evaluating thus equation (3.4.5) for h = 0 and then substituting it in equation

(3.4.2), Prad(x, 0) can be expressed as:

Prad(x, 0) ' ρ GM
RHx

(3.4.6)

where Hx is defined by the following expression:

Hx

Hx +R
=

H0

R+H0

(
1− 4x2

d2
0

)
(3.4.7)

or explicitely:

Hx =
RH0

(
1− 4x2/d2

0

)
R+H0(4x2/d2

0)
. (3.4.8)

This expression shows that, for small accretion-column heights H0 � R, the

accretion shock surface has roughly a parabolic shape, as already anticipated:

Hx

H0
' (1− η2

x)

(
1− H0

R
η2
x

)
∼ 1−

(
1 +

H0

R

)
η2
x if ηx � 1 , (3.4.9)

where ηx ≡ 2x/d0.

From the expression of F⊥,esc we can immediatly obtain the total luminosity

L emitted by the accretion column, integrating over the emitting surface (the

wall of the accretion column):

L = 4l0

∫ H0

0

F⊥,esc(h) dh = 16GMf

(
H0

R

)
l0
d0

c

k⊥
, (3.4.10)
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where

f

(
H0

R

)
≡ log

(
1 +

H0

R

)
− H0

R+H0
. (3.4.11)

For L ∼ 1039 erg s−1 and assuming k⊥ ∼ kT, it is H0 ∼ 0.75R. We will use

this value of the height as initial guess in our iterative numerical scheme.

In the following we will relax some of the simplifying assumptions introduced

in this Section.

3.4.2 Velocity and density across the column

In order to obtain more accurate results it is worth replacing the assumption

ρ = const with a more realistic density-profile. Here we calculate ρ from the

equation of continuity in fluid dynamics:

∂ρ

∂t
+∇ · (ρv) = 0 (3.4.12)

that, under stationary conditions, reduces to:

ρv =
Ṁ

2SD
, (3.4.13)

where v is the velocity of the accreting gas, Ṁ is the mass-accretion rate and

SD is the footprint of the accretion column4. The velocity profile can be found

by solving the whole set of HD-equations (see for instance Wang & Frank 1981);

one can show that has a power-law behaviour:

v ∼ hξ (3.4.14)

(see Mushtukov et al. 2015b). The exponent ξ is in the range 1 ÷ 5 and tends

to increase for high values of the ratio5 H0/R; Mushtukov et al. (2015b) discuss

the effects of different values of ξ on the solution and find that ξ = 1 is a good

choice.

4Hence the factor 2 at the denominator.
5More precisely the actual value of ξ depends on both opacity and thickness variations

along the magnetic-field lines and on the magnetic-field structure.
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Recalling that the post-shock velocity is initially ∼ vff/7 (see Sec. 2.2), we

assume:

v(x, h) = vff(x)
h

7Hx
. (3.4.15)

Substituing in (3.4.13) and solving for ρ we obtain:

ρ(x, h) = ρff(x)

(
h

7Hx

)−1

, (3.4.16)

where, using equation (3.4.13) we define the free-fall density ρff as:

ρff(x) =
Ṁ

2SDvff(x)
. (3.4.17)

3.4.3 Magnetized Thomson scattering cross section

As it can be seen from equations (1.2.2, 3.3.9), opacity is another crucial

quantity of the model that has to be properly treated.

The electron-scattering cross section σT for a non-relativistic plasma in ab-

sence of a strong magnetic field is given by the Thomson forumla:

σT =
e4

6πm2
ec

4
. (3.4.18)

However in presence of high magnetic fields, as we are considering, the cross

section has a complicate expression. Its thorough derivation requires a full-

Quantum ElectroDynamics (QED) calculation which is beyond the goals of the

present work. In the following we briefly introduce the physical framework and

then summarize the results (for further details see e. g. Canuto et al. 1971,

Herold 1979, Paczyński 1992, Taverna & Turolla 2017).

We know from basic Physics that the energy radiated per unit time along

the direction θ within a solid angle dΩ by an accelerated charged particle (e. g.

an electron) is given by:

−dE
dt

dΩ =
|p̈| sin2 θ

16π2c3
dΩ , (3.4.19)

where p̈ is the second-time derivative of the electric dipole moment p = −er,

with r = (x̂ix + ŷiy). Integration of equation (3.4.19) over the solid angle Ω
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returns the well-known Larmor formula. If the acceleration a = r̈ experienced by

the electron is caused by an oscillating electrical field E(t) = (E0,x̂ix+E0,y îy)eiωt

of an incident electromagnetic wave, we obtain the classical Thomson scattering

power and cross section, as summarized below. The force associated to E(t) is:

F(t) = mer̈ = −eE(t) , (3.4.20)

from which the second-time derivative of the dipole moment follows immediately.

Averaging6 all the directions îx and îy, equation (3.4.19) can be rewritten as:

−dE
dt

dΩ =
dσT

dΩ

S

2
dΩ (3.4.21)

where we introduced the differential cross section dσT/dΩ with the following

meaning:

dσ

dΩ
=

energy radiated per unit time per solid angle

incident energy per unit time per unit area
(3.4.22)

or:
dσ

dΩ
=

1

〈S〉

〈
dP

dΩ

〉
. (3.4.23)

S is the average Poynting vector and P is the power. In the case of Thomson

scattering it is:
dσT

dΩ
=

3

16π
σT(1 + sin2 θ) . (3.4.24)

Let us now come back to the case of interest, in which a strong magnetic field can

significantly affect the interaction of radiation with matter. Equation (3.4.23)

becomes more complex (see e. g. Canuto et al. 1971), since one has to replace

the electric force given in equation (3.4.20) with the expression of the Lorentz

force:

F(t) = −e
(

E(t) +
1

c
v ×B

)
. (3.4.25)

Using this expression to calculate p̈ and inserting it in equation (3.4.19), we

obtain the istantaneous energy emitted per unit time in an infitesimal solid angle

6This is commonly done by making use of the Poynting’s theorem, as in Rybicky & Light-

man (2004).
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Figure 3.4: Polarization states of the photons with momentum k (blue arrow)

in the case of a strong magnetic field B (green arrow): photons may be either

in the X-mode (EX, whose direction is perpendicular to the B-k plane) or in

the O-state (EO, whose direction is parallel to the B-k plane).

for radiation, that for high magnetic-field strenghts requires a QED approach

(see e. g. equation 16 and Appendix A, B in Canuto et al. 1971).

It is possible to show that the cross section depends on:

• the magnetic-field strenght;

• the polarization state of both the incident and the scattered photon, that

can be either parallel or perpendicular to the B-field direction respectively,

referred to as ordinary (O) and extraordinary (X) mode (see Fig. 3.4);

• the angle θ between the photon momentum k and the magnetic-field di-

rection.

In the case of high magnetic-field strenghts, we expect a swapping of the polar-

ization mode O in mode X as pointed out in e. g. Mushtukov et al. (2012): for

the sake of simplicity we will then consider only X-polarized photons, that after
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the scattering may have either X or O polarization.

Let us then consider an incoming photon with momentum k moving within

an infinitesimal solid angle dΩ = sin θdθdφ; the outcoming photon will be scat-

tered within the solid angle dΩ′ = sin θ′dθ′dφ′ in the same frame of reference.

The two contributions to the differential cross section are (see Taverna & Turolla

2017), for E � ECycl:

dσX→O

dΩ′
= σT

3

8π

(
E
ECyc

)2

µ′2 cos2(φ− φ′) (3.4.26)

dσX→X

dΩ′
= σT

3

8π

(
E
ECyc

)2

sin2(φ− φ′) , (3.4.27)

where we have imposed µ′ = cos θ′. The total differential cross section is then:

dσX

dΩ′
=

dσX→O

dΩ′
+

dσX→X

dΩ′
. (3.4.28)

Integrating the equation (3.4.28) over Ω′, we obtain:

σX(E) = σT

∫
Ω′=4π

3

8π

(
E
ECyc

)2

[µ′2 cos2(φ− φ′) + sin2(φ− φ′)]dΩ′

σX(E) = σT
3

8π

(
E
ECyc

)2 [∫ 1

0

∫ 2π

0

µ′2 cos2(φ− φ′)dµ′dφ′ +
∫ 1

0

∫ 2π

0

sin2(φ− φ′)dµ′dφ′
]

that gives

σX(E) =
σT

2

(
E
ECyc

)2

. (3.4.29)

We will use this equation for calculating the Rosseland mean opacity.

A little interlude Even though we restrict our discussion to the non rela-

tivistic case and to a frequencies domain well below the cyclotron frequency,

we mention the fact that if we have let the energy E approach ECycl, the cross

section would instead increase its value with respect to the Thomson cross sec-

tion σT. Obviously a cross section value calculated by means of (3.4.29) might

return physically unmeaningful results since we have developed that formula in

a different approximation: though if one relaxes it and performs more rigorous
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calculations for σ ≡ σ(E), one would get a term (E−ECycl)
−2 that makes σ peak

for E → ECycl. The values at which these maxima occur are called resonances.

In non-relativistic case the cross section has just one resonance for E =

ECycl for the reason just pointed-out; in the full-relativistic case more than one

resonances are expected, but calculations would be different and even more

complicated to be described here.

3.4.4 The complete set of equations

Here we summarize all the equations and the corresponding boundary con-

ditions adopted in this work. Recalling the hypotheses of local thermodynamic

equilibrium and optically thick plasma,

Prad(x,Hx) =
εR
3
, (3.4.30)

where the energy density εR is expressed in terms of the flux assuming no in-

coming radiation at the boundary (non-illuminated atmosphere):

εR =
2F
c
. (3.4.31)

Hence equation (3.3.4) turns into:

Prad(x, h) =
GM

R2

[
7ρff(x)Hx

∫ Hx/R

h/R

dt

t(1 + t)
+

2

3c
FEdd(Hx)

]
, (3.4.32)

where we introduce the further assumption that the flux is equal to the Edding-

ton flux at the shock surface.

Evaluating the integral and substituting the expression for FEdd = GMc/k‖R
2

one obtains:

Prad(x, h) =
GM

R2

{
7ρff(x)Hx

[
λ

(
Hx

R

)
− λ

(
h

R

)]
+

2

3k‖

1

(1 +Hx/R)2

}
,

(3.4.33)

where:

λ(x) ≡ 1

1 + x
+ ln(x)− ln(1 + x) (3.4.34)
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results from the integration of the first addendum in the second term of equation

(3.4.32).

For what concerns equation (3.3.9), if we substitute in it equations (3.4.16)

in the same assumptions stated above, we obtain:

Prad(x, h) =
2

c
F⊥,esc(h)

[
7

dhh

∫ dh/2

x

ρffzHzk⊥(z, h)z dz +
1

3

]
. (3.4.35)

3.5 Computational scheme

In order to determine the limiting luminosity produced by an accretion col-

umn, we will solve numerically the equations introduced in the previous Section.

The main parameters of the model are:

• the mass M of the NS;

• the radius R of the NS;

• the value of the magnetic field at the NS surface B0;

• the mass-accretion rate Ṁ ;

• the height at the center of the accretion column H0.

M and R are fixed parameters and their values are reported in Tab. 3.5. B0, Ṁ

and H0 can be changed. Once B0 and Ṁ (or the total luminosity) are fixed, H0

is varied iteratively until the numerical solution of the equation reaches conver-

gence. The initial guess for H0 is usually taken to be 0.75R. First we introduce

the correct dependencies of the parameter d0, l0 and SD, whose mathematical

expressions depend on the height at which the disc interrupts7. We retrieve

their values from the parameter l0/d0 and l0d0 ≡ SD reported in Mushtukov

7The disc can be divided in three zones according to the dominating pressure and opacity

sources (Mushtukov et al. 2015b): the inner zone (the A-zone, dominated by radiation pres-

sure), the intermediate zone (the B-zone, dominated by gas pressure and electron scattering)

and the outer zone (the C-zone, dominated by Kramer opacity and gas pressure).
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First-Guess Values

M 1.4 M�

R 106 cm

Ṁ 5× 1018 g s−1

H0 0.75× 106 cm

Table 3.1:

et al. (2015b). They are both functions of the magnetospheric radius RM, with

RM ∼ RA ∝ B4/7. For a disc interupted in the A-zone:

l0
d0
∼ RM ∝ B4/7 (3.5.1)

SD ∝ B−8/7 (3.5.2)

(see equations 27-28, 30-31 in Mushtukov et al. (2015b)).

We calculate an initial guess for the temperature profile T ≡ T (x, y) using

equations (3.3.7, 3.4.2, 3.4.5, 3.4.16), that can be easily combined with simple

algebra.

As can be seen temperature drops quickly towards the outer boundary of

the accretion column.

1st step: opacity As already anticipated, we will use the non-relativistic

approximation (3.4.29) for evaluating the electron scattering opacity for high

magnetic-field strenghts. With such expressions we will calculate the Rosseland-

mean opacity:
1

k⊥,B
=

∫∞
0
k−1
⊥,B(E)∂B(E , T )/∂T dE∫∞
0
∂B(E , T )/∂T dE

, (3.5.3)

where B(E , T ) is the Planck distribution and E is photon energy:

B(E , T ) =
2E3

(hc)2

1

eE/kT − 1
(3.5.4)

and k is the opacity:

k =
σ

µemP
, (3.5.5)
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Figure 3.5: Initial temperature profiles for different values of x and for Ṁ =

5 × 1018 g s−1, H0 = 0.75R and B0 = 1012 G. Each one is computed at a fixed

value of x indicated in the top-right of the diagram.

where µe is the mean molecular weight, mP is the proton mass and σ is given

by equation (3.4.29). Recall that, when we obtained it, we integrated on the

incoming photon directions. Now we have to integrate it over the outcoming

directions of the flux, that is:

1

σ⊥,B
=

2

σT

(
ECycl

kT

)2 ∫
Ω=4π

∫∞
0
x2ex(ex − 1)−1 dx dµ∫∞

0
x4ex(ex − 1)−1 dx

, (3.5.6)

where we have substituted the analytic expression of ∂B/∂T and x = E/kT .

The integrals in (3.5.6) can be evaluated analytically because they can be

reduced to particular cases of the Bose-Einstein integrals IBE used in statistical
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mechanics:

IBE(p) =

∫ ∞
o

xp−1

ex − 1
dx = Γ(p)ζ(p) with p > 1 , (3.5.7)

where Γ(p) is the Euler’s Gamma function and ζ(p) is the Riemann’s zeta func-

tion.

Substituting these expressions, after a number of manipulations we finally

obtain:

k⊥,B =
2

5
π2kT

(
kT

ECycl

)2

. (3.5.8)

2nd step: base of the accretion column We need an estimate of the

position of the base of the accretion column h0. We restrict ourselves to the

case x = 0 (center of the column). The value of h0 is found imposing that the

sum of the radiation and gas pressure is equal to the magnetic pressure, or:

Prad(0, h) + Pgas(h) = Pmag(h) (3.5.9)

Pmag is given by equation (3.3.1), Prad(0, h) by equations (3.4.33) and (3.5.9).

For typical values of the magnetic-field strenght h0 is expected to be in

the range between [0.1, 100] cm: since h0 � H0, the final luminosity does not

depend on this value as pointed out by Mushtukov et al. (2015b). Therefore we

fixed it at h0 = 2.0 cm.

3rd step: thickness of the sinking region We can see that in equation

(3.3.9) the thickness of this region dh appears as the upper boundary of an

integral: we start with the quasi-parabolic-first guess profile of Hx reported

in Sec. 3.4 and proceed iteratively follwing the treatment of Mushtukov et al.

(2015b).

We start from equations (3.4.33) and (3.4.35) that are suitably combined

together to give an integral recursive relation. We assume that dh(h0) = d0

because h0 is negligible compared to H0.

We first evaluate Prad(0, h0) from equation (3.4.33). Then:
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• we insert Prad(0, h0) ≡ Prad(0, h0)|II in the l. h. s. of equation (3.4.35)

and solve for F⊥,esc(h0) ;

• F⊥,esc(h0) can be inserted once more in equation (3.4.35) for retrieving an

expression for Prad(x, h0) ≡ Prad(x, h0)|II ;

• a second expression for Prad(x, h0) ≡ Prad(x, h0)|I profile is obtained from

(3.4.33).

The two equations are then combined together to get:∫ d0/2

x

ρff(z)Hzk⊥(z, h0)z dz =

[
Prad(0, h0)|II
Prad(x, h0)|I

− 1

3

]
d0h0

7
. (3.5.10)

We search the value of Hx that solves this equation numerically for a given value

of x.

dh is then found inverting the piecewise linear interpolation of the table

(x,Hx). Prad(x, h) is finally calculated from equation (3.4.33).

4th step: luminosity Once dh and Prad have been computed, from equation

(3.4.35) we can calculate F⊥,esc.

As in equation (3.4.10), the total luminosity emitted by the accretion column

is obtained integrating the radiative flux over the emitting surface (the walls of

the accretion column):

L′(H0) = 4l0

∫ H0

h0

(
R+ h

R

)3/2

F⊥,esc(h) dh . (3.5.11)

where the term (1+h/R)3/2 in the integral accounts for the geometrical shape of

the walls of the accretion column. As in Mushtukov et al. (2015b), the procedure

is iterated: we take the radiation pressure Prad(x, h) and via equation (3.3.7) a

new temperature profile T (x, h) is calculated. We then return to the 1st step

and recalculate the opacities, radiation pressure, flux and finally the luminosity

L′(H0). The scheme is halted when the difference between two subsequent

values of L′(H0) is less than 0.01%.
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If the calculations gives an accretion luminosity L′(H0) that differs from

what expected from the assumed mass-accretion rate:

L =
GMṀ

R
(3.5.12)

the value of H0 is udpated8 and the whole calculation is repeated.

3.6 Results

The implementation of this model, as already said, was done by means of

a numerical code written in FORTRAN90. We will refer to it as MACHD (Maximum

Accretion-Column Height calculator for a Dipolar magnetic field) in

the following (see Appendix A).

The accretion luminosity as a function of the height of the accretion column

is shown in Fig. 3.9. As it can be seen, the curves for B = 1014 G barely reach

a luminosity L & 1040 erg s−1 comparable to M82X-2 (Bachetti et al. 2014) and

predict no ULX pulsars with accretion luminosity greater than∼ 3×1040 erg s−1.

In Fig. 3.6, 3.7, 3.8 we show the profiles of the physical quantities computed

with our code coresponding to different values of the magnetic-field strenght

and the accretion luminosity.

3.6.1 Physical quantities in the accretion column

We computed the following quantities:

• cross section σ0(h/R) ≡ σ(x = 0, h/R) (Fig. 3.6);

• effective temperature Teff(h/R) = (F⊥,esc/σSB)1/4, where σSB is the Stefan-

Boltzmann constant (see Fig. 3.7);

• central temperature T0(h/R) ≡ T (x = 0, h/R) (Fig. 3.8).

8As the luminosity L(H0) is expected to increase with H0; if L′ > L, the new tried value

for H0 must be lower and vice versa.
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Figure 3.6: Cross section (in units of the Thomson-cross section σT) for two

different values of the magnetic-field strenght (B = 3×1013 G and B = 1014 G).

Each curve is labelled with the value of the luminosity in units of 1039 erg s−1.
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Figure 3.7: Effective temperatures (in keV) for two different values of the

magnetic-field strenght (B = 3×1013 G and B = 1014 G). Each curve is labelled

with the value of the luminosity in units of 1039 erg s−1.
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Figure 3.8: Temperatures (in keV) for two different values of the magnetic-field

strenght (B = 3 × 1013 G and B = 1014 G). Each curve is labelled with the

value of the luminosity in units of 1039 erg s−1.

All the profiles show a sharp decline for h → H0 that univocally identifies the

accretion-column luminosity for a fixed value of the magnetic-field strenght.

We particularly focus our attention on the values of the effective temperature

in Fig. 3.7. Following a fixed-luminosity curve, it is possible to see that the

value of Teff increases with h/R reaching a maximum. This is not due to the

temperature (that decreases), but to the geometrical thickness and the optical

depth of the sinking region that obviously diminish for increasing h; in fact,

from the definition of Teff , in the hypothesis of local thermodynamic equilibium

(3.3.7) and using the analytic estimate for the flux (3.4.3), it is:

Teff '
(

3σSBτ0
a

)−1/4

T ∼ τ−1/4
0 T , (3.6.1)

where τ0 is the optical thickness along the direction perpendicular to the magnetic-

field vector: thus, for small value of h, as h increases τ0 decreases faster than T

and Teff raises. The opposite occurs for large enoigh value of h (close to h0).
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Looking at the figure, it is possible to understand also the influence of the

magnetic field B. We demonstrated that σ ∼ E−2
Cycl ∼ B−2. Thus, for a fixed

luminosity the greater is the magnetic field, the lower is σ. This affects the

temperature: for high magnetic-field strenghts B less photons are retained in

the accretion column, reducing the radiation pressure Prad and hence the tem-

perature.

This fact explains also why the accretion-column height H0 is systemati-

cally lower for higher B as it can be seen from Fig. 3.6-3.8. The reduced

radiation pressure does not allow to sustain anymore a pressure gradient capa-

ble to balance the weigth of high (i. e. heavy) accretion columns in hydrostatic

equilibrium.

Finally if we compare the curves for different luminosities, it is possible to

recognize that L increases with H0. We know that the larger9 the luminosity,

the higher is the height of the accretion-shock over the NS-surface.

3.6.2 Accretion luminosity

The calculation of the luminosity of the accretion column is the main goal of

our numerical calculations. As shown in Fig. 3.9 L is a monotonically increasing

function of H0 for a fixed magnetic field.

The curves computed with our MACHD numerical code do not perfectly match

those of Mushtukov et al. (2015b), although they clearly show the same trend10.

We discuss in this section some reasons that might account for this difference.

The choice of h0 (the accretion-column base height) we have imposed should

not affect the accretion-luminosity, as pointed out in Sec. 3.5 and by Mushtukov

et al. (2015b); and no difference is indeed seen running the MACHD code with a

different value of h0.

9Larger at least than the critical luminosity L∗ we introduced in Sec. 2.2.
10The fractional difference between them is . 55 % for B . 1014 G and . 80 % for B .

1015 G, our curves typically providing higher values of L.
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Figure 3.9: Accretion-column luminosities obtained with our MACHD code (blue

line) compared to those reported by Mushtukov et al. (2015b) (yellow line). At

fixed H/R the accretion luminosity L(H) increases with magnetic-field strenght

as expected from the B-dependence of the cross section; the various curves refer

to different values of B = 1013 G, 3× 1013, 1014 G, 3× 1014, 1015 G.
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On the other hand, we found that the expression of the cross section adopted

in our model (3.5.8) gives value of σ systematically lower and luminosities sys-

tematically higher than those reported in Mushtukov et al. (2015b), especially

for high accretion-column heights.

For a magnetic-field strenght B = 1014 G the cyclotron energy is ∼ 1 MeV,

and therefore we would expect:

k⊥
kT
∼ 10−4 (3.6.2)

for a temperature of the order of 10 keV (see eq. 3.5.8Fig. 3.8). However the

value of σ⊥/σT for the same temperature in Mushtukov et al. (2015b) is ∼ 10−2.

We found that if multiplying by a factor 20 the cross section (3.5.8) our

results turn out to be in fair agreement with those of Mushtukov et al. (2015b).

Thus we have adopted the following expression for the:

k⊥,B = 8π2kT

(
kT

ECycl

)2

. (3.6.3)

The results shown in this Chapter have been obtained under this assumption.

Despite an extensive search we could not find the reason for the different coef-

ficient of the cross section. At the time of writing we are still investigating the

origin of the problem, checking all the various constants and inputs in the code.

However, it is reassuring that, after rescaling it, the overall dependence of the

physical quantities in the accretion column is fairly well reproduced.

We note that the model of Mushtukov et al. (2015b) provides results that

are accurate within a factor of ∼ 2 : one of the source of uncertainty is in the

assumption on the exponent ξ of the power law (3.4.14) that describes the spatial

dependence of the velocity (and thus the density). Tests run by Mushtukov et

al. show that changes in ξ do not affect significantly the value of L that may

vary by a factor ∼ 2. The same level of uncertainty applies also to our model11.

11We roughly estimated that 〈LMACHD〉 ∼ 1.85〈LMushtukov〉 for B = 1015G, for which the

difference is the largest.
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Since we are interested in understanding the existence of brighter ULX Pul-

sars, in the next chapter we will modify the magnetic field topology adding a

multipolar component to the pre-existing dipolar component.
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Chapter 4

Including multipolar

components in the magnetic

field

The extreme properties of NGC 5907 ULX-1 cannot be explained even invok-

ing the model of Mushtukov et al. (2015b) introduced in the previous Chapter.

A possible solution to this problem is presented in this Chapter, in which a

higher order in the multipolar expansion of the magnetic field is considered.

Sec. 4.1-4.2 describe the implementation of this new model, which returns the

accretion luminosity of a magnetized NS for the aforementioned magnetic field

topology and is carried out in a new numerical (FORTRAN90) code (MACHM); Sec.

4.3 presents the results of the computations performed with this code.

4.1 Introduction

The model of Mushtukov et al. (2015b) introduced in the previous chapter

gives a maximum accretion luminosity of roughly 1 ÷ 3 × 1040 erg s−1 for a
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magnetar-like magnetic-field strenght (B ∼ 1015 G). This luminosity is adequate

to account for the ULX Pulsar observed by Bachetti et al. (2014).

However the more recent discovery within the EXTraS project of an ULX

in NGC 5907 with an unexpectedly high (isotropic) luminosity & 1041 erg s−1

would require a magnetic-field strenght & 1015 G according to the scenario dis-

cussed in Sec. 2.3.1. This is so high that the propeller effect would inhibit

matter from accreting onto NS surface because of the high centrifugal forces.

However as already suggested in Israel et al. (2017a,b), the model of Mush-

tukov et al. (2015b) might be retained assuming that the NS-magnetic field has

multipolar components.

4.2 Multipolar field

The great majority of theoretical models concerning the physics of the NSs

typically assume a dipolar geometry for the magnetic field of the star. But in the

last decade the need to consider more complex magnetic field configurations has

emerged: evidence for this comes, e.g., from the modelling of thermal emission

from the so-called X-ray dim isolated neutrons stars, the high pulsed fraction

of which can not be reconciled with a dipole field (Zane & Turolla 2006), and

from the detection of a phase-variable absorption feature in the magnetar SGR

0418+ 5729 (Tiengo et al. 2013).

Similarly multipolar magnetic fields (which fall off more steeply with the

radial distance) might account for the still unexplained luminosity of NGC 5907

ULX. In order to verify this hypothesis, we start assuming that the magnetic

field has a multipolar component. We then write the magnetic field at distance1

1We will replace r with R+ h in the accretion column, hence:

Btot(r) =
N∑
l=1

Bl

(
R

R+ h

)l+2

.
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r by means of the following multipolar expansion:

Btot(r) =

N∑
l=1

Bl

(
R

r

)l+2

, (4.2.1)

(Arons 1993) where the coefficients Bl are the values of the magnetic field at

r = R, and where for the sake of simplicity we have neglected the non-trivial

angular dipendence (see e. g. Page & Sarmiento 1996). It is easy to verify that

the l = 1 component corresponds to a dipolar magnetic field. Hence we will call

in the following:

Bdip = B1

(
R

r

)3

(4.2.2)

Bmulti = B2

(
R

r

)4

. (4.2.3)

Halting the expansion (4.2.1) to the second order it results Btot = Bdip +Bmulti.

In the following we will assume that near the accretion column a multipolar

term becomes important. Given that the dipole component survives at r � R,

the field close to the Alfvén radius is dominated by Bdip and this ensures that

accretion can take place (low values of the dipolar field B1 . 2×1013 G). At the

same time, a large accretion column luminosities can be produced (high values

of the multipolar field B2 ∼ 1014 ÷ 1015 G).

4.2.1 Numerical implementation

In order to compute the accretion luminosity for a new magnetic-field ge-

ometry, we wrote a new code in FORTRAN90 that preserves the general structure

of MACHD but incorporates an additional multipolar component for the mag-

netic field. We called the new code MACHM (Maximum Accretion-Column Height

calculator for a Multipolar magnetic field).

In the new code we modified the cross section σ⊥, that accounts for in-

teractions whithin the accretion column of photon moving perpendicular to the

magnetic-field direction. For small distances from the NS, the steeper behaviour
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of the multipolar component dominates over the dipolar one: then we take equa-

tion (3.6.3) and insert in it the multipolar term that yields:

k⊥ ∼ B−2
2 . (4.2.4)

But as the distance from the NS increases, the multipolar term becomes negli-

gible with respect to the dipolar one: we leave then unchanged the expressions

for the values of l0/d0 and SD that are functions of the magnetospheric radius

RM where the dipolar component dominates. Equations (3.5.1,3.5.2) then hold

unchanged with B = B1.

For a fixed accretion-column height we obtain from equations (3.4.10, 3.5.1,

3.5.2, 4.2.4):

L ∼ B4/7
1 B2

2 . (4.2.5)

We expect then that increasing B2 will enhance the luminosity far more than

increasing B1.

4.3 Results

The inclusion of a multipolar component in the magnetic-field topology gives

results that are in agreement with our expectations. We show in Fig. 4.1 a

comparison between two profiles of accretion luminosity for a dipolar component

of 1014 G and a multipolar component of the magnetic field. The latter may in

principle account for the huge luminosity of NGC 5907 ULX.

In Fig. 4.1 the two profiles are calculated with the same value of the magnetic

field for the dipolar component B1; changing B1, luminosity would not vary

significantly for the reasons we discussed in the previous section.

In Figures 4.2-4.4 we show the physical quantities (temperature, effective

temperature and cross section) of the accretion column computed with MACHM

and compare them with these results obtained with MACHD for the same value

of the luminosity. In order to do that, we fix:
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Figure 4.1: Accretion luminosity for two different magnetic-field topologies.

As labelled, the green solid line represents the luminosity of an ULX Pulsar

with a multipolar component B2 = 2 × 1014 G; the yellow solid line represents

the luminosity of an ULX Pulsar obtained with MACHD, with a dipolar field

B1 = 3 × 1013 G. The thick blue lines represent the luminosity range to which

NGC 5907 ULX must belong; we have also used a beaming factor b = 1/7

(Israel et al. 2017b).
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• the luminosity L;

• the dipolar component of the magnetic field B1.

The value of B1 was choosen in order to let both codes (MACHD and MACHM)

converge to the same value of the luminosity (when B2 = B1). We calculated the

maximum accretion-column height H0 with a fixed luminosity L = 1040 erg s−1

for B1 = 1014 G.

The behaviour of the physical quantities in the accretion-colum is similar to

that for the dipolar case, but we discuss them once more because it is worth to

distinguish the contributions of the dipolar and the multipolar components of

the NS-magnetic field.

The cross section σ depends only on the multipolar component of B for the

reason we already pointed out. Since we assumed B2 = 1.2× 1015 G, the cross

section for the multipolar component is significantly lower (see Fig. 4.4). If

one had used B2 = 1014 G no significant differences would have been present.

The multipolar geometry, that reflects upon the different power index l+ 2 = 4

appearing in equation (4.2.1) influences rather the slope of the curves.

Similar considerations can also be made for the behaviour of the temperature

T0(h/R) and the effective temperature Teff(h/R). As before the temperature

shows a weaker dependence on the magnetic field than the effective temperature,

since T0 ∼ [F⊥,esc

∫
ρffHzk⊥(z, h)z dz]1/4; as F⊥,esc ∼ k−1

⊥ , we understand that

there should not be a strong dependence on the opacity k⊥. We recall that a

lower value of σ let the photons escape more easily, thus cooling the accretion

column.

Also the effective temperature Teff is subject to changes similar to those

noticed for a high dipolar magnetic field, whose luminosity profile has been

calculated by MACHD. In the multipolar case, equations 3.4.35, 3.5.1, 3.5.2, 4.2.4

show that

Teff ∼ B1/14
1 B

1/2
2 . (4.3.1)
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Figure 4.2: Electron scattering cross section as function of h/R for a multipolar

magnetic field (MACHM, green line, computed for B2 = 1.2 × 1015 G) compared

with that for a dipolar magnetic field (MACHD, yellow line). In both cases,

B1 = 1014 G and L = 1040 erg s−1.
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Figure 4.3: Temperature as function of h/R for a multipolar magnetic field

(MACHM, green line, computed for B2 = 1.2 × 1015 G) compared with that for

a dipolar magnetic field (MACHD, yellow line). In both cases, B1 = 1014 G and

L = 1040 erg s−1.
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Figure 4.4: Effective temperature as function of h/R for a multipolar magnetic

field (MACHM, green line, computed for B2 = 1.2 × 1015 G) compared with that

for a dipolar magnetic field (MACHD, yellow line). In both cases, B1 = 1014 G

and L = 1040 erg s−1.
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Once more we realize that the dipolar magnetic field is less important than

the multipolar one. As discussed in Sec. 3.6 we see that the higher is the

magnetic-field strenght, the smaller is the accretion-column height where Teff

goes to zero. High magnetic-field strenghts imply lower σ, so more radiation

will be released and the lower radiation pressure will not be able to sustain a

heavy and extended accretion-column.
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Conclusions

Ultraluminous X-ray Sources (ULXs) are non-nuclear, point-like sources in

external galaxies compact objects whose luminosity largely exceeds the Edding-

ton limit for a 10 M� compact object. Until few years ago ULXs have always

been modelled as accreting BHs, but the discovery of a pulsing ULX in the nu-

clear region of the galaxy M82 (M82 X-2, Bachetti et al. 2014) and of two other

pulsars thereafter (NGC 7793 P13, Israel et al. 2017a, Fürst et al. 2016; NGC

5907 X-1, Israel et al. 2017b) changed completely our view of ULX and forced us

to consider accretion-powered pulsars as alternative model. NGC 5907 ULX-1

(Israel et al. 2017b), in particular, challenges the model of accretion onto mag-

netized NSs (Mushtukov et al. 2015b). As suggested by (Israel et al. 2017b),

a more complex magnetic field topology may be required to account for the

observational properties of this source.

After having implemented the model of Mushtukov et al. (2015b) in Chap. 3

with the code MACHD (written in FORTRAN90), we performed a new calculation of

the luminosity emitted by a magnetized NS including a multipolar component in

the radial dependence of the magnetic field. The results of the new computations

are discussed in Chap. 4 represent the main result of this Thesis. We found

that the inclusion of a multipolar component may in principle account for the

very high luminosity of NGC 5907 ULX-1, in agreement with the suggestion

made by Israel et al. (2017b).
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Future dedicated X-ray timing observations will allow us to constrain the

orbital period of NGC 5907 ULX-1 and to determine the contribution of the

orbital motion to the variation of the spin period: this will indeed permit to

perform a more accurate modelling of this source.
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Appendix A

Surveying the X-ray

Universe

The available data about ULXs were collected in last decades with X-ray

space telescopes, whose aim and properties are summarized in this Appendix.

A.0.1 XMM-Netwon

The High Throughput X-ray Spectroscopy Multi-Mirror Mission (XMM) New-

ton was launched in 1999 by ESA and covers the 0.1÷ 10 keV energy band. It

is equipped with three X-ray telescopes each of them with 58 gold coated mir-

rors, whose grazing incidence angles are between 17 and 42 arcmin (Jansen

et al. 2001); on the focal plane there are two reflection grating spectrometers

and three imaging instrument, the European Photon Imaging Camera (EPIC),

composed of three different cameras (EPIC-pn, EPIC-MOS1, EPIC-MOS2).

A significant fraction of the available observation of ULXs has been collected

by XMM Newton EPIC camera. Recently the EPIC-pn data were re-analyzed

looking for both periodic and aperiodic variability within the framework of the

EXTraS (Exploring the X-ray Transient and variable Sky) project.
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A.0.2 Chandra X-ray Observatory

The Chandra X-ray Observatory is a NASA mission launched on 23rd July

1999 that aims at observing high-energy astrophysics phenomena involving BHs

and NSs. The Chandra X-ray telescope, also known as Advanced X-ray Astro-

physics Facility (AXAF), is equipped with two focal plane cameras, the High

Resolution Camera and the Advanced CCD Imaging Spectrometer (Weisskopf

2012). The main strenght of the AXAF telescope lies in the mirrors forming the

High Resolution Mirror Assembly (HRMA): mirrors are indeed polished with

a great precision and are coated to ensure a large reflectivity for the incident

X-rays. The angular resolution of the HRMA is about 0.2 arcsec.

A.0.3 NuSTAR

The Nuclear Spectroscopic Telescope Array is a X-ray mission launched by

NASA in June 2012 with two co-aligned telescopes built with a multilayer-

coated Wolter-I conical approximation X-ray optics. The alignment between the

mirror module and the instrument module is constantly monitorated by means

of two laser-metrology units (see Fig. A.1). Each of the two telescopes has 133

concentric, confocal shells made by slumping glass. On their focal plane there

are two Cadmium Zinc Telluride Detectors operating in the [3− 79 keV] energy

band. The unprecedent (at these energies) angular resolution of NuSTAR is

∼ 12”, and its field of view is ∼ 10′.
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Figure A.1: The NuSTAR observatory setup Harrison et al. (2013).
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Appendix B

The MACHM numerical code

!**********************************************************************************
!* Maximum Column Height calculator for a Multipolar magnetic field (MACHM) *
!* *
!* This program associates the height of an accretion column that raise above the *
!* surface of an accreting Neutron Star (NS) in hydrostatic equilibrium for an *
!* input luminosity. *
!* M is the mass of the NS, R is the radius of the NS, mdot is the mass-accretion *
!* rate, dB is the dipolar magnetic-field strenght, qB is the multipolar *
!* magnetic-field strenght *
!* UNITS ARE IN CGS *
!* *
!**********************************************************************************
PROGRAM machq

IMPLICIT none
INTEGER, PARAMETER :: xnum=1000, hnum=1000
REAL(kind=8) :: integrate,lambda,gfunc,prad,zero
REAL(kind=8) :: mdot,z_temperature,base_calc,pgas,pmag
REAL(kind=8), PARAMETER :: R=1d6,M=2.786d33
REAL(kind=8), PARAMETER :: G=6.67259d-8,c=2.99792458d10,a=7.5646d-15
REAL(kind=8), PARAMETER :: mue=1.17,mh=1.6726219d-24
REAL(kind=8), PARAMETER :: st=6.6524d-25, kt=0.3399371
REAL(kind=8), PARAMETER :: pi=3.1415926
REAL(kind=8), DIMENSION(xnum) :: x
REAL(kind=8), DIMENSION(hnum) :: y
REAL(kind=8), DIMENSION(hnum) :: fesc
REAL(kind=8), DIMENSION(xnum,hnum) :: temp,vechx
REAL(kind=8), DIMENSION(xnum,hnum) :: integrandum,radprxh,opxh
REAL(kind=8), DIMENSION(xnum) :: z_integrandum,baseop
REAL(kind=8) :: dx,dy,dyh
REAL(kind=8) :: rhoff,sd,d0,l0
REAL(kind=8):: H0,hb
REAL(kind=8) :: dB,qB
REAL(kind=8) :: oint,prado,f_esc0,height
REAL(kind=8), DIMENSION(xnum) :: ho_int,radpr,nHx,opint,lint,Hx
REAL(kind=8), DIMENSION(hnum) :: nh,dh
REAL(kind=8) :: lum,lump,flum,slum,diff
REAL(kind=8) :: tol,luminosity,difflump,difflum,lam
REAL(kind=8) :: ratio,aratio,bratio,asd,bsd,ar,br,xop,quadrupole,basemag

I



REAL(kind=8), DIMENSION(hnum) :: dmag
INTEGER :: k,j,nptint,iter
dB=3.0d1
qB=1.2d15
lum=1.0d40
mdot=lum*R/(G*M)
H0=0.03d0*R
tol=5.0d-2
lump=lum
lam=0.5d0
hb=2.0d0
WRITE(*,’(A,E12.6,A,F9.6,A,I2,A)’) ’Luminosity is ’, lum, ’ erg/s’
WRITE(*,’(A)’) ’__________________________________________________’
WRITE(*,*) ’’
difflum=2.0d0*tol
WRITE(*,’(1X,A,6X,A,11X,A)’) ’k’,’Max height(k)’, ’Luminosity(k)’
WRITE(*,’(A)’) ’__________________________________________________’

!--->FIRST WHILE LOOP STARTS HERE

DO WHILE(difflum>tol)
iter=iter+1

aratio=44.0d0*lam*( (M/1.989d33)**(8.0d0/7.0d0) )*&
( (R*1.0d-6)**(3.0d0/7.0d0) )*( (dB*1.0d-12)**(4.0d0/7.0d0) )*&
( (1.0d-39*lum)**(-9.0d0/7.0d0) )

asd=1.3d10*( lam**(-2.0d0) )*( (1.0d-39*lum)**(11.0d0/7.0d0) )*&
( (dB*1.0d-12)**(-8.0d0/7.0d0) )*( (M/1.989d33)**(-9.0d0/7.0d0) )*&
( (R*1.0d-6)**(8.0d0/7.0d0) )

bratio=80.0d0*( lam**(-1.0d0/20.0d0) )*( (M/1.989d33)**(19.0d0/35.0d0) )*&
( (dB*1.0d-12)**(-1.0d0/35.0d0) )*( (1.0d-39*lum)**(-13.0d0/70.0d0) )

bsd=7.0d9*( lam**(-19.0d0/20.0d0) )*( (1.0d-39*lum)**(19.0d0/70.0d0) )*&
( (dB*1.0d-12)**(-41.0d0/70.0d0) )*( (M/1.989d33)**(-24.0d0/35.0d0) )*&
( (R*1.0d-6)**(129.0d0/70.0d0) )
IF (1.0d-39*lum<0.2d0*(dB*1.0d-12)**(6.0d0/11.0d0) ) THEN

ratio=bratio
sd=bsd
WRITE(*,*) ’Disc interrupted in B-zone’

ELSE
ratio=aratio
sd=asd
WRITE(*,*) ’Disc interrupted in A-zone’

END IF
d0=sqrt(sd/ratio)
l0=sqrt(sd*ratio)
WRITE(*,’(1X,A,7X,A,7X,A,1X)’) ’d0’,’sd’,’l0’
WRITE(*,’(E9.3,1X,E9.3,1X,E9.3)’) d0,sd,l0

! Parameters

nptint=1000
dx=(log10(0.5d0*d0)-1d-8)/(xnum-1)
dy=(1.0d0-hb/H0)/(hnum-1)
dyh=1.0d2/(hnum-1)
DO k=1,xnum
!independent variable across the accretion column (x)

x(k)=1.0d-8+(k-1)*dx
x(k)=10.0d0**x(k)

END DO

II



x(xnum)=0.5d0*d0
DO k=1,xnum
IF (2.0d0*x(k)/d0>1.OR.2.0d0*x(k)/d0<0) THEN

WRITE(*,*) ’eta(’,k,’)= ’,2.0d0*x(k)/d0
END IF

END DO
OPEN(unit=1,file=’test.dat’, action=’write’)
DO k=1,xnum

Hx(k)=hb+height(x(k),H0-hb,R,d0)
IF (Hx(k)<0) THEN
DO j=1,xnum

WRITE(1,*) (2.0d0*x(j)/d0)**2.0d0,Hx(j)
END DO

END IF
END DO
CLOSE(1)
DO j=1,hnum
!(in)dependent variable along the accretion column (h/Hx)

y(j)= hb/H0 + (j-1)*dy
END DO

y(hnum)=1.0d0

!-------------------------------------------------------------------
!
! Step (i) iteration procedure
!
DO k=1,xnum

DO j=1,hnum
temp(k,j)=z_temperature(x(k),y(j),Hx(k),mdot,M,R,d0,sd)
IF (temp(k,j)/=temp(k,j)) THEN

WRITE(*,*) k,2.0d0*x(k)/d0,temp(k,j),y(j),Hx(k)
END IF

END DO
END DO
WRITE(*,’(I2,2X,E22.12,2X,E22.12)’) iter,H0,slum
flum=lum
slum=2.0d0*lum
diff=2.0d0*tol
difflum=2.0d0*tol
!
!--->SECOND WHILE LOOP STARTS HERE
!
DO WHILE (diff>tol)
flum=slum
!radiation pressure for x=0 and h=hb ----> Eq. (16)
prado=prad(Hx(1),hb,M,R,mdot,sd)
basemag=quadrupole(qB,hb,R)
DO k=1,xnum
baseop(k)=xop(basemag,temp(k,1))

END DO
DO k=1,xnum

z_integrandum(k)=Hx(k)*baseop(k)*rhoff(M,R,mdot,sd,Hx(k))*x(k)
END DO
oint=integrate(xnum,z_integrandum,0d0,0.5d0*d0) !eq. (17)
f_esc0=0.5d0*c*prado*( (7.0d0/(d0*hb))*oint+1.0d0/3.0d0)**(-1) !flux in eq. (17)
DO k=1,xnum

ho_int(k)=integrate(nptint,z_integrandum,x(k),0.5d0*d0)
radpr(k)=( 2.0d0*f_esc0/c )*( (7.0d0/(hb*d0))*ho_int(k) +&
1.0d0/3.0d0 )!from eq. (17)

END DO

III



DO k=1,xnum
DO j=1,hnum
vechx(k,j)=gfunc(y(j)*Hx(1),sd,hb,M,R,mdot,radpr(k))
END DO

END DO
nHx(1)=Hx(1)
DO k=2,xnum
!the array nHx(k) returns a sampling for the new H(x) profile
nHx(k)=zero(hb,Hx(1),xnum,vechx(k,:))

END DO
nHx(xnum)=hb

!linear fit of vector x(Hx) to get xout(h)=d(h)
CALL inverse(xnum,hnum,nHx(xnum),nHx(1),x,nHx,nh,dh)

nh=nh/nHx(1)
!
! Step (v) iteration procedure
!
DO k=1,xnum

DO j=1,hnum
radprxh(k,j)=prad(nHx(k),nh(j)*nHx(k),M,R,mdot,sd) !from eq. (16)

END DO
END DO
DO j=1,hnum

dmag(j)=quadrupole(qB,y(j)*Hx(1),R)
END DO
DO k=1,xnum

DO j=1,hnum
opxh(k,j)=xop(dmag(j),temp(k,j))

END DO
END DO
DO k=1,xnum

DO j=1,hnum
integrandum(k,j)=nHx(k)*opxh(k,j)*rhoff(M,R,mdot,sd,nHx(k))*x(k)
END DO

END DO
DO j=1,hnum

opint(j)=integrate(hnum,integrandum(:,j),0d0,0.5d0*dh(j))
fesc(j)=0.5d0*c*radprxh(1,j)*( (7d0/(nh(j)*nHx(1)*dh(j)))*&
opint(j)+(1d0/3d0) )**(-1) !from eq. (17)

END DO
!
! Step (vi) iteration procedure
!
DO j=1,hnum

lint(j)=( ((R + nh(j)*nHx(1))/R)**1.5d0 )*fesc(j)
END DO
luminosity=4d0*l0*integrate(hnum,lint,0.0d0,Hx(1))
slum=luminosity
mdot=slum*R/(G*M)
diff=abs(flum-slum)/flum

asd=1.3d10*( lam**(-2.0d0) )*( (1.0d-39*slum)**(11.0d0/7.0d0) )*&
( (dB*1.0d-12)**(-8.0d0/7.0d0) )*( (M/1.989d33)**(-9.0d0/7.0d0) )*&
( (R*1.0d-6)**(8.0d0/7.0d0) )
bsd=7.0d9*( lam**(-19.0d0/20.0d0) )*( (1.0d-39*slum)**(19.0d0/70.0d0) )*&
( (dB*1.0d-12)**(-41.0d0/70.0d0) )*( (M/1.989d33)**(-24.0d0/35.0d0) )*&
( (R*1.0d-6)**(129.0d0/70.0d0) )

IF (1.0d-39*slum<0.2d0*(dB*1.0d-12)**(6.0d0/11.0d0) ) THEN
sd=bsd

IV



ELSE
sd=asd

END IF
!
! Step (vii) iteration procedure
!
Hx=nHx
DO k=1,xnum

DO j=1,hnum
temp(k,j)=( (3d0/a)*prad(Hx(k),y(j)*Hx(k),M,R,mdot,sd) )**0.25d0
IF ( temp(k,j)/=temp(k,j) ) THEN

WRITE(*,*) ’Temperature returns Nan! The input of prad was’,Hx(k)
END IF

END DO
END DO
END DO

!--->SECOND WHILE LOOP ENDS HERE

difflump=abs(slum-lump)/lum
difflum=abs(slum-lum)/lum
IF ((slum-lum) > 0) THEN

IF ((difflump/difflum) < 0.05 .AND. difflum > 0.2) THEN
H0=0.9*H0
ELSE
H0=(1.0-1.0/min(5.0*iter,1.0d6))*H0

END IF
ELSE

IF ((difflump/difflum) < 0.05 .AND. difflum > 0.2) THEN
H0=1.1*H0

ELSE
H0=(1.0+1.0/min(5.0*iter,1.0d6))*H0

END IF
END IF
lump=slum
END DO

!--->FIRST WHILE LOOP ENDS HERE
!
!
WRITE(*,*) ’:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::’
WRITE(*,*) ’:::::::::::::::::MAXIMUM ACCRETION LUMINOSITY OF AN ULX::::::::’
WRITE(*,*) ’:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::’
WRITE(*,*) ’’
WRITE(*,*) ’Mns (Msun) Rns (km) Mdot (g/s) dB0 (Gauss) L (erg/s) &
tolerance ’,’Height (Rns) Linp (erg/s) d0 (cm) l0 (cm) S0 (cm2)’
WRITE(*,’(F7.3,A,F7.3,A,E9.3,A,E9.3,A,E12.6,A,F9.6,A,F8.5,A,E12.6,A,E12.6 &

,A,E12.6,A,E12.6)’)&
M/1.989d33,’ ’,R/1d5,’ ’,mdot,’ ’,dB,’ ’,slum,’ ’,difflum,’ ’,&
H0/R,’ ’,lum,’ ’,d0,’ ’,l0,’ ’,sd

END PROGRAM machq
!
!=============================================================================
! FUNCTIONS AND SUBROUTINES
!
!This function computes magnetic pressure
REAL(kind=8) FUNCTION pmag(h,R,magp)

IMPLICIT none
REAL(kind=8) :: h,magp,R
REAL(kind=8), PARAMETER :: pi=3.14159265
pmag=(magp**2/(8d0*pi))*( (R+h)/R)**(-6)
RETURN

V



END FUNCTION pmag

!This function computes gas pressure
REAL(kind=8) FUNCTION pgas(h,Hx,M,R,mdot,sd,temp)
IMPLICIT none
REAL(kind=8) :: h,mdot
REAL(kind=8), PARAMETER :: kb=1.38064881d-16
REAL(kind=8) :: mue=1.17,mh=1.6726219d-24
REAL(kind=8) :: M,R
REAL(kind=8) :: density,temp
REAL(kind=8) :: sd,Hx
pgas=(kb/(mue*mh))*density(h,Hx,mdot,M,R,sd)*temp
RETURN

END FUNCTION pgas

!radiation pressure as function of x,h obtained by equation [16]
REAL(kind=8) FUNCTION prad(Hx,h,M,R,mdot,sd)
IMPLICIT none
REAL(kind=8) :: lambda,M,R,Hx,h,rhoff,t,mdot,sd
REAL(kind=8), PARAMETER :: mue=1.17,mh=1.6726219d-24
REAL(kind=8), PARAMETER :: G=6.67259d-8
REAL(kind=8), PARAMETER :: kt=0.3399371
prad=(G*M/(R**2))*( 7.0d0*rhoff(M,R,mdot,sd,Hx)*Hx*&

(lambda(Hx/R)-lambda(h/R)) + 2.0d0/( 3.0d0*kt*(1.0d0+Hx/R)**2.0d0) )
RETURN

END FUNCTION prad

!This function computes the first-guess temperature profile
REAL(kind=8) FUNCTION z_temperature(t,h,Hx,mdot,M,R,d0,sd)
IMPLICIT none
REAL(kind=8) :: t,h,Hmax,Hx
REAL(kind=8) :: M,R,mdot
REAL(kind=8), PARAMETER :: a=7.5646d-15
REAL(kind=8), PARAMETER :: G=6.67259d-8
REAL(kind=8) :: d0,sd
REAL(kind=8) :: density
z_temperature=( (3.0d0/a)*density(h*Hx,Hx,mdot,M,R,sd)*G*( M/(R+Hx))&
*( (1.0d0-h) / (R/Hx+h) )*( 1.0d0-( 2.0d0*t/d0 )**2.0d0 ) )**0.25d0
RETURN

END FUNCTION z_temperature

!This function computes the free-fall velocity
REAL(kind=8) FUNCTION vff(M,R,Hx)
IMPLICIT none
REAL(kind=8) :: M,Hx,R
REAL(kind=8), PARAMETER :: G=6.67259d-8
vff=sqrt(2d0*G*M/(R+Hx))
RETURN

END FUNCTION vff

!This function computed the free-fall density via equation of continuity
REAL(kind=8) FUNCTION rhoff(M,R,mdot,sd,Hx)
IMPLICIT none
REAL(kind=8) :: mdot,sd,vff,Hx,M,R
rhoff=mdot/(2.0d0*sd*vff(M,R,Hx))
RETURN

END FUNCTION rhoff

!This function computes the density profile within the accretion column
REAL(kind=8) FUNCTION density(h,Hx,mdot,M,R,sd)!
IMPLICIT none
REAL(kind=8) :: M,R,h,Hx,mdot,sd,rhoff

VI



density=rhoff(M,R,mdot,sd,Hx)*( h/ (7.0d0*Hx) )**(-1)
RETURN

END FUNCTION density

!This function computes the velocity profile within the accretion column
REAL(kind=8) FUNCTION velocity(h,Hx,M,R)

IMPLICIT none
REAL(kind=8) :: h,Hmax,M,R,Hx,vff
velocity=vff(M,R,Hx)*( h/ (7.0d0*Hx) )
RETURN

END FUNCTION velocity

!This function computes a first-guess on the geometrical shape of
!a vertical section of the accretion column, i. e. H(x)
REAL(kind=8) FUNCTION height(t,Hmax,R,d0)

IMPLICIT none
REAL(kind=8) :: t,Hmax,R,d0
height=Hmax*(1-(2*t/d0)**2)
RETURN

END FUNCTION height

!This function compute the Rosseland mean opacity
REAL(kind=8) FUNCTION xop(B,temp)

IMPLICIT none
REAL(kind=8) :: B,ecyc,temp
REAL(kind=8), PARAMETER :: st=6.652458716d-25
REAL(kind=8), PARAMETER :: mue=1.17,mh=1.6726219d-24
REAL(kind=8), PARAMETER :: pi=3.1415926
ecyc = 11.6d0*(B/1.0d12)
xop = 20.0d0*(st/(mue*mh))*(2.0d0*pi**2/5.0d0)*( (temp/1.16d7)/ecyc )**2
RETURN

END FUNCTION xop

!This function computes the multipolar magnetic-field strenght
REAL(kind=8) FUNCTION quadrupole(B,h,R)

IMPLICIT none
REAL(kind=8) :: B,h,R
quadrupole=B*( (h+R)/R )**(-4.0d0)
RETURN

END FUNCTION quadrupole

!This function results from the integration of the radiation
!pressure over the height from eq. [16]
REAL(kind=8) FUNCTION lambda(t)

IMPLICIT none
REAL(kind=8) :: t
lambda=(1+t)**(-1)+log(t)-log(1+t)
RETURN

END FUNCTION lambda

!This function is used in the machq program for re-calculating the
!new H(x) profile
REAL(kind=8) FUNCTION gfunc(x,sd,hb,M,R,mdot,P)

IMPLICIT none
REAL(kind=8) :: x !variable
REAL(kind=8) :: P,kt,lambda,ff_rho,sd,hb,M,R,mdot
REAL(kind=8), PARAMETER :: st=6.652458716d-25,G=6.67259d-8
REAL(kind=8), PARAMETER :: mue=1.17,mh=1.6726219d-24
kt=st/(mue*mh)
ff_rho=(mdot/(2d0*sd))*sqrt( (R+x) / (2d0*G*M) )
gfunc=(G*M/(R**2))*( 7d0*ff_rho*x*( lambda(x/R)-lambda(hb/R) ) + &
2d0/(3d0*kt*((1d0+x/R)**2d0)) ) - P
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RETURN
END FUNCTION gfunc

!This subroutine gives an approximation of the solution
!of a nonlinear equation
REAL(kind=8) FUNCTION zero(xmin,xmax,num,vec)
IMPLICIT none
INTEGER :: j,num
REAL(kind=8), DIMENSION(num) :: x,vec
REAL(kind=8) :: dx,xmax,xmin,xA,xB,fA,fB,m
dx=(xmax-xmin)/(num-1)
DO j=1,num
x(j)=xmin+(j-1)*dx

END DO
IF (vec(1)<0) THEN

DO j=1,num
IF (vec(j)<0) THEN

CYCLE
ELSE IF (vec(j)>0) THEN

fA=vec(j-1)
fB=vec(j)
xA=x(j-1)
xB=x(j)
EXIT

END IF
END DO

ELSE IF (vec(1)>0) THEN
DO j=1,num
IF (vec(j)>0) THEN

CYCLE
ELSE IF (vec(j)<0) THEN

fB=vec(j-1)
fA=vec(j)
xB=x(j)
xA=x(j-1)
EXIT

END IF
END DO

ELSE
WRITE(*,*) ’Maybe NaN?’,vec(1)

END IF
m=(fB-fA)/(xA-xB)
zero=xA-fA/m
RETURN

END FUNCTION zero

!This function computes the integral through the Trapezoidal Rule
REAL(kind=8) FUNCTION integrate(N,func,xin,xfin)
IMPLICIT none
INTEGER :: k,N
REAL(kind=8), DIMENSION(N) :: func,psum
REAL(kind=8) :: h,xin,xfin,par
h=(xfin-xin)/(N-1)
par=0
DO k=1,N

IF (func(k)==func(k)) THEN
CYCLE

ELSE IF (func(k)/=func(k)) THEN
func(k)=func(k+1)

END IF
END DO
DO k=2,N-1
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psum(k-1)=par+func(k)
par=psum(k-1)

END DO
integrate=0.5*h*(func(1)+func(N)+2*par)
RETURN

END FUNCTION integrate

!****************************************************************************
!* INVERSE *
!* ---notes--- *
!* a) f1 is the function to be inverted, represented with an array of *
!* dimension "dim"; *
!* b) x is the independent variable of f1, represented with an array of *
!* dimension "dim": *
!* c) nx in the new independent variable, build with this subroutine and *
!* represented with n array of dimension "ndim"; *
!* d) ny is the inverse function of f1, build with this subroutine and *
!* available as output as a vector whose dimension is "ndim"; *
!* d) check is an integer parameter that allows to check whether *
!* the subroutine LINTERPOL has done correctly its work; *
!* IMPORTANT: RECALL that the new domain nx MUST be contained in the *
!* codomain of f1! *
!* If in the main file the function to be inverted has a smaller codomain, *
!* please compute a new vector that fulfills such requirement and then pass *
!* it as an argument for f1 *
!****************************************************************************
SUBROUTINE inverse(dim,ndim,nin,nfin,x,f1,nx,ny)

IMPLICIT none
INTEGER :: j
INTEGER :: dim, ndim, check
REAL(kind=8) :: nin,nfin,dnx,eps,linterpol
REAL(kind=8), DIMENSION(dim) :: x,f1
REAL(kind=8), DIMENSION(ndim) :: nx,ny,mny,mnx
dnx=(nfin-nin)/(ndim-1)
DO j=1,ndim

nx(j)=nin+(j-1)*dnx
END DO
IF (f1(dim)-f1(1)>0) THEN

DO j=1,ndim
ny(j)=linterpol(dim,f1,x,nx(j),check)

END DO
ELSE IF (f1(dim)-f1(1)<0) THEN

DO j=1,ndim
mnx(j)=-nx(ndim-j+1)
mny(j)=linterpol(dim,-f1,x,mnx(j),check)

END DO
DO j=1,ndim

ny(j)=mny(ndim-j+1)
END DO

END IF
RETURN

END SUBROUTINE inverse
!***************************************************************************
!* *
!* L I N T E R P O L *
!* *
!* Subroutine: LINTERPOL *
!* *
!* Programmer: David G. Simpson *
!* NASA Goddard Space Flight Center *
!* Greenbelt, Maryland 20771 *
!* *

IX



!* Date: October 29, 2013 *
!* *
!* Language: Fortran-90 *
!* *
!* Version: 1.00a *
!* *
!* Description: Piecewise liner interpolation. *
!* *
!* Notes: Piecewise linear interpolation. Given input arrays XX *
!* (independent variable) and YY (dependent variable), *
!* both of dimension NN, this routine finds, by linear *
!* interpolation, the value of Y(X). Array XX must be in *
!* ascending order. *
!* *
!* The flag IERR is returned as -1 if X is below the low *
!* end of XX (an error), +1 if X is above the high end *
!* of XX (also an error), or 0 if there was no error. *
!***************************************************************************

FUNCTION LINTERPOL (NN, XX, YY, X, IERR) RESULT (Y)

IMPLICIT NONE

INTEGER, INTENT(IN) :: NN
DOUBLE PRECISION, DIMENSION(NN), INTENT(IN) :: XX, YY
DOUBLE PRECISION, INTENT(IN) :: X
INTEGER, INTENT(OUT) :: IERR
DOUBLE PRECISION :: Y
INTEGER :: I

IF (X .LT. XX(1)) THEN ! if below low end of XX (error)
Y = YY(1) ! set Y = first YY value
IERR = -1 ! return error code -1

ELSE IF (X .GT. XX(NN)) THEN ! if above high end of XX (error)
Y = YY(NN) ! set Y = last YY value
IERR = +1 ! return error code +1

ELSE ! if OK
DO I = 2, NN ! loop to find first XX > X

IF (XX(I) .GT. X) EXIT
END DO
Y = (YY(I)-YY(I-1))/(XX(I)-XX(I-1))*(X-XX(I-1))+YY(I-1)
IERR = 0 ! set error code to 0 (no error)

END IF

RETURN

END FUNCTION LINTERPOL
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