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“I have mentioned Mathematics as a way to settle in the mind a habit of
reasoning closely and in train; not that I think it necessary that all men should
be deep mathematicians, but that, having got the way of reasoning which that
study necessarily brings the mind to, they might be able to transfer it to other
parts of knowledge, as they shall have occasion. For, in all sorts of reasoning,
every single argument should be managed as a mathematical demonstration; the
connection and dependence of ideas should be followed till the mind is brought
to the source on which it bottoms, and observes the coherence all along”

John Locke, “The Conduct of the Understanding”

“If you can’t explain it simply, you don’t understand it well enough”

Albert Einstein

To those who inspired and supported me
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Abstract

This thesis project investigates the cyber-security problem for linear intercon-
nected systems in a distributed fashion. Starting from existing results on the
detectability of covert cyber-attacks in a single agent of the network, the work
addresses the isolation task, proposing different algorithms based on the al-
gebraic properties of the interconnection matrices of each local neighborhood.
Moreover, the detection problem is extended to the scenario of multiple agents
simultaneously attacked. The whole theoretical analysis focuses on large-scale
systems subject to bounded process and measurement disturbances. All the
proposed methodologies can be implemented by using only local information
available at each subsystem, and are endowed with a suitable threshold to avoid
false alarms due to action of noise. Finally, numerical simulations on a simple
data center model are given, showing the effectiveness of the introduced tech-
niques in detecting and isolating covert cyber-attacks.
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Chapter 1

Introduction

This thesis project addresses the problem of cyber-security in the context of
dynamical systems. Differently from the perspective typically adopted in the
computer engineering community, for a control system engineer this task natu-
rally falls in the framework of state estimation and plant monitoring. The aim
is to derive some sensitive quantities, typically called residuals, which highlight
possible deviations of the system state from its nominal behavior as a conse-
quence of the action of a malicious agent.

With respect to the Fault Detection problem, from which cyber-security
inherits many methodologies, this setting is far more challenging. Indeed, an
intentional manipulation by an intelligent attacker might be designed so as to
make it difficult for a monitoring unit to detect it. Interestingly, linear systems
are particularly vulnerable to this eventuality. As a matter of fact, the properties
of linear dynamical systems have been extensively discussed and characterized
in literature, and a multitude of control and estimation techniques have been
derived and formally supported from a theoretical perspective. All these results
rely on properties following from the simple mathematical structure of the linear
systems. Nonetheless, in the same fashion, such properties make it particularly
easy for the attacker to perfectly compensate for its action so that the monitoring
unit cannot detect it by looking at some residual quantities.

The security problem is particularly interesting in interconnected systems.
Indeed, many critical infrastructures are nowadays designed as a network of
agents mutually influencing each other through some kind of coupling, and their
reliability against external attacks is of primary concern. However, especially
when the structure being considered is a large-scale system, distributed method-
ologies for both control and monitoring are extremely important, since they re-
duce the need for communication, and improve the scalability of the procedures.

The thesis extends the results of a previous work dealing with the detection
problem in interconnected systems [1], both by focusing on the isolation issue,
and by introducing the detection analysis to the scenario of simultaneous mul-
tiple attacks. For each of these tasks, a detailed discussion on the structural
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CHAPTER 1. INTRODUCTION

properties of the matrices of the network is presented. Note that characterizing
the theoretical properties of the systems allowing the proposed methodologies
to work is relevant for a design purpose. Indeed, whenever possible, one should
avoid all those configurations which are “intrinsically vulnerable”, intentionally
giving up some links (if needed) to properly tune the trade-off between security
and required performance.

The organization of the thesis is the following. In Chapter 2, the contribu-
tions of this work are collocated in the present state of the art. Chapter 3 is
dedicated to an outline of the results in [1]. The novel contributions about the
isolation issue and the detection of simultaneous multiple attacks are presented
in Chapter 4 and 5, respectively. In Chapter 6 a model of a data center is pro-
posed, in order to explain how the developed strategies work in practice through
some numerical simulations. Finally, in Chapter 7 possible future research di-
rections are suggested. Moreover, in the next section the mathematical notation
used is summarized, and at the end of the text a complete list of used symbols
is reported.

1.1 Mathematical notation

Given any finite set A, |A| denotes its cardinality. N, Z, and R denote the sets
of natural, integer, and real numbers, respectively. Given a natural number k,
k! denotes its factorial. b·c denotes the floor operator of a real number.

All vectors are understood as column-vector, and v[i] denotes the ith entry
of vector v. Matrices are denoted by means of capital symbols. dim(V) denotes
the dimension of a linear space V. Moreover, 0 is a matrix whose entries are all
zero, I is the identity matrix. Given a matrix M , M> indicates its transpose,
Im(M) is its image, and rank(M)

.
= dim(Im(M)) is the rank of such a matrix.

M−L is the Moore-Penrose left-pseudoinverse and, if M is a square matrix with
full rank, M−1 is its inverse. A square matrix M is called Schur-stable if all
its eigenvalues lie within the open circle of radius one in the complex plane.
Given a sequence of matrices {Mj : j ∈ I}, rowj∈I(Mj) denotes the horizontal
concatenation of said matrices. ‖·‖ .

= ‖·‖2 refers to the standard Euclidean
2-norm for vectors, and to the induced norm for matrices.

Given a signal s(t), s(k)
.
= s(kTs) indicates its value at the kth sampling

instant, where Ts is the sampling time. Moreover, s+ .
= s(k+1) and s−

.
= s(k−1)

represent its value at the next and previous sampling instant, respectively.
Given a random variable x, x̂ is an estimate of x, and E[x] denotes its

expected value. Moreover, the notation x ∼ P is used to describe that x is
characterized as a Poisson variable. Finally, pλ(·) denotes the probability mass
function of a Poisson variable of parameter λ ∈ R, λ > 0.
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Chapter 2

State of the art

The interest around the problem of cyber-security in the context of intercon-
nected systems is growing in recent research. Indeed, several infrastructures
become more and more essential in modern society, and they can be described
as a network of dynamical systems mutually fulfilling a task by cooperating one
another. Among them, we find water supply and distribution networks in gen-
eral, power grids, telecommunication networks, transportation networks, and
industrial processes. The malfunctioning of these infrastructure greatly affects
both our lives and our economy. These systems are typically controlled over
a communication network. The measurements are transmitted to some control
center, then the control signal is forwarded to the actuators via the commu-
nication channel as well. Due to this information exchange, these systems are
vulnerable to both faults and intentional manipulations performed by malicious
agents.

A malicious agent might act in order to drive the system to non-optimal
(and potentially dangerous) operating conditions, by affecting the communi-
cation channel of such cyber-systems [2]. Power networks, for instance, are
operated through supervisory control and data acquisition (SCADA) systems,
which can easily be attacked by external agents [3], [4]. More in general, a
cyber-attack could result in immediate consequence (for example, a blackout of
a power distribution network), or in long-term deterioration of the manipulated
plant, due to the improper handling.

Generally speaking, when a communication channel is employed, a system is
exposed to man-in-the-middle attack strategies. Indeed, if the communication
link between the control logic unit and the actuators/sensors can be hacked (for
instance, with wireless communication technology), an attacker can effectively
affect both the input and the output signals, in order to accomplish different
sorts of manipulations. For example, in [5] the authors distinguish the following
classes of cyber-attacks:

a) False Data Injection Attacks: This is the simplest attack to be considered.
The attacker’s action is restricted to the alteration of the actuation and/or
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CHAPTER 2. STATE OF THE ART

measurement signals. In doing so, an attacker can modify the equilibrium
of a network. On the one hand, this type of attack is not particularly
difficult to implement, as no disclosure capability is required (i.e., the
malicious agent does not need to eavesdrop the information sent through
the communication link; however, model knowledge is required. On the
other hand, a false data injection attack can be fairly easily detected by
comparing the expected output with the received measurement.

b) Replay Attacks: If an attacker is able to more aggressively violate the in-
tegrity of the communication network (meaning that it can listen to the
transmitted signals) for a certain time span, it can later on modify the
transmitted information by replaying stored old data. In such a way, it
can effectively disguise any changes to the operating conditions. Specifi-
cally, it has been shown that replay attacks may be undetectable to attack
monitoring schemes [6], as the replayed data has both the same statistical
properties of the non-attacked data, and it evolves following correct dy-
namics. Still, observe that a malicious agent willing to perform a replay
attack does not need any knowledge of the system’s dynamics.

c) Covert Attacks: A resourceful attacker can properly design the manipula-
tion on the actuation and measurement signals in order to exactly com-
pensate for its action on the received output, irrespective of its action on
the system. Indeed, if the attacker is able to run a replica of the system,
it is also able, from that, to deduce the effect of its action on the system;
therefore, it can counterbalance for its action on the output signal, mak-
ing it impossible for the control and monitoring architecture to identify
its presence. In order to achieve this attack, the malicious agent needs to
have knowledge of the system’s dynamics. Covert attacks are the most
difficult to detect, and are the focus of this thesis work.

A vast number of works regarding the problem of security of cyber-physical
systems have been presented in literature, such as [7], [8], [9], [10], and [11].
It is worth highlighting that, given the typical complexity of these systems,
distributed algorithms for detecting anomalies are of particular interest. Some
approaches, in particular, have been inspired by the field of distributed fault de-
tection and isolation (FDI), a research area dealing with the problem of detecting
and, possibly, locating the source of faults resulting in unexpected trends in the
behavior of a monitored system (see, for instance, [12] and [13]). However, ex-
tending FDI techniques to the context of cyber security is far from trivial, since
an intelligent malicious agent may be able to act in such a way not to be detected
by these monitoring strategies, since a cyber-attack can affect the behavior of a
system in a richer way than typical classes of faults.

Differently from the typical framework of the computer science research com-
munity, cyber security in control literature is typically addressed by assuming
a dynamical model of the system being attacked and of its interconnections is
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available, and this is the setting of this thesis work. Starting from the results
on the detection of cyber-attacks in interconnected systems presented in [1],
reported in Chapter 3, the main contribution of this work is related to isola-
tion (Chapter 4), and an introductory analysis on the scenario of simultaneous
coordinated multiple attacks within the same network of dynamical systems
(Chapter 5). All the proposed results extensively rely on topology of the net-
work being considered, and on the structural properties of the interconnection
matrices themselves.
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Chapter 3

Detection strategy

This chapter outlines in detail the distributed detection strategy presented in [1].
With respect to the cited work, the strategy is here adapted to fit the discrete-
time scenario and, finally, different thresholds for the considered quantity are
derived.

The chapter firstly describes the subsystems and the network considered
(Section 3.1. Secondly, the details about the covert attack are given (Sec-
tion 3.2). Finally, the detection strategy is illustrated in depth (Section 3.3).

3.1 Subsystems description

Let consider a networked system composed of N subsystems, where the generic
ith component is characterized as a linear time-invariant dynamical system in
the form:

Si :


x+
i =Aixi +Biũi +

∑
j∈Ni

Aijxj + wi

yi =Cixi + vi,

(3.1)

where xi ∈ Rni is the subsystem state vector, ũi ∈ Rmi is the control input
vector, yi ∈ Rpi is the output vector, and wi ∈ Rni and vi ∈ Rpi denote the
process noise and measurement noise, respectively. Moreover, Ai ∈ Rni×ni is
the state matrix, and Bi ∈ Rni×mi and Ci ∈ Rpi×ni are the input and output
matrix, respectively. The neighbor set Ni of Si represents the index set of those
subsystems Sj dynamically influencing the subsystem Si through the intercon-
nection matrix Aij ∈ Rni×nj . All the matrices are assumed to be constant over
time. Finally, let define:

Ξi
.
= row

j∈Ni
(Aij). (3.2)

Concerning the structural properties of the subsystems composing the net-
work, we make the following assumptions.
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LU1

LU2

LU3

LU4

S1

S2

S3

S4

E

Si

∑
j∈Ni Aijxj x+

i

Ai

LUi

ηi

+
ũi

ui

+
γi

−
ỹi

yi

+

Figure 3.1: On the left, the network layout separated in physical and cyber
layers; on the right, the diagram of the attacked subsystem.

Assumption 3.1.1. ∀i ∈ {1 . . . N}, the pair (Ai, Ci) of subsystem Si is observ-
able and:

rank(CiΞi) = rank(Ξi). (3.3)

Assumption 3.1.2. The topology of the network can be represented as an undi-
rected graph, without self-loops, that is:

i 6∈Ni
i ∈ Nj ⇔j ∈ Ni.

(3.4)

On the other hand, in general it is Aij 6= Aji.

Furthermore, the noises acting on each subsystem are assumed to satisfy the
following condition.

Assumption 3.1.3. ∀i ∈ {1 . . . N}, both the process and the measurement
noises are bounded, i.e. there exists known positive constants w̄i, v̄i ∈ R+ such
that:

‖wi(k)‖ ≤ w̄i, ‖vi(k)‖ ≤ v̄i, ∀k ∈ Z, k ≥ 0. (3.5)

A scheme of the network is shown in Figure 3.1. Each subsystem is equipped
with a local unit LUi, consisting of a controller Ci and the detection architec-
ture, which is thoroughly described in Section 3.3. The logic unit accesses the
measurements ỹi and produces the control input ui. The action of the logic unit
LUi is fully distributed, meaning that it is the result of the locally available
information and variables of equation (3.1), whereas no knowledge of the overall
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3.2. COVERT ATTACK

topology of the network is needed. Therefore, we assume the following condition
to hold.

Assumption 3.1.4. Only the local dynamics’ matrices (Ai, Bi, Ci), and the
interconnection matrices Aij ,∀j ∈ Ni, are available to each LUi.

The link connecting each subsystem Si with the associated logic unit LUi is
vulnerable. As a consequence, the signals entering the subsystem Si might be
different from those produced by the logic unit LUi and viceversa. Specifically,
in order to take into account the action of a malicious agent Ai altering both the
actuation and the measurement signals, which will be discussed in Section 3.2,
we will refer to the couple (ui,yi) as legitimate or transmitted signals, whereas
their corrupted version (ũi,ỹi) will be referred to as attacked or received.

If i denotes the index of the subsystem where the attacker is acting, the
relation between the transmitted and the received signals is the following:

ũi =ui + ηi

ỹi =yi − γi.
(3.6)

Such cyber-attacks, in which a malicious agent can alter both the actuation
and the measurement signals, are particularly difficult to detect. Indeed, a
proper design of ηi, γi can make the attack effect on the output indistinguishable
from the nominal behavior, independently of the manipulation on the subsystem
Si. An exhaustive discussion on this important aspect can be found in the
following section.

3.2 Covert attack

In this section, we depict the design of a covert attack model in state space form,
with reference to [14].

Definition 3.2.1 (Covert Agent). The action of the malicious agent Ai is covert
to subsystem Si if the received measurement output ỹi is indistinguishable from
the nominal subsystem response yi in the attack-free scenario.

In other words, an attack is covert as far as the attacker is able compensate
for its action so that no abnormality can be deduced from the received output
ỹi (in the following, this condition will be referred to as covertness property).
Having said that, we trivially deduce that such attacks are stealthy by design.
Moreover, from Definition 3.2.1 follows that any residual signal relying on the at-
tacked output measurement ỹi necessarily satisfies the stealthiness condition [15,
Definition 2].

An effective covert attack can be performed by replicating the dynamics of
the targeted subsystem. Hence, the malicious agent Ai is modeled as dynamical
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CHAPTER 3. DETECTION STRATEGY

system in the form:

S̃i :

{
x̃+
i =Ãix̃i + B̃iηi

γi =C̃ix̃i.
(3.7)

Specifically, the attacker design the signal ηi in order to fulfill its goal. For
example, ηi might drive the subsystem Si toward an undesired trajectory, or
cause the subsystem state xi to grow indefinitely. Obviously, the signal ηi is
arbitrary, and its characteristics are in general unknown to a defender. On the
other hand, the signal γi is computed with the purpose of compensating for the
effect of ηi on the subsystem output yi as in (3.6).

Remark 3.2.1. Observe that, thanks to the superposition principle, the attacker
Ai might run the replica S̃i in open loop, meaning that it does not need any
information on the current state xi and legitimate input ui of the subsystem Si
to hide its own effect on the output.

As a result, model (3.7) is itself sufficient to describe a covert agent. On
the other hand, it is reasonable to consider a more general scenario in which
the attacker needs to implement its own controller C̃i in order to achieve some
desired dynamics:

C̃i :

ξ
+
i =AC̃iξi + Υi

[
ui

yi

]
+RC̃iνi

ηi =CC̃iξi +KC̃i x̃i,

(3.8)

where ξi is the controller state, νi is used to determine the controller’s reference,
and AC̃i ,Υi, RC̃i , CC̃i , and KC̃i are matrices of compatible dimensions. In partic-

ular, KC̃i provides a feedback from the state x̃i of S̃i, whereas Υi represents the
disclosure resources as in [15], identifying information accessible by the attacker.

The attackerAi can be represented in compact form by considering both (3.7)

and (3.8), and by introducing a vector ζi
.
=
[
x̃>i ξ>i

]>
as follows:

Ai :


ζ+
i =Φiζi +

[
0

Υi

][
ui

yi

]
+

[
0

RC̃i

]
νi[

γi

ηi

]
=Γiζi,

(3.9)

where:

Φi =

[
Ãi + B̃iKC̃i B̃iCC̃i

0 AC̃i

]
, Γi =

[
C̃i 0

KC̃i CC̃i

]
. (3.10)

Γi is called disruption resource, as it defines which channels among actuation
and measurement can be compromised with malicious signals. With this de-
scription, the attacker Ai is completely characterized by its model knowledge
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3.2. COVERT ATTACK

(Ãi, B̃i, C̃i), its infiltration resources Υi and Γi, and its attack strategy defined
by the controller C̃i and the reference signal νi.

Clearly, (3.7) satisfies the covertness property if and only if the replica S̃i
is a realization of the same transfer function realized by the subsystem being
attacked Si. To ensure this condition, the following is assumed to hold.

Assumption 3.2.1. The malicious agent Ai has perfect knowledge of the sub-
system being attacked, that is (Ãi, B̃i, C̃i) = (Ai, Bi, Ci). Conversely, it has no
knowledge of the dynamic interconnections with neighboring subsystems.

Remark 3.2.2. The working framework fixed by Assumption 3.2.1 is a worst-
case scenario. Indeed, as will be proved in the following, in such a way the
residual quantities are not influenced by the attacker. In the case of an attacker
with incomplete knowledge of the model, simpler detection strategy could be ef-
fectively implemented.

An attacker willing to satisfy Assumption 3.2.1 needs to obtain the model
information via some form of intelligence. This may happen both if the plant
structure is known (see [16]), or if the information is leaked. Moreover, one
can reasonably assume that an attacker who can write on some channels is
able to read from them as well. Therefore, the model might be identified by
eavesdropping on the measurement and actuation signals [17].

In the following, we formally prove that model (3.7) ensure the accomplish-
ment of the covertness property. Let kai be the time instant in which the attacker
begins its action, meaning that:

ηi, γi = 0, ∀k ∈ Z, k < kai. (3.11)

The following proposition states a sufficient condition for an attacker to be
covert.

Proposition 3.2.1. Under 3.2.1, there exists a signal γi such that, if Ai is
Schur-stable, the attack is asymptotically covert. Furthermore, if the attacker
state at kai is x̃i(kai) = 0, the attack is covert ∀k ∈ Z, ∀Ai ∈ Rni×ni.

Proof. Before the attacker starts its manipulation, from (3.11) we trivially have
ỹi = yi, ∀k ∈ Z, k < kai. Therefore, it is sufficient to prove the condition for
k ≥ kai.

From (3.1) and (3.6) we have:

yi(k) =CiA
k−kai
i xi(kai) + Ci

k−1∑
τ=kai

Ak−1−τ
i

[
Bi

(
ui(τ) + ηi(τ)

)
+
∑
j∈Ni

Aijxj(τ) + wj(τ)

]
+ vj(k).

(3.12)

11
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On the other hand, for a given attacker action ηi, (3.7) gives:

γi(k) = C̃iÃ
k−kai
i x̃i(kai) + C̃i

k−1∑
τ=kai

Ãk−1−τ
i B̃iηi(τ). (3.13)

Under Assumption 3.2.1, and by exploiting again (3.6), the previous expression
then give:

ỹi(k) =CiA
k−kai
i

(
xi(kai)− x̃i(kai)

)
+ Ci

k−1∑
τ=kai

Ak−1−τ
i

[
Biui(τ)

+
∑
j∈Ni

Aijxj(τ) + wj(τ)

]
+ vj(k).

(3.14)

If Ai is Schur-stable, from (3.14) we have that as k →∞, ỹi will converge to the
output of the attack-free subsystem. Put it differently, if Ak−kaii is vanishing as
k →∞, then the expression in (3.14) will converge to that in (3.12) where it is
substituted an identically zero signal ηi. On the other hand, if x̃i(kai) = 0, then
ỹi in (3.14) is indistinguishable from the legitimate output ∀k ∈ Z, irrespective
of Ai.

Remark 3.2.3. Observe that Proposition 3.2.1 implicitly proves that the covert
attack can be fulfilled with no knowledge of the neighbors or their interconnec-
tions. This greatly depends on the linearity of the dynamical system being con-
sidered. Namely, thanks to the principle of superposition of effects, the influence
of the attacker signal ηi on the subsystem’s output yi does not depend on the
other signals simultaneously contributing to generate the subsystem’s state tra-
jectory, (the legitimate input ui, the influence of the neighbors Aijxj, and the
process noise wi). As a consequence, an attacker satisfying Assumption 3.2.1
can successfully design the signal γi to compensate for its effect on the output,
since the latter is a function of the ηi signal and of the structure of the subsystem
(Ai, Bi, Ci) only.

Finally, it is worth highlighting that both the definition of covert attack and
the results of Proposition 3.2.1 can equivalently be restated in terms of detection
residuals, as will be discussed later on.

3.3 Detection architecture

This section extensively discusses the proposed detection architecture. Each
Logic Unit is endowed with a local controller Ci, a decentralized observer Odi
(see Subsection 3.3.1), a distributed one Oci (Subsection 3.3.2), and a detection
logic Di (Subsection 3.3.3). A scheme of the Logic Unit is depicted in Figure 3.2.

The purpose of implementing both the observers is the following:

12
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LUi

ỹiui

Ci

Odi

Oci

Di

ui

x̂dj , j ∈ Ni

aj , j ∈ Ni

ỹi

x̂di

+

−
r̃ci

ai

Figure 3.2: Detail of each logic unit LUi, endowed with a local controller Ci, a
decentralized observer Odi , a distributed observer Oci , and a detector Di. The
scheme distinguishes between signals withing the same logic unit (in black), and
signals resulting from the communication with the neighboring subsystems’ logic
units (in blue).

• The decentralized observer produces a state estimate x̂di based on the input
ui and on the locally measured output ỹi, decoupled from the neighboring
subsystems Sj , j ∈ Ni;

• The distributed observer dynamically computes an estimate x̂ci from the
input ui, from the locally measured output ỹi, and from the decentralized
estimates of the neighboring subsystems x̂dj , j ∈ Ni (conveniently commu-
nicated from their logic unit LUj).

In such a way, if i is the index of attacked subsystem Si, the distributed
observers Ocj of its neighboring subsystems Sj , j ∈ Ni can detect possible incon-
sistencies between the true state xi of Si (to which each neighboring subsystem’s
state xj is directly coupled) and the possibly wrong1 estimate x̂di which the logic
unit LUi produced from the attacked measurements ỹi. Therefore, the attack is
perfectly covert with respect to Si, its neighbors can reveal it.

In order to detect the aforementioned inconsistencies, each subsystem con-
siders a residual signal r̃ci and a suitable time-varying threshold r̄ci . Both these
quantities will be formally defined and discussed in detail in the following. In
order to reveal stealthy attacks, the following distributed detection logic is im-
plemented by a diagnoser Di:

• If ‖r̃ci‖ > r̄ci , a binary alarm signal ai is raised;

• Each logic unit LUi broadcasts the alarm signal ai to all the neighboring
logic units LUj , j ∈ Ni, and receives the sequence aj , j ∈ Ni;

1Observe that the communication between logic units is assumed invulnerable. Therefore,
the estimates x̂di is correctly communicated, and it could only be wrong because it relies on
attacked measurements. More details on this fact are given in Subsection 3.3.2.
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Obtain local
measurement ỹi

Compute input ui

Receive decentralized
estimates x̂dj , j ∈ Ni

from neighbors

Compute
decentralized
estimate x̂di

Compute distributed
estimate x̂ci and residue r̃ci

Broadcast decentral-
ized estimate x̂di to

neighbors Sj , j ∈ Ni

Set ai = 1⇔ ‖r̃ci‖ > r̄ci .
Broadcast ai to

neighbors Sj , j ∈ Ni

Receive aj = 1, j ∈ Ni
from neighbors. If
ANDj∈Ni(aj) = 1,
⇒ Si is under attack.

Figure 3.3: Detection algorithm performed at each sampling time in each LU .

• If aj = 1, ∀j ∈ Ni, then detector Di decides Si is under attack.

The detection logic is summarized in Figure 3.3.
Before proceeding with the analysis, let specify some quantity of interest.

The state estimation errors for the decentralized and the distributed estimates,
respectively, are defined as follow:

εdi
.
= xi − x̂di

εci
.
= xi − x̂ci .

(3.15)

Observe that εdi and εci represent the difference between the actual state of Si and
the state estimates of the corresponding observers. These quantities are named
the true errors, and they cannot be computed in practice since the actual state
is not directly accessible. Therefore, the output estimation errors are coherently
defined as:

rdi
.
= yi − Cix̂di = Ciε

d
i + vi

rci
.
= yi − Cix̂ci = Ciε

c
i + vi.

(3.16)

On the other hand, if subsystem Si is under attack, these quantities are not
available either. More conveniently, in this case, one can consider the computed
state errors:

ε̃di
.
= xi − x̃i − x̂di

ε̃ci
.
= xi − x̃i − x̂ci ,

(3.17)

14



3.3. DETECTION ARCHITECTURE

and, consistently, the computed output errors (the so-called residuals):

r̃di
.
= ỹi − Cix̂di = Ciε̃

d
i + vi

r̃ci
.
= ỹi − Cix̂ci = Ciε̃

c
i + vi.

(3.18)

Similar to the conventions previously introduced, the latter quantities are called
the received or attacked state and output errors. Observe that, when no attack
is happening, the true and the computed errors trivially coincide.

In the next sections the technicalities of the detection strategy are outlined
in detail. Subsection 3.3.1 and 3.3.2 are dedicated to the design and the analysis
of the decentralized and distributed observers, respectively. Finally, in Subsec-
tion 3.3.3, the details of the attack detection logic are given.

3.3.1 Decentralized Observer Odi
This section tackles the problem of designing a decentralized estimate x̂di of the
state xi, not depending on the contribution from the neighboring subsystems.
In this respect, an Unknown Input Observer (UIO) is implemented (see [18],
here adapted to fit the discrete-time scenario), by regarding the influence of the
neighbors as an unknown input acting on Si. This implementation of a UIO
is derived from the distributed detection of anomalies literature (for instance,
see [19] and [20]).

The implementation of the UIO is the following. Named zi ∈ Rni the state
of the observer, the decentralized estimate x̂di is the output of the following
dynamical system:

Odi :

{
z+
i =F di zi + TiBiui +Kiỹi

x̂di =zi +Hiỹi.
(3.19)

F di , Ti,Ki, and Hi are gains with compatible dimensions, which will shortly be
better characterized. Let observe that by defining xi as:

x>i
.
= row

j∈Ni
(x>j ) (3.20)

for each subsystem Si, and by exploiting (3.2), the influence of the neighbors on
Si on the right-hand side of (3.1) can be rewritten as follows:∑

j∈Ni

Aijxj = Ξixi. (3.21)

Having said that, it is required that [18, Theorem 1]:

a) The output matrix is such that:

rank(CiΞi) = rank(Ξi). (3.22)
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b) The pair (Āi, Ci) is detectable, where:

Āi
.
= Ai −HiCiAi. (3.23)

Observe that condition (3.22) is ensured by Assumption 3.1.1. Under such con-
ditions, by decomposing Ki as

Ki = K
(1)
i +K

(2)
i , (3.24)

the gains appearing in (3.19) can be designed so that:

0 =(HiCi − I)Ξi (3.25a)

Ti =I −HiCi (3.25b)

F di =Āi −K(1)
i Ci is Schur-stable (3.25c)

K
(2)
i =FiHi. (3.25d)

Note that a particular solution to (3.25a) is:

Hi = Ξi[(CiΞi)
>CiΞi]

−1(CiΞi). (3.26)

The matrix F di rules the rate of convergence to steady-state of the decentralized
estimation error εdi . Note that the εdi approaches zero at steady-state only in
the disturbance-free and attack-free scenario. More in general, the next proposi-
tion characterizes the decentralized estimation error trajectory for the attacked
subsystem Si.

Proposition 3.3.1. Let assume a malicious agent Ai modeled as in (3.7) is
manipulating the ith subsystem Si as in (3.6). If Assumption 3.2.1 and the
UIO condition (3.25) hold, then the decentralized true error dynamics of ob-
server (3.19) is ruled by:

εd+
i = F di ε

d
i + Tiwi −K(1)

i vi −Hiv
+
i + (Ai − F di )x̃i +Biηi. (3.27)

On the other hand, the decentralized computed error evolves according to:

ε̃d+
i = F di ε̃

d
i + Tiwi −K(1)

i vi −Hiv
+
i , (3.28)

and the attack is covert for Odi .

Proof. Before proceeding with the computation, one might find it useful to
remind that the actual subsystem Si is driven by the attacked control input
ũi = ui+ηi, whereas the decentralized observer Odi is fed with the legitimate con-
trol input ui and the attacked measurement signal ỹi = yi−γi = Ci(xi− x̃i)+vi.
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From definition (3.15), and models (3.1), (3.7), and (3.19), we have:

εd+
i =x+

i − x̂
d+
i

=x+
i − z

+
i −Hi[Ci(x

+
i − x̃

+
i ) + v+

i ]

=(I −HiCi)x
+
i − z

+
i −Hiv

+
i +HiCix̃

+
i

=(I −HiCi)[Aixi +Bi(ui + ηi) + Ξixi + wi]− [F di zi + TiBiui

+KiCi(xi − x̃i) +Kivi]−Hiv
+
i +HiCi(Aix̃i +Biηi)

=[(I −HiCi)Ai −KiCi]xi + [(I −HiCi)− Ti]Biui
+ (I −HiCi)Ξixi − F di zi + (I −HiCi)wi −Kivi

−Hiv
+
i + (HiCiAi +KiCi)x̃i +Biηi.

(3.29)

Then, by substituting (3.23), (3.25a), and (3.25b), (3.29) can be rewritten as:

εd+
i =[Āi −KiCi]xi − F di zi + Tiwi −Kivi

−Hiv
+
i + (Ai − Āi +KiCi)x̃i +Biηi

=[Āi −K(1)
i Ci −K(2)

i Ci]xi − F di zi + Tiwi −K(1)
i vi −K(2)

i vi

−Hiv
+
i + (Ai − Āi +K

(1)
i Ci +K

(2)
i Ci)x̃i +Biηi

(3.30)

where the decomposition (3.24) was exploited. Finally, from (3.25c) and (3.25d),
we have:

εd+
i =[F di − F di HiCi]xi − F di zi + Tiwi −K(1)

i vi − F di Hivi

−Hiv
+
i + (Ai − F di + F di HiCi)x̃i +Biηi

=F di [xi − zi −Hiỹi] + Tiwi −K(1)
i vi −Hiv

+
i

+ (Ai − F di )x̃i +Biηi

=F di ε
d
i + Tiwi −K(1)

i vi −Hiv
+
i + (Ai − F di )x̃i +Biηi.

(3.31)

Moreover, from (3.27), (3.7), and (3.17), if Assumption 3.2.1 holds, one de-
duces:

ε̃d+
i =εd+

i − x̃
+
i

=F di ε
d
i + Tiwi −K(1)

i vi −Hiv
+
i + (Ai − F di )x̃i

+Biηi − (Aix̃i +Biηi)

=F di (εdi − x̃i) + Tiwi −K(1)
i vi −Hiv

+
i

=F di ε̃
d
i + Tiwi −K(1)

i vi −Hiv
+
i .

(3.32)

Since the decentralized computed error ε̃di evolves independently of x̃i and ηi,
that is the decentralized observer is insensitive to the malicious agent action,
the attack is necessarily covert.
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Remark 3.3.1. Note that by substituting ηi, γi = 0,∀k ∈ Z in (3.27), we derive
the decentralized true error dynamics in the attack-free scenario:

εd+
i = F di ε

d
i + Tiwi −K(1)

i vi −Hiv
+
i . (3.33)

As a consequence, we deduce that in the attack-free scenario the decentralized
true error εdi and the decentralized computed error ε̃di coincide, coherently with
their definition.

3.3.2 Distributed Observer Oci
This section is dedicated to the design of the distributed observer Oci . As previ-
ously mentioned, this observer’s intent is to produce an estimate x̂ci of the state
xi from the legitimate input ui, the (possibly attacked) measured output ỹi, and
the decentralized estimates of the neighboring subsystems x̂dj , j ∈ Ni. As it will
be proved, the resulting distributed computed error ε̃ci (and, consequently, the
residual quantity r̃ci ) is insensitive to possible attacks at Si. Nonetheless, ε̃ci is
sensitive to possible attacks in the neighboring subsystems, and this fact is the
core of the proposed detection strategy.

Note that the considered attacks presented in Section 3.2 manipulate the
actuation and the measurement signals as in (3.6). On the other hand, the
communication channels between logic units are assumed safe, as specified in
the following assumption.

Assumption 3.3.1. The communication between logic units is ideal. As a con-
sequence, the exchanged estimates x̂dj , j ∈ Ni are not corrupted during the com-
munication.

Based on the subsystem dynamical equations (3.1), the distributed observer
Oci is designed as a standard Luenberger observer, where the contribution due to
the physical coupling with the neighboring subsystems is dealt as a known input
derived from the communicated decentralized estimates x̂dj , j ∈ Ni. Precisely,
the dynamics of such an observer is :

Oci : x̂c+i = Aix̂
c
i +Biui +

∑
j∈Ni

Aij x̂
d
j + Li(ỹi − Cix̂ci ). (3.34)

Li ∈ Rni×pi is the observer gain and could be designed in order to place some
given eigenvalues of the matrix:

F ci
.
= Ai − LiCi (3.35)

so that, at least in the ideal scenario of absence of noise and of attacks in the
neighboring subsystems, the estimation error εci asymptotically converges to zero
satisfying some given performance.

Alternatively, as the authors suggest in [1], an H∞ approach (see [21]) can
be employed to design the observer gain Li in order to attenuate the effect of
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the noises wi and vi, and of the decentralized true errors of the neighboring
subsystems εdj , j ∈ Ni on the observer error εci .

Remark 3.3.2. Observe that x̂dj is not affected by attacks in the neighboring

subsystems Sh, h ∈ Nj. This is the reason why in (3.34) Aij x̂
d
j was used instead

of Aij x̂
c
j. This property will lay the basis for our detection strategy in the next

section

The next proposition analyzes the properties of the designed distributed
observer Oci .

Proposition 3.3.2. Let consider a malicious agent, modeled as in (3.7), af-
fecting subsystem Si as in (3.6). If Assumption 3.2.1 holds, the true estimation
error dynamics for observer (3.34) is:

εc+i = F ci ε
c
i + wi − Livi +

∑
j∈Ni

Aijε
d
i +Biηi + Liγi, (3.36)

whereas for the computed estimation error is:

ε̃c+i = F ci ε̃
c
i + wi − Livi +

∑
j∈Ni

Aijε
d
i , (3.37)

and the attack is covert for Oci .

Proof. Here again it is worth highlighting that the actual subsystem Si is driven
by the attacked control input ũi = ui + ηi, whereas the decentralized observer
Odi is fed with the legitimate control input ui and the attacked measurement
signal ỹi = yi − γi = Cixi + vi − γi.

Therefore, from (3.15), (3.1), (3.34), and (3.35), a trivial computation gives:

εc+i =x+
i − x̂

c+
i

=Aixi +Bi(ui + ηi) +
∑
j∈Ni

Aijxj + wi

−
[
Aix̂

c
i +Biui +

∑
j∈Ni

Aij x̂
d
j + Li(Cixi + vi − γi − Cix̂ci )

]
=(Ai − LiCi)(xi − x̂ci ) + wi − Livi +

∑
j∈Ni

Aij(xj − x̂dj )

+Biηi + Liγi

=F ci ε
c
i + wi − Livi +

∑
j∈Ni

Aijε
d
j +Biηi + Liγi.

(3.38)

On the other hand, from (3.17), (3.7), and (3.36), if Assumption 3.2.1 holds, one
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obtains:

ε̃c+i =εc+i − x̃
+
i

=F ci ε
c
i + wi − Livi +

∑
j∈Ni

Aijε
d
j +Biηi + LiCix̃i − (Aix̃i +Biηi)

=F ci (εci − x̃i) + wi − Livi +
∑
j∈Ni

Aijε
d
j

=F ci ε̃
c
i + wi − Livi +

∑
j∈Ni

Aijε
d
j .

(3.39)

Since the computed error follows the true error dynamics of the attack-free
scenario, which can be deduced by substituting ηi, γi = 0, ∀k ∈ Z in (3.36), the
attack is covert for Oci .

3.3.3 Attack detection scheme

In this subsection, the final details on the detection architecture are given. As
Proposition 3.3.2 states, the distributed computed error ε̃ci and, consequently,
the distributed computed residue r̃ci are sensitive to the decentralized true errors
εdj , j ∈ Ni of their neighbors. Therefore, in principle the alarm signal ai might
be raised whenever r̃ci is different from zero. Nonetheless, this procedure would
result in frequent false-alarms due to the presence of noise. For this reason, in
the following, a suitable threshold is designed in order to take the disturbances
action into account. Such a threshold results from the bounds (3.5) and accounts
for the maximum noise contribution on r̃ci in attack-free conditions.

In the following analysis, the next condition is assumed to be satisfied.

Assumption 3.3.2. For any subsystem Si, there is only one attacker in its
neighborhood Ni.

This assumption aims to rule out complex situations in which multiple at-
tacks in different subsystems within the same neighborhood might be designed
in order to compensate one another. Such scenario will be explored in Chap-
ter 5. Nonetheless, this assumption is not unreasonable. Indeed, if the overall
system is spread over a large area, it might be difficult for an attacker to target
vast sections of it.

In order to derive a threshold on the distributed error, it is firstly needed to
consider its decentralized counterparts. The next proposition derives an upper
bound on the norm of this quantity.

Proposition 3.3.3. Given (3.5), and a bound on the decentralized true error at
time k = 0, x̄i(0), then, in attack-free conditions, the norm of the decentralized
observer error

∥∥εdi ∥∥ is bounded by the positive function ε̄di , which can be initialized
as

ε̄di (0) = x̄i(0) + ‖Hi‖ v̄i, (3.40)
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and evolves according to:

ε̄d+
i =

∥∥∥F di ∥∥∥ ε̄di +

(
1−

∥∥∥F di ∥∥∥) ‖Hi‖ v̄i +Qdi , (3.41)

where:

Qdi
.
= ‖Ti‖ w̄i + ‖Ki‖ v̄i. (3.42)

Proof. By convolving the dynamical equation of the decentralized true error in
attack-free conditions (3.33), we obtain:

εdi (k) =(F di )kεdi (0) +
k−1∑
τ=0

(F di )k−1−τ
(
Tiwi(τ)−K(1)

i vi(τ)

)

−
k∑
τ=1

(F di )k−τHivi(τ).

(3.43)

The last summation can be rearranged as follows:

k∑
τ=1

(F di )k−τHivi(τ) =
k−1∑
τ=0

(F di )k−τHivi(τ) +Hivi(k)− (F di )kHivi(0)

=

k−1∑
τ=0

(F di )k−1−τF di Hivi(τ) +Hivi(k)− (F di )kHivi(0)

=
k−1∑
τ=0

(F di )k−1−τK
(2)
i vi(τ) +Hivi(k)− (F di )kHivi(0),

(3.44)
where (3.25d) was applied. Therefore, by recalling the decomposition (3.24), the
decentralized true error can be rewritten as:

εdi (k) =(F di )k
(
εdi (0)−Hivi(0)

)
+Hivi(k)

+
k−1∑
τ=0

(F di )k−1−τ
(
Tiwi(τ)−Kivi(τ)

)
.

(3.45)

In order to derive a suitable threshold, let recall that for the induced euclidean
matrix 2-norm, given any vector x, and any two matrices A and B of compatible
dimensions, the following inequalities hold [22, Subsection 10.4.2]:

‖Ax‖ ≤‖A‖ ‖x‖ (3.46a)

‖AB‖ ≤‖A‖ ‖B‖ . (3.46b)
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Therefore, by applying the triangle inequality multiple times to (3.45) we
find: ∥∥∥εdi (k)

∥∥∥ ≤∥∥∥(F di )k
∥∥∥(∥∥∥εdi (0)

∥∥∥+ ‖Hi‖ ‖vi(0)‖
)

+ ‖Hi‖ ‖vi(k)‖

+
k−1∑
τ=0

∥∥∥(F di )k−1−τ
∥∥∥( ‖Ti‖ ‖wi(τ)‖+ ‖Ki‖ ‖vi(τ)‖

)
.

(3.47)

By recalling the fact that the noises are uniformly bounded (3.5), we obtain:∥∥∥εdi (k)
∥∥∥ ≤∥∥∥(F di )k

∥∥∥(∥∥∥εdi (0)
∥∥∥+ ‖Hi‖ v̄i

)
+ ‖Hi‖ v̄i

+

k−1∑
τ=0

∥∥∥(F di )k−1−τ
∥∥∥( ‖Ti‖ w̄i + ‖Ki‖ v̄i

)
.

(3.48)

Moreover, (3.46b) in particular gives, ∀k ∈ Z, k ≥ 0:∥∥∥(F di )k
∥∥∥ ≤ ∥∥∥F di ∥∥∥k . (3.49)

From such property, and by defining Qdi as in (3.42), we find:∥∥∥εdi (k)
∥∥∥ ≤∥∥∥F di ∥∥∥k (∥∥∥εdi (0)

∥∥∥+ ‖Hi‖ v̄i
)

+ ‖Hi‖ v̄i

+Qdi

k−1∑
τ=0

∥∥∥F di ∥∥∥k−1−τ
.

(3.50)

Let ε̄di be the expression on right-hand side of the previous inequality. From
simple manipulations, we have:

ε̄di (k + 1) =
∥∥∥F di ∥∥∥k+1

(∥∥∥εdi (0)
∥∥∥+ ‖Hi‖ v̄i

)
+ ‖Hi‖ v̄i

+Qdi

k∑
τ=0

∥∥∥F di ∥∥∥k−τ
=
∥∥∥F di ∥∥∥∥∥∥F di ∥∥∥k (∥∥∥εdi (0)

∥∥∥+ ‖Hi‖ v̄i
)

+ ‖Hi‖ v̄i

+Qdi +Qdi

∥∥∥F di ∥∥∥ k−1∑
τ=0

∥∥∥F di ∥∥∥k−1−τ

=
∥∥∥F di ∥∥∥ ε̄di (k) +

(
1−

∥∥∥F di ∥∥∥) ‖Hi‖ v̄i +Qdi .

(3.51)

Finally, one can observe by inspection that the initialization (3.40) is coherent
with the computation.
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In the next proposition, a similar analysis is proposed for the distributed
error.

Proposition 3.3.4. Given (3.5), and a bound on the distributed true error at
time k = 0, x̄i(0), then, in attack-free conditions, the norm of the distributed
observer error ‖εci‖ is bounded by the positive function ε̄ci , which can be initialized
as ε̄ci (0) = x̄i(0), and evolves according to:

ε̄c+i = ‖F ci ‖ ε̄ci +Qci +
∑
j∈Ni

‖Aij‖
∥∥∥εdj∥∥∥ , (3.52)

where:

Qci
.
= w̄i + ‖Li‖ v̄i. (3.53)

Proof. By convolving the dynamical equation of the distributed true error in
attack-free conditions, which can be deduced by substituting ηi, γi = 0, ∀k ∈ Z
in (3.36), one finds:

εci (k) = (F ci )kεci (0) +
k−1∑
τ=0

(F ci )k−1−τ
(
wi(τ)− Livi(τ) +

∑
j∈Ni

Aijε
d
j (τ)

)
. (3.54)

Therefore, by exploiting the triangle inequality, together with the properties (3.46a)
and (3.46b), we obtain:

‖εci (k)‖ ≤
∥∥∥(F ci )k

∥∥∥ ‖εci (0)‖+
k−1∑
τ=0

∥∥∥(F ci )k−1−τ
∥∥∥( ‖wi(τ)‖

+ ‖Li‖ ‖vi(τ)‖+
∑
j∈Ni

‖Aij‖
∥∥∥εdj (τ)

∥∥∥). (3.55)

Moreover, from the fact that the noises are uniformly bounded (3.5), by defining
Qci as in (3.53), taken (3.49) into account, we obtain:

‖εci (k)‖ ≤ ‖F ci ‖
k ‖εci (0)‖+

k−1∑
τ=0

‖F ci ‖
k−1−τ

(
Qci +

∑
j∈Ni

‖Aij‖
∥∥∥εdj (τ)

∥∥∥). (3.56)

Let ε̄ci be the expression on right-hand side of the previous inequality. Then,
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from simple manipulations, we have:

ε̄ci (k + 1) = ‖F ci ‖
k+1 ‖εci (0)‖+

k∑
τ=0

‖F ci ‖
k−τ

(
Qci +

∑
j∈Ni

‖Aij‖
∥∥∥εdj (τ)

∥∥∥)
= ‖F ci ‖ ‖F ci ‖

k ‖εci (0)‖+Qci +
∑
j∈Ni

‖Aij‖
∥∥∥εdj (k)

∥∥∥
+ ‖F ci ‖

k−1∑
τ=0

‖F ci ‖
k−1−τ

(
Qci +

∑
j∈Ni

‖Aij‖
∥∥∥εdj (τ)

∥∥∥)
= ‖F ci ‖ ε̄ci (k) +Qci +

∑
j∈Ni

‖Aij‖
∥∥∥εdj (k)

∥∥∥ .

(3.57)

Observe that in order to obtain a bound on
∥∥∥εdj∥∥∥ , j ∈ Ni, one can ex-

ploit (3.41). Moreover, a simple computation reveals that, in attack-free con-
ditions, the norm of the distributed residue ‖r̃ci‖ is bounded by the positive
function r̄ci , defined as:

r̄ci
.
= ‖Ci‖ ε̄ci + v̄i. (3.58)

Remark 3.3.3. All the computed thresholds are time-varying quantities. Nonethe-
less, if the subsystems are stable, after a sufficiently long time the threshold con-
verges to a steady-state value (when the transient due to the uncertainty on the
initial condition vanishes).

Finally, Theorem 3.3.1 asserts sufficient conditions for an attack in order to
be detected.

Theorem 3.3.1 (Detectability). A covert cyber-attack starting at instant ka,i
in Si, i ∈ Nj, is detectable by Sj if ∃k̄i > ka,i such that:∥∥∥∥∥∥

k̄i−1∑
τ=ka,i

(F cj )k−1−τAji

τ−1∑
t=ka,i

(F di )τ−1−tθi(t)

∥∥∥∥∥∥ > 2r̄cj , (3.59)

where:
θi(k)

.
= (Ai − F di )x̃i(k) +Biηi(k). (3.60)

Proof. To consider the attack effect, one needs to convolve (3.33) and (3.27)
before and after ka,i, respectively, obtaining (see (3.45)):

εdi (k) =(F di )k
(
εdi (0)−Hivi(0)

)
+Hivi(k)

+
k−1∑
τ=0

(F di )k−1−τ
(
Tiwi(τ)−Kivi(τ)

)
+

k−1∑
τ=ka,i

(F di )k−1−τθi(τ).

(3.61)
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The first three terms consist in the attack-free error, which corresponds to the
computed error ε̃di as observed in Remark 3.3.1. The final summation is associ-
ated to the effect of the attack. Therefore, we can conveniently rewrite (3.61)
as:

εdi (k) = ε̃di (k) +
k−1∑
τ=ka,i

(F di )k−1−τθi(τ). (3.62)

On the other hand, by convolving (3.37) for subsystem Sj , j ∈ Ni, we obtain:

ε̃cj(k) =(F cj )k ε̃cj(0) +

k−1∑
τ=0

(F cj )k−1−τ
(
wj(τ)− Ljvj(τ) +

∑
l∈Nj

Ajlε̃
d
l (τ)

)

+
k−1∑
τ=0

(F cj )k−1−τAji

τ−1∑
t=ka,i

(F di )τ−1−tθi(t),

(3.63)

where again we can distinguish between the attack-free received error ε̃cj,af , ac-
counting for all the terms but the last double summation, and the attack con-
tribution ε̃cj,att, the last double summation itself.

By applying the inverse triangle inequality and the bound (3.58), we find:

r̄j ≥
∥∥Cj(ε̃cj,att + ε̃cj,af )

∥∥+ v̄j ≥
∣∣∣∣ ∥∥Cj ε̃cj,att∥∥− ∥∥Cj ε̃cj,af∥∥ ∣∣∣∣+ v̄j (3.64)

and: ∥∥Cj ε̃cj,att∥∥ ≤ ∥∥Cj ε̃cj,af∥∥+ v̄j + r̄j ≤ 2r̄j , (3.65)

which holds ∀k ∈ Z, k > 0. By negating this condition, we find (3.59).

Remark 3.3.4. Observe that an attack in Si could not be detected by Sj be-
cause either the attacker action lies within the null space of the interconnection
matrix Aji, or because the attack “amplitude” is too low, that is the action is
indistinguishable from the noise effect.

Finally, observe that one may derive component-wise bounds to be used for
the detection strategy, as shown in [1, Subsection IV-C]. This is particularly
useful when the state components are not normalized, i.e. their magnitudes
are on different scales. Indeed, in such a scenario, the norm-based thresholds
derived in this subsection might be quite conservative.
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Chapter 4

Isolation strategies

This chapter addresses the problem of isolation. This issue has been deeply dis-
cussed in the context of fault detection, see [12] and [13]. Indeed, once a fault or
an attack has been detected, it might not be possible for the detection architec-
ture itself to uniquely locate its source. Identifying specifically which subsystem
is faulted or under attack is extremely important for practical purposes, for
instance in order to employ an accommodation strategy such as [23].

At first, one might assume that the detection algorithm illustrated in Chap-
ter 3 implicitly solves the isolation problem, since the single subsystems directly
decide they are under attack. However, this argument is incorrect. Indeed, as
it will be shown, depending on the topology of the network, there might be
multiple subsystems simultaneously claiming to be under attack. The reason
for this lies in the fact that the subsystems whose distributed residue r̃c violates
the associated threshold have no information on which of their neighbours is
under attack, and the only thing they can do is broadcast the alarm signal to all
of them, whether they are the actually attacked subsystem or not. Therefore,
there might be some layouts such that a subsystem receives a raised-up alarm
signal from all of its neighbors, and consequently deduces it is under attack,
even though this is not the case. In these circumstances, further solutions must
be considered to overcome the issue, relying on the topology of the network and
on structural properties of the interconnection matrices.

The organization or the chapter is the following. In Section 4.1, the topolog-
ical configurations resulting in isolation ambiguities are formalized. Section 4.2
is dedicated to the presentation of three isolation strategies. Finally, Section 4.3,
proposes a comparison on the condition required to implement each solution.

4.1 Problem formulation

All the techniques of this chapter are meant to isolate attacks detected by using
the algorithm of Chapter 3. As a consequence, all the following results can
effectively be applied only to those scenarios in which the “energy”of the attack
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is sufficiently large. To this aim, the following requirement is taken for granted.

Assumption 4.1.1. If a malicious agent acts, the attack is always such that
condition (3.59) holds for all the involved subsystems.

This assumption is extremely important. If it does not hold, not only the
proposed strategies are not effective, but they could lead to a wrong resolution
of the ambiguity as well.

Under such hypothesis, by considering the detection algorithm (see the flow
chart in Figure 3.3), one easily deduces that a detector Di decides subsystem Si
is under attack if and only if:

∀j ∈ Ni,∃l ∈ Nj s.t. Sl is under attack. (4.1)

Note that Sl might or might not be Si itself. The problems arise in the latter
case, that is when the detector incorrectly decides its subsystem is under attack
due to ambiguity in the network topology.

Remark 4.1.1. Throughout all this chapter, the analysis will focus on the
framework of a single attacker within the same neighborhood, in line with As-
sumption 3.3.2. Moreover, concerning the topology, Assumption 3.1.2 is sup-
posed to hold.

If at most one attacker is perturbing a subsystem in each same neighborhood,
then the topological configuration resulting in ambiguities can be completely
characterized by means of the following condition.

Theorem 4.1.1 (Ambiguous topologies). Under Assumptions 3.3.2 and 3.1.2,
a subsystem Si incorrectly decides it is under attack if and only if the following
condition holds:

Ni ⊆ Nh, (4.2)

where Sh, h 6= i, is the (only) actually attacked subsystem.

Proof.

• Sufficiency “⇐”.
Let assume condition (4.2) is satisfied. Then, because of Assumption 3.1.2,
we have:

Ni ⊆ Nh ⇒ ∀j ∈ Ni ⊆ Nh, h ∈ Nj . (4.3)

If Sh is the actually attacked subsystem, condition (4.1) is verified and
detector Di decides Si it is under attack, even though it is not.

• Necessity “⇒”.
Let assume Di (incorrectly) decides Si is under attack. Therefore, from
the characterization (4.1), and from Assumption 3.3.2, we have:

∀j ∈ Ni, ∃l = h ∈ Nj s.t. Sl = Sh is under attack. (4.4)

As a consequence, all the subsystems Sj neighbors of Si must be neighbors
of Sh as well, that is (4.2) holds.
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Si Sh

Sj1

Sj2

Sj3

Figure 4.1: A simple example of topology where an isolation algorithm is needed.

Before concluding the analysis of this section, the next remark proposes a
further observation based on the cardinality of the neighborhood, which might
happen to be useful under some circumstances.

Remark 4.1.2. It is worth noticing that, when condition (4.2) holds in a strict
sense, that is Ni ⊂ Nh, the ambiguity can be easily resolved by looking at the
alarm signals al of those subsystems Sl, l ∈ Nh \ Ni. Indeed, if alarm signals al
are off, then one can deduce Si is under attack, since an attack in Sh would have
caused aj = 1,∀j ∈ Ni ⇒ al = 1, l ∈ Ni \ Nh. Obviously, in order for this to be
done in practice, at least one of the subsystems Sl, l ∈ Nh \Ni must be informed
of the current ambiguity.

4.2 Isolation strategies

Generally speaking, the main goal of an isolation strategy is to deduce a quantity
sensitive to one only of the two (or more) possible candidate attacked subsys-
tems, therefore allowing to discriminate whenever ambiguities might occur.

In light of Theorem 4.1.1 and of Remark 4.1.2, the main focus of this section
are those configurations in which there are two subsystems Si and Sh such that
Ni = Nh, see the example depicted in Figure 4.1. Observe that such configu-
rations can be identified by running a distributed algorithm. For instance, in
the procedure illustrated in Algorithm 1 each subsystem receives the degree dj
(i.e. the cardinality of the neighborhood) of each of its neighboring subsystem
Sj , j ∈ Ni. By comparing the degrees, it can find all the couples of neighbors
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(Sj ,Sl), l 6= j, with the same degree, which are potentially ambiguous subsys-
tems. In such a case, Si alerts both Sj and Sl of the presence of the other one
by means of the sets Ij,i and Il,i, respectively. Therefore, each subsystem Si
receives from each neighbor Sj , j ∈ Ni, a list Iij , that is the index set of subsys-
tems ambiguous to Si from the perspective of Sj . From these, Si computes the
intersection, obtaining NA,i. All the subsystems whose index is in NA,i share
exactly the same neighborhood of Si. Indeed, at the end of the procedure the
index set NA,i satisfies:

NA,i =

{
h : h ∈

( ⋂
j∈Ni

Nj
)
, dh = di

}
. (4.5)

As a consequence, all the subsystems Sh, h ∈ NA,i, are so that Ni ⊆ Nh. More-
over, from dh = di, the inclusion is actually an equality, therefore NA,i accounts
for all and only those subsystems Sh such that Ni = Nh.

Algorithm 1 Isolation ambiguities finder

#Propagate degree to neighbors
send di = |Ni| to each Sj , j ∈ Ni
receive dj , j ∈ Ni

#Collect candidate ambiguous subsystems in Ij,i
for j ∈ Ni do
Ij,i ← ∅
for l ∈ Ni, l 6= j do

if dj = dl then
Ij,i ← Ij,i ∪ {l}

end if
end for
send Ij,i to Sj

end for
#Obtain the set of ambiguous neighbors NA,i

receive Ii,j , j ∈ Ni
NA,i ←

⋂
j∈Ni Ii,j

The whole analysis of this section relies on the following assumption.

Assumption 4.2.1. Either subsystem Si or Sh can be under attack, whereas all
the common neighbors Sj , j ∈ Ni = Nh are not attacked.

The reason behind this conjecture lies in the fact that all the isolation ar-
chitecture is worth to be considered only when the ambiguity between Si and
Sh occurs. If other subsystems are under attack, the detection strategy of the
previous chapter is itself sufficient to locate the attack.

In the following, three isolation techniques are presented: a UIO for a prop-
erly chosen merged subsystem (Subsection 4.2.1), a filtering of the Luenberger
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Si Sh

Sj1

Sj2

Sj3

Sj2∪i

Figure 4.2: Scheme of the merged subsystem whose UIO Odj2∪i can be used to
solve the isolation problem.

residue (Subsection 4.2.2), and the filtering of the residue of a different type
of observer, ad hoc designed to exploit the asymmetry in the interconnection
matrices (Subsection 4.2.3).

4.2.1 Merged UIO

A first approach to resolve the ambiguity described in the previous section is
to virtually merge one of the candidate attacked subsystems with one of the
common neighbors, and to design and run a UIO for the merged subsystem.

Let Si and Sh be the two candidate attacked subsystems, and let subsystem
Sj , j ∈ Ni = Nh, be a common neighbor. Let Sj∪i be the merged subsystem,
as illustrated in Figure 4.2. Such a subsystem is described by a state vector

xj∪i
.
=
[
x>j x>i

]> ∈ Rnj+ni , a input vector uj∪i
.
=
[
u>j u>i

]> ∈ Rmj+mi ,
and an output vector yj∪i

.
=
[
y>j y>i

]> ∈ Rpj+pi . Moreover, the attacked
signals are defined analogously to (3.6), precisely:

ũj∪i =uj∪i +

[
0

ηi

]
ỹj∪i =yj∪i −

[
0

γi

]
.

(4.6)

From (3.1), the dynamics of the merged subsystem Sj∪i is obtained:

Sj∪i :

{
x+
j∪i =Aj∪ixj∪i +Bj∪iũj∪i + Ξj∪ixj∪i + wj∪i

yj∪i =Cj∪ixj∪i + vj∪i,
(4.7)
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where wj∪i =
[
w>j w>i

]>
, vj∪i =

[
v>j v>i

]>
, and:

Aj∪i
.
=

[
Aj Aji
Aij Ai

]
, Bj∪i

.
=

[
Bj 0

0 Bi

]
, Cj∪i

.
=

[
Cj 0

0 Ci

]
,

Ξj∪i
.
= row
l∈Nj∪Ni
l 6=j,i

([
Ajl
Ail

])
, x>j∪i

.
= row

l∈Nj∪Ni
l 6=j,i

(x>l ).
(4.8)

Furthermore, let subdivide the interconnection matrix of the merged subsys-
tem as follows: [

Ξ̌j
Ξ̌i

]
.
= Ξj∪i (4.9)

so that, we have:

Im(Ξj) = Im

([
Aji Ξ̌j

])
(4.10a)

Im(Ξi) = Im

([
Aij Ξ̌i

])
. (4.10b)

Observe that Ξi 6=
[
Aij Ξ̌i

]
, since Ξ̌i is padded with zero blocks, precisely

0 ∈ Rni×nl , ∀l ∈ Nj \ Ni, l 6= i.

Then, the effectiveness of this isolation strategy can be understood by ob-
serving that the resulting UIO estimate of the state xj∪i is insensitive to attacks
at Sh. Indeed, the influence of xi on xj is within the internal dynamics of the
merged subsystem Sj∪i. Conversely, the other candidate attacked subsystem Sh
is one of the neighbors of the merged subsystem Sj∪i, hence the coupling of xj
and xh does not influence the computation the UIO estimate x̂dj∪i of the state

of Sj∪i. As a result, if particular conditions are met, the computed residual r̃dj∪i
is sensitive to attacks in Si and insensitive to attacks in Sh, therefore it can be
used to discriminate.

Specifically, let consider a UIO for the merged subsystem in the form:

Odj∪i :

{
z+
j∪i =Fj∪izj∪i + Tj∪iBj∪iuj∪i +Kj∪iỹj∪i

x̂dj∪i =zj∪i +Hj∪iỹj∪i,
(4.11)

where the gains are chosen so that equations (3.25) hold for the merged subsys-
tem (4.7), that is:

0 =(Hj∪iCj∪i − I)Ξj∪i (4.12a)

Tj∪i =I −Hj∪iCj∪i (4.12b)

F dj∪i =Āj∪i −K(1)
j∪iCj∪i, where F dj∪i is a Schur-stable matrix (4.12c)

K
(2)
j∪i =Fj∪iHj∪i, (4.12d)
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where

Āj∪i = Aj∪i −Hj∪iCj∪iAj∪i, (4.13)

and

Kj∪i = K
(1)
j∪i +K

(2)
j∪i. (4.14)

Observe that a suitable threshold must be designed to take the action of
noise into account. Nonetheless, the computation of Proposition 3.3.3 can be
exploited, by properly substituting the merged subsystem’s matrices and noise
bounds, in place of the single subsystem’s ones.

Remark 4.2.1. In order to implement this strategy, the agent Sj needs to receive
the following information:

• offline: the structure of the other subsystem Si and of its interconnections
(Ai, Bi, Ci,Ξi); this is needed to design the merged UIO gains Hj∪i, Tj∪i,
F dj∪i, Kj∪i;

• online: the actuation and the measurement signals, (ui, ỹi); this is needed
to feed the UIO, and to dynamically compute the estimate x̂dj∪i and the

residue r̃dj∪i.

Moreover, if Fj∪i is designed in block-diagonal form (or at least triangular),
one can compute only a portion of the vectors zj∪i and x̂dj∪i in order to reduce
the computational burden, since at least a portion of zj∪i evolves independently
of the other.

On the other hand, designing a UIO for the merged subsystem Sj∪i cannot
always be effectively applied, and some considerations on the structural proper-
ties of the interconnections are needed.

Firstly, in order to implement the UIO for Sj∪i, condition (3.22) must hold
for the merged subsystem. On the other hand, it can be easily proved that if
such a condition holds for each single subsystem, it is also verified for the merged
subsystem, as discussed in Appendix A.

Moreover, under particular conditions on the interconnection matrices, the
attack in Si might be covert for the UIO of the merged subsystem as well, causing
the isolation strategy to fail. The following analysis aims to clarify the reason
behind this important drawback.

For such an observer, along the lines of (3.17), the computed error is defined
as:

ε̃dj∪i
.
= xj∪i −

[
0

x̃i

]
− x̂dj∪i. (4.15)

The next theorem provides sufficient conditions on the algebraic properties of
the interconnections to prevent the merged subsystem’s UIO Odj∪i from detecting
the attack in Si, hence limiting the effectiveness of this proposed strategy.
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Theorem 4.2.1. If the interconnections between subsystems are so that

dim

(
Im(Ξ̌>j ) ∩ Im(Ξ̌>i )

)
= 0 (4.16)

and:
Im(Aji) ⊆ Im(Ξ̌j), (4.17)

then any covert attack at Si is covert for the the UIO Odj∪i of the merged sub-
system Sj∪i.

Proof. Before proceeding with the computation, one might find it useful to re-
mind that the actual subsystem Sj∪i is driven by the attacked control input
ũj∪i, whereas the decentralized observer Odj∪i is fed with the legitimate control
input uj∪i and the attacked measurement signal ỹj∪i.

From (4.6), (3.7), (4.11), and definition (4.15), we have:

ε̃d+
j∪i =x+

j∪i −
[

0

x̃+
i

]
− x̂d+

j∪i

=x+
j∪i −

[
0

x̃+
i

]
− z+

j∪i −Hj∪i

[
Cj∪i

(
x+
j∪i −

[
0

x̃+
i

])
+ v+

j∪i

]
=(I −Hj∪iCj∪i)

(
x+
j∪i −

[
0

x̃+
i

])
− z+

j∪i −Hj∪iv
+
j∪i.

(4.18)

Let observe that, from (3.7), the following equality holds:[
0

x̃+
i

]
=

[
0

Aix̃i +Biηi

]
= Aj∪i

[
0

x̃i

]
+Bj∪i

[
0

ηi

]
−
[
Ajix̃i

0

]
. (4.19)

As a consequence, taken also (4.7) and (4.11) into account, it is obtained:

ε̃d+
j∪i =(I −Hj∪iCj∪i)

{
Aj∪ixj∪i +Bj∪i

(
uj∪i +

[
0

ηi

])
+ Ξj∪ixj∪i

+ wj∪i −Aj∪i
[

0

x̃i

]
−Bj∪i

[
0

ηi

]
+

[
Ajix̃i

0

]}
−
[
F dj∪izj∪i

+ Tj∪iBj∪iuj∪i +Kj∪iCj∪i

(
xj∪i −

[
0

x̃i

])
+Kj∪ivj∪i

]
z −Hj∪iv

+
j∪i.

(4.20)
The previous expression can be rearranged in the form:

ε̃d+
j∪i =[(I −Hj∪iCj∪i)Aj∪i −Kj∪iCj∪i]

(
xj∪i −

[
0

x̃i

])
+ [(I −Hj∪iCj∪i)− Tj∪i]Bj∪iuj∪i + (I −Hj∪iCj∪i)Ξj∪ixj∪i

+ (I −Hj∪iCj∪i)wj∪i − F dj∪izj∪i −Kj∪ivj∪i

−Hj∪iv
+
j∪i + (I −Hj∪iCj∪i)

[
Ajix̃i

0

]
.

(4.21)
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By applying (4.12a), (4.12b), and (4.13), we find:

ε̃d+
j∪i =[Āj∪i −Kj∪iCj∪i]

(
xj∪i −

[
0

x̃i

])
+ Tj∪iwj∪i − F dj∪izj∪i

−Kj∪ivj∪i −Hj∪iv
+
j∪i + Tj∪i

[
Ajix̃i

0

]
=[Āj∪i − (K

(1)
j∪i −K

(2)
j∪i)Cj∪i]

(
xj∪i −

[
0

x̃i

])
+ Tj∪iwj∪i

− F dj∪izj∪i − (K
(1)
j∪i +K

(2)
j∪i)vj∪i −Hj∪iv

+
j∪i + Tj∪i

[
Ajix̃i

0

]
,

(4.22)

where (4.14) was employed. Finally, by recalling (4.12c) and (4.12d), we have:

ε̃d+
j∪i =F dj∪i

(
xj∪i −

[
0

x̃i

])
− F dj∪i

(
zj∪i +Hj∪iỹj∪i

)
+ Tj∪iwj∪i −K(1)

j∪ivj∪i −Hj∪iv
+
j∪i + Tj∪i

[
Ajix̃i

0

]
=F dj∪iε̃

d
j∪i + Tj∪iwj∪i −K(1)

j∪ivj∪i −Hj∪iv
+
j∪i + Tj∪i

[
Ajix̃i

0

]
.

(4.23)

Now, let consider the following block-partition of matrix Hj∪i:

Hj∪i =

[
Hjj Hji

Hij Hii

]
, (4.24)

where the blocks are coherent with the dimension of the state and output of Sj
and Si, respectively. In this light, equation (4.12a) leads to:

0 =(Hj∪iCj∪i − I)Ξj∪i

=

([
Hjj Hji

Hij Hii

] [
Cj 0

0 Ci

]
− I
)

Ξj∪i

=

[
HjjCj − I HjiCi
HijCj HiiCi − I

] [
Ξ̌j
Ξ̌i

] (4.25)

that is:

(HjjCj − I)Ξ̌j +HjiCiΞ̌i = 0 (4.26a)

HijCjΞ̌j + (HiiCi − I)Ξ̌i = 0. (4.26b)

In light of (4.16), the equalities (4.26a) and (4.26b) become:

(HjjCj − I)Ξ̌j = 0 (4.27a)

HjiCiΞ̌i = 0 (4.27b)

HijCjΞ̌j = 0 (4.27c)

(HiiCi − I)Ξ̌i = 0. (4.27d)

35



CHAPTER 4. ISOLATION STRATEGIES

Furthermore, because of (4.17), (4.27a) and (4.27c) give:

Aji ∈ ker

([
HjjCj − I
HijCj

])
⇒
[
Ajix̃i

0

]
∈ ker(Tj∪i), (4.28)

where the last implication can be easily verified by inspection by recalling (4.12b)
and the computation in (4.25). As a consequence, we have:

ε̃d+
j∪i = F dj∪iε̃

d
j∪i + Tj∪iwj∪i −K(1)

j∪ivj∪i −Hj∪iv
+
j∪i. (4.29)

Since the computed error ε̃dj∪i of the merged UIO Odj∪i evolves independently
of x̃i and ηi, it is insensitive to the malicious agent action, therefore the attack
is necessarily covert.

It is worth highlighting that Theorem 4.2.1 provides sufficient conditions
only, that is under hypothesis (4.16) and (4.17) the proposed strategy fails in
resolving the isolation problem, whereas, in practice, one is interested in finding
sufficient conditions so that it is successful. Nonetheless, finding sufficient con-
ditions on the interconnection matrices so that this approach is effective is far
from trivial. In practice, once the UIO Odj∪i has been designed, the necessary
and sufficient condition for it to be insensitive to the attack in Si is (4.28), which
can easily be checked. Moreover, one might find it useful to observe that the
least-squares solution (3.26) is not necessarily the only solution H in the UIO
design. Furthermore, in order to solve the ambiguity by adopting this approach,
one merged subsystem so that (4.28) does not hold is itself sufficient, as far as
it includes either Si or Sh, and one of the common neighbors Sj , j ∈ Ni = Nh.

Remark 4.2.2. Technically, there might be pathological situations in which (4.28)
does not hold, but the attack is designed so that:

Ajix̃i ∈ ker

([
HjjCj − I
HijCj

])
. (4.30)

In such a case, the residue r̃dj∪i does not sense the attack and the strategy incor-
rectly leads to the conclusion that Sh is attacked. Firstly, let observe that this
condition results in the mentioned wrong deduction only if it holds for all the
time span of the attack, which is not very likely in practice. Moreover, a possible
solution is to adopt multiple isolation strategies.

4.2.2 Filtered Luenberger Observer

In this subsection a further isolation strategy is proposed. The fundamental
inconvenience of the detection strategy is that the communicated residue r̃cj ,
resulting from the Luenberger Observer Ocj implemented in the logic unit LUj
of each common neighbor Sj , j ∈ Ni = Nh, is sensitive to attacks in both the
two ambiguous subsystems Si and Sh, see the scheme in Figure 4.1. Nonetheless,
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under some conditions, it might still be possible to design a proper filter so that
the filtered residue is sensitive to one only, breaking the symmetry, thus allowing
for discrimination.

In the following, it is formally stated when, by designing an appropriate gain
gj ∈ Rpj , this filter can be successfully exploited. More precisely, the filtered
residual being considered is:

r̃gj
.
= g>j r̃

c
j . (4.31)

Note that such a residual is only useful for isolation purposes, whereas it does
not substitute the communicated residue r̃cj in the detection architecture.

The details behind this technique are outlined in the following theorem,
where the filtered residual is designed in order to obtain a quantity sensitive to
attacks in Si only. Obviously, a residual sensitive to attacks only in Sh would
itself be effective.

Theorem 4.2.2. Let assume the output matrix of subsystem Sj , j ∈ Ni = Nh
is full column-rank, that is:

rank(Cj) = nj . (4.32)

Moreover, let gj ∈ Rpj be such that:

g>j CjAjh = 0 (4.33a)

g>j CjAji 6= 0. (4.33b)

Then, is it possible to design a residue r̃gj which is sensitive to attacks in Si
only.

Proof. Let consider the distributed observer (3.34). By convolving the computed
error dynamics (3.37), one obtains:

ε̃cj(k) = (F cj )k ε̃cj(0) +

k−1∑
τ=0

(F cj )k−1−τ
[
wj(τ)− Ljvj(τ) +

∑
l∈Nj

Ajlε
d
l (τ)

]
(4.34)

Then, the distributed communicated residue r̃cj of each common neighboring
subsystem Sj , j ∈ Ni = Nh, defined in (3.18), evolves as:

r̃cj(k) =Cj(F
c
j )k ε̃cj(0) + Cj

k−1∑
τ=0

(F cj )k−1−τ
[
wj(τ)

− Ljvj(τ) +
∑
l∈Nj

Ajlε
d
l (τ)

]
+ vj(k),

(4.35)

and, from (4.31), the filtered residue’s time evolution is then:

r̃gj (k) =g>j Cj(F
c
j )k ε̃cj(0) + g>j Cj

k−1∑
τ=0

(F cj )k−1−τ
[
wj(τ)

− Ljvj(τ) +
∑
l∈Nj

Ajlε
d
l (τ)

]
+ g>j vj(k).

(4.36)
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Let Lj be designed so that F cj is a scalar matrix, that is:

F cj = Aj − LjCj = λjI, (4.37)

with λj ∈ R, |λj | < 1. Observe that this is always possible thanks to hypothe-
sis (4.32). Indeed, given any desired F cj , it suffices to choose Lj as:

Lj = (Aj − Fj)C−Lj , (4.38)

being C−Lj a Moore-Penrose left-inverse [22, Section 3.6].
Given (4.37), (4.36) can be rewritten as:

r̃gj (k) =λkj g
>
j Cj ε̃

c
j(0) +

k−1∑
τ=0

λk−1−τ
j

[
g>j Cj

(
wj(τ)

− Ljvj(τ)

)
+
∑
l∈Nj

g>j CjAjlε
d
l (τ)

]
+ g>j vj(k).

(4.39)

Then, as a consequence of (4.33), one easily deduces that the contribution of
εdh in (4.39) is canceled, whereas this is not the case for εdi . Hence, that is r̃gj is
insensitive to the attacks in Si only.

It is worth mentioning that if λj = 0, that is Ocj is a dead-beat observer [24,

Section 7.6], the argument is still effective because we have (F cj )0 = I.

Remark 4.2.3. In line with Remark 4.2.2, pathological situations in which the
attack in Si is designed so that x̃i ∈ ker(g>j CjAji) might exist, despite (4.33). In
such situations, this isolation methodology leads to the wrong deduction that Sh
is under attack. Despite very unlikely in practice, this scenario could be tackled
by adopting multiple isolation architectures.

In practice, due to the presence of noise, a suitable threshold on the norm of
the filtered residue r̃gj must be designed. Nonetheless, observe that if the filter
is designed so that:

‖gj‖ =
∥∥∥g>j ∥∥∥ = 1, (4.40)

then the same threshold of (3.58) can be exploited, as a consequence of the
triangle inequality. Technically, a less conservative threshold might be designed,
but the computation is here omitted as analogous to that of Proposition 4.2.3
in the next section.

Remark 4.2.4. Note that this technique requires no additional burden in the
information exchange, neither online, nor offline, with respect to that required
for the detection strategy in Chapter 3. Indeed, the common neighbor Sj needs
to have knowledge of the following information:

• offline: the structure of the interconnections Aji, Ajh; this is needed to
design the gain gj;
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• online: the decentralized estimate of each of its neighbors x̂dl , l ∈ Nj; this
is needed to dynamically compute the residue r̃gj , together with its own
actuation and measurement signals (uj , ỹj).

Finally, an important issue to be discussed is when a filter gj ∈ Rpj sat-
isfying (4.33) (or the symmetric condition obtained by swapping Si and Sh)
exists. The next proposition provides necessary and sufficient conditions about
the existence of such a vector.

Proposition 4.2.1. Under condition (3.22), a vector gj ∈ Rnj satisfying ei-
ther (4.33) or:

g>j CjAjh 6= 0 (4.41a)

g>j CjAji = 0 (4.41b)

exists if and only if:
Im(Aji) 6= Im(Ajh), (4.42)

where j ∈ Ni = Nh.

Proof. The existence of a vector gj ∈ Rpj satisfying either (4.33) or (4.41) is
equivalent to the following condition:

ker((CjAji)
>) 6= ker((CjAjh)>). (4.43)

By recalling the properties of the adjoint operator [24, Section A.13], the follow-
ing identities hold:

ker((CjAji)
>) = (Im(CjAji))

⊥ (4.44a)

ker((CjAjh)>) = (Im(CjAjh))⊥. (4.44b)

Furthermore, for any finite-dimension linear space V, it holds:

(V⊥)⊥ = V. (4.45)

As a consequence of (4.44) and (4.45), (4.43) is equivalent to:

Im(CjAji) 6= Im(CjAjh). (4.46)

Finally, it suffices to prove that, under condition (3.22), (4.42) and (4.46)
are equivalent.

• Im(Aji) = Im(Ajh)⇒ Im(CjAji) = Im(CjAjh).
From the fact that the image of a linear space through a linear mapping is
unique, one trivially deduces that if the two range of the interconnection
matrices coincide Im(Aij) = Im(Ajh), then their image through the linear
mapping represented by the matrix Cj with respect to some fixed basis
must coincide as well, that is Im(CjAji) = Im(CjAjh).
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• Im(Aji) 6= Im(Ajh)⇒ Im(CjAji) 6= Im(CjAjh).
If Im(Aji) 6= Im(Ajh), then it either holds that Im(Aji) 6⊂ Im(Ajh) or
Im(Ajh) 6⊂ Im(Aji) (or both). Let assume Im(Aji) 6⊂ Im(Ajh). Then,
∃vi ∈ Rni such that ∀vh ∈ Rnh we have Ajivi 6= Ajhvh, that is:[

vi
−vh

]
/∈ ker

([
Aji Ajh

])
. (4.47)

Nonetheless, from Proposition A.0.1 (see Appendix A), we have:

ker

([
Aji Ajh

])
= ker

(
Cj
[
Aji Ajh

])
. (4.48)

Therefore, ∃vi s.t. CjAjivi 6= CjAjhvh,∀vh ∈ Rnh , which trivially implies
Im(CjAji) 6= Im(CjAjh).

4.2.3 Filtered two-step Luenberger Observer

In this subsection the same idea of Subsection 4.2.2 is applied to a different
type of observer, ad hoc designed in the following. Indeed, one of the main
inconveniences behind the ambiguity arising when two subsystems Si and Sh
are so that Ni = Nh is that the two subsystems are not mutually neighbors,
and this prevents each one to be sensitive to attacks in the other. Were this the
case, each one would be sensitive to attacks in the other.

The detection strategy presented in Chapter 3 relies on the fact that a neigh-
bor Sj of the attacked subsystem Si is able to detect inconsistency between the
true value of the state xi, to which xj is physically coupled, and the wrong
estimate broadcast from the logic unit LUi. In absence of a physical coupling,
one cannot directly reproduce this principle to virtually connect the two candi-
date attacked subsystems Si and Sh, so that i ∈ Nh, h ∈ Ni, thus breaking the
symmetry Ni 6= Nh.

Nonetheless, the two subsystems are actually linked via a second-order re-
lation through their common neighbors, therefore a similar principle can be
applied. To this aim, a suitable two-step Luenberger observer is designed. For
sake of simplicity, let define the set of the two-step neighbors of Si:

N̄i
.
=
⋃
j∈Ni

Nj . (4.49)

Moreover, let set Aij
.
= 0 if l ∈ N̄i \ Nj .

The two-step Luenberger observer Osi updates the state estimate x̂si accord-
ing to the following dynamics:

x̂s+i =Aix̂
s
i +Biui +

∑
j∈Ni

Aij(Aj x̂
d−
j +Bju

−
j )

+
∑
l∈N̄i

Milx̂
d−
l + Li(ỹi − Cix̂si ),

(4.50)
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z−1

Ai

Ci

Bi

z−1

ỹi

ui

∑
j∈Ni Aij(Aj x̂

d
j +Bjuj)

∑
l∈N̄iMilx̂

d
l

x̂s+i x̂si

+

ŷsi−

+
+

+

+

+

+

+

Figure 4.3: Scheme of the two-step Luenberger observer Osi .

where, for each subsystem Sl, l ∈ N̄i, the second-order interconnection matrix is
defined as:

Mil
.
=
∑
j∈Ni

AijAjl. (4.51)

The gain Li can be chosen with the same criteria of that of the distributed
observer presented in Subsection 3.3.2 and therefore the same symbol is here
adopted. A scheme of the two-step Luenberger observerOsi is given in Figure 4.3.
Observe that, in general, Ni ∩N̄i 6= ∅. This happens if (and only if) some of the
neighboring subsystems Sj , j ∈ Ni, are connected and can be taken into account
in order to simplify the setup.

The next proposition proves the effectiveness of the two-step Luenberger ob-
server, and characterizes the dynamics of the computed estimation error, which,
along the lines of (3.17), is defined as:

ε̃si
.
= xi − x̃i − x̂si . (4.52)

Proposition 4.2.2. Let assume a malicious agent Ai modeled as in (3.7) is
manipulating the ith subsystem Si as in (3.6). If Assumption 3.2.1 holds, then
the computed error dynamics of observer (4.50) is:

ε̃s+i = F si ε̃
s
i + wi − Livi +

∑
j∈Ni

Ajiw
−
j +

∑
j∈Ni

Aijε
d−
j +

∑
l∈N̄i

Milε
d−
l , (4.53)

where:

F si
.
= Ai − LiCi. (4.54)
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Proof. By rewriting (3.1) at the previous step, under Assumption 4.2.1, we have
that for each neighboring subsystem Sj , j ∈ Ni, the following relation holds:

xj = Ajx
−
j +Bju

−
j +

∑
l∈Nj

Ajlx
−
l + w−j . (4.55)

As a consequence, we can substitute it in (3.1) for Si, obtaining:

x+
i = Aixi +Biũi +

∑
j∈Ni

Aij

(
Ajx

−
j +Bju

−
j +

∑
l∈Nj

Ajlx
−
l + w−j

)
+ wi. (4.56)

Form (4.56), (3.6), (3.7), and (4.50), the dynamics of the computed error can
be derived:

ε̃s+i =x+
i − x̃

+
i − x̂

s+
i

=Aixi +Bi(ui + ηi) +
∑
j∈Ni

Aij

(
Ajx

−
j +Bju

−
j +

∑
l∈Nj

Ajlx
−
l

+ w−j

)
+ wi − (Aix̃i +Biηi)−

[
Aix̂

s
i +Biui +

∑
j∈Ni

Aij(Aj x̂
d−
j

+Bju
−
j ) +

∑
l∈N̄i

Milx̂
d−
l + Li(Cixi + vi − Cix̃i − Cix̂si )

]
.

(4.57)

After a simple computation, (4.57) results in:

ε̃s+i =(Ai − LiCi)ε̃si + wi − Livi +
∑
j∈Ni

Aijw
−
j +

∑
j∈Ni

AijAjx
−
j

−
∑
j∈Ni

AijAj x̂
d−
j +

∑
j∈Ni

Aij
∑
l∈Nj

Ajlx
−
l −

∑
l∈N̄i

Milx̂
d−
l .

(4.58)

From (4.54), (3.15), and (4.51), the thesis easily follows.

In such a way, the computed error ε̃si is sensitive to attacks in both Sj , j ∈ Ni
(neighboring subsystems), and Sl, l ∈ Ni (second-order neighboring subsystems).
On the one hand, Sh is a second-order neighbor of Si; on the other hand, Si is
itself in N̄i due to Assumption 3.1.2. Therefore, in lines with the strategy of
Subsection 4.2.2, this strategy solves the isolation problem by considering the
residual quantity:

r̃si
.
= g>i (ỹi − Cix̂si ), (4.59)

where the filter gi ∈ Rpi is designed so that either:

g>i CiMii = 0 (4.60a)

g>i CiMih 6= 0, (4.60b)
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or:

g>i CiMii 6= 0 (4.61a)

g>i CiMih = 0, (4.61b)

that is the residual r̃si is sensitive to attacks in only one between Si and Sh.

Remark 4.2.5. In order to implement a two-step Luenberger observer Osi , a
significant additional communication effort is required. Indeed, the logic unit
LUi of subsystem Si needs to have knowledge of the following information:

• offline: the couple (Aj , Bj),∀j ∈ Ni, and the structure of the intercon-
nections Ajl,∀j ∈ Ni, ∀l ∈ N̄i; this is needed to compute the matrices Mil,
and to design the gain gi;

• online: the decentralized estimate and the actuation signal of each of its
neighbors (x̂dj , uj), ∀j ∈ Ni), and the decentralized estimate of each of its

second-order neighbors x̂dl , ∀l ∈ N̄i, to produce the partial result to be stored
in a buffer. This is needed to dynamically compute the estimate x̂si , together
with its actuation and measurement signals (ui, ỹi).

Moreover, the next proposition provides a suitable threshold to be used when
monitoring the norm of the residual r̃si , in order to avoid false alarms caused by
the presence of the noise.

Proposition 4.2.3. Let suppose Assumption (4.32) holds, and let Li be designed
so that F si is a scalar matrix as in (4.37). Given (3.5), and a bound on the
distributed true error at time k = 0, x̄i(0), in attack-free conditions, the norm of
the filtered two-step Luenberger residue ‖r̃si ‖ is bounded by the positive function
r̄si , which can be initialized as:{

r̄si (0) =x̄i(0)

r̄si (1) =|λi|x̄i(0) + w̄i + ‖Li‖ v̄i,
(4.62)

and evolves according to:

r̄s+i = |λi|r̄si +Qsi + s−i , (4.63)

where:
Qsi

.
= w̄i + ‖Li‖ v̄i +

∑
j∈Ni

‖Aji‖ w̄j , (4.64)

and:
si(k)

.
=
∑
j∈Ni

∥∥∥g>i CiAij∥∥∥ ε̄dj (k) +
∑
l∈N̄i

∥∥∥g>i CiMil

∥∥∥ ε̄dl (k), (4.65)

being ε̄dj define as in Proposition 3.3.3.
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Proof. If F si is a scalar matrix with eigenvalues λi, by convolving (4.53), one
obtains:

ε̃si (k) =λk−1
i ε̃si (1) +

k−1∑
τ=1

λk−1−τ
i

[
wi(τ)− Livi(τ) +

∑
j∈Ni

Ajiwj(τ − 1)

+
∑
j∈Ni

Aijε
d
j (τ − 1) +

∑
l∈N̄i

Milε
d
l (τ − 1)

]
, ∀k ∈ Z, k > 1,

(4.66)

where:

ε̃si (1) = λiε̃
s
i (0) + wi(0)− Livi(0). (4.67)

Then, ∀k ∈ Z, k > 1, the residual defined in (4.59) is:

r̃si (k) =g>i Ciλ
k−1
i ε̃si (1) +

k−1∑
τ=1

λk−1−τ
i

[
g>i Ci

(
wi(τ)− Livi(τ)

+
∑
j∈Ni

Ajiwj(τ − 1)

)
+
∑
j∈Ni

g>i CiAijε
d
j (τ − 1)

+
∑
l∈N̄i

g>i CiMilε
d
l (τ − 1)

]
.

(4.68)

Therefore, by using the triangle inequality, the relations (3.46b) and (3.46a),
and the bounds (3.5), we have:

‖r̃si (k)‖ ≤|λi|k−1
∥∥∥g>i Ci∥∥∥ ‖ε̃si (1)‖+

k−1∑
τ=1

|λi|k−1−τ
[ ∥∥∥g>i Ci∥∥∥Qsi + si(τ − 1)

]
,

(4.69)
where Qsi and si(k) are defined as in (4.64) and (4.65), respectively. Let r̄si be
the expression in right-hand side of the previous equation. One can easily prove
that:

r̄si (k + 1) =|λi|k
∥∥∥g>i Ci∥∥∥ ‖ε̃si (1)‖+

k∑
τ=1

|λi|k−τ
[ ∥∥∥g>i Ci∥∥∥Qsi + si(τ − 1)

]
=|λi||λi|k−1

∥∥∥g>i Ci∥∥∥ ‖ε̃si (1)‖+Qsi + si(k − 1)

+ λi

k−1∑
τ=1

|λi|k−1−τ
[ ∥∥∥g>i Ci∥∥∥Qsi + si(τ − 1)

]
=|λi|r̄si (k) +Qsi + si(k − 1).

(4.70)

Finally, by inspection initialization (4.62) can be verified to be feasible if the
observer is initialized with the null initial condition x̂si (0) = x̂si (1) = 0, which is
a reasonable choice in absence of further information.
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To conclude this section, the following proposition presents a discussion on
the condition about the existence of such a vector gi satisfying either (4.60)
or (4.61). In light of Remark 4.2.5, the outline will be focused only on those
configurations in which the strategy of Subsection 4.2.2 cannot be applied.

Proposition 4.2.4. In general, the condition preventing the effectiveness of the
filtered Luenberger residual technique, namely:

Im(Aji) = Im(Ajh),∀j ∈ Ni = Nh, (4.71)

does not prevent the filtered two-step Luenberger residual technique from suc-
cessfully isolating the attack.

Proof. A vector gi ∈ Rni satisfying either (4.60) exists if and only if:

ker((CiMii)
>) 6= ker((CiMih)>). (4.72)

After simple manipulations analogous to (4.44) and (4.45), (4.72) is found equiv-
alent to:

Im(CiMii) 6= Im(CiMih). (4.73)

Given the definition (4.51), we observe that:

Im(Mil) ⊆ Im(Ξi), ∀l ∈ N̄i. (4.74)

Therefore, taken (3.22) and Proposition A.0.1 into account, one obtains:

rank

(
Ci
[
Mii Mih

])
= rank

([
Mii Mih

])
. (4.75)

As a consequence, (4.73) is equivalent to:

Im(Mii) 6= Im(Mih), (4.76)

that is, via (4.51):

Im

( ∑
j∈Ni

AijAji

)
6= Im

( ∑
j∈Ni

AijAjh

)
. (4.77)

Finally, we observe that condition (4.71) implies:

Im(AijAji) = Im(AijAjh), ∀j ∈ Ni = Nh. (4.78)

Nonetheless, given any two matrices of the same size, in general it is:

Im(A+B) 6= Im(A) + Im(B), (4.79)

where the symbol + in the right-hand side of the equation is to be understood
as the sum of linear subspaces. Therefore, chances are that (4.77) could hold
despite of (4.71), that is there might be configurations in which this filtered
two-step Luenberger observer allows for a discrimination to solve the ambiguity,
whereas the filtered single Luenberger observer does not. An example to clarify
this fact is given in Subsection 4.3.2.
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Remark 4.2.6. Observe that this analysis proves that there might exist config-
urations in which, even though the two candidate attacked subsystems influence
the same subspaces Im(Aji) = Im(Ajh) of the same agents Ni = Nh, by ex-
ploiting the topology of the network (4.51), it is still possible to discriminate
and isolate potential attacks. In practice, if the considered subsystems have high
dimensions and the interconnections have low rank, the matrices Mil are likely
very sparse, hence (4.77) might easily hold (some of the Mil might even be zero).

Remark 4.2.7. Theoretically, other multi-step Luenberger observers could be
designed in the same fashion, and chances are that they might overcome some
of the configurations in which the ambiguity cannot be solved by implementing
the two-step Luenberger observer. Nonetheless, at each step the required infor-
mation exchange dramatically increases as well, making the strategy unfeasible
in practice.

Similarly, under particular circumstances it may be useful to implement Osj ,
the two-step Luenberger observer for a common neighbor Sj , j ∈ Ni = Nh, and
to filter its residual. Indeed, in such a case ε̃sj depends on the decentralized true
errors ε̃i and ε̃h through the gains AjiAi and AjhAh, respectively. Even tough
Im(Aji) = Im(Ajh), hypothetically it may happen that Im(AjiAi) 6= Im(AjhAh),
for low-rank update matrices Ai and Ah. Nonetheless, this is not very likely.
For example, if none of the eigenvalues of Ai or Ah is zero, this cannot happen.

4.3 Comparison on the requirements of the proposed
isolation strategies

In this section, the conditions required to implement the techniques proposed
in Section 4.2 are compared. Firstly, Subsection 4.3.1 compares the prerequisite
for the existence of an effective UIO for a merged subsystem with those for the
efficacy of the filtered Luenberger residual approach. Secondly, Subsection 4.3.2
provides a numerical example to clarify the considerations in Subsection 4.2.3,
i.e. there are some configurations in which the two-step Luenberger observer can
effectively solve the ambiguity, even though the other two isolation strategies
proposed in this chapter fail.

4.3.1 UIO of the merged subsystem and filtered Luenberger
residual

The intent of this subsection is to prove that the UIO of the merged subsys-
tem and the filtered Luenberger residual can be applied under independently
conditions.

For sake of simplicity, for each common neighbor Sj , j ∈ Ni = Nh, let adopt
the following notation:

Ξj =
[
Aji Ξ̌j

] .
=
[
Aji Ajh

ˇ̌Ξj

]
. (4.80)
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ISOLATION STRATEGIES

Firstly, let consider a scenario such that, for a given common neighboring
subsystem Sj , j ∈ Ni = Nh, Cj is full column-rank, and (4.16) holds. If, fur-
thermore:

Im(Aji) ⊂ Im

([
Ajh

ˇ̌Ξj

])
(4.81a)

Im(Ajh) ⊂ Im

([
Aji

ˇ̌Ξj

])
, (4.81b)

then, the UIO of a merged subsystem is insensitive to both attacks. Nonethe-
less, (4.81a) and (4.81b) do not imply Im(Aji) = Im(Ajh) in general, therefore
the filtered Luenberger technique could still be viable.

Conversely, one might think that if the filtered Luenberger technique cannot
be effectively implemented, neither can the UIO of a merged subsystem. Indeed,
let assume the former cannot be implemented, that is Im(Aji) = Im(Ajh). Re-
calling that Si and Sh are not neighbors (otherwise there would be no ambiguity
at all), we would then have (up to a permutation):

Ξj∪i =

[
Ajh

ˇ̌Ξj
0 Ξ̌i

]
, (4.82)

where the notation of (4.80) was adopted for Sj . As a consequence, (4.12a)
gives:

0 =(Hj∪iCj∪i − I)Ξj∪i

=

([
Hjj Hji

Hij Hii

] [
Cj 0
0 Ci

]
− I
)

Ξj∪i

=

[
HjjCj − I HjiCi
HijCj HiiCi − I

][
Ajh

ˇ̌Ξj
0 Ξ̌i

]

=

[
(HjjCj − I)Ajh ?

HijCjAjh ?

]
.

(4.83)

Therefore, any solution Hj∪i of (4.12a), necessarily satisfies:

Im(Aji) = Im(Ajh) ⊆ ker

([
HjjCj − I
HijCj

])
, (4.84)

that is (4.28) holds, and the merged UIO is not effective. Nonetheless, the
filtered Luenberger residual can be exploited only if the output matrix Cj is
full column-rank, which is a stronger requirement than the rank condition for
the existence of a UIO (3.22). As a result, there might exist configurations in
which the merged UIO is effective, even though the filtering technique cannot
be applied.
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Si Sh

Sj1

Sj3

Figure 4.4: A simple example of topology where the two-step Luenberger ob-
server strategy can effectively solve the isolation problem.

4.3.2 Numerical example of the capability of the two-step Lu-
enberger observer

In this subsection, a simple numerical example is proposed to show that the
two-step Luenberger observer technique can effectively be applied in some of
those configurations in which both the merged UIO and the filtered Luenberger
residue fail.

Let consider the topology depicted in Figure 4.4. Let assume Cj1 and Cj2
are full column-rank matrices. Moreover, assume the interconnections are:

Aj1i =

[
0 0
1 0

]
, Aj1h =

[
0 0
0 1

]
,

Aj2i =

[
1 1
0 0

]
, Aj2h =

[
0 1
0 0

]
,

Aij1 =

[
0 1
0 1

]
, Aij2 =

[
1 1
0 0

]
.

(4.85)

Clearly, the following holds:

Im(Aj1i) = Im(Aj1h)

Im(Aj2i) = Im(Aj2h).
(4.86)

As a consequence, the filtered Luenberger residue strategy is not effective; sim-
ilarly, the merged UIO cannot be implemented, see Subsection 4.3.1.

Nonetheless, from (4.51) we have:

Mii = Aij1Aj1i +Aij2Aj2i =

[
2 1
1 0

]
, (4.87)
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and:

Mih = Aij1Aj1h +Aij2Aj2h =

[
0 2
0 1

]
. (4.88)

Since it is:
Im(Mii) 6= Im(Mih), (4.89)

then the two-step Luenberger Observer can effectively resolve the ambiguity, in
line with Subsection 4.2.3.
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Chapter 5

Simultaneous multiple attacks

This chapter addresses an introductory discussion on the scenarios of more ca-
pable and more resourceful attackers, who simultaneously manipulate multiple
subsystems within the same neighborhood. By relaxing Assumption 3.3.2, the
whole detection architecture is to be reconsidered, as the validity of the argument
cannot be taken for granted.

Generally speaking, when two different subsystems in the same neighbor-
hood are simultaneously attacked, the detection strategy fails only if specific
conditions are met. As a consequence, if two malicious agents try to manipulate
the network independently one other, the detection algorithm of Chapter 3 is
likely to work as well.

The chapter consists of two sections. Section 5.1 explores the possibility
of a coordinate attack in two subsystems sharing a neighbor so that there is a
compensation of the effect on such a neighbor. Conversely, Section 5.2 addresses
a study on the potential of an attacker simultaneously affecting two neighboring
subsystems.

5.1 Coordinate attack in two subsystems sharing a
neighbor

It might be interesting for an attacker to coordinately affect two subsystems
within the same neighborhood in order to compensate the effect of the attacks
one another. Indeed, the detection strategy presented in Chapter 3 relies on
the fact that the neighboring subsystems of the attacked one are sensitive to
the attack itself. Nonetheless, if two subsystems share a neighbor and are si-
multaneously attacked, chances are that their effects on the common neighbor
might cancel out. Were this the case, the detection strategy would fail. Indeed,
if the effect of the attacks is perfectly counterbalanced, then the common neigh-
bor’s communicated residue keeps following the nominal trajectory, therefore
the alarm signal is not raised. As a consequence, both the attacked subsystems
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Si Sh

Sj

E E

Figure 5.1: Detail of the neighborhood topology. Si and Sh are attacked, while
Sj is a common neighbor.

do not claim to be under attack. In the following, the precise details of this
scenario are given.

Let Si and Sh be two attacked subsystems, and let Sj be a common neighbor
(see Figure 5.1). Let suppose the following hypothesis is granted.

Assumption 5.1.1. The attacker is affecting Si and Sh as in (3.6), while all
the others subsystems are safe.

This assumption is considered for sake of simplicity. On the other hand, all
the results of this section can be easily extended to more complex situations in
which such hypothesis is relaxed.

The goal of an attacker willing to avoid the alarm signal aj of Sj from being
raised is to design ηi ∈ Rmi and ηh ∈ Rmh (and, consequently, γi ∈ Rpi and
γh ∈ Rph) in order to prevent the norm of the computed distributed residue∥∥∥r̃cj∥∥∥ from exceeding the associated threshold r̄cj .

In detail, from (3.37), we have:

ε̃c+j = F cj ε̃
c
j + wj − Ljvj +

∑
l∈Nj

Ajlε
d
l . (5.1)

As a consequence, the residue is insensitive to the attacks in Si and Sh if they
are designed so that:

Ajiε
d
i +Ajhε

d
h = 0. (5.2)

Let El ⊆ Rnl be the reachable space of the attacker Al, namely the set of all
possible values where it can move the decentralized true error εdl of subsystem
Sl, in absence of noise and for the zero initial condition. A requirement for
condition (5.2) is:

dim

(
Im
Aji

(Ei) ∩ Im
Ajh

(Eh)

)
> 0, (5.3)
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i.e. the influence of the two subsystems on the common neighbor Sj can (at
least partially) overlap.

In order to complete the analysis, let take a look at the structure of the
attacker reachable set El. From (3.27), by assuming wl = 0, vl = 0, we have:

εd+
l = F dl ε

d
l +Blηl + (Al − F dl )x̃l. (5.4)

Therefore, one would assert that the attacker reachable set El satisfies:

El ⊇ Im

([
Bl (F dl )Bl . . . (F dl )nl−1Bl

])
= R(F dl ,Bl)

, (5.5)

where R(F dl ,Bl)
is the reachable set of the pair (F dl , Bl), meaning that for any

reachable value by using ηl only, there exists a sequence of ηl and x̃l which
drives the decentralized true error to that value (for example, by choosing x̃i
identically zero). Nonetheless, this argument is incorrect, since x̃l is a function
of ηl itself and cannot be chosen independently of it. As a consequence, (5.5) is
not verified, in general.

The exact characterization of El is provided by the next theorem.

Theorem 5.1.1. Let assume a malicious agent Al is affecting subsystem Sl as
in (3.6). In absence of noise and with zero initial condition, the reachable set
within which an attacker can move the decentralized true error εdl is:

El = Im

([
Bl AlBl . . . Anl−1

l Bl
])

= R(Al,Bl), (5.6)

that is it coincides with the reachable space of the couple (Al, Bl).

Proof. Let assume x̃l(0). The attacker state x̃l can be so written as a function
of the attacker control input ηl:

x̃l(k) =
k−1∑
τ=0

Ak−1−τ
l Blηl(τ). (5.7)

On the other hand, by neglecting the noise, and by assuming zero initial
condition, from (5.4) and (5.7), the decentralized true error is obtained:

εdl (k) =
k−1∑
τ=0

(F dl )k−1−τ
[
Blηl(τ) + (Al − F dl )

τ−1∑
t=0

Aτ−1−t
l Blηl(t)

]
k−1∑
τ=0

(F dl )k−1−τBlηl(τ) +

k−1∑
τ=0

τ−1∑
t=0

(F dl )k−1−τ (Al − F dl )Aτ−1−t
l Blηl(t).

(5.8)
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Let observe that double summation can be so rearranged:

k−1∑
τ=0

τ−1∑
t=0

(F dl )k−1−τ (Al − F dl )Aτ−1−t
l Blηl(t)

=

k−2∑
t=0

( k−1∑
τ=t+1

(F dl )k−1−τ (Al − F dl )Aτ−1−t
l

)
Blηl(t)

=

k−2∑
t=0

(Ak−1−t
l − (F dl )k−1−t)Blηl(t),

(5.9)

where Proposition B.0.1 of Appendix B was exploited. Moreover, we can extend
the summation without altering the overall value:

k−2∑
t=0

(Ak−1−t
l − (F dl )k−1−t)Blηl(t) =

k−1∑
t=0

(Ak−1−t
l − (F dl )k−1−t)Blηl(t), (5.10)

as the summand is zero for t = k − 1.
As a consequence, we have:

εdl (k) =

k−1∑
τ=0

(F dl )k−1−τBlηl(τ) +

k−1∑
τ=0

(Ak−1−τ
l − (F dl )k−1−τ )Blηl(τ)

=
k−1∑
τ=0

Ak−1−τ
l Blηl(τ),

(5.11)

and the thesis easily follows from standard considerations from the reachability
analysis, see [24, Section 5.1].

Remark 5.1.1. Equation (5.11) confirms and formally states the intuitive idea
that the influence of the attacker Al on the decentralized true error εdl is the
attacker state x̃l itself. As a consequence, one deduce that an attacker aiming to
perform this coordinate attack strategy by affecting Si and Sh does not need any
knowledge of matrices F di , F

d
h , since the couples (Ai, Bi), (Ah, Bh) are themselves

sufficient to determine the attacker reachable spaces Ei, Eh and the actuation
signals ηi, ηh. Observe this is a crucial consideration for the attacker, since
matrices F di , F

d
h are only known via software and they cannot be identified by

eavesdropping on the actuation and measurement signals. On the other hand,
the attacker needs to have knowledge of the interconnection matrices Aji, Ajh.

The problem of finding an effective detection strategy for this type of attack
remains open. We just observe that the use of a filtered residue as in the isolation
case (see Subsection 4.2.2) would not be successful, since according to (5.2)
the attacker effect on the common neighbors would necessarily lie within the
common range of the interconnection matrices Aji, Ajh, causing the strategy to
fail in lines with Section 4.2.2.
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Si

Sj

E

E

Figure 5.2: Detail of the neighborhood topology. Si and Sj are neighbors, both
under attack.

5.2 Coordinate attack in two neighboring subsystems

In this section a further kind of coordinate attack is examined. Specifically,
an attacker might affect two neighboring subsystem so that neither of them is
capable of recognizing the attack on the other one, therefore making the detec-
tion strategy unsuccessful. In the following, firstly an outline of the conditions
to develop this coordinate attack is presented, secondly some simple detection
strategies are briefly proposed.

Let Si and Sh be two attacked neighboring subsystems, as depicted in Fig-
ure 5.2. In order to simplify the discussion, let make the following assumption.

Assumption 5.2.1. The attacker is affecting Si and Sj as in (3.6), whereas all
the others subsystems are safe.

The next theorem provides sufficient conditions on the design of the attacker
signals so that the attack is covert for both the subsystems. Note that the attack
at Sj is not modeled as in Section 3.2 (whereas the one affecting Si is).

Theorem 5.2.1. Let assume a malicious agent is affecting Si and Sj, neigh-
boring subsystems, as in (3.6). Let the attacker’s manipulation in Si be modeled
as in (3.7). If the attacker designs ηj ∈ Rmj and γj ∈ Rpj satisfying:

Hjγ
+
j =(TjLj −K(1)

j )γj + TjAjiε
d
i (5.12a)

Bjηj =−Ajiεdi − Ljγj , (5.12b)

then the attack cannot be detected by using the architecture presented in Chap-
ter 3.

Proof. In order for the coordinate attack to be undetectable, the attacker signals
ηj and γj must be designed to compensate for the influence of the decentralized
error εdi on the distributed error ε̃cj .
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Observe that, since the attack in Sj is not modeled as in (3.7), (3.37) does
not hold. Nonetheless, from (3.36), we have:

εc+j = F cj ε
c
j + wj − Ljvj +

∑
l∈Nj

Ajlε
d
l +Bjηj + Ljγj . (5.13)

Therefore, the attacker signals must satisfy:

Ajiε
d
i +Bjηj + Ljγj = 0. (5.14)

On the other hand, if ηj and γj are not designed according to (3.7), one
needs to ensure that the attack cannot be sensed by the UIO Odj . Observe that
neither (3.27) holds. Nonetheless, from (3.6), (3.15), (3.19), and (3.1), we have:

εd+
j =x+

j − x̂
d+
j

=x+
j − z

+
j −Hj(Cjx

+
j + v+

j − γ
+
j )

=(I −HjCj)[Ajxj +Bj(uj + ηj) + Ξjxj + wj ]

− [Fjzj + TjBjuj +Kj(Cjxj + vj − γj)]−Hjv
+
j +Hjγ

+
j .

(5.15)

By exploiting (3.23), (3.25a), and (3.25b), one obtains:

εd+
j =[Āj −KjCj ]xj − Fjzj + Tjwj −Kjvj

−Hjv
+
j + TjBjηj +Kjγj +Hjγ

+
j

=[Āj −K(1)
j Cj −K(2)

j Cj ]xj − Fjzj + Tjwj −K(1)
j vj −K(2)

j vj

−Hjv
+
j + TjBjηj +K

(1)
j γj +K

(2)
j γj +Hjγ

+
j ,

(5.16)

where (3.24) was used. Finally, from (3.25c), (3.25d),and (3.15), we have:

εd+
j =Fj(xj − zj −Hj(Cjxj + vj − γj)] + Tjwj −K(1)

j vj

−Hjv
+
j + TjBjηj +K

(1)
j γj +Hjγ

+
j

=Fjε
d
j + Tjwj −K(1)

j vj −Hjv
+
j + TjBjηj +K

(1)
j γj +Hjγ

+
j .

(5.17)

Therefore, it is needed:

TjBjηj +K
(1)
j γj +Hjγ

+
j = 0. (5.18)

The thesis follows by observing that imposing (5.14) and (5.18) is equivalent
to require to (5.12a) and (5.12b). Observe that the attack at Sj is covert for the
decentralized observer Oci as well.

Remark 5.2.1. Observe that the attacker could design εdi within ERi (see (5.6))
in a proper way to take advantage when solving (5.12a) and (5.12b). On the

other hand, it needs to have perfect knowledge of the gains Lj , Hj , Tj, and K
(1)
j ,

which in general are not uniquely identifiable given the system structural matrices
and interconnections (Aj , Bj , Cj , Ajl,∀l ∈ Nj).
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Remark 5.2.2. Whenever Cj is full-column rank, a feasible solution to (3.25a)
is Hj = C−Lj . Nonetheless, this forces Tj to be zero, making (5.12a) and (5.12b)
significantly easier to solve (specifically, γj identically zero is always a solution).
Therefore, whenever possible, the choice Hj = C−Lj should be avoided.

To conclude the dissertation, the existence of a solution (ηj , γj) to (5.12a)
and (5.12b) is now to be discussed. Moreover, the conditions for the existence
of such a solution can be exploited as a detection mechanism, as it will shortly
be explained.

Firstly, let observe that (5.12a) is in the form:

Ex+ = Ax+Bu, (5.19)

i.e. it is a (discrete-time) linear time-invariant descriptor, a well-known class of
dynamical system, whose properties are extensively analyzed in literature [25], [26].
In particular, (5.18) admits a solution for any sufficiently smooth input if and

only if the matrix pencil Hj + λ(TjLj −K(1)
j ) is regular, that is:

rank(Hj + λ(TjLj −K(1)
j )) = nj (5.20)

for all except a finite number of λ ∈ C. As a consequence, one could intentionally

design the UIO gains so that det(Hj + λ(TjLj −K(1)
j )) identically vanishes.

Conversely, given a certain decentralized true error εdi and a particular solu-
tion γ?i of (5.12a), the existence of a signal η?j solving (5.12b) can be trivially
discussed by recalling the Rouché-Capelli theorem. From that, we can assess
that a solution η?j can be found if and only if:

Ajiε
d
i (k) + Ljγ

?
j (k) ∈ Im(Bj),∀k ∈ Z, k ≥ ka,i. (5.21)

Nonetheless, an exhaustive discussion on the necessary and sufficient conditions
on the involved matrices such that (5.21) admits a solution is far from trivial. We
just observe that, if (5.12b) does not admit the trivial solution γ?j identically

zero, that is ∃k̄ ∈ Z, k̄ ≥ ka,i such that εdi (k̄) 6= ker(TjAji), then a sufficient
condition preventing the existence of a solution η?j to (5.12b) is:

dim

(
Im(Bj) ∩ (Im(Aji) + Im(Lj))

)
= 0. (5.22)

Finally, a different approach could be considered. Let assume that the local

unit LUj implements two distributed observers, Oc,(A)
j and Oc,(B)

j , by allocating

different eigenvalues through the gains L
(A)
j and L

(B)
j , respectively. The purpose

of this second observer is that the attacker must now satisfy the constraint (5.14)

for both L
(A)
j and L

(B)
j . Depending on the design, it might happen that the

addition of such a condition results in the impossibility for the attacker to design
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the signals ηj , γj so that all the requirements for the undetectability are met.

In other words, the attack cannot simultaneously be covert for both Odj , O
c,(A)
j ,

and Oc,(B)
j . For example, a sufficient condition for this to happen is that the

gains L
(A)
j and L

(B)
j designed so that:

dim(Im(L
(A)
j ) ∩ Im(L

(B)
j )) = 0. (5.23)

Similarly, a second UIO observer could be designed, in the same fashion.

Remark 5.2.3. Observe that the implementation of an additional observer is
entirely within the logic unit and requires no additional burden in the communi-
cation. On the other hand, a less trivial discussion should investigate whether
different gains can be synthesized so that the constraints on the ranges are sat-
isfied.
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Chapter 6

Data center model

In this chapter a practical context is considered. Firstly, in Section 6.1 a net-
worked system representing a data center is derived. Secondly, Section 6.2 de-
scribes some numerical simulations aimed to clarify how the detection and iso-
lation methodologies presented in Chapters 3, 4, and 5 can be implemented in
practice.

6.1 Model derivation

In this section, a simple model of a data center is presented. Observe that the
aim of the following analysis is to obtain a suitable model to be used for the
simulations, allowing to show the effectiveness of the results on detectability
and isolation in practice, whereas the derivation of a complete and realistic
characterization of a data center is far beyond the scope of this thesis.

Let consider a data center composed of N computational units, each modeled
as a discrete-time dynamical system. Let suppose each subsystem Si is charac-

terized by a two-dimensional state vector xi
.
=
[
xi[1] xi[2]

]>
, where xi[1] ∈ R is a

temperature variable, and xi[2] ∈ R expresses the computational effort of proces-
sor Si. Moreover, each processor is monitored by a local unit LUi, which controls
the amount of power ui ∈ R driven into the computational unit itself, according

to a feedback policy based on the output measurements yi
.
=
[
yi[1] yi[2]

]>
.

Concerning the state variables, xi[1] is defined as the difference between the
temperature of the computational unit Si and the temperature of the room where
the data center is located. The latter is assumed to be constant and monitored
by a Heating, Ventilation, and Air Cooling System, as recommended in [27],
since a long-time exposure of computer equipment to high temperatures greatly
reduces reliability, longevity of components, and is likely to cause unplanned
downtime. Having said that, the dynamics of xi[1] is modeled as an alternative
version of the model in [28], namely:

x+
i[1] = αixi[1] + βixi[2] + ϕiui + wi[1], (6.1)
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where one sees that the temperature evolves according to a first-order dynamics
ruled by the parameter 0 ≤ αi ≤ 1, and it is influenced both by the current
computational effort xi[2], and by the amount of power entering the processor,
through the coefficients βi > 0 and ϕi > 0, respectively. Finally, wi[1] is a
bounded noise, accounting for possible fluctuations in the temperature due to
model uncertainties.

Remark 6.1.1. Despite the fact that the temperature is naturally described by
a continuous-time dynamics, a discrete-time one was chosen in order to adopt
the perspective of a monitoring unit, whose computation are naturally performed
in a discrete-time setting.

On the other hand, the computational load xi[2] is assumed to be mainly due
to the arrival of new queries, and the following model is employed:

x+
i[2] = xi[2] + µiui + wi[2], (6.2)

meaning that the computational load proportionally decreases (µi < 0) with
the power entering the processor, and increases due to the arrival of new queries
which are modeled as a truncated Poisson process, and taken into account within
the noise wi[2]. Moreover, wi[2] also models the quantization noise which is
introduced by assuming xi[2] ∈ R, where it naturally takes values in N. Without
loss of generality, one can refer to the ratio between the current computational
load and the maximum capacity. Hence, it is assumed 0 ≤ xi[2] ≤ 1, and all the
related variables are scaled accordingly.

Regarding the output variables, yi[1] is the result of an indirect measurement
of the first state component xi[1], thus corrupted by the measurement noise vi[1].
Conversely, given its physical interpretation, the computational load variable is
directly known via software yi[2] = xi[2], unaffected by measurement noise.

In the same fashion of xi[2], the control signal expresses the amount of
supplied power with respect to the maximum possible amount, resulting in
0 ≤ ui ≤ 1. The control input is selected to dynamically tune the trade-off
between a large number of enqueued queries, with the risk of rejecting the new
incoming ones as a consequence of saturation (xi[2] = 1), and a too large in-
crease in the temperature, which possibly affects the performance [29]. More
precisely, each local unit LUi designs the control action ui according to a Model
Predictive Control (MPC) policy based on the local measurements of the two
state variables, yi[1] and yi[2], respectively.

Moreover, the computational units are connected one another. Specifically,
the influence among state components can be:

• physical: when two processors are located close one another, each rep-
resents a source of heat for the other. Therefore, their temperatures mu-
tually influence according to some parameter δij , δji < αi, αj , primarily
depending on the distance between the two processors.
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• via software: each computational unit is connected to some other pro-
cessors which it shares a certain number (0 ≤ ρji ≤ 1) of its new incoming
queries with, in order to keep the computational burden balanced, both
for efficiency and for temperature’s convenience. A simple consideration
concerning the principle of conservation of the number of queries gives:

ρii +
∑
j∈Ni

ρji = 1,∀i = 1...N. (6.3)

The set Ni includes the indices of all the subsystems Sj connected to Si, either
physically or via software. Nonetheless, the interconnections are independent
one another, meaning that the redistribution of the queries does not necessarily
happen only with the physical neighbors, nor with all of them. Moreover, all
the links between subsystems are assumed to be reciprocal.

For sake of simplicity, let assume the following approximation holds.

Assumption 6.1.1. The processors are physically arranged in a way so that
each computational unit is physically connected with two others only.

Such an hypothesis takes into account the fact that, if two processors are
not sufficiently close, their mutual influence as source of heat is negligible in
practice.

On the other hand, the virtual links for exchanging the queries can be arbi-
trarily designed, depending on the different purpose. A sort of trade-off arises.
Indeed, a large number of links results in a faster balancing of the computational
load, see Appendix C. On the contrary, one may intentionally decide to give up
some of the virtual links in order to gain in security, specifically in the isolation
capability. This interesting aspect is discussed in detail in Subsection 6.2.2.

Taken the interconnections into account, equations (6.1) and (6.2) can be
rewritten in the compact matrix form of a discrete-time linear time-invariant
dynamical system:

Si :


x+
i =Aixi +Biui +

∑
j∈Ni

Aijxj + wi

yi =Cixi + vi,

(6.4)

where:

Ai
.
=

[
αi βi
0 ρii

]
, Bi

.
=

[
ϕi
µi

]
, Ci

.
= I, Aij

.
=

[
δij 0
0 ρij

]
. (6.5)

Furthermore, the system is subject to the following set of linear constraints:

0 ≤ xi[2] ≤ 1 (6.6a)

0 ≤ ui ≤ 1, (6.6b)
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which are easily taken into account by the Model Predictive Controller. Given
the fact that both the model and the set of constraints are linear, the Explicit
Model Predictive Control [30] was employed to speed up the computation by
pre-computing offline a piece-wise solution. All the numerical values used in the
simulations are given in Appendix C.

In such a network, the attacker targets a subsystem and performs a covert-
cyber attack as depicted in Section 3.2. The goal of such an attack is to increase
the temperature of the processor, by entering more power of that required by
the controller. Moreover, by manipulating the measurement output as in (3.6),
the attack prevents the local unit LUi from detecting its action.

Regarding the detection and isolation architecture, all the techniques out-
lined in Chapters 3, 4, and 5 are considered, and their efficacy will be discussed
in detail in Section 6.2. The only fact worth mentioning is that, since the sec-
ond component of the noise is known to have a positive expected value, the
Luenberger observer should be modified. Specifically, one can substitute equa-
tion (3.34) with the following unbiased estimator:

Oci : x̂c+i = Aix̂
c
i +Biui +

∑
j∈Ni

Aij x̂
d
j + Li(ỹi − Cix̂ci ) +

[
0

E[wi[2]]

]
, (6.7)

where E[wi[2]] ∈ R is the expected value of wi[2]. Let assume wi[2] is a Poisson

distribution of parameter λwi[2] [31], scaled by the factor 1
wi[2]f

, truncated at

w̄i[2], that is:

wi[2] ∼ min

(
w̄i[2],

1

wi[2]f
P(λwi[2])

)
. (6.8)

As a result, the expected value can be so computed:

E[wi[2]] =

bw̄i[2]·wi[2]f c∑
k=0

k

w̄i[2]
pλwi[2] (k) + w̄i[2]

+∞∑
k=bw̄i[2]·wi[2]f c+1

pλwi[2] (k), (6.9)

where pλ(k) is the probability mass function of the Poisson distribution:

pλ(k) =
λke−k

k!
. (6.10)

Observe that the same correction must be adopted in the implementation of the
two-step Luenberger Observer Osi .

Finally, observe that the two output measurements do not share the same
physical dimension. As a consequence, before computing the residual quantities,
both of them are normalized, so that one can conveniently compute the norm
of the residual as a dimensionless quantity. Note that this is also useful since
the two output components (and, consequently, the residual components) are
reasonably quite different in magnitude.
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S49

S50

S51

S52

S32

S70

S53S47

Figure 6.1: Detail of the interconnection graph, specifying the temperature links
(red, curved), and the logical links (blue, straight).

6.2 Simulations

This section is dedicated to a presentation of the numerical simulations. The
aim of the simulation is to explain in practice how the detection and isolation
strategies work.

It is considered a network of N = 100 computational units, organized in
group of 4 each. The groups represent the physical proximity, and each subsys-
tem is assumed to be physically connected to two of the the others subsystems
within the same group. Moreover, the groups are disposed in a square grid com-
posed of 5 columns and 5 rows, and this structure is assumed to be the same
for all the simulations (see Figure 6.1). On the other hand, the virtual links
will be changed in the simulations, to show the effectiveness of the proposed
methodologies.

6.2.1 Detection

This first simulation shows the effectiveness of the detection strategy outlined in
Chapter 3. With reference to the topology depicted in Figure 6.1, at t = 7.5 min,
a malicious agent performs a covert cyber-attack in subsystem S52. As a conse-
quence, the state components leave the nominal trajectory, but both the decen-
tralized and the distributed estimate are insensitive to the attack, as showed in
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(a) First component (temperature). (b) Second component (computational load).

Figure 6.2: State components of S52: true value x52 (green), decentralized esti-
mate x̂d52 (blue), and distributed estimate x̂c52 (red).

Figure 6.2. As a consequence, both the decentralized and the distributed resid-
uals are steadily below the associated threshold, see Figures 6.3(a) and 6.3(b),
respectively. Observe that the decentralized residual r̃d52 is remarkably smaller
in amplitude with respect to the distributed residual r̃c52. This depends on the
fact that, whenever the output matrix Ci is full-column rank (as it is the case
for all the considered subsystems), then a suitable UIO gain Hi is the left inverse
of the output matrix itself, Hi = C−Li . From this, many of the UIO gains are
computed in a way so that the UIO estimate basically boils down to:

x̂di = C−Li ỹi. (6.11)

As a consequence, the decentralized state estimation error εdi depends on the
measurement noise vi only. Furthermore, in this particular scenario, the mea-
surement noise only affects the first component of the output ỹi[1], therefore the

second component of the decentralized residual r̃di[2] is mathematically zero.
On the other hand, as proved in Subsection 3.3.3, the distributed residuals

of its neighbors are sensitive to the attack. Indeed, by time t = 7.9 min, the
norms of the distributed residual of all neighbors S49, S51, and S70 have crossed
the threshold (Figures 6.4(a), 6.4(b), and 6.4(c), respectively). Observe that
the residual r̃c70 is smaller in magnitude with respect to r̃c49 and r̃c51. This can
be easily understood from the fact that subsystems S52 and S70 are linked only
through the second state component, whereas S49 and S51 are coupled to S52

both physically and via software, hence the attack in S52 affects all the state
components of S49 and S51.

Observe that it takes the attack a while to be detected. This is due to the
fact that the attacker input is itself constrained. Indeed, given the physical
interpretation of the actuation signal ui, condition (6.6b) holds for the attack
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(a) Decentralized residual
∥∥r̃d52∥∥. (b) Distributed residual ‖r̃c52‖.

Figure 6.3: Norm of the residual quantities of S52.

(a) ‖r̃c49‖. (b) ‖r̃c51‖. (c) ‖r̃c70‖.

Figure 6.4: Norm of the distributed residuals of the neighbors of S52.

Figure 6.5: Input signals of S52: legitimate u52 (blue) and attacked ũ52 (red).
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S49

S50

S51

S52

S32

S70

S53S47

Figure 6.6: Detail of the interconnection graph, specifying the temperature links
(red, curved), and the logical links (blue, straight).

control input signal ηi in the following form:

− ui ≤ ηi ≤ 1− ui. (6.12)

As a consequence, the attacker control input is itself constrained and its influence
takes some time to grow and to cause the residuals to cross the threshold. The
legitimate and attacked input signals are depicted in Figure 6.5.

Finally, observe that in such a case, the detection strategy correctly works
since the only raised-up alarm signals are a49, a51 and a70, and this condi-
tion uniquely identifies S52, since N52 = {49, 51, 70}. Nonetheless, we have
N49 = N51 = {50, 52}, therefore an isolation strategy is needed to distinguish
among S49 and S51. In Subsection 6.2.2, the theoretical results of Chapter 4 are
employed to resolve such an ambiguity.

6.2.2 Isolation

In this second subsection, the isolation architecture is tested. As highlighted in
Subsection 6.2.1, the configuration of Figure 6.1 results in an ambiguity when-
ever ‖r̃c50‖ and ‖r̃c52‖ are the only residual quantities to cross the associated
thresholds, causing a50 and a52 to be raised up. In this condition, it is not
possible to decide whether S49 or S51 is under attack.
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To overcome the issue, the isolation algorithms developed in Chapter 4 can
be used. Nonetheless, since the subsystems are linked both physically and via
software, the interconnection matrices Aij are full-rank, preventing all the isola-
tion strategies from working (see Subsection 4.2). On the one hand, the physical
link is understood as a consequence of the physical proximity between compu-
tational units, and it is assumed to be fixed. On the other hand, one can easily
give up some of the software links between subsystems in order to reduce the
rank of the interconnection matrices, earning the possibility to successfully im-
plement the isolation architectures. Observe that this comes at the price of
(possibly) reducing the rate of convergence to the balance in the computational
load (see Appendix C). Nonetheless, if the network is still sufficiently connected,
the trade-off is acceptable, especially because this is only needed to break the
symmetry.

For this reason, let assume the network topology is modified as in Figure 6.6.
Observe that the software network is still represented by a connected graph. By
considering the new network topology, one can effectively implement the UIO
of the merged subsystem (Subsection 4.2.1) and the filtered Luenberger residual
(Subsection 4.2.2). Figure 6.7 shows the residual r̃d51∪52 of the UIO of the merged
subsystem S51∪52, and the filtered Luenberger residual r̃g52 of S52, both in the
case of an attack in S49 (Figures 6.7(a) and 6.7(b)), and if S51 is attacked
(Figures 6.7(c) and 6.7(d)). Both the residuals r̃d51∪52 and r̃g52 are insensitive to
attacks in S49, but sensitive to attacks in S51, and can be used to discriminate.
Therefore, by looking at the above Figures 6.7(a) and 6.7(b) one deduces that
S51 is not attacked, therefore S49 must be. Symmetrically, by looking at the
below Figures 6.7(c) and 6.7(d), it is understood that S51 is under attack.

Note that the filtered two-step Luenberger residual approach presented in
Subsection 4.2.3 cannot be adopted given the topology in Figure 6.6, since all
the second-order interconnection matrices involving S49 and S51 would be full-
rank.

To effectively test this technique, let consider the topology in Figure 6.8.
Given the symmetry of the interconnections, each subsystem is necessarily a
second order neighbor of itself. On the contrary, concerning the crossed inter-
connections, S49 and S51 are still second-order neighbors in the temperature
perspective (red graph). Nonetheless, there is no path of length two connecting
the two subsystems via software (blue graph), therefore the second-order inter-
connection matrix from S49 to S51 is not full-rank, and the technique can be
adopted. Figure 6.9 shows the filtered residual r̃s52 of the two-step Luenberger
Observer Os51, designed to be sensitive to attacks in S51 only. As one can observe,
if S49 is attacked (Figure 6.9(a)), r̃s51 continues fluctuating due to the presence of
noise, with no significant trend after t = 7.5 min. Conversely, if S51 is attacked
(Figure 6.9(b)), the residual clearly increases in norm. Still, the norm of the
residual only barely crosses the threshold, and only for a few instants.

The reason for this can be found in light of equation (6.12), that is the at-
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(a) UIO residual of S51∪52, S49 is attacked. (b) Luenberger residuals of S52, S49 is at-
tacked.

(c) UIO residual of S51∪52, S51 is attacked. (d) Luenberger residuals of S52, S51 is at-
tacked.

Figure 6.7: Isolation residual quantities. On the left, UIO residual of the merged
subsystem S51∪52 (blue) and associated threshold (red); on the right, original
Luenberger residual r̃c52 of subsystem S52 (green), filtered Luenberger residual
r̃g52 (blue), and associated threshold (red). All the quantities are depicted both
if S49 is attacked (above), and if S51 is attacked (below).
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S49

S50

S51

S52

S32

S70

S53S47

Figure 6.8: Detail of the interconnection graph, specifying the temperature links
(red, curved), and the logical links (blue, straight).

(a) S49 is attacked. (b) S51 is attacked.

Figure 6.9: Norm of the filtered residual ‖r̃s51‖ of the two-step Luenberger Ob-
server Os51, sensitive to attacks in S51 only.
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tacker action is limited by the constraints on the input. Moreover, this highlights
an important practical limitation of this techinque. The entries of the second-
order interconnection matrices Mil are likely small in absolute value, being the
result of a multiplication of first-order interconnection matrices AijAjl. There-
fore, the contribution Milε

d
l of the decentralized true error εdl on the filtered

two-step Luenberger residual r̃si might be very attenuated. On the contrary, the
contribution of the noises wi and vi is not attenuated and this can result in very
conservative thresholds. The evidence of this fact can be found by observing
that in both Figures 6.9(a) and 6.9(b) the nominal fluctuation of the residual is
far below the threshold.

6.2.3 Coordinated multiple attacks

This last subsection focuses on the coordinated multiple attacks outlined in
Chapter 5. The topology adopted is again the one of Figure 6.1.

Firstly, let assume that a malicious agent is affecting both subsystems S49

and S51 in order to compensate the effect on a common neighbor, as in Sec-
tion 5.1. Observe that, given the symmetries of the topology, the compensation
takes place in both S50 and S52. The state components and the input signals of
the attacked subsystems are illustrated in Figure 6.10.

On the other hand, Figure 6.11 shows the distributed residual of the neigh-
boring subsystems S50 (Figure 6.11(a)) and S52 (Figure 6.11(b)). As one can
see, after t = 7.5 min none of the residual quantity reveals any significant be-
havior with respect to the nominal fluctuation, that is the coordinate attack is
perfectly covert.

Finally, the last simulation is dedicated to the coordinated attack presented
in Section 5.2. Specifically, let assume a malicious agent is performing a covert
cyber-attack in S51, while trying to compensate the effect in S50. As discussed
in Section 5.2, a low-rank input matrix Bi (as it is the case for all the considered
subsystems) is likely enough to prevent this attack strategy from working.

Indeed, as one can see in Figure 6.12, the attempt of compensation by the
attacker is unsuccessful. Indeed, despite significantly reduced than in the case of
no compensation (r̃c52, see Figure 6.12(b)), the norm of the distributed residual
r̃c50 still crosses the associated threshold, as depicted in Figure 6.12(a). As a
consequence, the attack is correctly detected.
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(a) x49[1]. (b) x51[1].

(c) x49[2]. (d) x51[2].

(e) u49. (f) u51.

Figure 6.10: State components and input of the attacked subsystems S49 (left)
and S51 (right). Concerning the state components, it is showed the true value
xi (green), the decentralized estimate x̂di (blue), and the distributed estimate
x̂ci (red). Regarding the input, the legitimate ui (blue) and the attacked ũi are
depicted.
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(a) ‖r̃c50‖. (b) ‖r̃c52‖.

Figure 6.11: Norm of the distributed residuals of subsystems S50 and S52, when
subsystems S49 and S51 are coordinately attacked.

(a) ‖r̃c50‖ (b) ‖r̃c52‖

Figure 6.12: Norm of the distributed residuals of subsystems S50 and S52, when
subsystems S50 and S51 are coordinately attacked.
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Chapter 7

Conclusions and future work

This thesis revisited previous works on the detection of covert cyber-attacks in
interconnected systems. The novel results here developed allow the isolation
of a vast majority of all possible attacks. As a consequence, an interesting
research direction is the advancement of accommodation strategies which can
counterbalance for the deviation introduced by the attacker.

On the other hand, an introductory analysis of the scenario of simultaneous
multiple attacks was provided. An important open issue is the development of a
detection algorithm for the detection of the attacks described in Section 5.1. Ob-
serve that all the attacks considered in this thesis are man-in-the-middle, mean-
ing that the attacker acts on the actuation and measurement signals, whereas
the communication channels between monitoring units are assumed to be safe.
Still, it might be interesting to consider an attacker that develops a man-in-the-
middle attack in a subsystem and, simultaneously, affects the communication
channels of the associated monitoring unit. These scenarios are left as future
research work.

73



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

74



Appendix A

Discussion on the existence of
a UIO for a merged subsystem

Before proving that if the UIO can be designed for each single subsystem, let
state and prove a preliminary result.

Proposition A.0.1. Given any subset of columns ΞA of Ξ =
[

ΞA ΞB
]
, the

condition:

rank(CΞ) = rank(Ξ) (A.1)

implies:

i) rank(CΞA) = rank(ΞA);

ii) ker(CΞA) = ker(ΞA).

Proof.

i). (A.1) is equivalent to:

dim

(
Im(Ξ) ∩ ker(C)

)
= 0. (A.2)

Being Im(ΞA) ⊆ Im(Ξ), in particular we have:

dim

(
Im(ΞA) ∩ ker(C)

)
= 0 (A.3)

which is equivalent to i).

ii). In general, we have:

ker(ΞA) ⊆ ker(CΞA). (A.4)
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MERGED SUBSYSTEM

Let n̄A be the number of columns in ΞA. From the rank-nullity theorem,
we have:

dim(ker(CΞA)) = n̄A − rank(CΞA) (A.5a)

dim(ker(ΞA)) = n̄A − rank(ΞA). (A.5b)

Therefore, taken i) into account, we find:

dim(ker(ΞA)) = dim(ker(CΞA)). (A.6)

ii) trivially follows from (A.4) and (A.6).

The next proposition formally proves the expected result.

Proposition A.0.2. If the rank condition (3.22) holds for each single subsys-
tem, then it also hold for the merged subsystem.

Proof. Let observe that, given (4.9), any vector v ∈ Im(Ξj∪i) can be decomposed

as v =
[
v>j v>i

]>
, with vj ∈ Im(Ξ̌j), vi ∈ Im(Ξ̌i).

Let assume, by contradiction, there exists a vector v ∈ Im(Ξj∪i), v 6= 0, such
that:

Cj∪iv =

[
Cj 0

0 Ci

] [
vj
vi

]
=

[
Cjvj
Civi

]
= 0. (A.7)

If v 6= 0, then either vj 6= 0 or vi 6= 0 (or both of them). Let assume vj 6= 0. Then,
we have vj ∈ Im(Ξ̌j) ⊆ Im(Ξj), 0 = rank(Cjvj) < rank(vj) = 1, and this, in view
of Proposition A.0.1, contradicts the hypothesis rank(CjΞj) = rank(Ξj), that is
the UIO could not be designed for subsystem Sj in the first place. Therefore,
such a vector v must not exist.

As a consequence, we have:

dim

(
Im(Ξj∪i) ∩ ker(Cj∪i)

)
= 0, (A.8)

or, equivalently, rank(Cj∪iΞj∪i) = rank(Ξj∪i), that is condition (3.22) holds for
the merged subsystem Sj∪i.
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Appendix B

Preparatory result on the
attacker reachable space

Proposition B.0.1. ∀t = 0...k−2, given any two squared matrices of the same
dimensions A,F , the following equality holds:

k−1∑
τ=t+1

F k−1−τ (A− F )Aτ−1−t = Ak−1−t − F k−1−t. (B.1)

Proof. The proof easily follows by applying the principle of Mathematical In-
duction.

Base case.
Let consider the case t = k − 2. By inspection, the left-hand side term of
equation (B.1) is:

k−1∑
τ=k−2+1

F k−1−τ (A− F )Aτ−1−(k−2) =

k−1∑
τ=k−1

F k−1−τ (A− F )Aτ−(k−1)

=F k−1−τ (A− F )Aτ−(k−1)

∣∣∣∣
τ=k−1

=F k−1−(k−1)(A− F )A(k−1)−(k−1)

=A− F.

(B.2)

Moreover, the right-hand side is:(
Ak−1−t − F k−1−t

)∣∣∣∣
t=k−2

= A− F. (B.3)
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APPENDIX B. PREPARATORY RESULT ON THE ATTACKER
REACHABLE SPACE

Inductive step.
Let assume (B.1) holds ∀k − 2 ≥ t > t̄. By considering the case t = t̄, we have:

k−1∑
τ=t̄+1

F k−1−τ (A− F )Aτ−1−t̄ =
k−1∑

τ=(t̄+1)+1

F k−1−τ (A− F )Aτ−1−t̄

+

(
F k−1−τ (A− F )Aτ−1−t̄

)∣∣∣∣
τ=t̄+1

=

( k−1∑
τ=(t̄+1)+1

F k−1−τ (A− F )Aτ−1−(t̄+1)

)
A

+ F k−2−t̄(A− F )A0

=

(
Ak−1−(t̄+1) − F k−1−(t̄+1)

)
A

+ F k−2−t̄(A− F )

=

(
Ak−2−t̄ − F k−2−t̄

)
A+ F k−2−t̄(A− F )

=Ak−1−t̄ − F k−1−t̄.
(B.4)
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Appendix C

Numerical values used in the
simulations

In this section all the numerical values of all the coefficients of the model used
in the simulations are provided. Note that all the subsystems are characterized
by the same parameters.

• N = 100.

• Ts = 0.1 min.

• αi: drawing inspiration from [32], by considering that in this example
both the distance and the body masses are on different scales, a guess
of the continuous-time eigenvalue τ = 0.1 min was obtained, leading to

αi = e−
Ts
τ .

• βi: from the graphs and the considerations provided in [33], it was assumed
βi = 1 ◦C (note that xi[1] is in ◦C, and xi[2] is a dimensionless quantity).

• ϕi: from [32], [33], and further considerations on the size of the compo-
nents, it was assumed ϕi = 8.0327 ◦C (note that xi[1] is in ◦C, and ui is a
dimensionless quantity).

• δij : all the (non-zero) temperature links are assumed to be equal, with
coefficients δij = 0.3αi.

• wi[1]: it is simulated as a uniformly distributed noise in [−0.1, 0.1] ◦C.

• vi[1]: it is simulated as a uniformly distributed noise in [−0.01, 0.01] ◦C.

• µi: the parameter basically expresses the ratio between the computational
capacity deriving from a certain amount of power used, and the size of the
buffer. In the simulations, the parameter is set to µi = −0.1285.
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• wi[2]: in line with definition (6.8), it is simulated as a scaled and trun-
cated Poisson variable. Concerning the parameters, the Poisson is ruled
by λwi[2] = 10, the scale factor is wi[2]f = 400, and the saturation bound
is w̄i[2] = 0.02

• regarding the MPC, it was designed by neglecting the neighbors tempera-
ture influence, and by considering an unstable system (that is ρii = 1, since
at the consensus the exchange of queries for each subsystem is perfectly
balanced), subject to the linear constraints (6.6). Moreover, the reference

signal was the vector
[
0 0.6

]>
, and the weights chosen were 10−3 for the

input, and 1 and 50 for the two state components, respectively.

Finally, the choice of the virtual link parameters ρij deserves a separated
discussion. First of all, they depend on the given topology of the virtual network,
meaning that they ρij can be non-zero only if there exists a virtual link between
Si and Sj . Once the links are fixed, one can decide to fix the parameters value
depending on different purposes.

The idea of redistribution of quantities among different agents composing a
network has extensively been extensively discussed in the theory of consensus,
see [34]. Among the notable results of such a theory, it is proved that the
connectivity of the network (specifically, the number of interconnections between
nodes) directly influences the maximum achievable rate of convergence to the
consensus, which in our case is the perfect balancing of the number of queries
among all processors in the network. Moreover, it is deduced that the consensus
can be reached by imposing a time-invariant row-stochastic weights matrix P ,
where P ∈ RN×N is the matrix whose entry in position (i, j) is the coefficient
ρij . Equivalently, one need to impose that the coefficients ρij are so that:

ρii +
∑
j∈Ni

ρij = 1. (C.1)

On the other hand, given the constraint on the conservation of the number of
queries (6.3), the P matrix must also be designed column-stochastic.

In the simulations, for all the different topologies of the network (see Sec-
tion 6.2), the Metropolis rule [35] was employed. Such an algorithm for the
weight assignment is well-known and frequently adopted because it allows for
a distributed design of a symmetric double-stochastic P matrix, resulting in
a balanced achievement of the average consensus. Specifically, given the fact
that every subsystem Si needs to have knowledge of the degree dj of each of its
neighbors Sj , j ∈ Ni, the coefficients are chosen as follows:

ρij =


1

1+max(di,dj)
j ∈ Ni

1−
∑

j∈Ni ρij i = j

0 otherwise.

(C.2)
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It is worth observing that the knowledge of the degree of the neighbors, which
is a second-order information, is also a requirement for the implementation of
the algorithm identifying possible ambiguities in the network, see Algorithm 1
in Section 4.2.
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List of Symbols

αi temperature eigenvalue of the data center model

ε̄ci bound on the norm of the distributed true error εci

ε̄di bound on the norm of the decentralized true error εdi

N̄i index set of second-order neighbors of Si

r̄ci bound on the norm of the distributed residue rci

r̄si bound on the norm of the filtered two-step residue rsi

v̄i bound on the norm of the measurement noise vi

w̄i bound on the norm of the process noise wi

w̄i[2] bound on the absolute value of wi[2] in the data center model

x̄i(0) bound on the initial condition of the state of Si

βi computational load to temperature gain in the data center model

xi state vector of the neighbors of Si
ˇ̌Ξi partition of Ξ̌i

Ξ̌i partition of Ξi

δij temperature dynamical coupling from Sj to Si in the data center model

εci distributed true error of observer Oci

εdi decentralized true error of observer Odi

ηi control input vector of S̃i

Γi state-to-output matrix of the full attacker model

γi output vector of S̃i

x̂ci distributed estimate computed by observer Oci

83



LIST OF SYMBOLS

x̂di decentralized estimate computed by observer Odi

x̂si distributed estimate computed by two-step observer Osi

λwi[2] expected value of the Poisson component in wi[2]

C set of complex numbers

N set of natural numbers

R set of real numbers

Z set of integer numbers

Ai malicious agent locally acting on subsystem Si

Ci local controller of Si

Di Detector of Si

Ii,j index set of subsystems ambiguous to Si from the perspective of Sj

Ni index set of neighbors of Si

NA,i index set of subsystems ambiguous to Si

Oci distributed observer of Si

Odi decentralized observer of Si

Osi distributed two-step observer of Si

Si ith subsystem

µi power to computational load gain in the data center model

νi reference vector of C̃i

Φi state-to-state matrix of the full attacker model Ai

ρij logical dynamical coupling from Sj to Si in the data center model

θi attacker influence on the decentralized true error εdi

ε̃ci distributed computed error of observer Oci

ε̃di decentralized computed error of observer Odi

ε̃si distributed computed error of the two-step observer Osi

C̃i attacker controller

S̃i attacker replica of Si
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LIST OF SYMBOLS

r̃ci distributed computed residue of observer Oci

r̃di decentralized computed residue of observer Odi

r̃gi filtered distributed computed residue of observer Oci

r̃si filtered two-step residue of observer Osi

ũi attacked control input vector of Si

x̃i state vector of S̃i

ỹi corrupted measurement vector of Si

Υi disclosure information of attacker Ai

ϕi power to temperature gain in the data center model

Ξi interconnection matrix of neighbors of Si

ξi state vector of C̃i

ζi state vector of the full attacker model Ai

Ai state-to-state matrix of Si

ai alarm signal of Si

AC̃i state-to-state matrix of the attacker controller C̃i

Aij dynamic interconnection from of Sj to Si

Bi input-to-state matrix of Si

Ci state-to-output matrix of Si

CC̃i state-to-output matrix of the attacker controller C̃i

di degree of the ith node in the network

F ci dynamical matrix of error εci

F di dynamical matrix of error εdi

F si dynamical matrix of error εsi

gi filter for the residues r̃ci or r̃si

Hi output-to-estimate matrix of Odi

k sampling instant

Ki output-to-state matrix of Odi
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K
(1)
i first component of Ki

K
(2)
i second component of Ki

KC̃i feedback from the state of C̃i

kai initial instant of the attack in Si

Li gain of the observer Oci

LUi logic unit monitoring subsystem Si

mi dimension of the control input vector ui

N number of subsystems in the network

ni dimension of the state vector xi

P weights matrix of the logical links in the data center model

pi dimension of the output vector yi

Qci bound on the norm of the noise contribution to the true error εci

Qdi bound on the norm of the noise contribution to the true error εdi

Qsi bound on the norm of the noise contribution to the true error εsi

rci distributed residue of observer Oci

rdi decentralized residue of observer Odi

RC̃i reference-to-state matrix of the attacker controller C̃i

si bound on the norm of the neighbors’ error contribution to εsi

Ti input-to-state matrix of observer Odi

Ts sampling time

ui control input vector of Si

vi measurement noise of Si

wi process noise of Si

wi[2]f scale factor of the Poisson component of wi[2] in the data center model

xi state vector of Si

yi output vector of Si

zi state vector of observer Odi
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