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Abstract

After a catastrophic supernova explosion, the core of a star collapses inwards until the contraction
is halted and a new equilibrium configuration is reached. One of the possible stable remnants is the
neutron star, where gravity is balanced by nuclear forces and the degenerate pressure provided by
neutrons. A peculiar type of neutron star is the pulsar: a highly magnetised, fast rotating compact
object which embodies an ideal astrophysical laboratory to study Physics under extreme conditions.

The pulsar emission is characterised by a repeating signal, which usually has a well defined shape
and occurs with an accuracy that could compete with that of the atomic clocks. Since this pulsing
signal is due to the passage of the beamed emission from the poles of the star across the line of sight of
the observer, the rotational period of the neutron star coincides with the time interval between two
pulses, which correspond the same pole. Therefore, the analysis of the time of arrival of the pulses
is a fundamental tool to constrain the timing behaviour, the rotational evolution and the physical
properties of the pulsar. Indeed, albeit the signal coming from a pulsar is remarkably stable, sometimes
the neutron star undergoes an unpredictable and sudden spin up event, called glitch, which is usually
followed by an exponential decay of the rotational frequency ν towards the pre-glitch values.

In this work we analyzed the time behaviour of the Crab pulsar (PSR B0531+21), which is the
young neutron star at the centre of the Crab Nebula, with rotational frequency ν ∼ 30 Hz. Until 2017,
the Crab pulsar was known to produce glitches with a spin frequency increase of 10−9 ≤ ∆ν/ν ≤ 10−7;
however, around MJD 58064 (8 November 2017), the Crab experienced what is now confirmed to be its
largest glitch ever detected: the magnitude of the step increase was ∆ν/ν = 0.516×10−6 in the radio
band.

We parsed the observations of the Crab pulsar made with the very fast optical photon counter
Iqueye, mounted at the 122 cm Galileo Telescope in Asiago through a dedicated optical fiber interface
(IFI). The observations were carried out on 2017 October 4 and 7, November 17 and 18, December 30.
The timing accuracy and the amount of data available allowed us to pinpoint the major November 2017
glitch in the optical domain and to compare it with the results provided by the Jodrell Bank radio
ephemeris. Furthermore, we searched for evidence of changes in the geometry of the emission regions
and/or in the magnetosphere of the pulsar possibly induced by the glitch.
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Introduction

Pulsars are highly magnetized, fast rotating neutron stars in which gravity is balanced by nuclear
forces and the degeneracy pressure of neutrons. The main characteristic of pulsars is their signal: a
repeating pulse occurring with a well defined period, which is due to the passage of the beamed emission
across the line of sight of the observer, producing a lighthouse effect [1]. The time interval between two
subsequent pulses is therefore interpreted as the rotational period of the pulsar, and by analyzing the
variation of the time of arrival of the pulse we can directly study the spin evolution of the pulsar. This
high-precision research technique is called Pulsar Timing.

Even if pulsars are generally spinning down due to some braking mechanisms such as the emission of
electromagnetic radiation from an accelerated magnetic dipole, the magnetic stresses and the emission
of charged particles [2], sometimes they undergo an unpredictable and abrupt increase in the rotational
frequency, namely a spin up event with a very short duration, which is called glitch.

One of the most studied neutron stars is the Crab pulsar (PSR B0531+21), which is the young
compact object at the centre of the Crab Nebula. It has been monitored regularly in the radio
wavelengths since its discovery in 1968 [3] and it is the brightest (V ∼ 16.6 mag) neutron star in the
optical domain [4]. The Crab pulsar has a rotational frequency ν ∼ 30 Hz and a frequency derivative
ν̇ ∼ -3.77×10−10 Hz/s [3].

A fundamental characteristic of the Crab pulsar is that it is one of the five isolated neutron stars
which show pulsed emission at both optical and radio wavelengths [4]. By parsing the evolution of
the phase in different bands we can constrain the geometry of the emission regions surrounding the
pulsar. Indeed, the pulsation at a certain wavelength is produced through a given emission mechanism
by particles in a given energy range, which can occur only in certain regions of the magnetosphere. [5].

In this work we parsed the observations of the Crab made with the very fast optical photon counter
Iqueye [6], mounted at the 122 cm Galileo Telescope in Asiago (Italy) through a dedicated optical fiber
interface (IFI) [7]. The observations were performed on 2017 October 4 and 7, November 17 and 18,
December 30. We pinpointed the major November 2017 (MJD 58064.555) glitch in the optical domain
and we compared it with the results provided by the Jodrell Bank radio ephemeris [8], [9]. We confirmed
that the glitch is wavelength independent. Furthermore, we computed the time delay between the radio
and the optical phase of the main peak and we found that this time lag dramatically increased after
the glitch. If confirmed, this would be the first strong evidence of the time lag variability and a direct
evidence of a spatial reconfiguration of the magnetosphere induced by the glitch.

This thesis is structured as follows. In Chapter 1 we introduce the fundamental Physics concerning
neutron stars, the timing techniques and the Crab Nebula pulsar. After a brief presentation of the glitch
phenomenon and the instrumentation used (IFI+Iqueye), we show the data reduction and analysis in
Chapter 2. In Chapter 3 we present the main results, which are further discussed in Chapter 4.
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Chapter 1

Scientific Framework

The fate of a star is determined by the struggle between gravity, which tends to compress the mass
inwards, and outwards forces such as gas pressure and radiation pressure given by nuclear reactions.
When massive stars run out the fuel, nuclear reactions are depleted and the inwards action of gravity is
no longer balanced: while the outer layers of the star are violently ejected in a catastrophic outburst
called supernova explosion, the core of the star collapses until it reaches a new equilibrium. The stable
remnant left behind is a neutron star, where gravity is balanced by nuclear forces and the degeneracy
pressure of neutrons. Indeed, as the mass density ρ increases (ρ ∼ 103 g/cm3) under the action of
gravity, the electrons cannot be described with an ideal gas law, and quantum mechanics is needed:
according to the Heisenberg’s uncertainty principle (∆p∆x ≈ ~) and the Pauli’s exclusion principle for
fermions, the electrons must posses large momenta and cannot occupy the same quantum state. These
large quantum mechanical momenta provide the so called degenerate pressure. As ρ further increases,
the degenerate electrons become relativistic and, when their total energy exceeds the mass difference
between the neutron and the proton, E=γmec2 ≥(mn-mp)c2=1.29 MeV, the inverse β decay process
p + e → n + ν + e can convert protons into neutrons, with the emission of a neutrino ν. Albeit in
an ideal gas neutrons would decay into protons and electrons with a mean lifetime of 14.8 minutes,
in a degenerate gas this cannot occur because there are no available quantum states for the ejected
electron to occupy [10]. Finally, when ρ ∼ 1014 g/cm3, the neutrons become degenerate, contributing
the required pressure to sustain the gravity in the case of neutron stars.

A particular type of neutron star is a pulsar: a fast rotating neutron stars with a very large magnetic
field, B ' 1012G. The main feature of pulsars is the signal we detect: a repeating pulse occurring with
a well defined period, which is interpreted as the rotation period of the neutron star. Hitherto the
distribution of the pulse periods among pulsars is bimodal [11]: one group is found in a period range of
0.1-10 seconds, while the other is found at 1-10 milliseconds.

Thanks to their peculiar properties, pulsars represent a powerful and complete laboratory to study
physics under extreme conditions which cannot be reached on Earth. Indeed, studying these objects
can shed light on the behaviour of a plasma embedded in a very high magnetic field, on the nuclear
interaction between neutrons, on the degenerate pressure which sustains gravity, on the theory of
General Relativity [12] and on the dynamics of a neutron superfluid [13]. Thus, they offer a special
environment where Electromagnetism, Theoretical Physics, General Relativity, Nuclear Physics, Fluid
Dynamics and Physics of Matter mix together. A satisfactory understanding of neutron stars requires a
deep knowledge of these disciplines.

The first crucial property for the detection and the investigation of pulsars is their periodic signal:
in this thesis we exploit the pulsar timing, i.e. the analysis of the arrival times of the pulses, of the Crab
pulsar (PSR B0531+21) to probe the structure and evolution of the magnetic field and the geometry of
the emission regions.

In the following sections we give a brief overview of the fundamental physics concerning neutron
stars and of the timing techniques needed to analyze their behaviour. Finally we focus on the Crab
pulsar. We refer to [2] for further information.
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CHAPTER 1. SCIENTIFIC FRAMEWORK

1.1 Neutron Stars

1.1.1 Introduction

After the discovery of the neutron in the 1930’s by Chadwick, the idea of a stellar object made up
of neutrons formed in the aftermath of a supernova explosion was first proposed by Baade and Zwicky
in 1934 [14]. The interest further increased after the detection of discrete X-ray sources by Giacconi in
1962 [15]. Indeed, up to then the solar-like stars were considered the dominant population of X-ray
emitters but too weak to be detected. Thus, the need of a new class of objects became clear soon.
The turning point came with the discovery by Bell and Hewish in 1967 of a repeating signal in the
radio band with a well-defined shape [16]. This turned out to be the first detection of a pulsating radio
source. After this, many other objects were discovered with similar properties and they were called
Pulsars. To identify a source of this type we use the nomenclature PSR followed by its right ascension
and the declination. So, for example, the Crab Nebula Pulsar is PSR B0531+21.

The pulses were first explained as oscillations of compact stars until Gold 1968 [1] suggested what
is now universally accepted as the most realistic physical model: a rotating neutron star with beamed
emission producing a lighthouse effect. Before going into the details of this object, we expose the
historical argument which led to Gold’s explanation [2]. Let’s consider first the observational evidence,
namely (i) the magnitude of the periods, ranging from milliseconds to several seconds, (ii) the stability
of the average pulses, (iii) the overall increase of the rotational periods with times. We consider some
possible models, such as oscillations of compact objects, binary systems, rotating white dwarfs, satellites
orbiting a neutron star.

If we consider a rotating object with mass M and radius R, the maximum angular velocity Ω is
determined by equating the centrifugal and the gravitational forces:

Ω2R ' GM

R2
(1.1)

where G is the gravitational constant. Since M/R3 ∼ ρ, where ρ is the mass density, eq.(1.1) can
be written as Ω ' (Gρ)1/2. Taking P = 2π/Ω as the rotation period, we can exploit this timescale to
exclude the rotating white dwarf model and the oscillations of white dwarfs and neutron stars. Indeed,
the fundamental oscillations modes are of the same order of magnitude of the breakup period [2]:
white dwarfs have ρ ∼107-108 g/cm3, thus their fundamental modes lie in the 2 − 10 s range, while
neutron stars have ρ ∼ 1014 g/cm3 and their fundamental modes are in the 1-10 ms range. A rotating
white dwarf can have a minimum period (corresponding to the maximum angular velocity given by
eq.(1.1)) of the order of seconds, thus it cannot explain the millisecond pulsars. Concerning the binary
systems, we can imagine two situations: (1) two compact objects orbiting around each other or (2)
a satellite orbiting a star. Once again, to get a timescale we equate the gravitational attraction and
the centrifugal force, recovering in the first case eq.(1.1) with M replaced by the total mass, let’s say
2M for two stars with the same mass, and the orbital radius R replaced by 2R. We would get again
Ω ' (Gρ)1/2 and a timescale consistent only with a neutron star binary. However, by emission of
gravitational waves the system would be unstable, spiraling and finally merging. For the second case,
to get a reasonable timescale we should have a low mass object orbiting the star, which would be torn
apart by the huge gradient in the gravitational field of the compact object [2]. Finally, considering the
rotation of a neutron star we get from eq.(1.1) a minimum period of the order of ms, which is consistent
with observations. Thus, pulsars are rotating neutron stars.

The next step is to explain the observed deceleration and the physical mechanism which produces
the observed emission. To answer to the first question, let’s consider a rotating object with moment of
inertia I and angular velocity Ω. Its rotational energy is:

Erot =
1

2
IΩ2 (1.2)

and thus the time derivative is:

Ėrot = IΩΩ̇ +
1

2
İΩ2 ≈ IΩΩ̇ ≈ −4× 1032I45P

−3(s)Ṗ−14 erg s−1 (1.3)
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1.1. NEUTRON STARS

Figure 1.1: Schematic representation of a pulsar as a magnetized neutron star with misaligned rotation and
magnetic axes. The radio pulses are associated with the passage of the radio beams across the line
of sight to the observer. Figure taken from [10].

where we consider the changes in the moment of inertia negligible, and I45 is the moment of inertia in
units of 1045 g cm2. Using this simple expression we can infer the energy loss from the measurements
of the period and the time derivative of the period. The pulsars’ magnetic field can be considered, as a
first order approximation, as a dipole magnetic field, with the dipole moment µ forming an angle α
with the rotation axis (otherwise we would not see pulsations). The energy loss of an accelerated dipole
moment is [2]:

Ėrot =
2µ2Ω4 sin2 α

3c3
≈ 1031B2

12R
6
6P
−4(s) sin2 α erg s−1 (1.4)

where B12 is the magnetic field in units of 1012G and R6 is the stellar radius in units of 106 cm.
Equating the expressions (1.3) and (1.4) we get the magnetic field:

B12 ≈
6
√
I45Ṗ−14P (s)

R3
6 sinα

(1.5)

However, this is not the radiation we measure from the pulses: the corresponding signal has frequency
ν = Ω/2π ∼1-10 Hz and sinusoidal shape, while the pulsations we detect lie in radio frequency ν ∼10
MHz - 10 GHz and show narrow peaks covering a small fraction of the rotation period. Indeed, the
rotational energy we computed is used mainly to accelerate charged particles to high energies, which
interact afterwards with the surrounding nebula (in the case of young pulsars like the Crab Nebula
pulsar), leading to a strong emission in the electromagnetic spectrum. We further discuss the emission
mechanisms in section 1.1.4.

Therefore, we end up with a simple model (Figure 1.1): a magnetized neutron star with the magnetic
and rotation axes misaligned; the pulse we detect is assumed to be due to the passage of the radio
beams from the poles across the line of sight of the observer; the spin-down is caused by some braking
mechanisms such as the emission from an accelerated magnetic dipole.

1.1.2 Structure of Pulsars

In the previous section we introduced a simple description for a magnetized neutron star, in order
to provide a general picture of the physical environment we are dealing with. The next step is the
refinement of the model to get information about the structure: first of all, since pulsars are compact
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CHAPTER 1. SCIENTIFIC FRAMEWORK

Figure 1.2: The pressure-density relation (EoS) (a) and the mass-radius relation (b) for different models as
discussed by [17]: Nucleonic (models AP3 and AP4); Quark (u, d, s quarks); Hybrid (inner core
of u, d, s quarks, outer core of nucleonic matter); Hyperon (inner core of hyperons, outer core of
nucleonic matter). The range of nucleonic EOS based on Chiral Effective Field Theory is indicated
as CEFT. Figure taken from [17].

objects with a strong gravity gradient, we need a general theory for gravitation. In this work we assume
the General Relativity (GR) theory as the correct prescription. Within this framework, the solution for
masses, radii and the overall structure of spherically symmetric objects in hydrostatic equilibrium are
given by the Tolman-Oppenheimer-Volkoff (TOV) equation:

dP (r)

dr
= −ρ(r)

Gm(r)

r2

[1 + P (r)
ρ(r)c2

][1 + 4πr3P (r)
m(r)c2

]

1− 2Gm(r)
rc2

(1.6)

where r is the radial distance, starting from the center of the object and going outwards, P (r) is the
total pressure at radius r, ρ(r) is the density at radius r, G is the gravitational constant, m(r) is the
mass inside the sphere with radius r and c is the speed of light. The solution is usually calculated by
integrating eq.(1.6) numerically, once the Equation of State (EoS) is given. The EoS is the fundamental
relation which links the pressure and the density of matter inside the neutron star. An EoS is called
stiff if the pressure depends strongly on density, so that a small change in density will cause a large
change in pressure; conversely, an EoS is called soft whenever the pressure is not changing significantly
with density (Figure 1.2(a)). Therefore, the choice of the EoS can considerably affect the solution. The
derivation of the EoS is an active and complex research field, which is beyond the purpose of this thesis,
so we just show some EoS used for the neutron star structure in Figure 1.2(a) taken from [17] and we
refer to [18] for a detailed review on this topic. To provide a quantitative grasp of the solutions for
different EoS, we focus on the mass-radius relation (Figure 1.2(b)). We can consider a very soft and
a very stiff EoS: a Nucleonic EoS, which considers only neutrons and protons (models AP3 and AP4
[17]) and a Hyperon EoS, which consists of an inner core of hyperons and a outer core of nucleonic
matter [17]. Indeed, the presence of non nucleonic phases, namely hyperons or condensates, reduces the
pressure and therefore "softens" the EoS [18]. The first crucial characteristic of many of these curves is
that the radius is almost independent from the mass: even if the radius R decreases with increasing
mass M in all the cases, stiffer EoS generally provide a roughly constant radius over most of the mass
range, and the radius rapidly decreases with increasing mass only in the smallest masses limit M < 0.4
M�. By contrast, softer EoS provide a smoother decrease of the radius with increasing mass and they
usually lead to smaller maximum masses. Another important characteristic is that the mass-radius
relations predict a maximum mass beyond which there are no stable solutions [18].

Concerning the internal structure of the neutron star, the accepted model consists, from the surface
inwards, of [2]:

• Solid outer crust (from ρ ≈ 10 g/cm3 to ρdrip ≈ 4×1011 g/cm3): up to ρ ≈ 8×106 g/cm3 it’s a

6



1.1. NEUTRON STARS

Figure 1.3: Schematic view of the interior structure of a 1.4 M� neutron star. Figure taken from [2].

coulomb lattice of Fe nuclei surrounded by a sea of electrons. For 8×106 ≤ ρ ≤ 4×1011 g/cm3

the crust is still a Coulomb lattice of nuclei in an electron sea, but the nuclei are progressively
neutron-richer as density increases.

• Solid inner crust (from ρdrip ≈ 4×1011 g/cm3 to ρnm ≈ 2.8×1014 g/cm3): it is a lattice of nuclei
surrounded by neutrons and the whole assembly is immersed in an electron sea. In this range
there could exist non-spherical nuclei, i.e. rods and plates. Typical thickness of the outer crust
is 0.3 km, while the inner is 0.7 km, for a total of 10% of the neutron star radius. The mass
contained in the crust is 0.012 M�, i.e. ∼1% of the total mass.

• Liquid outer core (from ρnm to 2ρnm): uniform nuclear matter made of neutrons with a small
amount of protons and electrons (due to β-stability).

• Liquid inner core (from 2ρnm to ρc ≈ 4-7ρnm): this range is still highly debated. We do not know
exactly what is happening in the inner core, but there are some suggestions involving hyperions,
which are very likely to appear for ρ ≥ 2-3ρnm, or a meson condensate (π−, π0, K−). Indeed, π−

may occur at ρ ≥ 1.5ρnm, π0 may occur at ρ ∼ 1.5-2ρnm and K− may occur at ∼ 5ρnm.

Furthermore, quark matter can appear for ρ ≥ 2-6ρnm. The appearance of exotic forms of matter soften
the EoS. But, as for example for the meson condensate, they may operate in a so small density range
that they do not affect the overall properties. A schematic view of the interior of a neutron star is
shown in Figure 1.3, taken from [2].

1.1.3 Magnetosphere

A complete model for pulsars needs a satisfactory description of the environment surrounding the
neutron star, i.e. the magnetic topology, of the dynamics which rules the particles acceleration and
of the radiative mechanisms. Calling magnetosphere the region where the physics is dominated by
the overwhelming magnetic field of the star, the electrodynamics occurring in the magnetosphere is a
complex task to undertake, thus simpler models were developed hitherto. The detailed calculations are
beyond the aim of this thesis, then we just provide a summary here. We refer to [10], [2] and [19] for
detailed explanations.

The first model was proposed by Pacini in 1967 [20]. Let’s consider a vacuum magnetosphere,
depleted of any plasma or particle. First of all, we shall consider the neutron star as a superfluid with
an electric conductivity so high that the magnetic field is frozen into the star, and can last for a long
time [21]. If the magnetic dipole moment po is aligned with the rotation axis, the electric field in the
corotating frame vanishes [21], i.e. E′=0. We emphasize that the transformation from an inertial to a
rotating frame must be done in General Relativity, and does not reduce to the Lorentz transformations.

7



CHAPTER 1. SCIENTIFIC FRAMEWORK

Figure 1.4: Schematic view of magnetosphere proposed by Goldreich and Julian. The neutron star is at the
lower left. The toroidal component of the open field lines is perpendicular to the picture. Flowing
charges are represented by a plus or minus sign. Figure taken from [10].

Thus, from the General Relativity transformations of the electric field and the Maxwell equation we
obtain:

E′ = E +
(Ω× r)

c
×B = 0 (1.7)

where r is the position vector, Ω is the angular velocity of the neutron star, E is the electric field in
the inertial frame and c is the speed of light. From eq.(1.7) we get that the magnetic and the electric
field are perpendicular, thus E · B=0. From Gauss’ law ∇ · E = ρe/εo, with ρe the internal charge
density and εo the dielectric constant, a charge distribution within the star is found, and it must match
the external vacuum solution given by the Laplace’s equation ∇2E = 0. The external electrostatic
potential will be quadrupolar:

φout =
−BoΩ

3c

(
R

r

)5

r2P2(cos θ) =
−BoΩ

6c

R5

r3
(3 cos2 θ − 1) (1.8)

where Bo is the magnetic field at the pole, R the radius of the sphere, P2 the Legendre polynomial of
the second order. Using eq.(1.8) and Gauss’ law, a charge density is found at the surface of the neutron
star as well. In 1969 Goldreich and Julian [22] realized that the vacuum approximation would not be
stable in this case, because differentiating eq.(1.8) in the radial direction an induced electric field is
obtained at the surface, E‖ ≈ 1013 V/m. This electric field overcomes the gravitational bond and the
Coulomb lattice interaction [19], extracting charges from the stellar surface. Indeed, taking the ratio
between the Coulomb force and the gravitation attraction for a proton one gets [19]:

fem
fgrav

=
eE‖R

2

GMmp
≈ 109 (1.9)

and a value 2000 larger for electrons. Thus a fully conducting plasma is injected in the magnetosphere
surrounding the neutron star, and charged particles can flow along the magnetic field lines. Even if it
turns out to be unstable, the vacuum model can be appropriate for low-density plasmas, i.e. n < 19
particles/m3, as that inferred for the Crab Pulsar [19].

If the plasma is bound to the field lines, then it will corotate with the star at the angular velocity Ω,
provided that the magnetic field has no toroidal component. At a certain distance the velocity of the
plasma would exceed the speed of light, which is forbidden from Special Relativity: therefore, there is
an upper limit to the distance from the neutron star for which the plasma can corotate with the pulsar,
Rl = c/Ω ≈ 109 cm. This bound is called the light cylinder. This fact is valid also for the magnetic
field lines: those crossing the light cylinder must be open and acquire a toroidal component. The closed

8



1.1. NEUTRON STARS

lines which do not cross the cylinder form the magnetosphere. Through the open field lines, charges can
flow outwards, becoming highly relativistic and reaching regions very far from the star (see Figure 1.4).
The open lines will be bent backward with respect to the stellar rotation, inducing magnetic stresses on
the neutron star which oppose to the rotation. An estimate of the order of magnitude for this effect is
given by BpBφ/4π where Bp and Bφ are the poloidal and the toroidal components of the magnetic field
respectively. By integrating the stresses over the light-cylinder surface a magnetic torque is obtained [2]:

N = −Kµ
2Ω3

6c3
(1.10)

where K ∼ 1 is a constant depending on the detailed structure of the magnetic field, µ is the
magnetic dipole moment. The torque will extract energy with a rate

Ėrot = NΩ = −Kµ2Ω4

6c3
(1.11)

This expression turns out to be of the same order of magnitude of eq.(1.4) with sinα ∼1, which was
found for the electromagnetic emission from a magnetic dipole whose rotation and magnetic axes are
not aligned, i.e. the oblique rotator. Thus, both configurations (aligned and oblique rotators) lead to
the same kind of braking torques. Therefore, for a general oblique rotator we expect both of them to
act on the spin-down evolution of the neutron star.

We conclude this section providing a recap on the basic features of the magnetosphere, as summarized
in [19]:

• a light cylinder, where the rigid body velocity of a corotating particle or field line reaches the
speed of light.

• a plasma which is corotating with the neutron star up to the light cylinder Rl, screening the
electric field such as E · B = 0. Thus, no acceleration along field lines is permitted. However,
deviations from this condition lead to electromagnetic activity.

• a magnetic topology with both closed and open lines: the former are well within the light cylinder
and have no toroidal component. The latter cross it and are bent "backwards" with respect to
the rotation of the neutron star. Particles on these field lines can escape freely to infinity.

• polar caps, i.e. regions on the stellar surface located around the magnetic poles, where open field
lines are anchored. The radio emission is supposed to be generated here.

• a light surface, where the intensity of the electric field equals that of the magnetic field. Here
particles suffer an acceleration. The light surface and the light cylinder do not coincide, and the
former can be at infinity for sufficiently strong longitudinal currents. The theory of MagnetoHy-
droDynamics cannot be applied here.

• slot gaps: small volumes along the last closed field line, empty of charges. Pair creation is allowed,
and emergence of high energy radiation and acceleration of particles are supposed to take place.

• outer gaps: almost empty volumes in the magnetosphere, between the null surface, i.e. where
ρ=0, and the last closed field line. Electron-positron pair creation and synchrotron emission are
generated also here.

1.1.4 Emission Mechanisms

Albeit the magnetic dipole emission (eq.(1.4)) and the magnetic braking (eq.(1.11)) can explain the
pulsar spin-down, the observed pulsing emission must be generated through some specific radiating
mechanisms. The first step we face is the characterisation of the emission: is it coherent or non-coherent?
We define an emission as coherent whenever there is a defined phase relation between the emitting
components of the source. First, let us consider the surface brightness of a isotropic source I(ν) at a
given frequency ν, so that the energy emitted per second per unit surface area per unit solid angle:
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I(ν) =
cε(ν)

2π
(1.12)

where ε(ν) is the energy density and c is the light speed. Let us consider the radio emission: to estimate
ε(ν) we assume that the source is in local thermodynamic equilibrium and approximate ε(ν) taking the
Rayleigh-Jeans limit (hν � kT ):

ε(ν) =
8πkTν2

c3
(1.13)

where k is the Boltzmann constant and T is the brightness temperature, i.e. the temperature a
blackbody would have if its surface brightness were the observed one. Inserting eq.(1.13) into eq.(1.12)
and solving for T :

T (ν) =
I(ν)c2

4kν2
(1.14)

For the radio emission of pulsars, the brightness temperature would be T ∼ 1025 -1031 K, which is
too high to be explained by a non-coherent emission process.

The next step is to identify which types of physical mechanisms could lead to a coherent emission.
Concerning the radio emission, according to [23] there are five possible mechanisms occurring: (i) the
maser curvature emission, (ii) the relativistic plasma emission, (iii) linear acceleration emission, (iv)
anomalous Doppler instability and (v) curvature-drift instability. We restrict ourselves to the discussion
of the first two mechanisms, referring to [23] and [2] for a detailed analysis.

Maser emission occurs when waves are amplified due to negative absorption in a medium which has
a so-called inverted population, so that the particle density at higher energy levels is higher than that
at lower energy levels.

Among the relativistic plasma emission processes, the best known involves a beam-plasma instability.
It involves three main steps: first, a beam of particles passing through a plasma generates an instability;
second, this instability results into a turbulent motion inside the plasma; finally, the turbulent energy is
converted in radiation through an apt process [2].

Concerning the high-energy emission, there is no need to assume coherent emission. Indeed, two
main mechanisms are usually considered [23]: (i) synchrotron emission and (ii) curvature emission. First
of all, we shall point out some basics features on the radiation emitted by magnetospheric electrons
(and positrons), which are responsible for both processes. In an uniform magnetic field B, electrons
and positrons move in a spiral orbit which can be decomposed into the sum of a motion parallel to
the field line (guiding centre motion) and a circular motion with a cyclotron frequency ω = eB/meγc,
where e is the charge, B the magnetic field, me the mass and γ =

√
1 + (p/mec)2 is the Lorentz factor.

The pitch angle α between the direction of the velocity vector v and the orientation of the field line is
constant. Since the particle is gyrating, it is accelerated towards the centre of its orbit and therefore it
experiences a radiation loss −

(
dE
dt

)
provided by the formula [10]:

−
(dE
dt

)
=

e2γ4

6πε0c3
[|a⊥|2 + γ2|a‖|2] (1.15)

where ε0 is the vacuum permittivity, while a⊥ and a‖ are the perpendicular and parallel components of
the acceleration with respect to the field line orientation respectively. Since the acceleration is always
perpendicular to the velocity vector of the particle, a⊥ = evB sinα/γme and a‖ = 0. Therefore, the
total radiation loss rate of the charged particle is [10]:

−
(dE
dt

)
=

e2γ4

6πε0c3
|a⊥|2 (1.16)

=
e4B2

6πε0cm2
e

v2

c2
γ2 sin2 α (1.17)
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Figure 1.5: Geometry of the synchrotron emission as seen in the electron’s reference frame (a) and in the inertial
reference frame (b). Figure taken from [10].

We can rewrite this expression using c2 = (µ0ε0)
−1, where µ0 is the vacuum permeability, and

introducing the energy density of the magnetic field Umag = B2/2µ0 [10]:

−
(dE
dt

)
= 2σT cUmag

v2

c2
γ2 sin2 α (1.18)

where σT is the Thomson cross section given by:

σT =
e4

6πε20c
4m2

e

(1.19)

This result is valid for an electron (or positron) with pitch angle α. However, for a population of
high energy electrons we shall consider a distribution of pitch angles, which is likely to be randomized
either by irregularities in the magnetic field distribution or by streaming instabilities [10]. Hence this
distribution is expected to be isotropic. By averaging over this distribution, an expression for the
average energy loss is obtained [10]:

−
(dE
dt

)
=

4

3
σT cUmag

v2

c2
γ2 (1.20)

A peculiar characteristic of the synchrotron radiation is the relativistic beaming in the direction of
motion of the electron. Let us consider first an electron which is gyrating around the magnetic field line
at a pitch angle of 90o. In the reference frame of the electron, the angular distribution of the intensity
of radiation with respect to the acceleration vector is Iν ∝ sin2θ

′ ∝ cos2φ′ , where φ′ = π
2 − θ

′ (Figure
1.5(a)) [10]. Most of the energy is found to be emitted in the range π

4 ≤ φ
′ ≤ π

4 and, by considering the
relativistic formula for the aberration of light between two reference frames, we get that in an inertial
reference frame most of the energy observed is emitted in the range − 1

γ ≤ φ ≤
1
γ [10]. Therefore the

emission appears elongated and beamed in the direction of motion of the electron (see Figure 1.5(b)).
Finally, let’s consider the curvature radiation, which occurs even when the electron has no transverse

momentum, so that p⊥=0. In this case, the motion of the electrons can be considered as an instantaneous
circular motion with radius R given by the curvature of the field line. Thus the characteristic of the
emitted radiation are quite similar to those of the synchrotron radiation.
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1.1.5 Spin Evolution

As a matter of fact, all the braking mechanisms we have seen hitherto must give birth to dif-
ferent torques, which will slow down the pulsar relentlessly. We discuss three mechanisms: (i) the
electromagnetic torque, (ii) the magnetic stress and (iii) the pulsar wind.

We have already mentioned the electromagnetic radiation emitted by a rotating dipole in section
1.1.1, which we call now electromagnetic spin-down. The rate of energy emitted is Ė = NemΩ, where Ω
is the usual angular velocity of the neutron star and N is the torque which will be, using eq.(1.4) [2]:

Nem =
2

3

µ2Ω3

c3
(1.21)

with µ being the magnetic moment. Since this torque is of electromagnetic nature, it will occur even in
vacuum. It spins the neutron star down from an initial period Pi to a period P�Pi within a timescale
[2]:

tem ≈ 3× 104
( P

50ms

)2
I45µ

−2
30 yr (1.22)

where I45 is the moment of inertia in units of 1045 g cm2, µ30 is the magnetic moment in units of 1030

G cm3.
As we discussed in section 1.1.3, in the astrophysical context we are facing the pulsar is surrounded

by plasma, and the effects of this plasma make the spin-down evolution more complex. Besides the
electromagnetic torque, the magnetic stress due to the bending of the open field lines will act on the
pulsar, leading to a braking mechanism of the same kind of the electromagnetic torque (see section
1.1.3) with a similar timescale.

Finally, we mention the pulsar wind. Following [24], charged particles are accelerated in the collapse
of charge-separated gaps either near the pulsar polar caps or in outer regions that extend to the light
cylinder. The pulsar wind was first suggested by [22], who modelled this emission mechanism for an
aligned rotator. We briefly summarize the main concepts, since their calculations still provide the basis
for the modern approach to the pulsar wind [24].

The magnetosphere can be divided into three zones: the near zone (within the light cylinder), the
wind zone (which encloses the near zone) and the boundary zone. In the first two zones the magnetic
field lines are electric equipotentials, thus the charged particles slide along these field lines [22], which
can be at higher, equal or lower electrostatic potential than the interstellar gas which surrounds the
pulsar. The critical line (see Figure 1.4) is the magnetic field line where the electric potential equals
that of the interstellar gas. Protons and electrons escape along the field lines which are at higher and at
lower electrostatic potential than the interstellar gas respectively [22]. Assuming that the magnetic and
the rotation axes are parallel, electrons flow along the field lines closest to the poles, and protons escape
along the lower-latitude open lines [22]. These streams of particles remain separated until they reach
the boundary zone, where they receive most of their acceleration. Indeed, in the boundary zone the
magnetic field lines are not equipotential, and charges can move across their poloidal component. The
net flow of charged particles steals energy and momentum from the neutron star, which consequently
slows down.

1.2 Pulsar Timing

1.2.1 Introduction

As we saw in section 1.1.1, the peculiar feature of pulsars is their signal, which is a repeating pulse
occurring with a well-defined period, such as a lighthouse, identified with the rotational period of the
neutron star. The shape of the signal varies significantly from pulse to pulse, and in some cases it can
even disappear [25] or, on the other hand, abruptly increase. The former event is called nulling: a
sudden reduction of the pulse intensity to a ≤ 1% value, and this state lasts for a time interval which
varies from some periods to 70% of the time, depending on the pulsar, before returning suddenly to the
usual intensity. This phenomenon is thought to be linked with the pulsar aging: as the neutron star
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(a)

(b)

Figure 1.6: Figure (a): Binned light curve of the Crab Pulsar on 2018 January 1. Counts/second vs time of
arrival of each photon (seconds) are shown. The binning time is set to 0.0005 s. Figure (b): folded
profile of the Crab pulsar. Normalized counts/second are shown as function of the phase. The
integration was done over 5 minutes of observation, taking a rotational period of 0.033744582 s.

ages, the fractional time spent in the nulling state increases, until it approaches 100% and the pulsar
crosses the “death line” (see Figure 1.7). On the other hand, a sudden increase is connected to active
bursts [26] or Giant pulses [2]: individual pulses which can be hundreds of times brighter than usual.

Even if the single pulse changes, if we integrate over hundreds rotations we will obtain a signal
which is remarkably stable (see Figure 1.6 (b)). As a matter of fact, the integrated profile of many
pulsars can be used to define a timescale whose stability could compete with that of the atomic clocks
[27]. The integrated pulse, or folded profile, is usually composed by a main component, which is a
smooth peak that occupies only 2-10% of the total period extent, and, in some cases, by an interpulse,
which is a weaker peak (Figure 1.6 (b)). However, multi-structures profiles are widely observed.

The reduced width of the main peak could be a clear hint to think the pulsar emission is a process
which occurs over a small rotation angle of the pulsar: indeed, the energy flux is above the quiescent
flux level only for a small fraction of the rotation period. Some features like the separation between the
components can vary when changing the observed wavelength. Thus, the stability of the pulsar shape
is defined for each frequency independently. Furthermore, some pulsars show a swinging between two
(or more) shapes: at unpredictable (but with a defined order of magnitude) time intervals, the pulse
shape changes from a normal, i.e. the one in which the pulsar spends most of its time, to an abnormal
mode, and viceversa [28], [29].

The morphology of the pulse is very important because from it we can infer some interesting features
about the geometry of the pulsar: for example, if we have a pulse and an interpulse roughly at 180o,
we can imagine that they are produced by the two poles of the magnetized neutron star, having the
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rotation axis almost perpendicular to the magnetic dipole axis and to our line of sight; on the other
hand, a broad pulse which covers the entire period can be interpreted as the emission from one pole,
which is slightly misaligned with the rotation axis, both lying almost on our line of sight.

1.2.2 Timing Techniques

The study of the signal received by a neutron star is the first asset that can be exploited to infer
the pulsar properties: this research thread is called Pulsar Timing. Let us introduce the basic concept
of this technique. For a uniform rotator, each pulse arrives at a fixed time, and the separation between
two pulses will not change. We know from section 1.1.1 that pulsars are not uniform rotators since
they are spinning down. Thus, the rotational period is expected to increase, and the time separation
between two pulses to grow. We can therefore quantify the deceleration looking at the phase: comparing
the time of arrival of each pulse with that of a uniform rotator, we can state if the neutron star is
accelerating or decelerating. Indeed, if the phase is increasing, every pulse we receive will arrive later
than that of a uniform rotator; on the other hand, if the pulsar is spinning up, each pulse will anticipate
the uniform rotator. Therefore, a fundamental tool in pulsar timing is the measurements of the Time
of Arrival (ToA) of the main peak or, more in general, of a photon, which is done as follows.

First of all, the detection of the signal depends on the wavelength considered. For this work we are
dealing with optical light and, as it will be further explained in section 2.2, we used a single photon
counting photometer. This detector gives us a time series: whenever a photon is collected, the time at
which this event occurs is registered. Therefore, the time series tells us when each photon is detected
during the whole observation session. However, this time series is referred to the rest frame of the
telescope, i.e. topocentric. We need an inertial frame that we can refer to: this is usually taken to
be the Solar System (hereafter SS) rest frame, namely the inertial reference frame centred in the SS
barycenter. To do this, we shall introduce the infinite-frequency pulse, defined as the pulse measured at
infinity frequency [2]. This concept will be clarified soon after.

Calling t the topocentric ToA and tb the corresponding barycentric ToA, the delay between them is
[2], [30]:

tb − t =
d− |~d− ~r|

c
− D

ν2
+ ∆c + ∆E� −∆S� (1.23)

where ~d = n̂d is the vector distance between the pulsar and the SS barycenter, ~r points from the SS
barycenter to the telescope, ν is the frequency of observation, D is the dispersion constant of the pulsar
(see below), ∆c is the offset between the observatory’s master clock and the reference atomic standard,
∆E� and ∆S� are two relativistic corrections. Let us describe each term. The first term is called the
Rømer delay and is due to the different times of propagation of the electromagnetic waves from the
pulsar to the telescope and from the pulsar to the SS barycenter due to the orbital motion of Earth
around the Sun. Usually the Rømer delay ∆R� is expressed through a Taylor expansion [2]:

∆R� =
d− |~d− ~r|

c
≈ n̂ · ~r

c
+

(n̂ · ~r)2 − r2

2dc
(1.24)

The order of magnitude of the Rømer delay is PT
2π

vT
c where PT is the Earth’s orbital period and vT its

velocity with respect to the SS barycenter.
To discuss the second term we shall introduce the dispersion measure (DM) of the pulsar:

DM =

∫ d

0
nedl (1.25)

where ne is the electron density, d is the distance and the integration is performed along the line of sight.
The DM is therefore the column density of electrons along the line of sight to the pulsar, expressed in
cm−3pc. Thus, the term D/ν2 is the frequency-dispersion of the ToA [2], measured in Hz and related
to the DM through:

D = DM
( e2

2πmec

)
(1.26)
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where e and me are the charge and the mass of the electron respectively. As we can appreciate, this
delay scales with ν−2, thus for the aforementioned infinite-frequency pulse measured for ν →∞ it will
vanish there.

The relativistic term ∆E� is called the Einstein delay. It includes the effects of the gravitational
redshift and time dilatation due to the motions of Earth and other bodies in the SS. It is calculated
from the expression:

d∆E�

dt
=
∑
i

Gmi

c2ri
+
v2T
2c2
− const (1.27)

where the index i is referred to all the bodies in the SS whose masses are non negligible. The mass is
indicated with m while the distance with r; the velocity of the Earth with respect to the barycenter of
the SS is again vT . The constant is chosen to make the right hand side of the equation to vanish when
averaging for long time. The order of magnitude of the Einstein delay is given by (eT vT )/c where eT is
the eccentricity of the Earth’s orbit.

The last term is called the Shapiro delay ∆S� . It is an effect predicted by General Relativity. This
delay is due to the bending of the light rays which travel near a massive object, since the spacetime is
curved. In this case the main source of the Shapiro delay is the Sun. Neglecting the Earth’s eccentricity,
which is small compared to other terms, the Shapiro delay is given by:

∆S� = −2T� log(1 + cos θ) (1.28)

where θ is the pulsar-Sun-Earth angle at the time of the observation and T� = GM/c3 is a timescale
often used in pulsar timing. The Shapiro delay depends on the angular impact parameter θ, and its
maximum value of 120 µs is reached when θ = 180o.

For the Rømer, Einstein and Shapiro’s delays the position and the velocity of the telescope on
Earth, i.e. the topocenter, are needed. These are determined by firstly interpolating a SS ephemeris,
then adding terms that account for measured irregularities in the Earth’s rotation.

Finally, the ∆c term, which is the clock correction, can be obtained from measurements made with
the satellites of the Global Positioning System (GPS). The reference to a primary atomic time scales
can be made if the offset between this primary time reference and the standard time used during the
observations (usually referred to the GPS time) is known.

For isolated pulsar like the Crab, the barycentric time tb can be expressed as T = tb − to where T
is the proper time in the pulsar rest frame and to is a (nearly) constant term given by the Doppler shift
and the gravitational redshift of the pulsar [2].

Once we have the barycentric ToAs, we can proceed with the timing analysis. First of all, the data
must be binned to build the light curve (Figure 1.6 (a)) and, through a power spectrum analysis of the
latter, a first estimate of the pulsar rotational period can be made. The light curve is subsequently split
into intervals, typically of few hundreds rotations, and then each interval is folded to get an integrated
profile, namely a single phase plot which is given by the average of all the rotations occurring in the
interval considered. For example, within an observation lasting 30 minutes we can choose intervals of 5
minutes to get 6 folded profiles; each of these folded profiles will look like Figure 1.6 (b).

As explained at the very beginning of this section, we shall parse the evolution of the pulses in
order to understand the rotational behaviour. To accomplish this aim, each folded profile is fitted with
an appropriate function that provides an accurate representation of the average pulse profile. Then,
looking at the position of the main peak in every profile we get an estimate of the acceleration or
deceleration of the rotation with respect to the uniform rotator. Indeed, the drift of the main peak
position can be fitted with an apt curve, which will depend on some fundamental parameters: this is
called the timing solution. The purpose of the pulsar timing is therefore the determination of these
parameters.

The pulse phase φ(T) can be interpreted as the combination of a deterministic term due to the
regular spin down mechanism (emission of electromagnetic radiation, magnetic stresses, emission of
charged particles) and a stochastic term ε(T) (referred to as the phase noise). A suitable expression for
φ(T) is:
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φ(T ) = νT +
1

2
ν̇T 2 +

1

6
ν̈T 3 + ε(T ) (1.29)

where ν = dφ
dt = 1/P is the rotation frequency of the pulsar and dots over quantities are the time

derivatives. Neglecting the stochastic term ε(T), the evolution of the phase can be compared with the
model given by eq.(1.29), where the free parameters are ν,ν̇, ν̈, and a number of parameters related to
the pulsar barycentrization (the pulsar right ascension α and declination δ, its parallax π, the reference
epoch to, the parameters describing its proper motion µα = α̇ cos δ and µδ = δ̇, the dispersion constant
D). To determine these parameters we can minimize the difference between the computed φ and the
observed pulse φo by means of the χ2 statistics:

χ2 =
N∑
i=1

[φo(Ti)− φ(Ti)

σi

]2
(1.30)

where N is the total number of ToAs, namely the number of folded profiles, φo(Ti) is the i-th observed
main peak position, φ(Ti) is the fitting eq.(1.29) evaluated at time Ti and σi is the uncertainty in the
i-th observed main peak position.

If we assume that the period increases due to emission of electromagnetic radiation from a magnetic
dipole, combining eq.(1.3) and eq.(1.4) the spin down can be expressed as:

Ω̇ = −kΩ3 (1.31)

where Ω = 2πν = 2π/P is the rotation angular velocity, k=(2µ2 sin2 α)/(3Ic3), µ magnetic dipole
moment, α the angle between the rotation and the magnetic axes, I the moment of inertia and c the
speed of light. We can generalize the spin down equation (1.31) introducing the braking index n:

Ω̇ = −kΩn (1.32)

The braking index plays a central role in neutron star physics since different processes of rotational
energy loss will lead to different values of n. Thus, determining this number provides direct information
on the fundamental physics involved [3], [31], [32], [33]. In the simple approximation of k=constant, we
can derive the braking index directly from the evolution of the rotational period [10]. Indeed, deriving
eq.(1.32):

Ω̈ = −knΩn−1Ω̇ (1.33)

and taking the ratio between eq.(1.33) and eq.(1.32) we get:

n =
Ω̈Ω

Ω̇2
=
ν̈ν

ν̇2
= 2− P̈P

Ṗ 2
(1.34)

We can compare eq.(1.34) with the canonical value 3 given for a magnetic dipole braking (see
eq.(1.31)): the measured values are systematically lower than 3 [10], thus suggesting the inference of
other processes, like non-dipolar components in the magnetic field, the occurrence of particle acceleration
in the magnetosphere, free precession of the spin axis or decrease of the magnetic field with time [2].
Therefore, we need more sophisticated models to describe the braking index, and then the energy loss
processes involved, which are nevertheless constrained from the timing solution [31]. Unfortunately, a
meaningful measurement of n can be done only for young pulsars, since the timing noise due to the
aging increases the uncertainties [2].

Another important quantity that we can infer from the timing solution is the characteristic age τ .
Integrating eq.(1.32) for n 6= 1 between an initial angular velocity Ωi at t=0 and the current angular
velocity we get:

t = − Ω

(n− 1)Ω̇

[
1−

( Ω

Ωi

)n−1]
(1.35)
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Figure 1.7: P-Ṗ diagram for radio pulsars. Figure taken from [34].

Considering that Ωi � Ω, the square bracket is ∼1 and t becomes the characteristic age, which is
an upper limit for the actual age of the pulsar:

τ = − 1

n− 1

Ω

Ω̇
= − 1

n− 1

ν

ν̇
=

1

n− 1

P

Ṗ
(1.36)

For the Crab pulsar, τ is ∼ 1250 yr, but its actual age is ∼ 950 yr, obtained from a recorded
supernova explosion detected by Chinese astrologers in 1054 AD.

In Figure (1.7), taken from [34], we show the P-Ṗ diagram for radio pulsars [34]. We can see that
the pulsars are clustered in two main groups: one at slow rotation rate, i.e. P ∼ 0.1-1 s, and high spin
down rates, Ṗ ∼ 10−13-10−16 s/s; the other at fast rotation rates with P ∼ 1-10 ms and low period
derivatives, Ṗ ∼ 10−19-10−20 s/s. The former is identified as the group of young pulsar at an early stage
of their lives, while the latter includes old neutron stars which have been spun up by mass accretion in
binary systems [2].

To conclude this section, let us consider the term ε(T ) in eq.(1.29), which contains the irregular
period phase changes called noise. They appear as "residuals" after subtracting the best fitting regular
spin down law. These residuals are due to (i) timing noise, which is a noisy, random evolution of the
phase, and to (ii) sudden increases in the angular velocity of the neutron star, the so-called Glitches.
The physical origin of the timing noise is currently debated. It could be caused by random walk behavior
of the phase, the frequency and the spin-down rate, which are called phase, frequency and derivative
noise respectively [2]. However, recent works suggest that such a simple model cannot reproduce the
timing irregularities observed [35]. Concerning phase noise, in [2] it is suggested that a jitter of the
emission spot around a mean position on the pole of the neutron star could be a feasible explanation.
Similarly, a fluctuation of the rotation frequency and the spin-down will cause frequency and derivative
noise respectively. The former can be, for example, a fluctuation in the coupling between the solid
crust of the neutron star and the underlying superfluid (see section 1.1.2), whereas the latter can be
due to fluctuations in the magnetic field structure of the pulsar [2]. It is very likely that all these
phenomena occur simultaneously. In a young and active pulsar like the Crab, other phenomena need to
be considered: a high-order period derivative hiding in the timing noise or low frequency oscillations
which cause a quasi-periodic behavior of the noise [2]. Concerning glitches, we will extensively analyze
this phenomenon in section 2.1.
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Figure 1.8: The Crab Nebula observed by the Hubble Space Telescope. Image credit: NASA, ESA, J. Hester, A.
LoLL (ASU).

1.3 The Crab Pulsar

1.3.1 Introduction

The Crab pulsar (PSR B0531+21) is the central neutron star of the Crab Nebula (Figure 1.8). Its
formation dates back to the supernova SN1054 explosion, recorded by Chinese astrologers on 1054 July
4, who reported that a “guest star” was visible for three weeks during the daytime and for 22 months at
night [36]. In 1731 the Crab nebula was (re)discovered by the English astronomer John Bevis, and it
was subsequently observed in 1758 by Charles Messier, who introduced it in his catalog of nebulous
non-cometary object (M1). The nebula was named "Crab" by the Irishman William Parsons in 1850
[36]. The link between the Crab nebula and the the supernova SN1054 was first suggested by [37] in
1921. The relation was then corroborated by Hubble in 1928 [38], who used the expansion velocity of
the nebula to trace back the supernova event. The turning point came in 1942, when [39] and [40]
provided a complete study of modern observations of the expanding nebula and of the early Chinese
records: this work unambiguously confirmed that the Crab nebula is the remnant of SN1054 [36]. In
1967 Pacini proposed that the nebula is powered by a highly magnetized, fast rotating neutron star at
the centre of the nebula itself [20]. In 1968 Gold confirmed this hypothesis by comparing the observed
bolometric luminosity of the nebula with the computed rate of loss of rotational energy by the central
neutron star [1]. In 1968 the neutron star was finally discovered at radio wavelengths [41], [42] and it
was subsequently observed at visible wavelengths [43], becoming the first pulsar detected in this band.

1.3.2 The Structure of the Crab Nebula

In Figure 1.9 we show the structure of the Crab nebula as presented in [36]: moving from the centre
outwards, the Crab nebula consists of (i) the Crab pulsar, (ii) the Crab synchrotron nebula, (iii) an
expanding shell of thermal gas and (iv) a freely expanding supernova remnant [36]. We provide a brief
summary of these components and we refer to [36] for further detailed information:

• The Crab pulsar is the neutron star located at the centre of the Crab nebula. Thanks to its
proximity of ∼ 2 kpc [44], it is probably the most studied pulsar: it has been monitored regularly
in the radio wavelengths since its discovery in 1968 [3]. Besides, it is the brightest (V∼16.6 mag)
neutron star in the optical domain, giving an insight on the geometry of the emission regions by
comparing the time behaviour in different bands [4].

The Crab pulsar has a rotational frequency ν ∼ 30 Hz (or, equivalently, a period P ∼ 33 ms), and
a frequency derivative ν̇ ∼ -3.77 × 10−10 Hz/s [3]. Assuming that the star is a uniform sphere
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Figure 1.9: Schematic view of the structure of the Crab nebula. Figure Taken from [36].

with a radius of 10 km and a mass of 1.4 M�, the moment of inertia of the pulsar is I = 1.12 ×
10 45 g cm2, and the spin-down luminosity is L = 4π2IṖP−3 ∼ 5 × 1038 erg/s, or 130000 L� [36].

As explained in section 1.1.4, only a small fraction of this spin-down luminosity goes into the
pulsed emission we detect. The majority of the emitted energy is carried away by the magnetic
dipole radiation and the ultrarelativistic wind [36].

• The Crab synchrotron nebula which surrounds the pulsar is a structure which fills an ellipsoidal
volume with a major axis of 4.4 pc and a minor axis of 2.9 pc, tilted into the plane of the sky by
30o [36]. The features of the synchrotron nebula, called wisps, are extremely dynamic. A wind
shock is found at the inner boundary, between the pulsar wind and the synchrotron nebula. On
the other hand, a second shock is found at the outer surface, between the synchrotron nebula and
the surrounding thermal gas.

• The thermal gas is a filamentary structure composed of ejecta from the supernova. These
filaments are driven by Rayleigh-Taylor instabilities arising between the thermal gas and the inner
synchrotron nebula. The expansion velocity of this component ranges from 700 to 1800 km/s [36].

• The freely expanding ejecta from the supernova are located outside the visible edge of the nebula.
A possible shock could lie at the outer edge of this expanding cloud.

1.3.3 The Emission of The Crab Pulsar

The Crab nebula and its pulsar show a strong emission throughout the electromagnetic spectrum
(see Figure 1.10 (a) taken from [44]). The spectral energy distribution of the Crab nebula peaks in the
UV, while the emission from the Crab pulsar peaks in the X-ray band [44]. The energy output of the
nebula is a factor ∼ 10 larger than that of the pulsar. As explained by [44], the emission of the nebula
from radio to X-rays is due to synchrotron emission, while at higher energies (∼ 400 MeV), the same
electrons produce a second emission component through Inverse Compton scattering. The synchrotron
emission from the nebula has an integrated luminosity of ∼ 1.3 × 1038 erg/s, which is ∼ 26% of the
bolometric luminosity injected into the nebula by the pulsar. A bump at ∼ 1013 Hz can be seen in the
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(a) (b)

Figure 1.10: Figure (a): spectral energy distribution of the average emission of the Crab nebula (blue) and the
phase averaged emission of the Crab pulsar (black). On the right axis the luminosity calculated
assuming a distance of 2 kpc is shown. Figure (b): Pulse shape at radio (1.4 GHz), optical (1.5 -
3.5 eV), X-ray (100 - 200 keV), High Energy gamma-ray (100 - 300 MeV) and Very High Energy
gamma-ray (50 - 400 GeV) energies. Figures taken from [44].

far infrared due to the thermal emission from heated dust [36]. Concerning the pulsar, as discussed in
section 1.1.4 the radio emission is provided by a coherent emission mechanism. The optical, the UV
and the X-ray emission is incoherent synchrotron radiation. Finally, the γ-ray emission is curvature
radiation [45].

The pulsating signal we detect is due to the passage of the beamed emission from the poles across
our line of sight, producing a lighthouse effect. The folded pulse shape of the Crab is quite prototypical:
as shown in Figure 1.6 (b) for the optical band, it is composed by a main peak and an interpulse
separated by a phase of ∼0.4. A faint precursor to the main peak is detected at radio frequencies [44]
(see figure 1.10 (b)). In the optical, X-ray and γ-ray bands a bridge emission can be seen between the
main pulse and the interpulse [45]. The pulses at different wavelengths are not aligned, with the optical,
the X-ray and the γ-ray main peaks leading the radio one. We will further discuss this time delay in
section 3.3. Finally, the emission in the radio and in the optical bands is polarized, with the position
angle PA of the linearly polarized component varying with the pulse phase and with the frequency. In
the optical wavelengths, the polarization angle swings from PA ≈ 40o to PA ≈ 170o during the main
peak and from PA ≈ 90o to PA ≈ 180o during the interpulse [44].

Since 1970’s many efforts have been undertaken to reproduce the rotational evolution using a
polynomial as in eq.(1.29), considering as initial frequency ν a value of ∼ 30 Hz. Although the braking
index varies, it turns out to be ∼ 2.5, which may be attributed to a combination of a secular increase
in the angle between the rotation and the magnetic axes and a wind torque [3], [31]. Variations of
the braking index may be induced by some external instabilities which vary the configuration of the
electromagnetic field on large scales and the currents in the plasma within the nebula [32]. Albeit
the folded profile is very stable, the regular behaviour is interrupted by small and unexpected spin-up
events at which the frequency suddenly increases, i.e. the pulsar rotates faster. This event is called
glitch and is usually followed by a recovery to the pre-glitch frequency. We further discuss glitches in
section 2.1. For the Crab, during a glitch the frequency increases by a small step ∆ν of the order of
ν ∼ 10−9ν to 10−7ν [3]; moreover, a possible correlation between glitch amplitude and the time since
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the last glitch occurred was suggested by [46].
Finally, the Crab pulsar is also known to produce individual pulses that are hundreds of times

brighter than usual in the radio domain. These events are called Giant pulses, and in this case can
reach energies up to ≥ 2000 < E >, where < E > is the mean energy of the pulses. The Giant pulse is
broadband, so that it occurs at every radio frequency with almost identical features, and it is considered
to be related to the intensity of the magnetic field at the light cylinder [2].
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Chapter 2

The November 2017 glitch

2.1 Introduction

Since pulsar timing is a high-precision technique, we can detect the small perturbations affecting
long term rotational evolution of the neutron star. As anticipated in section 1.2.2, there are two types
of timing irregularities, namely timing noise and glitches, which are widespread [35]. Even if recent
investigations suggest that they could be strongly related to each other [35], [32], this topic is still
highly debated [47].

In this section we focus on the glitch phenomenon, which is an abrupt increase in the rotational
frequency ν, namely a spin up event with a very short duration. This step-like jump of the pulse
frequency is often followed by an exponential recovery in which ν decays towards the pre-glitch value
(Figure 2.1). The analysis of glitches is a powerful tool: according to the most widespread interpretations,
these events can provide information on the interior structure of the neutron stars, which could not be
investigated through other methods [13]. There are two main theories which invoke an internal origin
for glitches: starquakes [2] and the pinning-unpinning model [48].

Let us consider starquakes first. After the Supernova explosion, a solid crust rapidly forms thanks
to the neutrino cooling, i.e. the emission of neutrinos from the collapsing core of the star. Since the
neutron star is fast-rotating, the shape of the crust will be oblate. As the pulsar slows down, the balance
between centrifugal and gravitational forces makes the shape more spherical and less oblate. Conversely,
the rigidity given by Coulomb forces tries to maintain the original shape. The opposite action of these
forces produces a stress σ, which increases as the pulsar slows down. When the stress exceed a critical
value σc, the crust suddenly cracks, similarly to earthquakes on Earth, reducing its oblateness. The
crustal moment of inertia Ic will then decrease, and so will do the whole moment of inertia of the
star I. The angular momentum L = IΩ must be conserved during this very short event, since braking
mechanisms act on timescales of 105-106 s. The angular velocity Ω must therefore increase and the net
effect of the starquake will be a sudden spin up of the neutron star, followed by a relaxation towards
pre-glitch values until the stress reaches again the critical value and triggers another starquake. This
model seems to work for Crab-like pulsars, predicting a repetition timescale t ∼ 10-200 days, which is
consistent with the observations [2]. However, the energy stored in the crust is too tiny to explain the
rates of the large Vela-type glitches: indeed, the repetition timescale of these glitches would be t ∼ 920
yr (and thus glitches would be a rare phenomenon), while in the 12 years after its discovery 4 glitches
were detected, so t ∼ 3 yr [2]. The starquakes model could be improved by considering a high shear
modulus inside the core due to a quark condensate [48], which would decrease the inter-glitch interval
and would possibly strengthen the glitch, but further work is needed. Hence starquakes can account for
small glitches but are ineffective for the large Vela-type glitches, the latter being the majority.

Concerning the pinning-unpinning model, let us consider first the structure of the neutron star. The
magnetosphere provides the torques which slow down the outer crust and the field lines are anchored to
it. However, the inner superfluid is decoupled from the crust since the frictional forces acting between
them are supposed to be very small. Thus, while the crust is decelerated, the inner superfluid keeps
rotating faster and a velocity lag sets in between the two layers. During a glitch, the angular momentum
is transferred from the inner superfluid to the crust and the velocity lag decreases, leading to the spin
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Figure 2.1: Schematic representation of a glitch event. The overall decrease of the angular velocity Ω of the
pulsar is interrupted by a sudden spin up event (∆Ω0), which is subsequently followed by a recovery
to a value which is slightly larger than the pre-glitch one. Figure taken from [10].

up of the crust. Nevertheless, how can the angular momentum be transferred if there is no frictional
force? The answer lies in the properties of the superfluid: (i) on a macroscopic scale, the superfluid is
irrotational, i.e. ∇× v=0, where v is the fluid velocity; (ii) the angular velocity is quantized, so that in
the lowest energy state it is given by

∮
v · dl = h/2mn, where h is the Plank constant and 2mn is the

mass of a neutron pair [10]. These properties mean that the rotation of the neutron fluid is the sum of
discrete vortices rotating parallel to the rotation axis. In the Crab Nebula Pulsar the number of vortices
per unit area is about 2 × 109 m−2. It is indeed the interaction between these vortices and the crust
which allows the transfer of angular momentum: the vortices are pinned to nuclei or to the magnetic
flux tubes in the crust, providing the connection between the two layers. The superfluid cannot lose
vorticity, lagging behind the proton fluid (that forms a type II superconductor) which instead spins
down along with the crust: the relative motion induces a Magnus force between the superfluid and
the crust [48]. As the crust slows down, the Magnus force increases until it reaches a critical value
which cannot be sustained by vortices, which are forced to unpin and migrate outwards, transferring
the angular momentum to the crust. This unpinning can occur in a jerky process, which leads to small
glitches, or, on the other hand, there could be a catastrophic unpinning of the vortices, which excites a
giant glitch [13].

All things considered, as suggested by [49] we can use crust rearrangements, quakes or crack growing
models for Crab-like pulsars, while we can use the pinning-unpinning model for low spin-down rate
pulsars. According to this scenario, the authors consider two possibilities: (i) there are different types
of pulsars or (ii) the change in the physical trigger of the glitch is due to the aging [49]. In any case,
the analysis of glitches can provide a tool to study the interaction between different components within
the neutron star. We give a brief summary on the main features of these events:

• the sudden increase in the rotational frequency is usually not resolvable, and the exponential
recovery has a typical timescale of 10 to a few hundred days;

• the presence of a feasible minimum size, which may imply a threshold for the trigger of the glitch
[47];

• no change of pulse profile or flux density associated with a glitch was observed in a normal radio
pulsar so far [46],[49];

• the distribution of the observed glitches as function of their size ∆ν/ν is bimodal [49]: the Vela-like
pulsars show glitches with ∆ν/ν ∼ 10−6, while the Crab-like pulsars’ glitches are smaller, i.e.
∆ν/ν ∼ 10−9 - 10−7;

24



2.2. IFI+IQUEYE

• associated with the glitch, usually there is a linear increase in the magnitude of the spin-down
rate -ν̇ (or a decrease in |ν̇|) by an amount -∆ν̇, which usually extends from the end of the initial
recovery until the next glitch event [50]. Observed values for ∆ν̇/ν̇ range from 10−3 to 10−2;

• on the P-Ṗ diagram (Figure 1.7), glitches are more frequent in young pulsars with large spin-down
rates [49], and they are larger for higher rotation frequencies;

• even if the most accepted model for glitches is the interaction between the interior layers [50],
good results were obtained by modelling timing irregularities as a product of the interaction
between the pulsar and its surrounding environment [32];

• the correlation between the glitch amplitude and the time since the occurrence of the previous
glitch is still highly debated, with some authors claiming that the distribution of inter-glitch
intervals is in agreement with a random process [33], and others supporting the existence of a
correlation [46];

• sometimes a glitch can be followed by a delayed spin up, so that a further increase in the rotational
frequency occurs after the usual step increase [46].

To conclude this section, we mention that pulsar timing can be exploited to study the spatial
configuration of the magnetosphere surrounding the neutron star and/or the geometry of the emission
regions. Since the main pulses are not aligned at different wavelengths, we can parse the signal in
different bands to constrain the relative positions of the emission regions. We will further discuss this
topic in section 3.3.

Free precession of the spin axis can be a possible spatial rearrangement: a phenomenon which, in
turn, causes the angle between the rotation and magnetic axes of the neutron star to change periodically
in time. It is well known that any free precession would be damped by the internal superfluid ([51] and
[52]); however, there is a puzzling evidence for the free precession in the long term cyclical variations
of the spin ([53], [54] and [55]), which cannot be fully explained. Albeit we still lack a comprehensive
theory which could take into account this effect, the evolution of the inclination angle between the
rotation and the magnetic axes towards a value of π/2 was suggested to cope with the change of the
pulsar energy loss: indeed, since the emission mechanisms depend on this angle and assuming that
the energy loss tends to a minimum value as the neutron star ages, the inclination angle will change
accordingly [56]. Furthermore, the variation of the magnetic axis was recently invoked to explain the
observed braking index of the Crab pulsar [31].

Indeed, the purpose of this thesis is to search for evidence of changes in the geometry of the emission
region and/or in the magnetosphere of the Crab pulsar possibly induced by the glitch [57].

2.2 IFI+Iqueye

Before describing the data analysis, we shall introduce the instrumentation used to perform the
observations of the Crab pulsar used in this thesis. We used the fast photon counter Iqueye [6] mounted
at the Galileo Telescope (Asiago, Italy) via a dedicated optical fiber interface (IFI) [58]. Iqueye can
record the arrival time of each single photon with high accuracy, similarly to what is usually done in
High Energy Astrophysics. A schematic view of the Iqueye design is given in Figure 2.2(a), taken from
[6].

The incoming light reaches a holed mirror located at the entrance of the instrument. The light
outside the hole is reflected by 90o and is collected by a field camera, while the light from the target
passes through the hole and is subsequently collimated by two lenses. After these lenses, two filter
wheels are inserted to select different types of filters or polarizers; nevertheless, for this thesis we used
white light. Then, the light is focused through another lens system which, together with the previous
lenses, reduces the collected image by a 1/3.25 factor. To limit the field of view of the target a pinhole
is inserted. The diameters of the available pinholes are 200, 300 and 500 µm, providing a field of view
of 1 to 6 arcseconds.
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The light passing through the pinhole impinges on a pyramid with four surfaces which divides
the incoming beam into four perpendicular sub-beams. Each of them is subsequently collimated and
focused again, to reduce the image by a further 1/3.5 factor. Finally, the focused sub-beams reach four
different single photon avalanche photodiodes (SPAD) silicon detectors. For our purposes, the counts
collected from the SPADs were summed together and the polarization coming from the four faces was
averaged out. The splitting of the beam into four sub-beams has an important advantage: it partially
overcomes the problem of the SPAD dead time [6]. Indeed, after the detection of one photon, the SPAD
is insensitive to other photons for 75 ns. This dead time, which strongly limits the measured statistics,
can be reduced using four different SPADs in parallel, since many photons that would be otherwise lost
are collected.

Whenever a photon is detected, the SPADs produce a pulse which is subsequently collected by the
acquisition system. The task of this system is to assign an accurate absolute time tag to each event,
and store this information into an external memory. This is the most innovative characteristic of Iqueye:
the clock of the system is a rubidium oscillator disciplined with a GPS receiver. Each time tag of a
photon is referenced to the Coordinate Universal Time (UTC) with an accuracy better than 0.5 ns over
one hour of observation [4]. Therefore, the Iqueye system output is a time series, namely a collection of
arrival times.

In order to connect Iqueye to the Galileo telescope, a dedicated optical bench was installed at the
telescope lateral focus and connected to Iqueye by means of an optical fiber [58]. Indeed, this solution
has the advantage to maintain Iqueye in a separate room under controlled temperature and humidity
conditions, thus reducing potential systematics related to varying ambient conditions [58]. Furthermore,
it facilitates the mounting of the instrument. The optical fiber is part of an independent instrument,
the Iqueye Fiber Interface (IFI) [7]. In Figure 2.2(b) from [7] we show the optical design of IFI: after
the telescope focus, the incoming beam is collimated through an achromatic lens doublet (I1) and
then focused on the optical fiber (OF) with a second achromatic doublet (I2). A beam splitter (I3) is
inserted in the collimated portion of the beam. S1, S2 and S3 are the corresponding opto-mechanical
supports, and OC is the fiber connector. I3 reflects 8% of the incoming light towards a field camera
(FC), and transmits the remaining 92% to the optical fiber. The focal lengths of the two doublets are
f1 = 200 mm and f2 = 100 mm, leading to an overall demagnification of 1/2. The core of the optical
fiber has a diameter of 365 µm, that corresponds to 12.5 arcsec. The image of the field camera has a
plate scale of 62.3 arcsec/mm and a field of view of 11.8×7.4 arcmin2. Filters can be inserted between
I1 and I3. Finally, the light injection from the fiber into Iqueye is realized by means of a dedicated
opto-mechanical module (module Z), that acts as a focal multiplier. The module is placed in front of
Iqueye and is properly centered and focused. The magnification of this module is 2.5 [7]. The image of
the fiber core at the instrument entrance focus is a spot with a size of 912.5 µm, significantly smaller
than the diameter of the central hole of the Iqueye entrance mirror [7].

2.3 Observations, Data Reduction and Analysis

Until 2017 the Crab Pulsar was known to produce glitches with a spin frequency increase of
10−9 ≤ ∆ν/ν ≤ 10−7. However, around MJD 58064 (8 November 2017), the Crab experienced what is
now confirmed to be the largest glitch ever detected: the magnitude of the step increase was ∆ν/ν
= 0.516 × 10−6 in the radio band, which is more similar to the usual glitches occurring in the Vela-
like pulsars than those previously experienced by the Crab [46]. No change of the pulse shape or
flux associated with the glitch was observed. This event has been deeply investigated in the radio
wavelengths, but a complete analysis in the optical domain has not been undertaken hitherto. In this
work we parsed the observations taken around the glitch with IFI+Iqueye mounted at the 122 cm
Galileo Telescope in Asiago (Italy) (see Table 2.1 for the geocentric coordinates). In Table 2.2 we list
the performed observations, divided into three observing runs: October 4 and 7, November 17 and 18,
December 30. All of them were carried out in white light.

The raw data were first reduced referring them to UTC. Then, as explained in section 1.2.2, the
topocentric time series acquired was converted to an inertial reference frame at the SS barycentre. The
conversion was performed using the TEMPO2 pulsar-timing package, which provides a precision of ∼ 1
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(a)

(b)

Figure 2.2: Figure (a): schematic view of the optical design of Iqueye, taken from [6]. Figure (b): schematic
view of the optical design of IFI taken from [7].

ns. We refer to [59] and [60] for a detailed description. The transformation introduced in eq.(1.23) is
performed as follows:

∆t = ∆c + ∆A + ∆E� + ∆R� + ∆S� −
D

ν2
+ ∆V P + ∆B (2.1)

where ∆c is the clock correction, ∆A is the atmospheric propagation delay, ∆E� is the SS Einstein
delay, ∆R� is the SS Rømer delay, ∆S� is the SS Shapiro delay, D/ν2 is the frequency dispersion of
the ToAs, ∆V P is the excess vacuum propagation delay due to secular motion and ∆B contains the
term related to dual source orbital motion (which is null in this case since the Crab is not in a binary
system) [59]. The ∆V P term includes the secular motion of the pulsar with respect to the SS barycentre,
which affects the timing measurements through the Shklovskii effect [61]. Furthermore, it affects the
radial velocity and the radial acceleration, which have a direct impact on the spin and on the spin
derivative respectively [59]. Finally, the secular motion can lead to a mixing of the radial velocity into
the Shklovskii term, affecting the spin period second derivative [59].

2.3.1 Phase Period Search

After the barycentrization, we binned the time series to get the light curves of the Crab pulsar, which
directly provided a first estimate of the available statistics. In Figure 2.3 we show two intervals of the
light curves obtained from QEYE_20171004-040731_crab (Figure (a), October 4) and QEYE_20171118-
024151_crab (Figure (b), November 18), which are representative for the highest and the lowest available
statistics respectively. The binning time is set to 0.001 s for both the light curves. On October 4, the
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x y z
(m) (m) (m)

4360008.516 889148.476 4555709.153
Table 2.1: Geocentric coordinates of the Galileo Telescope in Asiago (Italy).

Observation ID Start time (UTC) Start time (MJD) Duration (s)

QEYE_20171004-040731_crab October 4, 02:11:29.024 58030.09130814821803 1798
QEYE_20171004-044947_crab2 October 4, 02:53:45.586 58030.120666505427298 1198
QEYE_20171007-023001_crab October 7, 00:34:22.798 58033.023874981727694 898
QEYE_20171007-024554_crab2 October 7, 00:50:16.889 58033.034917699467936 898
QEYE_20171007-030251_crab3 October 7, 01:07:13.985 58033.046689640844843 898
QEYE_20171007-032212_crab4 October 7, 01:26:34.093 58033.060116815182024 898
QEYE_20171007-033808_crab5 October 7, 01:42:30.508 58033.071186432525224 898
QEYE_20171007-035634_crab6 October 7, 02:00:56.340 58033.083985414596825 898
QEYE_20171007-041250_crab7 October 7, 02:17:12.651 58033.095285308652567 898
QEYE_20171007-044815_crab9 October 7, 02:52:37.577 58033.119879362838038 898
QEYE_20171007-050700_crab10 October 7, 03:11:22.759 58033.132902299343076 898
QEYE_20171007-052333_crab11 October 7, 03:27:56.038 58033.144398590273944 898
QEYE_20171007-054303_crab12 October 7, 03:47:25.928 58033.15793897624485 898
QEYE_20171117-014607_crab November 17, 00:54:52.094 58074.038102943087441 898
QEYE_20171117-020455_crab November 17, 01:13:39.151 58074.051147582685303 898
QEYE_20171117-023605_crab November 17, 01:44:49.575 58074.072796008558207 898
QEYE_20171117-031600_crab November 17, 02:24:44.357 58074.10051338715644 898
QEYE_20171118-024151_crab November 18, 01:50:40.367 58075.076856099507012 1798
QEYE_20171118-033311_crab November 18, 02:41:59.711 58075.112496650025477 1798
QEYE_20171230-235440_crab December 30, 23:04:08.465 58117.961209086285322 1798
QEYE_20171231-003758_crab December 30, 23:47:26.721 58117.991281496316642 1798
QEYE_20171231-011907_crab December 31, 00:28:35.598 58118.019856460156944 1798

Table 2.2: Log of the observations of the Crab nebula pulsar, taken with Iqueye mounted at the 122 cm Galileo
Telescope in Asiago. Times are referred to barycenter of the Solar System.

average count rate is 4617 counts/s; on the other hand, the average count rate on November 18 is 3309
counts/s.

The first step of the analysis is determining the rotational period for each observing run. This is
needed to fold the time series. The choice of a period strongly influence the final folded profile: indeed,
if we fold a time series with a random period, the different rotations of the pulsar will be averaged
out and the folded profile will be nearly constant, with a dispersion around a central value which
corresponds roughly to the mean of the counts over one rotation; on the other hand, if we take an
accurate period, the folded profile will deviate from a constant value, since the contributions from each
rotation are summed together in phase. To this end, we used the Fourier analysis, which allows the
decomposition of a function into a series of sine and cosine waves, i.e. the Fourier series:

f(t) =
1

N

N∑
l=1

ale
−iωlt (2.2)

where ωl are the Fourier frequencies and al are the Fourier coefficients:

al =
1

N

N∑
j=1

f(t)eiωltj (2.3)

e±iα = cosα ± i sinα is the usual Euler’s notation and N is the number of Fourier components
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(a)

(b)

Figure 2.3: Figure (a): light curve of 2017 October 4. The start time is 02:11:54 UTC and the average counts/s
value is 4617. Figure (b): light curve of 2017 November 18. The start time is 01:51:05 UTC and the
average counts/s value is 3309. The binning time is set to 0.001 s for both the light curves.

needed to reproduce the signal. We shall highlight that we deal with discrete functions (the binned light
curves), so we do not need the continuous (or integral) form for the Fourier transform. This analysis
provides the coefficient al which is the amplitude of the l-th wave, namely its "weight" in the function
f(t): the bigger the coefficient is, the more important the component is in f(t). From the Fourier
components it is possible to construct the power spectrum, namely the |al|2 power values as function of
the frequency νl = ωl/2π. We show the power spectrum of October 4 and November 17 in Figure 2.4.
The fundamental frequency of the power spectrum provides the rotational frequency of the pulsar νp.

We performed a power spectrum analysis for each time series using powspec from the Xronos
software package [62], provided by [63]. This software makes use of either a fast Fourier transform
(FFT) algorithm or a direct slow Fourier algorithm to compute the power spectrum.

Subsequently, for each month we chose the observation with the best statistics and we searched a
more accurate estimate of Tp= 1/νp as follows.

Let yj be a folded and binned time series with Nb bins per each phase. If we fold yj using several
trial values of Tp, we can test the folded time series with a constant value ȳ using the χ2:

χ2 =

Ndof∑
j=1

(yj − ȳ
ej

)2
(2.4)

where Ndof=Nb-1 is the number of degrees of freedom, while ej is the error associated with yj . If Tp is
wrong, χ2 ' Ndof , since the rotations do not sum up in phase; conversely, if Tp is accurate, χ2 � Ndof ,
because the rotations sum up in phase and the folded profile deviates from the constant ȳ. Therefore,
the best Tp will be that which maximises eq.(2.4). To perform this analysis we used the efsearch
software from Xronos (see Figure 2.5). The results are shown in Table 2.3.

Once we found the phase periods for each month, we chose to split all the time series in Table 2.2
but QEYE_20171118-024151_crab and QEYE_20171118-033311_crab using intervals of 30 s; for the

29



CHAPTER 2. THE NOVEMBER 2017 GLITCH

(a)

(b)

Figure 2.4: Figure (a): power spectrum of QEYE_20171004-040731_crab (October 4). Figure (b): power
spectrum of QEYE_20171117-023605_crab (November 17). The binning time is set to 0.001 s for
both the spectra.

observations performed on November 18 the poor counts rates required intervals of 60 s. Each interval
was subsequently folded using the corresponding Tp and 128 bins per phase to get the corresponding
Crab pulse shape, namely the folded profile. In Figure 2.6 we show three representative folded profiles
of October 4, November 17 and December 30.

2.3.2 Phase Fitting

A crucial step in pulsar timing analysis is the determination of the ToAs of the main pulse. As
explained in section 1.2.2, in order to get the ToAs we need a suitable function to fit the Crab folded
profiles. We used the sum of 16 Lorentzians provided by [4]:

f(x) = p

16∑
i=1

di−1b
2
i

b2i + (x− x1 + hi−1)2
+ q (2.5)

where p, q and x1 are free parameters, while bi, di−1 and hi−1 are given in Table 2.4. The fractional
phase of the main peak is given by x1. In Figure 2.7 we show the fit performed over the Crab pulse
shape of Figure 1.6(b) as an example of the accuracy provided by the function f(x).

Calling φ′ = (t− t0)/Pi the phase of a uniform rotator, where t0 is the initial time, i.e. the reference
epoch, and Pi the period at t0, we can define the phase drift of the pulsar from a uniform rotator as:

ψ(t) = φ(t)− φ′(t) (2.6)
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(a)

(b)

Figure 2.5: Figure (a): χ2(Tp) for QEYE_20171004-040731_crab (October 4). Figure (b): χ2(Tp) for
QEYE_20171117-023605_crab (November 17). The figures were obtained with efsearch from
Xronos [62].

where φ(t) is the actual Crab phase at time t. Through the Lorentzian fit of the folded profiles we can
directly measure ψ(t) = -x1 (φ(t) < φ

′
(t) and ψ(t) < 0, if the pulsar is spinning down). We show the

fractional phase drift of each observing night in Figure 2.8, where the uncertainties are given by the
Lorentzian fit through the least squares method.

The next step is the cleaning of −ψ to get rid of spurious data. We decided to remove the data
which clearly did not follow the overall trend: on October 7 and on December 30 we removed the single
points which deviated from the linear trend; on November 18 we removed all the data which were not
consistent with the linear trend within a ∼ 3σ uncertainty.

Since the actual measurement of ψ(t) returns only the fractional part, we need to add an integer to
obtain a phase coherent timing evolution over the whole observing run. A clear example can be seen in
Figure 2.8(b) where the drift covers a complete phase, i.e. -ψ ∼1, and then it starts again from zero: it
is straightforward that we must add a phase to this turning point, which is the rotation the Crab lost
with respect to the uniform rotator with reference period Pi. However, the integer phase jump cannot
be directly recovered in this way when considering subsequent observing nights. We determined it for
each observing run as follows.

For each run we plotted −ψ as a function of time adding a certain number of integer phases and we
fitted it with a parabola y:

y = ax2 + bx+ c (2.7)

where a, b and c are free parameters and x = t− t0 is the time since the reference epoch t0. We chose
t0 as the mid time between the first and the last observations performed in a run.
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Month Phase Period Tp Reference Epoch
(s) (MJD)

October 0.0337406798 58031.6298229512487006
November 0.0337422560 58074.5857072874468015
December 0.0337438622 58118.0009388908640735
Table 2.3: Phase periods and reference epochs for each month.

Parameter Value Parameter Value Parameter Value

b1 0.0146996 d0 1 h0 0
b2 0.0146996 d1 0.217538 h1 0.0295389
b3 0.0146996 d2 0.120438 h2 0.0452724
b4 0.0146996 d3 0.343795 h3 0.0159706
b5 0.0146996 d4 0.0274555 h4 -0.0405742
b6 0.00390605 d5 0.104503 h5 -0.004064
b7 0.0131649 d6 0.0524991 h6 -0.408426
b8 0.0517911 d7 0.0462601 h7 -0.493455
b9 0.0386609 d8 0.250336 h8 -0.400741
b10 0.0377745 d9 0.063293 h9 -0.445372
b11 0.0156592 d10 -0.0323015 h10 0.094 8912
b12 0.0325165 d11 -0.0176647 h11 0.133417
b13 0.0531056 d12 0.0128576 h12 0.355586
b14 0.209385 d13 0.00944315 h13 -0.0200141
b15 -0.0630249 d14 -0.00883256 h14 -0.261205
b16 0.0259154 d15 -0.00388652 h15 -0.153419

Table 2.4: Parameters of the function f(t) adopted to fit the Crab pulse profile, taken from [4].

Changing the number of integer rotations strongly affects the measured −ψ and consequently the
fit. If we add a defined number of rotations to the observed −ψ values and we call this series φ̃, we can
evaluate the χ2:

χ2 =

N∑
i

(
φ̃i − yi

)2
(σi)2

(2.8)

where N is the number of data, yi is the fit given by eq.(2.7) evaluated at the i-th point and σi is the
error associated with −ψ, which is given by the Lorentzian fit through the least squares method. Since
the φ̃ series differs only by an integer phase number, by minimizing the χ2 we can find the best φ̃ series
and consequently determine the exact number of rotations that occurred between two observing nights.
Moreover, using the number of parameters Npar for a fit, namely three (a,b,c) in this case, we can define
the number of degrees of freedom as Ndof = N −Npar and compute the reduced χ2 as:

χ2
red =

χ2

Ndof
(2.9)

Once again, the minimum of eq.(2.9) shall give the exact number of rotations.
To quantify the reliability of the results obtained we calculated the p-value, which is defined as the

probability of obtaining test results at least as probable as the results actually observed, assuming that
the null hypothesis is correct. We chose the null hypothesis to be the membership of the data to the
fitting curve. Therefore, if we choose a significance level of 5% and we get the p-value equal e.g. to
0.06, the fit is significant at p ≥ 5% and we cannot reject the null hypothesis at the 5% confidence
level, i.e. we cannot say that data do not follow the fit. We must stress that we can never state that
data do follow the fitting curve by means of the p-value: we are only allowed to reject or not reject the
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Month χ2 χ2
red p-value Number of Rotations

October 426.84 1.00 0.479425 12
November 213.31 1.29 0.006706 2
December 218.88 1.24 0.015488 0

Table 2.5: Best estimate for χ2, χ2
red and p-values for October, November and December. The corresponding

number of rotations is indicated in the last column.

Month φ0 ν0 ν̇0
(1/s) 10−10 (1/s2)

October -4.156 ± 0.002 29.63776505 ± 9×10−8 -3.685 ± 0.002
November -1.194 ± 0.004 29.63641011 ± 9×10−8 -3.69 ± 0.04
December -0.1782 ± 0.0003 29.6350207 ± 1×10−7 -1.25 ± 1.04

Table 2.6: Timing solutions for October, November and December.

null hypothesis, but we are not allowed to accept it. Thus, according to our purposes, the p-value shall
be large enough not to reject the null hypothesis.

We computed the χ2, the χ2
red and the p-values for different rotations, and we show the best results

in Table 2.5. As it can be seen, we cannot reject the null hypothesis for October with a confidence level
>5% and for December with a confidence level >1%. Concerning November, the p-value is smaller
than 1%, but larger than 0.5%, which is still sufficiently high not to reject the null hypothesis with
a confidence level larger than 3 Gaussian sigmas. The fitted phase drift for each month is shown in
Figure 2.9, where we also added the number of rotations from Table 2.5 and the corresponding best
fitting curve from eq.(2.7).

Finally, we computed the timing solution, i.e. φ0, ν0 and ν̇0, for each month as follows. First, we
estimated the coefficients a,b and c from the best fitting curve. Therefore we had:

ax2 + bx+ c = −ψ = φ
′
(x)− φ(x) =

x

Pi
− φ(x) (2.10)

Furthermore, since we can rewrite φ(x) using a Taylor expansion as seen in eq.(1.29):

φ(x) = φ0 + φ̇0x+
1

2
φ̈0x

2 (2.11)

= φ0 + ν0x+
1

2
ν̇0x

2 (2.12)

eq.(2.10) can be written as:

ax2 + bx+ c =
x

Pi
− φ0 − ν0x−

1

2
ν̇0x

2 (2.13)

ax2 + bx+ c = − φ0 −
(
ν0 −

1

Pi

)
x− 1

2
ν̇0x

2 (2.14)

where all the terms with the subscript "0" are evaluated a t = t0. We shall highlight that eq.(1.29) is
computed up to the third order, while we truncated the equation at the second order: indeed, for a
single observing run we cannot detect the contribution of the cubic term, since the timescale of the
latter is considered to be roughly 180 days [4]. Therefore, we can limit ourselves to the quadratic term.
By rearranging eq.(2.14) we derived the relations:

φ0 =− c (2.15)

ν0 =− b+
1

Pi
(2.16)

ν̇0 =− 2a (2.17)
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which directly provide the timing solution. The results obtained for October, November and December
are shown in Table 2.6. The associated errors were computed by means of the usual propagation of
uncertainty formula:

σφ0 = σc (2.18)

σν0 = σb (2.19)

σν̇0 = 2σa (2.20)

where σa, σb and σc are given by the least squares method of the fit in eq.(2.7).
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(a)

(b)

(c)

Figure 2.6: Folded profile of QEYE_20171004-040731_crab (Figure (a), October 4), QEYE_20171117-
023605_crab (Figure (b), November 17) and QEYE_20171230-235440_crab (Figure (c), December
30). All the figures were obtained with efold from the Xronos software package [62] by folding an
interval of 30 s and by using 120 bins per phase.
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Figure 2.7: Fit of the Crab phase shape shown in Figure 1.6(b). Data are shown as grey dots, while the solid
black line is the fit performed with eq.(2.5).

(a) (b)

(c) (d)

(e)

Figure 2.8: Phase drift -ψ(t) for October 4 (a), October 7 (b), November 17 (c), November 18 (d) and December
30 (e).
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(a)

(b)

(c)

Figure 2.9: Fitted phase drift for (a) October, (b) November, (c) December. Data are shown as blue dots, while
the fitting parabola is the solid black line.
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Chapter 3

Results

3.1 Phase Coherent Optical Timing

To detect the glitch occurring on MJD 58064.555 we extrapolated the spin evolution measured with
IFI+Iqueye during the observing runs of October and November towards the glitch epoch. Thus, by
using the timing solutions shown in Table 2.6 we calculated the rotational frequency from:

ν(t) = ν0 + ν̇0(t− t0) (3.1)

From October 4 (MJD 58030.09130814821803) to November 8 (MJD 58064.555) we used the
timing solution found for October; from November 8 (MJD 58064.555) to November 18 (MJD
58075.112496650025477) we used the timing solution found for November; from December 30 (MJD
58117.96120908628654) to December 31 (MJD 58118.04034257127205) we used the timing solution
found for December. The rotational frequencies calculated in this way are shown in Figure 3.1 (upper
panel). The error associated to eq.(3.1) is given by the usual propagation of uncertainty law:

σν =
√
σ2ν0 + [(t− t0)σν̇0 ]2 (3.2)

where σν0 and σν̇0 are the uncertainties on ν0 and ν̇0 respectively. Plots as Figure 3.1 are usually called
butterfly plots. To clearly show the detection of the glitch occurring on MJD 58064.555, we extrapolated
the spin evolution in October νoct and subtracted it from the spin evolution of all epochs (Figure 3.1,
lower panel).

Finally, we compared our results with those from the radio ephemeris of the Crab pulsar reported at
the Jodrell Bank Centre for Astrophysics (hereafter JB) [9], [8]. We calculated the radio spin evolution
by inserting the timing solutions provided by [8] (see [9] for further details) into eq.(3.1). The radio
timing solutions and the time intervals chosen for this calculation are shown in Table 3.1. We shall
highlight that time intervals were chosen in order to make the radio spin evolution ν(t) as smooth
as possible. We also ignored the cubic term of the radio timing solutions, since is provides negligible
contribution on the considered time span.

In Figure 3.1 we compare the butterfly plots for optical (dashed black line) and radio (solid grey
line) observations. The uncertainties on the radio spin evolution are computed with eq.(3.2). The glitch
epoch is indicated as a vertical dashed red line. Optical and radio data are clearly in agreement within
3σ uncertainty. Furthermore, we computed the optical frequency jump ∆ν caused by the glitch and the
ratio ∆ν/ν, where ν is the pre-glitch frequency (Table 3.2): we found that ∆ν/ν = (0.44±0.11)×10−6,
which is consistent with the radio value ∆ν/ν = 0.516×10−6 reported by [46].

Albeit the overall spin evolution inferred from the optical data is in agreement with that measured in
the radio, it is important to stress that December data have a significant different slope. This deviation
is probably due to the not enough accurate estimate of the spin derivative ν̇0 for December, as seen in
Table 2.6: only one observing night was available for this month, which turns out to be insufficient
for an accurate measurement of ν̇0. Hence we decided to exclude the results of December from the
subsequent analysis.
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Date MJD ν0 ν̇0 Interval
(1/s) 10−15(1/s2) (MJD)

October 15 58041 29.6374670598 ± (2×10−10) -368635.67 ± 0.22 58030.091 - 58064.555
November 4 58061 29.6368300767 ± (3×10−10) -368616.01 ± 5.19 58058 - 58064.555
November 11 58068 29.6366215237 ± (72×10−10) -369626.33 ± 106.30 58064.555 - 58068.7
November 22 58079 29.6362691342 ± (8×10−10) -370857.08 ± 4.12 58068.7 - 58087.7
December 8 58095 29.6357567627 ± (7×10−10) -370375.12 ± 5.53 58087.7 - 58102.2
December 24 58111 29.6352450494 ± (6×10−10) -369986.53 ± 3.81 58102.2 - 58119

Table 3.1: Radio timing solutions provided by [8]. The time interval over which we calculated the spin evolution
is also indicated in the last column.

ν ∆ν ∆ν/ν
Hz µHz 10−6

29.6367167±0.0000007 13±3 0.44±0.11
Table 3.2: Crab rotational frequency ν before the glitch, frequency increase ∆ν and relative frequency increase

∆ν/ν measured with IFI+Iqueye.

3.2 Phase Residuals

In Figure 3.2 we show the phase drift of the IFI+Iqueye observations and the corresponding
parabola fits discussed in the previous chapter. To understand the post-glitch evolution of the pulsar,
an important piece of information is given by the distribution of the residuals.

According to the pure photon counting noise, we expect it to be a gaussian [4]. However, any
structured residual may indicate some phenomenon triggered by the glitch. Thus, we parsed the
distributions using a binning of 15 µs for all observing nights except November 18, for which we needed
a binning of ∼100 µs due to low statistics. In Figure 3.3 we show the observed distributions fitted with
a gaussian function centred at zero; the reduced χ2 values and the dispersion σ (µs) are also shown in
the figures. No significant evidence of structured residuals was found. We note that the values of the
Gaussian σ are larger than those found by [4] because of the lower counting statistics of the data used
in this thesis

3.3 Radio-Optical Delay

If we consider the light curve of the Crab pulsar throughout the electromagnetic spectrum, we can
immediately see that the ToAs of the pulses are wavelength dependent: the main pulses are not aligned
in time at different wavelengths [5]. This phase difference can be exploited to constrain the geometry of
the emission region. Since the pulsation at a certain wavelength is due to a specific emission mechanism
and is produced by charged particle with a given energy (which can be found only in certain regions
of the magnetosphere), by comparing the main peak in different bands we can directly constrain the
relative position of the emission regions.

In [5] the authors compared their optical observations, performed in October 2000 and November
2005, with the radio ephemeris provided by the JB [8]. The result showed that the optical pulse leads
the radio one by 273 ± 65 µs, which they explained either as the angle between the orientations of the
motion of the emitting particles (∼ 3o) or with the optical radiation being produced ∼ 90 km above
the radio one in the magnetosphere. In a subsequent work [64] the estimate was improved to 255 ± 21
µs. Within this framework, a geometric distance of ∼ 10 km roughly corresponds to an observed phase
difference of ∼ 0.001 [64].

A further effort was undertaken by [4]: using optical observations performed in 2009, the authors
found that the optical pulse leads the radio one by ∼ 240 µs in January and by ∼ 160 µs in December.
This result was interpreted as being induced by a misalignment between the optical and the radio
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Figure 3.1: Upper panel: spin evolution between October and December. Optical (IFI+Iqueye) data are shown
as dashed black lines, while radio (JB) observations from [8] are shown as solid grey lines. Lower
Panel: spin evolution relative to the pre-glitch trend found in October. The glitch epoch MJD
58064.555 is indicated with a vertical dashed red line.

beams possibly caused by a slightly different orientation of the magnetic field. Moreover, they stressed
that a different location of the emitting regions may not explain the observed time lag, because the
electrons are highly relativistic and therefore any time delay due to the distinct paths travelled by the
emitted photons and the electrons should be negligible.

Albeit the phase delay was considered constant hitherto, no reason suggests that this should be
the case: by looking at the time evolution of the phase lag we can directly see whether geometrical
rearrangements occur [7]. We have already anticipated in section 2.1 that a free precession of the spin
axis is still debated; nevertheless, other spatial rearrangements such as magnetic field lines reconnections
[32] or plasma density enhancements [45] could occur.

In this thesis we calculated the radio-optical time delay using the IFI+Iqueye optical data and the
radio ephemeris provided by the JB [8]. From the timing solutions reported in Tables 2.6 and 3.1, we
computed the corresponding optical −ψ and radio −ψrad phase drifts for October and November. The
details of the calculation of the optical phase drift −ψ are reported in section 2.3.2 (eq.(2.10)-(2.12)).
The associated errors are given by the propagation of uncertainty formula:

σψ =

√
σ2φ0 + [(t− topt)σν0 ]2 +

[1

2
(t− topt)2σν̇0

]2
(3.3)

where topt are the optical reference epochs found in Table 2.3 and the terms with the subscript "0" are
evaluated at t = topt.

Concerning the radio phase drift, the timing solutions φrad(trad), νrad(trad) and ν̇rad(trad) provided
by the JB are referred to the reference epochs trad found in [8], which are different from the topt that we
used for the optical analysis. Therefore, we evaluated the radio phase φrad(topt) and the radio rotational
frequency νrad(topt) at the optical reference epochs topt by using the phase and the spin evolution laws:

φrad(topt) = φrad(trad) + νrad(trad)[topt − trad] +
1

2
ν̇rad(trad)[topt − trad]2 (3.4)

νrad(topt) = νrad(trad) + ν̇rad(trad)[topt − trad] (3.5)
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(a)

(b)

(c)

Figure 3.2: Fitted phase drift and residuals for (a) October, (b) November, (c) December IFI+Iqueye observations.
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(a) (b)

(c) (d)

(e)

Figure 3.3: Phase residual distributions for the following IFI+Iqueye observing nights: (a) October 4, (b) October
7, (c) November 17, (d) November 18 and (e) December 30. The black dots represent the binned
data; the solid black line is the gaussian fit and the grey dots are the differences between data and
fitting curve. The reduced χ2 values and the dispersion σ (µs) are shown.
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Figure 3.4: Radio (JB) and optical (IFI+Iqueye) phase drifts for October and November 2017.

where φrad(trad) = tJPL/(1/νrad(trad)) (see [8]).
We finally computed −ψrad by means of eq.(2.10)-(2.12):

−ψrad(x) = −φrad(topt)−
[
νrad(topt)−

1

Pi

]
x− 1

2
ν̇rad(topt)x

2 (3.6)

where x = t− topt and Pi are the periods from Table 2.3. The results are shown in Figure 3.4. The
October butterfly plot from the optical observations (solid red line) is leading the radio solution (dashed
red line), but the delay is much smaller than that computed in November. Indeed, the delay between
the optical (solid green line) and the radio (dashed green line) increases dramatically after the glitch
and the increment is clearly significantly larger than the error bars.

To quantify the delay we calculated ψ − ψrad, which is shown in Figure 3.5. At the reference epoch,
the optical pulse is leading the radio one by 0.00262 ± 0.00007 s in October and by 0.0252 ± 0.0001 s
in November. Thus, the delay increases after the glitch by an order of magnitude.
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Figure 3.5: Delay between the IFI+Iqueye optical observations and the JB radio ephemeris, computed before
and after the November 2017 glitch.
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Chapter 4

Discussion and Conclusions

The Crab pulsar (PSR B0531+21; PSR J0534+2200) is one of the five isolated neutron stars which
show a pulsating signal in both the optical and radio bands, together with the Vela (PSR B0833-45)
pulsar, PSR B0540-69, PSR B0656+14, and Geminga (PSR B0630+17) [4]. Optical pulsations were
recently observed also from the millisecond pulsar PSR J1023+0038 [65] and then independently
confirmed by means of Aqueye+ mounted at the Copernicus Telescope in Asiago (Italy) [66]. The
detection of pulsations in different bands allows a cross analysis throughout the electromagnetic spectrum,
which can provide fundamental information on the geometry of the magnetospheric configuration.

In this thesis we parsed the observations of the Crab pulsar taken on 2017 October 4 and 7, November
17 and 18, December 30 with the very fast optical photon counter Iqueye [6], mounted at the 122 cm
Galileo Telescope in Asiago (Italy) through a dedicated optical fiber interface (IFI). The time series
provided by Iqueye was converted by means of the TEMPO2 software package [59] to the SS barycentre.

We estimated the Crab rotational period in each observing runs through a power spectrum analysis
of the time series. We subsequently split the time series into 30 s or 60 s intervals, according to the
counting statistics of the observations, and we folded each interval with the corresponding period to
get the so called folded profiles. Then the folded profile was fitted with an accurate fitting function
[4] which directly provides the fractional ToAs of the main peak. After the cleaning of spurious data,
following [4] we determined the number of rotations needed to reconstruct the timing solution using a
χ2 procedure. Thanks to this analysis we were able to build an optical phase coherent timing solution
for the Crab pulsar in each observing run (Table 2.6). The timing residual distributions obtained are
well described by a Gaussian, in agreement with what expected for pure photon counting noise [4].

It is well known from radio data [46] that on MJD 58064.555 a glitch occurred; to pinpoint
this spin up event in the optical domain we compared the spin evolution inferred from our timing
solutions with the JB radio ones [8]. We found that optical and radio data clearly agree within the 3σ
uncertainties and we estimated the optical frequency jump ∆ν = 13 ± 3 µHz caused by the glitch and
the ratio ∆ν/ν = (0.44±0.11)×10−6, which are both consistent with the radio values ∆ν = 15 µHz
and ∆ν/ν = 0.516×10−6 reported by [46], respectively. This result further confirms that glitches are
wavelength-independent phenomena. Moreover, this is the first glitch detected with Iqueye.

The pulsation at a certain wavelength is produced through a given emission mechanism by particles
in a given energy range, which can occur only in certain regions of the magnetosphere. Hence by looking
at the wavelength-dependent phase drift we can directly constrain the geometry of the emission regions
and the magnetosphere which surrounds the pulsar.

This effort has already been undertaken by many authors throughout the electromagnetic spectrum.
The time delay between radio pulses on the one hand and X-rays and γ-rays ones on the other have
been measured (see, for example, [67] and [68]) and the latter are clearly leading the former. Concerning
the radio and the optical, the comparison between optical and radio phase drift led to a time lag of
273 ± 65 µs in [5], with the optical pulse leading the radio one. [5] suggested that this phase lag
could be explained either as the angle between the orientations of the motion of the emitting particles,
namely a misalignment between the radio and the optical beamed emissions of ∼3o, or with the optical
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radiation being produced ∼ 90 km above the radio one in the magnetosphere. The same authors further
improved their estimate to 255 ± 21 µs in a subsequent work [64]. In a more recent paper [4] the
authors estimated a phase delay of ∼ 240 µs for 2009 January and ∼ 160 µs for 2009 December. They
also highlighted that a different location of the emitting regions is an unlikely explanation because
the electrons are highly relativistic and therefore any time delay due to the distinct paths travelled
by the emitted photons and the electrons should be negligible. Thus the most plausible model is a
misalignment between the radio and the optical beams of 1.5o - 3o [4].

Within this framework, we compared our optical phase drift with that provided by the JB ephemeris.
We found that the optical pulse is leading the radio one, in agreement with the aforementioned works,
but the estimated time lag is ∼ 0.00262 ± 0.00007 s in October. Although the pulsar frequency noise
may affect our estimate (optical and radio measurements are not simultaneous), the difference appears
significant. More importantly, after the MJD 58064.555 glitch the time lag jumped up to 0.0252 ±
0.0001 s, corresponding to ∼ 0.5 in phase. Such a change in the time delay has never been observed
before. This lag can be interpreted as a major rearrangement of the geometry of the magnetosphere
triggered by the glitch. If confirmed, this would be a direct evidence of a spatial reconfiguration of the
magnetosphere and a clear evidence of the time delay variability.

This interpretation is further supported by the decrease in the Crab soft X-rays (3.0-4.5 keV)
polarization after a glitch occurred on 2019 July 23 [69]. Previous evidence of rearrangements of the
magnetosphere induced by the glitch were also suggested to explain some very low probability events
which occurred around the 2016 December 12 glitch of the Vela pulsar [57]: a broad pulse, followed by
a null one, both preceding two pulses with lower linear polarization; an increase in the mean and a
reduction in the variance of the timing residuals, during which Vela exhibited the glitch. Furthermore,
within a 2.6 s interval the radio pulses arrived later than expected, in agreement with our results.

A feasible process which could explain this phenomenon is an abrupt change in the orientations
between the optical and the radio beams, which may be caused by the variation of the angle between
the spin and the magnetic axes triggered by the glitch. Even if any free precession of the spin axis
would be damped by the internal superfluid [51] and [52], its motion with respect to the magnetic axis
of the pulsar was already invoked to explain the observed 35-day cycle in the Hercules X-1 pulsating
binary [70] and, more recently, the observed variation of the braking index of the Crab pulsar [31].

Moreover, the free precession has been invoked to model the long term cyclical variations of the spin
by many authors: evolution of the pulse shape and the slow down of PSR B1828-11 were described by
harmonically sinusoids with periodicity ∼ 1000, 500 and 250 days by [54]; variations with periodicity of
∼ 1250 days in PSR B1642-03 were modelled by [53]; the Crab pulsar, the Vela pulsar (PSR B0833-45),
PSR B1642-03, PSR B1828-11, the remnant of SN 1987A and Hercules X-1 were all tested for free
precession of the rotation axis by [55], who suggested that the motion of the spin axis may be caused
by glitches. Furthermore, since the energy loss due to the braking mechanisms depends on the angle
between the rotation and the magnetic axes, this inclination angle should tend to a value which
minimizes the energy loss as the neutron star ages. The estimated value which the inclination angle
should tend to is π/2 [56].

In light of these considerations, future works should try to test whether a glitch could directly affect
the spin axis (by inducing a free precession) and/or the geometry of the magnetosphere by means
of broader observations and by parsing more of these events. We will therefore be able to constrain
the emission region and the physical conditions within the magnetosphere [64]. On the other hand, a
theoretical effort is needed to explain the fundamental reason which allows the free precession to survive
despite the superfluid damping and to unambiguously model this mechanism in order to constrain
physical quantities like the moment of inertia. Moreover, by parsing glitches due to different triggering
mechanisms we can further investigate how dissimilar glitches affect the magnetosphere. Finally, the
variability of the time lag between optical and radio pulse could also be taken into account to possibly
explain the inconsistencies found in the literature [5]: different estimates for the delay could be in
agreement if the time lag is not constant over time, i.e. if the magnetosphere is ceaselessly changing.
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Appendices

We show the Python script used to fit the folded profile and to determine the position of the main
peak x1 (see section 2.3.2). Moreover, this module displays the phase drift as a function of the detection
time (Time since the reference epoch) and eventually creates a csv file with the x1 values for the whole
observing run. The example presented here is for December data.

import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
from scipy.optimize import curve_fit
from astropy.io import fits
from astropy.table import Table
import csv

class date:
def __init__(self ,mjd ,epoch ,step):

self.mjd = mjd
self.epoch = epoch
self.step = step

PATH20 = ’.../ QEYE_20171230 -235440 _fold_30s_test.fef’
PATH21 = ’.../ QEYE_20171231 -003758 _fold_30s_test.fef’
PATH22 = ’.../ QEYE_20171231 -011907 _fold_30s_test.fef’

path_list = [PATH20 , PATH21 , PATH22]

### start day and time of each observation session ###
t20 = date (58117.961209086285322 ,58118.0009388908640735 ,30)
t21 = date (58117.991281496316642 ,58118.0009388908640735 ,30)
t22 = date (58118.019856460156944 ,58118.0009388908640735 ,30)
t = [t20 , t21 , t22]

### values for the Lorentzians ###
b = np.array ([0.0146996 , 0.0146996 , 0.0146996 , 0.0146996 , 0.0146996 ,
0.00390605 , 0.0131649 , 0.0517911 , 0.0386609 , 0.0377745 , 0.0156592 ,
0.0325165 , 0.0531056 , 0.209385 , -0.0630249 , 0.0259154])
d = np.array ([1, 0.217538 , 0.120438 , 0.343795 , 0.0274555 , 0.104503 ,
0.0524991 , 0.0462601 , 0.250336 ,0.063293 , -0.0323015 , -0.0176647 ,
0.0128576 , 0.00944315 , -0.00883256 , -0.00388652])
h = np.array ([0 ,0.0295389 , 0.0452724 , 0.0159706 , -0.0405742 , -0.004064 ,
-0.408426 , -0.493455 , -0.400741 , -0.445372 , 0.0948912 , 0.133417 ,
0.355586 , -0.0200141 , -0.261205 , -0.153419])

### sum of 16 Lorentzians ###
def lorentz(x,p,q,x1):

lorentz_list = []
for i in range(len(x)):

lorentz_list.append(p*np.sum((d*b**2)/(b**2+(x[i]-x1+h)**2))+q)
return np.array(lorentz_list)

def sec_converter(time_array ,epoch):
time1 = time_array - epoch
time = time1 /(1./86400)
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return time

### fit of the main peak ###
def main():

hdul = []
x1_val_list = []
x1_err_list = []
mjd_list = []
for j in range(len(path_list)):

hdul.append(fits.open(’{}’.format(path_list[j])))
x1_val = []
x1_err = []
mjd = t[j].mjd
epoch = t[j].epoch
step = t[j].step
for i in range(1,len(hdul[j])):

events = Table.read(hdul[j],hdu=i)
x = events[’PHASE’]
y = events[’RATE1’]
ylist = list(y)
x1_guess = x[ylist.index(max(ylist))]
p_guess = max(ylist)
q_guess = np.min(y)
pguess = [p_guess ,q_guess ,x1_guess]
popt , pcov = curve_fit(lorentz , x, y, p0 = pguess)
p,q,x1 = popt[0],popt[1],popt [2]
errors = np.sqrt(np.diag(pcov))
x1_err.append(errors [2])
x1_val.append(x1)
mjd_list.append(mjd+(i-1)*step *(1./86400))

x1_val_list += x1_val
x1_err_list += x1_err

x1_val_array = np.array(x1_val_list)
x1_err_array = np.array(x1_err_list)
time_array = np.array(mjd_list)

### plot with seconds ###
plt.errorbar(sec_converter(time_array , t20.epoch), x1_val_array ,
yerr = x1_err_array , fmt=’ob’)
plt.xticks(fontsize =20)
plt.yticks(fontsize =20)
plt.xlabel(’Time since reference epoch (s)’,size =20)
plt.ylabel(’-$\psi$(t)’, size =20)
plt.title(’December ’,size =20)
plt.show()

### to create a csv file with all the data ###
time_sec = sec_converter(time_array ,t1.epoch)
f=open(’December_data.csv’,’w+’)
f.write(’#Data for December 30 \n’)
f.write(’#seconds are referred to the epoch \n’)
f.write(’#MJD \t -PSI \t PSI_ERR \t SECONDS \n’)
for l in range():

riga=’%5.14f %5.14f %.14f %6.8f\n’ % (time_array[l],
x1_val_array[l], x1_err_array[l], time_sec[l])
f.write(riga)

f.close()

if __name__ ==’__main__ ’:
main()
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The following Python script was used to fit the phase drift and to return the timing solution. It
takes the csv files generated through the previous module and returns either the timing solution or the
plot of the fitted phase drift and the residuals (Figure 3.2). We show an example for December.

import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
from scipy.optimize import curve_fit

month_data = ’December_data.csv’
p1 = 0.0337438622

def parabola(x,a,b,c):
p = []
for i in range(len(x)):

p.append(a*x[i]**2+b*x[i]+c)
return np.array(p)

### data analysis ###
def func(l):

data = np.genfromtxt(’{}’.format(month_data))
mjd = data [:,0]
phase = data [:,1]
phase_err = data [:,2]
sec = data [:,3]

popt , pcov = curve_fit(parabola , sec , phase)
a,b,c = popt[0],popt[1],popt [2]
errors = np.sqrt(np.diag(pcov))

nu_dot = -2*a
err_nudot = 2* errors [0]
nu = -b+1./p1
err_nu = errors [1]
phi = -c
err_phi = errors [2]
chisq = np.sum(((phase -(a*sec **2+b*sec+c))**2) /(( phase_err)**2))
ndof = len(phase) -3.
chisq_red = chisq/ndof
if l==1:

return phi , err_phi , nu, err_nu , nu_dot , err_nudot ,
chisq , chisq_red

elif l==2:
return sec , phase , phase_err , a, errors [0], b, errors [1],
c, errors [2]

### return some values of the fitted data ###
def values ():

phi ,err_phi ,nu ,err_nu ,nu_dot ,err_nudot ,chisq ,chisq_red = func (1)
print(’phi:’,phi ,’+-’,err_phi , ’\n’)
print(’nu:’,nu, ’+-’, err_nu , ’\n’)
print(’nu_dot:’,nu_dot , ’+-’, err_nudot , ’\n’)
print(’chisq:’,chisq , ’\n’)
print(’chisq_red:’,chisq_red , ’\n’)

### phase drift plot fitted and time residuals ###
def grafico ():

sec , phase , phase_err ,a,err_a ,b,err_b ,c,err_c = func (2)

ax1 = plt.subplot (211)
ax1.errorbar(sec ,phase , yerr=phase_err , fmt=’ob’)
sec2 = np.arange(np.min(sec) -1000, np.max(sec)+1000)
ax1.errorbar(sec2 , a*sec2 **2+b*sec2+c, fmt=’-k’)
ax1.set_ylabel(’-$\psi$(t)’,size =20)
ax1.tick_params(axis=’both’, labelsize =20)
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ax1.set_title(’December ’, size =20)

ax2 = plt.subplot (212, sharex=ax1)
residuals = phase - (a*sec **2+b*sec+c)
err_res = phase_err + np.sqrt(( err_a*sec **2) **2+( err_b*sec)**2)
ax2.errorbar(sec , residuals ,yerr=err_res , fmt=’ob’)
ax2.set_xlabel(’Time since the Reference Epoch (s)’,size =20)
ax2.set_ylabel(’Residuals ’, size =20)
ax2.tick_params(axis=’both’, labelsize =20)
plt.show()

if __name__ == ’__main__ ’:
grafico ()
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